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Abstract. Global soil carbon (C) stoclkseexpectedo decline with warmingand changes in
microbial processes akey to this projectionHowever, warmingesponses dfritical

microbial parametersuch as carbon usdficiency (CUE) and biomass turnoverg) are not
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well understood. Heraye determine these parameters using a probabilistic inversion
approach that integrates a microkealzyme model with 22 years of carbon cycling
measurements at Harvard For&¥e find that increasing temperatureducesCUE but
increasesB, and thatwo decads of soil warmingincreaseshe temperature sensitivities of
CUE andrBrThesetemperature sensitivitieg/hichare derivedrom decads-longfield
observations, cantrast with values obtained from sieont-laboratory experimenté/e also
show thatong-termsoil C flux and pool changes in response to warming are more dependent
on the temperature sensitivity GUE than that of B. Using the inversion-derivggarameters
we project that.chronic soil warming at Harvard Fooe®tr six decadesill result in soil C
gainof <1.0% on averagél® and ¥ quatiles: 3.0% lossand 10.96 gain)in the surface
mineral harizonO©ur results demonstrate that estimates of temperature sensitivity of
microbial CUE andrB can be obtainednd evaluatedgorously by integrating multitecadal
datasets. This approach qaostentiallybe applied in broader sjpatemporal scales to

improve longterm projections of soil C feedbacks to climate warming.

INTRODUCTION

Integration of microbial processes into carlf@)cycle modelcan potentially
improve simulations ofoil C dynamics under climate warmifiieder et al. 2013, Luo et
al. 2016)=Wcertainty inlong-term soil C responses to climate changé likely be reduced
with more realistic and accurate parameterizatmfrisesy microbial processebatregulate
soil C stocks andespiratory C lossed odd-Brown et al. 2012, Wieder et al. 2015, Luo et al.
2016). Thesekey parameters include catmmefficiencyhereaftelCUE), defined as the
fraction of C.uptake allocated to growth (Allison et al. 2010, Geyer et al. 2016), and
microbial biomass turnover rafpereafterB), i.e. the fraction of microbial biomass that
leaves the microbial pogler unit of time (Hagerty et al. 2014)hesetwo parameters are
critical for modelingsoil C change with warminfHagerty et al. 2014, Li et al. 2014)tbu
remainpoorly quantified (Manzoni et al. 2017, Sinsabaugh et al. 2017, Xu et al. 20%7).
also unclear whether heterotrophic microbes maglstimateto long-term warming through
reductions. in the temperature sensitivitie€ofE andrB (Allison et al. 2010Frey et al.
2013,Wieder efal. 2013).

Risingsoil temperatures are generally expected to re@uie, as warming limits
microbial growth by increasing the energy cost of maintaining existing bioMasz¢ni et

al. 2012, Sinsabaugh et al. 2013hs8rvedCUE of soil microbial communitieshowever,
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has showrvariable responsdo rising temperature includingcreases, decreases no

response (Steinweg et al. 2008, Frey et al. 2013, Sinsabaugh et al. 2013, Li et al. 2018), due

to fundamentally different pathwap$ C allocation in assimilation, enzyme production, and

respiration for biomass maintenance and enzyme production (Hagerty et al.l2@tigljtion

warming-ean‘enhana® if the cell-specificmicrobial death rateutpaces cell production

(Joergensen et al. 1990)e&dmicrobial cellscanbe metabolized by living microbes,

incorporated intahe'soil organic carbon (SOC) pool, or protected from decomposition by

physicochemicabcclusion in soil particlegSix et al. 2002, Lehmann and Kleber 2015).
QuantifyingCUE, rB, and their temperature responses remains a major challenge.

There are 'no _techniques available to measure these quantdies so prior studies have

relied mainly onlaboratory incubations with isotopic tracers. For exaiplgerty et al.

(2014) showdincreasedrB but constan€UE with warmingin a weeklong soil incubation

Still, it remains unclear how these key microbial varialdspond to warming ovelecadal

time scales thatare moreelevant taclimate changéFrey et al. 2013, Geyer et al. 2016).

Traditionally, a sole valuef a model parameter can be determimiedeast squares fitting

between medel.output and observation (Luo et al. 2Frbpabilisticinversion techniques

use data ta.nform model parameters and produce most probable values and uasetaint

parametes (Clark 2005, Luo et al. 201Brobabilistic nversion thus offers an alternative to

the deterministic modeling approach and direct empirical measurement of kepialic

parametersparticularly for those not well quantified due to technical difficuVith an

inversion approach, observationkta are used to constrain the model. Parameter values are

discounted if they result in model outputs inconsistent with the data (Clark 2005, Xu et al.

2006, Luo et al. 2011). Previously, such approaches have been applied successfully in many

contexts, includingerrestrial carbon cyclin{Niu et al. 2014, Hararuk et al. 2015).

Herewe used grobabilisticinversion approacfi.e., the Bayesiaimference to
estimategheapparentemperature sensitivs (hereaftereferred toastemperature
sensitivitesyof*CUE andrB under field conditions. Wassembld 14datasets that were
collected freamsoil warming experimentstthe Harvard Forest Longgrm Ecological
Research(ETER) site in PetershavtA, USA, where soil temperature has been continuously
elevated t0 =5°C above ambient for 10 to 26 years (Melillo et al. 20f7used Bayesian
probabilistic inversion toebtainthe temperature sensitivity coefficiemisCUE andrB by
assimilatng datainto the MicrobiatENzyme Decomposition (MEND) modeMIEND was

chosen because it has been validated previously, egwr@sents relevant microbial
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processes and mineral interactions without excessive comp{éxayg et al. 2013,i et al.
2014).To analyzethe effects otemperaturesensitiveCUE andrB on longtermsoil C
dynamics, posterigparametevalues and forcingataobtainedirom the control ancheated
plotswereimplemenédin long-term projections of soil carb@md respiratoryesponses

over six decades.

MATERIALSAND METHODS
Data compilation from Harvard Forest

We asemblad multiple observational datasets collected fregmeral experimental
soil warming studies at the Harvard Forest Légign Ecological Research (LTER) site in
Petershamy MA)USA42°50" N, 72°18 W). Thelist of data sourceis presented in Table 1.
The climate at Harvard Forest is cool, temperate antidy withmean annual precipitation
and mean annual air temperatafd 080 mmand 7.0 °C, respectivel$als areof the
Gloucester series (fine loamy, mixed, mesic, Typic Dystrochraptsplominant tree species
arered oak.Quercusrubra) and red mapleAcer rubrum) (Peterjohn et al. 1993).
Data span the.period of 1989-2010 and were obtdinedpublished articles ahe Harvard
Forest online'data archivbt({p://harvardforest.fas.harvard.edu/harvmestdataarchive.

Data were collected from three soil warming experiments initiated at three different times
(1991, 2001,.and 2006). Site and experimental design information is described in Peterjohn
et al. (1993)Melillo et al. (2002), and Contosta et al. (2011).

Briefly, soils in heated plotwerecontinuously warmeé °C above control plots
usingburied heating cables placed 10 cm below the soil surface and spaced 20 cm apart.
Climate conditionssoil temperature and soil moistueremonitored continuously. Soll
respirationwas measureshonthlybetween ApriendOctober Datasets o$oil temperature
(Melillo etal. 1999, Arguez et al. 2010, Brzostek and Finzi 201a@) efflux (Melillo et al.
1999, sail'lC(Nadelhoffer et al. 1990@rey 2009, DOC (Compton etl. 2004 Bradford et al.
2008),MBC+«(Campton et al. 2004, Wallenstein et al. 2006, Frey et al. 28g8acellular
enzyme activityEEA) (Brzostek and Finzi 2011a), ahierfall (Frey and Ollinger 1999),
were alsaised for this modeling study.

Severakhassumptions were made to meet the requirefoeMEND model input and
the inversion analysis.itter input C used for the modetas assumed to #8% of measured
litter biomasgqSchlesinger and Bernhardt 201&8ydlitter enteredhe SOC and DO@ool at
aconstant rat@.e. 98% agarticular organic carboPQOQ and 2% as DOCEOC
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concentrations were selected to repref@top 10em mineral soildepth (i.e. A horizon
Using anaveragevalue forspecific enzyme activitfi.e. pmol min*mgC™) and a
temperatur@ormalizationbased on aneasuredo value Q10=2) (Allison et al. 2018,
extracellular enzyme dail each collectionvere convertetb potential activity(i.e. pmol ¢
soil hr') of labile substratacquiring enzyme€.e. the sum op-D-cellobiosidaseacid
phosph#ase protease and B-1,4-N-Acetyl-glucosaminidase) and oxida@ge. the sum of
peroxidase and phenol oxidase) that contribute to fast- andcgidimg soil organic matter
turnover respectively The sum of these potential activities is equivalent to the sum of
enzyme activities for POC and mineessociate organic carbon (MOCXoil heterotrophic
respiration.was.assumed to repre€fb of measuredoil CO, efflux (Bowden et al. 1993
Sanderman 1998/elillo et al. 2002).Daily soil temperature measurements -&id depth
(i.e. approximately at the middle of 10-cm soil depth) were available during 1991-2010
(Melillo et al. 1999).

We calculated hourly soil temperatsfgmsed on daily averages and NEEP
Climate Forecast System Reanalysis (CF8REh provides houly gridded soil temperature
data ab-cmsseildepth(http://rda.ucar.edu/datasets/ds093.1/indexhtddaled hourly

variation of,sail temperature at Harvard Forest from the CFSRagstadded to the daily

average station observation. A scaling factomputed as the ratio of standard deviation of

daily station observation to standard deviation of daigrage CFSR data, was applied to the

hourly variation of CFSR data@hedaily station observatiowas derived from hourly
observations in 2009 and 2010 (Brzostek and Finzi 20Tha)use of scaling factor i®
account for the depth differenbelowthe soilsurface in the CFSR and station ddtae

available datasetrepresented in FigS1

Microbial-ENzyme Decomposition (M END) model

MEND.isamicrobial ecosystem mod#iatincorporatesmultiple soil and enzyme
pools (Wangetal. 2013) and shomasonhblefit to soil Cobservationsn response to
perturbation(i=et al. 2014) The model structuris presented ifig. S2, and théull list of
governing.equations can be found in Li et al. (2014MEND, the decomposition of
particulate organic matter (POC) and minexrssociated organic matter (MOC), and the
uptake of dissolved organic matter (DOC) are describatdiylichaelisMenten kinetics
with a halfsaturation constanKj and maximum reaction rat¥)( The kinetics parameters

are temperature sensitive and represgibly the Arrhenius equation (Wang et al. 2012). In
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addition, the adsorption and desorption rates of DOC are also temperature dependent
(Cornelissen et al. 1997, Wang et al. 2013). Following SOC decomposition and DOC uptake,
C is lost through growtand maintenancespiration dependent @UE. Note that th&CUE
parameter in MEND refers to the assimilation efficie(fiyt 1965 Wang and Post 2012).
Consistent with-previous studighe model assumes that carbon use efficieGtH, Ec)

varies with temperature based on a limetationship(Fieschko and Humphrey 1984

DeVévre and Horwath 2000, Steinweg et al. 2008, Frey et al. 2013, Tucker et al. 2013):

Ec(T) = EC,ref +m X (T — Tref) (1)

whereE (T)wkicirer, andm denote th€CUE at simulation temperatufg the reference
temperatureTt.. ), and theslope parametdfC %), respectively.

In the.model, microbial turnover rateB] alsodepends on temperatuiiéhe
temperature sensitivity dfie microbial turnoverate ) is defined based on the following
equation Saggar et al. 1999, Malik et al. 20t&gerty et al. 2014

TB(T) = 1Byes +n X (T — Tref) (2)
whererB(T), rBrer, andn denote theB at simulation temperatuig(i.e., 5 °C), the

reference temperaturg( °C), and thelope parametdmg C mg* C h* °C™), respectively.

Data-model‘integration via a probabilistic inversion analysis

We used a Bayesian probabilistic inversion technique to conftraikey model
parameterg@ndseveninitial pool sizes under the control and heated conditi@spectively
These parametensclude theCUE at the reference temperatui® (. (), the temperature
sensitivity of CUE (m), the temperature sensitivity of th@crobial turnover raten, the
fraction of/ddecomposed POC entering D@)( and the fraction of dead microbes becoming
DOC (@D), as well as seveinitial pool sizeqiPOC, iMOC, iQOC, iMBC, iDOC, iEP and
iIEM; Table2). Default values oftese and other model parametmes presented in Tab&l

Constructing the likelihood function -- According to the Bayes’ theoref@lark 2005),
the posterior prebability density function (POXp|Z) of model parametepscan be
estimated.from the prior knowledge of paramegpefise., a prioPDF,P(p)) and the

information contained in existing observations (i.e., a likelihood fun&{dip)):

P(p|Z) < P(Z|p)P(p) (4)

Assuming that errors between observed and modeled values follow Gaussian
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distributions, the likelihood functioR(Z|p) can be expressed by:

SO Zi() - X (O]
P(ZIp) wexp]— > )

20;%(t
i=1 tez; i* ()

whereZ(t) issmeasured valu(t) is model simulation, andis the standard deviation for
each measurement= 1, 2, ... 6, represents the available observations of hourbye@l0x,
daily C@; efflux;"SOC, DOC, MBC and ENC (i.e. the sum of EP and EM). We adopt the
Gaussian assumptionrfmathematical convenience in the absence of more precise
information about the dataodel error structur@~eyen et al. 20Q3_uo et al. 2003, Luo and
Zhou 2010).

Prior_knowledge -- The prior PDRP(p) is specified by giving a set of limiting
intervals forparametepswith uniform distributionWe set the prior range aito (-0.017,
0.017) and+the-prior range oto (-4e-5, 4e-5) to reflect the range of values observed in the
literature(Table 2) Despite negative values revealagrevious experiments (Fig. S3), the
positive value®f mwereincluded according t8insabaugh et al. (201 7h which te
microbial CUE increased weakly with mean annual temperafline. prior ranges of the five
parameters and seven initial pool sinese determinedbased on published valuasd
presentedn Table 2

Posterior. probability density function -- The posterior PDFs were then generated from
prior PDFsP(p) with observationg by a Markov chain Monte Carlo (MCMC) sampling
technique, using the Metropolitastings (MH) algorithmas the MCMC samplgiXu etal.
2006) Spegcifically, the MH algorithm was run by repeating two steps: a proposing step and
a moving step=In each proposing step, the algorithm generated a new'ptiot a

parameter vectqy based on the previously accepted ppfftwith a proposed distribution
P(p"*"1p*):

pnew = pOld + 0 (Pmax — Pmin) (6)

wherepmax andpmin are the maximum and minimum values within phier range of the
given parametere is a random variable betweel5 and 0.5 with a uniform distribution. In

each moving step, poipt®” was tested to determine whether it should be accepted or not.

Whether a new poirg™ was accepted or not depends on the comparisEn:of;P((ZZ:”ZZ))

with a uniform random numbéf from 0 to 1. Only ifR> U is the new point accepted;
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otherwisep™"=p°,

Parameter selection and long-term projection

Five parallel runs of the RIMC algorithmstarted at dispersed initial points were
conductedwithreach run iterated fdr00,000 timesThe acceptance rates for the newly
generated'samples wer&0% under control conditions and ~#&under heated conditions
for each runandall five runspassed the stability tegtior to data analysislableS2). The
initial samples (abol000 and 11000 in theo calledburrin period) werediscarded after
the running.means and standard deviations stabilizesunion of the samples of the five
runs (about.25,000 and B0 samples in total) after their beimperiodswasused to derive
and compare/the posterimeansand standard deviations of ttezgetparameter$or control
and heated conditions. The model performanmitie inversion (i.e., calibration of parameters
based on observations) and without inversion (i.e., relying on detalineterizationyas
compared based on model simulations given the default@stdripr mean parameter values
(R? presentel] Themears of posterior parametersn(n) were compared based thre
studentt test.and th@-values were reported

To examineeffects of differentCUE andrB parameterization on soil C stocks and
CO; emissionsas well agzheassociatedincertaintiesthe model was first run to reach
equilibrium under constant forcing data (i.e. soil temperature and litterfall iapetaged
over 22'years under control conditions). Then, ltarga model projections were conducted
by running.the model forwarolased or8,000 pairs om andn sampled from the inversion
derived posterior distribution under both control and heated conditions. We simolated f
different scenarios to analyze the consequences of variatmaman. The four scenarios
included no_temperature sensitivitiesSGE or rB (m=0; n=0; Scenario I), no temperature
sensitivity ©f CUE but sampled posterid@emperature sensitivity o8B (m=0; varying n;
Scenario ll),.no.temperature sensitivity oB but sampled posteriodemperature sensitivity of
CUE (n= Ojvarying m; Scenario I11), and sampled posteritmperature sensitivities GUE
andrB (vanyingm andn; Scenario IV). In each scenario, modafojections were conducted
for 66 yearswvhich represents three repetitionstbé original 22year forcing datalhe end
simulation SOE pool sizes and cumulative issions wre obtained.

To furtherexamine climate change effects swil C stocks and C{emissionsthe

model projections were also conducted under three different forcing condition¥Ci.e. 0

increase in soil temperature (WO0), 5°C increase in soil temperature (W5), and 5°C increase in
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soil temperature in addition to 9.6% increase in litterfall input, a value derweuitifre
litterfall input averaged over 22 years under heated conditions (W3%igemdsimulation
SOC pool sizes and cumulative €@missios was calculatedinderwWo0, W5 or W5L for

each scenarid€1V). For eachprojection therelativechangesn SOCstock and CQ
emissionwithrelimate warming %°C) were calculatethy comparisons between W5 and WO.
Based on the,800 independent simulationbgtmean of relative changes were compared
between treatments with control plot parameters and heated plot pardrmaststorihe
studentt test A bar graph and a boxplot weasoproducedo displaythe mean standard

deviation, median,*land 3 quatiles o these longtermprojections.

RESULTS
M odel performance

The accuracy of model simulations was significantly enhanced when parameters were
estimated via our probabilistic inversion approach. For heterotrophic soil respitag
coefficients of determinatiorR() increased from 0.26 without the inversion to OB
inversion insthe.control soil, and from 0.14 without inversion to &if® inversion in the
heated soi{Fig..1) The simulations ofespirationMBC, DOC, and SOC aldoetter matched
the observationgsing thisinversionapproach (FigS4). The posterior probability
distributionsof-all target parameters the inversion differethetween the control and heated
conditions (FigsS5 S6).

Temperature sensitivity of microbial CUE and rB
Themean values demperature sensitivitgf CUE (i.e.the slopam) were-0.0101

°C™* under control conditionand -0.0117 °€ under heated conditions, which differed
significantly from each othgP<0.001; Fig. 2)The standard deviationf mwas0.0052in
both casesTheabsolute value of sloppwas15.1% greateunder heated conditions than
that undercontral conditionsGiven the mean value of and observed soil temperatures, the
averageCUEwas estimated at4R with a range of 0.25-0.67 in the control conditions, and
the average'wd3.39 with a range of 0.19-0.66 in the heated conditions $7)g.

Themean values demperature sensitivity @B (i.e. the slopa) werel.58e-5 i
°C* (i.e., 3.80e-4 & °C™) under control conditions and 1.66e-54C"* (i.e., 3.99e4 d* °C?)
under heated conditions, which differed significantly from each other (Figh&slopen

wasb.0% greateunder heated conditionBanundercontrol conditions
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Temperature sensitivities of microbial CUE and rB on long-term projections

Thesimulated trajectory of SOC stocks and £fnissions with warmingias
influenced by the temperatusensitivitiesof CUE andrB (Fig. 3 and Fig. S8). Assuming
controlplotderived parameterap temperature sensitivity of eithEUE orrB, anda +5°C
temperature forcing, SOC stoats averageleclined by 15.6%, and emissions of CO
increased by 8.0% on average (blue bars, top and bottom panéligir8). With a
temperaturesensitive (i.e., increasingB and a constar@UE, the results were nearly
identical With a temperatursensitive (i.e., decreasedYE and a constamB, SOC stocks
declined by, 2.1% and emissions of G@ncreased by ~0.7% on average. When @il
andrB were'temperature sensitive, the results were very similar to whelCORlywas
temperature sensitive

Assuming heategdlot parametersSOC and CQtrajectories under warmirgppeared
significantlydifferent from those under contrplot parametergcompare red and blue bars in
scenarios I, 11l and 1V, P<0.001, Fig. 3).n&h there was nGUE temperature sensitivity
the difference.bétween treatments appeared naoonpare red and blue bars in scendrio
Fig. 3). However, increasing ti@JE temperature sensitivitfi.e., heategblot parameters vs.
controlplot parametersjesulted in SOC gains 6f5% and 0.9% on average, respectively,
which contrasted with SOC reductioft®mpare red and blue bars in scenarioand 1V,
Fig. 3). The variations of the projected end-simulation pool sizes and respiration a
presented.in Fig. S8hen the effects of experimental warming and temperature sensitivities
of both parametemsere combined, uncertainty in the SOC projection ranged from% 3.0
loss to a 10.5% gain for thé' and 3 quartiles, or from a 12.2% loss to a 13.6% gain for the
5% and 95% quantiles (i.e., scenario 1V, Fig. S8). We also found that elevated litter inputs

with warming did not substantially affect SOC stock charfgable S3).

DISCUSSION
Warmer temperatur e reduced CUE but decades-long warming elevated CUE
temper ature'sensitivity

Given'the inversions conducted in both control and heated conditiomegatve
slopemindicateshatincreasing temperature reduced microidE in field experimental
conditions, whichs consistent witimany studies based on laboratory experiments (Manzoni

et al. 2012, Sinsabaugh et al. 2013). Previous observaigmisave suggested a wide range
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of mfrom-0.017 to -0.003 °€(DeVeévre and Horwath 200Steinweg et al. 2008rey et al.
2013, Tucker et al. 20133onsistehwith the negativeffect of increasing temperature on
maintenance energy observed in experimetitts heterotrophic soil microbg€rowther and
Bradford 2013, Frey et al. 2013)hereforesoil warming undereitherfield or laboratory

conditions, camenerallyleadto constraits on mcrobial metabolic activitglue to greater

energy cost for maintaining microbial biomass (del Giorgio and Cole 1998, Frey et al. 2013)

or energy spilling (i.e., waste metabolism) (Bradford 2013).

Wegfound no evidence that Harvard Forest micrawoetimateto warming by
reducing the temperature sensitivity@JE. The absence of microbiatclimdion is
consistentwitla/sustained increase in soil microbial activityasponse to geothermal
warming in"a different study (Walker et al. 2018). Incubations wititC€alcareous
temperate forest soils subjecte®tpears of warming also showed no thermal adaptation of
the microbial decomposer community (Schindlbacher et al. 2015). Based on our model
inversion,CUE was mordemperature sensitive witbng-term soil warmingslopem = -
0.0101 °C"for control plotvs. -00117 °C* for heated plot)Our results contrast with those
of Frey et alw(2013) who found a decline in the temperature sensitivity of mic@iain
Harvard Forest.soils subjected to 18 years of warming. Although the reason for this
discrepancy is uncertain, the temperature acclimatiénenp et al. (2013)vas only observed
for one of three"added carbon substrates (i.e., phenallaboratory asay and may not apply
to the integrate@€UE determined by our inversion analysis.

Thegreater temperature sensitivity @JE underheateccompared taontrol
conditions could be driven by selection foicroorganisms with higher maintenance costs
(Frey et al2008, Zhou et al. 2012, DeAngelis et al. 2015). After 12 years of warming at
Harvard Forest, relative abundances of fungal biomarkers declined wheregsogiive
bacterial and actinobacterial biomarkers incredbeely et al. 2008). Such community shifts
may have 'overridden physiological acclimatiorCofE within some microbial species
(Allison 2014;"DeAngelis et al. 201&elillo et al. 2017).

Thesinversionderivedaverags (0.39and 0.42 for the control and warming plots) and
rangeof CUE(0.19-0.67pare similar to values reported previously for Harvard Forest soils
subject to 2-"and 18ear warming treatmesifFrey et al. R13) andalso comparabléo the
average values (i.e. 0.3) observed in soilsaqdticecosysteméSinsabaugh et al. 2013).
The inversionderived maximaCUE value (0.67 is close to lhe thermodynamic efficiency of

aerobicmicrobialgrowth (Roels 2009). However, theversionderivedaverageand range
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aremuch lower than 0.72-0.7the value reported frona weeklong lab incubation study
with **C-labelled glucose in a forest s¢ilagerty et al. 2014 or 0.7-0.8 reported @
month-long incubation study with cellobiose amendment in a croplandseiheg et al.
2008).

Thelowervalue of CUE determined here suggests that the active microbial
community functions at low biochemical efficiency under field conditions, implying that
microorganisms with relatively high maintenance cdsisinate in field soilsLow CUE
may also indicate reduced availability of labile substrates as energy s@{moeset al.
2005) or dominance of recalcitrant organic compounds in SOC (Frey et al. 2013). On the
other hand;fie higler value ofmeasuredCUE in incubation studiesould be due tghort
measurement periods bburs to weekdpnger incubations yield lower effectivdJE values
(Hagerty etal. 2013

Theisotopic probingapproactvia **C-labelled substrate amendmesed to quantify
CUE in these incubation studieStéinweg et al. 2008 , Hagerty et al. 20d4y alsdhave led
to anoverestimabn of CUE. In shorttermincubationstudiesthe reuse of=C in microbial
necromassnd-miicrobial preference f&iC for respiratiorcould resulin arelatively**c-
enrichedmicobial biomass pool armélatively**C-depleted respiratigmvhichwere usedo
derive CUE. FurthermoresomeCUE values (0.8) reported for agricultural soilSteinweg
et al. 2003 exeeededhe formerly reportechaximalcarbon conservatioefficiency for
microbial growth(Roels 2009, potentially due to more efficient C uptake induced by the

labile substrate addition in agricultural soils.

Warmer temper ature accelerated turnover and decades-long warming increased rB
temper atur e sensitivity

Given the inversiomesultsin this study, the positive slopeindicates that microbial
turnover,was faster with higher temperatures, which may be attributed to a shift in microbial
community*physiology, stimulated viral activity, and/or accelerated senescemoerabial
cells(Joergensen et al. 1990he same mechanisnmay also explaitheincreased
temperaturersensitivity afirnover with warmindi.e., +5°C)over decades.

This'slopen is 3.80-3.99e-4 4 °C* under control and heated conditions, whigh
about one order of magnitude lower than the value of 0.003—-0-50& dderived from the
one-week lab incubation experiment described previotiagérty et al. 2014 ). Given the

mean value ofi and observed soil temperatune®ur inversion study;,B derived at 20°C is
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only half the value observed at the same temperature in theemielaboratorgtudy
(Hagerty et al. 2014

These comparisons marked a major differandbe microbial biomass turnoveate
estimated over time scalesddys vs. decade®/e speculate thafiven little change in
microbial*biomassthe high biomass turnover ratgh warmingover the shortermmaybe
driven by strongemicrobial competitionthusleading to greater cell deatkakumanu et al.
2013),greaterformation of necromass (Crowther et al. 2015) and higkeacellular enzyme
activities(Blankinship et al. 2014). Furthermore, thetabolic tracer probingethod used in
the shorttermlaboratory experiment can fgmtially overestimatéhe biomass turnover rate
(Dijkstra etial. 2011)Temperature sensitivities of microblzibmass turnovethat wereone
order ofmagnitude lowerin our studymay beassociated witlvidespreadnicrobial
dormancy throaglvhich microbes acclimatt stressandreduce mortalityfLennon and
Jones 2011).

Elevated temperature sensitivity of CUE reduced long-term soil C losses

The 66year smulation resultsndicaedthatrB had minimal effectsbutthat CUE
was important.in determining G@missions and SOC stocks. Mechanistically speaking, the
lower CUE at higher temperature resulted in fewer resources allocated to microbial biomass
and associated enzyme pogigen aconstanuptake These changesight reduce the
decomposition rate { et al. 2014 ), thereldyminishing both SOC loss and G@missions.

A recent report indicates that 26 years of soil warming at the Harvard Forest resulted
in a loss of about 87% ofSOC in the upper 60cm of the sol€lillo et al. 2017). Given the
12.2% loss to a 13.6% gaif% and %% quantilesin SOCover six decades revealed in the
inversion analysigthe MEND model may underestimate potential SOC losses from the full
soil profile'under warming, even when parameterized through an inversion approach with
Harvard Forest. data. Future incorporation of SOC stock changes into the model inversion
would be usefulfor improving estimates of parameters, particutasfGQUE temperature
sensitivity)=which showed a broad distribution (Fig. 2). Our results suggest thet low
magnitudesoim could result in MEND simlations more consistent with observed SOC

losses underwarming (Fig. 3).

Implications for soil warming experiments and data assimilation
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Using Bayesian inversion approaches to combine emerging biogeochemical datasets
with more advanced models should help improve confidence in predictions of céirbate
feedbacks. Our inversion approach offered a tractable means of parameterizing-teenbong

response o€UE and turnover rate sensitivity to temperature based on available data. Still,

we emphasize-that our results could change as additional data, mechanisms, and feedbacks

are incorporated into models like MEND. More soil C and microb@hlaiss measurements
over years to decades would likely have substantially reduced the uncertainty of our
parameterestimates. Furthermahe MEND model used in this study lacks potentially
important details about microbial community structure, moistgeorses, and climate-
driven feedbacks with the vegetation community that should be considered in future
modeling effortsTo address potential experimental artefacts, future inversion analyses
should also consider incorporating disturbance controlsi{eating cablegstalled bunot
turned on)f suchdata are available from field experiments.

We conclude that botGUE and microbial turnover are k@arametersnoderating
SOC stocks and respiratory C losses at higher temperatures, but their inferred temperature
sensitivities.differ substantially depending on experimental duratiomaagurement
approacks.Our.simulations confirm that these parameters influémeelecadascale
predictions of SOC stock and G@mission changes with warming. In particular, the
temperature _sensitivity @UE induced a more pronounced effect on soil C dynamics than
that of microbial turnover. Further, we did not find evidence dbalimdion of microbial
CUE orrBi.is likely to affect soil dynamics under warming. Our method could be applied to
the increasing number of datasets on soil C cycle responses to perturbationa to
decadal time scales, therebgorporating key microbial functions into gloldosystem
models and improving long-term projections of soil C changes and@i3sions under

environmental andlimate changes.
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Table 1. Datasets and their sources collected from the soil warming experiments at Harvatofg#tesin Ecological Research (LTER) site
Massachusetts, USA.

No. Varable Frequency Measurement period References
1 Litterfall Yearly 1989-2010 (Frey and Ollinger 1999)
2 Litterfall Yearly 2001-2013 (Melillo et al. 2013)
3  Soil CO; efflux Hourly, consecutive 1991-2010 (Melillo et al. 1999, Contosta et al. 2013
4 SOC certain days 1990, 1991, 1995, 2000 (Nadelhoffer et al. 1999)
5 Doe certain days 1999, 2000, 2001 (Compton et al. 2004)
6 DOC certain days 2005, 2006 (Bradford et al. 2008)
7 MBC certain days 1999, 2000, 2001 (Compton et al. 2004)
8 MBC certain days 2002 (Wallenstein et al. 2006
9 WMBC certain days 2002 (Frey et al. 2008)
10 MBC certain days 2005, 2006 (Bradford et al. 2008)
11 EEA certain days 2008, 2009, 2010 (Brzostek and Finzi 2011b)
12 SoilFtemperature  Daily, consecutive 1991-2010 (Melillo et al. 1999)
13 Soil'temperature  Hourly, consecutive 2009-2010 (Brzostek and Finzi 2011b)
14 Soiltemperature Hourly, consecutive 1989-1990 (Arguez et al. 2010)

SOC: soll.organic carbon; DOC: dissolved organic carbon; MBC: microbial biomass carbon; EEZelletdirsenzyme activity.
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Table 2. Parameters and their prior ranges included under control and heated conditiopovathibstic inversion analys

o ) L ower Upper
Par ameter"Description Unit o o Reference
limit limit
i (Manzoni et al. 201,2Sinsabaugh et al.
Ec ref CUE at reference temperature mg C mg'C 0 0.72 2013
. i 1 See Fig. S3{Sinsabaugh et al. 2016

m Temperature sensitivity @UE mg C mglc °C -0.017 0.017 _

Sinsabaugh et al. 201L7

o i ot (Gregorichet al. 1991Gregorich et al.
n Temperature sensitivity o8 mg C mg' Ch'°C* -4e-5 4e-5 2000
Fraction of decomposed POC allocated to
fD - 0.3 0.7 (Wang et al. 201,2Vang et al. 2013
DOC

gD Fraction of dead MBC transferred to SOC - 0.3 0.7 (Pietikainen et al. 2005
iPOC Initial pool sizeof POC mg C g' soil 1 23 (Nadelhoffer et al. 1999
iMOC Initial pool size of MOC mg C ¢* soil 30 55 (Nadelhoffer et al. 1999
1IQOC Initial pool size of QOC mg C g* soil 0.1 1.9 (Nadelhoffer et al. 1999
iMBC Initial pool size of MBC mg C g' soil 0.02 0.9 (Frey @ al. 2008
iDOC Initial pool size of DOC mg C g' soil 0.02 0.9 (Compton et al. 2004
iEP Initial pool size of EP mg C ¢* soil 0.0001 0.007 (Brzostek and Finzi 201)a
IEM Initial pool size of EM mg C g* soil 0.0001 0.007 (Brzostek and Finzi 201)a

This article is protected by copyright. All rights reserved

UONIPUOD PU. SWiB L 3L 885 *[1202/20/62] U0 AR1q1T12U1IUO ABIIM ‘LTSKT GOB/TTTT'0T/10p/L00 5| M ARiq1fpul[UO//SAIY LIOL) PoPeOumMOQ ‘€ ‘6TOC ‘98YZSIET

folm

35UB0 17 SUOLULLIOD) AA1Ea.D) 3|qeat|dde ay) Aq pausenob ale sapiie WO ‘8N Jo sajni Joy AkelqiautiuQ 8|1 uo (Suol



POC: particulate OC; MOC: mineraksociated OC; QC: DOC associated with mineral surface; EP: enzymes for decomposition of POC; EM:

enzymes for decompositiai MOC.
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Figure captions
Figure 1. MEND model outputs of daily soil G@fflux rate (mg C rif day”) at Harvard
Forest better matched observational data withnersion approach (red) compared to

without the inversion (blue) in both control (a) and heated (b) conditions.

Figure 2. Boxplots of temperature sensitivitieCofE (above) andB (bottom) in control

and heated ¢onditions. Boxplots show means (dot), medians (fired1 quartiles (box,
interquartile range diQR), upper and lower extremes (whiskers). The whiskers were
determined.as,equal to or less extreme than 1.5 t@Ragainst I'and 3" quartiles,
respectively. P.< 0.001 denotes significdifference between means in control and heated

conditions

Figure 3. Mean (+SD) relative changes in percentage in SOC stock (top panel)and CO
emission (bottom panel) with warming (i.e. W5 vs. WO0) based oyr @&adel projections

using control and heated plot parameters under scenarios I~IV. Scenario details are presented
in theMethod.section.
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