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ABSTRACT:

ECOPHYSIOLOGY OF METAL-REDUCING AEROMONAS AND SHEWANELLA
STRAINS FROM GREAT BAY ESTUARY.

By

Victoria Knight
University of New Hampshire, September, 1996,

The seasonal abundance and distribution of mesophilic aeromonads at seven sites in
Great Bay Estuary, NH were monitored over a 24 month period. Total heterotrophic
bacteria, total and fecal coliforms, salinity, temperature, pH, total suspended solids, and
chlorophyll were also measured in the samples. Aeromonads were isolated at each site
throughout the year with the highest incidence and population density in the late summer to
early fall. Aeromonad abundance correlated positively with the incidence of coliforms,
temperature, and salinity.

Aeromonas hydrophila ATCC 7966 grew anaerobically by using NOjy’, fumarate,
Fe (III), Co (), or Se (VI) as terminal electron acceptors. Of thirty isolates from Great
Bay, 100% were capable of reducing NO;", Fe (), and Co (IIT), and 43% carried out
dissimilatory Se (VI) reduction. Final cell yields of A. hydrophila ATCC 7966 increased
in direct proportion to the amount of oxidant provided (over the range 1.25-10 mM). Cells
of A. hydrophila ATCC 7966 contained ¢ -type cytochromes (420, 522, 553 nm).
Hydrogen-reduced cytochromes were oxidized by Fe (IIT) or NO;". Extracts of cells
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grown anaerobically with Fe (IIT), reduced it at a rate of 116 nmol'min™"'mg protein-'.
Electron transport was inhibited by pm concentrations of : HOQNO (76 %), quinacrine
(88 %), dicumarol (58 % ) oxygen (96%), CCCP (83 %) and sodium azide (36%) and to a
lesser extent by rotenone (18%). The results were consistent with the involvement of FAD
dehydrogenase, quinones, cytochromes and an iron reductase in the respiratory chain.
Co-culturing Aeromonas veronii and a dissimilatory iron-reducer Shewanella alga
resulted in enhanced growth, citrate degradation and iron reduction as compared to the
extent observed with either strain grown axenically. By 48 hours, the co-culture consumed
twice as much citrate and produced half as much formate and twice as much acetate. The
synergistic link between these two organisms was apparently formate: produced by A.

veronii, it was, in turn, used as a substrate for iron reduction by S. alga.
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INTRODUCTION

Members of the genus Aeromonas are gram negative, oxidase positive,
facultatively-anaerobic rods belonging to the Vibrionaceace family. The role of Aeromonas
as opportunistic pathogens of both animals and humans has been well documented but,
little is known of their ecology and physiology. Prior to this study aeromonads had only
been reported in New Hampshire waters on one previous occasion (as part of a nationwide
study). This study was initiated to develop an understanding of the incidence, and
seasonal distribution of mesophilic aeromonads in Great Bay Estuary, and the factors that

regulate their survival.
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CHAPTER ONE

SEASONAL DISTRIBUTION OF MESOPHILIC AEROMONADS IN
GREAT BAY ESTUARY NEW HAMPSHIRE.

ABSTRACT:

The seasonal abundance and distribution of mesophilic acromonads was determined
for a seven site transect from freshwater seaward through Great Bay Estuary, New
Hampshire and in its tributaries. Samples were collected monthly for two years for several
biotic (mesophilic acromonads, total heterotrophic bacteria, total coliforms, and fecal
coliforms) and physicochemical parameters (pH, temperature, salinity, total suspended
solids, and chlorophyll) were measured monthly over a two year interval. Mesophilic
aeromonads were isolated from each site throughout the year, with an increase in
abundance from O to 60 CFU-ml"! with the highest density during the summer and early
fall. Heterotrophic bacteria ranged from 50 to 510° CFU-ml"! with the highest density
during the early fall. Total and fecal coliforms were isolated throughout the year at all sites
with the incidence ranging from O to and 63 CFU-mi!, respectively. The salinity ranged
from O % at the freshwater site to approximately 3 % at Hilton Park and Adam’s Point.

The remaining sites were intermediate to these values and fluctuated between 0.1 and 1.5 %
depending upon seasonal effects due to changes in precipitation and run off. The

temperature ranged from 0-22 °C. Total suspended solids varied from approximately 5 x
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10 t0 3 x 10"} ppm and chlorophyll a content ranged between 0.1 to 11 mi!. Multiple
regression analysis revealed significant correlation between the density of aeromonads an
both total and fecal coliforms (p = 0.0002, and p = 0.0075, respectively). Moreover,
populations of all these groups of heterotrophic organisms varied predictability with

temperature. Prior to this study, the incidence and seasonal distribution of aeromonads

had not been reported in New Hampshire waters.
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INTRODUCTION:

Klyver and Van Niel (1936) first proposed the genus Aeromonas to accommodate
gram-negative enteric-like polarly flagellated bacteria that are autochthonous to aquatic
habitats (13). Unlike enteric bacteria, however, these organisms are oxidase positive.
Aeromonads currently reside within the Vibrionaceae family. On the basis of DNA-DNA
hybridization studies, a new family, the Aeromonadaceae (15), has been proposed. The
genus contains 8 phenospecies included within two major groups: the mesophilic (and
motile) acromonads; such as A. hydrophila, A. caviae, and A. sobria, and the
psychrophilic, non-motile fish pathogens grouped as A. salmonicida (13). Results of
conventional biochemical tests are consistent with grouping these bacteria into 8
phenospecies (13). However, DNA-DNA hybridization revealed the presence of 14
hybridization groups (12, 49). Therefore, identification beyond the phenospecies level
requires the use of molecular tools. Characterization methods have included Restriction
Fragment Length Polymorphism analysis (RFLP, 45), Randomly Amplified DNA
polymorphism (RAPD, 58), comparison of PCR-amplified 16S rDNA sequences (16) and
DNA-DNA hybridization (49). A rapid multiwell DNA hybridization plate for
differentiation of acromonads to the species level has been developed (58). Huys (1996)
reported the use of Amplification Length Fragment Polymorphism analysis (AFLP) which
incorporates the use of a preliminary restriction digest of genomic DNA followed by a
highly stringent DNA amplification of the generated fragments using primers specific for
the restriction site (25). This method has allowed discrimination among members of each
of the 14 DNA hybridization groups (25).

Acromonads have long been recognized as opportunistic pathogens of a wide range
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of poikilothermic and homeothermic animals including humans (1, 13, 34, 47, 59). Recent
local extinctions of amphibians have brought A. hydrophila into the spotlight as the
causative agent of “red leg” in frogs: a septicemic infection which causes hemorrhagic
ulcerations and ultimately death (11). Between 1974-1982, 11 populations of Boreal toads
(Bufo boreas boreas) in the West Elk Mountains of Colorado disappeared with A.
hydrophila implicated as the causative agent (11). Although Aeromonas is part of the
indigenous microbiota of amphibians, environmental stress potentiates disease by this
opportunistic pathogen (11). A. hydrophila (Bacillus hydrophilus)was first isolated from
frogs in 1891 and upon reinoculation produced septicemia in both warm- and cold-blooded
animals (26). Aeromonads have also caused extensive losses in the fishing industry as the
etiological agent of “red sore disease”. In one documented case, 37, 000 fish were killed in
a 13 day period in one North Carolina lake (39). In addition, during the Fall of 1976, 95%
of the white perch (Roccus americanus) were killed and 50% of the total catch was
discarded due to unsightly red sores (22). The incidence of fish infected with red sores is
directly related to the density of acromonads in the water supply (21, 22, 24). Aeromonads
are also responsible for three types of infections in snakes and amphibians: an acute
septicemia characterized by lethargy, weakness and convulsions; pneumonia spread by the
snake mite (Optionysus natricis); and ulcerative stomatis or “mouth rot” in snakes which is
characterized by frothy exudate around the mouth and their inability to eat (31).
Additionally, aeromonads have also produced sepsis in dogs, pneumonia in dolphins,
abortion in cattle, blackrot in hen eggs, and diarrhea in piglets (31).

Aeromonads were originally thought to be pathogenic only for
immunocompromised humans (1, 31). The role of aeromonads as pathogens of
imunocomptent humans however, emerged in 1968 when Von Graeventiz and Menson
published a report of 27 Aeromonas-associated opportunistic infections (64). Aeromonads

produce a wide range of localized and systemic infections (1, 31) with 50-60 % presenting
6
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as an acute and self-limiting gastroenteritis (1). Infection usually follows ingestion of
contaminated water (8, 18, 28). There is a marked peak of Aeromonas-associated
gastroenteritis throughout the summer months (32). The second most prevalent form of
disease occurs as wound infections ranging from a mild cellulitis to fulminant myonecrosis,
normally occurring following a traumatic incident in contaminated water (29). A
microbiological study resulted when a diver wounded in the Anacostia River, VA became
infected (56). The concentrations of total bacteria and acromonads on the skin of divers
were found to increase to be comparable to concentrations in the water after divers had been
swimming for 30 minutes in the Anacostia River (14). Wounds caused by fin cuts, or
puncture wounds due to fish bones or fish hooks commonly lead to Aeromonas infections,
particually in immunocompromised anglers (29, 60). The incidence of infections increases
with abundance of acromonads in the water (14, 29). Post-operative infections have also
been reported and their incidence can be correlated with the use of medicinal leeches which
harbor aeromonads within their intestines (1).

Aeromonads produce several known virulence factors: an extracellular enterotoxin,
a cytotoxic endotoxin and a beta hemolytic hemolysin, often referred to as aerolysin (1,
31). Aeromonads also produce an alpha hemolytic hemolysin which is thought to play a
lesser role in pathogenicity. Aeromonads produce two siderophores (amonobactin and an
enterobactin-like molecule). These are used in vivo to sequester ferric iron (38, 64).
Growth of acromonads in heat-inactivated serum requires the presence of amonobactin
(27). Siderophore production (and ability to sequester iron) is directly related to virulence;
perhaps due to an increased ability to resist the lytic activity host complement (38, 64).
Pathogenicity by this opportunist is caused by the extracellular enterotoxin. Its production
can be correlated with aerolysin production and with a positive Voges-Proskauer test (1,
12, 31). Aeromonas sobria and A. hydrophila account for the majority of human infections

and both actively produce aerolysin (7, 30, 32). Itis interesting to note that A. caviae

7
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accounts for very few known Aeromonas-associated human infections and 95 % of A.
caviae isolates screened also do not produce aerolysin (42, 44). Environmental isolates
screened for hemolysin production and pathogenic potential exhibit patterns similar to
those of clinical isolates (7, 10, 30, 33). Therefore, environmental isolates do present a
public health concemn for humans (7, 30, 33) in the context of recreation, in aquaculture, or
as contaminants of drinking water.

Aeromonads are ubiquitous in water and have been isolated from all but the most
extreme environments ranging from bottled drinking water (62), pristine alpine lakes
(Grand Tetons, WY ; 24) Louisiana bayous (24), the aphotic zZone of the Atlantic ocean (24)
and sewage sludge (48) . In a study encompassing the entire United States and part of
Puerto Rico, aecromonads were isolated from 92 % of 147 water sources sampled (24).
Aeromonads are ubiquitous in freshwater and can also be isolated from brackish and
marine environments (24). Unlike one species of the closely related genus, Vibrio they
do not have a sodium requirement and grow equally well in medium with, and without the
addition of seawater. In fact, acromonads can become the most prevalent organism in
marine, or estuarine habitats having high concentration of organics due to input of
anthropogenic waste (7, 22). Use of genetically marked A. hydrophila in microcosms
revealed that this organism survived best in fresh water but also in salt water, after an initial
die off during the first nine days. The Aeromonas population in salt water recovered by day
twelve and slowly dropped off again by day 28 (35). Aeromonads can be isolated
throughout the year with a sharp increase in incidence during the summer to early fall (17,
20, 23, 24). Aeromonas incidence can be positively correlated to temperature (17, 23).
Aeromonads are sensitive to low temperatures, in fact at 4 °C they do not conserve enough
energy to divide and it is thought that they enter a viable but non culturable state (53). The
relationship between Aeromonas and several physical and chemical water quality

parameters has varied over a broad range of environmental locations examined (51). The

8
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incidence of aeromonads has been correlated to temperature (17, 21, 23), chlorophyll a
(20, 52, 54), total nitrogen (20, 52, 54), total phosphorous (52, 54), fecal coliforms (4,
10, 20), or heterotrophs (21). Rippey and Cabelli proposed the use of aecromonads as
indicators of water trophic status (52, 54). Their incidence has been correlated with
indicators of productivity: chlorophyll a; phosphorous; and Secchi depth (48, 52, 54).
They are also sensitive to subtle changes in water quality (53). The doubling time of
aeromonads decreased by 4 hours in oligotrophic waters amended with enough eutrophic
water to increase the phosphorous concentration by as little as 2 ug -I'! (53). Addition of
glucose (S mg C'I'!) and phosphorous (10 g ') increased their growth rate in
oligotrophic waters by 70 % (55). Aeromonads also respond to the input of anthropogenic
(specifically sewage) waste and can rapidly become the predominant organisms (7, 22).
Growth of indigenous aeromonads increased at two sites of industrial waste (pulp mill and
rum refinery) due to the discharge of a nutrients which increased the concentrations of
nitrogen, phosphorous and total organic carbon (7, 22). The effluents from both sites
rapidly became anoxic due to high productivity which was lethal for the indigenous
aquaculture species (7, 22). Although aeromonads are indigenous to aquatic habitats, at
polluted sites they can rapidly become the dominant species (7).

Aeromonads often occur as false positives in the currently employed rapid
identification systems for coliforms such as Colilert™ and Colisure™. In fact, the closing
of 12 New Hampshire beaches during the summer of 1995 could have resulted from
populations of indigenous aeromonads which may have contributed to false positive
coliform tests based upon the fluorogenic substrate 4-methylumbelliferyl-g-D-glucuronide
which like E. coli acromonads can cleave (41). Recent research suggests that a selective
medium incorporating the antimicrobial cefsulodin (2) might provide better discrimination
between coliforms and acromonads. Aeromonas and Flavobacterium were both inhibited
by this antibiotic (2). Aeromonads as false positives in coliform identification analysis are

9
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problematic. Although the incidence of Aeromonas increases with higher levels of
pollution, they are normally not of human fecal origin but are indigenous to most waters
(6). Their relative abundance is higher with an increase in the concentration of total organic
matter (6). In eutrophic waters coliform incidence correlates directly with numbers of
aeromonads (4, 51) whereas in hypereutrophic or oligotrophic waters Aeromonas persists
longer than do coliforms (4, 5, 9, 62). In addition, the two most common pathogenic
Aeromonas species, A. hydrophila, and A. sobria, persist longer in oligotrophic waters
(5). Thus, coliforms are not consistently useful indicators of the incidence of this
opportunistic pathogen: this underscores the point made by others, that coliforms alone
may not be a useful predictor of the true microbiological quality of the water (5, 51, 62).
Great Bay Estuary is located on the border of New Hampshire and Maine. Great
Bay Estuary is one of the largest estuaries on the eastern coast of the United States and is
comprised of the Piscataqua River, Great Bay and Little Bay (28). The Estuary is a tidally
dominated system and is the confluence of seven major rivers (28). While the Estuary is
not normally heavily polluted (although, ironically, at the time of this writing a major oil
spill of > 1000 gallons from a tanker adrift in the Piscataqua River has seriously polluted
the sediments of the lower river as far upstream as Adam’s Point), shellfish closures,
eelgrass die off, and increasing development all suggest that this ecosystem is showing
signs of stress. The incidence and seasonal distribution of this opportunistic pathogen have
not been previously studied. A study was undertaken to determine the incidence and
seasonal distribution of acromonads in Great Bay Estuary and its tributaries. In an effort to
understand factors controlling Aeromonas populations, water quality parameters were also
measured in an effort to determine any possible correlations between the incidence of

acromonads and several biotic and physical water quality characteristics.
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MATERIALS AND METHODS:

Sample collection: Water samples were collected monthly from August 1994 - June
1996 from seven sites in Great Bay Estuary and its tributaries (Fig. 1). Samples were
collected at 0.5 to 1 m at low tide in sterile sample bottles and transported back to lab on

ice, where they were processed within 2 hours.

Medium and growth: Mesophilic aeromonads, total heterotrophic bacteria, and both
total and fecal coliforms were enumerated by using membrane filtration (3). Water samples
were filtered through 0.45 ym grided GN-6 filters (Gelman, AnnArbor MI), and placed on
appropriate culture media. Mesophilic aeromonads were enumerated on Rimler-Shotts
Aeromonas medium (57) which consisted of the following (g'I'!) constituents: Sodium
thiosulfate, 6.8; sodium deoxycholate, 1.0; ferric ammonium citrate, 0.8; yeast extract
(Difco, Detroit, MI), 3.0; NaCl, 5.0; L-lysine-HCI, 5.0; L-ornithine-HCl, 6.5; maltose,
3.5; cysteine, 0.3; thymol blue (0.4%), 3 ml. The medium was adjusted to pH 7 with
NaOH. After autoclaving, novabiocin (50 mg)was added from sterile stocks. Total
heterotrophic bacteria were enumerated on salt water complete (SWC) medium (19) which
consisted of the following (g'"!) constituents:peptone, 5.0; yeast extract, 1.0; glycerol, 3.0
ml; 75% modified artificial sea water, 1000 ml. Artificial sea water (37) was modified to
contain the following (g'l'l) constituents: NaCl, 23.48; MgC12-6H20, 10.65; Na,SO,,
3.92; CaCl, 2H,0, 1.46; KCl, 0.66; NaHCO;, 0.19 without pH adjustment. Samples
collected from freshwater sites were placed on SWC lacking artificial seawater. Total and

fecal coliforms were enumerated on m-ENDO agar (Difco, Detroit MI) at 37 °C and 44.5
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°C, respectively. All incubations were at 37 °C for 24 hours unless otherwise noted.
Incubation at 37 °C allowed further selection for acromonads by decreasing background of

hetertrophs. Incidence of aeromonads were unaffected.

Physical parameters: At each site, the following physical parameters were measured:
temperature, salinity, pH, total suspended solids (TSS), and chlorophyll a. concentration.
Temperature was measured by using a mercury thermometer (range - 35-50 °C). Salinity
was determined by using a refractometer (Atago, Japan). The pH was measured by using

an Orion model pH meter (Orion Scientific, Cambridge MA).

Total suspended solids: Water samples were filtered in duplicate through pre-dried,
pre-weighed P/N glass fiber filters (Gelman, Ann Arbor MI). The filters were dried at

60°C to a constant weight and were then reweighed (3).

Chlorophyll a: Water samples were filtered in duplicate through P/N glass fiber filters
(Gelman, AnnArbor MI). Chlorophyll was extracted with 5 ml acetone (90%) overnight at
4°C in the dark. Samples were centrifuged at 5, 000 x g for 5 min to remove debris and the
chlorophyll a concentration was measured by using the trichromatic method (3). The
concentration of chlorophyll a was calculated as follows chlorophyll a = 11.85 Egeq - 1.54

Eg47 - 0.08 E¢;, and mg-chlorophyll I'l = (chl .a x vol )/(vol.water filtered x 10).
Identification of isolates: Presumptive aeromonads were cloned three times on
Rimler-Shotts Aeromonas medium and were maintained on SWC. Standard biochemical

tests (See Table 1) were used to confirm aeromonad identification (12, 50)

Statisistical analysis: Enumeration data were analyzed by using the StatView statistics
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program (Abacus Concepts Co., Berkeley CA). Data were subjected to a spearman rank
correlation analysis. This type of analysis is used for non-normally distributed data. A p
of <0.05 was considered significant. Each parameter was analyzed individually with
incidence of aeromonads. In order to compare total multiple parameters a stepwise multiple
regression analysis was used. This analysis scanned data for parameters to add or remove.

P <0.05 resulted in addition of parameter and p > 0.1 resulted in removal of parameter.
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RESULTS:

Hilton Park: Heterotrophs ranged from approximately 40 CFU-mi™! in the winter

months to approximately 3-10° CFU-ml"! during the early fall (Fig. 2 A and 3 A).
Aeromonas densities ranged from 0-64 CFU-ml"! with the greatest abundance detected
during the early fall of each year (Fig. 2 A-3 A). Total and fecal coliforms ranged from 0

to 6 and 3 respectively, with the highest abundance in the early fall (Fig. 2 A-3 A). The
salinity at this site ranged from 11 -34 ppt being lowest in the winter months due to
increased precipitation (Fig. 2 B and 3 B) and runoff. The concentration of total suspended
solids ranged from 9.3 x 103 t0 2.9 x 10-! ppm. Chlorophyll a concentrations ranged from

0.36-3.17 mgl'! with the highest concentration in September, 1995.

Bunker Creek: Heterotrophs ranged from approximately 60 CFU-mi"! in the winter
months to approximately 210> CFU-ml"! during the early fall (Fig. 4 A and 5 A).
Aeromonas densities ranged from 0-85 CFU-mi"! with the greatest abundance detected
during the early fall of each year (Fig. 4 A and 5 A). Total and fecal coliforms ranged from
0to 2 and 5 CFU-m!"! respectively, with the highest abundance during the early fall (Fig. 4
A and 5 A). The salinity ranged from 3- 33.5 ppt with the low in the winter months due to
increased precipitation (Fig. 4 B and S B). The concentration of total suspended solids
ranged from 8.88 x 10~ t0 6.64 x 102 ppm. The chlorophyll a ranged from 0.21-5.52

mg I'! with the highest concentration in September, 1995.

Jackson’s Landing: Heterotrophs ranged from approximately 70 CFU-ml"! in the
winter months to approximately 5103 CFU-mi-! during the summer and early fall (Fig.4 A
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and 5 A). A speciously high concentration of heterotrophs occurred in November, 1994
(510 CFU'ml'!). Aeromonas densities ranged from 0 - 69 CFU-ml"! with the greatest
abundance detected during the early fall of each year (Fig. 4 A and 5 A). Total and fecal
coliforms ranged from O to 4 and 2 CFU-ml™! respectively, with the highest abundance
during the early fall (Fig. 4 A and 5 A). The salinity at this site ranged from dramatically
from 8-31.5 ppt depending upon the season (Fig. 2 B and 3 B) with the low in the winter
months due to increased precipitation and run off. The concentration of total suspended
solids ranged from 9 x 10-3 to 4 x 102 ppm. The chlorophyll a ranged from 0.5 - 11 mg 1!
with the highest concentration in September, 1995.

Mill Pond Dam: Heterotrophs ranged from approximately 45 CFU-ml™! in the winter
months to approximately 210> CFU-ml"! during the early fall (Fig. 8 A and 9 A).
Aeromonas densities ranged from O - 41 CFU-ml-! with the greatest abundance during the
early fall of each year (Fig. 8 A and 9 A). Total and fecal coliforms ranged from 0 to 4,
and 2 respectively, with the highest abundance in the early fall ( Fig. 8 A and 9 A). The
salinity at this site ranged from O 1 ppt with the low in the winter months due to increased
precipitation (Fig. 8 B and 9 B). The concentration of total suspended solids ranged from
1.2x 103 - 2.9x 102 ppm (Fig. 8 B and 9 B). The concentration of chlorophyll a ranged
from 0.1 - 1.7 mg'I'! with the highest concentration in the fall of 1995.

Durham Mill Pond: Heterotrophs ranged from approximately 60 CFU-ml"! in the
winter months to approximately 3.3-10> CFU-ml"! during the early fall (Fig. 10 A and 11
A). Aeromonas densities ranged from O - 18 CFUmi"! with the greatest abundance
detected during the early fall of each year (Fig. 10 A and 11 A). Total and fecal coliforms
ranged from O to 7 and 3 CFU-ml"!, respectively, with the highest abundance during the
early fall (Fig. 10 A and 11 A). The salinity at this site was always O ppt (Fig. 10 B and 11
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B). The concentration of total suspended solids ranged from 9.2 x 103 to 8.42 x 102
ppm- The chlorophyll a ranged from 0.45-3.14 mgI'! with the highest concentration in
September, 1995 (Fig. 10 B and 11 B).

Adam’s Point: Heterotrophs ranged from approximately 50 CFU-ml™! in the winter
months to approximately 2- 103 CFU-mi"! during the early fall (Fig. 12 A and 13
A).Aeromonas densities ranged from 0 - 5 CFU-ml"! with the greatest abundance detected
during the early fall of each year (Fig. 12 A and 13 A). Total and fecal coliforms ranged
from 0 to 2 and 3 CFU-ml"!, respectively, with the highest abundance during the early fall
(Fig. 12 A and 13 A). The salinity at this site ranged from 5 - 33 ppt with the low in the
spring due to increased precipitation and run off (Fig. 12 B and 13 B). The concentration
of total suspended solids ranged from 12.5x 102 t03 x 10~! ppm- The chiorophyll a
ranged from 0.46-5.83 mg I-! with the highest concentration in September, 1995.

Lamprey River: Heterotrophs ranged from approximately 2 102 CFU-ml"! in the winter
months to approximately 1.9 10> CFU-ml"! during the early fall (Fig. 14 A and 15 A).
Aeromonas densities ranged from 0.1-63 CFU-ml"! with the greatest abundance detected
during the early fall of each year (Fig. 14 A and 15 A). Total coliforms ranged from 0.1 to
95 CFU'ml"! and fecal coliforms ranged from 1.2-63 CFU-mi™! with the highest abundance
of each detected during the early fall of each year (Fig. 14 A and 15 A). The salinity ranged
from 0-14 ppt depending upon the season (Fig. 14 B and 15 B). The concentration of total
suspended solids ranged from 5 x 103 to 1.1 x 10°! ppm. The chlorophyll a concentration
ranged from 0.34 - 4.13 mg'I'! with the highest concentration in September, 1995 (Fig. 14
B and 15 B).

Statistical analysis: Spearman rank correlation test (Table 2) demonstrated correlation
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( p=<0.0001) of acromonad density with: pH, density of heterotrophs, total coliforms
and fecal coliforms. Correlations were detected with salinity (p = 0.0389), temperature (p
=0.0019), or total suspended solid (p = 0.0014) and no correlation with the concentration
of chlorophyll a ( p = 0.5763), or rainfall (p = 0.1305). Multiple regression analysis
revealed a correlation between acromonad density and the incidence of both total (p=

0.0002) and fecal (p = 0.0075) coliforms (Table 3).
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