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(54)
Ac.RT Ac, RT

F = —  -----------------
K, K,

where Ac, and Ac, are the concentration differences at the two membranes that exhibit 

permitivities of K, and K, respectively. Assuming no inhibition to flow at the membranes and 

300 pg/ml of pdCAJa, *pd(T) M the upper limit of Tt in SSE is on the order of 10‘3 

atmospheres. Any appreciable resistance at the membranes will reduce the flow through 

them. It is difficult to quantify this pressure because the resistance to flow of the membranes 

is not known.

An argument can be made against osmotic flow at steady-state in SSE experiments. 

Figure 36 represents an SSE gradient divided up into numerous boxes. The osmotic pressure 

at the top membranes is directed into the first box of the cuvette. The macroion 

concentration in the second box is higher than that in the first, thereby creating an osmotic 

pressure directed into the second box. This argument can be propagated all the way to the 

last box (bottom membrane). The concentration in the last box creates an osmotic pressure 

into the box. The sum of the osmotic pressures in all but the last box is equal and opposite 

to the osmotic pressure into the last box. The two osmotic flows cancel each other and do 

not produce a bulk fluid flow.

Analysis of the AEA data suggests that osmotic flow does not significantly influence 

electrophoretic flux. Two lines of evidence support this contention. First, a  versus E data 

is linear over a broad range of fields and, therefore, a broad range of macroion concentration 

differences (Figures 12 and 21). With the exception of 60 mM KCL and 100 mM (CH3)4N+
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Figure 36. A representation of the argument against osmotic induced bulk fluid flow through the AEA in a 
SSE experiment The arrows indicate the direction of the osmotic flow through sections of the cuvette
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data (the two conditions that do not behave well at high SSE E fields), there is no evidence 

(curling down of a ’s at high E fields) for significant retardation of the electrophoretic flux. 

Secondly, in p determinations the centers of the moving boundary (the peak position of Ac/At 

analysis shown in figure 2b) are equally spaced (Figure 2c, 31, and 32) over the detectable 

region of the cuvette even though the concentration differences of pd(A)20 •pdCDa, at the two 

membranes becomes increasingly different (20-fold or more) at the later times.

Osmotic pressure induced flow is most likely not a factor for the decreasing p with 

decreasing field. Velocity determinations start with a homogeneous concentration distribution 

of macroions. Velocities taken at the beginning of the experiment in which little to no 

gradients have formed are the same as velocities at the end of the experiment indicating no 

significant impediment to electrophoretic flux.

Similar to the argument against the spreading of the p boundary (DJ due to hydration 

sphere induced bulk fluid flow, osmotic induced flow should act like an additional velocity 

term and not promote dispersion of the macromolecules Unless osmotic-induced flow leads 

to convection, the large E field dependent spreading in mobility experiments is probably a 

result of a different phenomenon.

In D0 experiments, the concentration difference at the membranes is considerably less 

than in most SSE and in all p determinations. Considering the requirement of allowing -2000 

seconds to pass in D0 determination before taking data, the expectation is for the gradient to 

relax significantly and the difference in 7t to be small The decay profile in Figure 27 and the 

representative fit shown in Figure 33 suggest that decay of the gradient fits Equation 40 over 

a broad range of times and concentration differences at the membranes. It should be noted
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that a roughly exponential decrease in a bulk flow with time will lead to an analysis that fits 

a straight line and yields a wrong D0 (Tim Wilson and Harvey Shepard personal 

communications). The significance of osmotic induced bulk flow in diffusion experiments 

appears to be small but cannot be ruled out.

The Effects of Hydrostatic Pressure. Differences on the Observed Concentration Distribution

In the AEA, buffer is pumped continuously past the membranes at rates of 20-40 ml/hour 

in order to flush out electrolysis products and to minimize ion gradients in the cuvette due to 

electrodialysis. The flow rates in the upper and lower buffer chambers are matched to prevent 

a hydrostatic pressure difference from being formed across the cuvette. Exact matches are 

not always possible due to limitations of the tubing and peristaltic pump. The significance to 

AEA measurements of a hydrostatic pressure difference across the cuvette has been 

investigated by purposely mismatching the flow rates in the two chambers. Steady state 

gradients were formed with the top chamber having no flow or Vi the flow of the bottom 

chamber. Similar experiments were performed with the lower chamber having the reduced 

flows.

figure 37 shows the a ’s of SSE gradients of pd(A)20 •pd(T)20 in 100 mM KC1, 20 mM 

Tris, pH 8.0 at 20° C formed in low and mid range E fields (0.026 and 0.065 V/cm 

respectively) under the different flow conditions. The a ’s from the mid range E field were 

within 5% of each under all flow conditions. The low field a ’s were completely dependent 

on flow conditions. Rows favoring electrophoretic migration increased o while flows 

opposing decreased a. While the magnitude of the change in a  was similar at both fields, the 

ratio of change was distinct. This evidence indicates that the range of E fields that yield
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Figure 37. The significance of hydrostatic pressure in gradient formation in the AEA. 
Hydrostatic pressures across the cuvette were created by mismatching the buffer flow 
rates through the top and bottom buffer chambers. The o's were measured for

pd(A) -pdCD in 100 mM KC1,20 mM Tris, pH 8.0,20 °C at □  0.026 V/cm 
r  20 20
and ■  0.065V/cm in which there was either no flow through the chamber or the flow 
rate was half of the other chamber. This was done for both the top and bottom chambers
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higher, consistent a ’s are not significantly influenced by the applied bulk fluid flow but that 

the low field data can be influenced.

While it is evident that hydrostatically induced bulk fluid flow is capable of influencing 

the concentration distribution it is not proof that the anomalous behavior at low field is the 

result of this flow. Effects on a required large discrepancies in the flow rates and efforts are 

made to match the flows. More quantitative studies have been proposed (Tim Wilson 

personal communication) in order to better characterize the effects of hydrostatic pressure. 

A back pressure can be produced by preferentially reducing the sizes of the tubing leading 

from the apparatus. Monitoring the effects of the tube size on the measured a may offer 

additional insights

Effects of Varying Monovalent .Cations on the Electrophoretic Properties of pdfAl^'p d fD ^  

Most theoretical predictions (see THEORY) for the charge, and the ionic shielding, of 

macroions have little to no dependence on the type of monovalent counterion used. Roles 

for affinity of the counterion to the macroion, radius of the counterion and size of the 

hydration sphere of the counterion are not incorporated. Only the DH theory integrates the 

radius of the counterion in its calculation of the center to center distance of closest approach. 

With pd(A)20 •pdfDj,, in chloride salts of either KC1, NaCl or LiCl, the distance of closest 

approach changes by less than 10%. According to equation 15, this should lead to changes 

in the Q e ff of less than 3%. Even with a cation 2 to 3 times larger, (CH3)4N+, the difference 

in Qeff for pd(A)20*pd(T)20 is less than 10%.

The MCC theory does not predict a cation type dependence in charge shielding. Manning 

argues (38) that the differences in the magnitude of the mobility of a polyelectrolyte in the
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no
different chloride salts would be a function of the “..different transport characteristics of 

different small-electrolyte solutions....”. In other words, the mobility (Table 1) of the cations 

(Manning uses the term equivalent conductance) directly influences the overall mobility of 

the DNA. Manning calculates the difference in mobility for an infinitely long polyelectrolyte 

in LOO mM LiCl compared to 100 mM KC1 to be about 7%. Manning also discounts DNA 

mobility data in (CH^N* due to its atypical DNA binding behavior (38, 54). Organic cations 

(quaternary amines bearing a formal positive charge) are recognized (54) to interact act with 

aromatic groups (bases in the DNA). This unconventional ionic bonding (proposed to be 

more stable than those with anionic residues) is capable of producing electrophoretic behavior 

unaccounted for in simple theory.

Evaluation of the mobility data of pd(A)20 •pd(T)20 from the AEA (Figures 3 ,4 ,5  and 

Table 2) reveals that there is a cation dependence to p. It appears to follow the strength of 

the affinity of the cation for DNA [it also follows the radius of the unhydrated cation and, 

with the exception of (CHj)4N+, the mobility of the cation] similar to experiments performed 

on large DNA by Ross and Scruggs in 1964. They proposed that the closer a cation is able 

to approach the DNA (smaller radius), the higher its affinity for the DNA and the better it is 

able to shield the macroion from the E field thereby yielding lower mobilities.

The magnitude of the differences in p between the different cations is larger than would 

be predicted from the difference in cation radius (DH) but in reasonable agreement with 

MCC. The AEA mobility data cannot substantiate either the significance of cation affinity for 

DNA or MCC as the correct description of the cation dependent mobility of pd(A)20 •pd(T)20. 

It does appears however, that the AEA measured mobilities exhibits both charge and
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hydrodynamic influences.

The SSE data of pdfA ^ 'pdfT ^ presented in Figures 10, 11, 19,20 and in Tables 4 and 

5 do not demonstrate clear cation type dependence. The variability of individually determined 

(ipp’s limits interpretation. The combined fits provide more insight. Neglecting (CH3)4N+, 

the slope of the best fit line to a versus E yields range of Qirr’s of 5.0 ± 0.5 e. The sensitivity 

of the slope to individually determined o’s reduces the precision of this technique (this is more 

readily seen in the KC1 concentration experiments). The Q ^ 's  from the global fits are -  5 

e and have over lapping 95% confidence intervals. Global fit Q ^ ’s appear to a better way 

of presenting SSE data because it yields consistent values, combines all of the actual data and 

can use scans from a broader range of E field.

The similarity of the SSE determined charge of pd(A)20 •pd(T)20 under theses 

experimental conditions [with the exception of (CH3)4N+] suggest that there is no significant 

cation dependence. This is in accordance with the MCC theory. The SSE procedure appears 

to produce conditions that isolate the actual charge of a macroion.

Comparing the charge properties determined from SSE and p demonstrates the current 

state of development of the AEA The determined from the two procedures yield 

different values (-  5 e and ~ 6.5 e respectively). Additionally, p data exhibits greater solvent 

dependence than SSE. Consolidation of the two procedures is currently in progress. The 

sensitivity of the p determination to solution conditions might allow particular influences to 

be evaluated that augment the basic charge determined by SSE

Effects of Varying the Ionic Strength on the Electrophoretic Properties of pd(A)^»pd(T)^ 

The role of counterion shielding of macromolecular charge is an important concept in
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understanding raacromolecular interactions. Theoretical prediction for the reduction of 

rnacroion charge by counterions starts with coulombic attraction and thermodynamic 

distribution. The AEA measured electrophoretic flux of pd(A)20 •pd(T)20 is expected to 

increase with decreasing KC1 concentration.

The DH theory predicts that the counterion shielding of a macroion will be proportional 

to the square root of the ionic strength. The high salt conditions used in these experiments 

(ica i  1 as required in the derivation of Equations 12,13 and 15) limit the validity of predicted 

DH values for the DNA in the different salt conditions but can still be useful in describing the 

potential effects of ionic strength. Increasing the KC1 concentration from 20 mM to 100 mM 

(20 mM Tris, pH 8.0) is predicted to reduce the charge of pd(A)20 •pd(T)20 if the basic 

principles of the Poisson-Boltzmann equation hold at these high salt concentrations 

Evaluation of Simple Theories in the Context of AEA Measurements

An essential aspect in the development of the AEA is to provide experimental data that 

can be used to evaluate macroraolecular charge theory. Figure 38 combines the theoretical 

predictions and experimentally determined values for the apparent charge of pd(A)20 •pd(T)20 

in 100 mM KCL The large degree of variability in the predicted values is evident. Predictions 

based on the AEA determined mobility and both procedures for the interpretation of the SSE 

data yield Qipp’s that are lower than theoretical predictions. It appears that charge on 

macroion capable of experiencing the E field in the AEA exhibits a greater level of shielding 

than expected.

Of all the AEA techniques, SSE has the greatest potential for accurately determining the 

Qapp. The balancing of fluxes discussed in the derivation of the^jj equation allows the
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hydrodynamic component of the electrophoretic migration to be eliminated or dramatically 

reduced. This is consistent with the constant value of -  5 e returned from global fit data over 

the range of solvent conditions. It also in line with the apparent solvent dependence with p 

determination and not SSE.

Current polyelectrolyte theories involve a complex mixture of counterion condensation 

and counterion shielding. Electrophoretic mobility determination in the AEA can be used to 

investigate the dynamics of the counterion distribution around a macroion. The velocity of 

a moving boundary is distinctly affected by the drag of its counterion atmosphere and the 

degree of condensation. Mobility in the AEA can be used assess the characteristic 

interactions between macroion and counterion and to complement the basic charge values 

obtained from SSE.

Determining the diffusion and friction coefficients of particles migrating in an electric 

field is a critical feature in interpreting AEA results. The development of mathematical 

models describing the diffusion behavior of particles in the AEA has been an important 

advancement its development. However, additional study is still required to interpret the 

excess spreading of the moving boundary in p determination. The hydrodynamic information 

obtained from De suggests an decreasing frictional coefficient with increasing E fields that is 

not consistent p and SSE data. For this reason, the diffusion coefficient used for charge 

property calculations is one taken in the absence of an E field.

It appears that there are better techniques for obtaining a D0 than the AEA. The D 0 

determination in the AEA is potentially susceptible to extraneous forces or any type of 

convection. Sedimentation velocity gives cleaner and more reproducible numbers. Previous
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experiments (12, 62) on 20 base pair DNA have yielded results similar to sedimentation. 

Further refinement of the D0 procedure is still required.

The current level of AEA data cannot offer conclusive evidence in support or opposition 

to the different theoretical predictions. The GCMC predictions appear distinctly large 

compared AEA determined p and Qapp values but the results of the measurements can be 

interpreted within the parameters of DH and MCC. Mobility data as a function of ionic 

strength is consistent with the Debye length (Equation 12) of the DH theory. However, p 

determination of pd(A)20 •pd(T)20 in the different chloride salts shows a cation dependence 

in excess of predictions.

The Manning counterion condensation theory uses solution dynamics (equivalent 

conductance, intrinsic frictional coefficient) to describe the observed differences in the 

mobilities of polyelectrolyte. The apparent consistency of the global fit SSE data (frictional 

factors cancel) and the solvent dependence in p determination are in general agreement with 

his basic contentions but do not specifically validate them.

The Record and Lohman prediction of an apparent charge of -7.6 appears to be the 

closest approximation to AEA values. The combination of counterion condensation and DH 

shielding is consistent with the large degree of charge reduction in SSE and p determination.
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CONCLUSION

The development of devices capable of analytical electrophoresis is essential in expanding 

the understanding of charge-related properties of macromolecules. The AEA has been shown 

to generate and monitor the electrophoretic migration of macroions. Theoretical descriptions 

of the electrostatic and hydrodynamic nature of a macros allows the apparent charge and 

electrophoretic mobility of the species to be determined.

Evaluation of the AEA measurements under a variety of E fields and solvent conditions 

shows that there are regions of measurements that yield consistent, reproducible values and 

regions of possible anomalous behavior. Influences of the concentration distribution on the 

macroion unaccounted for in simple theory have been sought and investigated in the context 

of using a model compound. Solvent conditions were chosen to evaluate aspects of 

polyelectrolyte theory. While charge determinations from different procedures have not been 

consolidated into a consistent theory, advancements in the scope and understanding of the 

AEA’s potential have been made.
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Appendix 1

ELECTROPHORETIC MOBILITY (p)

In a mobility experiment, the forces on the particles are balanced so that a 

constant-velocity boundary is observed. During electrophoresis there are four forces acting 

upon the macro-ions:

1) The electrophoretic force, F l=  Q E where Q is the residual charge and E is the electric 

field

2) The hydrodynamic frictional force, F2 = -fj-v with £ is the Stokes frictional coefficient (this 

is justified as long as neither the macro-ion’s size nor the solution viscosity are affected 

greatly by the field) and v is the particle’s velocity

3) The electrophoretic or charged solvent effect, F3. This drag arises from the attraction of 

the counterions to the opposite electrode

4) The relaxation or field asymmetry effect, F4. The distortion of the counterion cloud 

around the particle (in the opposite direction of the poarticles migration) creates a dipole that 

opposes the E field.

F2

F3

F4

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

The total force on the macro-ion is zero:

FI +F2 + F3 +F4 = 0 or -F2 = ftv = FI + F3+F4

F3 and F4 are directly proportional to the applied field. However, there is uncertainty 

surrounding their contributions. They are therefore combined with f, into a friction coefficient 

in the presence of an E field, fe. The p can than be describe as follows;

-fe -v = FI + F3 +F4 = Qapp* E 

therefore 

P =v/E = Q«pp/fc
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