
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Faculty Publications 

11-12-2018 

Reduced carbon use efficiency and increased microbial turnover Reduced carbon use efficiency and increased microbial turnover 

with soil warming with soil warming 

Jianwei Li 
Tennessee State University 

Gangsheng Wang 
University of Oklahoma 

Melanie A. Mayes 
Oak Ridge National Laboratory 

Steven D. Allison 
University of California, Irvine 

Serita D. Frey 
University of New Hampshire, Durham 

See next page for additional authors 
Follow this and additional works at: https://scholars.unh.edu/faculty_pubs 

 Part of the Biogeochemistry Commons 

Comments 
This is an Author Manuscript of an article published by Wiley in Global Change Biology in 2018, the Version of Record 

is available online: https://dx.doi.org/10.1111/gcb.14517 

Recommended Citation Recommended Citation 
Li J, Wang G, Mayes MA, et al. Reduced carbon use efficiency and increased microbial turnover with soil 
warming. Glob Change Biol. 2019; 25: 900–910. https://doi.org/10.1111/gcb.14517 

This Article is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has 
been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire 
Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/faculty_pubs
https://scholars.unh.edu/faculty_pubs?utm_source=scholars.unh.edu%2Ffaculty_pubs%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/154?utm_source=scholars.unh.edu%2Ffaculty_pubs%2F1886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.1111/gcb.14517
mailto:Scholarly.Communication@unh.edu


Authors Authors 
Jianwei Li, Gangsheng Wang, Melanie A. Mayes, Steven D. Allison, Serita D. Frey, Zheng Shi, Xiao-Ming Hu, 
Yiqi Luo, and Jerry M. Melillo 

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/faculty_pubs/
1886 

https://scholars.unh.edu/faculty_pubs/1886
https://scholars.unh.edu/faculty_pubs/1886


This is the author manuscript accepted for publication and has undergone full peer review but 

has not been through the copyediting, typesetting, pagination and proofreading process, which 

may lead to differences between this version and the Version of Record. Please cite this article 

as doi: 10.1111/GCB.14517 

This article is protected by copyright. All rights reserved 

 

DR. JIANWEI  LI (Orcid ID : 0000-0002-0429-3627) 

DR. GANGSHENG  WANG (Orcid ID : 0000-0002-8117-5034) 

DR. STEVEN D ALLISON (Orcid ID : 0000-0003-4629-7842) 

 

 

Article type      : Primary Research Articles 

 

 

Reduced carbon use efficiency and increased microbial turnover with soil warming 

 

Running head: soil warming experiment and data assimilation 

 

Jianwei Li1, Gangsheng Wang2,3, Melanie A. Mayes2, Steven D. Allison4,5, Serita D. Frey6, 

Zheng Shi7, Xiao-Ming Hu7, Yiqi Luo8, Jerry M. Melillo

 

9 

1. Department of Agricultural and Environmental Sciences, Tennessee State University, 

Nashville, TN 37209, USA 

2. Climate Change Science Institute and Environmental Sciences Division, Oak Ridge 

National Laboratory, Oak Ridge, TN 37831-6301, USA 

3. Institute for Environmental Genomics and Department of Microbiology & Plant Biology, 

University of Oklahoma, Norman, Oklahoma, 73019, USA  

4. Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 

92697, USA 

5. Department of Earth System Science, University of California, Irvine, CA 92697, USA A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1111/GCB.14517�
https://doi.org/10.1111/GCB.14517�
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.14517&domain=pdf&date_stamp=2018-12-12


This article is protected by copyright. All rights reserved 

6. Department of Natural Resources and the Environment, University of New Hampshire, 

Durham, New Hampshire 03824, USA  

7. Center for Analysis and Prediction of Storms, and School of Meteorology, University of 

Oklahoma, Norman, OK 73019, USA 

8. Center for Ecosystem Science and Society, Department of Biological Sciences, Northern 

Arizona University, Flagstaff, AZ 86011, USA 

9. The Ecosystem Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02503, 

USA 

 

Corresponding author 

Jianwei Li 

Department of Agriculture and Environmental Sciences 

Tennessee State University 

Nashville, TN 37209, USA  

Phone: (615) 963-1523  

Email: 

 

jli2@tnstate.edu 

Key words: Harvard forest, soil warming, carbon use efficiency (CUE), microbial biomass 

turnover (rB), temperature sensitivity, data-model integration 

 

Paper type: Primary Research Article 

 

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-

AC05-00OR22725 with the US Department of Energy. The United States Government retains 

and the publisher, by accepting the article for publication, acknowledges that the United 

States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to 

publish or reproduce the published form of this manuscript, or allow others to do so, for 

United States Government purposes. The Department of Energy will provide public access to 

these results of federally sponsored research in accordance with the DOE Public Access Plan 

(http://energy.gov/downloads/doe-public-access-plan 

Abstract. Global soil carbon (C) stocks are expected to decline with warming, and changes in 

microbial processes are key to this projection. However, warming responses of critical 

microbial parameters such as carbon use efficiency (CUE) and biomass turnover (rB) are not 
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well understood. Here, we determine these parameters using a probabilistic inversion 

approach that integrates a microbial-enzyme model with 22 years of carbon cycling 

measurements at Harvard Forest. We find that increasing temperature reduces CUE but 

increases rB, and that two decades of soil warming increases the temperature sensitivities of 

CUE and rB. These temperature sensitivities, which are derived from decades-long field 

observations, contrast with values obtained from short-term laboratory experiments. We also 

show that long-term soil C flux and pool changes in response to warming are more dependent 

on the temperature sensitivity of CUE than that of rB. Using the inversion-derived parameters, 

we project that chronic soil warming at Harvard Forest over six decades will  result in soil C 

gain of <1.0% on average (1st and 3rd

 

 quartiles: 3.0% loss and 10.5% gain) in the surface 

mineral horizon. Our results demonstrate that estimates of temperature sensitivity of 

microbial CUE and rB can be obtained and evaluated rigorously by integrating multi-decadal 

datasets. This approach can potentially be applied in broader spatiotemporal scales to 

improve long-term projections of soil C feedbacks to climate warming. 

INTRODUCTION 

Integration of microbial processes into carbon (C) cycle models can potentially 

improve simulations of soil C dynamics under climate warming (Wieder et al. 2013, Luo et 

al. 2016). Uncertainty in long-term soil C responses to climate change will  likely be reduced 

with more realistic and accurate parameterizations of key microbial processes that regulate 

soil C stocks and respiratory C losses (Todd-Brown et al. 2012, Wieder et al. 2015, Luo et al. 

2016). These key parameters include carbon use efficiency (hereafter CUE), defined as the 

fraction of C uptake allocated to growth (Allison et al. 2010, Geyer et al. 2016), and 

microbial biomass turnover rate (hereafter rB), i.e. the fraction of microbial biomass that 

leaves the microbial pool per unit of time (Hagerty et al. 2014). These two parameters are 

critical for modeling soil C change with warming (Hagerty et al. 2014, Li et al. 2014) but 

remain poorly quantified (Manzoni et al. 2017, Sinsabaugh et al. 2017, Xu et al. 2017). It is 

also unclear whether heterotrophic microbes might acclimate to long-term warming through 

reductions in the temperature sensitivities of CUE and rB (Allison et al. 2010, Frey et al. 

2013, Wieder et al. 2013). 

Rising soil temperatures are generally expected to reduce CUE, as warming limits 

microbial growth by increasing the energy cost of maintaining existing biomass (Manzoni et 

al. 2012, Sinsabaugh et al. 2013). Observed CUE of soil microbial communities, however, 
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has shown variable responses to rising temperature including increases, decreases, or no 

response (Steinweg et al. 2008, Frey et al. 2013, Sinsabaugh et al. 2013, Li et al. 2018), due 

to fundamentally different pathways of C allocation in assimilation, enzyme production, and 

respiration for biomass maintenance and enzyme production (Hagerty et al. 2018). In addition, 

warming can enhance rB if the cell-specific microbial death rate outpaces cell production 

(Joergensen et al. 1990). Dead microbial cells can be metabolized by living microbes, 

incorporated into the soil organic carbon (SOC) pool, or protected from decomposition by 

physicochemical occlusion in soil particles (Six et al. 2002, Lehmann and Kleber 2015). 

Quantifying CUE, rB, and their temperature responses remains a major challenge. 

There are no techniques available to measure these quantities in situ, so prior studies have 

relied mainly on laboratory incubations with isotopic tracers. For example, Hagerty et al. 

(2014) showed increased rB but constant CUE with warming in a week-long soil incubation. 

Still, it remains unclear how these key microbial variables respond to warming over decadal 

time scales that are more relevant to climate change (Frey et al. 2013, Geyer et al. 2016). 

Traditionally, a sole value of a model parameter can be determined via least squares fitting 

between model output and observation (Luo et al. 2011). Probabilistic inversion techniques 

use data to inform model parameters and produce most probable values and uncertainties of 

parameters (Clark 2005, Luo et al. 2011). Probabilistic inversion thus offers an alternative to 

the deterministic modeling approach and direct empirical measurement of key microbial 

parameters, particularly for those not well quantified due to technical difficulty. With an 

inversion approach, observational data are used to constrain the model. Parameter values are 

discounted if they result in model outputs inconsistent with the data (Clark 2005, Xu et al. 

2006, Luo et al. 2011). Previously, such approaches have been applied successfully in many 

contexts, including terrestrial carbon cycling (Niu et al. 2014, Hararuk et al. 2015). 

    Here we used a probabilistic inversion approach (i.e., the Bayesian inference) to 

estimate the apparent temperature sensitivities (hereafter referred to as temperature 

sensitivities) of CUE and rB under field conditions. We assembled 14 datasets that were 

collected from soil warming experiments at the Harvard Forest Long-term Ecological 

Research (LTER) site in Petersham, MA, USA, where soil temperature has been continuously 

elevated to ~5°C above ambient for 10 to 26 years (Melillo et al. 2017). We used Bayesian 

probabilistic inversion to obtain the temperature sensitivity coefficients of CUE and rB by 

assimilating data into the Microbial-ENzyme Decomposition (MEND) model. MEND was 

chosen because it has been validated previously, and it represents relevant microbial 
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processes and mineral interactions without excessive complexity (Wang et al. 2013, Li et al. 

2014). To analyze the effects of temperature-sensitive CUE and rB on long-term soil C 

dynamics, posterior parameter values and forcing data obtained from the control and heated 

plots were implemented in long-term projections of soil carbon and respiratory responses 

over six decades.  

 

MATERIALS AND METHODS 

Data compilation from Harvard Forest  

We assembled multiple observational datasets collected from several experimental 

soil warming studies at the Harvard Forest Long-term Ecological Research (LTER) site in 

Petersham, MA, USA (42°50 ́ N, 72°18 ́ W). The list of data sources is presented in Table 1. 

The climate at Harvard Forest is cool, temperate and humid, with mean annual precipitation 

and mean annual air temperature of 1080 mm and 7.0 ºC, respectively. Soils are of the 

Gloucester series (fine loamy, mixed, mesic, Typic Dystrochrepts) and dominant tree species 

are red oak (Quercus rubra) and red maple (Acer rubrum) (Peterjohn et al. 1993).  

Data span the period of 1989-2010 and were obtained from published articles or the Harvard 

Forest online data archive (http://harvardforest.fas.harvard.edu/harvard-forest-data-archive). 

Data were collected from three soil warming experiments initiated at three different times 

(1991, 2001, and 2006).  Site and experimental design information is described in Peterjohn 

et al. (1993), Melillo et al. (2002), and Contosta et al. (2011). 

Briefly, soils in heated plots were continuously warmed 5 ºC above control plots 

using buried heating cables placed 10 cm below the soil surface and spaced 20 cm apart. 

Climate conditions, soil temperature and soil moisture were monitored continuously. Soil 

respiration was measured monthly between April and October. Datasets of soil temperature 

(Melillo et al. 1999, Arguez et al. 2010, Brzostek and Finzi 2011a), CO2 Melillo et al. 

1999

 efflux (

), soil C (Nadelhoffer et al. 1990, Frey 2009), DOC (Compton et al. 2004, Bradford et al. 

2008), MBC (Compton et al. 2004, Wallenstein et al. 2006, Frey et al. 2008), extracellular 

enzyme activity (EEA) (Brzostek and Finzi 2011a), and litterfall (Frey and Ollinger 1999), 

were also used for this modeling study. 

Several assumptions were made to meet the requirements for MEND model input and 

the inversion analysis. Litter input C used for the model was assumed to be 48% of measured 

litter biomass (Schlesinger and Bernhardt 2013), and litter entered the SOC and DOC pool at 

a constant rate (i.e. 98% as particular organic carbon (POC) and 2% as DOC). SOC 
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concentrations were selected to represent the top 10-cm mineral soil depth (i.e. A horizon). 

Using an average value for specific enzyme activity (i.e. µmol min-1 mgC-1) and a 

temperature normalization based on a measured Q10 value (Q10 Allison et al. 2018=2) ( ), 

extracellular enzyme data in each collection were converted to potential activity (i.e. µmol g-1 

soil hr-1) of labile substrate-acquiring enzymes (i.e. the sum of β-D-cellobiosidase, acid 

phosphatase, protease and β-1,4-N-Acetyl-glucosaminidase) and oxidase (i.e. the sum of 

peroxidase and phenol oxidase) that contribute to fast- and slow-cycling soil organic matter 

turnover, respectively. The sum of these potential activities is equivalent to the sum of 

enzyme activities for POC and mineral-associated organic carbon (MOC). Soil heterotrophic 

respiration was assumed to represent 67% of measured soil CO2 Bowden et al. 1993 efflux ( , 

Sanderman 1998, Melillo et al. 2002).  Daily soil temperature measurements at 4-cm depth 

(i.e. approximately at the middle of 10-cm soil depth) were available during 1991-2010 

(Melillo et al. 1999).  

We calculated hourly soil temperatures based on daily averages and the NCEP 

Climate Forecast System Reanalysis (CFSR) which provides hourly gridded soil temperature 

data at 5-cm soil depth (http://rda.ucar.edu/datasets/ds093.1/index.html). Scaled hourly 

variation of soil temperature at Harvard Forest from the CFSR data was added to the daily 

average station observation. A scaling factor, computed as the ratio of standard deviation of 

daily station observation to standard deviation of daily average CFSR data, was applied to the 

hourly variation of CFSR data. The daily station observation was derived from hourly 

observations in 2009 and 2010 (Brzostek and Finzi 2011a). The use of scaling factor is to 

account for the depth difference below the soil surface in the CFSR and station data. The 

available datasets are presented in Fig. S1. 

 

Microbial-ENzyme Decomposition (MEND) model 

 MEND is a microbial ecosystem model that incorporates multiple soil and enzyme 

pools (Wang et al. 2013) and shows reasonable fit to soil C observations in response to 

perturbation (Li et al. 2014). The model structure is presented in Fig. S2, and the full list of 

governing equations can be found in Li et al. (2014). In MEND, the decomposition of 

particulate organic matter (POC) and mineral-associated organic matter (MOC), and the 

uptake of dissolved organic matter (DOC) are described by the Michaelis-Menten kinetics 

with a half-saturation constant (K) and maximum reaction rate (V). The kinetics parameters 

are temperature sensitive and represented by the Arrhenius equation (Wang et al. 2012). In 
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addition, the adsorption and desorption rates of DOC are also temperature dependent 

(Cornelissen et al. 1997, Wang et al. 2013). Following SOC decomposition and DOC uptake, 

C is lost through growth and maintenance respiration dependent on CUE. Note that the CUE 

parameter in MEND refers to the assimilation efficiency (Pirt 1965, Wang and Post 2012). 

Consistent with previous studies, the model assumes that carbon use efficiency (CUE, EC

Fieschko and Humphrey 1984

) 

varies with temperature based on a linear relationship ( , 

DeVêvre and Horwáth 2000, Steinweg et al. 2008, Frey et al. 2013, Tucker et al. 2013): ��(�) = ��,��� + � × (� − ����) (1) 

where ��(�), ��,���, and � denote the CUE at simulation temperature T, the reference 

temperature (����), and the slope parameter (°C −1

In the model, microbial turnover rate (rB) also depends on temperature. The 

temperature sensitivity of the microbial turnover rate (n) is defined based on the following 

equation (

), respectively. 

Saggar et al. 1999, Malik et al. 2013, Hagerty et al. 2014): 

                                           ��(�) = ����� + � × (� − ����)                                             (2) 

where ��(T), ��ref, and � denote the rB at simulation temperature T (i.e., 5 °C), the 

reference temperature (20 °C), and the slope parameter (mg C mg-1 C h-1 °C −1

 

), respectively. 

Data-model integration via a probabilistic inversion analysis 

We used a Bayesian probabilistic inversion technique to constrain five key model 

parameters and seven initial pool sizes under the control and heated conditions, respectively. 

These parameters include the CUE at the reference temperature (��,���), the temperature 

sensitivity of CUE (m), the temperature sensitivity of the microbial turnover rate (n), the 

fraction of decomposed POC entering DOC (fD), and the fraction of dead microbes becoming 

DOC (gD), as well as seven initial pool sizes (iPOC, iMOC, iQOC, iMBC, iDOC, iEP and 

iEM; Table 2). Default values of these and other model parameters are presented in Table S1. 

Constructing the likelihood function -- According to the Bayes’ theorem (Clark 2005), 

the posterior probability density function (PDF) P(p|Z) of model parameters p can be 

estimated from the prior knowledge of parameters p (i.e., a prior PDF, P(p)) and the 

information contained in existing observations (i.e., a likelihood function P(Z|p)): �(�|�) ∝ �(�|�)�(�) (4) 

Assuming that errors between observed and modeled values follow Gaussian 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

 13652486, 2019, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.14517, W

iley O
nline L

ibrary on [29/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



This article is protected by copyright. All rights reserved 

distributions, the likelihood function P(Z|p) can be expressed by: 

�(�|�) ∝ exp�−�� [��(�) − ��(�)]2
2��2(�)�∈��

6
�=1 � (5) 

where Z(t) is measured value, X(t) is model simulation, and σ is the standard deviation for 

each measurement. i = 1, 2, … 6, represents the available observations of hourly CO2 efflux, 

daily CO2

Feyen et al. 2003

 efflux, SOC, DOC, MBC and ENC (i.e. the sum of EP and EM). We adopt the 

Gaussian assumption for mathematical convenience in the absence of more precise 

information about the data-model error structure ( , Luo et al. 2003, Luo and 

Zhou 2010).  

Prior knowledge -- The prior PDF P(p) is specified by giving a set of limiting 

intervals for parameters p with uniform distribution. We set the prior range of m to (-0.017, 

0.017) and the prior range of n to (-4e-5, 4e-5) to reflect the range of values observed in the 

literature (Table 2). Despite negative values revealed in previous experiments (Fig. S3), the 

positive values of m were included according to Sinsabaugh et al. (2017), in which the 

microbial CUE increased weakly with mean annual temperature. The prior ranges of the five 

parameters and seven initial pool sizes were determined based on published values and 

presented in Table 2. 

Posterior probability density function -- The posterior PDFs were then generated from 

prior PDFs P(p) with observations Z by a Markov chain Monte Carlo (MCMC) sampling 

technique, using the Metropolis-Hastings (M-H) algorithm as the MCMC sampler (Xu et al. 

2006). Specifically, the M-H algorithm was run by repeating two steps: a proposing step and 

a moving step. In each proposing step, the algorithm generated a new point pnew for a 

parameter vector p based on the previously accepted point pold with a proposed distribution 

P(pnew|pold

���� = ���� + �(���� − ����) 

):  

(6) 

where pmax and pmin

θ
 are the maximum and minimum values within the prior range of the 

given parameter. is a random variable between -0.5 and 0.5 with a uniform distribution. In 

each moving step, point pnew was tested to determine whether it should be accepted or not. 

Whether a new point pnew was accepted or not depends on the comparison of � =
�(����|�)���������  

with a uniform random number U from 0 to 1. Only if R ≥ U is the new point accepted; 
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otherwise pnew=pold

 

. 

Parameter selection and long-term projection 

Five parallel runs of the MCMC algorithm started at dispersed initial points were 

conducted with each run iterated for 100,000 times. The acceptance rates for the newly 

generated samples were ~10% under control conditions and ~22% under heated conditions 

for each run, and all five runs passed the stability test prior to data analysis (Table S2). The 

initial samples (about 5000 and 11000 in the so called burn-in period) were discarded after 

the running means and standard deviations stabilized. The union of the samples of the five 

runs (about 25,000 and 55,000 samples in total) after their burn-in periods was used to derive 

and compare the posterior means and standard deviations of the target parameters for control 

and heated conditions. The model performance with inversion (i.e., calibration of parameters 

based on observations) and without inversion (i.e., relying on default parameterization) was 

compared based on model simulations given the default and posterior mean parameter values 

(R2

To examine effects of different CUE and rB parameterization on soil C stocks and 

CO

 presented). The means of posterior parameters (m, n) were compared based on the 

student-t test and the p-values were reported.  

2 emissions as well as the associated uncertainties, the model was first run to reach 

equilibrium under constant forcing data (i.e. soil temperature and litterfall inputs averaged 

over 22 years under control conditions). Then, long-term model projections were conducted 

by running the model forward based on 3,000 pairs of m and n sampled from the inversion 

derived posterior distribution under both control and heated conditions. We simulated four 

different scenarios to analyze the consequences of variation in m and n. The four scenarios 

included no temperature sensitivities of CUE or rB (m=0; n=0; Scenario I), no temperature 

sensitivity of CUE but sampled posterior temperature sensitivity of rB (m=0; varying n; 

Scenario II), no temperature sensitivity of rB but sampled posterior temperature sensitivity of 

CUE (n= 0; varying m; Scenario III), and sampled posterior temperature sensitivities of CUE 

and rB (varying m and n; Scenario IV). In each scenario, model projections were conducted 

for 66 years which represents three repetitions of the original 22-year forcing data. The end-

simulation SOC pool sizes and cumulative CO2

To further examine climate change effects on soil C stocks and CO

 emissions were obtained.  

2 emissions, the 

model projections were also conducted under three different forcing conditions, i.e. 0ºC 

increase in soil temperature (W0), 5ºC increase in soil temperature (W5), and 5ºC increase in 
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soil temperature in addition to 9.6% increase in litterfall input, a value derived from the 

litterfall input averaged over 22 years under heated conditions (W5L). The end-simulation 

SOC pool sizes and cumulative CO2 emissions was calculated under W0, W5 or W5L for 

each scenario (I~IV). For each projection, the relative changes in SOC stock and CO2 

emission with climate warming (5ºC) were calculated by comparisons between W5 and W0. 

Based on the 3,000 independent simulations, the means of relative changes were compared 

between treatments with control plot parameters and heated plot parameters based on the 

student-t test. A bar graph and a boxplot were also produced to display the mean, standard 

deviation, median, 1st and 3rd

 

 quartiles of these long-term projections. 

RESULTS 

Model performance  

    The accuracy of model simulations was significantly enhanced when parameters were 

estimated via our probabilistic inversion approach. For heterotrophic soil respiration, the 

coefficients of determination (R2

 

) increased from 0.26 without the inversion to 0.59 with 

inversion in the control soil, and from 0.14 without inversion to 0.75 with inversion in the 

heated soil (Fig. 1). The simulations of respiration, MBC, DOC, and SOC also better matched 

the observations using this inversion approach (Fig. S4). The posterior probability 

distributions of all target parameters in the inversion differed between the control and heated 

conditions (Figs. S5, S6). 

Temperature sensitivity of microbial CUE and rB 

    The mean values of temperature sensitivity of CUE (i.e. the slope m) were -0.0101 

°C-1 under control conditions and -0.0117 °C-1

The mean values of temperature sensitivity of rB (i.e. the slope n) were 1.58e-5 h

 under heated conditions, which differed 

significantly from each other (P<0.001; Fig. 2). The standard deviation of m was 0.0052 in 

both cases. The absolute value of slope m was 15.1% greater under heated conditions than 

that under control conditions. Given the mean value of m and observed soil temperatures, the 

average CUE was estimated at 0.42 with a range of 0.25–0.67 in the control conditions, and 

the average was 0.39 with a range of 0.19–0.66 in the heated conditions (Fig. S7). 
-1 

°C-1 (i.e., 3.80e-4 d-1 °C-1) under control conditions and 1.66e-5 h-1 °C-1 (i.e., 3.99e-4 d-1 °C-1) 

under heated conditions, which differed significantly from each other (Fig. 2). The slope n 

was 5.0% greater under heated conditions than under control conditions. 
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Temperature sensitivities of microbial CUE and rB on long-term projections 

The simulated trajectory of SOC stocks and CO2 emissions with warming was 

influenced by the temperature sensitivities of CUE and rB (Fig. 3 and Fig. S8). Assuming 

control-plot derived parameters, no temperature sensitivity of either CUE or rB, and a +5ºC 

temperature forcing, SOC stocks on average declined by 15.6%, and emissions of CO2 

increased by ~8.0% on average (blue bars, top and bottom panels in Fig. 3). With a 

temperature-sensitive (i.e., increasing) rB and a constant CUE, the results were nearly 

identical. With a temperature-sensitive (i.e., decreased) CUE and a constant rB, SOC stocks 

declined by ~2.1% and emissions of CO2

Assuming heated plot parameters, SOC and CO

 increased by ~0.7% on average. When both CUE 

and rB were temperature sensitive, the results were very similar to when only CUE was 

temperature sensitive. 

2 trajectories under warming appeared 

significantly different from those under control plot parameters (compare red and blue bars in 

scenarios II, III and IV, P<0.001, Fig. 3). When there was no CUE temperature sensitivity, 

the difference between treatments appeared minor (compare red and blue bars in scenario II , 

Fig. 3). However, increasing the CUE temperature sensitivity (i.e., heated plot parameters vs. 

control plot parameters) resulted in SOC gains of 0.5% and 0.9% on average, respectively, 

which contrasted with SOC reductions (compare red and blue bars in scenarios III and IV, 

Fig. 3). The variations of the projected end-simulation pool sizes and respiration are 

presented in Fig. S8. When the effects of experimental warming and temperature sensitivities 

of both parameters were combined, uncertainty in the SOC projection ranged from a 3.0% 

loss to a 10.5% gain for the 1st and 3rd

 

 quartiles, or from a 12.2% loss to a 13.6% gain for the 

5% and 95% quantiles (i.e., scenario IV, Fig. S8). We also found that elevated litter inputs 

with warming did not substantially affect SOC stock changes (Table S3). 

DISCUSSION 

Warmer temperature reduced CUE but decades-long warming elevated CUE 

temperature sensitivity 

 Given the inversions conducted in both control and heated conditions, the negative 

slope m indicates that increasing temperature reduced microbial CUE in field experimental 

conditions, which is consistent with many studies based on laboratory experiments (Manzoni 

et al. 2012, Sinsabaugh et al. 2013). Previous observations also have suggested a wide range 
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of m from -0.017 to -0.003 °C-1 DeVêvre and Horwáth 2000( , Steinweg et al. 2008, Frey et al. 

2013, Tucker et al. 2013), consistent with the negative effect of increasing temperature on 

maintenance energy observed in experiments with heterotrophic soil microbes (Crowther and 

Bradford 2013, Frey et al. 2013). Therefore soil warming, under either field or laboratory 

conditions, can generally lead to constraints on microbial metabolic activity due to greater 

energy cost for maintaining microbial biomass (del Giorgio and Cole 1998, Frey et al. 2013) 

or energy spilling (i.e., waste metabolism) (Bradford 2013). 

We found no evidence that Harvard Forest microbes acclimate to warming by 

reducing the temperature sensitivity of CUE. The absence of microbial acclimation is 

consistent with a sustained increase in soil microbial activity in response to geothermal 

warming in a different study (Walker et al. 2018). Incubations with C-rich calcareous 

temperate forest soils subjected to 9 years of warming also showed no thermal adaptation of 

the microbial decomposer community (Schindlbacher et al. 2015). Based on our model 

inversion, CUE was more temperature sensitive with long-term soil warming (slope m = -

0.0101 °C-1 for control plot vs. -0.0117 °C-1

The greater temperature sensitivity of CUE under heated compared to control 

conditions could be driven by selection for microorganisms with higher maintenance costs 

(

 for heated plot). Our results contrast with those 

of Frey et al. (2013) who found a decline in the temperature sensitivity of microbial CUE in 

Harvard Forest soils subjected to 18 years of warming. Although the reason for this 

discrepancy is uncertain, the temperature acclimation in Frey et al. (2013) was only observed 

for one of three added carbon substrates (i.e., phenol) in a laboratory assay and may not apply 

to the integrated CUE determined by our inversion analysis. 

Frey et al. 2008, Zhou et al. 2012, DeAngelis et al. 2015). After 12 years of warming at 

Harvard Forest, relative abundances of fungal biomarkers declined whereas gram positive 

bacterial and actinobacterial biomarkers increased (Frey et al. 2008). Such community shifts 

may have overridden physiological acclimation of CUE within some microbial species 

(Allison 2014, DeAngelis et al. 2015, Melillo et al. 2017).  

The inversion-derived averages (0.39 and 0.42 for the control and warming plots) and 

range of CUE (0.19–0.67) are similar to values reported previously for Harvard Forest soils 

subject to 2- and 18-year warming treatments (Frey et al. 2013) and also comparable to the 

average values (i.e. 0.3) observed in soils and aquatic ecosystems (Sinsabaugh et al. 2013). 

The inversion-derived maximal CUE value (0.67) is close to the thermodynamic efficiency of 

aerobic microbial growth (Roels 2009). However, the inversion-derived average and range 
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are much lower than 0.72–0.74, the values reported from a week-long lab incubation study 

with 13 Hagerty et al. 2014C-labelled glucose in a forest soil ( ), or 0.7–0.8 reported in a 

month-long incubation study with cellobiose amendment in a cropland soil (Steinweg et al. 

2008). 

The lower value of CUE determined here suggests that the active microbial 

community functions at low biochemical efficiency under field conditions, implying that 

microorganisms with relatively high maintenance costs dominate in field soils. Low CUE 

may also indicate reduced availability of labile substrates as energy sources (Knorr et al. 

2005) or dominance of recalcitrant organic compounds in SOC (Frey et al. 2013). On the 

other hand, the higher value of measured CUE in incubation studies could be due to short 

measurement periods of hours to weeks; longer incubations yield lower effective CUE values 

(Hagerty et al. 2018).  

The isotopic probing approach via 13

Steinweg et al. 2008

C-labelled substrate amendment used to quantify 

CUE in these incubation studies ( , Hagerty et al. 2014) may also have led 

to an overestimation of CUE. In short-term incubation studies, the re-use of 13C in microbial 

necromass and microbial preference for 12C for respiration could result in a relatively 13C-

enriched micobial biomass pool and relatively 13

Steinweg 

et al. 2008

C-depleted respiration, which were used to 

derive CUE. Furthermore, some CUE values (~0.8) reported for agricultural soils (

) exceeded the formerly reported maximal carbon conservation efficiency for 

microbial growth (Roels 2009), potentially due to more efficient C uptake induced by the 

labile substrate addition in agricultural soils.  

 

Warmer temperature accelerated turnover and decades-long warming increased rB 

temperature sensitivity 

Given the inversion results in this study, the positive slope n indicates that microbial 

turnover was faster with higher temperatures, which may be attributed to a shift in microbial 

community physiology, stimulated viral activity, and/or accelerated senescence of microbial 

cells (Joergensen et al. 1990). The same mechanisms may also explain the increased 

temperature sensitivity of turnover with warming (i.e., +5ºC) over decades. 

This slope n is 3.80–3.99e-4 d-1 °C-1 under control and heated conditions, which is 

about one order of magnitude lower than the value of 0.003–0.004 d-1 °C-1

Hagerty et al. 2014

 derived from the 

one-week lab incubation experiment described previously ( ). Given the 

mean value of n and observed soil temperatures in our inversion study, rB derived at 20ºC is 
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only half the value observed at the same temperature in the one-week laboratory study 

(Hagerty et al. 2014). 

These comparisons marked a major difference in the microbial biomass turnover rate 

estimated over time scales of days vs. decades. We speculate that given little change in 

microbial biomass, the high biomass turnover rate with warming over the short term may be 

driven by stronger microbial competition, thus leading to greater cell death (Kakumanu et al. 

2013), greater formation of necromass (Crowther et al. 2015) and higher extracellular enzyme 

activities (Blankinship et al. 2014). Furthermore, the metabolic tracer probing method used in 

the short-term laboratory experiment can potentially overestimate the biomass turnover rate 

(Dijkstra et al. 2011). Temperature sensitivities of microbial biomass turnover that were one 

order of magnitude lower in our study may be associated with widespread microbial 

dormancy through which microbes acclimate to stress and reduce mortality (Lennon and 

Jones 2011).  

 

Elevated temperature sensitivity of CUE reduced long-term soil C losses 

The 66-year simulation results indicated that rB had minimal effects, but that CUE 

was important in determining CO2

Li et al. 2014

 emissions and SOC stocks. Mechanistically speaking, the 

lower CUE at higher temperature resulted in fewer resources allocated to microbial biomass 

and associated enzyme pools given a constant uptake. These changes might reduce the 

decomposition rate ( ), thereby diminishing both SOC loss and CO2

A recent report indicates that 26 years of soil warming at the Harvard Forest resulted 

in a loss of about 8-17% of SOC in the upper 60cm of the soil (

 emissions.  

Melillo et al. 2017). Given the 

12.2% loss to a 13.6% gain (5% and 95% quantiles) in SOC over six decades revealed in the 

inversion analysis, the MEND model may underestimate potential SOC losses from the full 

soil profile under warming, even when parameterized through an inversion approach with 

Harvard Forest data. Future incorporation of SOC stock changes into the model inversion 

would be useful for improving estimates of parameters, particularly m (CUE temperature 

sensitivity) which showed a broad distribution (Fig. 2). Our results suggest that lower 

magnitudes of m could result in MEND simulations more consistent with observed SOC 

losses under warming (Fig. 3). 

 

Implications for soil warming experiments and data assimilation 
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Using Bayesian inversion approaches to combine emerging biogeochemical datasets 

with more advanced models should help improve confidence in predictions of carbon-climate 

feedbacks. Our inversion approach offered a tractable means of parameterizing the long-term 

response of CUE and turnover rate sensitivity to temperature based on available data. Still, 

we emphasize that our results could change as additional data, mechanisms, and feedbacks 

are incorporated into models like MEND. More soil C and microbial biomass measurements 

over years to decades would likely have substantially reduced the uncertainty of our 

parameter estimates. Furthermore, the MEND model used in this study lacks potentially 

important details about microbial community structure, moisture responses, and climate-

driven feedbacks with the vegetation community that should be considered in future 

modeling efforts. To address potential experimental artefacts, future inversion analyses 

should also consider incorporating disturbance controls (i.e., heating cables installed but not 

turned on) if such data are available from field experiments. 

We conclude that both CUE and microbial turnover are key parameters moderating 

SOC stocks and respiratory C losses at higher temperatures, but their inferred temperature 

sensitivities differ substantially depending on experimental duration and measurement 

approaches. Our simulations confirm that these parameters influence the decadal-scale 

predictions of SOC stock and CO2 emission changes with warming. In particular, the 

temperature sensitivity of CUE induced a more pronounced effect on soil C dynamics than 

that of microbial turnover. Further, we did not find evidence that acclimation of microbial 

CUE or rB is likely to affect soil dynamics under warming. Our method could be applied to 

the increasing number of datasets on soil C cycle responses to perturbation at annual to 

decadal time scales, thereby incorporating key microbial functions into global ecosystem 

models and improving long-term projections of soil C changes and CO2

 

 emissions under 

environmental and climate changes. 
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Table 1. Datasets and their sources collected from the soil warming experiments at Harvard Forest Long-term Ecological Research (LTER) site, 

Massachusetts, USA. 

No. Variable Frequency Measurement period  References 

1 Litterfall Yearly 1989-2010 (Frey and Ollinger 1999) 

2 Litterfall Yearly 2001-2013 (Melillo et al. 2013) 

3 Soil CO2 Hourly, consecutive  efflux 1991-2010 (Melillo et al. 1999, Contosta et al. 2013) 

4 SOC certain days 1990, 1991, 1995, 2000 (Nadelhoffer et al. 1999) 

5 DOC certain days 1999, 2000, 2001 (Compton et al. 2004) 

6 DOC certain days 2005, 2006 (Bradford et al. 2008) 

7 MBC certain days 1999, 2000, 2001 (Compton et al. 2004) 

8 MBC certain days 2002 (Wallenstein et al. 2006) 

9 MBC certain days 2002 (Frey et al. 2008) 

10 MBC certain days 2005, 2006 (Bradford et al. 2008) 

11 EEA certain days 2008, 2009, 2010 (Brzostek and Finzi 2011b) 

12 Soil temperature Daily, consecutive 1991-2010 (Melillo et al. 1999) 

13 Soil temperature Hourly, consecutive 2009-2010 (Brzostek and Finzi 2011b) 

14 Soil temperature Hourly, consecutive 1989-1990 (Arguez et al. 2010) 

SOC: soil organic carbon; DOC: dissolved organic carbon; MBC: microbial biomass carbon; EEA: extracellular enzyme activity. 
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Table 2. Parameters and their prior ranges included under control and heated conditions in the probabilistic inversion analysis.  

Parameter Description Unit 
Lower 

limit 

Upper 

limit 
Reference 

E CUE at reference temperature C, ref mg C mg-1 0 C 0.72 
(Manzoni et al. 2012, Sinsabaugh et al. 

2013) 

m Temperature sensitivity of CUE mg C mg-1 C °C -0.017 -1 0.017 
See Fig. S3; (Sinsabaugh et al. 2016, 

Sinsabaugh et al. 2017) 

n Temperature sensitivity of rB mg C mg-1 C h-1 °C -4e-5 -1 4e-5 
(Gregorich et al. 1991, Gregorich et al. 

2000) 

fD 
Fraction of decomposed POC allocated to 

DOC 
- 0.3 0.7 (Wang et al. 2012, Wang et al. 2013) 

gD Fraction of dead MBC transferred to SOC - 0.3 0.7 (Pietikainen et al. 2005) 

iPOC Initial pool size of POC mg C g-1 1  soil 23 (Nadelhoffer et al. 1999) 

iMOC Initial pool size of MOC mg C g-1 30  soil 55 (Nadelhoffer et al. 1999) 

iQOC Initial pool size of QOC mg C g-1 0.1  soil 1.9 (Nadelhoffer et al. 1999) 

iMBC Initial pool size of MBC mg C g-1 0.02  soil 0.9 (Frey et al. 2008) 

iDOC Initial pool size of DOC mg C g-1 0.02  soil 0.9 (Compton et al. 2004) 

iEP Initial pool size of EP mg C g-1 0.0001  soil 0.007 (Brzostek and Finzi 2011a) 

iEM Initial pool size of EM mg C g-1 0.0001  soil 0.007 (Brzostek and Finzi 2011a) 
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POC: particulate OC;  MOC: mineral-associated OC; QOC: DOC associated with mineral surface; EP: enzymes for decomposition of POC; EM: 

enzymes for decomposition of MOC. 
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Figure captions 

Figure 1. MEND model outputs of daily soil CO2 efflux rate (mg C m-2 day-1

 

) at Harvard 

Forest better matched observational data with the inversion approach (red) compared to 

without the inversion (blue) in both control (a) and heated (b) conditions. 

Figure 2. Boxplots of temperature sensitivities of CUE (above) and rB (bottom) in control 

and heated conditions. Boxplots show means (dot), medians (line), 1st and 3rd quartiles (box, 

interquartile range or IQR), upper and lower extremes (whiskers). The whiskers were 

determined as equal to or less extreme than 1.5 times IQR against 1st and 3rd

 

 quartiles, 

respectively. P < 0.001 denotes significant difference between means in control and heated 

conditions. 

Figure 3. Mean (±SD) relative changes in percentage in SOC stock (top panel) and CO2 

emission (bottom panel) with warming (i.e. W5 vs. W0) based on 66-yr model projections 

using control and heated plot parameters under scenarios I~IV. Scenario details are presented 

in the Method section. 
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