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ABSTRACT

D Y N A M IC  R E SPO N SE  O F  P O R O E L A S T IC  M A T E R IA L S  

C O N T A IN IN G  BIN G H A M  FL U ID : A P P L IC A T IO N  T O  

E L E C T R O R H E O L O G IC A L  FLU ID S

by

Mete Kesan 

University o f New Hampshire, May, 1997

This work examines the dynamic response to harmonic loading o f a disk o f 

poroelastic material containing non-Newtonian Bingham fluid which exhibits a yield 

stress. B iot’ s poroelasticity equations and modified Darcy’s law for non-Newtonian 

fluids exhibiting a yield stress are combined together to obtain the governing equations 

o f the system for quasi-static case. Dissipation due to friction arising from the flow  o f 

fluid relative to the solid is taken into account but inertia effects are neglected. The 

response and the complex modulus o f the system are calculated using the finite 

element method taking into account the nonlinear nature o f Bingham fluid. As an 

application o f the model developed, the behavior o f electrorheological (ER) fluids in 

poroelastic media is investigated. The storage modulus and loss tangent are obtained 

for different electric field strengths. The results suggest that ER fluid-porous solid

xi
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device can be tuned to provide optimum stiffness and damping as excitation 

resonant frequencies change.
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CHAPTER I

INTRODUCTION

Even though most studies conducted on flow and transport in porous media 

deal with Newtonian fluids, a tremendous effort has also been devoted to developing 

quantitative analysis o f flow o f non-Newtonian fluids through porous media. The 

theoretical investigations carried out in this field have concentrated mainly on single

phase non-Newtonian fluid flow, while the experimental attempts have been designed 

to provide flow analysis with rheological models for non-Newtonian fluids and porous 

materials o f interest.

In order to apply Darcy’s law which is an empirical relation between the flow 

velocity and pressure gradient, to the flow o f non-Newtonian fluids in porous media, 

apparent viscosities are needed for use in the Darcy equation. A significant amount o f 

laboratory studies has been performed by many investigators in an effort to develop 

correlations for apparent viscosities o f non-Newtonian fluids in porous media. In 

almost all o f these studies, a power-law viscosity model has been used exclusively to 

approximate the flow behavior o f non-Newtonian fluids. However, there is 

considerable evidence from laboratory experiments that certain fluids in porous media 

exhibit a Bingham-type non-Newtonian behavior. For these fluids, flow takes place
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only after the pressure gradient exceeds a certain minimum value which is called as 

“ threshold gradient” . Analogous to Darcy’s law which is developed fo r Newtonian 

fluids, modified Darcy’s law is developed for the flow o f non-Newtonian Bingham 

type fluids which exhibit a yield stress, in porous media. Dynamic behavior o f Bingham 

fluid in porous media is highly nonlinear because o f the yield stress o f  the fluid. 

Bingham fluids behave like a solid as long as the pressure gradient is less than the 

threshold gradient. Once the threshold gradient is overcome, the flow  starts and 

Bingham material behaves like a non-Newtonian viscous fluid. There are only a few 

studies in the literature on the flow o f Bingham fluid in porous media. In some o f  these 

studies, considering that a portion o f the fluid will flow, the location o f the yield 

surface is predicted at each time step and the solution is obtained for the yielded 

portion o f the Bingham fluid. On the contrary, Lipscomb and Denn (1984) showed 

that yield surfaces cannot exist in confined, complex geometries, and flow must occur 

at all interior points.

The petroleum industry has received most o f the attention with regard to the 

research on the flow o f non-Newtonian Bingham fluid in porous media. However, a 

new type o f fluids called electrorheological (ER) fluids which exhibit Bingham type o f 

fluid behavior are also studied by many researchers in this area in the past 30 years. 

Electrorheological (ER) fluids are suspensions o f fine particles in a non-conducting oil. 

They are distinctive because, when subjected to an electric field, they solidify and 

behave like a non-Newtonian Bingham fluid. They exhibit a yield stress which is 

proportional to the applied voltage. By varying the applied voltage, the yield stress and

?
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the viscosity o f ER fluid can be altered. One o f the most important reason for the lack 

o f  commercially available devices employing ER fluids is the low strength 

characteristics o f ER fluids. There is significant amount o f research going on to find 

new particle/fluid combinations that can withstand higher stresses. On the other hand, 

incorporating ER fluids in a poroelastic structure can increase the material strength 

considerably even with the current ER fluids and can still provide controllable stiffness 

and damping characteristics.

It is the goal o f this work to develop a theory to investigate the dynamic 

response to harmonic loading o f poroelastic materials containing non-Newtonian 

Bingham fluid which exhibits a yield stress. As an application o f  the theory developed, 

the use o f  combinations o f electrorheological fluids and porous deformable solids to 

construct active vibration control devices will be explored.

Chapter 2 reviews the literature on the experimental and theoretical studies o f 

Newtonian and non-Newtonian fluid flow through porous media and 

electrorheological fluids.

In Chapter 3, Biot's theory o f poroelasticity is reviewed first. Then, Biot’s 

theory o f poroelasticity is combined with the modified Darcy’s law which is developed 

fo r non-Newtonian Bingham fluids, to obtain the modified governing equations 

describing the flow o f Bingham fluid in poroelastic media.

Chapter 4 is devoted to the development o f a numerical model for the solution 

o f  nonlinear governing equations. A model problem is defined, boundary conditions 

are specified and the solution is obtained by using the numerical model developed. The

->
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results obtained from the numerical model are also compared with the exact solution in 

Chapter 4.

Chapter 5 explains the brief theory o f  electrorheological fluids. The model 

developed is modified for the analysis o f ER fluid flow in poroelastic media. Also, field 

dependencies o f  ER fluid parameters are investigated and the results obtained from the 

numerical model for the problem defined are presented and interpreted in this chapter.

Finally, the conclusion o f this work is given in Chapter 6. Several important 

conclusions are drawn considering the results obtained from the model developed. The 

results suggests that electrorheological fluid-filled poroelastic systems can be used as 

an active vibration isolation devices to provide optimum stiffness and damping as 

excitation or resonant frequencies change.
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CHAPTER II

BACKGROUND

2.1. N ew tonian Fluids in P o rous M edia

The theory o f poroelastic media has its origins in the one-dimensional theory o f 

consolidation formulated by Terzaghi (1925, 1943) for use in soil mechanics where 

settling o f water-soaked soils under load is called consolidation. Beginning in 1941, 

M.A. Biot published a series o f papers dealing with a general theory o f behavior o f 

what are now termed poroelastic materials [Biot (1941, 1955, 1956)]. B iot’s 

poroelastic materials are two-phase solid-fluid-filled systems. The porous-solid 

skeleton is linearly elastic and undergoes small deformations while the flow o f fluid 

produced by deformation o f the material is governed by Darcy’s law. In his first paper, 

the isotropic poroelastic material is studied [Biot (1941)]. Then, he generalized the 

theory to anisotropic materials [B iot (1955)] and obtained the general solutions to the 

poroelasticity equations [Biot (1956)].

A mathematical treatment to predict the fluid damping o f open-cell foams was 

proposed by Rush (1965) and by Gent and Rush (1966). In their analysis, a rectangular 

block o f Newtonian fluid-filled foam which is sinusoidally compressed, ‘is considered. 

The fluid inside the foam specimen is forced to flow through the sides o f the matrix.

5
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The pressure distribution was determined and the average compressive stress in the 

cross-section o f the specimen was calculated. This stress was added to the 

compressive stress o f the foam matrix and an equivalent complex modulus o f open-cell 

foam was derived. They predicted the frequency dependence o f the complex modulus 

to be qualitatively as shown in Fig. 2.1.

The complex modulus o f a viscoelastic material is basically defined from the 

ratio o f the stress to the strain. For a harmonic loading, the stress and strain will both 

vary sinusoidally, but the strain lags behind the stress. The real part o f the modulus is 

often called the storage modulus because it defines the energy stored in the specimen 

due to the applied strain. The imaginary part o f the modulus, which is out o f phase 

with the strain, defines the dissipation o f energy and is often called the loss modulus. 

Also, the ratio o f the loss modulus to the storage modulus usually named as the loss 

factor.

Another typical behavior o f viscoelastic materials is the rubber to glass 

transition behavior. Typically at low frequencies viscoelastic materials are soft and 

flexible while at high frequencies they are stiff. These two types o f behavior are called 

rubbery and glassy, respectively. There is a certain range o f frequency called rubber to 

glass transition frequency over which the behavior o f  viscoelastic materials changes 

rapidly from rubbery to glassy. Since the region is usually quite narrow, specific values 

o f frequency called the rubber to glass transition frequency are often quoted in 

literature.

6
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Storage Modulus

Loss Factor

log(f)

Fig. 2.1. Variation o f storage modulus and loss factor o f a fluid-filled foam with 

frequency

As the frequency is increased, the fluid flow resistance increases, resulting in 

increased material stiffness and loss factor. At high frequencies, the interaction force 

between the fluid and the solid matrix becomes so large that the solid and fluid move 

together and there is no fluid flow. At these frequencies the loss factor becomes zero 

and the storage modulus becomes its maximum. Thus, as the frequency increases, the 

loss factor starts to increase and reaches its maximum at a “ critical”  frequency o)c, and 

then reduces to the matrix loss factor again. Similarly, the storage modulus starts to 

increase from the matrix storage modulus and approaches its maximum value as the 

frequency goes to infinity.

The model o f Gent and Rusch explains the effects o f the material constants and 

the specimen geometry on the fluid damping. The validity o f their analysis has been

7
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well proven by extensive experiments. However, the method cannot be applied to 

different deformation modes and/or flow boundary conditions.

In order to analyze the fluid damping in more general deformation modes and 

fluid flow  conditions, it is essential to have constitutive equations for the fluid-solid 

system. Wijesinghe and Kingsbury (1979) used B iot’ s poroelastic theory to describe a 

theoretical complex modulus o f the poroelastic material containing Newtonian viscous 

fluid. In their analysis, the dynamic response o f a porous material subjected to 

harmonic surface displacement was considered. The resulting theoretical complex 

modulus shows a frequency response similar to the one shown in Fig. 2 .1.

2.2. N on-N ew tonian Fluids in Porous M edia

Flow o f non-Newtonian fluids through porous media occurs in many systems 

and has found applications in certain technological areas. Previous studies on the flow 

o f fluids through porous media were limited for the most part to Newtonian fluids. 

Since the 1950’s, the flow o f non-Newtonian fluids through porous media has received 

a significant amount o f attention because o f its important industrial applications. Most 

o f the research on non-Newtonian fluid flow is related to the petroleum industry. Non- 

Newtonian fluids, especially polymer solutions, are often injected into reservoirs in 

various enhanced oil recovery processes. There exist a considerable amount o f 

literature and reports on the use o f polymeric and chemical additives in oil recovery 

processes.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In contrast with classical fluid mechanics developed for Newtonian fluids, the 

theory o f non-Newtonian fluid dynamics is a very new branch o f applied sciences. The 

increasing importance o f non-Newtonian fluids has been recognized in those fields 

dealing with materials whose flow behavior o f stress and shear rate cannot be 

characterized by Newton’s law o f viscosity. In a broad sense, fluids are divided into 

two main categories: ( I ) Newtonian, and (2) non-Newtonian. Newtonian fluids follow 

Newton’s law o f  viscous resistance and possess a constant viscosity. Non-Newtonian 

fluids deviate from Newton’s law o f viscosity, and exhibit variable viscosity. The 

behavior o f non-Newtonian fluids is generally represented by. a rheological model, or 

correlation o f shear stress and shear rate. Although there are many rheological models 

available for different non-Newtonian fluids in the literature, the simplest and most 

common are shown in Fig. 2.2. The slope o f shearing stress vs. rate o f shearing strain 

graph is denoted as apparent viscosity, pa. For Newtonian fluids the apparent viscosity 

is the same as the viscosity and is independent o f  shear rate.

For shear thinning fluids the apparent viscosity decreases with increasing shear 

rate - the harder the fluid is sheared, the less viscous it becomes. Many colloidal 

suspensions and polymer solutions are shear thinning. For shear thickening fluids the 

apparent viscosity increases with increasing shear rate - the harder the fluid is sheared, 

the more viscous it becomes. Common examples o f this type o f fluid include water- 

com starch mixture and water-sand mixtures.

9
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Bingham plastic

Shear thinningShearing 
Stress, t

Newtonian

Shear thickening

Rate o f shearing strain

Fig. 2.2. Variation o f shearing stress with rate o f shearing strain 

for several types o f fluids.

The other type o f behavior indicated in Fig. 2.2 is that o f a Bingham plastic. 

Such material can withstand a finite shear stress without motion, but once the yield 

stress is exceeded it flows like a fluid. The characteristics o f these fluids are defined by 

two constants: the yield stress t v, which is the stress that must be exceeded for flow to 

begin, and the plastic viscosity p0, which is the slope o f the straight line in Fig. 2.2. 

The rheological equation for a Bingham plastic is then,

r = r  , . + / / „ /  ( 2 . 1 )

in which x is the shearing stress and y is the rate o f shearing strain.

10
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To date the power-Iaw model is the most widely used Theological model for 

the flow problems in porous media. Originally formulated from an empirical curve- 

fitting function, the power-law model is represented by,

r  = H yn (2.2)

where n is the power-Iaw index and H is called the consistence coefficient. For n= l, 

the fluid becomes Newtonian.

Compared with studies conducted on flow o f non-Newtonian power-Iaw 

fluids, there are only a few publications dealing with flow problems in porous media 

involving non-Newtonian Bingham fluids.

A series o f  papers on the non-Newtonian fluid flow through porous medium is 

published by Pascal (1981, 1983, 1984, 1985, 1986, 1989). He has analyzed 

theoretically the application o f Darcy’s law to Bingham fluid flow by introducing the 

effect o f the yield value in a so-called “ threshold gradient” . He has investigated the 

effect o f the threshold gradient in steady and unsteady state flow through porous 

media and has obtained solutions for well flow test analyses [Pascal (1981)]. He also 

extended the theory for nonsteady flow o f power-Iaw fluids with a yield stress through 

a porous medium. In his analyses, the approximate solutions in a closed form were 

obtained by using the integral method [Pascal (1983)]. His next study was the 

investigation o f  the rheological behavior effect o f non-Newtonian fluids on the 

dynamic o f moving interface in porous media by using Muskat’s model which
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describes the flow o f two immiscible fluids, separated by an interface, in oil 

displacement mechanisms from a porous medium [Pascal (1984)}. He recently 

published a paper [Pascal (1989)] which presents a mathematical model for describing 

approximately the viscoelastic effect in non-Newtonian steady flows through a porous 

medium.

Al-Fariss and Pinder (1987) used the modified, more general form o f Darcy’s 

law which describes the flow through porous media o f homogeneous, fluids whose 

flow behavior can be characterized by power-Iaw model. In their analysis, a more 

general Reynolds number for flow through porous media, which includes a fluid yield 

value was developed. They also verified their model with the experimental results 

obtained from the flow o f crude oil in packed beds o f sand.

Lipscomb and Denn (1984) studied the flow o f Bingham fluid in complex 

geometries. They concluded that Bingham fluids cannot contain yield surfaces in 

complex, confined geometries and flow  must occur at all interior points.

Wu (1990) presented a theoretical study on the flow and displacement o f 

Bingham fluid in porous media. He developed an integral method o f analyzing the 

single-phase flow o f this type o f fluid and confirmed the accuracy o f the approximate 

analytical solution developed by comparison with numerical solutions.

Vradis et al. (1993) derived macroscopic equations o f motion in saturated 

porous media for non-Newtonian Bingham fluids. They used “ capillary tubes”  as well 

as the “ resistance to flow” models which are modified to account for the effects o f the

12
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yield stress. In addition, the minimum static head gradient required for the initiation o f 

flow in porous medium is predicted using the two models developed.

2.3. E lectro rheo log ica l (ER) Fluids

ER fluids are suspensions o f fine particles in non-conducting oil. They are 

distinctive because, when subjected to an electric field, they instantly turn into a gel- 

like solid. When the current is removed, they revert to the liquid state. This change in 

state can occur in 0.0001 to 0.001 second.

ER fluids were discovered in 1947 by W illis M. Winslow who patented them 

[Winslow (1947)], and published the first paper regarding them [Winslow (1949)]. In 

fact, originally the term “ Winslow effect” was used to describe the unique action o f  

ER fluids.

When an electric field is applied across the ER fluid, positive and negative 

charges on the suspended particles respond by separating such that each particle has a 

positive and a negative end. The particles are then attracted to each other forming 

chains between the electrodes - similar to the way iron filings align themselves in a 

magnetic field. When the electric field is removed, charges no longer separate on the 

particles, and the fluid returns to its original no-field flow characteristics in a fully 

reversible manner. The gelling is proportional to 'fie ld  strength, so by varying the 

voltage, any Theological state from liquid to solid and back again can be smoothly and 

instantly selected. Upon jelling, when a shearing force is applied the gel reacts as a 

solid with a measurable stiffness. Upon increasing the force, a critical value is reached

13
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whereupon the material flows. This critical force per unit area is termed the yield 

stress. Normally, the yield stress is proportional to the applied voltage, and increases 

with particle volume fraction.

The carrier fluids can be based on almost any type o f oil and the particles 

which are typically in the range o f 1-10 pm can consist o f either organic materials like 

starch and cellulose or inorganics like ceramics, glass, and a variety o f polymers. The 

carrier fluids must be good insulators as well as be compatible with the materials they 

contact. Today, silicone oil, mineral oil and chlorinated paraffin are mostly used as 

carrier fluids. Density matching between the particles and carrier fluid is very desirable 

to reduce the sedimentation.

The typical constitutive behavior o f an ER fluid in shear is shown in Fig. 2.3 

where shear stress is plotted as a function o f shear strain and shear rate, respectively.

Increasing
Electric Field

Shear
Stress

Shear Rate .

Pre-Yield <-T* Post' Yidd

Increasing 
Electric Field

Shear
Stress

Y>- Shear Strain

(a) (b)

Fig. 2.3. Idealized constitutive shear behavior o f ER materials

As shown in Fig. 2.3, ER material behavior can be divided into pre-yield-and 

post-yield regions. These materials under a non-zero field can be described as

14
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viscoelastic solids below a certain yield stress or yield strain (pre-yield region) and as 

non-Newtonian viscous liquids for stresses at or above the yield stress or strains equal 

or greater than the yield strain (post-yield region). Controllable devices are based on 

the post-yield behavior depicted in Fig. 2.3b. For post-yield situations the constitutive 

shear behavior o f ER materials is often modeled using the Bingham plastic 

approximation.

Since their discovery in 1947, ER fluids received only minor research attention 

in the 1960’s and 1970’s. Serious research began in the 1980’s. Klass and Martinek 

(1967) investigated the effect o f many parameters such as composition, shear rate, 

frequency and temperature on the apparent viscosity o f electroviscous fluid.

Gamota and Filisko (1991a) experimentally studied the response o f an ER 

material to sinusoidally oscillating shear strains at moderate frequencies. They 

discussed the response o f material in terms o f three rheological regions; pre-yield, 

yield and post-yield. Furthermore, the energy dissipated by the ER material is analyzed 

as related to strain amplitude and electric field. They also extended their analysis for 

the frequencies in the range o f 300-400 Hz and measured the storage and loss factor 

o f the ER material for various electric field strengths [Gamota and Filisko (1991b)].

Xu and Liang (1991) developed a new type o f semiconducting polymer-based 

ER suspension. They measured the rheological properties such as yield stress, complex 

viscosity, dynamic modulus as functions o f electric field, particle concentration, water 

content and temperature.

15
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Coulter et al. (1992) discussed the usage o f ER materials in controllable 

devices such as anti-vibration mounts, clutches, and dampers. They summarized the 

models which have been developed to simulate the response o f such structures with an 

attempt to identify current and future key areas o f  research and development in ER 

material applications technology.

Williams et al. (1992) worked on the mathematical modeling o f ER fluids when 

used in oscillating squeeze-flow mode; in a prototype automotive engine mount. They 

found a solution for the situation in which the non-Newtonian behavior o f the fluid is 

represented by a bi-viscous characteristic.

Fujita et al. (1993) measured the viscosity o f electro-rheological (ER) and 

magneto-rheological (MR) fluids under electric and magnetic fields, respectively and 

concluded that the electric field was more effective than the magnetic field in 

increasing the viscosity.

Weiss et al. (1994) examined the transition area between the elastic and 

viscous behavior for the electro-rheological and magneto-rheological fluids. Both ER 

and MR fluids were observed to yield at a strain level o f less than 1% in their 

measurements. They suggested that the research efforts should be focused in 

development o f ER and MR fluids that yield at a higher level o f strain.

Kudallar et al. (1994) discussed the use o f pre-yield rheological behavior o f an 

ER fluid in a mount structure for precision applications to demonstrate tunable 

stiffness and damping in a changing environment. They modeled the ER fluid as a

16
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simple linear viscoelastic model. Their preliminary design analysis o f the mount

structure showed that damping and stiffness control is feasible.

Over the last 20 years, a significant amount o f  effort has been directed towards

the development o f ER material applications. The controllable rheological nature o f
%

these materials has been evaluated for a wide range o f  application concepts. Significant 

advancements in the development and understanding o f ER material controllable 

devices have been realized, with the primary proposed device types being valves, 

mounts, clutches, and dampers. In addition, during the past several years the new 

potential ER application area o f adaptive structures has emerged. Proof o f concept 

studies in this area have been completed, but the theoretical understanding o f  ER 

adaptive structures requires further development.

17
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CHAPTER III

THEORY OF POROELASTICITY

3.1. B iot’s Formulation o f  the Equations o f Poroelastic M edia

Biot’ s poroelastic materials are two phase solid-fluid filled systems. The 

porous solid skeleton is linearly elastic and undergoes small deformations while the 

flow  o f  fluid produced by the deformations o f the material is governed by Darcy’s law. 

He developed the theory for isotropic and anisotropic poroelastic materials and 

obtained the general solutions to the poroelasticity equations for quasi-static case. A 

dynamic theory for such systems is also developed by Biot, for the study o f wave 

propagation. In this chapter, B io t’s quasi-static formulation which includes the 

dissipation but neglects the fluid inertia is presented.

The quasi-static poroelastic theory as presented by Biot is based on several 

fundamental assumptions. The two-phase poroelastic material is considered to be 

comprised o f a solid material forming a framework possessing a statistical distribution 

o f small pores filled with, in general, a Newtonian viscous, compressible fluid. The 

bulk material is assumed to be homogeneous on a microscopic scale and the pores to 

be all interconnected. The deformation o f the solid and fluid are taken to be reversible

18
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with the solid skeleton being linearly elastic and undergoing small deformations. The 

fluid is assumed to follow Darcy’s law and the stresses in the bulk material are 

assumed to be'smoothly divided between the solid and the fluid. In the quasi-static 

theory the inertia effects, considered in the dynamic theory, are neglected. The sign 

convention used in this work assumes that tensile stresses are positive and compressive 

stresses are negative.

The porosity “ n”  o f a poroelastic material is defined as the ratio o f  pore 

volume to the volume o f the bulk material. It can also be defined as the ratio o f the 

void area to the total area o f any cross section o f the bulk material.

Several different measures o f stress are defined by Biot. Let FT be the Xi

component o f the total force acting on a small surface o f area A with outward normal 

Xj o f a fluid-filled porous solid. I f  F is the corresponding force component acting on

the solid phase o f the material and /y  is the force component on the fluid phase

(normal component only) then,

Fr .= F' . +F f, C3-1)

The total stress (ijj), the average solid stress (CTij) and the average fluid stress

(o) are defined , respectively as
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<rv = ^ -  (3.3)

Ff
o  = —— (3.4)

so that

Tu = a u + a5v (3-5)

where 5;j is the Kronecker delta. The actual stresses, o tJ , acting on the solid phase 

material o f area A, and the fluid pressure, P, acting on the fluid area Ar are given by

^  (3.6)

-PfP = — L  (3.7)

where the minus sign indicates that pressure is a negative normal stress.

Since A f=  nA and A, = (l-n )A , the average and actual solid and fluid phase 

stresses are related by

o, j={\ -n)o, j  (3.8)

o  = -nP  (3.9)
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Then, the total stress can be defined in terms o f actual solid and fluid stresses as

T ,j = ( l - n ) a i J - n P S IJ (3.10)

Biot has postulated several forms o f a linear relationship between the seven 

stress components and seven strain components fo r the fluid-filled poroelastic systems. 

The most general o f those [Biot (1955)] may be expressed as

~ c u £-•12 £  13 C .4 £ ’ .5 C 16 £ ’ . 7 “

*
 

■ 
b

£72  £  23 £ 7 5 £-26 £ 7 7

c r _ £’ 33 £74 ^ 3 5 £-36 £^37 e =

• - C 44 Q 5 £ 4 6 £*47

£-76 2 f t ,

£ -66 q 7 2 ^ jry

a £ 7 7 . £I  J

(3.11)

where as are the average solid stresses, a is the average fluid stress, and ejj are the 

solid strains which can be defined as

'•'i

d u  d u
— '  +  - - -

\ d x J d x , )
(3.12)

Similarly, the solid dilatation, e, and the fluid dilatation, e, are defined in terms
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o f the average solid phase displacements, m, and the average fluid phase 

displacements, U;, as

dute = — or 
dx,

a = a + a +c.tr ' ^yy ^ *zz (3.13)

dU,£ =    or
dx :

£  — £  +  £  +  £  XX w  z (3.14)

For the isotropic poroelastic material, only four o f the coefficients in Equation

(3.11) are independent. Then, the stress-strain relationship which employs the total 

stress Ty [B iot (1957)] can be written as

.
r

XX
* * 2

2ft +  A +  a  M
* 2

A +  a  M
* 2

A. +  a  \ f 0 0 0 -c A f
tf
XX

r
>y

•  2
A +  a  Af

• * 2
2ft +  A +  a  M

• 2
A +  a  X I 0 0 0 -c A I

e
>y

r
A + a ^ M

• 2
A + a  A/

• •  2
2 ft +  A +  a  St 0 0 0 -a X I

e

r
K

• = 0 0 0
•

ft 0 0 0 . 2e I  
) -

r
xc 0 0 0 0

*
ft 0 0 2e

zx
r

*y 0 0 0 0 0
•

ft 0 2e
*y

p -c A f -a M - a \ l 0 0 0 \ t r

or in index notation

r,j =2  +[(A* + a 1M ) e - a U c j s , J

P = - a  Me + M £

(3.16)

(3.17)
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in which

p , A, : Lame’s constants o f the skeleton 

a  : Solid-phase compressibility coefficient 

M  : Modified bulk modulus which is defined as

M  = --------- !--------- (3.18)
n ( c - S )  + aS

c : Fluid compressibility

8 : Compressibility o f the solid comprising the skeleton 

C, : Increment o f fluid content in porous material during a 

deformation which is defined as

C = n (e - e )  (3.19)

These parameters are usually determined experimentally. Combining Equations 

(3.16) and (3.17), the isotropic stress-strain relation becomes

r9 = 2 p e 9 + U 'e - aP ) Sv (3.20)

In the absence o f body forces, the stress equilibrium equations are
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d t
— = 0 (3.21)

Combining Equations (3.20) and (3.21) gives the first governing equation as

+ ( * ’ + t*)ukJa -<&,=  0 (3.22)

At this point there are seven unknown stress components, seven unknown 

strain components, and six unknown displacement components giving a total o f twenty 

unknowns. Also, there are seven stress-strain equations, seven strain-displacement 

equations and three equilibrium equations that make a total o f seventeen equations 

(see Appendix A). The discrepancy between the number o f  equations and unknowns is 

rectified by the use o f an empirical physical principle; Darcy’s law which relates the 

flow velocity to the pressure gradient o f the fluid, to complete the theory. Darcy’s law 

is given as

r d p '  
\ d x , j

(3.23)

Taking the divergence o f Equation (3.23) and combining with Equation (3.17) 

yields the second governing equation as
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in which

B  = ^ L  B  = - ^ ~
1 n k  ’ Pz M n k

Equations (3.22) and (3.24) are the constitutive equations governing the flow 

and deformation o f poroelastic media containing Newtonian fluid. In case o f one 

dimensional problem, the governing equations can be written as

a2p a
dyz d tK  ' 8y

du
P x- ±  + P zP = 0 (3.26)

3.2. Com plex Modulus o f a Poroelastic Material

Using the isotropic stress-strain relation given by Equation (3.20) the total 

stress in y-direction can be written as

r vr = 2 //V v>. + (A'e -  a P ) (3.27)
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For one-dimensional problem, e** and will be negligible. Then, the stress in 

y-direction w ill be equal to

du „
z„ = {£  + T . v ) - ^ - a P (3.28)

The complex modulus K(co) is defined as the ratio o f  normal surface stress to a 

dimensionless surface displacement as

K(co) = !>•=J (3.29)

where V0 is the amplitude o f the harmonic surface displacement and d is the height o f 

the poroelastic material. Substituting stress equation (3.28) in Equation (3.29) the 

complex modulus can be obtained in terms o f the solid displacement uy and the fluid 

pressure P as

K(a>) = -  ccP(J) ft)
y - J

\ c i  J
(3.30)

Then, the storage modulus K,(co) and the loss factor q(co) is defined by
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K(a)) = Ks(o))[\+iT](Q))] (3-31)

3.3. M odified D arcy’s Law

Darcy’s law is an empirical relationship between the fluid velocity v and the 

pressure drop AP in the steady flow o f a Newtonian fluid through a porous medium 

and can be written, in most general form, as

k
v = ---------AP (3.32)

A .

Nevertheless, Darcy’s law cannot be applied for the flow through a porous 

medium o f non-Newtonian fluids with a yield stress. A  modified Darcy’s law to take 

into account the non-Newtonian rheological effect is required. Pascal (1983) obtained 

the modified Darcy’s law as the relationship between the flow velocity and pressure 

gradient for non-Newtonian Bingham fluids exhibiting a yield stress as

v - - —
Vo

' * P - a  ^
' M

(3.33)

or in a second form which employs the apparent viscosity p,

v = — — ■ AP (3.34)
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which is valid provided that

|AP| > a 0 ; v ^ O

|AP| < a 0 ; v = 0

In Fig. 3.1, fluid velocity v is plotted as a function o f  pressure gradient AP for 

the flow o f non-Newtonian Bingham fluid through porous media as described by 

modified Darcy’s law.

ao

-ao AP

Fig. 3.1. Relation between fluid velocity and pressure gradient for non-Newtonian 

Bingham fluid flow in porous medium
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As shown in Fig. 3.1, Bingham fluid in a poroelastic system exhibits a nonlinear 

behavior because o f the threshold gradient oto. Flow will not start until the pressure 

gradient is equal or greater than the threshold gradient oto.

For the purposes o f numerical analysis, it is possible to represent the flow o f 

Bingham fluids through porous media by a constant viscosity f.i» and a threshold 

gradient ao as in Equation (3.33). However, it is more convenient to treat Bingham 

fluids as having a pressure gradient dependent apparent viscosity as in Equation

(3.34). In this case the apparent viscosity can be defined as

in which the threshold gradient a u is related to the yield stress t y by the relation

where k is the permeability o f the porous medium and P is a coefficient to be 

determined experimentally.

Ma = for M  £ a 0
1 (3.35)

for |AP| < a 0

(3.36)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.4. G overning Equations for Poroelastic Systems C ontaining Non- 

Newtonian Bingham Fluid

In this section, one-dimensional constitutive equations developed for 

Newtonian fluid flow through porous media w ill be modified to govern the flow and 

deformation o f poroelastic systems employing non-Newtonian Bingham fluid with a 

yield stress.

As shown in Fig. 2.2, stress vs. shear-rate plot for Bingham fluid does not pass 

through the origin. Therefore, Bingham fluids exhibit an apparent viscosity due to the 

yield stress o f the fluid. The apparent viscosity depends on two parameters. The fluid 

attains higher apparent viscosity as the fluid yield stress increases. Also, the apparent 

viscosity decreases as the shear-rate (o r pressure gradient) increases. This common 

behavior is referred to as the Bingham plastic (fluid) model.

The shear-rate dependent apparent viscosity needs to be included in the 

formulation. Therefore, the second form o f the modified Darcy’ s law given by 

Equation (3.34) is used with the apparent viscosity defined in Equation (3.35). The 

modified Darcy’s law can be re-written in the form

r dP '
- 1 ^ 1  (3.37)

/ /a \d y )

Taking the divergence o f Equation (3.37) and combining with Equation (3.17) 

yields the modified second governing equation as
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The first governing equation w ill be the same for the flow  o f Newtonian fluids 

and non-Newtonian Bingham fluids in poroelastic material. Therefore, Equations 

(3.25) and (3.38) are the constitutive equations governing the flow  and deformation o f 

poroelastic material employing non-Newtonian Bingham fluid with shear-thinning 

apparent viscosity. Equation (3.38) is valid as long as the condition AP > cto is satisfied 

over the entire flow field. In other words, the minimum threshold gradient should be 

exceeded and the flow should occur everywhere.
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CHAPTER IV

FLOW OF BINGHAM FLUID THROUGH POROUS 

MEDIA

Compared with the progress made in analyzing the flow o f power-Iaw fluids 

through porous media, the flow behavior o f Bingham plastic fluid in porous media is 

very poorly understood. To date research on Bingham fluid has been conducted mainly 

in laboratory experiments and field tests, from which a modified Darcy’s law, given by 

Equation (3.33), has been derived. There are only a few quantitative analyses 

published on Bingham fluid flow in porous media.

In this chapter, a numerical model is constructed for the investigation o f 

Bingham fluid flow in a poroelastic material. The response and complex modulus o f 

the system are calculated using the finite element method taking into account the 

nonlinear nature o f the Bingham fluid. It is assumed that the porous solid skeleton is 

linearly elastic and undergoes small deformations while the flow  o f  fluid produced by 

the deformation o f the material is governed by modified Darcy’s law. The quasi-static 

theory including dissipation due to friction arising from the flow  o f fluid relative to the 

solid within the material, but neglecting inertia effects is used in the formulation.
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For Bingham fluids, flow takes place only after the pressure gradient exceeds 

the threshold gradient. In this work, it is assumed that the minimum threshold gradient 

is exceeded and flow occurs everywhere. This assumption is the result o f  two 

considerations. First, Lipscomb and Denn (1984) showed that yielding and flow  must 

occur everywhere for the flow o f Bingham fluids in confined, complex geometries. 

Also the yielding o f  electrorheological fluids which are analyzed as the application o f 

the theory developed here, occurs at relatively low levels o f strains (<1%).

4.1. Finite E lem ent Formulation

In order to solve the coupled and time-dependent governing equations given by 

Equations (3.25) and (3.38), a finite element model is constructed. Galerkin weighted- 

residual method which is summarized in Appendix B, is used in the formulation in 

which solid-phase displacement and fluid pressure are the primary variables. A  linear 

variation o f apparent viscosity is assumed over each element because o f  the non- 

Newtonian shear-thinning nature o f the fluid.

Let’s recall the governing equations for the one-dimensional flow  o f  Bingham 

fluid in poroelastic media.

(4.1)

(4.2)
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The following approximate solutions are assumed for the solid-phase

displacements, u, and the fluid pressure, P, in y-direction;

n n

= or u ^ N j -Uj (4.3)
;=1 / = 1

P i y J ^ ^ N j i y y P ^ t )  or P ^ N j -Pj (4.4)
/=1 ;=I

where Uj’s and Pj’s are the solid-phase displacements and fluid pressures at the nodal 

points, respectively. Also, derivatives o f  u and P can be written as

(4.5)

(4.6)

(4.7)

(4.8)

where N j’ s are the linear trial functions defined by
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N j { y )  =

y - y j -1

yJ+i - y  
h/+1

for yj_x<y<y j  

for y j < y z y j+l

for y<y j - x or y > y j+\

(4.9)

where h; = y,- - yj.f is the length o f an element. The first derivatives are then

N'j(y) -

~~ for y }-1 ^ y ^ y j
h J

J -  for yj — y — yj+i
"/■+1

0 for y  < y ;_, or y > y J+l

(4.10)

The trial functions Nj(y)  and the derivatives N'j(y) are also plotted for the j ’ th nodal

point in Fig. 4.1.

Applying Galerkin method,

(4.11)

u

d y \ f *  a-

dP
dy

■ +
f  ' ^ d 2P

d f j k ' f y + l3 ' P
= 0 (4.12)
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j+1 j+2

j+2

Fig. 4.1. Linear trial function Nj(y) and the derivatives N /(y)

Expanding Equations (4.11) and (4.12),

J Nf(X + 2 v ) ^ r d y  -  J N ,a ^ -d y  = 0
o d r  o d y

(4.13)

a

\
N.

- f -
^ <f y / f J ± ) £ ^ 4 , - £ f N U ^ I ! . + p  A f y  =  0 (4.14)
dy n { mJ  dy V dy )

Using the property,

<?2/ /

' d y \  dy
dNj dH 
dy dy

(4.15)

Equations (4.13) and (4.14) can be written as
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Substituting Equations (4.3)-(4.8) in Equations (4.16) and (4.17),

/ = !  0
(4.18)

n i
i i
7=1 0

- i f - L
c/y dy d y \ p j )

^  dN, 
N, 1

dy
dN du

d p , \+[m^ 2n in j - ^ - U  = n i

(4.19)
dP
d y

Considering Equations (4.18) and (4.19), the coefficient matrices and right-hand-side 

(RHS) vectors can be defined as

<«■*>

r p.i r dN,[Kp\  = \ a N , - ^ y  (4.21)
o y
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K H
dN, dN j 
dy dy

d
. dy

dN , 
N  '

dy
•iy (4.22)

dy
(4.23)

a
(4.24)

(4.25)

(4.26)

The elemental coefficient matrices and RHS vectors are obtained using the 

linear trial functions defined for the element Qc shown in Fig. 4.2.

1.0

♦
h

Fig. 4.2. Linear trial functions defined for an element
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The elemental coefficient matrices and RHS vectors are calculated as

K ' H

—+ 
h

+ 2 // ) j 1 
N.

~Yi Yi
r / i X i

i A
6h h

1 +MaMb ' " 2
h

6h

6 h
1 , M a  ~ 2 M b  +  M a M b 

h 6 h

M -
iA

12

(2 M a + M b )  ~ (2 M a + M b )  

( 2 P b + M a )  ~ ( 2 M b + M a \

(3ma+Mb ) (Ma+Mb) 
( M b + M a )  ( ? M b  + M a )

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

- ( / + 2  f/)N,  

(A- +2  p)N,

dy
du
d y

>•=0

V~d

(4.32)

-N,

N,

dP_ 
' dy  
dP

>-=0

' dy y*J

(4.33)

The derivations o f these elemental matrices and RHS vectors are given in Appendix C.
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The coefficient matrices and RHS vectors defined by Equations (4.20)-(4.26) 

are assembled from the elemental coefficient matrices and RHS vectors. Then, the 

master coefficient matrices and RHS vector are constructed and the system matrix 

equation is generated in the form

I K ]
\ k p x \

*  .
i

V

o
":

ti

p
1

i
i

f f c ) ) F >

\

. [ ° ]

z r P l

: »
I w J \ m ; \  [ < J

V J

Equation (4.34) is the matrix equation representing the discrete analog o f  the 

governing equations. The resulting matrix equation can be written in a more general 

form as

In order to deal with the time-dependency o f Equation (4.35) two-point 

recurrence scheme is used. A ll o f the recurrence formulas which are used for the 

solution o f  equations similar to Equation (4.35), can be summarized in one convenient 

equation as

(4.35)

(4.36)
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where the parameter 6 takes the values o f 0, '/2, and 1 fo r the forward, central, and 

backward difference schemes based on the finite difference method, respectively. 

When the weighted-residual finite element method is used for the solution o f  Equation

(4.35), the parameter 0 can be defined as

i

J

0 = ± --------- (4.37)

jW d4
0

where W is the weighting function. The weighting functions for Galerkin method are 

taken to be the trial functions themselves. Hence, it is possible to use either

W = N A(t) = 1- i  
h

(4.38)

or

(4.39)

It can be easily shown that i f  Equation (4.38) is substituted in Equation (4.37), 

the value o f 8 becomes ‘/3, whereas i f  Equation (4.39) is used in Equation (4.37), the 

parameter 0 takes the value o f 2/3. The latter, 0=2/3, is particularly useful because it is 

more accurate than the backward difference scheme (0=1) and more stable than the
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central difference scheme (0=l/2). Therefore, 0=2/3 is used in the numerical model such

that Equation (4.36) can be arranged in the form

(4.40)

Then, the solution is computed in an iterative way by

(i) assuming a (variable) viscosity at all points in the material,

(ii) calculating, using the finite element model, displacement and pressure

values,

(iii) recalculating the viscosity at all points using Equation (3.35),

(iv) repeating the above steps until convergence (or divergence) occurs.

4.2. Problem Definition

The numerical model developed is capable o f calculating the dynamic response 

o f the poroelastic systems containing non-Newtonian Bingham fluid. In this section, a 

model problem is selected for the verification o f the numerical model developed. A 

column o f poroelastic material undergoing harmonic compression, as shown in Fig.

4.3, is considered.
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Rigid Porous Plug V0cos(cot)

■ V 7  Rigid wailed
II || A /  Container

Poroelastic Material 

Fig. 4.3. Poroelastic column subjected to harmonic surface displacement

The poroelastic material is perfectly bounded at the bottom and side surfaces 

while a harmonic displacement input is applied at the top surface through a freely 

draining porous plug. Therefore, the deformation and flow occur only in y-direction.

4.3. Boundary Conditions

The boundary conditions imposed are those o f a harmonic displacement input 

applied to the top surface in which the fluid flows in and out o f the specimen through a 

rigid porous plug. Other surfaces are perfectly bounded and impermeable. The 

boundary conditions can be written as

//^(0) = 0 (4.41)
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uyifi) = V0 cos (a) t) (4.42)

(4-43)

P(d) = 0 (4.44)

4.4. Verification of the Numerical M odel

In this section, the accuracy o f the numerical solution is examined and 

confirmed by comparison with an exact solution. The material properties used fo r this 

purpose are summarized in Table 4.1.

Table 4.1. Material properties used for the verification o f the numerical model.

Jt‘ = 1.29x105 kPa 

p* = 9.79xI04 kPa 

n = 0.48

k = 3.62x10** cm2 

M  = 5.58x10s kPa 

a  = 0.98 

d = 2.54 cm 

Po = 0.05 Pa-s

The solid displacements and the fluid pressure values obtained from the finite 

element model are compared with the analytical solution derived by Wijesinghe and 

Kingsbury (1979). Since the analytical solution is available for Newtonian viscous fluid
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with no yield stress, the yield stress value is taken as zero in the numerical model. For 

the special case o f minimum threshold gradient ao=0, Bingham fluid becomes 

Newtonian, and the available analytical solution can be used to check the accuracy o f 

the numerical model. In this case, the apparent viscosity w ill be constant and equal to 

the plastic viscosity because o f the zero threshold gradient.

The results are obtained for co=2k rad/s and 20 elements are used in the finite 

element model. As shown in Fig. 4.4 and 4.5, the numerical results are in good 

agreement with the analytical results.

IE-03

t=0.1 S

SE-04 -■E t=0.2s
cV
I  0E+00 -«
8
Q.w

Q  -5E-04 - -

t=0.3 s

t=0.4 s
-IE-03

0 0.005 0.015 0.0250.01 0.02 0.03

y (m)

—  Analytical •  FEM

Fig. 4.4. Comparison o f the numerical results with the analytical results for solid

displacement
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0 0.005 0.01 0.015 0.02 0.025 0.03

y(m)

—  Analytical •  FEM

Fig. 4.5. Comparison o f the numerical results with analytical results for fluid pressure

4.5. Results

After verifying the accuracy o f  the numerical model by comparing with the 

analytical solution o f Wijesinghe and Kingsbury (1979) for the flow o f Newtonian 

viscous fluid through poroelastic media, the results obtained from the finite element 

model for the flow o f Bingham fluid with a certain yield stress in a poroelastic media 

are presented in this section.

As shown in Fig. 4.4. and 4.5, the finite element model gives accurate results 

fo r 20 elements although it is possible to increase the accuracy further by increasing 

the number o f elements. Therefore, 20 elements are used in all calculations in this 

section. The material properties used in the analyses are given in Table 4.2.
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Table 4.2. Material properties used in the calculations.

X‘ = 1.29x10s lcPa 

p* = 9.79x104 lcPa 

n = 0.48

k = 3.62x1 O’8 cm2 

M  = 5.58x10s kPa 

a  = 0.98 

d = 2.54 cm 

po = 0.00454 Pa-s 

Ty = 412 Pa 

Oo = 216542 Pa/m 

P = 0.001

In Fig. 4.6, the variation o f apparent viscosity along the flow field is plotted for 

o)=20tc rad/s and t=0.05 sec. For the flow o f Bingham fluid in porous medium, the 

apparent viscosity is defined by Equation (3.35). The variation in the apparent 

viscosity is due to the non-Newtonian effect caused by the existence o f a yield stress in 

the fluid. This variation is determined by the ratio â p | . In fact, it would be better to

examine the variation o f the apparent viscosity in terms o f the pressure gradient, AP, 

since the threshold gradient, oto, is constant. When the pressure gradient increases the 

fluid velocity w ill also increase as described by Darcy’s law. Then, the ratio °^ /> | w ill

decrease and the apparent viscosity will get lower (shear-thinning effect). As the ratio 

goes to zero the apparent viscosity will be equal to the plastic viscosity po.
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Fig. 4.6. Variation o f apparent viscosity along y-direction

In Fig. 4.7, the solid-phase displacement along y-direction is plotted for 

o=207t rad/s at six different times within a period. The solid deforms linearly at each 

time step as shown in Fig. 4.7.

The fluid pressure along y-direction is also plotted for various time steps in 

Fig. 4.8. The pressure which is maximum at the bottom surface drops gradually along 

y-direction and becomes zero at the free surface. A similar trend is observed at each 

time step as shown in Fig. 4.8. The pressure gradient values calculated from the 

pressure data by means o f forward, central and backward difference numerical 

schemes are also given in Fig. 4.9.
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Fig. 4.7. Solid-phase displacements in y-direction
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Fig. 4.8. Variation o f fluid pressure along y-direction
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Fig. 4.9. Variation o f pressure gradient along y-direction

As shown in Fig. 4.6 and 4.9, the apparent viscosity is maximum at y=0 at 

which the pressure gradient is minimum. Then, the apparent viscosity decreases due to 

the increasing pressure gradient or fluid velocity along y-direction. A t the surface the 

pressure gradient becomes maximum and the ratio reaches its minimum. Hence,

the apparent viscosity becomes almost equal to the plastic viscosity at the nodes close 

to the surface.

The complex modulus o f  a poroelastic system as defined by Equation (3.30) is 

also calculated at various frequencies. The storage modulus and the loss factor are 

plotted against frequency in Fig. 4.10 and 4.11, respectively.
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Fig. 4.10. Storage modulus o f the poroelastic material containing Bingham fluid
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Fig. 4.11. Loss factor o f the poroelastic material containing Bingham fluid
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It is observed that the loss factor starts to increase from zero and reaches its 

maximum at a critical frequency coc and then gradually decreases to zero again. Over 

the latter range o f frequencies the storage modulus is seen to suffer a somewhat 

sudden increase after which it begins to level o ff at higher frequencies. This behavior is 

due to the fact that as the frequency increases the relative motion between the fluid 

and the solid increases and this in turn yields increased dissipation. However, beyond 

the peak in the loss factor, the fluid drag on the solid is so great that the fluid and the 

solid move together in the interior (except at the draining boundaries) and the 

dissipation decreases.
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CHAPTER V

INCORPORATING ELECTRORHEOLOGICAL FLUIDS

IN POROUS MEDIA

5.1. Introduction

The ability to control the rheology o f a material with an applied electric field is 

o f interest to both industrial and academic communities. The development o f theories 

and models to explain this electrorheological (ER) phenomenon has been fueled by the 

multi-million dollar market potential for this technology. Unfortunately, the primary 

barriers to establishing a commercial ER business have been an inadequate 

understanding o f  the ER phenomenon and lack o f satisfactory materials. There are vast 

amount o f research going on to find new particle/fluid combinations that can withstand 

higher stresses. On the other hand, incorporating ER fluids in a poroelastic structure 

can increase the material strength considerably and can still provide controllable 

stiffness and damping characteristics.

5.2. Electrorheological Fluid Characteristics

ER fluids consist o f suspensions o f fine polarizable particles in a dielectric 

liquid, which upon application o f an electric field take on the characteristics o f a solid.
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This occurs reversibly, and in times o f  the order o f milliseconds, and in general with 

low  power requirements. Some examples o f  suspensions which exhibit ER behavior 

include com starch in com oil, silica gel in mineral oil, cellulose in transformer oil, and 

zeolite in silica oil.

Upon application o f an electric field the particles in an ER fluid align along the 

direction o f the field in a chainlike or fibrous structure. The increased strength o f the 

flu id is attributed to the force required to rupture the chains or fibers. Practically all 

known ER fluids exhibit this characteristic chainlike or fibrous structure. The 

development o f the chainlike structure w ith increasing electric field in a model ER 

flu id (0.2 vol. fraction o f 27-|im beads in silicone oil), as given by Conrad and 

Sprecher (1991), is illustrated in Fig. 5.1.

A t small electric fields the particles begin to cluster, with a tendency to align 

along the field. This clustering increases with field until at E=0.5 kV/mm complete 

chains first form across the gap between the electrodes. Further increase in electric 

field leads to an increase in the number o f complete chains and thickness o f the chains.

One o f the greatest problems in designing devices that use ER fluids is 

overcoming the tendency o f the particles to settle out i f  the fluid stands quietly for a 

length o f time. Depending on the particular particle/fluid combination, the device 

configuration, and other factors, the time period can range from hours to weeks. 

Settling can be controlled somewhat by adjusting particle size and by using surfactant 

that inhibit particle interaction and the tendency to clump together. Another 

stabilization technique is to match the base-liquid density to that o f  the particles.
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Although density matching is good in principle, it is difficult in practice because it 

severely limits the choice o f particles that can be used in specific carrier fluids. Also, 

because thermal expansion coefficients o f the particles are usually different from those 

o f  carrier fluids, density matching only operates well over a small temperature range.

electrode

400pm 400pm
E s O . l S k V / m m

electrode

400pm
E = 0 . 3 0 k V / m m E = 0 . 5 k V / m m

E s 1 . 5 k V / m m 400pm

Fig. 5.1. Development o f the chainlike structure in a model ER fluid with increasing 

DC electric field.
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5.3. Electrorheological Fluid Behavior

The electrorheological effect initially was defined as the apparent change in 

viscosity observed in the materials developed by Winslow (1949). Although from a 

macroscopic point o f view, a change in apparent or effective viscosity does occur, the 

actual plastic viscosity o f  the material remains approximately constant as the applied 

electric field is varied. In this situation the parameter that changes is the amount o f 

shear stress needed to initiate flow.

A  Bingham plastic model, as described by Equation (5.1), can often provide a 

sufficiently accurate description o f the observed post-yield behavior to be used for the 

designing o f ER material devices. The electric-field-induced yield stress, xy, and 

viscosity, |io, are the two most significant parameters used in designing electroactive 

devices where flow properties or post-yield properties are essential. For post-yield 

situations the constitutive shear behavior o f ER materials is often modeled using the 

Bingham plastic approximation described as

r=Ty +M0 r  for  M  -  Ty
y = 0  for 0 < |r |  < xy

where xy is the dynamic yield stress, po is the plastic (or zero-field) viscosity and y  is 

the shear rate. The yield stress is a strong function o f electric field. The effect o f 

electric field strength E on yield stress generally fits an equation o f the form
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where A  and n may be fluid and field dependent constants. The value o f  n is usually 

between 1 and 2.5. Although usually assumed constant, the plastic viscosity po is also 

a function o f  electric field; however, its electric field dependency is not as strong as the 

electric field dependency o f the yield stress. Stangroom (1991) measured the yield 

stress and the plastic viscosity o f two different ER fluids as a function o f electric field. 

He observed that while the plastic viscosity was a weak function o f  electric field for 

one fluid, it was a strong function o f  the electric field for the other.

In Bingham plastic model, the apparent viscosity pa is related to the plastic 

viscosity po and the yield stress xy as

Ma=-r- + Mo (5-3)
r

where y  is the shear rate. On the other hand, the apparent viscosity o f  ER fluid in a 

porous medium can be expressed analogous to the apparent viscosity o f  Bingham fluid 

in a porous medium given by Pascal (1986) by the relation

+ 7 J -  (5.4)
M
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where k is the permeability o f the porous medium and v is the fluid velocity. The 

threshold gradient oto is related to the yield stress xy by the relation

PTV
a ° =l t  (5 5 )

where 3 is a coefficient determined experimentally.

Substituting the modified Darcy’s law given by Equation (3.34) in Equation 

(5.4) yields a more convenient form o f apparent viscosity o f ER fluids in porous 

medium as

f t  = - J ^ r  (5.6)
1 -  ”

where AP is the pressure gradient.

S.4. Poroelastic System s Incorporating ER  Fluids

As explained in the previous sections, Bingham plastic model can provide an 

accurate description o f the post-yield behavior o f the ER fluids. The theory o f non- 

Newtonian Bingham fluid flow in poroelastic media is developed and the governing 

equations are derived in Chapter 3. Therefore, the constitutive equations given by
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Equations (3.25) and (3.33) can also be applied to the flow and deformation o f 

poroelastic materials employing ER fluids as long as the condition AP > oco is satisfied 

over the entire flow field. However, some o f the parameters like yield stress, plastic 

viscosity and fluid bulk modulus, w ill be electric field dependent because o f  the ER 

phenomenon.

The problem defined in Chapter 4 is modified such that the dynamic response 

o f  ER fluid-filled poroelastic column subjected to harmonic displacement input applied 

to the top surface through a freely draining porous plug and a perfectly bounded 

impermeable surface at the bottom w ill be obtained. The electric field is provided 

through the metal screens placed within the poroelastic material as shown in Fig. 5.2.

Rigid Porous Plug

777
Rigid-walled Container

To High 
Voltage Supply

ER Fluid-filled Poroelastic MaterialMetal Screens

Fig. 5.2. ER fluid-filled poroelastic column subjected to harmonic surface 

displacement
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Although ER fluids are anisotropic solids in pre-yield region, the theory 

developed here considers the post-yield behavior (fluid phase) o f ER fluids by 

assuming that the yield stress is exceeded at every point within the material, at any 

time. There will always be a regime where the stresses are below the yield stress 

because o f the harmonic loading. This regime must be passed through during each 

cycle. However, this regime is not considered in the analysis by assuming that the 

duration o f this regime w ill be very short compared to the duration o f each cycle. This 

assumption is made considering the fact that yielding o f  ER fluid in a poroelastic 

material is desired as soon as possible in each cycle to obtain maximum dissipation and 

this criteria can be achieved with the proper selection o f ER fluid-poroelastic material 

combination.

The material properties used in the analysis are summarized in Table 5.1. The 

field-dependent properties o f the ER fluids are obtained from the experimental data 

reported by Stangroom (1991). He used two different ER fluids: 30% lithium 

polymethacrylate suspended in fluorosilicone oil (ERF I) and 30% condensed aromatic 

ketone suspended in chlorophenyl chlorotoly methane (ERF II). He obtained the yield 

stress values for the shear mode. Although the yield stress values for tension- 

compression mode w ill be different than the yield stress values for shear mode for the 

same ER fluid, the yield stress values for shear mode are used in the analysis due to the 

lack o f yield stress data obtained for tension-compression mode in literature. On the 

other hand, this doesn't create any problem since this is a parametric investigation o f 

ER fluids in poroelastic media.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.1. Material properties o f the poroelastic material and ER fluids.

Poroelastic system ER fluid I (ERF I) ER fluid II  (ERF II)

X *= 1 .29 x l05 kPa Ty= 103 xE2 (Pa) xy = 80xE2+180xE (Pa)

p* = 9.79xl04 kPa p0 = 0.05 - 0.0227xE (Pa-s) Po = 0.125 - 0.008xE (Pa-s)

n = 0.48

k = 3.62x10** cm2

M  = 5.58xl05 kPa

a  = 0.98

d = 2.54 cm

5.5. F ield D ependency  of P a ram e te rs

The ER fluid properties which are most affected by electric field are yield 

stress, plastic viscosity and fluid compressibility. Most o f the researchers assume the 

plastic viscosity to be constant since its field dependency is small compared to the field 

dependency o f yield stress. On the other hand, Stangroom (1991) showed that, fo r 

some ER fluids, plastic viscosity changes considerably with electric field. He measured 

yield stress and plastic viscosity for two different ER fluids (ERF I and ERF II) at 

different electric fields. The functions fitted to his data are given in Table 5.1 and also 

plotted in Fig. 5.3, 5.4, 5.5, and 5.6.
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Song et al. (1991) developed general correlating equations for the prediction 

o f the compressibility o f  mineral oil-based lubricants, and silicone fluids as a function 

o f viscosity. These equations are combined with the viscosity functions given in Table 

5.1 to predict the electric field dependency o f the compressibility for mineral oils and 

silicone fluids. I t  is observed from the obtained results that the variations o f the 

compressibility o f  mineral oils and silicone fluids with electric field are very small, 

therefore, fluid compressibility is assumed field-independent.

5.6. Results

In this section, the response and the complex modulus o f the poroelastic 

material employing two different ER fluids are calculated by using the numerical model 

developed. The geometry is shown in Fig. 5.2 and the material properties are given in 

Table 5.1. The results are obtained for different electric field strengths in order to 

investigate the effect o f electric field strength on various parameters.

In Fig. 5.7 and 5.8, the apparent viscosity is calculated in the presence o f 

different electric fields and plotted along y-direction for ERF I and ERF II fluids, 

respectively. Under zero electric field, the apparent viscosity becomes equal to the 

plastic viscosity since ER fluids do not possess a yield stress at zero electric field. 

Upon the application o f an electric field the particles in the ER fluid align along y- 

direction in a chainlike structure and the fluid exhibits a yield stress. Changing the 

electric field strength w ill effect the apparent viscosity, defined by Equation (5.4), in 

two ways. First, the plastic viscosity w ill change as the electric field is varied. Second,
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(a) E=0 kV/mm, (b) E=1 kV/mm, (c) E=2 kV/mm.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.1875

a.w
£
1 0125

0.0625 ■ -  I-------- 1-------- I---------1— I-------1--------- 1— I------- 1-------- 1--------- 1------

0 0.005 0.01 0.015 0.02 0.025 0.03
y(m)

(a)

0 110

OIOS

X 0 .100 • •

>  0.0Q5 • .

0.090 • •

0085

0 005 0015 002 00250 001 0.03
y(m)

(c)

O.IIO

0.105 -

0 .1 0 0  • •

>  0.095 ■ •

0 085

0 005 0015 00250 001 002 003
y(m)

(c)

Fig. 5.8. Variation in the apparent viscosity o f  ERF II along y-direction fo r 

(a) E=0 kV/mm, (b) E=2 kV/mm, (c) E=5 kV/mm.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the threshold gradient oco, defined by Equation (S.5), is affected by the electric field.

As shown in Fig. 5.7 and 5.8, the apparent viscosity drops along the y- 

direction with a similar trend for both ERF I and ERF II as the ER fluid flows through 

the poroelastic material. It  is observed that the total amount o f change in the apparent 

viscosity o f ERF I is higher than that o f ERF II. This is because ERF I has strong 

electric field dependent parameters (yield stress and plastic viscosity) compared to 

ERF I I  as shown in Fig. 5.3, 5.4, 5.5, and 5.6.

For different field strengths, solid displacement, fluid pressure, and pressure 

gradient are calculated at each node for the poroelastic system having ERF I  and ERF 

I I  fluids, at co=2k rad/s and t=0.2 sec. In Fig. 5.9 and 5.10 solid displacements, in Fig. 

5.11 and 5.12 fluid pressures, and in Fig. 5.13 and Fig. 5.14 pressure gradient values 

are plotted along y-direction for three different values o f electric field. It is observed 

that a considerable change occurs in all these variables as the electric field is varied. As 

a matter o f fact, the variations in all these variables due to the electric field changes are 

the result o f the variation o f the apparent viscosity as a function o f electric field. For 

ERF I, the electric field dependency o f the apparent viscosity is strong compared to 

ERF II. Hence, the effect o f electric field changes on solid displacement, fluid 

pressure, and pressure gradient are more pronounced in ERF I system compared to 

ERF I I  system. As the electric field is increased the apparent viscosity decreases, as 

shown in Fig. 5.7 and 5.8, resulting in a reduced fluid drag on the solid. Therefore, 

solid deforms more uniformly and fluid pressure drops at every point within the 

material. For ERF I system the fluid pressure at the bottom drops from -2.0 MPa to
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-0.2 MPa as the electric field is increased from 0 to 2 kV/mm as shown in Fig. 5.10. 

Pressure gradient also decreases with increasing electric field strength.

The complex modulus which is defined as the ratio o f normal surface stress to 

a dimensionless surface displacement, as given by Equation (3.30), is calculated for 

different electric field strengths using the finite element model fo r the flow o f ERF I 

and ERF I I  fluids in the poroelastic structure. The storage modulus and loss tangent 

values are plotted in Fig. 5.15, 5.16, 5.17 and 5.18 as a function o f  frequency.

As shown in these figures, the electric field has considerable effect on the 

complex modulus. When the electric field is increased the critical frequency at which 

the maximum dissipation occurs shifts to higher frequencies (Fig. 5.16 and 5.18) and

700

£* 600 --

500 --

gP
2  400 - - on

300
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Fig. 5.15. Storage modulus calculated at different electric fields (ERF I)
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rubber to glass transition behavior also occurs at higher frequencies (Fig. 5.15 and 

5.17). However, electric field has no effect on the maximum amount o f  dissipation.

A considerable amount o f change is observed in the storage modulus and loss 

tangent o f ERF I system when the electric field is increased from 0 to 2 kV/mm while 

the change in the storage modulus and loss tangent o f  ERF II system was small even 

though the electric field is increased from 0 to 5 kV/mm. This is again due to the fact 

that ERF I has a strong electric-field-dependent plastic viscosity while the electric field 

dependency o f ERF I I  is weak. As defined by Equation (5.6), the apparent viscosity 

becomes field dependent not only due to field dependent plastic viscosity but also due 

to the threshold gradient ao which is field dependent as well. On the other hand, the 

ratio gradually decreases along the y-direction and becomes almost zero at the
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surface due to increasing AP along the y-direction. Therefore, the field dependency o f 

Oo does not have a noticeable effect on the complex modulus which is defined as the 

ratio o f the normal surface traction to the dimensionless surface displacement.
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CHAPTER VI

CONCLUSIONS

In this thesis, the dynamic response to harmonic loading o f a disk o f 

poroelastic material containing non-Newtonian Bingham fluid which exhibits a yield 

stress is investigated. B io t’s poroelasticity equations and modified Darcy’s law which 

is derived for non-Newtonian fluids exhibiting a yield stress are combined together to 

obtain the nonlinear, coupled governing equations o f the system. A numerical model is 

constructed using the finite element technique taking into account the nonlinear nature 

o f Bingham fluid in order to calculate the response and the complex modulus o f  the 

system. As an application o f the model developed, the behavior o f electrorheological 

fluids in poroelastic media is studied. The storage modulus and loss tangent are 

calculated for different electric field strengths and the effect o f electric field on the 

system response is investigated.

The constitutive equations derived are based on B iot’ s quasi-static theory 

which includes dissipation due to friction arising from the flow  o f fluid relative to the 

solid but neglects the inertia effects. It is assumed that the porous solid skeleton is 

linearly elastic and undergoes small deformations while the flow o f fluid produced by

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the deformation o f the material is governed by modified Darcy’s law. The governing 

equations are valid as long as IAP | > oto is satisfied over the entire flow  field. In other 

words, the minimum threshold gradient should be exceeded and the flow  should occur 

everywhere. This assumption is the result o f several facts;

i) ER fluids yield at relatively low levels o f strains (< 1%).

ii) Lipscomb and Dean (1984) showed that yielding and flow  must occur 

everywhere for the flow o f Bingham type o f fluids in confined, complex geometries. 

They concluded that;

* no flow occurs anywhere until a minimum stress is reached,

* yielding occurs over the entire flow  field,

* no plug regions exist,

* flow occurs everywhere until the yield condition is no longer 

satisfied, after which flow must stop everywhere.

iii) The validity o f this assumption is also somehow related to the selection o f 

the poroelastic material/fluid combination. Using a stiff material will result in higher 

pressure gradient and flow velocity at each point within the structure according to the 

first constitutive relation given by Equation (3.25). I f  the purpose is to obtain 

maximum dissipation, it would be necessary to increase the fluid flow  within the 

porous structure. This can be achieved by using a poroelastic material with relatively 

high stiffness which will also provide that | AP | > ao over the entire flow  field.

In order to verify the accuracy o f the numerical model, the results obtained by 

using the finite element model developed were compared with the analytical solution
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which is available for Newtonian fluid flow through poroelastic media. The numerical 

results matched the analytical solution well and the accuracy was good enough even 

with 20 elements.

The model developed is also modified for the analysis o f poroelastic materials 

containing ER fluids. Two different ER fluids are considered; ERF I and ERF II. ERF 

I has stronger field-dependent parameters compared to ERF II. In ER fluids, the yield 

stress and the plastic viscosity are two important parameters affected by the electric 

field changes most. The fluid compressibility is assumed field-independent. The 

following conclusions are drawn from the obtained results;

i) The analysis shows that the poroelastic system exhibits the rubber to glass 

transition frequency behavior typical o f viscoelastic materials as pointed out by 

Wijesinghe and Kingsbury (1979). As the frequency is increased, the fluid flow 

resistance increases, resulting in increased material stiffness and loss factor. At high 

frequencies, the interaction force between the fluid and the solid matrix becomes so 

large that the solid and fluid move together and there is no fluid flow. At these 

frequencies the loss modulus, due to the fluid flow, becomes zero and the storage 

modulus becomes its maximum. Thus as the frequency increases, the loss factor starts 

to increase from zero and reaches its maximum at a critical frequency and then reduces 

to zero again. Similarly, the storage modulus starts to increase from the matrix storage 

modulus and approaches its maximum value as the frequency goes to infinity.

ii) The poroelastic theory provides both methods o f predicting the response o f 

structures composed o f fluid-filled porous solids and insight into the system

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



parameters which control the maximum value o f loss modulus and the corresponding 

excitation frequency. The stiffness and energy dissipation characteristics o f  the systems 

can be related to the elastic properties o f the fluid phase, solid phase, and the solid 

skeleton, as well as the fluid viscosity and the flow  resistance (resistivity) o f the 

skeleton. Damping and stiffness are frequency dependent quantities. Although the 

frequency at which damping is maximum depends upon the fluid viscosity, the 

maximum value o f  the damping depends only on the bulk moduli o f fluid, solid and 

skeleton. By using ER fluid whose viscosity can be altered, the dynamic response o f a 

poroelastic system could be tailored to provide optimum stiffness and damping over a 

range o f operating conditions. The critical frequency, for example, could be made to 

coincide with a resonance or excitation frequency by adjusting the electric field 

strength. However, the maximum value o f damping does not change with the electric 

field since the fluid bulk modulus is a weak function o f field strength.

iii) The electric field dependencies o f the plastic viscosities o f ERF I and ERF 

II are different. ERF I has a strong field-dependent plastic viscosity; however, the 

plastic viscosity o f  ERF II does not change much with field strength. By comparing 

complex moduli o f  two ER fluids, as shown in Fig. 5.15, 5.16, 5.17, and 5.18, it can 

be concluded that the field dependency o f plastic viscosity is a very important factor in 

the response o f the system. Apparent viscosity changes not only due to the field- 

dependent plastic viscosity but also because o f the field-dependent yield stress. 

However, the yield stress term in the definition o f apparent viscosity gradually 

decreases along y-direction due to increasing pressure gradient and the apparent
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viscosity becomes almost equal to plastic viscosity at the surface. Therefore, the field 

dependency o f the yield stress does not have a considerable effect on the complex 

modulus which is defined as the ratio o f the normal surface traction to the 

dimensionless surface displacement.

iv) Under these circumstances, it is possible to use ER fluid-poroelastic solid 

device as a semi-active vibration isolation system to provide optimum stiffness and 

damping as excitation or resonant frequencies change. For the applications in which 

small but accurate frequency changes are desired, ERF I I  type o f systems would be 

suitable since they could provide small but accurate changes in the complex modulus 

with a wide range o f  electric field changes. On the other hand, ERF I type o f systems 

would be more convenient for the applications in which large but less precise 

frequency changes are desired since a small change in the electric field results in a 

considerable change in the complex modulus o f these systems.
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APPENDIX A

GOVERNING EQUATIONS OF POROELASTIC 

SYSTEMS

In this section the equations governing the flow and deformation o f poroelastic 

systems are presented in detail. According to B iot’s quasi-static poroelastic theory, 

there are twenty unknowns;

T.W, Tzz, Xyz, t**, Txy, P (seven stress components) 

e«, eyy, ezz, eyZ, e^, ê y, e (seven strain components) 

ux, uy, uz, Ux, Uy, Uz (six displacement components)

to be determined. Also, there are seven stress-strain equations, seven strain- 

displacement equations and three equilibrium equations that make a total o f seventeen

equations. The remaining three equations necessary to complete the theory are

obtained from Darcy’s law.
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A .I. Stress-Strain Equations

The stress tensor in a porous material is

y* yy
o

xy
+ a ~  yz  

cr_ + g
(A. 1)

with the symmetry property Oij = q,i. I f  we consider a cube o f unit size o f  the bulk 

material, a  represents the total normal tension force applied to the fluid part o f the 

faces o f the cube (fluid plays a purely dilatational role) as defined by the Equation 

(3.9). The remaining components aXx, crxy, etc., o f the stress tensor are the forces 

applied to that portion o f the cube faces occupied by the solid.

The strain energy function V o f a poroelastic system can be written as

2 V  = + a ^ y y  + cr_c'_ + a }Cy }Z + a =cy :x + a xyy  ̂  + o s  (A.2)

where Yij are the shear strains for solid phase which is defined as

r v =
du, 3u .

+ ■
d x , d x ,

(A.3)
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The relation between Yij and the general strain tensor ejj which is given by Equation 

(3.12) can be written as

Yij = (A.4)

Assuming the seven stress components are linear functions o f the seven strain 

components the expression 2 V  is a homogeneous quadratic function o f the strain with 

twenty-eight distinct coefficients. The stress components are obtained from the partial 

derivatives o f V as follows;

a xx  ~

° V  =

d V

d e*
d V

dr>--

6 V

Gyy de

(T-r =

a  =

>y 
d V  

d r *
d V

ds

cr_ =
d V

d V

d y ^ .
(A. 5)

This can be written in a matrix form as

O-xc " c „ Q  3 c „ C,s c , « c 1 7 '

C 22 c 24 Q s ^ 2 6 C 21 eyy
<T= c 33 C 34 C,s ^ 3 6 C 37 e=

a >c
. =

Q 4 ^ 4 5 C 46 C 47 2*r-
° z x C 55 C $6 C 57

C(,e Q 7 2 tv

cr C 77  _ €
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In the case o f  complete isotropy the strain energy function, given by Equation (A.2), 

becomes

2V = (A + IN X e^  + +e j)2 + N ( y j .  + rlc + r% ~ 4e^e_

— 4e=exx — 4tfxre^y) + 20(t?_nr + Hyy + £~)£ + Re

Then, the stress-strain relations calculated from Equation (A.5) will be

CT*c '2N  + A A A 0 0 0 O' r
e xx

A 2N + A A 0 0 0 0 e>y
o\_ A A 2N + A 0 0 0 0 e=

, = 0 0 0 N 0 0 0

0 0 0 0 N 0 0

0 0 0 0 0 N 0 2e*y
a 0 0 0 0 0 0 R £

where A  N, Q, and R are four independent elastic constants. It is also possible and 

more convenient for some cases to represent stress-strain equations with alternative 

variables. A second form [Biot (1957)] which employs the total stress ty as given in 

Equation (3.16) and (3.17) can be re-written as

r CT = 2/i'e^ + (A* + a 2 M)e -  aM £  

r)y = 2/ue)y + (A* + a 2M)e -  a M £
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r_  = 2n*e= + (A* + a 2M)e -  aM £

=  P  ( 2e y z ) (A.9)

*zx = / ( 2 ^ )

* ”xy P  ( . ^ e x y )

P = -a M e  +

I t  is more convenient to use the second form o f the stress-strain relations, 

given by Equation (A.9), with the constants j.i*, X\ a, and M  in problems which 

neglect the inertia forces while the other form employing the constants A, N, Q, and R 

have been introduced in connection with wave propagation.

A.2. S tra in -D isp lacem en t E quations

The average displacement vector o f the solid has the components u*„ uy, uz, and 

that o f the fluid has the components Ux, Uy, Uz. The solid strain components given in a 

general form in Equation (3.12) and the fluid dilatation s can be re-written as

e

e>y dy

t> _  =
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Equation (A. 10) is the seven strain-displacement relations for a poroelastic

system.

A.3. Equilibrium Equations

The stress field given by Equation (A. 1) o f the bulk material satisfies the 

equilibrium equations given by

dOy.
+ (ex, + <j ) h—  -----1- p  Y — 0

& y n  dz
(A. 11)

+ -#-(cr_  +<7) + p Z  = 0
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where p is the mass density o f the bulk material and X, Y, Z are the body forces per 

unit mass.

In the absence o f body forces, the three equilibrium equations can be written in 

terms o f  the total stress t:; as

d *xx
dx

# Tyx
dx

d - C z x

dx

+

d r  
■ + — —

d y dz

d x yy
+ <?r-

dy dz

dr-y IIV-+

d y dz

=  0

=  0

=  0

(A. 12)

A.4. D a rc y ’s Law

A  generalized form o f Darcy’s law for a nonisotropic material is

dP Y
~ T S P tX

dP
~ y ' P<Y

dP
c ~ n * p ' z .

X b*y X % - x
=

b* byy br- ■ Uy - u y

bv bzz V O -.-u J

(A.13)

where pr is the mass density o f the fluid. The matrix by constitutes a generalization o f 

Darcy’ s constant i f  the viscosity coefficient is included in it. The average velocities o f 

the fluid and solid are denoted by U and it, respectively.
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In the case o f complete Isotropy the equations o f flow  contain a single 

coefficient b. In the absence o f body forces Darcy’s law can be simplified to

~  = K Ux - u x)dx

= b { U - i i y)dP 
' dy

~  = b 0 : - u : ) 
dz

(A. 14)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

GALERKIN WEIGHTED-RESIDUAL METHOD

The method o f weighted-residual provides an analyst with a very powerful 

approximate solution procedure that is applicable to a wide variety o f problems. It is a

method for finding approximate solutions for linear and nonlinear problems by using a

set o f trial functions which are defined piecewise over each element.

Let us consider the differential equation for the state variable <|> as

r  ( j)  = g  (B .l)

where T is a differential operator and g is a known function o f independent variables. 

The first step in the Galerkin method is to assume an approximate solution as

n

? = 2 > ,W , (B.2)
/=l
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where N,-’ s are the trial functions and ai’s are the values o f <J> at the nodal points. The 

approximate solution must satisfy the boundary conditions. I f  the approximate solution 

is substituted into the governing differential equation, then it will result in an error 

called the residual as

R  =  r ( £ a , N i ) - g  (B.3)
1 =  1

For exact solution, the residual should be zero at all points. For an approximate 

solution the residual should be small at all points o f the solution domain. Different 

weighted-residual methods employ different criteria for the determination o f a-, so that 

a weighted average o f R vanishes. In Galerkin method, the trial functions Nj 

themselves are used as the weighting functions. Therefore, a;’ s are obtained from

$ Nr Rc/ D = 0 / = 1,2,3,...,/; (B.4)
D

where D is the domain.
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APPENDIX C

ELEMENTAL COEFFICIENT MATRICES AND RIGHT- 

HAND-SIDE VECTORS

In this section the derivation o f the elemental coefficient matrices and RHS 

vectors for the element Qe w ill be presented. The derivations are based on the 

definitions given by Equations (4.20)-(4.26).

The trial functions Na(£) and NB(£) shown in Fig. 4.2 and the derivative 

functions can be re-written as

h
(C.l)

(C2)

N'Ai4) = - h
(C.3)

(C.4)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C .l. Derivation of

Recalling the definition of coefficient matrix ^  j as

Substituting Equations (C.I)-(C.4) in the definition, the elemental matrix |A 

obtained as given below.

K ‘m  =  ( X  +  W A d { = ( X  +  2M ' ) ]  +  2m  ) l

K 'm  =  ( X  + 2m  ) j  N 'A N i d f  = (A' + 2m  ) f  - j d f  = ( X  +  2m  )-!■. . " I

•  „  . , - 1

K 'm  = (A' + 2m  )J ATJJVJ</£ = (A- + 2//* ) J = (A- + 2 /T ) -

M -

If11 If11

jctm
^ bb

= W  + 2/i, i %  - x  

- x  y h .
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'"J can be

(C.6)

(C.l)

(C.8)

(C.9)

(C IO)
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C.2. Derivation of [/ff1]

Recalling the definition of coefficient matrix j as

r n ii r (IN.

Substituting Equations (C.l)-(C.4) in the definition, the elemental matrix 

obtained as given below.

B B

K Z = a ] N AN U d ^ a ] [ ^  + ̂ d (  = ^

B B

KH = a \N ,N 'Ad( = a ] { ^ j d (  = ^ -

B B

K g = a j N t Ni<lf = a ]  {£ }d l; = |

K ‘] =

' t f P  I vrP  1
A /W A /lfl

,A S/I A fifi
= a Yl Yl 

:Yi X
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(C . l l)  

/ ‘ j  can be

(C. 12) 

(C.13) 

(C. 14) 

(C. 15)

(C -16)
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C.3. Derivation of [^C2]

Recalling the definition of coefficient matrix 2J as

K’H dN, dNj 
dy dy Mo d y

N,
J

dNj
dy

Jy (C. 17)

The apparent viscosity |.ia is not constant and a function o f pressure gradient in y- 

direction. A linear variation o f apparent viscosity is assumed over the element fie  with

the nodal values o f (.u and |in as shown in Fig. C. 1.

a BA

Fig. C .l.  Variation o f apparent viscosity over the element Qc

This linear variation o f  the apparent viscosity for an element can be written as

M b - M  a (C .l 8)
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Then, substituting Equations (C.1)-(C.4) and (C. 18) in the definition, the elemental 

matrix IK ^ 2 can be obtained as given below.

[* " W W a - (C. 19)

[*"H h2
'Mb -M a ' 2 ' m b M a - M a -1 1 _ 

h +h2 ^
>cIZ (C.20)

simplifying and integrating.

[*j ? K
l + / * j - 2  A + H bHa 2

6h

similarly.

- * £ ± 2 (C-22)
h 6h

1 + 2^ 1 . J *A _ W *  (C.23)
6h

r P 2 } _  I  . - Z m I + M a + P b M a

“ r ~ h   u   (C 2 4 )

1 , M b  -  2 V a  +  M b M a 

h 6 h
- M b M a

. h 6h

- 1  | - m I + 2 i i 2 a - M b M a  

h 6h
1 , ~ 2 M 2b + M a  + M b M a 

h 6 h

(C.25)
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C.4. Derivation of [m *]

Recalling the definition o f coefficient matrix [a/* j as

UN.
(C.26)

Substituting Equations (C.1)-(C.4) and (C. 18) in the definition, the elemental matrix 

^A/* j can be obtained as given below.

a

(C.27)

V B - f A  ,  , „
7 b+f - l A h

d£, (C.28)

Simplifying and integrating,

"2 H A ~  M b

Similarly,

(C.29)

(C.30)
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* 1 - / 1  ~ 2 ^ g  ~ M a
[ m L \  = P\

[ m U  ] = P_  O 2 M b  +  M a

K 1 4
“ 2 M a ~ M b  2 M a + M b  

- 2 M b ~ V a  2 M b + M a

(C.31)

(C-32)

(C-33)

C .5. D erivation o f j

Recalling the definition o f coefficient matrix J as

a
(C.34)

Substituting Equations (C.1)-(C.4) and (C .l8) in the definition, the elemental matrix 

J can be obtained as given below.

a
(C-35)

[ k £ , ]= .s J h h MaA  h h h2
(C.36)

Simplifying and integrating,
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Similarly,

M l

K (C.37)

[m Pm (C.38)

[ < / (C.39)

& - p , * 3m, +Ma (C.40)

- P l h \
12

M b + 3 H a  M b + M a '  

. M b + M a  3 M b + M a .
(C.41)

C .6. D erivation o f {z^1 J

Recalling the definition o f RHS vector |F el |  as

(C-42)

Substituting Equations (C. 1 )-(C.4) in the definition, the elemental vector } can be 

obtained as given below.
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r=0

(C.43)

(C.44)

{F,'} =
<?w

=̂0

d y
y=d

(C.45)

In Equations (C.43) and (C.44), N; is used instead o f NA or Nb since it is not 

defined over an element (Ni is not in an integration).

C.7. D erivation  o f

Recalling the definition ofRHS vector {^>2} as

dP
dy

(C.46)

Substituting Equations (C. 1)-(C.4) in the definition, the elemental vector can be

obtained as given below.
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r=o

{F» } =Ar'
dP
d y

(CM)

(C.48)
y = i i

{^} =
-N. dP

N.

' dy  
dP

y= 0

' a y y = J

(C.49)

Again, in Equations (C.47) and (C.48), Nj is used instead o f NA or Nb since it is 

not defined over an element (Nj is not in an integration).
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APPENDIX D

NUMERICAL CODE

The finite element model developed for the numerical analysis o f the flow o f 

non-Newtonian Bingham fluid through poroelastic medium is explained in Chapter 4. 

The following is the numerical code, written in Fortran 77, o f  this model.

PROGRAM FEM

INTEGER NEND,WNUM,COUNW 

REAL*8 FTIMER(500),FTIMEI(500)

R EAL*8 MEMO(500,500),LOSS(500,1000),L(500),VRATIO 

COMPLEX ERRO11 (250),ERRO 12(250),ERR021 (250),ERRO22(250) 

COMPLEX* 16 SUM,DISP,ERRO 1(250),ERRO2(250)

COMPLEX TAUYY(500,1000),KCOMPLEX(500,1000),K(500) 

CHARACTER FINP*20,FOUT*20,F20UT*20,F50UT*20,F60UT*20 

CHARACTER F70UT*20,F80UT*20,F90UT*20 

INTEGER ND,NX,NN,NE,E(500,5),BC(500),COUNT,NTIME,ICON 

R EAL*8 PI,LAMDA,MU,ALPHA,D,H,BETA1,BETA2,W,T,V0,ALPHA0 

REAL*8 YIN,DX,Y(500),TINI,DT,TEND,W INI,W DT,W END 

REAL*8 A(500,500),B(500,500),MTIME(500,500)

REAL *8 M ETA 1,META2

REAL*8 VISCO1 (250),VISC02(250),RESIST(250)
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REAL*8 P0R0,PVISC0,BULKM0D,PERME,YIELD 

REAL* 8 VMEMO(250)

COMPLEX U(20,500),FBC(500),FTIME(500),F(500)

COMPLEX PG(20,500),VELO(250)

COMMON /A / ND,NX,NN,NE,E,BC,COUNT,NTIME 

COMMON /B/PI,LAMDA,MU,ALPHA,D,H,BETA1,BETA2, W,T,VO, 

ALPHAO

COMMON YIN,DX,Y,TINI,DT,TEND,W INI,W DT,W END 

COMMON A,B,MTIME 

COMMON /a U,FBC,FTIME,F 

COMMON /D / META 1 ,META2 

COMMON /E/ VISCO 1.VISC02,RESIST 

COMMON /F/ PORO,P VISCO,BULKMOD,PERME, YIELD 

C * * * *  INPUT FILE 

FINP-SIL.INP '

C * * * *  OUTPUT FILES 

FOUT='DISP.OUr 

F50U T-PG R AD .0U T1 

F60UT-VISCO.OUT'

F70U T-REAL.O UT'

F90UT-M ODULUS.O UT'

32 FORMAT(A20)

OPEN(2,FILE=FINP,ST ATUS-OLD')

OPEN(3,FILE=FOUT, STATUS='UNKNO WN') 

0PEN(7,FILE=F50UT,STATUS-UNKNOW N') 

0PEN(8,FILE=F60UT,STATUS-UNKN0W NI)

OPEN(9, FILE=F70UT,STATUS-UNKNOW N')

OPEN( 11 ,FILE=F90UT,ST ATUS-UNKNOW N')

CALL DAT AIN

WNUM=(WEND-WINI)AVDT+1
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NEND=NTIME

W RITE(11,*) 'COMPLEX MODULUS AS A FUNCTION OF W(rad/s)' 

W R ITE(11,*)1 w(rad/s) K (w ) (Pa) Loss Tan'

W RITE(11,*)' ........................................... '

DO 101 COUNW =l,W NUM 

W=W INI+(COUNW -1) * W DT 

CALL IN IT

C * * * *  STRESS IN Y DIRECTION at y=d for I.C. (T=0)

T AUYY(COUNW, 1 )=((L A M D  A+2.0 * MU) *((U( I ,NN)- 

U( 1 ,NN-1 ))/H )-ALPHA*U( 1,2*NN))

C * * * *  COMPLEX MODULUS FOR IN IT IA L  CONDITIONS (T=0)

KCOMPLEX(COUNW, 1 )=TAUYY(COUNW, 1 )/(DISP(0.0, V0,W)/D) 

LOSS(COUNW, 1 )=AIMAG(KCOMPLEX(COUNW, 1))/ 

REAL(KCOMPLEX(COUNW, 1))

TEND=(6.2831853)/W

DT=TEND/NTIME

ICON=NEND+l

DO 100 COUNT=2,NEND+1

T=TINI+(COUNT-1 )*DT

MM=1

WRITE (8,*) 'VISCOSITIES FOR T IM E -,T  

140 DO 142 1=1, NN

RESIST(I)=(VISCO 1 (I)*PORO)/PERME 

142 CONTINUE

METAl=(ALPHA)/(PERME*PORO)

META2=1,ODO/(BULKMOD*PERME*PORO)

W RITE(8,*) 'ITERATION #=',MM 

99 CALL APPBOUN 

C ALL ASSEMBLY 

CALL BOUNDARY
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DO 166 JJ=1,2*NN 

FTIMER(JJ)=REAL(FTIME(JJ))

FTEMEI(JJ)=AIMAG(FTIME(JJ))

166 CONTINUE

DO 168 II= I,2 *N N  

DO 168 JJ=1,2*NN 

MEMO(II,JJ)=MTIME(II,JJ)

168 CONTINUE

CALL GAUSSJ(MEMO,2*NN,500,FTIMEI, 1,1)

CALL GAUSSJ(MTIME,2*NN,500,FTIMER, 1,1)

DO 63 I=1,2*NN

U(COUNT,I)=CMPLX(FTIMER(I),FTIMEI(I))

63 CONTINUE

C * * *  OBTAIN PRESSURE GRADIENT FROM THE PRESSURE VALUES 

C * * *  OBTAIN dP FOR THE FIRST &  LAST NODES USING FORWARD &

C * * *  BACKWARD DIFFERENCE

PG(COUNT, 1 )=( 1,0/H)*(U(COUNT,NN+2)-U(COUNT,NN+1)) 

PG(COUNT,NN)=( 1,0/H)*(U(COUNT,2*NN)-U(COUNT,2*NN-1))

C * * *  OBTAIN dP FOR THE OTHER NODES USING CENTRAL DIFFERENCE 

117 DO 854 IP=2,NE

PG(COUNT,IP)=( 1,0/(2.0*H))*(U(COUNT,IP+NN+1)

-U(COUNT,IP+NN-1))

854 CONTINUE

DO 855 IP=1,NN

C * * *  OBTAIN THE VELOCITY USING MODIFIED D ARC Y’ S LAW  

VELO(IP)=(-PERME/VlSCO 1 (IP))*PG(COUNT,IP)

C * * *  CALCULATE APPARENT VISCOSITY

VISC02(IP)=PVISC0/( 1 -(ALPHAO/ABS(RE AL(PG(COUNT,IP)))))

C * * *  To verify with exact solution &  to avoid singularity, use;

C VISC02(IP)=VISCO 1 (IP)
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£ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

WRJTE(8,851) VISCO 1 (IP), VISC02(IP), VISCO 1(IP)/VISC02(IP)

851 FORMAT(2x,E 14.7,3x,E 14.7,5x,E 14.7)

VMEMO(EP)=VISCO 1 (IP)

VISCO l(IP)=(VISCO2(IP)+VMEMO(IP))/2.0 

WRITE(7,*) PG(COUNT,IP)

855 CONTINUE 

MM=MM+1

WRITE(3,*) '* * * *  U &  P FOR T=',T,' * * * * '

C * * *  M M  IS THE # OF ITERATIONS 

EF (MM.GT.50) GOTO 111 

GOTO 140

111 WRITE(9,*) '* * *  RESULTS FOR W=',W,' T= ',T IN I+(CO UN T-l)*D T 

WRITE(9,*) 'Displacem. Pressure Pres.Grad. Viscosity 1 

Viscosity2'

W R ITE (9 ,*)"...................................................................

C * * *  Check i f  visco converges &  i f  it doesn't skip that time step 

C * * *  Calculate average modulus 

DO 69 II= I,N N

VR ATI0=VM EM 0(II)A^ISC 02(II)

IF((VRATIO.GT. 1.00001 ).OR.(VRATIO.LT.0.99).OR.

(VISCO2(NN).LT.0.0)) THEN 

ICON=ICON-1 

GOTO 113 

ELSE 

GOTO 69 

END IF 

69 CONTINUE

C * * *  STRESS IN Y  DIRECTION AT y=d FOR TIM E T
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TAUYY(COUNW ,COUNT)=(LAMDA+2.0*MU)*((U(COUNT,NN)-

U (C0U NT,N N-l))/H )-ALPHA*U (C0UNT,2*N N )

C * * *  COMPLEX MODULUS FOR TIME T

KCOMPLEX(COUNW,COUNT)=TAUYY(COUNW, COUNT)/ 

(DISP(T,VO,W)/D) 

LOSS(COUNW,COUNT)=AIMAG(KCOMPLEX(COUNW,COUNT))/ 

REAL(KCOMPLEX(COUNW,COUNT))

113 DO 76 1=1,NN

WRITE(9,424) REAL(U(COUNT,I)),REAL(U(COUNT,NN+I)),REAL(PG 

(C 0U N T,I)),VM EM 0(I),V ISC 02(I),V M E M 0(I)/V ISC 02(I)

424 FORMAT( 1 x,E 10.4,2x,F 10.1,3x,F 12.1,2x,E 12.6,2x,E 12.6,2x,F7.5)

76 CONTINUE 

100 CONTINUE 

C * * *  O BTAIN  AVERAGE STORAGE AND LOSS MODULUS 

K(COUNW)=CMPLX(0.0,0.0)

L(COUNW)=0.0 

DO 108 I=1,NEND+1

K(COUNW)=K(COUNW)+KCOMPLEX(COUNW,I)

L(COUNW)=L(COUNW)+LOSS(COUNW,I)

108 CONTINUE

K(COUNW)=K(COUNW)/(ICON)

L(COUNW)=L(COUNW)/(ICON)

W R ITE(11,138) W,REAL(K(COUNW)),L(COUNW)

138 FORMAT(3x,F9.4,2x,EI4.6,2x,F9.6)

101 CONTINUE 

STOP 

END

C O M P LE X * 16 FUNCTION DISP(T,V0,W)

R EAL*8 T,V0,W
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DISP=CMPLX(VO*COS(W*T),VO*SIN(W*T))

RETURN

END

SUBROUTINE IN IT

INTEGER ND,NX,NN,NE,E(500,5),BC(500),COUNT,NTIME 

REAL*8PI,LAMDA,MU,ALPHA,D,H,BETAl,BETA2,W ,T,V0,ALPHA0 

REAL*8 YIN,DX,Y(500),TrNI,DT,TEND,W INI,W DT,W END 

REAL*8 A(500,500),B(500,500),MTIME(500,500)

COMPLEX U(20,500),FBC(500),FTIME(500),F(500)

REAL *8 M ETA I, MET A2

REAL*8 VISCO 1 (250),VISC02(250),RESIST(250)

REAL*8 PORO,PVISCO,BULKMOD,PERME,YIELD 

REAL *8 RO

COMPLEX* 16 O M E G A C 1 ,C2 

COMMON /A / ND,NX,NN,NE,E,BC,COUNT,NTIME 

COMMON /B / PI,LAMDAMU,ALPHAD,H,BETA1,BETA2,W ,T,V0, 

ALPHAO

COMMON YIN,DX,Y,TINI,DT,TEND,W INI,W DT,W END 

COMMON A B ,M T IM E  

COMMON ICI U,FBC,FTIME,F 

COMMON /D / META 1 ,META2 

COMMON /E / VISCO 1,VISC02,RESIST 

COMMON /F/ PORO,PVISCO,BULKMOD,PERME,YIELD 

C * * *  IN IT IA L  CONDITIONS FOR DISPLACEMENT AND PRESSURE 

BETA1=(P VISCO* ALPHA)/(PERME*PORO) 

BETA2=PVISCO/(BULKMOD*PERME*PORO)

RO=B ET A2+(B ET A 1 * ALPHA)/(LAMDA+2.0*MU)

OMEGA=CMPLX( 1.0,1,0)*DSQRT(0.5*RO*W)

C2=(V0/D)/((BET A2/BET A 1 )*(EXP(OMEGA*D)+EXP(-OMEGA*D))+
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(ALPHA/((LAM DA+2.0*M U)*OM EGA*D))*(EXP(OM EGA*D)

-EXP(-OMEGA*D)))

C1=(-C2)*(EXP(0MEGA*D)+EXP(-0MEGA*D))

DO 31 11=1,NN

U( 1 ,II)=(-BETA2/BETA 1 )*C  I * (H * ( I I -1 ))+(ALPHA/((LAMD A+2.0*M U )* 

OM EG A))*C2*(EXP(OM EGA*(H*(II-1 )))-EXP(-OM EGA*(H*(II 

-I))))
U( I ,II)=U ( 1 ,II)*CMPLX( 1.0,0.0)

U( 1 ,II+NN)=C 1 +C2*(EXP(O M EG A*(H*(II-1 )))+EXP(-OMEGA* 

(H *(II-1 )»)

U( 1 ,II+NN)=U( 1 ,II+NN)*CMPLX( 1.0,0.0)

31 CONTINUE 

END

SUBROUTINE DATAIN

COMPLEX SUM,DISP

INTEGER ND,NX,NN,NE,E(500,5),BC(500),COUNT,NTIME 

REAL*8 PI,LAMDA,MU,ALPHA,D,H,BETA 1 ,BETA2,W,T,VO,ALPHAO 

REAL*8 YIN,DX,Y(500),TINI,DT,TEND,WINI,WDT,WEND 

REAL*8 A(500,500),B(500,500),MTIME(500,500)

COMPLEX U(20,500),FBC(500),FTIME(500),F(500)

REAL *8 META 1,META2

REAL*8 VISCO 1 (250),VISC02(250),RESIST(250)

REAL*8 PORO,PVISCO,BULKMOD,PERME,YIELD;FIELD 

COMMON I N  ND,NX,NN,NE,E,BC,COUNT,NTIME 

COMMON /B / PI,LAMDA,MU,ALPHA,D,H,BETA1,BETA2,W,T,V0, 

ALPHAO

COMMON YIN,DX,Y,TINI,DT,TEND,WINI,WDT,WEND 

COMMON A,B,MTIME 

COMMON /Cl U,FBC,FTIME,F
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COMMON ID! M ETA 1, META2 

COMMON IE/  VISCO 1.VISC02,RESIST 

COMMON /F/ PORO,PVISCO,BULKMOD,PERME, YIELD 

C ND : # OF NODES IN  AN ELEMENT 

C N X : # OF NODES IN  X-DIRECTION 

C NN : # OF NODES IN  THE DOMAIN (NN=ND FOR ID )

C Y IN  : IN IT IA L  Y  COORDINATE 

C D X : MESH SIZE IN  Y DIRECTION 

C NE : # OF ELEMENTS 

C Y ( I ) : COORDINATES OF NODE POINTS 

C E(I,J) : NODE NUMBERS IN THE ELEMENT 

C BC(I) : BOUNDARY CONDITION INDEX 

C F B C (I): BOUNDARY CONDITION VECTOR 

C D : HEIGHT

C VO : AM PLITUDE OF DISPLACEMENT INPUT 

C W : FREQUENCY OF DISPLACEMENT INPUT 

C T : TIM E 

C * * *  SET CONSTANTS 

PI=3.1415927D0 

LA M D A = l .29D08 

MU=9.79D07 

ALPHA=0.98D0 

D=0.0254DO 

T=0.0D0 

PORO=0.48DO 

PERME=3.62D-I2 

FIELD=1.0

PVISCO=0.05D0-0.02273 D0*FIELD 

YIELD= 103,0D0*(FIELD**2)

BULKMOD=5.58D08
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C * * *  SET ELEMENTAL DATA 

ND=2

READ(2,*) TINI,NTIM E 

READ(2,*) WINI,WDT,WEND 

READ(2,*) VO 

READ(2,*) NE 

NN=NE+I 

H=D/NE 

DX=D/NE 

YIN=0.0 

DO 141 1=1, NN 

VISCO 1(I)=P VISCO 

141 CONTINUE

ALPHA0=(0.001/DSQRT(PERME))* Y IELD

C * * *  SET MASTER VECTORS TO ZERO 

DO 88 I=1,2*NN 

F(I)=O.ODO 

DO 88 J=1,2*NN 

A(I,J)=0.0D0 

B(I,J)=0.0D0 

88 CONTINUE

C * * *  GENERATE NODAL COORDINATES 

DO 10 1=1,NN 

Y (I)= Y IN + (I-1 )*D X

10 CONTINUE

C * * *  GENERATE ELEMENTAL NODES 

DO 11 1=1,NE 

E(I,1)=I 

E(I,2)=I+1

11 CONTINUE
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C * * *  SET BOUNDARY CONDITIONS &  BC INDEX TO ZERO 

DO 12 I=1,2*NN 

FBC(I)=CMPLX(0.0,0.0)

BC(I)=0 

12 CONTINUE 

END

C * * *  APPLY BOUNDARY CONDITIONS 

SUBROUTINE APPBOUN

COMPLEX SUM,DISP

INTEGER ND,NX,NN,NE,E(500,5),BC(500),COUNT,NTIME 

REAL*8 PI,LAMDA,MU,ALPHA,D,H,BETA I,BET A2,W,T, VO, ALPHAO 

REAL*8 YIN,DX,Y(500),TINI,DT,TEND,W INI,WDT,WEND 

REAL*8 A(500,500),B(500,500),MTIME(500,500)

COMPLEX U(20,500),FBC(500),FTIME(500),F(500)

R E A L*8 M ETA 1,META2

REAL*8 VISCO 1(250),VISC02(250),RESIST(250)

REAL*8 PORO,PVISCO,BULKMOD,PERME,YIELD 

COMMON /A / ND,NX,NN,NE,E,BC,COUNT,NTIME 

COMMON /B / PI,LAMDA,MU,ALPHA,D,H,BETA1,BETA2,W,T,V0, 

ALPHAO

COMMON YIN,DX,Y,TINI,DT,TEND,W INI,W DT,W END 

COMMON A,B,MTIME 

COMMON /C/ U,FBC,FTIME,F 

COMMON /D / META 1 ,META2 

COMMON IE/ VISCO 1,VISC02,RESIST 

COMMON IF/ PORO,PVISCO,BULKMOD,PERME,YIELD 

C * * *  RESET THE SOLUTION VECTOR (U)

DO 93 I= I,2 *N N  

U(COUNT,I)=CMPLX(0.0,0.0)
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93 CONTINUE

C * * *  SET BOUNDARY CONDITIONS INDEX 

C * * *  INDEX=0 IF BC IS NOT SPECIFIED FOR THE NODE 

C * * *  IN D E X =l IF FUNCTION ITSELF IS SPECIFIED FOR THE NODE 

C * * *  INDEX=2 IF DERIVATIVE OF FUNCTION IS SPECIFIED FOR THE 

C * * *  NODE
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C * * *  BC IN D EX &  BC FOR DISPLACEMENT FIELD 

B C (l)= l

FBC( 1 )=CMPLX(0.0,0.0)

U(COUNT, I)=CMPLX(0.0,0.0)

BC(NN)=l

FBC(NN)=DISP(T,VO,W)

U(COUNT,NN)=DISP(T,VO,W)

BC(2*NN)=I

FBC(2*NN)=CMPLX(0.0,0.0)

U(COUNT,2*NN)=CMPLX(0.0,0.0)

C * * *  BC IN D EX &  BC FOR PRESSURE FIELD 

C * * *  FOR D ERIVATIVE B.C.; F(I)=B.C.

BC(NN+1)=2

FBC(NN+1 )=CMPLX(0.0,0.0)

F(NN+1 )=FBC(NN+1)

END

SUBROUTINE COEFF(AEI,AE2,AE3,AE4,BEI,BE2,BE3,BE4)

REAL*8 A E I (2,2),AE2(2,2),AE3(2,2),AE4(2,2)

REAL*8 BEI(2,2),BE2(2,2),BE3(2,2),BE4(2,2)

REAL*8 FE(2)

COMPLEX SUM,DISP

INTEGER ND,NX,NN,NE,E(500,5),BC(500),COUNT,NTIME
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REAL*8 PI,LAMD A,MU,ALPHA,D,H,BETA 1,BET A2,W,T, VO, ALPHAO 

R EAL*8 YTN,DX,Y(500),TINI,DT,TEND,WINI,WDT,WEND 

REAL*8 A(500,500),B(500,500),MTIME(500,500)

COMPLEX U(20,500),FBC(500),FTIME(500),F(500)

R EAL*8 M ETA I,META2

REAL*8 VISCO 1(250),VISC02(250),RESIST(250)

R EAL*8 PORO,PVISCO,BULKMOD,PERME,YIELD 

COMMON I N  ND,NX,NN,NE,E,BC,COUNT,NTIME 

COMMON IB/ PI,LAMDA,MU,ALPHA,D,H,BETAI,BETA2,W ,T,V0, 

ALPHAO

COMMON YIN,DX,Y,TINI,DT,TEND,W INI,W DT,W END 

COMMON A,B,MTIME 

COMMON ICI U,FBC,FTIME,F 

COMMON ID/ META 1 ,META2 

COMMON IE/ VISCO 1 ,VISC02,RESIST 

COMMON IF/ PORO,PVISCO,BlTLKMOD,PERME,YIELD 

C** AE1 : 2X2 ELEMENTAL DISPL. &  PRESS. COEFF. M ATRIX (Mu)

C ** AE2 : 2X2 ELEMENTAL DISPL. & PRESS. COEFF. M ATRIX (M p l)

C** AE3 : 2X2 ELEMENTAL DISPL. & PRESS. COEFF. M ATRIX (zero)

C** AE4 : 2X2 ELEMENTAL DISPL. &  PRESS. COEFF. M ATRIX (Mp2)

C** BE I : 2X2 ELEMENTAL DISPL. &  PRESS. DERIV. COEFF. M A TR IX  (zero) 

C ** BE2 : 2X2 ELEMENTAL DISPL. &  PRESS. DERIV. COEFF. M A TR IX  (zero) 

C** BE3 : 2X2 ELEM. DISPL. &  PRESS. DERIV. COEFF. M ATRIX (MuDOT) 

C ** BE4 : 2X2 ELEM. DISPL. &  PRESS. DERIV. COEFF. M ATR IX  (MpDOT) 

C** A1 : PART OF ELEMENTAL DISPL. &  PRESS. COEFF. M ATR IX  (Mu)

C ** A2 : PART OF ELEMENTAL DISPL. &  PRESS. COEFF. M ATR IX  (M p l)

C ** A3 : PART OF ELEMENTAL DISPL. &  PRESS. COEFF. M ATR IX  (zero)

C ** A4 : PART OF ELEMENTAL DISPL. &  PRESS. COEF. M ATR IX  (Mp2)

C ** B1 : PART OF ELEM. DISPL. &  PRESS. DERIV. COEF. M ATR IX  (zero)

C ** B2 : PART OF ELEM. DISPL. & PRESS. DERIV. COEF. M ATR IX  (zero)
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C ** B3 : PART OF ELEM. DISPL. &  PRESS. DERIV. COEF. M ATR IX  (MuDOT) 

C** B4 : PART OF ELEM. DISPL. &  PRESS. DERIV. COEF. M ATR IX  (MpDOT) 

C ** A  : DISPLACEMENT &  PRESSURE COEFFICIENT M A TR IX  

C ** B : DISPLACEMENT &  PRESSURE DERIVATIVES COEFF. M ATRIX 

AE 1( I , I )=(LAMDA+2.0D0*MU)/H 

A E 1 (1,2)=-(LAMDA+2.0D0*MU)/H 

AE1(2,I)=AEI(1,2)

AE 1 (2,2)=(L AMD A+2. 0D0 * MU)/H

AE2( 1,1 )=-(ALPHA)/2.0D0

AE2(1,2)=(ALPHA)/2.0D0

AE2(2,1)=-(ALPHA)/2.0D0

AE2(2,2)=(ALPHA)/2.0D0

AE3(1,1)=0.0D0

AE3(I,2)=0.0D0

AE3(2,1)=0.0D0

AE3(2,2)=0.0D0

AE4(1,1)=1.0D0/H

AE4( 1,2)=-1 .ODO/H

AE4(2,1 )=-1 .ODO/H

AE4(2,2)= 1 .ODO/H

BEI(I,1)=0.0D0

BEI(I,2)=0.0D0

BE1(2,1)=0.0D0

BE1(2,2)=0.0D0

BE2(1,1)=0.0D0

BE2(1,2)=0.0D0

BE2(2,1)=0.0D0

BE2(2,2)=0.0D0

FE(I)=0.0D0

FE(2)=0.0D0
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END

SUBROUTINE ASSEMBLY

REAL*8 AE 1 (2,2),AE2(2,2),AE3(2,2),AE4(2,2),AE44(2,2)

REAL*8 A1(250,250),A2(250,250),A3(250,250),A4(250,250)

REAL*8 BEl(2,2),BE2(2,2),BE3(2,2),BE4(2,2)

REAL*8 B I(250,250),B2(250,250),B3(250,250),B4(250,250)

REAL* 8 FE(2)

COMPLEX SUM,DISP

INTEGER ND,NX,NN,NE,E(500,5),BC(500),COUNT,NTIME 

REAL*8 PI,LAMDA,MU,ALPHA,D,H,BETA1,BETA2,W,T,V0,ALPHA0 

R EAL*8 YIN,DX,Y(500),TINI,DT,TEND,W INLW DT,WEND 

REAL*8 A(500,500),B(500,500),MTIME(500,500)

COMPLEX U(20,500),FBC(500),FTIME(500),F(500)

REAL*8 META 1,META2

REAL*8 VISCO 1 (250),VISC02(250),RESIST(250)

REAL*8 PORO,PVISCO,BULKMOD,PERME, YIELD 

REAL*8 FACTOR,TETE

COMMON /A / ND,NX,NN,NE,E,BC,COUNT,NTIME 

COMMON /B / PI,LAMDA,MU,ALPHA,D,H,BETA1,BETA2,W,T,V0, 

ALPHAO

COMMON YIN,DX,Y,TINI,DT,TEND, WINI,WDT,WEND 

COMMON AB,M TIM E 

COMMON /C/ U,FBC,FTIME,F 

COMMON /D / META 1,MET A2 

C O M M O N /E/ VISCO 1,VISC02,RESIST 

COMMON /F/ PORO,PVISCO,BULKMOD,PERME,YIELD 

C * * *  RESET COEFFICIENT MATRICES 

DO 20 I= I,N N  

DO 20 J=1,NN
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Al(I,J)=O.ODO 

A2(I,J)=0.0D0 

A3(I,J)=0.0D0 

A4(I,J)=0.0D0 

B1(I,J)=0.0D0 

B2(I,J)=0.0D0 

B3(I,J)=0.0D0 

B4(I,J)=0.0D0 

20 CONTINUE 

C * * *  CONSTRUCT 4 PARTS OF MAJOR MATRICES A &  B 

DO 30 L=1,NE

CALL COEFF(AEI,AE2,AE3,AE4,BE 1 ,BE2,BE3,BE4)

AE44( 1,1 )=( 1.0/(6.0*H))*((VISCO 1 (L + 1 )**2)-2.0*(VISCO 1 (L )**2 ) 

+VISCO l(L+ l)*V IS C O  1(L))

AE44( 1,2)=-AE44( 1,1)

AE44(2,1 )=( 1,0/(6.0*H))*(2.0*(VISCO I (L + 1 )* *2)-( VISCO 1 (L )**2 ) 

-VISCO I (L+1 )*'VISCO 1 (L))

AE44(2,2)=-AE44(2,1)

BE3( 1,1 )=(-META 1 /6.0)*(2.0* VISCO 1 (L)+VISCO 1 (L + 1)) 

BE3(1,2)=-BE3(1,1)

BE3(2,1 )=(-META 1 /6.0)*(2.0* VISCO 1 (L + 1)+VISCO 1 (L)) 

BE3(2,2)=-BE3(2,1)

BE4( I , I )=((META2*H)/12.0)*(VISCO 1 (L + 1 )+3.0* VISCO 1 (L)) 

BE4( 1,2)=((META2*H)/12.0)*(VISCO 1 (L+1)+VISCO I (L))

BE4(2,1 )=BE4( 1,2)

BE4(2,2)=((META2*H)/12.0)*( VISCO 1 (L)+3.0* VISCO 1 (L+1))

DO 30 1=1,ND 

IB=E(L,I)

DO 30 J=1,ND 

JB=E(L,J)
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A 1 (IB, JB)=A I (IB, JB)+AE 1 (I, J)

A2(IB,JB)=A2(IB,JB)+AE2(I,J)

A3 (IB, JB)=A3 (IB, JB)+AE3 (I, J) 

A4(IB,JB)=A4(IB,JB)+AE4(I,J)+AE44(I,J)

B 1 (IB, JB)=B 1 (IB, JB)+BE I (I, J)

B2(IB,JB)=B2(IB,JB)+BE2(I,J)

B3(IB,JB)=B3(IB,JB)+BE3(I,J)

B4(IB,JB)=B4(IB,JB)+BE4(I,J)

30 CONTINUE 

C * * *  ASSEMBLE MAJOR MATRICES A AND B FROM 4 PARTS 

DO 44 I= l,N N  

DO 44 J=I,N N  

A(I,J)=AI(I,J)

A(I,J+NN)=A2(I,J)

A(I+NN,J)=A3(I,J)

A(I+NN,J+NN)=A4(I,J)

B(I,J)=B I(I,J)

B(I,J+NN)=B2(I,J)

B(I+NN,J)=B3(I,J)

B(I+NN,J+NN)=B4(I,J)

44 CONTINUE

C * * *  OBTAIN M TIM E &  FTIME MATRICES USING TIM E DEPENDENCY 

C TETE=0 = >  Forward Difference Scheme (Gives Singularity in B(I,J))

C TETE=l/2 ==> Central (Improved Euler, Crank-Nicholsan) Difference Scheme 

C TETE=1 ==> Backward Difference Scheme 

C TETE=2/3 = >  Galerkin finite element 

TETE=2.0/3.0 

DO 71 I=1,2*NN 

SUM=CMPLX(0.0,0.0)

DO 72 J=1,2*NN
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MTIME(I,J)=B(I,J)+TETE*DT*A(I,J)

SUM=SUM+(B(I,J)-(l.O-TETE)*DT*A(I,J))*U((COUNT-l),J)

72 CONTINUE

FTIME(I)=DT*F(I)+SUM 

71 CONTINUE 

END

SUBROUTINE BOUNDARY

COMPLEX SUM,DISP

INTEGER ND,NX,NN,NE,E(500,5),BC(500),COUNT,NTIME 

REAL*8 PI,LAMDA,MU,ALPHA,D,H,BETA1,BETA2,W,T, VO, ALPHAO 

R EAL*8 YIN, DX, Y(500),TINI, DT,TEND, WINI,WDT,WEND 

REAL*8 A(500,500),B(500,500),MTIME(500,500)

COMPLEX U(20,500),FBC(500),FTIME(500),F(500)

REAL*8 META I,MET A2

REAL*8 VISCO 1 (250),VISC02(250),RESIST(250)

R E A L*8 PORO,PVISCO,BULKMOD,PERME,YIELD 

COMMON /A / ND,NX,NN,NE,E,BC,COUNT,NTIME 

COMMON /B/ PI,LAMDA,MU,ALPHA,D,H,BETA1,BETA2,W,T,V0, 

ALPHAO

COMMON YIN,DX,Y,TINI,DT,TEND, W INI, WDT,WEND

COMMON A,B,MTIME

COMMON / a  U,FBC,FTIME,F

COMMON fD! META 1 ,META2

COMMON /E/ VISCO 1,VISC02,RESIST

COMMON /F/ PORO,PVISCO,BULKMOD,PERME, YIELD

DO 51 I=1,2*NN

IF (BC(I).EQ.O) GOTO 51

IF (BC(I).EQ.2) GOTO 51

DO 52 J=1,2*NN
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IF (I.NE.J) GOTO 49 

MTIME(I, J)= 1.0D0 

GOTO 52

49 FTIME(J)=FTIME( J)-M TIM E( J, I) * U(COUNT, I) 

MTIME(I,J)=0.0D0 

MTIME(J,I)=0.0D0 

52 CONTINUE

FTIME(I)=FBC(I)

51 CONTINUE 

END

C ***  SOLUTION OF THE ALGEBRAIC EQUATIONS 

SUBROUTINE GAUSSJ(A,N,NP,B,M,MP)

PARAMETER (NMAX=500)

INTEGER IP IV(NM AX),INDXR(NM AX),INDXC(NM AX) 

REAL*8 A(NP,NP),B(NP,NP)

REAL* 8 BIG ,DUM ,PIVINV 

DO I I  J=1,N 

IPIV(J)=0 

11 CONTINUE 

DO 22 1=1,N 

BIG=O.ODO 

DO 13 J=I,N 

EF(IPIV(J).NE. 1)THEN 

DO 12 K=I,N  

IF (IPIV(K).EQ.O) THEN 

IF (ABS(A(J,K)).GE.BIG)THEN 

BIG=ABS(A(J,K))

IROW=J

ICOL=K
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END IF

ELSE IF (IP IV(K).GT. 1) THEN 

PAUSE 'Singular matrix'

END IF

12 CONTINUE 

END IF

13 CONTINUE 

IPIV(ICOL)=IPI V(ICOL)+1 

IF (IROW.NE.ICOL) THEN 

DO 14 L=1,N

DUM=A(IRO W, L)

A(IROW,L)=A(ICOL,L)
A(ICOL,L)=DUM

14 CONTINUE 

DO 15 L = I,M  

DUM=B(IROW,L)

B(IROW,L)=B(ICOL,L)
B(ICOL,L)=DUM

15 CONTINUE 

ENDIF

INDXR(I)=IROW

INDXC(I)=ICOL

IF (A(ICOLJCOL).EQ.O.) PAUSE 'Singular matrix.' 

PIVINV=1.0DO/A(ICOL,ICOL)

A(ICOL,ICOL)= 1.0D0 

DO 16 L=1,N

A(ICOL,L)=A(ICOL,L)*PIVINV

16 CONTINUE 

DO 17 L = l,M

B(ICOL,L)=B(ICOL,L)*P lV INV
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17 CONTINUE 

DO 21 LL=1,N 

IF(LL.NE.ICOL)THEN 

DUM=A(LL,ICOL) 

A(LL,ICOL)=O.ODO 

DO 18 L=1,N

A(LL,L)=A(LL,L)-A (IC O L,L)*DU M

18 CONTINUE 

DO 19 L=1,M

B(LL,L)=B(LL,L)-B(ICOL,L)*DUM

19 CONTINUE 

END IF

21 CONTINUE

22 CONTINUE 

DO 24 L=N, 1 1

IF(INDXR(L).NE.INDXC(L))THEN 

DO 23 K=1,N 

DUM=A(K,INDXR(L)) 

A(K,INDXR(L))=A(K,INDXC(L)) 

A(K,INDXC(L))=DUM

23 CONTINUE 

END IF

24 CONTINUE 

RETURN 

END
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