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ABSTRACT 

Forest structural complexity (FSC) is an informative characteristic in forest management 

due to its connections to ecosystem resilience, biodiversity, and carbon sequestration. 

Despite its widespread use, quantifying FSC remains a challenge because of the many 

attributes that can comprise an assessment of FSC and ambiguity around what exactly is 

meant by “complexity.” Many assessments of FSC involve metrics derived from lidar data, 

yet there is not a clear understanding of how spatial extent impacts metrics of FSC. This 

thesis investigates the influence of spatial extent on FSC metrics and metric relationships in 

the context of New England mixed hardwood forests.  

Chapter 1 examines the role of spatial extent in FSC metrics. Analysis of correlations 

between FSC metrics across a range of plot sizes revealed relationships that suggest 

smaller plot sizes, with a radius of 10 meters or smaller, can be adequately representative 

of larger areas. This observation has implications for lidar data processing efficiency and 

cost-effectiveness.  

Chapter 2 explores the relationships between field-derived and lidar-derived metrics of 

FSC. Some noteworthy patterns emerged, emphasizing the significance of several classes of 

FSC characteristics, including size-related and canopy-related variables. The alignment of 

field-based and lidar-derived metrics underscores their complementarity in characterizing 

forest structure.  

This research elucidates some of the intricacies of quantifying FSC and identifies categories 

for comprehensive assessments of FSC, using canopy height, height diversity, canopy cover, 
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outer canopy complexity, and diameter diversity. This should provide a useful framework 

for future studies involving FSC assessments.  
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CHAPTER 1: The scale-dependency of lidar-derived metrics of forest structural complexity  

1.1 Introduction 

Assessing the diversity of an ecosystem is a complex matter. While the term “biodiversity” 

is a relatively recent invention (Sarkar, 2002), concepts and measurements of diversity in 

ecology have existed for the better part of a century (Sarkar, 2002; Simpson, 1949; Takacs, 

1996; Whittaker, 1972). Ecosystems can be characterized in a variety of ways, but 

frequently, researchers will describe ecosystems according to their species composition 

rather than their ecological processes like disturbance and nutrient cycling (Magurran, 

1988; Noss, 1990). While compositional diversity is meaningful, it does not necessarily 

characterize an ecosystem holistically (McElhinny et al., 2005). To address this shortfall, 

researchers have also suggested describing characteristics that pertain to the function and 

structure of an ecosystem (Franklin et al., 1981, 2002; Noss, 1990). 

Understanding forest structure is critical to sustainable forest management. In essence, 

forest structure is the spatial arrangement of trees, alive and dead, and their components 

relative to one another and the non-living components of the space they inhabit. By 

examining the structure of a forest, researchers can gain insights into the processes that 

control forest dynamics and, importantly, use findings to inform management decisions 

(McElhinny et al., 2005).  

Research on forest structure and ecosystem function has reinforced the importance of 

forest structural complexity (FSC) (Hardiman et al., 2011, 2013; E. LaRue et al., 2019; Thom 

& Keeton, 2019). Furthermore, the growing knowledge of FSC has led to an increasing 
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emphasis on creating structurally complex forest stands to promote ecosystem resilience, 

ecosystem function, productivity, carbon storage, and biodiversity  (Hardiman et al., 2011; 

Homeier et al., 2010; Jung et al., 2012; E. LaRue et al., 2019; Lindenmayer et al., 2000; 

Lindenmayer, 2019; R. H. MacArthur & MacArthur, 1961; Murphy et al., 2022).  

Traditional forest inventory metrics like DBH, tree height, and volume help quantify 

structural complexity but can be limiting on their own (McElhinny et al., 2005). This is why 

newer techniques have been developed to capture additional aspects of FSC such as the 

variation in canopy height and the vertical and horizontal distribution of vegetation (J. 

Atkins et al., 2018). Remote sensing tools, such as lidar, have proven useful in capturing the 

three-dimensional structure of forests to estimate FSC that would be either costly or 

impossible to obtain through traditional forest inventory methods (J. Atkins et al., 2020; 

Lefsky et al., 1999; Means et al., 2000). For example, lidar can characterize fine vegetation 

structure and quantify canopy variation that would be difficult to assess through manual 

measurements (J. Atkins et al., 2018).  

As remote sensing and mapping technologies have become more widely available, the 

number of methods for measuring structural complexity has increased dramatically. 

Terrestrial and aerial laser scanning (TLS and ALS) have made it possible to obtain 

accurate three-dimensional data on the structural features of forest stands (E. LaRue et al., 

2020; Lefsky et al., 1999). While both tools have drawbacks, they can effectively work in 

concert with one another (Hilker et al., 2012). Terrestrial laser scanning measures the 

forest from the ground, and can provide detailed sub-canopy data, but is limited in its 

ability to measure canopy features due to occluding foliage (Co te  et al., 2009; Watt & 
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Donoghue, 2005). On the other hand, aerial laser scanning measures forest canopy from 

above, providing highly detailed data on the canopy surface (Hilker et al., 2012). Because of 

the different perspectives, ALS and TLS can work together to provide a complete picture of 

forest canopy structure (E. LaRue et al., 2020).   

Both aerial and terrestrial laser scanning can provide accurate measurements of canopy 

height, cover and openness quickly over large areas (Lefsky et al., 1999). It is also possible 

to measure rugosity, rumple, and other geometric measures of complexity with the aid of 

laser scanning (Danson et al., 2007; Hardiman et al., 2011; Kane, Bakker, et al., 2010; Kane, 

McGaughey, et al., 2010). Rumple, which is a ratio of the area of a triangular irregular 

network (TIN) of treetops to the area of the triangles projected to the forest floor, has 

commonly been used in measures of structural complexity (Zenner & Hibbs, 2000). 

Increasing accuracy and availability of these metrics has allowed for more valid 

measurements of structural complexity.  

LiDAR datasets are commonly structured as “point clouds” which are datasets comprised of 

x, y, and z coordinates of points collected by a lidar instrument. Point clouds offer a three-

dimensional visual representation of an area. Using the three-dimensional point data, 

calculations can be made of a wide range of structural parameters.  

Despite the widespread use of lidar and other remote sensing tools to measure the 

structural complexity of forest ecosystems, there are still uncertainties regarding their 

scale dependence (J. Atkins et al., 2023). Patterns and processes can vary at different 

spatial extents (Levin, 1992; Qi & Wu, 1996; Wu, 2004). Two studies focused on the same 

phenomenon can yield apparently conflicting results because the phenomenon was 
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observed at two different spatial extents (Wiens, 1989; Wu, 1999). A pattern that exhibits 

considerable variation at one spatial extent could give the impression of greater uniformity 

when observed at a different scale (Jackson & Fahrig, 2015).  

There is not necessarily a ‘correct’ scale at which to study forest structural complexity or 

other ecological phenomena as different spatial extents can reveal different patterns and 

processes. However, it is important to consider the most appropriate scale for each 

research question. When assessing the right scale to use ecologists must consider the 

spatial extent necessary to capture important ecosystem processes, sometimes called the 

‘scale of effect’ (Jackson & Fahrig, 2015), as well as the limitations of their research 

methods. An important consideration in research methods is the labor cost of the 

methodology as researchers and technicians are limited by time. In many fields of research, 

there is usually a necessary trade-off between characterizing a subject at high detail but 

over a small extent, or low detail over a large extent (J. Atkins et al., 2023). When it comes 

to assessments of FSC, it appears that there isn’t a consistent approach to selecting spatial 

extent (J. Atkins et al., 2023).  

Determining the appropriate scale for an ecological study is critical to the validity of 

results. Simply choosing the scale at which a relationship displays the highest level of 

correlation shouldn’t be considered adequate (J. Atkins et al., 2023). This approach doesn’t 

necessarily consider all environmental conditions at all extents, nor the extent at which a 

given environmental variable becomes stable. The concept of representative elementary 

area (REA), which has been used in hydrology to assess the scale which best represents 

rainfall-runoff patterns and processes in watersheds. (Wood et al., 1988, 1990). REA, when 
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applied to other areas of ecology can be defined as the “smallest discernible point which is 

representative of the continuum” (Wood et al., 1990). This concept can be applied to 

measures of FSC in order to determine the appropriate scale at which to make 

measurements.  

This study aims to assess the scale-dependency of lidar-derived metrics of structural 

complexity. Using a range of plot sizes to quantify structural complexity, we hope to gain a 

better understanding of how certain commonly used metrics and indices respond to 

scaling.  

1.2 Methods 

1.2.1 Study Site 

This study was confined to the Upper Wild Ammonoosuc (WAMMO) watershed in the 

White Mountain National Forest (WMNF) (Figure 1). This area was chosen because it 

contains most forest types found within the WMNF and features topography that is 

representative of the greater WMNF region. The Upper Wild Ammonoosuc watershed has 

an elevation ranging from 330 to 1460 meters. Dominant forest types include spruce-fir 

and maple-beech-birch (McNab et al., 2007).  
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Figure 1 - Map of study area for chapter 1 and chapter 2. A- Upper Wild Ammonoosuc 

region. B- Cold River region. 

1.2.2 Stratified Random Sampling  

171 plot centers were selected with a stratified random sampling method to ensure a range 

of land cover types were represented. Strata were determined by topographic and soil 
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metrics, which included elevation, slope, aspect, topographic wetness and parent material 

(Colter, 2019). Strata were first separated into categories based on parent material and 

then further partitioned into strata based on slope and drainage (Colter, 2019). From this, 

strata were further divided into categories of timber and non-timber managed areas 

(Colter, 2019). Ultimately, there were 8 plots per strata, representing a range of vegetation 

patterns and land cover types. For further explanation, see Colter (2019).  

1.2.3 Lidar collection 

The lidar data used in this study was collected as part of the Umbagog NH/ME 2016 LiDAR 

project. The data collection was conducted by Keystone Aerial Surveys, Inc. The prime 

contractor responsible for all follow-on processing was Quantum Spatial, Inc. 

The lidar data acquisition for the whole project took place between spring 2016 and spring 

2018, during periods when there was no snow on the ground and rivers were at or below 

normal levels. The data used for this study comes from the MOD2 site, which was collected 

during November of 2017. The data covered a partial extent of six counties in New 

Hampshire and Maine, encompassing approximately 3,276 square miles. 

The lidar acquisition specifications varied based on the area of interest. For most areas, a 

nominal pulse spacing (NPS) of 0.7 meters was used, with a density of 2 pulses per square 

meter. However, in the White Mountain National Forest NH/ME areas, a finer NPS of 0.57 

meters was employed, along with an additional MOD2 WMNF addon area collected at 0.35 

NPS. The Riegl Q1560 sensor, with unlimited maximum returns, was used for the MOD2 

WMNF addon area.   
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All lidar data were collected using an airborne platform, with flight parameters set to 

achieve the desired specifications. The lidar data collection involved the use of three 

different lidar sensors: the Optech Galaxy T1000, Leica ALS70, and Riegl Q1560. The 

Optech Galaxy T1000 was operated at a flight height of 2,100 meters, a flight speed of 150 

knots, and a scan angle of 20 degrees. It had a scan rate of 53.4 Hz, a pulse repetition rate of 

260.4 kHz, a pulse duration of 3 ns, a pulse width of 0.525 microseconds, and a wavelength 

of 1064 nm. The Leica ALS70 was flown at a flight height of 2,100 meters, a flight speed of 

140 knots, and a scan angle of 18 degrees. It had a scan rate of 56 Hz, a pulse repetition rate 

of 262.6 kHz, a pulse duration of 4 ns, a pulse width of 0.46 microseconds, and a 

wavelength of 1064 nm. The Riegl Q1560 operated at a flight height of 2,300 meters, a 

flight speed of 130 knots, and a scan angle of 18 degrees. It had a scan rate of 67.6 Hz, a 

pulse repetition rate of 251.8 kHz, a pulse duration of 3 ns, a pulse width of 0.58 

microseconds, and a wavelength of 1064 nm.  

The lidar data used for this study were designated QL1, with a mean point density of 58.5 

points/m2.  



18 
 

 

Figure 2 - Depiction of lidar plot sampling methodology. Each plot was measured 8 times 

around the same plot center coordinates using different radii, ranging from 5 to 100 
meters. 

1.2.4 Lidar processing and structural complexity metrics 

Lidar data were acquired from USGS as LAS files, and processed using the lidR (Roussel et 

al., 2023) package in R (R Core Team, 2022). Unprocessed LAS files were downloaded as 

750m x 750m tiles and subsequently clipped in circles with 125m radii around each plot 

center, which accounted for a 25m buffer around the largest plot size chosen for this study. 

To remain consistent with field-measured plots, circular plots were used for lidar-derived 

metrics of structural complexity. Once clipped, the LAS files were normalized to a TIN-

derived digital terrain model, so that a canopy height model relative to an elevation of 0 

could be derived.  

To assess the relationship between metrics at different extents, each plot consisted of 8 

concentric circular boundaries with radii of 5, 10, 15, 20, 30, 50, 75, and 100 meters (see 
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Figure 2), and each metric was calculated across all plot sizes. 15 lidar-derived metrics 

were chosen based on their use in previous studies. These metrics included mean outer 

canopy height, rumple index, rugosity, standard deviation of Z (height of lidar point), 

entropy, vegetation area index (VAI), vertical complexity index (VCI), foliar height diversity 

(FHD), 25th and 95th percentile Z, mean crown area, mean gap profile, and a lidar-derived 

additive structural complexity index. See Table 1 for a full description of each lidar-derived 

metric.  

Table 1 - Description of all lidar-derived metrics of structural complexity 

Mean outer canopy height 
The mean Z value of first returns that are designated as 
outer canopy 

Maximum canopy height Maximum Z value 

Rumple index 

A measure of canopy surface roughness, the ratio of 
canopy surface area to its projected ground area 
(Jenness, 2004) 

Rugosity 
The standard deviation of outer canopy heights (Parker & 
Russ, 2004). 

Z SD The standard deviation of all Z values in a point cloud. 

Entropy 

A normalized Shannon vertical diversity index (Li & 
Reynolds, 1995; Liu et al., 2022; R. MacArthur et al., 
1966). 

Foliar height diversity 
Entropy normalized by maximum canopy height (J. 
Atkins et al., 2023; R. MacArthur et al., 1966).  

Gap fraction profile 

An assessment of the number of points that reach a 
certain layer and those that pass through the layer 
(Bouvier et al., 2015) 

Vegetation area index 

The sum of leaf area density, based on the method of 
Bouvier et al., (2015). It uses gap fraction profile and 
computes its log divided by an extinction coefficient.  

Vertical complexity index 
Fixed normalization of entropy from Van Ewijk et al. 
(2011) 

25th percentile Z 25th percentile Z value 

95th percentile Z 95th percentile Z value 

Maximum crown area Maximum crown area as calculated by tree segmentation. 

Mean crown area Mean crown area as calculated by tree segmentation. 
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LASCI 

Lidar-derived additive structural complexity index. Uses 
all lidar-derived metrics and rescales each to a value 
between 0-10. These are then added together to produce 
the LASCI value. This is similar to a method described by 
McElhinny et al. (2006). 

 

1.2.5 Statistical analyses 

After calculating all variables for each plot radius, metrics were assessed for pairwise 

correlations with the corresponding metric at the same plot at all extents used for this 

study. For this study, we used Pearson correlation coefficient. For example, mean Z 

calculated for a 5-meter radius plot was compared to the calculation of mean Z at the same 

plot with all larger radii. This was done to assess the relatedness of each metric to itself at 

different extents. 

Coefficients of variation (CV) were calculated for each metric at each plot size. This was 

used to assess how variation changed with increasing plot size.  

1.3 Results 

The WAMMO plots had a mean outer canopy height of 15.35 meters with a 15-meter plot 

radius, with a range of 3.81 to 22.63 meters across all plots. The foliage height diversity had 

a range of 1.86 to 3.14, with a 2.77 mean across all plots, while the mean vertical 

complexity index score was 0.61. See Table 2 for all calculations of the 20-meter radius plot 

size.  
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 Table 2 - Lidar-derived measurements from 15-meter radius plots 

 

Some of the variables had relatively low correlation values when comparing the 5m plot 

and the 100m plot, like entropy (r = 0.171, p < 0.05), rugosity (r = 0.376, p < 0.005), 

maximum crown area (r = 0.301, p < 0.005), mean crown area (r = 0.305, p < 0.005), the 

standard deviation of crown area (r = 0.195, p < 0.01). On the other hand, mean canopy 

height (r = 0.746, p < 0.005), rumple index (r = 0.629, p < 0.005), foliar height diversity (r = 

0.665, p < 0.005), 95th percentile Z (r = .790, p < .005), vegetation area index (r = 0.682, p < 

0.005), and vertical complexity index (r = .673, p < 0.005) all had higher correlation values 

between the 5m plot and the 100m plot. In general, correlations between adjacent radii 

were high, and tended to diverge as the difference in plot size increased.  With nearly all 

variables, the correlation between 5m and 10m plots was the lowest of all adjacent plot 

radii. For example, the correlation between the rugosity measure at 5m and that at 10m 

radius was 0.83, while correlations between all other adjacent plot radii were above 0.92. 

Also, regarding Z percentile, correlations between the smallest and largest plot size 

increased in value as Z percentile increased.  

 Mean Median Min. Max. SD  

Mean outer canopy height 15.35 16.19 3.12 22.64 3.82 

Maximum canopy height 23.39 24.05 10.49 34.24 4.19 

Rumple Index 3.43 3.33 1.97 6.03 0.77 

Rugosity 4.02 3.93 1.33 9.37 1.44 

Z SD 6.47 6.91 2.16 10.22 1.71 

Entropy 0.89 0.89 0.78 0.95 0.04 

FHD 2.78 2.82 1.87 3.15 0.20 

Gap fraction profile 0.93 0.93 0.87 0.97 0.02 

VAI 3.10 3.01 1.06 5.41 0.56 

VCI 0.61 0.62 0.41 0.69 0.04 

25th percentile Z 4.45 3.99 0.05 13.35 2.37 

95th percentile Z 19.02 20.16 6.35 26.47 4.11 
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Figure 3 - Correlograms displaying correlations between structural complexity metrics at 

different plot sizes (p < 0.01 for all r-values). A- Standard deviation of crown area. B- 

Vertical complexity index. C- Mean gap fraction profile. D- Vegetation area index 
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Figure 4 - Correlograms displaying correlations between structural complexity metrics at 

different plot sizes (p < 0.01 for all r-values). A- 95th percentile Z.  B- 25th percentile Z. C- 

Mean outer canopy height. D- Rumple index. 
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Figure 5 - Correlograms displaying correlations between structural complexity metrics at 

different plot sizes (p < 0.01 for all r-values). A- Mean crown area. B- Foliar height diversity. 

C- Rugosity. D- Entropy. 

Calculations of coefficients of variation (CV) (Table 3, Figure 6) for all variables at each plot 

size revealed differences in how CV changes as plot size increases. Across nearly all 

variables used, CV decreased as plot size increased. Furthermore, there were differences 

among variables in the ratio of the CV at the 100m plot to the CV at the 5m plot. Notably, 
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the CV for rugosity at 5m was found to be 50.01, while at the 100m plot, it was 30.18. 

Rumple had a CV of 32.71 at the smallest plot size and 17.50 at the largest. The ratio of CVs 

at the largest plot size to the smallest plot size was lowest for rumple (0.534), maximum 

crown area (0.319), mean crown area (0.383), vegetation area index (0.520), the standard 

deviation of crown area (0.278), and gap profile (0.418). The ratio was highest for mean 

canopy return height (0.785), 95th percentile Z (0.759), and entropy (0.761). The results 

here show that there are important differences in the way FSC metrics respond to scaling. 

Table 3 - CV% values for each structural complexity metric for each plot size. 

Plot radius (m) 5 10 15 20 30 50 75 100 

Mean crown area 43.61 24.95 19.81 19.83 18.27 17.98 17.68 16.72 

Mean outer canopy height 28.63 25.64 24.97 24.94 25.33 25.21 24.34 23.30 

Maximum canopy height 20.88 18.99 18.25 18.03 17.15 16.21 15.04 13.93 

Rumple index 32.57 25.08 23.42 22.40 20.69 18.56 17.59 16.86 

Rugosity 49.66 41.93 37.81 36.09 33.91 32.40 30.63 29.24 

SD Z 28.77 27.25 26.72 26.45 25.91 24.83 23.61 22.65 

Entropy 5.98 4.67 4.53 4.25 4.40 4.52 4.34 4.09 

Foliar height diversity 8.65 7.71 7.38 7.29 7.12 6.89 6.30 5.77 

Gap profile 3.32 2.62 2.30 2.09 1.86 1.61 1.49 1.32 

Vegetation area index 24.11 20.18 19.21 18.20 16.54 14.97 13.58 12.54 

Vertical complexity index 8.23 7.38 7.17 7.01 6.66 6.23 5.65 5.23 

Maximum crown area 32.82 23.35 18.86 17.37 15.45 12.60 10.72 9.46 

SD crown area 59.18 34.82 25.71 23.07 19.76 17.63 16.35 15.80 

25th percentile Z 67.18 56.91 54.45 53.29 51.23 46.82 43.57 41.43 

95th percentile Z 23.58 22.30 21.86 21.73 21.33 20.56 19.52 18.57 
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Figure 6 - Graphs of coefficients of variation for selected metrics at each plot size. For all 

calculated CVs, see Table 3. 

1.4 Discussion 

As ecological data are becoming more easily accessible, it is important to consider the 

quality and utility of available data (Nagy et al., 2021). Given that the data used in this study 

were used in large part because they were freely available for download, some of the 

motivation behind this study was to expand upon existing standards and to inform future 

studies. An initial exploration into these data prompted the driving question for this study: 
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is there an appropriate extent at which to measure aspects of structural complexity in 

forest sampling using lidar? 

There are many studies that have explored the use of lidar in characterizing forest 

structure (e.g., Atkins et al., 2018; Lefsky et al., 1999; Lim et al., 2003; Nelson et al., 1984). 

While several studies have sought to refine the criteria for acceptable lidar standards for 

use in forest inventories (e.g., Gobakken et al., 2008; Hayashi et al., 2014; E. A. LaRue et al., 

2022), the question of spatial extent remains cloudy. While there have been studies that 

explored the relationship between other forest characteristics and lidar data spatial extent , 

there have been relatively few studies that sought to understand the effect of scaling on 

FSC metrics (J. Atkins et al., 2023; Bankston et al., 2021; Chungan Li et al., 2022; Deo et al., 

2016; Frazer et al., 2011).  

All metrics used in this study have been previously used in lidar-based assessments of 

structural complexity. The high correlation values between the smallest and largest plot 

sizes for some of these metrics are somewhat surprising given the dramatic difference in 

area covered by these plots. For reference, a plot with a 100-meter radius has 400x the 

area of a plot with a 5-meter radius. With correlation values approaching .8 for some of 

these metrics, it stands to reason that smaller plot sizes can be sufficient for representing 

larger areas, depending on which metrics one is using. Given the computational demand of 

processing lidar data, especially high-density lidar, this result is important, and it may lead 

to less time spent processing lidar data. One of the major reasons for the proliferation of 

the use of lidar data in forest ecology is the relatively low labor cost involved in collecting 
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data (Hummel et al., 2011). However, the cost is not insignificant when it comes to both the 

financial and labor investment in collecting and processing lidar data (Jeong et al., 2018).   

In this study, the high correlation values between the smallest and largest plot sizes for 

some of these metrics are somewhat surprising given the dramatic difference in area 

covered by these plots. A plot with a 100-meter radius has 400x the area of a plot with a 5-

meter radius. With correlation values approaching .8 for some of these metrics, it stands to 

reason that smaller plot sizes can be sufficient for representing larger areas, depending on 

which metrics one is using. Given the computational demand of processing lidar data, 

especially high-density lidar, this result is important, and it may lead to less time spent 

processing lidar data.  

It is worth noting that the differences in how these metrics scale is not indicative of any one 

metric being “better” than any other. For example, the lower correlation between rugosity 

of the 5m plot and rugosity of the 100m plot compared to the correlation between rumple 

indices at the smallest and largest plots doesn’t necessarily mean that rumple is more 

useful a metric than rugosity. However, it does shed some light on the appropriate uses of 

each metric. In this example, one takeaway could be that rugosity might be a better metric 

to use for fine-scale assessments of FSC, while rumple index might be a more useful metric 

for extrapolating information from small plots to the larger stand. Ultimately, this indicates 

that the REA differs between metrics. Wood et al. (1988), in their study and introduction of 

the concept of REA in the context of hydrology posit that REA can vary and is influenced by 

a variety of factors, like topography. When it comes to determining REA for forests, this is 
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likely to be the case as well, and this study helps elucidate which factors to consider when 

determining REA in this region.  

These results can help determine the REA for FSC metrics of interest in New England mixed 

hardwood forests. While this study will shed light on how spatial extent affects FSC metrics 

generally, researchers should proceed with caution as this study only focused on one 

region in the WMNF. Forest structure varies significantly across forest types, and it has 

already been found that REA will vary in different forest types, too (J. Atkins et al., 2023). 

This study did not explore the relationships between the FSC metrics and other ecological 

variables (e.g., wildlife interactions) at different spatial extents, but this would be a 

worthwhile future direction. Determining the scale of effect that some of these metrics 

have with other variables will also be useful in establishing methodologies for using lidar in 

ecological studies (Jackson & Fahrig, 2015). 

1.5 Conclusions 

For many of these metrics with high correlation values between the smallest and largest 

plots, the 5-meter radius plot might be a sufficient REA. However, other aspects of FSC will 

require larger extents for their REA. This is a promising finding for the practical 

implementation of FSC metrics in forest management and conservation. This should lead to 

less time and lower cost of processing lidar data for FSC metrics.  
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2 CHAPTER 2: Forest structural complexity metric relationships and the compatibility of 

field and lidar-derived variables in New England mixed hardwood forests 

2.1 Introduction 

Understanding forest structure is critical to sustainable forest management. The growing 

knowledge of forest structural complexity has led to an increasing emphasis on creating 

complex forest stands to promote ecosystem resilience, ecosystem function, productivity, 

carbon storage, and biodiversity  (Hardiman et al., 2011; Homeier et al., 2010; Jung et al., 

2012; E. LaRue et al., 2019; Lindenmayer et al., 2000; Lindenmayer, 2019; R. H. MacArthur 

& MacArthur, 1961; Murphy et al., 2022). As a result, there is now an understanding that 

complexity is an informative characterization in forest management (Fahey et al., 2018; 

Puettmann & Messier, 2019). 

A common goal of sustainable forest management is the conservation of biodiversity. In 

looking at forest structure, it is possible to identify attributes of a forest that broadly 

impact biodiversity (Lindenmayer et al., 2000). It has been shown that species richness is 

correlated with spatial heterogeneity in ecosystems (Stein et al., 2014), although there can 

be variation between species groups (Tews et al., 2004). There are also many known links 

between certain forest structural attributes and the presence and abundance of certain 

species (Gibbons et al., 2002; Jung et al., 2012; R. H. MacArthur & MacArthur, 1961). Early 

work by MacArthur et al. (1966) showed a connection between vertical forest structure 

(i.e., the arrangement of branches in a forest) and bird abundance. It has been found more 

recently that a more structurally complex forest can lead to increased diversity of bats 

(Jung et al., 2012). 
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Beyond biodiversity, forest structural complexity can have a broad impact on the resilience 

and function of a forest ecosystem (Fahey et al., 2015). Generally, though with some 

exceptions, ecosystems with more plant diversity exhibit higher net primary production 

(Hooper et al., 2005). The relationship between structure, function, and productivity has 

only more recently been extensively researched. It has been shown that there is a 

correlation between certain structural complexity metrics and rates of primary production 

(Gough et al., 2016, 2019; Hardiman et al., 2011) and ecosystem function (E. LaRue et al., 

2019). One study found that in some forest systems, canopy rugosity is positively 

correlated with net primary production (Gough et al., 2019). Resource-use efficiency, 

specifically light and water, has also been shown to be correlated with structural 

complexity (J. W. Atkins et al., 2018; Murphy et al., 2022) 

As climate change progresses, another common goal of sustainable forest management is 

maximizing carbon sequestration and storage in an effort to mitigate the effects (Bravo et 

al., 2008; Johnson & Curtis, 2001; Lal, 2005; Nunery & Keeton, 2010). Forests have the 

potential to sequester and store large amounts of carbon, and efforts to maximize carbon 

storage could have global effects. It has been shown that more structurally complex, late-

successional and old growth forests tend to have higher above-ground carbon stocks than 

early- or mid-successional forests (Gunn et al., 2014; Thom & Keeton, 2019). Although, this 

isn’t always the case. For example, in the northeast United States, stands affected by spruce 

budworm can exhibit higher rates of mortality decades after defoliation (Taylor & 

MacLean, 2009). To better understand the effects of structural complexity on carbon 

storage dynamics, the relationship between complexity and stand age must also be better 

understood. Currently, it is unclear to what extent structural complexity increases with 
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stand age. It has been suggested that, in some cases, forests with old-growth attributes 

aren’t necessarily more complex than stands in earlier successional stages (Zenner, 2004), 

even though some studies suggest that structural complexity can increase with stand age 

(Bradford & Kastendick, 2010). So, it is important to better understand the relationship 

between structural complexity and development stage.  

Quantifying structural complexity in a forest can be challenging due in part to the number 

of attributes used, along with a lack of clarity around what exactly is meant by “complexity” 

(Loke & Chisholm, 2022). In addition, it is not easy to define complexity, and, in ecology, 

has often been used interchangeably with diversity and heterogeneity, which adds to the 

ambiguity (Li & Reynolds, 1995; Loke & Chisholm, 2022).  

Many approaches can be used to measure structural complexity (McElhinny et al., 2005; 

Pommerening, 2002; Staudhammer & LeMay, 2001). Early measurements of complexity 

involved direct measurements of structural components such as foliage height diversity (R. 

H. MacArthur & Horn, 1969). However, as the literature on FSC has expanded, and newer 

technology became available, the number of attributes comprising a FSC assessment has 

grown. The list of attributes historically used to measure FSC is too long to list here. Still, 

much of the available literature has included metrics of canopy strata (e.g., MacArthur & 

MacArthur, 1961), tree dbh (e.g., Franklin & Spies, 1991), tree heights (e.g., DeWalt et al., 

2003), basal area of large trees (e.g., Franklin & Spies, 1991), and deadwood components 

(e.g., Gibbons et al., 2002).  

Some measures of FSC use diversity indices to assess the diversity of measurable stand 

attributes like dbh, total heights, or foliage heights (Schulte & Buongiorno, 1998; 
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Staudhammer & LeMay, 2001).  The Shannon index, commonly used to quantify species 

diversity, has also been used to assess structural attributes' diversity (Buongiorno, 2001; 

Schulte & Buongiorno, 1998). This requires breaking down continuous variables, like dbh 

and height, into discrete bins or classes, which involves some degree of subjectivity in 

deciding the intervals to use. Rather than using the proportion of individuals in each 

diameter or height class, when assessing structural diversity, the index is based on the 

proportion of basal area within each bin. 

Not all indices are equal, of course, and it has been argued that some are more effective 

than others when assessing structural complexity (Lexerød & Eid, 2006; Loke & Chisholm, 

2022). It has been suggested that diversity indices may be insufficient for measuring 

structural complexity, and that measures of equitability, such as the Gini coefficient, are 

more useful to employ (Valbuena et al., 2012). The Gini coefficient has historically been 

used to describe wealth and income inequality (e.g., Dasgupta et al., 1973). However, more 

recently, it has also been applied to measure structure in plant communities (Weiner & 

Solbrig, 1984). One of the arguments for using the Gini coefficient over other diversity 

indices is that it has been found to discriminate more effectively between varying diameter 

distributions (Lexerød & Eid, 2006). It can also be argued that the ranking of equitability 

produced by measuring the Gini coefficients of diameter distributions in different forest 

stands is logical and easy to interpret, with a value of 1 indicating a highly even distribution 

across size classes, and 0 indicating nearly all trees falling into one size class (Lexerød & 

Eid, 2006).  
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Given the seemingly endless methods of quantifying FSC, it is a worthwhile endeavor to 

assess commonly used metrics. Many of these metrics may be used interchangeably to an 

extent, despite the findings that suggest different metrics reveal different aspects of forest 

structure (Valbuena et al., 2012). It is important to understand these applications of 

measurements of FSC to better serve the needs of forest management. The relationships 

between metrics of FSC are also not well understood. Specifically, the relationship between 

traditional field-based metrics of FSC, and lidar-derived metrics of FSC is an area that 

should continue to be explored.  

This study evaluates some commonly used metrics of FSC, assessing the relationship 

between field-based and lidar-derived metrics. It also evaluates the validity of metrics of 

FSC to help determine the appropriateness of these metrics in the context of forest 

structural assessments. Here, we intend to identify and analyze various metrics and 

determine their strengths and limitations in capturing FSC. Furthermore, we investigate 

the degree of complementarity between field- and lidar-derived metrics of FSC. Overall, 

this study aims to analyze and compare different metrics and approaches to measuring FSC 

to determine their suitability for characterizing forest structure. 

2.2 Methods 

2.2.1 Study site and stratified random sampling 

 

This study took place within two primary locations in the WMNF, the Upper Wild 

Ammonoosuc watershed (WAMMO) and the Cold River (CR) region. Both WAMMO and CR 
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were chosen because they exhibit a range of forest types and topography that are 

representative of the WMNF. The WAMMO watershed and CR region have an elevation 

ranging from 330 to 1460 meters. Dominant forest types include spruce-fir and maple-

beech-birch (McNab et al., 2007). For additional details on the WAMMO site, refer to 

chapter 1.  
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Figure 7 - Map of study area for chapter 1 and chapter 2. A- Upper Wild Ammonoosuc 

region. B- Cold River region. In the WAMMO region, both QL1 and QL2 lidar data were 

used. In the Cold River region, only QL2 lidar data were used. 
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At the WAMMO site, 171 plot centers were selected with a stratified random sampling 

method. Strata were determined by topographic and soil metrics. For additional details on 

sampling stratification, see Colter (2019). 

At the CR site, 75 plot centers were selected with a similar stratified random sampling 

method, which was determined by topographic and soil metrics.  

2.2.2 Lidar collection 

The QL1 lidar data used in this study for the WAMMO region and the QL2 lidar data for the 

CR region were collected as part of the Umbagog NH/ME 2016 LiDAR project. The data 

collection was conducted by Keystone Aerial Surveys, Inc. The prime contractor 

responsible for all follow-on processing was Quantum Spatial, Inc. 

The lidar data acquisition took place between spring 2016 and spring 2018, during periods 

when there was no snow on the ground and rivers were at or below normal levels. The data 

covered a partial extent of six counties in New Hampshire and Maine, encompassing 

approximately 3,276 square miles. For specifications of instruments used, refer to chapter 

1.  

Most of the lidar data acquired for this study was designated QL2, but a section of the 

WMNF, section MOD2, was designated QL1. The lidar data that were designated QL1, with a 

mean point density of 58.5 points/m2. The QL2 lidar data had a mean point density of 7.22 

points/m2. In the WAMMO region, both QL1 and QL2 lidar data were used. 

The QL2 lidar data used in this study for the WAMMO region were obtained from Photo 

Science, Inc. as part of the White Mountain National Forest Lidar project. The project aimed 
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to collect lidar data for a high-resolution dataset covering an Area of Interest (AOI) of 

approximately 187 square miles within the White Mountain National Forest in New 

Hampshire. The lidar data collection was carried out between November 2010 and April 

2012, during periods when there was no snow on the ground and rivers were at or below 

normal levels. 

The lidar data were collected using an airborne platform and followed the U.S. Geological 

Survey National Geospatial Program Base LIDAR Specification, Version 13. The data 

acquisition involved a nominal pulse spacing (NPS) of 1.0 meter to ensure high-resolution 

coverage of the study area. The data were collected in raw flightline swath format using an 

Optech sensor. 

The lidar data were developed based on a horizontal projection and datum of UTM NAD83, 

UTM Zone 19, in meters. The vertical datum used was NAVD1988 (GEOID09) in meters. 

The lidar data were processed to create classified LAS 1.2 files, which were formatted into 

individual 2000m x 2000m tiles. Corresponding 1.0 meter gridded Raster DEM Files were 

also created and tiled to the same 2000m x 2000m standards. 

The lidar data processing and analysis were conducted using various software tools, 

including MicroStation Version 8, TerraScan Version 12, TerraModeler Version 12, GeoCue 

Version 2011.1.20.3, ESRI ArcGIS 10.0, and Global Mapper 13. Optech DashMAP 5.2000 

software was used for the initial calibration of the lidar data. 

The raw flightline LAS files were used to create various project-specific datasets, including 

intensity images, tiled LAS files, breaklines, bare-earth DEMs, triangular irregular networks 

(TINs), and fully classified LiDAR LAS files. The classified LAS files represented the 
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manually reviewed bare earth surface, which facilitated the creation of intensity images, 

breaklines, and raster DEMs. The raster DEM files, in turn, were used to visualize the digital 

elevation model of the LAS Class 2 surface and generate contours. 

2.2.3 Lidar processing and structural complexity metrics 

Lidar data were acquired from USGS as LAS files, and processed using the lidR (Roussel et 

al., 2023) package in R (R Core Team, 2022). Unprocessed LAS files were downloaded as 

750m x 750m tiles and subsequently clipped in circles with 125m radii around each plot 

center, which accounted for a 25m buffer around the largest plot size chosen for this study. 

To remain consistent with field-measured plots, circular plots were used for lidar-derived 

metrics of structural complexity. Once clipped, the LAS files were normalized to a TIN-

derived digital terrain model, so that a canopy height model relative to an elevation of 0 

could be derived.  

Structural complexity metrics were calculated using the lidR package (Roussel et al., 2023). 

The specific metrics calculated were chosen because of their use in previous studies. The 

metrics included mean Z, rumple index, rugosity, standard deviation of Z, entropy, 

vegetation area index (VAI), vertical complexity index (VCI), foliar height diversity (FHD), 

25th and 95th percentile Z, mean crown area, mean gap profile, and a lidar-derived additive 

structural complexity index. For more detail on lidar-derived metrics, see chapter 1 and 

Table 2. 
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2.2.4 Field Sampling 

At each plot, field crews performed a nested plot inventory. Within a 4.23-meter radius, all 

living and dead woody stems between 2.5 cm and 12.6 cm DBH were tallied and their DBH 

was measured. Within a 10-meter fixed radius plot, all stems 12.7 cm to 30.0 cm DBH were 

tallied. For stems 30.1 cm DBH and larger, a Spiegel-relascope with a metric BAF 2.25 

m2/ha was used to tally trees. For all trees counted as “in” with a metric BAF 4 m2/ha, total 

height, height to base of crown, and crown radius were measured.  

 

Figure 8 - Diagram of field sampling methodology. Two nested, fixed radius plots with 

additional prism sampling (BAF 2.25) beyond outer plot radius. 
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2.2.5 Field-derived measurements and calculations 

From the measurements made in the field, we made additional calculations on stand 

characteristics. These included trees per hectare, standing dead (snags) trees per hectare, 

basal area per hectare (m2/ha), snag basal area per hectare (m2/ha), additive stand density 

index (ASDI), and the ratio of ASDI to stand density index (SDI) (1-ASDI/SDI).  

Table 4 - Description of field-derived metrics used in this study. 

Trees/ha 
Estimated number of individual trees per hectare at each 
plot. 

Snags/ha 
Estimated number of standing dead trees per hectare at each 
plot. 

BA/ha 
Estimated total combined basal area, or cross-sectional area 
at breast height, at each plot.  

Snag BA/ha 
Estimated total combined basal area of standing dead trees at 
each plot.  

QMD Quadratic mean stem diameter at breast height. 

ASDI 

Additive stand density index, calculated as 

∑𝑁𝑖(
𝐷𝑖
𝐷𝑟
)𝑎 

Where 𝑖 indicates the stand’s 𝑖th component, 𝑁𝑖 is the 
number of trees per hectare, 𝐷𝑖  is the diameter of the 𝑖th 
component, and 𝐷𝑟 is the reference diameter, which is 25 cm 
if using metric units. 𝑎 is a constant, for which 1.605 was 
used. (Curtis, 1970; Long & Daniel, 1990) 

1 - (ASDI/SDI) 
The ratio of ASDI to traditional stand density index (Ducey, 
2009; Reineke, 1933) 

Trees/ha >40cm 
Estimated number of individuals with DBH greater than 40 
cm. 

DBH class H’ 

Diameter class diversity index. Uses Shannon’s index to 
calculate probability that a random individual picked would 
come from a certain diameter class. Diameter classes were 
made up of 10 cm ranges (e.g., 0-10, 10-20, 20-30 cm, etc.) 
Proportion of the total population was calculated using basal 
area.  

Species H’ Shannon’s diversity index of species. 

DBH class Gini coefficient 

A measure of inequality or evenness across diameter classes 
(Dasgupta et al., 1973; Loke & Chisholm, 2022). Calculated 
using DescTools (Signorell, 2022) 
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FASCI 
Field-derived additive structural complexity index (see LASCI 
for calculation). 

ASCI 
Additive structural complexity index; the sum of FASCI and 
LASCI. 

 

Additionally, several metrics were calculated to characterize the complexity of the plot, 

which included Shannon’s index of DBH class (DBH class H’), species H’, Gini coefficient of 

DBH class, and a field-derived additive structural complexity index (FASCI). FASCI was 

calculated by rescaling all listed metrics to fall between 0 and 10, and then adding them 

together. The inclusion of this novel additive structural complexity index is not necessarily 

to suggest that it be used by others to assess FSC. Rather, it is intended to illuminate the 

relationships between lidar-derived metrics and field-derived metrics of FSC. 

To calculate DBH class H’, trees were separated into DBH classes made up of 10cm 

intervals. We calculated DBH class H’ using the proportion of basal area in each DBH class. 

The number of large diameter trees was also calculated, as they can be an important 

indicator of forest structure (Lutz et al., 2018). For this study, 40 cm was chosen as the 

threshold for “large-diameter” trees. According to a study by Lutz et al. (2018), the 

threshold for “large-diameter” trees in this region was 37 cm, but we rounded up because 

we were using dbh class bins of 10 cm intervals. Gini coefficient of DBH class was 

calculated using the DescTools R package (Signorell, 2022). For full description of metrics 

calculated, see Table 4. 

2.2.6 Data analysis 

Summary statistics for each metric were calculated. Then the calculated metrics were 

analyzed using a series of principal components analyses. A PCA of the QL1 metrics alone, 
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QL2 metrics alone, QL1 metrics with field-derived metrics, and QL2 with field-derived 

metrics was used to assess the relationships between the FSC variables. PCAs were 

computed using the FactoMineR R package (Le et al., 2008), and visualizations were 

created using the factoextra R package (Kassambara & Mundt, 2020). For the PCAs which 

analyzed lidar- and field-derived metrics together, 11 metrics from each category, plus the 

associated additive indices were used. The variable contributions and correlation values 

with primary axes were also calculated.  

2.3 Results 

2.3.1 Field and lidar calculations 

At the WAMMO site, the mean trees above 2.5 cm dbh per hectare found across all plots 

was 2660.15, while the total basal area had a mean value of 35.73 m2/ha. The quadratic 

mean diameter across all plots was found to be 15.47 cm. The mean number of large-

diameter trees was 15.94 per hectare. The Shannon’s index of DBH class had a mean value 

of 1.46 with a range from 0.62-2.01. From the QL1 lidar data, a mean outer canopy height of 

15.43 was found across all plots. A range of vertical complexity index values between 0.42 

and 0.69 with a mean of 0.61. The mean rugosity was 3.84, while the mean rumple index 

was 3.41. For detailed summary statistics, see Table 5.  

Table 5 - Field- and QL1 lidar-derived metrics from WAMMO site.For full explanations of 

metrics, see Table 1 and Table 4. 

 
Min. Max. Median Mean SD 

Lidar-derived metrics      
Mean outer canopy height (m) 3.16 22.60 16.41 15.43 3.83 
Max. canopy height (m) 10.41 31.07 23.63 22.78 4.12 
Rumple 1.90 5.98 3.23 3.41 0.80 
Rugosity 1.24 8.97 3.71 3.84 1.44 



44 
 

Entropy 0.75 0.96 0.89 0.89 0.04 
SD Z 2.17 10.05 6.84 6.44 1.71 
VAI 1.05 5.75 3.01 3.13 0.60 
VCI 0.42 0.69 0.61 0.61 0.04 
SD crown area 5.30  28.17 16.37 16.13 4.11 
Foliar Height Diversity 1.87 3.17 2.80 2.76 0.20 
25th Percentile Z (m) 0.06 14.04 4.07 4.53 2.47 
95th Percentile Z (m) 6.42 26.25 20.08 18.91 4.11 
Mean crown area 14.00 51.35 33.93 33.96 6.74 
Mean gap profile 0.87 0.97 0.93 0.93 0.02 
LASCI 56.05 111.78 97.17 94.24 9.72 

Field-derived metrics      
Trees/ha 228.02 18267.2 2001.04 2660.15 2601.15 
Snags/ha 0 3711.19 185.12 353.99 509.95 
BA/ha (m2/ha) 0.97 83.89 34.28 35.73 13.06 
Snag BA/ha (m2/ha) 0 22.21 4.13 5.14 4.55 
QMD (cm) 5.65 37.06 13.92 15.47 5.63 
ASDI 133.48 8859.55 2113.94 2449.75 1376.55 
1 - (ASDI/SDI) 0.04 0.57 0.32 0.31 0.12 
Trees/ha >40cm DBH 0 45.29 14.63 15.94 12.12 
DBH class H’ 0.62 2.01 1.5 1.46 0.28 
species H’ 0 2.04 1.13 1.12 0.39 
DBH class Gini coefficient 0.19 0.61 0.31 0.32 0.06 
FASCI 30.82 79.62 66.83 65.85 7.63 

ASCI 74.49 168.01 146.45 143.96 13.18 

Point cloud density (points/m2) 30.45 86.02 57.64 58.59 11.75 

 

The QL2 lidar data for the WAMMO region showed a mean outer canopy height of 12.56. 

The mean rumple index was 4.77, while the mean rugosity was 5.35. Across these plots 

with this set of lidar data, VCI was measured to have a mean of 0.55. The point cloud 

density for this region had a mean value of 5.63 points/m2. 

Table 6 - QL2 lidar-derived calculations for WAMMO region. For field-derived metrics, see 

Table 5. 

 Min. Max. Median Mean SD 

Lidar-derived metrics 
Mean outer canopy height (m) 0.52 21.12 12.59 12.56 3.64 
Max. canopy height (m) 5.56 35.1 22.39 21.62 3.64 
Rumple 1.34 10.99 5.08 5.35 1.98 
Rugosity 0.87 9.54 4.64 4.77 1.81 
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Z SD 0.47 0.94 0.85 0.82 0.09 
Entropy 1.12 10.25 6.70 6.52 1.74 
VAI 0.13 4.38 2.37 2.44 0.73 
VCI 0.18 0.67 0.56 0.55 0.07 
Mean crown area (m2) 0.73 49.40 25.43 25.07 8.50 
SD crown area 2.77 21.14 11.62 11.58 3.66 
Foliar Height Diversity 0.80 3.06 2.53 2.51 0.32 
25th Percentile Z (m) 0.02 9.97 0.43 1.90 2.17 
95th Percentile Z (m) 3.25 25.10 19.08 18.16 4.10 
LASCI 15.78 86.69 68.67 67.87 9.34 

Point cloud density (points/m2) 0.92 13.36 5.15 5.63 1.97 

 

The CR region had a mean value of 1738.85 trees with a DBH above 2.5 cm, per hectare, a 

mean total basal area of 35.20 m2/ha. The quadratic mean diameter across all plots was 

18.64 cm. The mean Shannon’s index of DBH class value was 1.51 with a range of 0.54 to 

2.08. With large-diameter trees, a mean value of 21.69 individuals per hectare was found.   

The QL2 lidar data from the CR region had a mean value of 7.22 points/m2. Regarding lidar-

derived metrics, a mean outer canopy height of 11.34 meters was found across all plots. 

The mean 95th percentile Z value was 18.97 meters. The mean crown area of crowns 

measured was 22.94 m2. The VCI calculated in the CR region ranged from 0.15 to 0.68, with 

a mean value of 0.53. For additional details, see Table 7.  

Table 7 - Field- and QL2 lidar-derived calculations from the Cold River region. 

 Min. Max. Median Mean SD 

Lidar-derived metrics 
Mean outer canopy height (m) 0.64 21.43 11.24 11.34 3.69 
Rumple 1.93 12.10 7.64 7.23 2.43 
Max. canopy height 9.36 38.02 23.11 23.1 4.62 
Rugosity 1.96 12.84 5.97 5.70 1.72 
Z SD 0.25 0.94 0.80 0.78 0.12 
Entropy 2.25 13.28 6.82 6.93 1.93 
VAI 0.17 5.38 1.93 2.07 0.91 
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VCI 0.15 0.68 0.55 0.53 0.08 
Mean crown area (m2) 7.92 36.13 22.72 22.94 6.38 
SD crown area 6.01 20.61 11.99 12.23 3.00 
Foliar height diversity 0.68 3.10 2.50 2.43 0.39 
25th percentile Z (m) 0.01 13.58 0.12 1.35 2.80 
95th percentile Z (m) 6.71 34.58 18.45 18.97 4.58 
LASCI 22.54 94.69 67.97 67.62 9.95 

Field-derived metrics 
Trees/ha 200.77 6717.38 1491.89 1738.85 1156.13 
Snags/ha 0.00 1842.64 95.49 201.22 303.94 
BA/ha (m2/ha) 5.19 70.27 34.77 35.20 9.58 
Snag BA/ha (m2/ha) 0.00 15.54 2.25 3.05 3.01 
QMD (cm) 5.89 51.06 17.24 18.64 7.53 
ASDI 222.96 3471.92 2168.65 2214.86 658.11 
1 - (ASDI/SDI) 0.06 0.52 0.32 0.32 0.10 
Trees/ha >40cm 0.00 68.79 19.04 21.69 16.68 
DBH class H’ 0.54 2.08 1.58 1.51 0.27 
species H’ 0.16 2.11 1.24 1.15 0.44 
DBH class Gini coefficient 0.19 0.46 0.30 0.31 0.05 
FASCI 41.90 74.18 65.51 64.18 6.83 

ASCI 64.44 168.13 132.70 131.79 15.31 

Point cloud density 
(points/m2) 2.66 19.08 6.89 7.22 3.60 
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2.3.2 Principal components analysis 

 

Figure 9 - Q1 lidar biplot. 

The lidar-only PCAs showed similar patterns regarding the influence of chosen variables on 

the spatial arrangement. The vertical axis, PC2, has apparently strong, positive correlation 

with VAI and 25th percentile Z in both lidar-only PCAs.  In the QL1 PCA (Figure 8), 73.4% of 

variation was explained by the first two axes, while in the QL2 PCA (Figure 9), 81.4% of the 

variation was explained by the first two axes.  
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Figure 10 - QL2 lidar biplot 

The top five variable contributions to PC1 (Figure 10) of the QL1 PCA were 95th percentile 

Z, maximum canopy height, standard deviation of Z, foliar height diversity and vertical 

complexity index. The top two variable contributions to PC2 of the QL1 PCA were 

vegetation area index and 25th percentile Z, both contributing over 20% of the variation 

displayed in PC2. The top five variable contributions to the QL2 PCA (Figure 11) were 95th 

percentile Z, maximum canopy height, standard deviation of Z, rugosity, and mean outer 

canopy height. The top three variable contributions to PC2 of the QL2 PCA were vegetation 

area index, entropy, and 25th percentile Z.  
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Figure 11 - QL1 lidar metrics PCA variable contributions. Top: contribution % of variables 

to PC1. Bottom: contributions of variables to PC2. The dashed red line marks the expected 
average contribution of a given variable. 



50 
 

 

Figure 12 - QL2 lidar PCA variable contributions. Top: contributions of variables to PC1. 

Bottom: contribution of variables to PC2. The dashed red line marks the expected average 
contribution of a given variable. 
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In the PCA which includes the QL1 lidar data merged with field data (Figure 12), the first 

two axes explain 57.2% of the variation combined. In the PCA which includes the QL2 lidar 

data merged with field data (Figure 13), the first two axes explain 58.5% of the variation. In 

both merged biplots, similar patterns to the lidar-only PCAs are seen with some of the 

variables. 25th percentile and VAI appear to be positively correlated with the second axis. In 

the case of the lidar-only PCAs and the combined PCAs, the variation along the horizontal 

(first) axis seems to be related to size and height (e.g., mean outer canopy height, Shannon’s 

index of DBH class, 95th percentile Z), while the variation along the vertical (second) axis 

seems to be more related to canopy closure or density (e.g., 25th percentile Z and VAI).  

 

Figure 13 - PCA featuring QL1 lidar metrics merged with field-derived metrics. All plots 

sampled are within the WAMMO region.  
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Figure 14 - PCA featuring QL1 lidar metrics merged with field-derived metrics along with 

lidar point clouds to visualize the forest structure represented by the biplot. 
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Figure 15 - PCA of QL2 lidar-derived metrics combined with field-derived metrics. 

 

Figure 16 - PCA QL2 lidar-derived metrics combined with field-derived metrics with added 

lidar point clouds to visualize plots based on their placement in the PCA. 
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Of the selected field-derived metrics, three of them had strong correlations (r > 0.6) with 

QL2 lidar-derived metrics. The ratio of ASDI to SDI, large-diameter trees per hectare, and 

Shannon’s index of DBH class all correlated positively with mean outer canopy height, 

standard deviation of Z and 95th percentile Z. 

 

Figure 17 - selected QL2 variables and their correlations with one another and selected 
field-derived metrics. All correlations are significant to p < 0.01. 
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2.4 Discussion 

Forest structural complexity (FSC) is an informative characteristic when it comes to 

sustainable forest management. It has been shown to be associated with ecosystem 

resilience, biodiversity, and carbon sequestration (Fahey et al., 2015; Hardiman et al., 2013; 

E. LaRue et al., 2019). This study assessed FSC metrics and their relationships by analyzing 

field measurements and lidar data side-by-side from common forest types in New 

Hampshire. These findings provide valuable insights into the understanding of 

measurements of FSC.  

The principal components analysis (PCA) showed some important relationships between 

selected metrics. The first two axes on all PCAs explained a substantial portion of the 

variation exhibited by the plots. One trend worth noting is the types of variables that were 

associated with each of the first two axes. In all four PCAs performed in this study, the 

variables most associated with the first axis tended to be variables related to size (e.g., 

mean outer canopy height, 95th percentile Z, and Shannon’s index of DBH class; i.e., vertical 

structure), while the variables most associated with the second axis tended to be variables 

related to canopy cover and density (e.g., 25th percentile Z and vegetation area index; i.e., 

horizontal structure). 25th percentile Z is more associated with canopy cover (i.e., 

horizontal structure) than higher percentile Z because, though trees between plots may be 

of similar height, if they are more densely spaced, the 25th percentile value will be higher 

because fewer lidar points reach the ground. This result is similar to what was found by 

Kane, McGaughey, et al. (2010), in a study of the relationship between field- and lidar-

based metrics of forest structure.  



56 
 

Other studies have sought to understand the relationship between ground-based metrics, 

whether that is terrestrial lidar- (e.g., LaRue et al., 2020) or non-lidar-based (Kane, 

McGaughey, et al., 2010; Næsset, 2002) and aerial-based metrics of forest structure. Past 

studies have demonstrated the compatibility of aerial lidar-derived forest metrics and 

metrics derived from other sources. This study tends to find similar relationships between 

these metrics. 

Three of the field-derived metrics displayed strong, positive correlations with lidar-derived 

metrics, namely Shannon’s index of DBH class, the ratio of ASDI to SDI, and number of 

large-diameter trees per hectare. All of these metrics have been shown to have important 

implications for the complexity of stand structure (Ducey, 2009; Ducey & Larson, 2003; 

Long & Shaw, 2005; Lutz et al., 2018; Staudhammer & LeMay, 2001). Looking at the PCA, 

there is also an apparent similar contribution to the arrangement of plots between these 

three metrics and commonly-used lidar-derived metrics of structural complexity, like VCI, 

standard deviation of Z, rumple index, and rugosity. This indicates that perhaps these field-

based metrics elucidate similar information about FSC as the lidar-derived metrics. 

It is worth noting that quantifying FSC remains a challenging task due to the multitude of 

attributes and metrics involved. The ambiguity in defining complexity and 

interchangeability of terms such as diversity and heterogeneity can further complicate FSC 

assessments (Loke & Chisholm, 2022). Moreover, different metrics may reveal different 

aspects of forest structure, which is demonstrated by the contributions of the metrics used 

in this study. In the future, it would be useful to the field of study to establish more 

standardized definitions of FSC to ensure consistency and comparability across studies.  
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The combined PCA also revealed possible groupings of FSC variables, which can inform 

researchers on which variables to use when assessing FSC. The placement of variables 

within the PCA demonstrates their relatedness to one another, which, in this case, indicates 

which variables may be providing similar information. Based on these results, one could 

reasonably break the variables into 5 categories, drawing from field and lidar-derived 

metrics. These categories include canopy height (e.g., mean outer canopy height or 95th 

percentile Z), height diversity (e.g., foliar height diversity or vertical complexity index), 

outer canopy complexity (e.g., rumple index or rugosity), canopy cover (e.g., vegetation 

area index or 25th percentile Z), and diameter diversity (e.g., Shannon’s index of DBH class 

or number of large trees per hectare). It is recommended that researchers who wish to 

assess FSC use one metric from each of those categories to obtain a detailed FSC 

assessment.  

This study, of course, has some limitations. For one, this study only focused on forest types 

in New Hampshire, so some of these results should be replicated in other forest types. 

Because there can be considerable variation in the ways different forest types present 

structural complexity, it is possible that the results found here aren’t completely 

generalizable. Further, this study relied on field-based measurements and aerial lidar-

based measurements, but there are other data sources that could provide further insights 

into FSC like aerial imagery and terrestrial lidar.  

In the future, it would be worthwhile to further explore these metrics in other contexts and 

with additional information. This study did not use information on stand age or land use 

history, and given the relationships between forest structure and stand age (Bradford & 
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Kastendick, 2010; Næsset, 2002), examining how it affects these FSC metrics would 

provide additional important information. Expanding the analysis to different regions and 

forest types can provide a more comprehensive understanding of FSC patterns and drivers. 

Furthermore, integrating multiple data sources, such as combining lidar data with aerial 

imagery or satellite data, can offer more detailed insights into forest structure dynamics. 
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CONCLUSIONS 

Forest structural complexity holds significance for sustainable forest management and 

ecological understanding, with relationships to ecosystem resilience, biodiversity, and 

carbon sequestration (Fahey et al., 2015; Hardiman et al., 2013; E. LaRue et al., 2019). This 

study, encompassing New England mixed hardwood forests, aimed to decipher the impacts 

of spatial extent on FSC metrics, while examining the relationships between field 

measurements and lidar data.  

The exploration into the influence of spatial extent on FSC metrics revealed high 

correlation values between FSC metrics obtained from smaller and larger plot sizes, raising 

the possibility of using smaller plots for effective representation of larger areas. Given the 

computational demands of processing lidar data, this finding could decrease the processing 

time required for lidar-derived metrics of FSC.  

This study found possible groups of FSC metrics, which researchers can use for selecting 

metrics for assessments of FSC. These categories include canopy height (e.g., mean outer 

canopy height or 95th percentile Z), height diversity (e.g., foliar height diversity or vertical 

complexity index), outer canopy complexity (e.g., rumple index or rugosity), canopy 

cover (e.g., vegetation area index or 25th percentile Z), and diameter diversity (e.g., 

Shannon’s index of DBH class or number of large trees per hectare). This offers an 

approach to comprehensively characterize FSC.  

In conclusion, this study of FSC metrics in New England forests contributes valuable 

insights into the field of forest ecological research. These results can be helpful in the 

optimization of data processing efforts and the selection of FSC metrics. As ecological data 
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becomes more accessible, refining FSC assessment methodologies will be helpful to those 

who wish to characterize forest structure.  
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