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ABSTRACT 

ENERGY CONSERVATION POTENTIAL UNCERTAINTY ANALYSIS 

by 

Gregory A. Norris 
University of New Hampshire, September, 1994 

Previous studies which have generated estimates of the potential for cost-

effective gains in energy efficiency have generally acknowledged the uncertainty in their 

inputs and conclusions, but none have gone beyond simple scenario analysis to 

quantify the uncertainties in their inputs or conclusions. This research develops and 

demonstrates methods for the explicit treatment of uncertainty in energy conservation 

potential analysis. New methods and critical data requirements are highlighted 

through application to the study of current weatherization potential. 

Sensitivity analysis finds that, contrary to claims appearing in the literature, 

estimates of cost-effective conservation potential are more sensitive to uncertainties in 

empirical inputs than to variations in assumed discount rates. A taxonomy of the 

input uncertainties affecting estimates of current weatherization potential is 

developed. The availability of data to support estimates of each input uncertainty is 

found to be minimal. Estimates of annual energy savings are the most uncertain input 

to the analysis of current weatherization potential. This input's uncertainty is also 

significantly more complex to analyze and characterize than that of either installed cost 

or measure lifetime (for weatherization measures), because of the number of separate 

factors contributing to it. 

Methods are demonstrated for translating probabilistic descriptions of input 

uncertainties into probabilistic measure-specific conclusions. Methods for aggregating 

and plotting these results in modified conservation supply curves are presented. 
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Ninety percent confidence intervals for population mean cost of conserved energy per 

weatherization measure are estimated to range from roughly 60% to nearly 400% of 

typical point estimates. Ninety percent confidence intervals for population mean 

annual energy savings per weatherization measure are estimated to be less wide but 

still significant, ranging from roughly 35% to 160% of "typical" point estimates. The 

most significant contributor to uncertainty in both of these outputs is uncertainty in 

estimates of annual energy savings per measure installation. Probabilistic conclusions 

about the supply curve as a whole, as well as confidence intervals for such summary 

results as the total technical potential and the total cost-effective conservation potential 

given a threshold price, all require specification of the statistical dependence of each 

uncertainty's influence upon separate measures. 
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INTRODUCTION 

Residential and commercial buildings accounted for 36% of total US energy 

consumption, and 62% of US electricity consumption in 1992. (EIA 1993) How much of 

this energy could be conserved at what cost, using presently available technologies, 

without reducing the level of service provided by present energy consumption? 

Defining a cost-effective conservation investment as one whose cost is less than the 

present value of the investment's lifetime energy savings, what is the cost-effective 

conservation potential for a particular sector, a particular fuel, a particular end-use, 

and/or a particular region of the country? 

Because of the priced and un-priced costs associated with extracting, importing, 

producing, distributing, and consuming energy, answers to the above questions are 

important to national and regional energy policy, environmental policy, utility 

regulation, and economic policy. Estimates of the magnitude and cost of present and 

future energy conservation potential provide a basis for strategies to reduce "greenhouse 

gas" emissions; they inform projections of the impacts (or debates about the economic 

efficiency) of energy tax proposals; they underlie electric and natural gas utility "Least-

Cost Planning" regulation, practice, and evaluation; and they have come to the fore in 

emissions reduction strategies under the 1990 Clean Air Act Amendments as well. 

The Uncertainty in Estimates of Conservation Potential Has Not Been Quantified 

Many studies at national, state, multi-state, and utility service areas scales have 

developed detailed quantitative estimates of the potential for reducing energy 

consumption (and emissions) through implementing available efficiency technologies. 

The residential sector has been the most widely studied (Meier and Usibelli 1986), with 

over twenty five studies completed in the US and Canada during the past decade.1 Few 
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of the studies addressing the state or utility scale were ever published in the peer-

reviewed literature; many are internal reports generated by and/or for either utilities or 

state regulatory commissions. 

While many of these studies have acknowledged the uncertainties in their 

estimates, and some have enumerated sources of uncertainty considered to be most 

important, none have gone beyond simple scenario analysis (i.e., "best case/worst 

case/best guess" estimates) to actually quantify the uncertainties in their conclusions 

or the relative influence of different input uncertainties upon their conclusions. 

There has been some mention in the general supply curve literature (e.g., Vine and 

Harris 1990; Meier and Usibelli 1986; Meier et al. 1983; Meier 1982) of the sensitivity of 

calculated estimates of conservation potential to variation in the inputs. The first came 

from Meier (1982) who derived the elasticities of "cost of conserved energy" (an index of 

energy conservation measure cost-effectiveness) with respect to its four determinants. 

The consensus of this literature has been that uncertainties in empirical inputs are not as 

important as differences in assumed discount rates. For example: 

The cost of conserved energy and, therefore, the estimate of cost-
effective savings potential are both sensitive to variations in four key 
parameters: the cost of the measure (both initial and operating and 
maintenance costs), the annual energy savings, the amortization time, 
and the discount rate. Of all these variables, the discount rate has the 
greatest effect, [and] variations in assumed discount rates are often far 
greater than the uncertainties in lifetimes, energy savings, or 
investment costs. (Vine and Harris 1990, p. 19) 

The view that the most influential "uncertainty" in estimates of current conservation 

potential is the assumed discount rate probably explains why a popular test of result 

"robustness" is to check for the impact of varying the discount rate between, say, 3 and 

10%. (e.g., UCS 1991, NAS 1991, Rubin et al. 1992) In fact, sensitivity testing with the 

discount rate should be done, in order to evaluate whether the assumptions underlying its 

choice influence the conclusions of the analysis. However, as Chapter 1 will describe, 

the results of static sensitivity analysis do not support the use of discount rate sensitivity 

testing as a reliable evaluator of results robustness. 
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Confidence and Uncertainty in Prior Summaries of Conservation Potential Estimates 

Several authors have pooled and compared the results of separate conservation 

potential studies, partly to derive a "mid-range" summary estimate and to guage 

indirectly the level of uncertainty in such estimates. These reviews of studies of 

conservation potential are summarized and compared below, together with a critique of 

their attempts to address indirectly the issue of confidence and uncertainty in 

conservation potential estimates. Each of the three reviews has attempted to standardize 

the major assumptions and scenario definitions underlying several independent 

conservation potential studies, and has demonstrated that the individual studies' results 

converge significantly after standardization. However, close-clustering of standardized 

point estimates cannot be mistaken for guidance about appropriate confidence intervals 

to attach to the results, individually or collectively. 

Carl and Scheer (1987) reviewed eight studies of national and regional energy 

conservation potential for the US Department of Energy. Most of the studies they 

reviewed were actually forecasts rather than end-use-based engineering estimates of 

either technical or cost-effective conservation potential. To facilitate comparison of 

study conclusions, they standardized the studies by converting them to a common 

projection period, scaling them to common assumptions about gross national product 

(GNP), and extrapolating the two regional studies to national levels. They reported that 

"the consensus among the estimates [of conservation potential following normalization] 

supports the argument that these studies are still useful and a new study therefore is not 

necessary." 

Komor and Moyad (1992) reviewed more than 6 studies which estimated the 

conservation potential in U.S. buildings, and found estimates ranging from 13% to 45% 

of "baseline" consumption. They attributed the majority of the estimate variation to 

differing analysis time frames (current potential versus potential in the years 2010 or 

2015), different expected rates of future efficiency improvements absent new policy 
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initiatives, varying scope of conservation measures or end-uses included, and some 

differences in assumed discount rate: "If one is willing to grant certain assumptions, then 

one can generate a savings estimate" (p. 132). They did not attempt a quantitative 

normalization of the estimates, but expressed a preference for the middle range estimate 

of 33% of consumption (in the year 2015) and stated that the factors mentioned above 

provided evidence suggesting that the lower and higher estimates were under- and 

over-estimates, respectively. They identified three areas needing further attention 

"before there will be general agreement on the cost-effective savings potential": 1) a 

better understanding of indirect costs (e.g., information costs, time costs, program 

administrative costs); 2) stronger empirical characterization of market imperfections 

(e.g., barriers to cost-effective investment decision-making); and 3) quantification of the 

societal benefits of energy conservation. 

In support of the 1991 National Academy of Sciences study on Policy Implications of 

Greenhouse Warming, researchers at the Lawrence Berkeley Laboratory (LBL) compiled 

and compared nine conservation supply curves for the buildings sector. (Rosenfeld et al. 

1993) Their compilation included several standardizing adjustments which minimized 

the impacts of differing assumptions among the nine studies. The resulting compilation 

found that six of the nine studies' adjusted estimates were within ±3% of an approximate 

mean estimate of 45% cost-effective current electricity conservation potential. An un-

normalized comparison of the supply curves does not appear in Rosenfeld et al. 1993, 

but two of the curves (EPRI and an update from RMI) have appeared superimposed 

elsewhere, un-normalized (see, for example, Kahn 1991 or Joskow and Marron 1992); 

when un-normalized, the RMI estimate of cost-effective conservation potential was 3 

times that of the EPRI estimate — 60% of current consumption vs. 20%. As a result of 

their quantitative normalization, they reported a point estimate of current cost-effective 

conservation potential to three significant digits, but did not characterize the uncertainty 

associated with this estimate. Finally, studies for fuels other than electricity were found 



to be much more rare; the LBL compilation found the two available residential natural 

gas conservation supply curves to be in reasonably close agreement: one for the US 

(SERI 1981) and one for California (Meier et al. 1983), which estimated cost-effective 

conservation potential to be 55% and 44% of current consumption, respectively. 

All three reviews cited above express greatest confidence in the mid-range of their 

pooled conservation potential estimates once assumptions are standardized. Both the 

LBL analysis and the earlier normalization by Carl and Scheer (1987) show significantly 

reduced variability among the estimates after standardization. But caution must be 

exercised: even if the normalized studies' point estimates were all found to be in exact 

agreement, this fact alone would say nothing about what the confidence intervals around 

this estimate should be. The range among published estimates of current cost-effective 

conservation potential should not be confused with even an "informal" confidence 

interval on this potential; but in the absence of quantitative uncertainty estimates, this 

distinction appears to have occasionally blurred. For example, a major inter-laboratory 

study of conservation potential, in discussing uncertainty of the results, stated "The 

range of uncertainty is illustrated by other published studies on energy conservation." 

(Carlsmith et al., p. 23) 

In summary, several studies have attempted indirectly to gauge the reliability of 

point estimates of energy conservation potential, by normalizing and then comparing 

sets of separate estimates. The range among point estimates has narrowed significantly 

following normalization, which has lead to a tendency to attribute the lion's share of the 

variability among point estimates to differences in underlying assumptions, (e.g., Komor 

and Moyad 1992) Further, the narrowness of the range of normalized point-estimates 

has lead to a significant degree of confidence in the mid-range estimates, at least as 

reflected in the precision with which such mid-range estimates are reported, (e.g., 

Rosenfeld et al. 1993) The results of the present research indicate that the significance of 

empirical input uncertainties appears to have been widely underestimated. 
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The Potential Importance of Conservation Potential Uncertainty Analysis 

The lack of attempts to quantify uncertainty in energy conservation potential does 

not stem from any lack of importance associated with such uncertainty. Several studies 

(e.g., Lesser 1990, Hirst and Schweitzer 1990, Hobbs and Maheshwari 1990, Hirst 1992a) 

have begun to examine the effects of uncertainty on utility planning. Actual achievement 

of some of the potential for energy conservation can reduce the magnitude of uncertainty 

in load forecasts. (Ford and Geinzer 1990) However, uncertainty about the energy 

savings achieved by such programs independently increases uncertainties in revenue 

requirements and electricity price. Hirst (1992a) found that whether the net effect of 

including conservation programs into utility resource plans was an increase or a 

decrease in total planning uncertainty depended strongly upon the magnitude of 

uncertainty associated with conservation program performance (p. 31). Yet given the 

scarcity of empirical data quantifying program performance uncertainty and the total 

absence of studies characterizing the uncertainty in conventional estimates of the size 

and cost of the efficiency potential, conclusions about the net effect of conservation 

planning upon total planning uncertainty appear difficult to draw. 

Hirst has also continually reviewed and reported on both the average and cutting-

edge state of practice in Utility Least-Cost Planning over the past several years, (e.g., 

Hirst 1992b, Hirst et al. 1991, Berry and Hirst 1990) He reported in 1992 that "neither the 

proponents nor the skeptics" of utility demand-side management (DSM) programs had 

yet quantified the effects of uncertainty in DSM program potential or performance upon 

their net value to utilities as a component of strategic load planning and resource 

acquisition. He cited a 1990 analysis by the New England Electric System (NEES) as a 

"rare" example of quantitative utility analysis of DSM program uncertainty. But the 

NEES study treated uncertainty in energy savings achieved by an entire DSM program 

rather than measure by measure, and top-level program performance uncertainties were 
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characterized by "staff judgment" rather than by analysis based on estimates of 

individual input uncertainties. (Hicks 1994) 

Noting that lower uncertainty about the impacts of conservation programs decreases 

the level of plant construction required to prevent capacity shortfalls with a given level 

of confidence, Sonnenblick (1993) focused on the potential for more effectively-targeted 

and better-synthesized program evaluation efforts to reduce conservation planning 

uncertainty. By defining the marginal cost of evaluation and the marginal benefits of 

capacity reductions, he showed how one might identify an optimum level of expend­

iture on evaluation (uncertainty reduction). In practice, the value of uncertainty reduc­

tion is partly a function of the baseline uncertainty (before further evaluations), which 

for studies of conservation potential, has not yet been identified. Thus, an initial attempt 

to characterize the uncertainty in energy conservation potential estimates can help 

indicate whether efforts to reduce the uncertainty in key inputs appear cost-effective. 

Finally, Henrion (1982, 1989) has developed formal methods for assessing the 

"expected value of including uncertainty" in policy analysis. From a list of several 

scenarios where he and a colleague consider uncertainty analysis to be "unquestionably 

called for" (Morgan and Henrion 1990), two are particularly relevant to the analysis of 

energy conservation potential: 

1) cases when uncertain information from different sources must be combined to 

generate final estimates (e.g., information from different data samples, or from the 

opinions of different experts); and 

2) cases when a decision is to be made about whether to buy new information — 

recall observations about the implications of Sonnenblick (1993) above. 

Finally, Morgan and Henrion point out that even if subsequent formal analyses do 

not explicitly analyze uncertainties, a prior "probability assessment process may be 

valuable in producing better estimates of the central values" used in subsequent non-

probabilistic analyses (p. 320). In summary, probabilistic analysis of the uncertainty in 
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estimates of energy conservation potential has not been conducted to date, but several 

factors point to the value of applying such techniques. 

Outline of the Dissertation 

This dissertation represents an initial exploration of the issues, data requirements, 

methods, and results of probabilistic analysis of energy conservation potential. It does 

so with a focus on the analysis of current weatherization potential. 

The research begins by analyzing the sensitivity of the principal indices of 

conservation measure cost-effectiveness to variations in their inputs, presented in 

Chapter 1. It is found that claims in the literature about the dominance of variations in 

the discount rate are unfounded. In fact, the sensitivity of a conservation measure's cost 

of conserved energy (CCE) to variations in the discount rate is found to be lower than the 

sensitivity of CCE to variations in both annual energy savings and measure installed 

cost, regardless of the nominal values of either the discount rate or the measure lifetime. 

The sensitivity of CCE to variations in the discount rate is also exceeded by its sensitivity 

to variations in measure lifetime, for nominal measure lifetimes under approximately 20 

years; the exact value of this nominal lifetime "cross-over point" is a function of the 

discount rate. 

Chapter 2 develops quantitative estimates of the uncertainties in inputs to the 

analysis of current weatherization potential. On the way to these estimates, the state of 

available supporting data is reviewed, and a taxonomy of the factors which contribute to 

uncertainty in each input is developed. A principal conclusion of the chapter is that 

empirical data and/or analyses upon which to base quantitative estimates of input 

uncertainties are sparse. Of the four inputs, estimates of both measure life and annual 

energy savings appear to be especially in need of an improved empirical basis for 

estimating their uncertainty. The taxonomy of contributing factors demonstrates that 

(at least for measures addressing space-heating energy consumption), annual energy 
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savings is by far the most complex input uncertainty to analyze; it is influenced by at 

least seven contributing sources of uncertainty. The chapter includes recommendations 

for near-term empirical and analytical research to strengthen the basis for estimates of 

input uncertainties related to current weatherization potential. 

Chapter 3 begins the development of methods for probabilistic analysis of energy 

conservation potential, drawing upon the results of Chapter 2 to support illustrative 

numerical examples. Methods for converting probabilistic descriptions of input 

uncertainties into probabilistic descriptions of the outputs of conservation potential 

analysis are demonstrated. A generalization of conservation supply curves is developed 

which allows graphical summary of the results of probabilistic conservation potential 

analyses. The interpretation of such probabilistic conservation supply curves is 

discussed. It is found that estimates of weatherization measures' cost-effectiveness tend 

to be more uncertain than estimates of their annual energy savings potential. The 

separate influences of the three input uncertainties (measure life, installed cost, and 

annual energy savings) are compared; it is found that energy savings uncertainty is the 

most influential, followed by lifetime uncertainty. Development of confidence intervals 

for aggregate estimates of cost-effective conservation potential, and of confidence 

intervals for the supply curve as a whole, is found to require specification of the 

statistical interdependence of each input uncertainty's influence across the set of feasible 

measures. 

Finally, a concluding chapter (Chapter 4) views the results of the entire dissertation 

as a whole, and from that perspective offers recommendations for further research 

which should improve the information basis for energy planning and policy. 

1 Citations for twenty five studies completed during the past decade which have generated 
independent estimates of energy savings potential in the residential sector are listed below: 
WCDSR1994, Boghosian and McMahon 1993, OTA 1992, UCS 1991, Koomey et al 1991, NAS 
1991, EMR1991, EIA 1990, Ontario Hydro 1990, Carlsmith et al 1990, EPRI1990, Xenergy 1990, 
Boston Gas 1990, NPCC 1989, Bodlund et al. 1989, Miller et al. 1989, NEEPC 1987, Lovins 1987, 
Krause et al. 1987, NPCC 1986, Hunn et al. 1986, Geller at al. 1986, Lovins et al. 1986, Usibelli et al. 
1983, Meier et al. 1983. 
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CHAPTER 1 

ENERGY CONSERVATION POTENTIAL SENSITIVITY ANALYSIS 

Introduction 

Major studies which have generated estimates of the potential for cost-effective gains 

in energy efficiency in US buildings (e.g., Carlsmith et al. 1990; Koomey et al. 1991; UCS 

1991; NAS 1991; OTA 1992) have generally acknowledged the uncertainty in their inputs 

and conclusions, but have not attempted to quantify either the input uncertainties or 

their net effect upon the uncertainty associated with the conclusions. 

These studies typically estimate the "technical energy conservation potential" and 

also the fraction of the technical potential which is cost-effective — that is, the total 

energy savings achievable by that subset of technically feasible measures which also 

each satisfy a given cost-effectiveness criterion. Finally, a few studies (e.g., Brown 1993, 

Nadel and Tress 1990, Krause et al. 1987) have estimated the "achievable energy 

conservation potential" — that fraction of the estimated cost-effective potential which is 

considered to be realizable by programs and policies having prior precedent, in light of 

such programs' demonstrated levels of participation and effectiveness. 

End-use/engineering estimates of cost-effective energy conservation potential 

rely on uncertain estimates of multiple inputs, including the annual energy savings 

achieved by each energy conservation measure, the lifetime and installed cost of each 

measure, future fuel prices, and the discount rate. Several authors, most recently Vine 

and Harris (1990) have contended that of all these inputs, estimates of cost-effective 

energy conservation potential are most sensitive to variations in the discount rate. The 

present chapter examines this contention directly by deriving and comparing the 

sensitivities of the major energy conservation measure cost-effectiveness indices to 
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variations in their inputs. Multiple authors, notably Meier (1982), Meier, Wright and 

Rosenfeld (1983), and Vine and Harris (1990), have also claimed (as did Vine and Harris 

on p. 19) that "variations in assumed discount rates are often far greater than the 

uncertainties in lifetimes, energy savings, or investment costs." This issue is taken up 

separately in Chapter 2, through the development of empirically-based estimates of the 

uncertainty in estimates of mean litetimes, energy savings, and installed costs for 

residential weatherization measures. 

Sensitivity analysis in the context of energy planning or policy analysis has been 

defined in slightly different terms by different authors (e.g., EPRI 1991b, Lesser 1990, 

Hirst and Schweitzer 1990, Morgan and Henrion 1990). Nevertheless, there appears to 

be widespread agreement on two points: 

a) sensitivity analysis entails characterizing, for each input variable, the effect of 

its variation upon the output or outcome variable(s) of interest; and 

b) sensitivity analysis is non-probabilistic, in that it does not employ estimated 

probability distributions to characterize the uncertainty in each input, and 

therefore its results do not yield probabilistic estimates for the output 

variable(s). 

Although probability distributions are neither utilized nor produced by sensitivity 

analysis, the range of variation for each input may reflect judgments about "upper and 

lower bound values." (EPRI 1991b) Sensitivity analysis is a useful first step in 

uncertainty analysis, which can help focus subsequent efforts to obtain data to 

characterize the input uncertainties probabilistically. 

A sizable literature exists which treats methods for addressing uncertainty in utility 

resource planning; reviews of issues and techniques are found for example in the four 

references cited above, as well as (Hobbs and Maheshwari 1990). Marshall (1988,1991) 

has surveyed techniques for treating uncertainty in the economic evaluation of energy 

investments in buildings. Brown (1993) illustrated the application of "scenario analysis" 
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(defined in the Introduction) in an attempt to bracket the range of uncertainty affecting 

projections of the fraction of cost-effective conservation potential which is "achievable" 

by actual programs and policies. Finally, three reviews have attempted to summarize 

and normalize the results of multiple national conservation potential studies in order to 

draw conclusions about the reliability of the estimates (Carl and Scheer 1987; Komor and 

Moyad 1992; Rosenfeld et al. 1993); however, the spread among point estimates cannot 

be construed as offering any real information about appropriate confidence intervals for 

conservation potential point estimates, nor the magnitude of uncertainty associated with 

such estimates. 

The cost effectiveness criteria addressed in this paper include the cost of conserved 

energy (CCE), cost-benefit ratio (CBR) and its inverse, benefit-cost ratio (BCR), and net 

present value (NPV). Another popular index of energy conservation measure cost-

effectiveness is the "simple payback time" (SPT); since SPT neglects the time value of 

money and is blind to energy savings which occur after cumulative savings have 

surpassed the measure cost, it is not recommended for use as more than a casual "rule of 

thumb," and so is not examined here. Cost-effectiveness criteria used in the evaluation 

of building energy conservation measures are reviewed in, for example, (ASTM 1992) 

and (Schlegel and Pigg 1989). 

In the simple static case involving constant annual energy savings E (ex., in 

Btu/year), constant real price for the displaced energy P ($/Btu), measure installed cost 

C ($), measure lifetime n (years), and discrete annual discounting at a rate d (% per year), 

the four conservation measure cost-effectiveness criteria take the forms indicated below. 

Sensitivity Analysis of Cost-Effectiveness Indices 

Cost of Conserved Energy (CCE) (1) 
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Cost-Benefit Ratio (CBR) C*crf  _(  C }  
E*P ^£*pj  

(2) 
^ l - ( l  +  d r j  

Benefit-Cost Ratio (BCR) 
C*ctf (. d 

E*P f l - ( l  + rf)-n > l  
(3) 

Net Present Value (NPV) 

The term erf appearing in equations (1) through (4) is the "cost recovery factor." 

Multiplying the measure cost C by erf converts the purchase price into an annuity, and 

yields the effective value of equal annual payments to be made n times over the life of 

the conservation measure. That is, from the perspective of time t=n, the value of each 

effective annual payment is escalated by an amount which acknowledges that each 

could (at least in principle) have instead been invested in its year of payment at a fixed 

rate of return d until the year t=ti} Conversely, dividing the value E*P of the annual 

revenue (savings) stream by erf (in the expression for NPV) generates the discounted 

present value of the revenue stream over the full measure life. 

While the assumptions of constant real E and P are restrictive, they are common, and 

the results provide an instructive starting point. This analysis need only be performed 

once for the "research community," since the results are a property of equations (1) 

through (4), are not affected by characterizations of the input uncertainties, and the 

parameter-dependence of the results is of low enough dimension to be given exhaustive 

treatment. 

A standard approach to sensitivity analysis involves calculating the elasticities of the 

output of interest with respect to each of its inputs. In general, the elasticity of an output 

y with respect to its "ith" input x{ is defined as 

(5) 
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When evaluated for a given set of values of the inputs, an elasticity approximates the 

percent change in the output variable due to a 1% change in x{, all other inputs held 

constant. When plotted over relevant ranges of the input variables, the results allow 

assessment of the relative strengths of influence of the input variables upon the output. 

The elasticities of CCE, CBR, and BCR with respect to their inputs are presented in 

Table 1.1, along with plots over the range of typical energy conservation measure 

lifetimes, for discount rates of 3%, 5%, and 10%. The elasticities of CCE and CBR with 

respect to their inputs are equivalent, except for the fact that CCE is independent of the 

price of displaced energy, P. Note also that the elasticity of the inverse of an expression 

is equal to the negative of that expression's elasticity: 

r i f = - r i y
x  (6) 

Therefore, the elasticities of the benefit-cost ratio (BCR) to its inputs are equal to the 

negatives of the corresponding elasticities of CBR. 

From the expressions and plots appearing in Table 1.1 it is evident that in fact CCE, 

CBR, and BCR are not most sensitive to variations in the discount rate. Rather, these 

cost-effectiveness indices are less sensitive to variations in the discount rate than to 

variations in either measure cost C or annual energy savings E, (and, for CBR or BCR, 

variations in the cost of displaced energy P as well) over all possible combinations of n 

and d. At discount rates at or below 7% and measure lifetimes below 20 years, the cost-

effectiveness indices are in fact least sensitive to variations in the discount rate, among all 

inputs. The sensitivity of cost-effectiveness to a percent change in d increases at higher 

discount rates and longer measure lifetimes. 

When using CCE to evaluate energy conservation measure cost-effectiveness, 

measures whose CCE is less than the fuel price P are considered cost-effective, while 

measures with CCE greater than P are considered not cost-effective. Likewise, values of 

CBR less than 1.0 indicate cost-effectiveness, values of BCR greater than one indicate 

cost-effectiveness, and values of NPV greater than zero indicate cost-effectiveness. That 
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portion of the estimated technical potential for energy conservation which is met by 

measures that satisfy these cost-effectiveness criteria is defined as the cost-effective 

energy conservation potential. 

The "cost-effectiveness thresholds" or "break-even points" for an energy conservation 

measure is thus given alternatively by CCE=P, CBR=1, BCR=1, or NPV=0. It turns out 

that for all four criteria listed above, the definitions of these thresholds are algebraically 

equivalent, and represent that combination of values of C, P, E and n (given d) at which 

the present value of the measure's lifetime benefits are exactly equal to its costs: 

PE 
f\ -(l + rf)""N 

= C (7) 

Because NPV is equal to zero at this cost-effectiveness threshold, the elasticities of 

NPV to its inputs are undefined at this threshold, and approach infinity near it. Another 

difficulty arises because the elasticities of NPV are nonlinear functions of E, P, and C (in 

addition to n and d). For example: 

1 vr=-
1-

EP 

R,NPV _ NPV _ 
' I E  —  ' I P  ~ ~  

l-(l + rf) 

1 

-n \ 

1- -1 EPJ 

(8a) 

(8b) 
d A 

. l -d + rf)-". 

This nonlinear dependence precludes normalizing the elasticities with respect to E, P, 

and C. The result is excessive "dimensionality" of the expressions, making them 

impossible to portray comprehensively in two- or even three-dimensional plots. 

Both of these difficulties make it more helpful for purposes of sensitivity analysis to 

examine and compare the expressions for the absolute (rather than percent) change in 

NPV due to a 1% change in each of its inputs, defined as 

si 
• dx: ' 

(9) 
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For NPV, these expressions are defined as follows: 

sr= - c  

sr=pe 

s r = P E  

r i - a + d y " ^  

d 

1 -(! + </)"" 

8N
n

PV =nPE{\ + dy" 

+ a+ d r  - 1] 

(10a) 

(10b) 

(10c) 

(lOd) 

(lOe) 

Equations (10a) - (lOe) are plotted in Table 1.2. Note first that equations (10b) 

through (lOe) are linear in the product PE, allowing normalization. Note also that 

equation (7) and equation (10a) together enable representation of ScPVversus tt rather 

than C. Equation (7) reveals that near the cost-effectiveness threshold, -<5fvis 

approximately equal to 8^PV (which is identically equal to 8pPV). Since C will always 

be > 0, then - 8^pv will always be non-negative. For cost-effective measures, then, we 

can write: 

0 < -8r p v  < PE 
1 - ( 1  +  d ) ~ n  

(11a) 

while for non-cost-effective measures, the following will hold: 

I NPV > PE 
'l-(l + d)-n^ 

(lib) 

Again, for measures near the cost-effectiveness threshold (cases when sensitivity of NPV 

to uncertainty in its inputs is most likely to be of importance), - §£pv is approximately 

equal to 8"pv. 

The results in Table 1.2 clearly illustrate that as with CCE and CBR, the cost-

effectiveness of an energy conservation measure based on NPV is not most sensitive to 
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variations in the discount rate. In fact, over the range of measure lifetimes from 1 to 

approximately 20 years, NPV is least sensitive to variation in the discount rate. 

Summary of Results and Conclusions 

Prior estimates of the potential for cost-effective energy conservation have not 

quantified the uncertainty in their inputs or conclusions. The results of the present 

analysis indicate that the effects of input uncertainties upon estimates of cost-effective 

conservation potential may be significant and warrant further study. In particular, 

sensitivities of the four most common cost-effectiveness criteria were derived and 

plotted over plausible ranges of the discount rate and measure lifetime. The results of 

sensitivity analysis showed that variations in the empirical inputs were generally more 

influential than variations in the discount rate. For this reason, discount rate "scenario 

analysis" (testing the impact of different discount rate assumptions upon conclusions 

about the cost-effective energy conservation potential) may not be an adequate proxy for 

actual uncertainty analysis. The final contribution of input uncertainties to the total 

uncertainty in estimates of measure cost-effectiveness is a function of both the 

sensitivities (examined here) and the actual range of uncertainty in the estimates for each 

input. This latter topic is taken up in the next chapter. 

1 An alternative view is that the conservation measure is paid for by borrowing the amount C at 
an interest rate d; in this case, C*erf is the annual loan payment to be made each year during the 
measure life. 
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Table 1.1: Elasticities of CCE, CBR, and BCR with Respect to Their Inputs 
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Table 1.2: Sensitivities of NPV to Variations in Its Inputs 
Sensitivity 

with 
respect to: 

Definitions 
of 

Sensitivities 

Plots of Sensitivities versus measure lifetime,«. 
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CHAPTER 2 

UNCERTAINTY IN EMPIRICAL INPUTS TO 

ANALYSIS OF CURRENT WEATHERIZATION POTENTIAL 

Introduction 

The uncertainty in estimates or projections of energy conservation potential has not 

been quantified. Major studies which have estimated the potential for cost-effective 

gains in energy efficiency in US buildings (e.g., Carlsmith et al 1990; Koomey et al. 1991; 

UCS 1991; NAS 1991; OTA 1992) have generally acknowledged the uncertainty in their 

inputs and conclusions, but no study has attempted to quantify either the uncertainty in 

the inputs or the conclusions. A few studies have tested the sensitivity of their 

conclusions to variations in the discount rate (UCS 1991; NAS 1991), and one study 

(Brown 1993) specified "optimistic" and "pessimistic" scenarios for program cost and 

effectiveness in order to bracket the range of uncertainty in projections of the fraction of 

technically feasible residential electricity conservation potential is achievable in the US by 

the year 2010. Sensitivity analysis can indicate the potential for input uncertainties to be 

influential, but it offers no insight about their actual influence upon conclusions. 

Scenario analysis does not provide guidance about the probability of particular 

outcomes or conclusions. Finally, the uncertainty in estimates of technical or cost-

effective conservation potential, upon which projections of achievable potential are 

based, has not yet been studied even using non-probabilistic scenario analysis. 

Three prerequisites to probabilistic energy conservation potential uncertainty 

analysis which have not yet appeared in the literature are: 

1) probabilistic descriptions of the uncertainties in the empirical inputs to analyses 

of energy conservation potential; 
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2) procedures for propagating input uncertainties through conservation supply 

curve analysis in order to develop probabilistic estimates of energy conservation 

potential; and 

3) methods for reporting probabilistic results in a modified supply curve 

framework. 

Chapter 3 begins the development of (2) and (3). The present chapter begins the 

development of (1), with a focus on the input uncertainties affecting the analysis of 

current weatherization potential. Three objectives of the present analysis are: 

1) attempting to establish a taxonomy of the uncertainties affecting the empirical 

inputs to analysis of current weatherization potential; 

2) reviewing the state of available data which can support estimates of these 

uncertainties; and 

3) attempting to develop initial estimates of these uncertainties, derived from 

empirical data wherever possible. 

As the final results of the present paper will indicate, empirical data from which to 

derive estimates of input uncertainties are virtually nonexistent for some of the 

parameters; thus, important topics for further research are identified. 

Analysis of current weatherization potential is a subset of energy conservation 

potential analysis, both methodologically and physically. Methodologically, analyses of 

current energy savings potential differ from projections of future potential in that the 

former are unaffected by uncertainties concerning building stock evolution, turnover 

and replacement of equipment stocks, and autonomous investments in efficiency 

retrofits. Thus, the uncertainties affecting estimates of current potential are a subset of 

the uncertainties which affect projections of future potential. 

Weatherization potential refers to that subset of total residential energy savings 

potential which is addressed by retrofit measures (rather than measures which address 

new construction), and whose measures target strictly space-conditioning energy 
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consumption (rather than consumption in other end-uses such as water heating, 

lighting, appliances, etc.). Estimates of weatherization potential are impacted by many 

complexities which do not affect estimates of energy savings in other end-uses, due in 

part to space-heating's dependence on climate, its complex dependence upon building 

and equipment characteristics, and the heterogeneity of building stocks, equipment 

stocks, and climatic conditions. Space heating is the largest single end-use in both the 

residential and commercial sectors (in terms of primary energy consumed per year) 

(OTA 1992), and energy use in these two sectors combined accounts for roughly one 

third of total US energy consumption. (EIA 1993a) 

The four empirical inputs which are used to generate non-probabilistic "best 

estimates" of the total technical potential for energy conservation, and of the fraction of 

technical potential which is estimated to be cost-effective, are the following, which must 

be estimated for each technically feasible conservation measure: its mean annual energy 

savings per installation Ae, its total market potential N, its mean installed cost C, and 

its mean lifetime n. The estimates of each measure's mean annual energy savings per 

installation, together with the estimated market potential for each measure, determine 

estimates of total technical conservation potential.^ The mean energy savings per 

installation, together with the mean installed cost, mean measure lifetime, projected fuel 

prices, and a selected discount rate, are jointly used to asses the mean cost-effectiveness 

of each conservation measure. The conservation potential associated with the subset of 

technically feasible measures which are estimated to be cost effective on average is 

generally used as the estimate of the total cost-effective conservation potential. These 

relationships are portrayed in Figure 2.1, which includes a schematic "conservation 

supply curve," the common means for graphically summarizing the results of measure-

based studies of conservation potential. 

^Measure interaction complicates this computation; see, for example, Chapter 3. 
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Now, estimates of weatherization measures' mean installed cost, lifetime, energy 

savings, and market potential are uncertain. It is common to characterize the 

uncertainty in such estimates using estimated probability density functions, or "pdjs."2 

A [pdf\ represents the relative likelihood of specific outcomes for 
an uncertain variable. The [pdj] quantitatively describes the state 
of information for the variable. In some cases the information 
may be based on actual experience (e.g., the unplanned outage 
rate for an existing type of generating unit). The results of a 
frequently repeated experiment define an objective [pdf\. In other 
cases little objective information may be available (e.g., the capital 
costs of a technology not yet commercialized), and the information 
base may consist primarily of judgment and opinion. In this case 
uncertainty is quantified as a subjective [pdf\. (EPRI 1991b, p. 6-3.) 

Techniques for the development of objective pdfs are described in chapters 6 and 7 of 

Morgan and Henrion 1990; a bibliography on the topic is also provided in EPRI 1991b. 

A central objective of the present chapter is to develop estimated pdfs for each of the 

four uncertain empirical inputs to analysis of current weatherization potential, Ae, C, 

n, and N. Rather than attempt to characterize separately for each weatherization measure 

(e.g., wall insulation, attic insulation, etc.) the uncertainty in estimates for each of the 

four empirical inputs, this initial analysis will attempt to specify generalized estimates of 

the uncertainty in typical point estimates of each of the four inputs for weatherization 

measures in general. Thus, an attempt is made to estimate a "normalized" pdfs for each of 

the four empirical inputs, which can then be used in conjunction with a point estimate 

for a given input and a given weatherization measure, in order to derive an estimate of 

the uncertainty associated with that point estimate. The approach is outlined below, 

where the uncertainty in estimates of mean installed cost, C, is used as an example. 

Consider a random variable Jwhose pdf will be estimated as follows. Empirical 

data is obtained from weatherization program evaluations and other studies which 

^PDFs are sometimes simply referred to as "probability distributions"; however, use of the term 
"density function" helps avoid confusing PDFs with "cumulative distribution functions." The 
term "PDF" has been substituted for "probability distribution" in the excerpt which follows in the 
text. 
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report both predicted and actual mean installed costs for weatherization measures — C, 

and C, respectively.3 This data is then plotted to form a relative frequency histogram (e.g., 

Walpole and Myers 1978, Hoel 1984) for the ratios of actual to predicted installed cost. 

The sample of ratios is treated as a simple random sample of observations of the random 

variable 7^;4 therefore, the pdf for is estimated based on the relative frequency 

histogram and the statistics of the sample of values for the ratio /̂— 

approximate relative frequency distribution of C/ 
./C. 

^/[^] (i) 

Defined as in equation (1), the pdf for J^ will represent our best current estimate of 

the uncertainty associated with point estimates of mean installed cost which are used in 

analyses of current weatherization potential. Once this pdf for i- has been estimated, it 

can then be used together with a new point estimate of the mean installed cost for 

measure j, C; , in order to specify a pdf which characterizes the state of our information 

and uncertainty about the true value of Cj. This is done by scaling both sides of the 

relationship in equation (1) by the value of the point estimate, Cj: 

Pdf *df[Cj\ (2) 

By equation (2) it is not strictly meant that C; is properly considered to be a random 

variable. Instead, C; is considered to be a theoretically knowable fixed parameter, about 

•^Note that it is important that the methods and data sources used to develop each of these 
studies' estimates of mean installed cost be representative of the methods and data sources which 
are used in "typical" studies of conservation potential. This point is addressed later in the present 
chapter. 

^The assumption that the summary data from a set of program evaluations obtained via a 
literature search represents a simple random sample of all possible such results is a rather strong 
one. Its relaxation entails the use of meta-analytic techniques, (for example, Violette et al. 1992; 
Greene et al. 1993; Karr et al. 1993; Lagerberg et al. 1993, and Green and Violette 1994.), which are 
beyond the scope of the present analysis, but whose application is recommended as part of 
further extensions of the results and methods described here. 
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which we have some information but remain uncertain. The pdf of Cj*J^ specifies our 

"beliefs about the relative likelihood of each possible value of the variable, based on the 

state of [our] information." (EPRI 1991b, p. 6-3) The same approach is then taken to 

estimate pdfs for J— , J-, and JN, which characterize the uncertainty in typical point 

estimates of the other three empirical inputs, Ae, n, and N. 

Finally, in a subsequent chapter it will be of interest to characterize the uncertainty 

associated with estimates which are themselves functions of the uncertain empirical 

inputs Ae, n, Cj and N. For example, the estimate of the mean cost of conserved 

energy for measure/, CCEj, is calculated from the empirical input estimates as: 

How can a pdf be developed which characterizes the uncertainty in this estimate of 

CCEj, given the characterizations of the uncertainty in estimates for the empirical 

is to use the point estimates C., Aej and n together with the estimated pdfs for the 

random variables and Jn directly in an "uncertainty propagation analysis," 

employing techniques of Monte Carlo simulation. From Morgan and Henrion (1990): 

In crude Monte Carlo analysis, a value is drawn at random from 
the distribution for each input. Together this set of random 
values, one for each input, defines a scenario, which is used as an 
input to the model, computing the corresponding output value. 
The entire process is repeated m times producing m independent 
scenarios with corresponding output values. These m output 
values constitute a random sample from the probability 
distribution over the output induced by the probability 
distributions over the inputs. One advantage of this approach is 
that the precision of the output distribution may be estimated 
from this sample of output values using standard statistical 
techniques, (p. 199) 

(3) 

inputs on which it is based, Ae, C, and n ? The simplest and most straightforward way 
A 
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Thus, the estimated "pdf for CCEj" developed through Monte Carlo analysis of the 

following expression, will characterize the uncertainty in estimates of the true value of 

CCEj based on our estimates of the uncertainty in the "input" estimates Cjf  Aej and nj: 

d 
Monte Carlo simulation of 

Ci*Jc 

Ac _ 
l-(i + rf) 

pdf[ CCEj] (4) 

Neither the method described above nor its results require that any particular 

assumptions be made about the function form of the pdfs for J— , 7- and J~ (e.g., they 

need not be assumed to be normal, lognormal, etc.)5 The estimated pdf for CCEj will 

not generally be of any particular functional form either. The uncertainty propagation 

analysis will, however, provide an estimate of the expected value for CCEj given the 

point estimate CCEj• It will also generate estimates for the pdf and the cumulative 

distribution function of CCEj, which in turn can be used to estimate confidence 

intervals for the true value of CCEj, based upon its point estimate. Uncertainty 

propagation for energy conservation potential analysis is the subject of Chapter 3. Such 

an analysis requires estimates for the pdfs of 7— , and JN, whose development is 

the purpose of the present chapter. 

An assumption being made at the outset of this analysis is that forms of standard 

practice can be identified with respect to both conservation potential analysis and 

estimation of input parameters. The standard practice of energy conservation potential 

analysis is described in Chapter 3. The assumption of standard methods for input 

estimation is examined recurrently in the present chapter. 

®It is important, however, that any correlations among input uncertainties be correctly 
characterized prior to the analysis. Failure to do so can lead to substantial biases in resulting 
estimates of the output mean, variance, and/or fractiles. Smith et al. (1992) describe these 
problems in more detail, and identify the circumstances under which statistical dependencies 
among the input parameters can be safely ignored. 
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There are several reasons to attempt a relatively basic characterization of empirical 

input uncertainties at present. First, empirical data allowing measure-specific 

probabilistic characterization of uncertainty are not yet available for each of the inputs 

for all weatherization measures. In fact, before a major attempt is made to develop and 

gather such data, it is prudent to attempt an initial analysis with existing data in order to 

determine the most important data requirements of later more detailed analyses of 

uncertainty in conservation potential estimation. It has been persuasively argued 

(Morgan and Henrion 1990) that quantitative uncertainty analysis should be conducted 

in an iterative process of data and model refinement. Initial results based on simple and 

readily available data indicate which empirical input uncertainties appear to be most 

influential, and how such uncertainties can best be described to provide inputs to 

probabilistic analysis. These results, in turn, help prioritize and focus subsequent data 

gathering efforts, and help guide re-allocation of analytical detail toward the most 

critical uncertainties. 

Uncertainty Versus Variability, and the Use of "Binning" 

The focus of the present study is the uncertainty in estimates of mean values (Ae, C, 

and n), as well as in estimates of the market potential N, which together are used to 

develop estimates of total technical conservation potential and to estimate the fraction of 

technical potential which is cost-effective on average. In addition to concerns about the 

uncertainty in estimates of total potential and mean cost-effectiveness, policy and 

program decision-makers may also be interested about the expected variability in per-

home or per-installation savings. For example, policy-makers may request estimates of 

the fraction of the participating houses which can be expected to experience negative 

savings, even in cases where predicted mean savings are positive. 

Variability and uncertainty are not independent. There are two principal ways in 

which variability contributes to the uncertainty in estimates of conservation potential. 
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First, variability in population characteristics contributes to uncertainty in sample-based 

estimates of population means; the present paper includes efforts to estimate this impact 

of variability upon uncertainty. Secondly, variability in the factors which govern the 

cost-effectiveness of each technically feasible energy conservation measure causes most 

measures to be cost effective for only some fraction of the eligible population. 

Estimation of this fraction would require frequency distributions which characterize the 

estimated variability in each contributing factor, including estimates of the co-variation 

among the factors.^ This influence of variability upon uncertainty in estimates of 

conservation potential is not analyzed in the present paper. It remains an important area 

recommended for further research. 

In lieu of probabilistic treatment of the variability in population characteristics, 

"binning" is an important technique which is sometimes employed to at least partially 

account for variability's effects upon non-uniform cost-effectiveness for a given measure. 

Binning entails division of the physically eligible population into sub-groups with 

different mean characteristics. It is a way of trying to separately identify both the 

fraction of the eligible population for which a measure is cost-effective and the 

remainder of the physically eligible population for which it is not. In the evaluation of 

weatherization potential, binning is accomplished by the development of multiple 

prototypes to represent the population of houses physically eligible for a given measure. 

Binning clearly increases the resolution of an analysis of conservation potential; it will 

lead to a conservation supply curve with a greater number of smaller steps, and can help 

identify measures which appear to be cost-effective for some fraction of the population 

even though they are not cost-effective on average for the whole population. On the 

down side, by increasing the number of prototypes, binning will tend to increase 

%or example, both the cost of insulating walls and the energy savings from insulating walls will 
increase with wall area. 
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sampling error uncertainty and the uncertainty in estimates of number of households 

represented by each prototype. 

Whether binning enhances the accuracy of results as a basis for planning and policy 

depends in part upon whether measure installation will be preceded by some screening 

procedure such as a professional audit (or by reasonably accurate homeowner 

assessment of measure cost-effectiveness). The presence of a screening procedure is 

partly a function of program design, but also is partly tied to the type of measure. Some 

measures, such as compact fluorescent light bulbs, which are either low-cost or for 

which the cost-effectiveness is either reliable or difficult to assess with a pre-installation 

audit, are generally promoted to the entire eligible population without an audit. (In 

some programs, particular fixtures within individual houses are targeted for initial 

installation.) Weatherization measures, on the other hand, are generally only installed 

after an audit. Thus, a single-prototype-based analysis of weatherization potential will 

overestimate the mean "to-be-actually-instailed" cost of conserved energy for all measures 

which are not cost-effective for some fraction of the physically eligible population. It 

will over-estimate the size of the "to-be-installed" market potential for these measures as 

well. For simplicity, conservation potential uncertainty analysis will be investigated 

initially under the simplifying assumption of one prototype per measure. As discussed 

later in the section on "errant prototype specification," it is still generally a generous 

characterization of standard practice to assume that a single but different prototype is 

specified to separately characterize the mean characteristics of the sub-population 

eligible for each measure. 

A Note on "Conservative Under-Estimation" of Empirical Uncertainty 

The present paper represents a departure from the literature's tradition of leaving 

input uncertainties un-quantified and un-analyzed. For this reason, where judgment is 

often called for in deriving estimates of input uncertainty based on published data, the 
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conservative approach is deemed to be an attempt to err on the side of underestimating 

the magnitude of empirical uncertainties at present. Still, every effort is made to 

comprehensively identify the principal factors contributing to uncertainty, and to 

indicate for each of these factors whether it has been included or omitted in the process 

of deriving estimates of the total uncertainty in each of the inputs to conservation 

potential analysis. 

Overview of Remaining Sections 

The four sections which follow examine in turn the uncertainty in estimates of mean 

installed cost per measure, mean lifetime per measure, market potential per measure, 

and mean annual energy savings per measure. Energy savings uncertainty is described 

last because energy savings estimates, and thus their uncertainty, are considerably more 

complex than those of the other empirical inputs. 

Mean Installed Cost per Measure 

Three aspects of measure installed costs make the level of uncertainty in their 

estimates strongly dependent upon both the perspective and geographic scale of the 

conservation potential analysis. These aspects are; 

1) measure costs may be controllable to varying degrees by program designers 

and/ or implementers; 

2) labor rates are partially a function of whether the crews are non-profits or for-

profit; and, 

3) labor and material costs for weatherization measures often vary considerably 

among and within states; 

Each of these factors is considered briefly before available data are examined in order to 

develop estimates of measure installed cost uncertainty. 
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Control of Measure Installed Cost 

The two principal agents of existing weatherization programs are utilities (electricity 

and natural gas) and the federally-funded, state-administered low-income 

Weatherization Assistance Program (WAP). For utility-sponsored programs the cost per 

installation is strongly dependent upon program design, and depends upon the type of 

program, the level of fixed expenditures allocated to marketing, administration, and 

evaluation, the level of participation achieved, and the perspective from which cost is 

evaluated (utility, participant, rate-payer, society, etc.). Thus, for purely marketing-or 

information-based programs, the uncertainty in direct program costs to the utility per 

installation is entirely a function of the uncertainty in projections of participation levels. 

For proven rebate-based programs with low administrative, marketing, and evaluation 

overhead, the utility cost per installation may be nearly certain, but if measure installed 

costs are uncertain then participant and societal costs for such programs will be 

uncertain as well. 

The focus of the present study is measure-based (rather than program-based) 

analysis of conservation potential, for which installed costs are generally the sole costs 

considered, and in which possible effects of alternative program designs upon cost per 

installation are not generally considered. Several authors (e.g., Berry 1989, Krause et al. 

1987, Nadel 1990, Koomey et al. 1991) have recommended and/or applied a "rule of 

thumb" that the "societal" cost of conserved energy should be increased by 10 to 20% to 

reflect the net effect of utility program costs upon average costs per measure-installation. 

However, Koomey et al. (1991) caution that "Program costs for particular end-uses may 

be lower or higher than these crude averages, [and] individual programs for specific 

end-uses may differ from these overall averages." (p.4) 

In the case of WAP, current federal guidelines specify a maximum average 

expenditure per house, but no cost limits per measure. States have not adopted their 

own cost limits per measure either, in part because of significant geographic variability 
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in material and labor rates within states, (e.g., Chapman 1994; Beachy 1994; Costello 

1994) Some agencies or programs administered over smaller geographic scales such as a 

single metropolitan area do exercise effective control over costs per measure. An 

example is the Project Insulate Standards and Prices manual published by the Saint Paul 

Neighborhood Energy Consortium (1993), which specifies highly detailed cost limits for 

each weatherization measure. Such cost limits are generally derived from an iterative 

process of information exchange with contractors in the region. In fact, many WAP 

subgrantees (local non-profit agencies which administer the WAP for a given sub-state 

region) periodically solicit measure-cost bids from area contractors and set cost limits 

based upon contractor input. (Chapman 1994) 

Geographic Variability of Labor and Material Costs 

Geographic variability of labor and material costs for energy conservation measures 

complicates cost estimates used in studies of conservation potential in several ways. 

First, cost estimates derived from large samples of cost data over multiple regions (such 

as developed by Boghosian and McMahon (1993)) must adjust each data point for 

regional (and temporal) cost variation before the data are combined to generate national 

current cost estimates. Likewise, cost data from one region may need to be adjusted 

before they are used as an estimate for another region. Next, if regional cost variability 

is significant within the area whose conservation potential is being estimated, then 

regional average costs will depend upon the geographic distribution of the eligible stock, 

and measure cost-effectiveness may vary by sub-region. Finally, geographic cost 

variation contributes to total variability in the cost-effectiveness of each measure, which 

is an issue beyond the scope of the present paper, as noted in the introduction. 

The principle source of data on regional (and temporal) variability in residential 

retrofit costs is the series of reports published by R.S. Means (e.g., Means 1993), which 

provides contractor survey-based regional (and temporal) cost "multipliers" for 
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converting national cost estimates into estimates for specific metropolitan areas within 

the US, and vice-versa. As an example, Means' regional multipliers for the metropolitan 

areas of New England are summarized in Table 2.1 and Figure 2.2. Total cost multipliers 

(weighted combinations of material and installation cost multipliers) exhibit standard 

deviations on the order of 5-10% of the mean, for New England as a whole as well as 

within the larger individual states. Installation (labor) costs vary most widely. 

Note that Means' data allow for cost comparison only among major metropolitan 

areas. While data comparing rural to non-rural residential retrofitting costs are sparse, 

anecdotal evidence indicates that rural labor rates are considerably lower, while rural 

material costs may be higher than those of moderately-sized metropolitan areas (due to 

increased distance to suppliers). Rural material and labor costs are both generally lower 

than those of the very large, hi-cost urban areas such as metropolitan New York or 

Boston.7 

Non-Profits vs. Private Contractors 

In the early 1980's nearly all WAP work was done by employees of non-profit 

agencies and community-based organizations. During the past decade, there has been a 

steady increase in the amount of weatherization work under the WAP which is 

subcontracted to professional contractors by the local agencies. (Brown et al. 1993) 

Private contractor installation costs, unlike installation costs reported by non-profits, 

include profit and overhead. As part of their residential retrofit cost data compilation, 

Boghosian and McMahon (1993) cited $20.00 per hour (1989 dollars) as the typical 

residential retrofit labor rate; their sources include a mix of utility programs, WAP 

programs, and research projects. Boghosian and McMahon's labor rate closely matches 

the R.S. Means' national bare labor rate estimate for residential weatherization 

''Based upon conversations with Bill Beachy (VA), Tim Lenahan (NH); and Pat Costello (NY); see 
references. 
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retrofitting; final Means-based labor plus material cost estimates per measure which 

include overhead and profit are approximately 10% higher than bare costs.® In fact, 

Means national cost estimates (including overhead and profit) exceed Boghosian and 

McMahon's estimated US average costs for insulation retrofits by about 10% on average. 

Empirical Estimates of Uncertainty in Installed Measure Costs 

In order to estimate the costs of shell retrofit measures as part of a national study of 

the potential for cost-effective single family thermal shell retrofitting, Boghosian and 

McMahon (1993) assembled measure installed cost citations from fourteen different 

sources nationwide and adjusted for regional- and temporal-based variation using the 

Means multipliers described above. Each reference provided cost citations for several 

individual measures, and in most cases, the cost citations were quotations for contractor 

work in a typical government retrofit program. Boghosian and McMahon noted that 

since regional and temporal cost-scaling multipliers are inexact, then imprecise scaling 

may contribute to some portion of the observed variability among cost estimates for a 

given measure. However, after testing alternative scaling approaches, they concluded 

that variation among reported costs for each measure after scaling appeared to be 

"caused by sources other than geographic, temporal, and labor-to-material cost 

differences." (p. 14) For each retrofit measure, Boghosian and McMahon used the 

arithmetic mean of the scaled cost estimates as the final estimate of the measure's 

installed cost. 

The data from Boghosian and McMahon's compilation were analyzed statistically as 

reported in Table 2.2, to quantify the variability among reported measure installed costs, 

in an attempt to characterize the uncertainty associated with measure cost estimates 

used in conservation potential studies. For each measure with four or more cost quotes, 

8See rates for carpenter and for "Crew G-4" in the Means Repair and Remodeling Cost Data: 
Residential and Commercial (Means 1993). 
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the ratio of each quote to the mean of all such quotes for the given measure was 

calculated. Then, the estimate for the variance among these ratios (given by the sum of 

the squared errors divided by (n-1)) was calculated for each measure, as well as for each 

component (e.g., attic, walls, sub-floor), and for the dataset as a whole. Based on the 

results in Table 2.2, the cost quotes will be approximated as distributed in a bell-shaped 

fashion (not necessarily normally) about their mean (per measure) with a standard 

deviation equal to 20% of the mean.9 

What does the variability among Boghosian and McMahon's retrofit cost quotes 

indicate about the uncertainty in installed cost estimates used in conservation potential 

studies in general? First, note that the Boghosian and McMahon compilation represents 

the most comprehensive published synthesis of retrofit cost estimates to date; most 

studies' estimates of mean retrofit costs appear to be derived from smaller samples. 

Second, the variability among cost quotes per measure did not appear to change 

significantly between measures. The following assumptions allow a first-order estimate 

of the uncertainty in "typical" estimates of mean cost per measure: 

1) Assume that the variation among quoted or published costs exhibited in 

Boghosian and McMahon's data is indicative of the variability of per-measure cost 

estimates generally found in cost samples obtained by analysts of conservation 

potential — that is, quotes or citations are distributed in a bell-shaped fashion 

about their mean per measure with a standard deviation equal to approximately 

20% of the mean; 

9 A standard deviation of 0.20 is a bit lower than found in the dataset. However, the ratios of 
individual quotes to the measure mean quotes exhibited a somewhat bimodal distribution 
(although the sample size (n=43) is not large enough for this to be definitive.) The bimodality 
might reflect the presence of data from both private and non-profit contractors (e.g., two sets of 
labor rates), so that some of the variability in quotes might in principle be corrected for. 
However, source identification provided in the report did not allow for testing of this hypothesis. 
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2) Assume that estimated mean costs per measure used in individual studies are 

typically based on four independent cost quotes per measure;^ 

3) Assume that each cost quote refers to the estimated mean installed cost across the 

entire population being studied; this assumption is based on fact that Boghosian 

and McMahon's data included corrections for geographic (as well as temporal) 

variation in costs; thus, the conservation potential analysts' estimate of the mean 

installed cost for each measure is set equal to the mean of the four quotes for the 

measure; 

Then, from Boghosian and McMahon's data and the central limit theorem, analyst's 

quote-based estimates of the true mean costs per measure should be roughly normally 

distributed about the true mean costs with a standard deviation of °-y r = 0.1. In other 
/ V4 

words, true mean installed costs are expected to lie within approximately +20% of the 

a n a l y s t s '  e s t i m a t e s  a p p r o x i m a t e l y  9 5 %  o f  t h e  t i m e .  N o t e  t h a t  t h i s  e s t i m a t e  o f  J t h e  

uncertainty in estimates of mean installed cost per measure, is also based on the 

assumption that for studies whose geographic scope is large enough to lead to 

significant sub-regional cost variability (ex, state or national studies of conservation 

potential), analysts will make the same effort to normalize quotes for regional variation 

as was made by Boghosian and McMahon. 

Data from a regionally-focused study provide a look at measure cost uncertainty 

when inter-temporal scaling, inter-regional scaling, and inter-regional cost variability are 

not confounding issues. The results of Ternes et al. (1991) provide data from a study 

where local and current material and labor rate estimates were available and were used to 

predict local and current per-measure and per-home installed costs. In their Buffalo, NY 

lOFew conservation potential studies actually report this statistic; a rare example is Randolph et 
al. 1991. In fact, many (e.g., UCS1991, Miller et al. 1989) rely on prior published summaries of 
cost data obtained for other regions (e.g., Krause et al. 1987, OTA 1982), which may be 5-10 years 
older than the studies using them (e.g., UCS 1991, p. A-52 and A-56.) Koomey et al. 1991 used 
Boghosian and McMahon's retrofit cost estimates. 
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evaluation of a single-family weatherization measure selection technique, local cost 

estimates were developed by obtaining quotes from several (approximately 2-4) local 

contractors for each measure. (Ternes 1994) The estimated installed costs were then 

compared with the actual per-measure and per-home costs of weatherizing 36 homes. 

Cost estimates for each made use of pertinent audit data, such as wall area in the case of 

the cost of wall insulation. The results describing cost prediction accuracy are 

summarized in Figures 2.3 and 2.4. 

Figure 2.3 compares the mean predicted and mean actual costs per measure. For 

most measures, the actual cost per installation was higher than estimated, although the 

two under-prediction outliers reflected unexpected labor costs for very low cost 

measures (lower the hot water temperature setting, and insulate hot water pipes). The 

one significant over-prediction of costs (for air sealing work) was also explained, since 

the cost estimate was based on a protocol calling for more extensive sealing than the 

actual protocol used in the field. Even without these three outliers, the standard 

deviation of > 0.25 indicates the possibility for significant uncertainty in even local 

quote-based estimates of average installed costs per measure. Predictions of total 

weatherization cost per home fared a bit better than those of mean cost per measure (see 

Figure 2.4). The absence of prediction bias indicated that over- and under-predictions 

per measure tended to cancel out on average at the household level, and was aided by the 

fact that some higher-cost, frequently-installed measures had a small mean prediction 

error (e.g., wall and attic insulation). 

In summary, the variability evidenced in Boghosian and McMahon's data set has 

been used to derive an estimate of the uncertainty in estimates of mean installed cost per 

measure which are used in state or national-scale studies of conservation potential. 

Clearly, actual uncertainty in cost estimates will depend upon the procedures, data, and 

sample size upon which each study's cost estimates are based. Variability among quoted 

costs may be less for smaller regions such as single metropolitan areas, but it is not clear 
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how much this will actually reduce the uncertainty in quote-based estimates of mean 

installed cost per measure. In the future, it would be helpful if the estimation procedure 

and the variability among cost quotes (if they are used) were reported by each study to 

allow assessment of the reliability and uncertainty of estimates for mean installed cost 

per measure, and to allow meta-analytic synthesis of cost data from multiple studies, 

(e.g., Violette et al., 1992) Finally, estimates of total program cost per measure are likely to 

be more uncertain than estimates of installed cost if, as is typical, uncertain installed 

costs are multiplied by an uncertain percentage to derive program cost estimates, unless 

features of the program provide the opportunity to exercise significant control over cost 

variation and uncertainty. 

Mean Lifetime Per Measure 

The empirical basis for estimates of many energy conservation measure's lifetimes is 

slight, (e.g., Vine and Harris 1990; EMS 1993) Of the four empirical inputs to analysis of 

current weatherization potential, measure lifetime estimates are probably the least-

supported by empirical data, and as will become clear, this lack of empirical data forces 

characterizations of lifetime estimate uncertainty to rely purely upon judgment. In fact, 

expert judgment is the major source of residential retrofit measure life point estimates at 

present. The virtual absence of any published quantitative estimates of measure life 

uncertainty leads us to recommend that future collaborative processes or expert 

elicitation exercises which develop measure life estimates based on expert judgment also 

seek experts' quantitative judgments about confidence intervals for mean measure life 

estimates. 

Improvement of measure lifetime estimates has gained increased attention in recent 

years, and has become an integral part of studies of measure persistence; see, for 

example, (Vine 1992), which reviews persistence research. As most residential retrofit 

38 



measure estimated lives exceed 10 years, the final results of studies designed to track 

measure longevity directly would obviously be a long time in coming. H In lieu of such 

long-term direct research, several recent studies have examined the assumptions and 

sources underlying current lifetime estimates, have assessed the realism of these 

assumptions and sources, and have recommended adjustments to lifetime estimates 

which take account of both field operating conditions and data on the incidence of 

premature removal for particular measures, (e.g., Skumatz et al. 1991; SRC 1992; EMS 

1993; Granda 1992, and Wiggins and Boutwell 1991) Data on measure retention should 

continue to improve as program evaluations considering this topic proliferate. 

It has become common to distinguish three definitions of measure lifetime (e.g., 

Gordon et al. 1988; Vine 1992; CEC 1993; EMS 1993) 

a) Engineering Life is the average life of a measure under laboratory test conditions, 

which can be ideal for measure longevity. (CEC 1993) Engineering lifetime 

estimates are usually provided by the manufacturer. 

b) Operating Life or Service Life is the average lifetime of a measure under typical 

operating conditions and average maintenance practices. Major sources for such 

estimates include ASHRAE manuals, (e.g., ASHRAE 1987) 

c) Effective Life or Useful Life takes account of the combined effects of field 

operating conditions (which yield Service Life rather than Engineering Life) and 

the effects of premature removal due to customer dissatisfaction, building 

remodeling, renovation, demolition, occupancy changes (e.g., new tenants move 

in and remove measures), etc. 12 

As of 1991, the longest-running energy savings persistence studies covered only 7 years of data, 
and were based on billing analysis rather than physical monitoring of measures' performance or 
physical integrity. 

12A California collaborative with representation from the state's major investor-owned utilities 
and the California Energy Commission determined that Effective Life could be quantitatively 
derived (from empirical data) as the elapsed number of years between the installation of a cohort 
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The importance of field operating conditions, poor maintenance, and premature 

removal appear to vary considerably among measures. For example, commercial 

lighting, residential lighting, and residential low-flow showerheads and faucet aerators 

have each shown significant incidence of premature removal; reported first-year 

removal rates have varied considerably for the same measure, and among measures. 

For some of the shorter-lived weatherization measures such as air sealing, caulking and 

weatherstripping, field studies are likely to be hampered by difficulties of measure 

identification. (Bordner 1994) Lifetimes of longer-lived shell insulation measures are 

primarily ended by structural demolition, although remodeling of attics or basements 

may also play a role. 

Given the current dearth of empirical data on measure life, present assessments of 

the uncertainty in measure life estimates must come primarily from "expert judgment" — 

as do many measure lifetime estimates themselves. (Messenger 1994) During a 

collaborative investigation of measure lifetime assumptions and their bases which 

involved representatives of the major California investor-owned utilities and the 

California Energy Commission, utility analysts were asked to rate their confidence in 

measure life estimates as either "very confident", "confident", "somewhat confident", or 

"low confidence". Unfortunately, these confidence levels were not given quantitative 

expression. The large majority of measure life estimates were rated as either "somewhat 

confident" or "low confidence." (EMS 1993) The final report of this collaborative study 

noted that "the utilities did not think their measure life estimates were wrong or 

baseless. However, in the absence of field studies... and with the knowledge that field 

studies are planned for the future, the utilities were generally hesitant to adopt a less-

than-conservative confidence rating." (p. 5) 

At this point it may be useful to recall decision theory's rule that additional 

information (e.g., better data on measure lifetimes) is only of value if it has the potential 

of measures and the time when 50% of those measures have either been removed or have ceased 
to operate in the building environment in which they were originally installed (EMS 1993). 
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to change some conclusion or decision. In deterministic, measure-based studies of 

energy conservation potential, the sole influence of measure life is its effect upon the cost 

of conserved energy.13 (Lifetime estimates' influence on program cost-effectiveness in 

utility integrated resource planning can become more complex when "efficiency 

resources" are projected to be sizable enough to potentially delay requirements for new 

supply-side resources.) Among the longer-lived measures, attic and wall insulation 

have been proven to save so much energy per year per dollar invested, that as long as 

their lifetime exceeds 5-15 years they are reliably cost effective measures at current 

energy prices, (e.g., Cohen et al. 1991) Secondly, as measure lives increase, the effect of a 

given percentage variation in measure lifetime upon the measure's CCE diminishes, due 

to discounting of out-year energy savings. For example, at a 5% discount rate and 

nominal measure life of 25 years, variations in measure life of ±20% lead to variations in 

CCE of only ±10%; at a 10% discount rate, the variations in CCE are reduced to ±3% (see, 

for example, Chapter 1). For shorter-lived weatherization measures such as air sealing 

or heating system retrofits, however, uncertainties in measure lifetimes have the 

potential to be quite influential. The potential for high nominal cost-effectiveness and 

discounting to lead to minimal influence of measure life uncertainty upon estimates of 

cost-effective conservation potential is examined in more detail in Chapter 3; however, 

such an investigation requires as an input at least first-order estimates of the range of 

uncertainty in measure life estimates. 

Summary of Residential Retrofitting Measure Lifetime Estimates 

Recently published surveys or summaries of residential retrofit measure lifetimes are 

consolidated in Tables 2.3 and 2.4; Table 2.3 presents estimates for shell and heating 

system retrofits, while Table 2.4 presents estimated new-purchase heating appliance 

probabilistic analysis of conservation potential, measure life may also influence estimates of 
measure mean savings per year, as discussed in the section on energy savings uncertainty. 
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lifetimes, which are the basis for estimates of furnace/boiler replacement lifetime 

estimates. Only one of the five sources in Table 2.3 (EMS 1993) included sub-citations of 

the sources of the estimates; all but two of the ten measure lifetime estimates from this 

report were based on either the California Collaborative Process (5 measures) (also a 

separately-cited source of estimates in Table 2.3), or "engineering judgment based on 

experience with this technology" (6 measures). A majority of appliance-life sources 

reported low, median, and high lifetime estimates rather than single point estimates. 

This caused the ranges among appliance life estimates to be considerably larger than the 

variations found among most retrofit measure estimates: retrofit measure ranges are 

typically on the order of ±15-25% of the mean estimate, while appliance life ranges 

approach ±50% of the mean in some cases. 

Neither the data summarized in Tables 2.3 and 2.4 nor the results of the collaborative 

California investigation provide a basis for quantitative estimates of the uncertainty 

associated with residential retrofit measure lifetime estimates. For the present analysis, 

a purely judgmental specification of Jn as normally distributed with mean 1.0 and 

standard deviation of 0.25 is adopted based on Tables 2.3 and 2.4.. This leads to 90% 

confidence intervals of approximately 50% of the point estimate. As recommended 

earlier, future collaborative processes or expert elicitation exercises which develop 

measure life estimates should also seek experts' quantitative judgments about 

confidence intervals for mean measure lives. 

Market Potential per Measure 

Estimates of measure market potential, as well as of the uncertainty in such 

estimates, come from household energy use surveys. Features of such surveys which 

are the major determinants of estimate uncertainty include the sample size, the age of 
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the survey data, and the degree of geographic overlap between the sample area and the 

area for which conservation potential is being estimated. 

The three principal sources of market potential estimates in the US are summarized 

below. 

1) EIA's triennial Residential Energy Consumption Survey (RECS). (e.g., EIA 1992; 

1993b; 1993c) RECS represents the only detailed national survey of residential 

equipment and building stock characteristics (particularly since the decennial census of 

population has paid successively less attention to energy-related building and appliance 

characteristics over the past three decades). Because RECS is national in scope, its 

sample size for particular census divisions is quite small (for example, less than 350 

single-family houses in New England), and does not provide state-level estimates of 

stock characteristics. 

2) Utility Residential Appliance Saturation Surveys ("RASSes"). An effort is 

underway at the Lawrence Berkeley Laboratory to synthesize the results from nearly 100 

RASSes nationwide, partly to overcome the sample size/geographic detail limitations of 

RECS. Once this database becomes available, it may considerably reduce the uncertainty 

in estimates of residential retrofitting market potential, as the cumulative sample size of 

the full set of RASSes is over 90 times that of RECS (LBL/EED 1993). 

3) State-level residential audit databases. Several states in the US have continued to 

provide for subsidization of free home energy audits following the termination of 

federal funding for the Residential Conservation Service audits in 1990. In some of these 

states, (for example, Massachusetts, Rhode Island, and Connecticut), mechanisms are 

either in place or under development to catalog electronically the results of the tens of 

thousands of residential audits completed annually. While the resulting audit databases 

suffer from some self-selection bias, their large sample size and comprehensive fuel 

coverage may make them an important complement to the RASS compilation described 
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above, and a potentially rich source of data for state-level conservation potential 

estimates. 

Table 2.5 reports point estimates along with approximate relative standard errors 

(RSEs) for the market size (Nj) for selected weatherization measures, based upon data 

from the 1990 RECS. RSEs per measure vary both by measure and by region, ranging 

from 5% to 28% of the estimate. The average RSE for estimates of measure-eligible 

population sizes reported in Table 2.5 is 14%, and RSEs are generally larger for the 

smaller market size estimates. For the numerical examples in the present paper, the 

mean value RSE of 14% is adopted as a crude estimate of the uncertainty in RECS-based, 

census-region-scale, market size estimates in general; thus, /jv is estimated to be 

normally distributed with mean 1.0 and standard deviation 0.14. Since market sizes 

vary considerably by measure, it appears likely that market size estimate uncertainty 

will vary considerably as well. RECS-based market potential estimates for census 

divisions are more uncertain still. Future state-level estimates should benefit 

dramatically from the coming availability of the RASS database and/or residential audit 

program databases described above. 

Mean Annual Energy Savings per Measure 

Estimates of per-installation annual energy savings used in conservation potential 

analyses are based upon simplified models which utilize incomplete and errant data to 

characterize the stock of houses, their energy-using equipment, and the conservation 

measures themselves. Such estimates are also based upon estimated climate data for a 

long-term average ("normal") weather year, and they further neglect non-climate-

induced year-to-year variability in annual energy savings (imperfect "persistence" of 

first-year savings. It is possible therefore to identify three separate factors contributing 

to uncertainty in estimates of mean annual energy savings per measure: 
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1) uncertainty in estimates of first-year savings, assuming normal climate years; 

2) uncertainty in annual savings due to deviation of annual climates from normal; 

and, 

3) uncertainty about persistence of (weather-normalized) first-year savings. 

The first of these three factors clearly leads to a static uncertainty, in that a "one-time" 

parameter —mean first-year weather-normalized savings per measure — is being 

estimated. The latter two factors are dynamic factors, in that persistence and climate are 

both expected to vary from year to year. However, neither the annual climate estimate 

nor the uncertainty of this estimate should change over the measure life (neglecting 

uncertainties about global climate change), so that climate uncertainty, like first-year 

savings uncertainty, is a static uncertainty. Persistence alone is potentially a dynamic 

uncertainty, in that the estimated effect of persistence, as well as the uncertainty in this 

estimate, may be different for different years during the measure life. 

As discussed in the introduction, uncertainty in estimates of CCEj will be 

characterized by a pdf developed through Monte Carlo analysis utilizing the pdfs of J-, 

Jg, and , which characterize the uncertainty in tij as an estimate of ra;., C; as an 
A 

estimate of C;, and fajiy) as an estimate of Aej( y ) ,  respectively. The estimates «yand 

Cj are scalar quantities, and so their uncertainty is characterized by the pdf of single 

random variables J- and . However, the discussion above pointed out two aspects 

which differentiate estimates of annual energy savings from these scalar estimates: 

1) first, individual uncertain estimates are actually being made for the energy 

savings to occur in each year of a measure's life; and, 

2) the uncertainty in these annual estimates may change from year to year. 

For these reasons, it is necessary to consider energy savings estimates as a vector of 
A 

estimates (of dimension y), ^. ( y ) ,  and to characterize the uncertainty in annual energy 

savings estimates as a vector (of dimension y) of pdfs for a vector of random variables, 
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7—(>>). The following discussion defines how these vectors are used in calculating the 

two quantities of primary interest in conservation potential studies (recall Figure 2.1): 

the energy savings potential associated with measure J, and the cost-effectiveness of 

measure /. Calculation of energy savings potential is considered first. 

A standard assumption made to simplify calculations of energy savings potential is 

that the population-mean energy savings in year y achieved by measure j , Aej(y), is 

constant from year to year. A less restrictive approach which acknowledges the 

dynamic nature of the estimate yet yields the same simplicity of calculations, is to 

specify that calculations of the total energy savings potential associated with each 

measure, Ej , should be based on the temporal-mean (i.e., over the measure life) of the 

population-mean annual savings, A ej, which is given by 

Aei =~^Aej(y) (5) 

This allows us to define the energy savings potential associated with measure j  as: 

Ej=Aej*Nj (6) 

Given these definitions, the uncertainty in estimates of the quantities Atfyand Ej will 

be characterized by the pdfs obtained by Monte Carlo simulations ("MCS") of the 

following expressions:14 

pdj\&ej\ <= (7) 

and 

pdf[E,] <= (8) 

^For compactness of notation, the functional notation "MCS(..will be used to represent the 
estimated pdf which results from a set of Monte Carlo simulations. 
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Constant energy savings is also generally assumed in calculations of the mean cost 

effectiveness of each conservation measure. However, because of the use of discounting 

in calculating measure cost-effectiveness, it is not clear that the estimated temporal mean 

of the population mean energy savings should be used in estimating mean measure cost-

effectiveness. In particular, it seems that uncertainties in later years should be 

discounted with respect to uncertainties in earlier years when estimating the uncertainty 

in estimates of measure cost-effectiveness. This concern is addressed below. 

In conservation potential studies, a cost-effectiveness index is used to rank-order the 

conservation measures prior to final calculations of their individual energy savings, in 

order to account explicitly for measure interaction and thus avoid double-counting of 

energy savings. The cost-effectiveness index is also used to evaluate what fraction of the 

final technical conservation potential is estimated to be cost-effective. Virtually all 

conservation potential studies have employed the "Cost of Conserved Energy," or 

CCE,15 which can be defined in several different ways: 

' d ] 

annualized C 
C* 

CCE= v'-<i+T'=. 
Ae Ae 

C C 

present-valued TC^(y)*e^) 
t*.n&rcr\i Qfivinoc ^ * ' 

(9) 

energy savings v=l  v=l  

CCE is usually defined as the "ratio of annualized installed cost to (constant) annual 

energy savings" (e.g., Vine and Harris 1990, Rosenfeld et al. 1993, Meier 1982, EIA 1990); 

this definition is expressed in the first line of equation (9). An alternative definition of 

the same formula, expressed by the second and third lines of equation (9), is "the ratio of 

measure installed cost to present-valued energy savings." The measure installed cost is a 

l^The advantages and disadvantages of CCE compared with alternative cost-effectiveness indices 
are discussed in Chapter 3. 

47 



one-time, fixed, static, uncertain quantity. On the other hand, energy savings estimates 

are in fact a vector of estimates, one made for each year of the measure life (even when 

constant energy savings is assumed in the estimate). For this reason, the latter definition 

and formulation of CCE is preferred for the present analysis. Using this final expression 

for CCE, the uncertainty in CCEj as an estimate of CCE- will thus be estimated via 

Monte Carlo simulation as follows: 

Defining the Three Constituents of Total Uncertainty in Annual Savings Estimates 

As pointed out in the previous section, three separate factors contribute to the total 

uncertainty in estimates of mean annual energy savings per measure: uncertainty in 

estimates of first-year savings, assuming normal climate years; uncertainty in annual 

savings due to climate variability; and uncertainty about persistence of (weather-

normalized) savings. A simplifying assumption to be made for this initial analysis is 

that the influences of these three factors are statistically independent.^ The second 

major assumption to be made is that the total uncertainty in the estimate of a year's 

energy savings can be modeled as the product of the three contributing uncertainties. 

No assumptions about the functional form of the pelfs characterizing any of the 

uncertainties are required, however. Given these assumptions, the total uncertainty in 

estimates of energy savings per year will be characterized as: 

l^This assumption requires the assumption that weather-normalized persistance is independent 
of climatic variation. Behavioral factors such as budget constraints may in fact lead to some 
degree of negative correlation between annual climate-induced variability in savings and annual 
viriability in weather-normalized annual consumption (which falls under the heading of 
persistance); this question should be investigated empirically. 

A 

(10) 
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PdAAeM *= MCS^Aej(n) * J-^ * J^y) * y^y)} (11) 

where: 

A 

A e j ( n )  is an engineering-based estimate of population-mean, first-year, weather-

normalized energy savings due to measure In standard analyses of conservation 

potential, this quantity is used as the estimate of constant, population-mean, 

annual energy savings; 

^ae(n) *s a rand°m variable whose pdf characterizes the uncertainty in engineering 

estimates of mean first-year, weather-normalized energy savings, for all 

weatherization measures in general; it will have a mean of 1.0 if engineering 

estimates are expected to be unbiased; 

JHDD(y) is a random variable whose pdf characterizes the uncertainty introduced by 

using population mean normal annual heating degree days as an estimator of the 

actual population mean total heating degree days to occur during year it will 

have a mean of 1.0 if the population-mean normal heating climate provides an 

unbiased estimator for future mean annual heating climates; and 

J persist (>) is (a random variable whose pdf characterizes the uncertainty introduced by 

assumptions of perfect persistence of first-year, weather-normalized savings. If 

empirical data indicate that on average, weatherization savings persist perfectly 

over time, then Jpersisl (j)will have a constant mean equal to 1.0; if not, its mean will 

be different from 1.0, and may vary from year to year. 

l^The present study will adopt the simplifying assumption that the ratio of actual to normal 
heating degree days in a given year is invariant accross all the eligible houses in the area of study. 
Variation among eligible houses in normal heating degree days is acknowledged, however. 
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Based on equation (7), the uncertainty associated with estimates of the temporal-

mean of population-mean savings is thus a function of the uncertainties associated not 

only with estimates of annual population-mean energy savings, but also the 

uncertainties in estimates of measure life. This dual dependence upon measure life 

uncertainty and annual mean energy savings uncertainty is also true of the final 

uncertainty in estimates of the present value of the stream of annual energy savings. 

Synthesis of these empirical input uncertainties to characterize the final uncertainty in 

estimates of conservation potential is taken up in Chapter 3. The purpose of the present 

chapter is simply to establish a taxonomy of the uncertainties affecting the empirical 

inputs to conservation potential analysis, to review the state of available data which can 

support estimates of these uncertainties, and to develop initial estimates of these 

uncertainties. 

The disaggregation of J. into its three independent constituents is portrayed 

graphically in Figure 2.5. That figure also illustrates how J* (n) is further disaggregated 

into the five independent factors which contribute to it, as will be discussed in the 

following sub-section. 

Uncertainty in First-Year Weather-Normalized Savings Predictions 

A host of characteristics of a house, its utilization by occupants, and its environment 

interact to determine its annual space-heating energy consumption. Energy 

conservation measures operate by altering one or more of the following characteristics 

which together determine annual energy consumption: 

• area and thermal conductance of walls, ceiling, floor, windows, and doors; 

• instantaneous flow rate and temperature of air infiltrating the heated space, 

and/or cavities in shell components such as walls, floors, etc.; 

• combustion and cyclic efficiency of the heating appliance; 

50 



• efficiency of the distribution system; 

• time-varying thermostat settings (settings during the day, at night, when 

occupants leave, etc., and timing of changes); 

• time-varying operation of curtains, windows, exhaust fans, etc. 

• instantaneous internal thermal gains (from occupants, appliances, etc.) 

• instantaneous climatic influences (exterior temperatures, wind, and solar 

insolation). 

Let the full set of all non-climatic characteristics and factors which influence the total 

annual space-heating energy consumption for house i during year y be designated as 

Si(y). Further designate the full set of climatic factors influencing total annual space-

heating energy consumption for house i during year y as Ki(y). The actual change in 

space-heating energy consumption during the first year after weatherization relative to 

the last year prior to weatherization (i.e., from year "0" to year "1) is a function of these 

two sets of factors before and after weatherization: 

Ae,.(0->1) = ef[S,(0), *,«))]- e,[S. (1), tf,.(l)] (12) 

If the climate during years 1 and 2 had been equal to the long-term average or "normal" 

climate (typically based on 30 years of recent data), then the observed change in space 

heating energy consumption would have equaled the change in normal-climate annual 

heating energy consumption, ANAHC: 

ANAHC = *,[$.(0), *;.(«)]-e,.[S,.(l), K,(n)] (13) 

Although equation (12) represents the actual change in energy consumption 

occurring between years 0 and 1, it is estimates of (13) which are used in conservation 

potential studies, since the average climate over the past 30 years presumably provides a 

best estimate of the annual climate which will occur during the measure life. Secondly, 

empirical measurements of first-year energy savings (with which energy savings 
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predictions have generally been compared to assess their accuracy) also include attempts 

to weather-normalize the observed change in energy consumption, in order to factor out 

the effects of climate variation between the two years. The standard source of 

measurement-based estimates of energy savings, ANAHCj, has been the PRISM method 

(Fels 1986), which typically utilizes two years' fuel billing records (one year prior and 

one year following weatherization), together with data on heating degree days observed 

during each billing period and on the normal annual heating degree days for the region 

under study. 

Conservation potential studies generally employ engineering-based predictions of 

the average per-installation change in weather-normalized annual heating energy 

consumption achievable by each measure. Below is an initial attempt to catalog the 

types of factors which contribute to the final uncertainty in the savings predictions used 

in conservation potential studies. The results are summarized in Tables 2.6 and 2.7, and 

in Figures 2.5 and 2.6. Such a catalog helps guide subsequent adoption and 

interpretation of empirical results characterizing the uncertainty due to various 

combinations of these factors, in order to estimate the total uncertainty associated with 

energy savings predictions. 

Let kj(y) refer to a set of discretized (e.g., monthly, daily, etc.) measurements of 

climate characteristics, such as weekly heating degree-days, or even hourly 

measurements of outdoor temperature, wind speed, and insolation, estimated to be 

representative for house i during year y. Thus, k:(y) is a set of imperfect measurements 

and/or estimates of a subset of the full set of climatic characteristics K^y) which influence 

house i's heating energy consumption during year y. Further let £, («) refer to the long-

term normal (e.g., 30-year average) measured values for this subset, and let &•(«) refer 

to the estimated population means of these measurable characteristics, for the population of 

houses eligible for installation of measure /, which is based on a sample of 

measurements taken for a subset of the eligible population. The notation for estimated 

52 



means of measurable non-climatic characteristics, Sj(y), is similar. In both cases, the 

notation indicates that input data are sample-based, estimates ("A") of population means 

based on imperfect measurements or reported values of an incomplete set (s vs. S, k vs. K) 

of the characteristics which influence actual energy consumption and measure-induced 

energy savings.18 

Finally, engineering-based energy savings predictions generally employ models 

(which can range from simple percent-savings formulations to hourly building 

simulation models) whose inputs are based on, but may not equal, the sample-based 
~ ^ A 

estimates of the mean characteristics of the eligible population, k j ( n )  , ^(0), and ^(1): 

= {e[sj(0) + £,kj0i) + v] - e[Sj{\) +£,kj{.n)+v]} (14) 

Factors 1,2, and 3 listed in Table 2.6 are elements of modeling and parameterization 

error; together they yield the uncertainty associated with audit+model-based predictions 

of weather-normalized energy savings for an individual house. Factor 4 is aggregation 

error, which arises when mean energy savings are not equal to the energy savings 

associated with the "mean house." Factor 5 is due to sampling error in estimating the 

population mean values for climate and building characteristics. Finally, Factor 6 refers 

to errors introduced when prototype characteristics are not set equal to those indicated 

by the sample mean for the population of homes eligible for each measure . Following a 

^The prediction error introduced by using heating degree-days as a simple proxy for all 
environmental determinants of heating energy consumption has been found to be quite minimal 
if predictions are made for total consumption within periods of approximately a week or longer, 
and //the house reference temperature is derived from analysis of consumption data rather than 
fixed arbitrarily at 65°F or 60°F, and i/predictions are being made for other than especially mild 
periods with very few heating degree days (e.g., Hill et al. 1992). This is why PRISM models, 
which regress fuel bills on total heating degree-days per billing period, are usually able to achieve 

values > 0.95 when predicting consumption per billing period based upon heating degree 
days per billing period, given data covering the full heating season for a house (Fels 1986.) Thus, 
the lion's share of ommitted variable error in energy savings predictions is likely to be due to 
omission of important house+utilization characteristics rather than omission of climate/weather 
characteristics. 
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consideration of their interrelationships, each of these factors is examined in more detail 

below. 

Relationships Among the Factors Contributing to Uncertainty in First-Year. 

Population-Mean. Weather-Normalized Energy Savings 

Figure 2.6 portrays a "chain of inequalities" which accounts, one at a time, for five 

different sources of error and uncertainty in estimates of the mean (first-year) weather-

normalized energy savings per eligible house, when such estimates are derived using 

the standard approach employing heating degree-day-based calculations and prototype 

house descriptions. Subsequent sections examine each of these sources of uncertainty in 

some detail, and attempt to summarize the empirical data pertaining to each, or to 

document its absence where necessary. The question addressed by the present section is 

how these five different sources of uncertainty should be aggregated to determine an 

estimate of the total uncertainty in prototype+HDDM-based predictions of mean first-

year weather-normalized energy savings. 

The simplest relationship is one of additive error. That is, it could be assumed that 

measurement-based estimates of mean AN AC were equal to the actual value plus an 

error term, the random variable J0• Using the notation introduced by Figure 2.6 for 

simplicity, the implication of this model is that the final uncertainty equals the sum of 

the individual uncertainties: 

B = A + Ja 

C — B+ «/]23 — A + J0 + J123 

(15a) 

(15b) 

F — E + J6 — A + + /|23 + ^4 + 1 — A + J 
Ae(n) 
A 

(15c) 
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The problem with this model is that in the present study, a single estimate is being 

developed to characterize the uncertainty in savings estimates for all weatherization 

measures in general. Clearly, the absolute magnitude of the uncertainty in 

prototype+HDDM-based estimates of energy savings for a very influential (e.g., large 

expected savings, in Btu/year) measure (e.g., insulating all walls in a large house) is 

likely to be smaller than the absolute magnitude of the error or uncertainty in estimates 

for a less-influential measure (e.g., replacing one storm window). If we assume for 

simplicity that the magnitude of the uncertainty (as measured by its standard deviation) 

increases linearly with the magnitude of the savings estimates themselves, then this 

implies characterization of the uncertainties as percents or fractions of savings estimates, 

just as was done for the top-level uncertainties J— , JN, and J- in the introduction. 

This in turn implies adoption of a multiplicative model of the influence of each 

uncertainty: 

A = B*J0 <=> B = / /Jo <=> Jo=YB (16a) 

5 = C*i123 ^ C = /(/l23 
=/f/„*7,23) ^ ^l23 = % (16b) 

E= F*J6 <=> F=E/J R 

o A = F*[j0*Jni*J^*Js*J6)=F*J A (16c) 
Ae(n) 

Note that in each case, the "actual" value is modeled as its point-estimate times the 

uncertainty in such point estimates, just as in the introduction. The product of a point 

estimate and the random variable which models its estimated uncertainty yields a 

quantity whose pdf can be used to derive confidence intervals for the actual values. The 

implication of this model is that the estimated pdf characterizing the total uncertainty in 

prototype+HDDM-based estimates of first-year weather-normalized energy savings is 
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equal to the pdf of the product of the individual uncertainty terms (random variables). 
A 

The pdf characterizing the uncertainty in Ae(n) as an estimator of Ae(n) (where Ae(n) is 

also referred to as "ANAHC"), is then estimated to be 

pdf[KeW (or" ANAHC")] <= MCsJa^O [ (17) 
I 6eW J 

Note also that this multiplicative model of the influence of the separate uncertainties 

contributing to J A enables expression of each contributing uncertainty as the ratio of 
At (n) 

an "actual" quantity to a "prediction" of that quantity. Empirical estimates of these 

uncertainties will then be provided by empirically-derived pdfs for each of these ratios of 

actual to predicted. Table 2.7 summarizes these relationships. 
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Measured Weather-Normalized Savings I Incertaintv. Tn 

The first component, J0, is the uncertainty associated with measurement-based 

estimates of mean weather-normalized energy savings. Its consideration is necessitated 

because true mean weather-normalized energy savings are unobservable. Thus, while 

ample empirical data is available from weatherization studies to characterize the 

uncertainty in audit+HDDM-based predictions relative to measurement-based estimates of 

weather-normalized energy savings (and/or metered energy use before and after 

weatherization), neither of these types of measurements allows direct comparison of 

predictions with true weather-normalized energy savings. For this reason, our estimate 

of the uncertainty in audit+HDDM-based estimates of true weather-normalized energy 

savings (developed from empirical data below) must be multiplied by J0 to derive the 

total uncertainty in predictions of actual mean (first-year) weather-normalized energy 

savings. 

How can J0 be estimated if true mean weather-normalized energy savings are 

unobservable? First, the method of estimating ANAHC must be specified. The present 

analysis is based on the use of PRISM to estimate ANAHC, since it has been the 

dominant method for measuring weatherization savings to date. Two elements of 

uncertainty in PRISM estimates are discussed below: errors in PRISM prediction of 

ANAHC, and possible savings "takeback."19 

A few studies have compared PRISM energy consumption estimates with metered 

savings estimates, (e.g., Hill et al. 1992; Fels et al. 1986) One consistent finding is that 

19A fourth and major contributor to savings measurement uncertainty in the evaluation of 
weatherization programs relates to the estimation of program-induced, or net savings, as distinct 
from the gross savings observed among the sample of program participants (e.g., Train 1994; 
Buller and Miller 1992; EPRI 1991c, EPRI 1992; and Hirst and Reed 1991). A host of factors can 
cause gross savings to differ from the true savings which should be attributed to the program. 
Program-induced savings is an issue distinct from, and generally broader and more complex 
than, mean weatherization-induced savings among a sample of studied homes. The studies 
which compare measured and predicted energy savings (reported by Cohen et al. 1991 — see 
below) all appear to compare predictions with gross measured savings. 
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PRISM estimates of space heating consumption typically overestimate sub-metered 

space heating consumption by 5-10% if the heating fuel is also used for other end-uses 

(such as water heating and cooking). This is due to seasonal variation in non-heating 

energy consumption (e.g., water heating and cooking), which PRISM .models as part of 

the heating consumption. However, as long as seasonally-variable non-heating energy 

consumption is not appreciably reduced by weatherization, then this effect should not 

appreciably bias estimates of ANAHC upward. Fels (1986) reported that typical per-

house standard errors (for the PRISM regression's prediction of observed consumption 

per billing period) are in the range of 3% of NAHC, when space heating is the only end-

use for the heating fuel.20 For groups of houses, PRISM consumption prediction is even 

better, since aggregate consumption data mask much of the month-to-month variability 

in individual-house consumption data which is not explained by HDDs. (Fels and 

Goldberg 1986) The very high capability of PRISM models to predict aggregate 

consumption using only observed HDDs per billing period (e.g., > 0.995 are typical) 

indicates indirectly that, aside from the possibility of a bias if weatherization alters 

seasonal non-heating consumption, uncertainty in PRISM-based estimates of ANAHC 

appears small; unfortunately, PRISM cannot compute a statistic which quantifies this 

uncertainty directly. 

Finally, savings observed in the fuel bills of weatherized houses may be affected by 

"takeback" or "rebound," which refers to the occupants' decision to "buy more heat" with 

some of the energy cost savings which were achieved by weatherization. In other 

words, if take back is significant, then measured savings estimates will miss the fraction 

of savings which was real but was used to purchase increased comfort. Potential 

examples of such behavior include raising average daily thermostat temperatures, or 

altering "zoning" behavior (shutting off un-occupied rooms). Several studies which have 

^Estimated standard errors for ANAHC may be derived from PRISM-estimated standard errors 
of NAHC as described in Appendix 3 of Fels 1986. 
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directly measured indoor temperatures before and after weatherization have found no 

evidence of take-back larger than a few (<5%) percent of space heating energy savings.^ 

Based upon the discussion above, the present study will conservatively assume that 

uncertainty in PRISM predictions of ANAHC is small enough relative to other 

uncertainties (examined below) to be neglected. If many PRISM estimates have missed 

taken-back savings, this would contribute a downward bias of perhaps 1-5%. If 

weatherization measures appreciably reduce seasonal non-heating energy consumption 

on average, this would contribute an upward bias of similar magnitude. 

Modeling and Parameterization Uncertainty. Ti23 

The discrepancies between measured energy savings and audit+HDDM-based 

predictions of energy savings in home weatherization (as well as measures addressing 

other end-uses) are notorious; among numerous examples, see Hirst et al. 1989, Hewett 

et al. 1986, Hirst and Goeltz 1983, etc., as well as a summary of this topic by Nadel and 

Keating (1991) and a summary of reported weatherization savings prediction errors in 

Cohen et al. 1991. 

Empirical studies of energy savings for populations of retrofitted houses have found 

very wide variability in savings per home, (e.g., Schweitzer et al., 1989; Brown et al. 

1993; and the references in the previous paragraph) Audit+HDDM-based predictions 

have consistently been very poor at explaining much of the observed variability in 

2lThermostat-related takeback behavior is measurable and has been studied repeatedly; only 
studies which measured indoor temperatures directly are described here. For example, a series of 
experiments by researchers at the Oak Ridge National Laboratories (e.g., Ternes and Stoval 1988; 
Ternes et al. 1991) has consistently found average changes in indoor temperature among 
weatherized houses to be nearly zero after weatherization, and nearly equal to the average 
changes observed in a control set of non-weatherized houses. They have concluded that "indoor 
temperature and its change does not contribute significantly to lower than expected savings 
observed in weatherization programs but does contribute to the variation in measured savings 
observed in individual homes" (Ternes et al. 1991, p.88). On the other hand, Dinan (1987) 
reported a mean indoor temperature increase of 0.6°F which indicated that 3.7% of predicted 
savings had been taken back. 
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energy savings per home. Evidently there is considerable variation among households 

in the factors which influence energy savings but which are not adequately modeled by 

audit+HDDM-based methods. Fortunately for analysts of conservation potential, study 

mean predictions have done a much better job at predicting mean measured savings than 

have their per-home counterparts, indicating that a significant portion of the effects of 

inadequately-modeled between-home variability averages out over a population of 

retrofitted homes. (Cohen et al. 1991) 

HDDM-based energy savings predictions using a prototype represent a single 

calculation for a single house-description, but they are nevertheless a prediction of mean 

savings made for a population of houses, over which much of the un-modeled (or 

improperly measured, or improperly modeled) sources of variability in actual savings 

has been shown to average out. In fact, since aggregation error, sampling error, and 

discrepancies between prototype characteristics and sample mean characteristics are all 

dealt with by other uncertainty terms (J4, J5, and /g respectively), J123 should reflect 

only the uncertainty remaining after it is assumed that the HDDM-based energy savings 

calculation for the prototype is equal to the mean of the audit+HDDM calculations 

which would have been obtained if every eligible home had been audited and modeled 

using HDD-based methods. That is, Jl23 should be equivalent to the uncertainty 

introduced by using the mean of a population of audit+HDDM-based predictions as 

an estimator of the mean of a population of measured-savings results.22 

The uncertainty in mean audit+HDDM savings estimates as a predictor of mean 

measured savings is in fact well characterized by a sample of 24 separate studies 

^Note that an additional assumption being made here is that the sample of housing 
characteristic data upon which prototypes are generally based reflects a level of measurement 
accuracy and detail equivalent to that obtained in audits which are designed to support HDDM 
calculations. 
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summarized by Cohen et al (1991).23 The data in this 24-study summary reflect wide 

variation among reported mean prediction biases: per-study mean ratios of measured to 

predicted savings range from 0.14 to 2.08, with a standard deviation of 0.41 about their 

mean of 0.78 (see Figure 2.7). Should these summary statistics be taken at face value as a 

best estimate of the uncertainty in audit+HDDM prediction means as estimators of mean 

measured savings? Surely, some fraction of the large variation in study mean prediction 

errors is due to variation among the individual studies in factors such as data quality, 

installation quality, un-modeled characteristics influencing savings, etc. Nevertheless, 

unless some of this variability can be explained by variation in particular characteristics 

underlying the individual studies, all of the variability must be considered as indicative 

of the "universe" of possible instances of prediction mean error, when audit+HDDM 

prediction means are to be used as estimators for measured savings means. 

Future research might attempt to "dig up" from the original reports or their authors 

more extensive data for each of these studies (and for studies completed since the 1991 

summary report) such as per-study variances among predicted and measured savings, 

whether estimates were calibrated to pre-weatherization consumption levels, etc., in 

order to facilitate more rigorous synthesis of the study results using techniques of meta­

analysis.^ Such an analysis is beyond the scope of the present study. Nevertheless, 

23ln addition to the 24 studies summarized by Cohen et al. which employed HDD-based 
methods to predict energy savings, the authors also presented summary results for 8 studies 
which utilized building energy simulation models that "attempt to account explicitly for solar and 
internal gains, utilize more sophisticated algorithms to model infiltration and ground-coupling, 
and are designed so that predicted energy use can be calibrated to actual utility bills" (p. 67). 
Since the level of input detail employed by such models is not realistically available for use in 
energy conservation potential studies, the use of sophisticated energy simulation models for such 
studies is not practical either, and the results of these eight studies should not be considered 
representative of the energy savings prediction uncertainty associated with energy conservation 
potential studies. 

^Analysts of energy conservation programs have recently begun to explore the application of 
meta-analysis in order to synthesize the results of individual program evaluations; see, for 
example, Violette et al. 1992; Greene et al. 1993; Karr et al. 1993; Lagerberg et al. 1993, and Green 
and Violette 1994. 
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some of the major potential sources of variation among study results are considered 

briefly below, both in an attempt to make more careful use of the data in the present 

study, and to point out some of the major factors which may be important to consider in 

future meta-analytic studies of the topic. Three separate issues are examined briefly 

below: 

1) there are two separate program types among the 24 studies: utility and R&D; 

2) three program-based factors, which contribute an unknown fraction of the total 

prediction error observed among the utility studies, do not generally affect 

estimates of conservation potential; and, 

3) study final report details were examined for the four extreme prediction error 

outliers reported by Cohen et al. It was found that data reported for one of the 

four outliers could not be confirmed by the original published reports, and that 

two other out-lying studies were not appropriately considered representative of 

audit+HDDM prediction accuracy. 

Factors which vary by program type. 

Within the 24 HDD-based studies, Cohen et al. "believe that it is important to 

analyze results separately for R&D studies and utility programs because of differences in 

input data quality and, in some cases, model sophistication." In particular, Cohen et al. 

judge that utility programs, but not R&D programs, are susceptible to three factors 

discussed in the next sub-section which contribute an unspecified amount of prediction 

error to the utility program results. Second, Sonnenblick (1993) cited several reasons 

why savings achieved by smaller-scale, higher-profile pilot programs are expected to be 

higher than those achieved by full scale utility programs.25 Only one of the ten utility 

^The factors cited included pilot program use of the most qualified personnel available, and the 
motivational benefits brought by the higher profile of pilot programs. Sonnenblick also noted 
additional differences which could either increase or decrease pilot-achieved savings relative to 
full scale programs. 
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programs in Cohen et al.'s dataset was a pilot, while all of the research studies could 

potentially benefit from the advantages of pilot programs. A third difference between 

the two types of programs is sample size, which ranged from 101 to 6289 among utility 

programs, and from 3 to 32 among R&D programs. Finally, the utility studies generally 

involved installation of multiple measures per household, for which individual 

prediction errors might partially cancel per house, while most of the R&D studies 

examined the effects of one measure only. In summary, the underlying differences 

between utility programs and R&D studies are mixed: two sets of factors contribute 

uncertainty to utility predictions relative to R&D studies, while two other factors should 

reduce utility mean prediction error relative to R&D studies. These factors are also 

mixed in their applicability to studies of conservation potential, as summarized in 

Table 2.8. 

Program-based factors which should not affect conservation potential estimates. 

In addition to inaccuracies inherent in characterizing houses with audit-based data 

and modeling annual energy consumption with HDD-based methods, there is an 

additional set of factors to which some of the authors of the individual studies attributed 

unspecified fractions of their mean prediction error, according to Cohen et al. These 

factors apply only to utility studies, and arguably do not influence the HDD-based 

predictions used in estimates of conservation potential: 

a) a "small portion" of the prediction error was attributed to cases where not all 

recommended measures (upon which predictions were based) were actually 

installed in each house; 

b) some of the earliest studies failed to account energy savings interactions among 

measures installed in the same house; (such interactions generally reduce the total 

savings actually achieved, and so would contribute to the observed over-prediction 

of savings); and, 

63 



c) not all studies calibrated their savings estimates to pre-weatherization 

consumption levels. 

While these factors reportedly contributed to the total prediction error observed in 

Figure 2.7, energy conservation potential estimates can generally be considered 

unaffected by these sources of prediction error. First, incomplete installation bias (a) 

should clearly not affect estimates of conservation potential. Next, it is standard practice 

for potential studies to explicitly model the effects of measure interaction, whose neglect 

lead to bias (b). Finally, conservation potential analyses can (and should) calibrate their 

savings estimates to measured consumption data for the year of study, avoiding (or at 

least reducing) bias (c). Unfortunately, information is not available to enable assessment 

of what fraction of which studies' mean prediction error was caused by these factors. 

Thus, it can only be concluded that these factors jointly contribute to some of the 

prediction error observed among utility studies. 

Outlier examination. 

Four of the 24 HDD-based studies exhibit ratios of mean measured to mean 

predicted savings which are located noticeably far from the central cluster of twenty 

remaining studies. Available details for each of these "outliers" are examined briefly 

below. Note that the three data points located farthest from the 24-study mean are all 

R&D studies. 

• Outlier #1: University of Illinois Wall and Ceiling Insulation Study. 

The highest reported ratio of mean measured to mean predicted energy savings was 

2.1, for a 12-home, 1978 University of Illinois Wall and Ceiling Insulation Study. (Hegan 

et al. 1982) Cohen et al. reported values of 20 and 42 MBtu/year for mean predicted and 

mean measured NAC savings, respectively (Table 12, p. 70), citing a paper in the 

Proceedings of the 1982 ACEEE Summer Study. The final peer-reviewed publication of 
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the results of this Illinois study was (Herendeen et al. 1983). Both references were 

obtained by the present author, but neither provides data which aggress with the 

summary results reported by Cohen et al., indicating either reporting errors by Cohen et 

al., or the use by Cohen et al. of a different draft of the proceedings submission than the 

final one made available to the present author by ACEEE.26 

Unfortunately, determining the mean measured and mean predicted savings from 

the study reports is not straightforward, since savings were measured three different 

ways and predicted two different ways. The standard calculation of measured (gross) 

NAC savings is as the difference between NAC measured for the last year before 

weatherization and the first year following weatherization. (e.g., Fels 1986) The study by 

Herendeen measured NAC for three years prior and three years following 

weatherization. Using this data, measured savings were calculated three different ways 

(average pre minus average post, last pre minus first post, and deviation from 

interpolated trend). The report's authors further selected what they considered to be the 

most reliable estimate from among the three as a final result per house, and reported the 

mean of these "final" measured savings as well. One set of savings predictions was 

generated by using standard heating degree-day methods. Another was calculated by 

multiplying the HDDM-based percent savings by the average measured NAC during 

the years prior to weatherization. The mean predicted and measured savings from each 

method are reported in Table 2.9 for data from both versions of the paper. None of the 

possible results matches the results published by Cohen et al. In fact, all of the possible 

results calculated yield ratios of mean actual to mean predicted savings well below 2.08; 

the results from the published paper indicate consistent over-prediction of savings, and 

26]<aren Olson was unable to locate a copy of the cited proceedings paper at LBL. Two of the 
paper's authors (Stiles and Harendeen) were contacted, but were only able to locate copies of the 
final 1983 published paper. ACEEE (John Morrill of the Washington, D.C. office) provided a copy 
of the final proceedings submission, but indicated that several drafts of most papers were 
submitted during the pre- and post-conference period. 
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indicate predictions which are considerably higher than those reported by the earlier 

conference paper. 

One final attempt was made to reconcile the Cohen et al. and published results. The 

text of both the 1982 and 1983 papers explicitly noted that the highest over-prediction of 

savings occurred for a very complex house. It was checked whether dropping this home 

from the sample and re-calculating the results yielded numbers which matched, or even 

bracketed Cohen et al.'s. Unfortunately it did not (see Table 2.9). 

To achieve consistency with the standard methods of predicting and measuring 

savings, the appropriate predicted-measured comparison is between the standard 

HDDM-based prediction and the "last pre minus first post" measured savings. Since the 

results reported by the most recent and peer-reviewed paper (Herendeen et al. 1983) are 

probably to be preferred over those reported in earlier conference papers, it is concluded 

that the ratio of mean measured to mean predicted savings for the Illinois study should 

be 0.950, not 2.1 as reported in Cohen et al. 

• Outliers #3 and 4: Robinson Foundation Insulation Studies. 

The two R&D programs with the lowest ratios of mean measured to mean predicted 

savings (0.14, and 0.20 respectively) both pertained strictly to a study of basement wall 

insulation retrofits. (Robinson et al. 1989; Hewett et al. 1991) Mechanisms governing 

basement-related whole-house heat loss are believed to include both conductive and 

convective interactions between basements and the rest of the house, are highly 

complex, poorly understood, and are known to be inadequately modeled by even highly 

detailed models of basement wall conductive effects. (Robinson et al. 1990; Hewett et al. 

1991) For these reasons, HDD-based methods (as well as more detailed energy 

simulation models) are known to have uncharacteristically poor predictive accuracy for 

basement wall retrofits. These two data points confirm that engineering-based estimates 

of energy savings from foundation insulation retrofits are highly uncertain. However, 
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the mean prediction error reported by these two studies should not be considered 

indicative of the prediction error associated with HDD-based models of weatherization 

measures in general. 

• Outlier #4: Puget Power Weatherization Loan Program. 

The one HDD-based "outlier" associated with a utility program was the 6289-home 

study of Puget Sound Power and Light Company's weatherization loan program. (Croft 

1982) In this study, the ratio of mean measured to mean predicted savings was 1.57. 

Program evaluators attributed the excess (gross) electricity savings among the 

participating households (i.e., the greater-than-predicted average drop in weather-

adjusted annual consumption after weatherization) to increased use of wood stoves or 

fireplace inserts along with "dramatic" increases in electric rates during the multi-year 

study period. (Cohen et al. 1991, vol. 2, p. 27) 

Based on these details, it appears that the prediction error in Puget Power's HDD-

based estimate of the mean change in energy use (distinct from electricity use) achieved by 

program weatherization measures was considerably smaller than indicated by this data 

point. However, the use of auxiliary fuels complicates fuel specific estimates of 

conservation potential as well as program performance prediction. In fact, unforeseen 

post-weatherization reductions in wood use have contributed to over-prediction of 

electricity savings in several other weatherization programs, both in the Pacific 

Northwest, (e.g., Hirst et al. 1989) and New England (Nadel and Keating 1991) While 

the details underlying the Puget Power results indicate that HDDM-based methods may 

have done a better than indicated job of predicting savings of total energy, the prediction 

error represented by this data point nevertheless reflects the impact of factors which do 

contribute uncertainty to predictions of fuel-specific conservation potential. 
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In summary, details from the individual studies' final reports indicate that the three 

outliers from the R&D dataset should net be considered representative of audit+HDDM-

based prediction uncertainty; one data point appears to be a reporting error, while two 

others pertain to a particular measure for which prediction accuracy is atypical of HDD 

methods in general. The fourth (Puget Power) is an outlier due at least in part to the 

influence of a factor which does contribute to the uncertainty in HDDM-based estimates 

of conservation potential, and so should be retained in the data set. The three R&D 

study outliers were omitted from the dataset, and statistics recomputed (see Table 2.10). 

(It was found that nearly identical results were obtained if the University of Illinois 

study was modified to a mean of 0.95 rather than omitted.) 

Recall that an examination of the factors related to program type indicated that the 

set of ratios of mean measured to mean predicted savings from utility programs might 

over-estimate the uncertainty in audit+HDDM-based estimates of first-year weather-

normalized mean energy savings used in studies of conservation potential. Likewise, 

factors related to program type indicated that the set of ratios from R&D studies might 

tend to underestimate this uncertainty. After deleting the three outliers, the statistics of 

each sample are in line with this hypothesis (see Table 2.10), in that the variance among 

utility program prediction errors is larger than that of R&D studies. The statistics for the 

combined sample provide a mid-range estimate which will be used as a basis for 

inference in the present study. 

All samples exhibit small positive skewness. Applying a natural log transformation 

reduced this skewness of the combined sample to near zero (Table 2.10). Thus, as a 

rough approximation of the prediction uncertainty in audit+HDDM-based predictions 

of mean measured savings, J123 is estimated to be distributed lognormally: 

J m ~ e r ,  Y ~ N ( - 0.3, 0.32) (18) 

Future exploration of this complex topic using meta-analysis is recommended. 
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Aggregation Error Uncertainty. Id 

Aggregation error uncertainty, in the present study, refers to an unknown error 

introduced when the mean energy savings for a population of houses is estimated as the 

energy savings for the mean house. Space conditioning energy consumption is non-

linearly dependent upon building characteristics. Aggregation error arises because of 

"the assumption of linearity built into any averaging scheme [used to define prototypes], 

and the contradiction to this assumption that characterizes actual building energy use." 

(Eto et al. 1990) 

Mosleh and Bier (1992) provide a literature survey and a review of issues related to 

aggregation error in the estimation and analysis of uncertainty. Only one known study 

has examined the impact of aggregation error on predictions of mean energy 

consumption. For the commercial buildings sector, the impact of modeling energy use 

with a single prototype versus separate models of seven small (< 30,000 ft^) office 

buildings was studied by Eto et al. (1990). Their finding of significant aggregation error 

in the prototype-based estimates of energy consumption led them "to suggest caution in 

the use of prototypes for energy demand forecasting and demand-side planning. While 

the use of prototypes is probably unavoidable, we believe the need for validation and 

calibration is significant." The researchers concluded that: 

It is not sufficient to ensure, as we have done in this study, that 
each individual physical and operating characteristic of a sample 
of buildings is carefully weighted and averaged in the creation of 
a prototype because the energy performance of the sample, much 
less a larger population, cannot be approximated by such a linear 
averaging of these characteristics, (p. 10.36) 

Eto et al. tested two different building characteristic weighting schemes, and found 

prototype prediction errors for space heating, space cooling, and ventilating energy use 

which ranged from 8% to 26% of weighted modeled energy use in the population of 7 

buildings. The mean of the prediction error percentages among the six separate 

predictions (two weighting schemes, three types of space-conditioning energy use) was 
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16%. There was little evidence of systematic positive or negative bias in prototype 

estimates, with equal numbers of over- and under-estimates. Despite the cause for 

concern indicated by Eto et al.'s results, a review of the literature and consultation with 

multiple researchers in the field has uncovered no studies which assess the importance 

of aggregation error for the residential sector. The present study will adopt a crude 

initial estimate of J4 as normally distributed with mean 1.0 and standard deviation 0.15, 

based solely on Eto et al.'s results, which were for small commercial buildings. Clearly, 

prototype aggregation error and its effect upon uncertainty in conclusions about 

residential space conditioning conservation potential is an important topic for further 

research. 

Sampling Error Uncertainty, ft; 

Factor 5 represents the uncertainty in energy savings estimates which is due to 

propagating through HDDM calculations the uncertainty in sample-based estimates of 

population means for each house characteristic required by the calculations. 

Uncertainty propagation through building energy simulation models is an active area of 

on-going research, (see, for example, Lomas and Eppel 1992) To date the focus of the 

research appears to have been propagation of measurement uncertainty for individual 

audited (or designed but not yet constructed) buildings (e.g., factor 2 in Table 6), rather 

than the uncertainty associated with sample means. Also, building energy simulation 

models and their input data are much more detailed than generally practical for studies 

of conservation potential. 

The uncertainty in sample-based estimates of mean values for stock and climate 

characteristics (Sj and k- ) for the population of houses eligible for measure j is related 

to the sample size, the sampling method, and the sample standard deviation. If the 

sample of audits is purely random and the sample size n is greater than 30, then the 

probability distribution for can be approximated by a normal distribution with mean 
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equal to the sample mean, and standard deviation equal to the sample standard 

deviation divided by -Jn. For sampling strategies other than simple random sampling, 

other formulae or methods for estimating the underlying distribution must be used.27 

As discussed in the section related to market size estimation, the single major survey 

of national and multi-state regional residential stock characteristics related to energy 

consumption is the EIA's RECS. Also mentioned earlier was the Lawrence Berkeley 

Laboratory's effort to combine the results of nearly 100 utilities' residential appliance 

saturation surveys ("RASSes") into a national database whose sample size is over 90 

times that of RECS. The LBL RASS database has the potential to significantly improve 

the precision of market potential estimates, as compared with RECS-based estimates. 

However, since RASSes are typically administered by either phone or mail (rather than 

the in-home audits used by RECS), the LBL RASS database is not likely to contain much 

in the way of the quantitative building characteristics needed for prototype specification, 

such as floor area, wall area, window area, thickness of existing attic insulation, etc. 

States compiling databases of Residential Conservation Service-style audit results (also 

discussed in the section addressing market potential estimation) may have a viable 

alternative/supplement to RECS-based prototype estimation. 

For the present study a crude estimate of J5 is developed based upon the following 

considerations. The 1990 RECS survey reported the mean heated floorspace in single 

family homes for each of the nine census divisions with approximate relative standard 

27See, for example, Cochran 1977. EIA's triennial Residential Energy Consumption survey, the 
only comprehensive national source of residential energy-related building characteristics, 
employs a multistage area probability sample design of a complexity which precludes 
development of an analytic expression for the estimated sampling error variance. For this reason, 
EIA conducts balanced half-sample replication analysis in order to develop estimates of relative 
standard error for the cross tabulations published in the RECS summary reports. RSE's for 
variables used in estimating prototype characteristics, particularly if prototypes are to be 
specified based on measure-eligible sub-populations, would require additional half-sample 
replication analyses. Details of the RECS sample design are found in Appendix A of EIA 1992; 
details concerning the estimation of sampling error for RECS data are found in Appendix B of 
that reference. 
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errors (RSE's) which ranged from 3 to 6% of the estimates.28 The sample sizes for sub-

populations (e.g., gas-heated single-family homes lacking wall insulation) will be 

smaller (recall Table 5), making their RSE's larger; unfortunately, RSE's for such sub-

populations were not calculated by EIA. A normal distribution with mean 1.0 and 

standard deviation 0.1 is used here as a crude estimate of J5. This estimate is likely to 

significantly understate the true uncertainty caused by sampling error if RECS data is 

used to estimate mean characteristics of measure-eligible sub-populations within census 

divisions (as has been the case in the major national prototype development efforts to 

date. Also, J5 (like the uncertainty in estimates of market potential) can be expected to 

very significantly by measure. Better quantification of this uncertainty is an important 

topic for future research, particularly as alternative databases of national and regional 

residential building characteristics become available. 

"Errant Prototype" Uncertainty, fa 

Within the total population of houses in a study area there is a subset of Nj houses 

eligible for measure /; call this sub-population the "/-population." Note that the j-

population for one measure will in general be a different set of houses than the /-

populations for each of the other measures, although there is likely to be some overlap 

since many houses are eligible for more than one measure. Unless the;- populations for 

two measures are identical, then if separate prototypes are not specified for each 

measure, the estimated uncertainty introduced by simple sampling error described 

above will be an underestimates of the total uncertainty caused by using prototypes as 

point-estimates of the mean characteristics of each /-population. 

28xable 15, p. 48. The nine census divisions are New England, Middle Atlantic, East North 
Central, West North Central, South Atlantic, East South Central, West South Central, Mountain, 
and Pacific. 
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As it turns out, development of separate prototypes to describe the population of 

homes eligible for each measure may have never been done in practice. Indeed, prototype 

characteristics are often not even set equal to sample means at all. As Eto et al. (1990) 

observed: "Historically, prototype development has relied primarily on 'engineering 

judgment.' This practice often results in the development of 'representative' buildings 

(i.e., a building description largely based on an actual building, but 'modified' (often in 

an undocumented manner) to be more reflective of a larger population of buildings)." 

The standard prototype development process does not document the differences 

between sample mean and prototype characteristics, much less investigate the impacts 

of such differences upon uncertainty in estimates of energy savings. The most rigorous 

efforts to develop residential prototypes for the US to date (e.g., Bluestein and DeLima 

1985; Ritschard and Huang 1989; Ritschard et al. 1992) have combined statistical analysis 

of RECS data with engineering judgments in order to specify "representative" prototypes 

for several key age-classes of residential buildings in each census division. For the 

present study, given the absence of quantitative data from which to derive an estimate, a 

conservative approach appears to be to assume that its effects are on the order of those 

of sampling error, which has been estimated by /5 as normally distributed with mean 1.0 

and standard deviation 0.1. As with the bulk of the factors contributing to empirical 

input uncertainty described in this report, "errant prototype" error must be 

recommended as an important topic for future research. 

Total Uncertainty in Estimates of Mean Weather-Normalized First-Year Energy Savings 

Finally, the product 

^et W~ Jo* J123 * A * ̂ 5 * ̂ 6 (^) 

provides an (obviously quite speculative) first-order estimate of a random variable 

whose pdf characterizes the uncertainty in prototype+HDDM-based estimates of the true 
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mean of achievable savings per installation of measure / under the assumption of normal 

climate. 

The results of a 200-sample Latin Hypercube simulation of equation (19) are 

presented in Figure 2.8. As the figure illustrates, the 90% confidence interval for J- (n) is 

estimated to range from roughly 0.4 to 1.3, meaning that the 90% confidence interval for 

the actual value of AIj (n) (the population-mean, first-year, weather-normalized energy 

savings per measure) is estimated to range from roughly 40% to 130% of the standard-

method-estimate (i.e., prototype+HDDM-based calculations) of this quantity. 

Climate-Induced Variability in Annual Energy Savings 

The annual heating degree-days (HDDs) which will occur each year during the 

lifetime of an energy conservation measure will certainly differ from the long-term 

climate averages used in energy savings predictions. In terms of the uncertainty in 

estimates of annual energy savings over a measure's lifetime, what matters is the 

deviation of the average annual climate over the lifetime of the measure from the long-term 

normal value used in energy savings estimates (30 years is the typical period over which 

heating degree-day normals are averaged). The climate-induced uncertainty in average 

annual energy savings over a measure's lifetime is thus related to the uncertainty 

introduced by using the most recent 30-year normal climate as a predictor of the average 

(future) annual climate throughout the measure's life. For weatherization measures, 

estimated lifetimes generally range from 5 to 30 years. 

Annual recorded heating degree-days (HDDs) for a particular station or state exhibit 

significant serial autocorrelation. For this reason, the simple statistics (mean and 

variance) calculated for a sample of annual HDDs do not provide a sufficient basis for 

estimating HDD prediction error. That is, if it is simply assumed that annual heating 

degree days are distributed normally with an empirically-estimated mean and variance, 
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then the resulting estimates of the variance of mean annual heating degree days over the 

lifetimes of conservation measures will be underestimates. Instead, empirical estimation 

of climate-induced uncertainty requires a historical climate record long enough to enable 

comparison of average annual heating degree days for measure lifetime periods 

(ranging from 5-30 years) with the 30-year normals which were observed just prior to 

the measure life periods. 

The longest available historical records of state average heating degree days are 

provided by a series of 48 (one for each of the contiguous states) reports from the 

National Climate Data Center (NOAA 1983); heating and cooling degree-day data were 

obtained from 46 of these 48 reports for the present analysis (copies of the Washington 

and Oregon reports were not located by our search). These reports provide estimates of 

annual state-wide average heating and cooling degree days (to a base temperature of 

65°F) for each year from 1895 through 1982. For the present study, historical HDD data 

for three different states are examined in detail: New Hampshire, New Jersey, and 

Tennessee. These three states were selected to provide examples from each of the three 

DOE climate regions (see, for example, Brown et al. 1993), in order to explore if and how 

warmer and colder climates differed in the uncertainty of 30-year normals as predictors 

of future annual HDDs. Following this detailed analysis for the three states, data from 

all 46 states are examined for consistent trends in climate-induced uncertainty as a 

function of severity of climate. 

Figures 2.9 and 2.10 report the results of the three-state analysis. Clearly, period-

mean HDDs become less variable as the length of the period (i.e., the measure life) 

increases. This trend is reflected in monotonically decreasing standard deviations for 

the samples of period means divided by the prior normals. Also evident in the figures is 

the fact that while absolute variation in annual HDDs from year to year is greater in the 

colder states, the relative variability (i.e., standard deviation divided by the mean) is 

greater in the milder states. Thus, the spread of period means divided by prior normals 
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is larger for the milder states, increasing from roughly ± 5% in New Hampshire to 

roughly ± 10% in Tennessee. 

Another feature of the results is that the serial autocorrelation in the past century's 

temperature record leads to consistent tendencies for the prior normals to either 

overestimate (as in New Hampshire and New Jersey) or underestimate (as in Tennessee) 

the subsequent-period means on average during the period. That is, for New 

Hampshire and New Jersey, an over-all warming trend from the beginning of the record 

through about 1955 caused prior normals to tend to over-estimate subsequent period-

mean heating degree days, while a cooling trend in Tennessee after 1920 lead to the 

opposite tendency for that state. In fact, the data from all three states showed that thirty-

year normals generally under-predicted subsequent 5-year means through the early 

1950's, after which a more recent cooling trend in the records reversed this effect. The 

fact that the mean prediction error ("bias") increases steadily as the measure lifetime 

increases is actually an artifact of the sampling procedure.29 Therefore, it does not 

appear justifiable to conclude that the relationship between measure life and climate 

prediction bias observed in the present results would persist if longer climate records 

became available and were sampled from. Nevertheless, it is worth noting that the 

existence of long-term "trends" (serial autocorrelation) in annual climate data leads to 

serial autocorrelation in prediction error as well. 

The tendency of milder heating climates to experience increased (relative) climate-

induced heating energy savings uncertainty was examined by checking for a correlation 

between mean heating degree-days (over the full 88-year record) and the coefficient of 

variation (standard deviation divided by the mean). The possibility for milder (cooler) 

^For the two colder states, the requirement for longer periods of "post prediction" data causes 
the samples for longer-lifetime predictions to end earlier during the climate record, omitting 
more of the later instances of under-prediction which occur during the more recent period of 
generally cooler winters. In Tennessee, a consistent trend of increasing HDDs following the first 
30 years of data (which are used to generate the earliest 30-year normal) leads to persistent 
underestimation of future period means by prior normals. 
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cooling climates to experience greater climate-induced cooling savings uncertainty was 

also examined in a similar manner. The results are plotted in Figure 2.11. As shown in 

the plots, colder heating climates (and hotter cooling climates) exhibit generally less 

climate variability from year to year (in relative terms) than their milder counterparts. 

The curvilinear relationships between climate variability and climate severity mean that 

among the colder heating climates (HDD > 4000), climate variability is nearly 

independent of climate severity. 

Most importantly for the present study, the uncertainty in lifetime average annual 

savings due to climate variability appears relatively small compared with some of the 

other sources of uncertainty studied in the present paper. For this analysis, the 

uncertainty, Jhdd(y)' will be approximated as a normal distribution with mean 1.0 and 

standard deviation 0.06, which is roughly the mean coefficient of variation for states 

with > 4000 HDDs annually (see Figure 2.11). Climate-induced uncertainty is inversely 

related to measure life, and is greater than indicated by the above estimate for ]hdd(]/) ̂  

states with milder heating climates. 

Persistence: Variability in Annual Weather-Normalized Savings 

Many factors can lead to variation in the annual weather-normalized energy savings 

attributable to energy conservation measures, relative to weather-normalized savings 

during the first year after weatherization. The question of importance here is how much 

uncertainty do these factors contribute collectively into estimates of technical and cost-

effective conservation potential which rely on assumptions of perfect persistence. 

Differences between conservation measures' program impacts (in relation to which 

empirical persistence studies are generally conducted) and their conservation potential 

must be borne in mind, in the process of interpreting data on savings persistence in 

order to assess the persistence-related uncertainty in estimates of energy conservation 

potential. 
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It is possible to identify three distinct sets of factors which can lead to imperfect 

persistence of weatherization-induced weather-normalized energy savings: 

1) Changes in Behavioral. Environmental, or Structural Influences of Heating 

Demand 

If the average winter thermostat setting is raised in later years, annual savings 

will increase; if the average winter thermostat setting is lowered in later years, 

annual savings will decrease. Addition or subtraction of occupants, appliances, 

and even nearby trees or buildings may influence the final demand for fuel-

based heat. Finally, structural modifications which change the heated square 

footage of a home, such as building additions, conversion of garages, basements, 

and attics, can affect total heating energy use. 

2) Physical Alteration or Degradation of Energy Conservation Measures 

The performance of some weatherization measures may degrade physically over 

time relative to first-year savings, particularly if maintenance is inadequate, or if 

installation quality was poor. Furnace performance under improper 

maintenance, the savings from a furnace clean-and-tune, or the air-sealing 

benefits of caulking and weather-stripping on heavily-used doors and windows 

are obvious examples. The performance of some longer-lived shell measures 

may also degrade with time; improperly-installed wall insulation can settle; attic 

or sub-floor insulation may be tampered with, or small portions may be 

damaged or removed, either of which can significantly reduce its energy 

conservation effectiveness. 

3) Out-vear Installation of Additional Efficiency Measures or Appliance Upgrades 

Heating energy consumption can be idealized as the product of three terms: the 

heat load H, the reciprocal of the heating appliance seasonal efficiency, yn , 
/  ' f a  

and the reciprocal of the distribution system efficiency, y^: 
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annual energy consumption = J (20) 

To a first approximation, equation (20) describes the interactive relationships 

among space-heating conservation measures. Later installation of measures 

alters the conditions upon which earlier savings calculations were based. For 

example, when a new, more efficient furnace is purchased to replace a failed 

older furnace several years after walls were insulated, then the annual fuel 

savings achieved by wall insulation are reduced. 

All three of the sets of factors listed above will collectively influence persistence data, 

which can make their separate influences difficult or impossible to isolate from billing 

analyses alone. However, while each clearly influences the persistence of 

weatherization-induced savings, their influence upon the uncertainty in estimates of 

conservation potential varies. Each is considered separately below. 

Behavioral factors can be divided into measure-induced, and non-measure-induced 

effects. Presumably, measure-induced effects (e.g., savings take-back ) will impact 

savings from the first year onward, and as long as they are not expected to change 

systematically over time, should not appreciably contribute to uncertainty in first-year 

savings as a predictor of future annual savings. Regarding non-measure-induced 

effects, year-to-year variability in behavioral factors such as average thermostat settings 

is known to be significant for individual houses, but to tend to cancel out on average 

within aggregates of houses, (e.g., Ternes et al. 1991) In fact, the same relationship 

between per-home and population wide-variability is observed for the persistence of 

weather-normalized annual consumption generally (under the influence of all three 

factors listed above), in that per-home variation in annual weather-normalized 

consumption generally appears erratic, while aggregate variability exhibits generally 

smooth trends. (Fels and Goldberg 1986; Cohen et al. 1991: pp. 63-65) 
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Environmental and structural influences, on the other hand, probably do not have a 

measure-induced component. The magnitude of their influence is not separately 

observable in billing data, but might be better inferred from engineering analysis 

together with data on rates of residential remodeling. Upper bounds on the size of its 

influence might also be inferred by examining the magnitude of residual prediction 

errors in models such as REEPS or LBL/REM, which predict aggregate residential space-

heating energy demand as a function of weather, price, and estimated stock turnover 

dynamics. Data such as that summarized by Cohen seems to show that much of 

persistence variability during the first three to six years of program is related to price 

dynamics. 

Factor set (2), physical degradation or alteration of conservation measures, will 

contribute to imperfect persistence evidenced in billing data, and is also an effect which 

fully contributes to uncertainty in estimates of annual energy savings used in projections 

of conservation potential. A significant problem is how to isolate its effects using billing 

data. The standard approach is to compare post-weatherization consumption histories 

with those of comparison groups of households which were not weatherized, since "The 

use of a control group should control for behavioral, equipment, and structural changes 

[factor sets (1) and (3)] which are assumed to be the same between groups." (Degens 

1992 ) Another complimentary approach would be long-term studies which incorporate 

periodic physical inspection of conservation measures. For many measures this should 

prove feasible (e.g., WCDSR 1992), but for some such as air sealing measures physical 

inspection will face serious challenges. (Bordner 1994) 

Finally, there is factor set (3), the out-year installation of additional efficiency 

measures or appliance upgrades. Measures do interact; thus, the reduction in fuel 

consumption caused by wall insulation will be less for a house with a more efficient 

heating system. In studies of current conservation potential, measure interaction is 

taken into account, although influence is modeled as propagating from "earlier" 

80 



measures (that is, most cost-effective) to "later" measures, rather than the reverse 

chronology described above (e.g., the furnace upgrade occurring after wall insulation 

saves less energy than if wall insulation had not been installed). 

The important point is that estimates of total technical conservation potential include 

an attempt to correct for measure interactive effects. Estimates of cost-effective potential 

include interaction among all cost-effective measures. Only chance for missing actual 

interaction is if non-cost-effective measures are naturally implemented (will effectively 

reduce the savings achievable by the full set of cost-effective measures), or if new 

measures become technically feasible and are implemented (but invention/ 

commercialization of new measures expands the total technical energy savings potential 

more than their partial installation reduces the potential associated with the original set). 

In summary, factor sets (1), (2) and (3) all impact weather-normalized energy 

consumption in weatherized homes, but only factors sets (1) and (2) contribute to 

persistence-related uncertainty in estimates of conservation potential, since measure 

interactive effects are explicitly accounted for when summing measure energy savings to 

derive estimates of total conservation potential — with the one possible omission noted 

above, along with errors in modeling measure interaction. Next we turn to look at what 

empirical data on persistence is available. 

As noted earlier, empirical studies of the persistence of weatherization-induced, 

weather-normalized annual energy savings generally attempt to quantify program-

induced energy savings. For example, Train (1994) discusses how program-induced 

savings ("net savings") should be equal to the measure-induced savings among program 

participants ("gross savings"), minus those measure-induced savings which would have 

occurred in the absence of the program ("free ridership"), plus any additional energy 

savings caused by the existence of the program but not included among the 

participants' program-measure-induced savings ("spillover effects"). Train also 

discusses how program-induced savings, as defined above, are not properly measured 
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by simply subtracting the savings among households not offered the program from the 

savings among program participants (because participants in voluntary programs may 

exhibit significant energy-related behavior differences relative to the wider population, 

which is represented by the population of households non offered the program). 

However, if differences among weatherized and non-weatherized homes can be 

minimized in the design of weatherization persistence studies, by making willingness-

to-participate not a factor in separating weatherized from non-weatherized homes (as is 

generally attempted), then this calculation is the most logical one to perform when 

attempting to isolate the influence of factor set (2) upon persistence. This calculation is 

the basis for estimates of the persistence of "net" savings in weatherization persistence 

studies. Persistence of "gross" savings — that is, of savings among weatherized homes, is 

also sometimes reported separately by persistence studies. 

Let us summarize the relationships between factors sets (1), (2) and (3), measured 

data on persistence, and the needs of the present analysis. Only factor sets (1) and (2) 

contribute to persistence-related uncertainty in estimates of energy conservation 

potential. Measured persistence of gross savings is affected by factor sets (1), (2), and (3). 

In fact, operation of factor (3) (out-year investments in efficiency) should tend to reduce 

gross weather-normalized consumption relative to first-year consumption (all else being 

equal), effectively increasing the apparent persistence of weatherization-induced savings. 

The influence of factor set (3) on gross persistence should be minimal, however, since 

most persistence data comes from evaluations of comprehensive weatherization programs 

which should leave little near-term opportunities for further investment in cost-effective 

efficiency in the treated homes. Measurements of the persistence of net savings attempt 

to isolate the influence of factor set (2) upon persistence, by controlling for the effects of 

factor sets (1) and (3) observed in a comparison group of houses; however, comparison 

group specification is difficult, and, particularly for comprehensive weatherization 

programs, net savings estimates may penalize estimated weatherization-induced 
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savings for out-year installation of the some of the same weatherization measures by 

members of the comparison group. 

The summary above indicates that measurements of the persistence of gross savings, 

by including the effects of factor set (3), should provide a very slightly upwardly-biased 

estimate of the effects of (1) and (2) alone. Measurements of net savings, on the other 

hand, will miss the contribution of factor (1) to variability in annual weather-normalized 

energy savings, which data from two major persistence studies in the Pacific northwest 

indicates is significantly related to dynamics in the price of energy.30 Measured 

persistence of net savings will also be reduced by the control group's out-year 

installation of weatherization measures. In the end, neither gross nor net persistence 

data provides an adequate characterization of the expected contribution of persistence-

related effects to the total uncertainty in predictions of out-year weather-normalized 

energy savings. The best that can be hoped, based on the discussion above, is that the 

magnitudes of annual savings variability observed in gross and net persistence data may 

bracket the magnitude of persistence-related out-year savings uncertainty. 

Empirical Data on the Persistence of Weather-normalized Weatherization Savings 

Data on the persistence of residential weatherization savings comes primarily from 

three major studies. Six cohorts weatherized during various years of the Bonneville 

Power Administration's Residential Weatherization Program (BPA RWP) were studied 

for persistence of savings. (Horowitz et al. 1991, White and Brown 1990) Four of the 

30 a note on the potential for negative correlation between energy price and a component of 
persistence uncertainty: If demand is stimulated by falling energy prices, then energy savings 
increase while their monetary value per Btu is reduced. If demand is reduced by rising energy 
prices, then measure-induced savings are reduced but their monetary value per Btu is increased. 
Thus, assuming that price uncertainty and persistence uncertainty were independent could lead 
to over-estimating the uncertainty in measure cost-effectiveness. The present study is not 
considering uncertainty in energy price at all, since CCE is independent of energy price. Future 
studies, particularly those which may consider other indices of cost effectiveness which include 
the price of energy, such as net present value or benefit-cost ratio, should keep in mind the 
potential for negative correlation between energy price and one component of persistence 
uncertainty. 
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BPA RWP cohorts were evaluated for three years after weatherization, one for two years, 

and one for six years. Four different sets of non-participant cohorts were identified, 

corresponding to different versions of the RWP. Four cohorts from the Seattle City Light 

Home Energy Loan Program (SCL HELP) were evaluated for persistence of 

weatherization savings. (Sumi and Coates 1988, 1989) Post-retrofit data was available 

for periods ranging from 3 to 6 years total duration. The SCL study reported 

consumption for a single set of non-participants throughout the study period. 

The results of the studies cited above were combined and analyzed in terms of the 

persistence of both gross and net first-year savings. Annual gross savings were simply 

calculated as the difference between mean annual weather-normalized consumption 

among the weatherized houses and the mean weather-normalized consumption during 

the last year prior to weatherization for that group. Annual net savings were calculated 

as annual gross savings minus the savings observed in the control group of houses. 

Then, this annual net savings result was compared with the net savings observed during 

the first year after weatherization. 

As expected based upon the discussion in the preceding section, the variability 

observed in Figure 2.12 among persistence results for a given year is generally greater 

for gross savings than for net savings (recall that net savings excludes (more accurately, 

attempts to correct for) the effects of (mostly price-induced) behavioral variability in 

annual consumption); this difference is also documented by the standard deviations 

reported in Table 2.11. Second, recall that gross savings credits persistence with the 

effects of out-year investments in efficiency, which should not be included in the effects 

contributing to persistence-related uncertainty. Finally, note that net persistence is 

generally below gross persistence, presumably reflecting some of the control houses' 

out-year investments in some of the measures installed during weatherization of the 

treated houses. 
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What are the implications for the contribution of persistence-related effects (factors 

(1) and (2)) to uncertainty in estimates of annual weather-normalized energy savings? 

The isolated effects of only factors (1) and (2) are unfortunately not observable in the 

data. Persistence of gross savings is, on average, slightly greater than 100%, due 

presumably to contributions from factor (3); as a first-order approximation it will be 

assumed based on Figure 2.12 and Table 2.11 that absent factor (3), factors (1) and (2) 

combined do not yield an expected persistence effect for weatherization measures 

significantly different from 100% persistence. Second, there is no consistent trend in the 

means of study results for either net or gross persistence over time. 

Third, neither is there a clear trend in the variability among study results for either 

gross or net persistence over time (see Table 2.11). Of course, the number of studies 

declines to zero past year six, so that in this sense uncertainty about longer-term 

weatherization savings persistence clearly grows after the sixth year following 

weatherization. But no clear trend of increasing sample standard deviations is observed 

during the first six years' data, even though the estimated standard deviation is 

influenced by the diminishing number of data points per year.31 

The gross persistence data plotted in Figure 2.12 appears to exhibit significant serial 

autocorrelation. That is, cohorts whose gross savings increased in the second year after 

weatherization tended to maintain this higher-than-first-year gross savings into the third 

and fourth years, and vice versa. The presence of serial autocorrelation was checked for 

by regressing gross persistence in year "y+1" upon gross persistence in the previous year 

("y"). The same was done for the net persistence data. The results are plotted in Figure 

2.13, which clearly shows significant autocorrelation in gross persistence, but negligible 

autocorrelation in net persistence. 

31Note that the confidence intervals associated with the individual studies' data points generally 
grow with time, partially as a function of diminishing sample size caused by attrition (e.g., 
Horrowitz et al. 1991). This effect could be accounted for explicitly in a meta-analysis of 
persistence results, but is not observable in the present simpler approach to the data. 
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Based on the discussion in the preceding section, together with the results 

summarized in Figures 2.12 and 2.13, the present study will adopt a first-order estimate 

for Jpersistiy) which is based on the gross persistence results, and includes the observed 

serial autocorrelation. Jpersistiy) will be defined as identically equal to 1.0 for y -1 by 

default (since persistence relates to out-year deviations from first-year savings. In each 

of the out-years, based upon the results in Figure 2.13, Jpersistiy) will be defined as: 

Jpersistiy) = Jpersistiy-^) + Normal(n=0, std. dev. = 0.2) (21) 

The actual contribution of persistence-related effects to uncertainty in out-year 

predictions of weather-normalized energy savings should be studied in much more 

detail; the discussion and data presented above indicate that its magnitude may be quite 

significant, but also that the characterization in equation (21), based as it is directly upon 

gross persistence data, is not especially accurate. Another limitation is that empirical 

data beyond the sixth year following weatherization is non-existent. 

Summary of Results and Conclusions 

This chapter has suggested a taxonomy of the uncertainties affecting the empirical 

inputs to analysis of current weatherization potential, has reviewed the state of available 

data which can support estimates of these uncertainties, and has suggested initial 

estimates for these uncertainties, based upon empirical data wherever possible. The 

results of this effort are summarized in Table 2.13. In addition to the parameter-specific 

notes included below Table 2.13, a few broad conclusions may be offered. 

First, empirical data to support characterization of the uncertainty in empirical 

inputs to analysis of weatherization potential are clearly lacking for many of the factors 

which contribute to final uncertainty in the four inputs. Of these four inputs, estimates 

of measure life and annual energy savings appear to be the most in need of an improved 

empirical basis for estimating their uncertainty. 
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Second, the taxonomy of factors has helped illustrate how the uncertainty in 

estimates of annual energy savings is by far the most complex input uncertainty to 

analyze, as it is influenced by at least seven individual sources of uncertainty. 

Third, methods of meta-analysis may help refine and narrow the confidence 

intervals for some of the estimated input uncertainties. In the near term, if combined 

with updated attempts to gather program evaluation results, they might be fruitfully 

applied to factors such as the uncertainty in audit+HDDM-based predictions of first-

year weather-normalized savings, the uncertainty contributed by persistence-related 

effects, and possibly the uncertainty in quote-based estimates of mean installed costs. 

Beyond these three areas, the effective near-term application of meta-analytic methods to 

refine estimates of the uncertainty in the empirical inputs to the analysis of 

weatherization potential is likely to be blocked by a lack of data. 
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Table 2.1: R. S. Means Regional Cost Multipliers for 
Selected Residential Retrofit Categories in New England 
Location Thermal and Moisture Protection 

(includes insulation/sealing) 
Mechanical 

(includes heating system work) 
Location 

Material Installation Total Material Installation Total 

CT Bridgeport 100.1 109.9 103.2 103.5 93 98.3 
Hartford 101.1 93.1 98.6 101.4 90.2 95.8 
New Haven 88.2 107.2 94.3 101.9 92.5 97.2 
Stamford 88 109.8 95 101.4 99.6 100.5 
Waterbury 88.8 92.8 90.1 100.4 88.1 94.3 

CT mean 93.24 102.56 96.24 101.72 92.68 97.22 
CT std. dev. 6.73 8.84 4.92 1.13 4.33 2.37 

ME Lewiston 88.3 60.4 78.3 96.8 90.1 93.5 
Portland 96.8 90.1 93.4 96.8 90.1 93.4 

MA Boston 107 134.4 115.8 103.8 126.3 115 
Lawrence 98.8 131.8 109.4 98.9 109.2 104.1 
Lowell 99.4 131.8 109.8 98.6 99.2 98.9 
Springfield 97.8 108.4 101.2 97.8 98.8 98.3 
Worcester 99.7 120.9 106.5 101.1 84.5 92.8 

MA mean 100.54 125.46 108.54 100.04 103.6 101.82 
MA std. dev. 3.68 10.86 5.32 2.43 15.44 8.38 

NH Manchester 96.6 108.5 100.4 97.2 81.6 89.5 
Nashua 102.2 108.5 104.2 98.7 81.7 90.2 

VT Burlington 88 75.1 83.9 100.9 77.3 89.1 
RI Providence 106.2 102 104.8 99.9 91.3 95.6 

overall mean 96.69 105.29 99.31 99.94 93.34 96.66 
overall std. dev. 6.51 20.07 9.84 2.23 11.87 6.38 
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Table 2.2: Variability Among Residential Retrofit Measure Cost Quotes 
in a National Survey * 

Com­ Measure Quoted Mean Quote/ Variance & Variance & 
ponent Installed Quote Measure (Std. Dev.) (Std. Dev.) 

Cost ty Mean Of Quotes Of Quotes by 
(1989$/sqft) Measure By Measure Component 

Ceiling add R19 0.49 0.45 1.09 0.047 0.037 
0.29 0.64 (0.217) (0.192) 
0.39 0.87 
0.54 1.20 
0.52 1.16 
0.39 0.87 
0.55 1.22 

add R30 0.64 0.65 0.98 0.040 
0.43 0.66 (0.201) 
0.61 0.94 
0.73 1.12 
0.65 1.00 
0.61 0.94 
0.86 1.32 

add R38 0.73 0.93 0.78 0.049 
1.12 1.20 (0.221) 
0.77 0.83 
1.09 1.17 

add R49 1.38 1.26 1.10 
1 0.79 

1.41 1.12 
Walls Blow in R11 0.54 0.79 0.68 0.060 0.060 

0.68 0.86 (0.245) (0.245) 
0.65 0.82 
0.66 0.84 
0.75 0.95 
0.8 1.01 
1.1 1.39 

0.66 0.84 
1.02 1.29 
1.03 1.30 

Sub-Floor R11 Batts 0.8 0.65 1.23 0.024 0.060 
0.58 0.89 (0.154) (0.244) 
0.62 0.95 
0.61 0.94 

R19 Batts 0.56 0.85 0.66 0.116 
0.65 0.76 (0.340) 
1.13 1.33 
1.07 1.26 

Mean(variances by meas) 0.056 
Mean(std. dev's by meas) (0.230) 

Variance(total set of ratios) 0.045 

Std.Dev.(total set of ratios) (0.211) 
* Source: Boghosian and McMahon 1993. Costs were normalized to Boston using 

regional cost multipliers. 
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Table 2.3: Published Estimates of Residential Retrofit Measure Lifetimes 

Source: Range of 
Estimates 

1 2 3 4 5 (min, max) 

Shell 
Insulation (ceiling + floor) 20 30 20 25 25(a) 20-30 

Insulation (wall) 20 30 25 25 25 (a,e) 20-30 

Caulking/weatherstripping 
10 - 5 10 10 (a) 5-10 

"House Doctor" air sealing 10 - 10 10 - 10 

Storm Windows 
15 - 15 15 - 15 

Storm Doors 15 - 10 15 - 10-15 
Replacement Windows 15 - 20 15 22(e) 15-22 

Replacement Doors 15 - 20 15 15-20 
Heating System. 

clean and tune-up 2 - - - 2 
set-back thermostat - 15 - - 15 
component retrofits 10 - 10-15 - 10-15 

filter replacement - . - - 1 (eal2) 
5(e) 

1-5 

furnace repair - - - - 15(e) 15 
appliance replacement 15 20 25 23 see next 

table 
15-25 

Sources: 1,2, and 4 come from Table H.l, p. H.1.3, in Brown et al. 1993. 

(1) Ternes et al. 1991 

(2) Koomey et al., 1991 

(3) Cohen et al., 1991 

(4) An Energy Efficiency Blueprint for California, Appendix A: Measurement Protocols for DSM 
Programs Eligible for Shareholder Incentives, Report of the Statewide Collaborative, Jan. 1991. 

Notes (a, e, etc., refer to type of reference cited in EMS report, as follows): 

(a) = Based on measure life estimates from the California Collaborative Process; 
(e) = "An engineering judgment based on experience with this technology"; 
(e3) = Article on remodeling in Housing Economics, July 1991; 
(el2) = "Based on filter change at the end of each heating season (accounts for retention and 

performance factors)." 

(5) EMS 1993 
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Table 2.4: Published Estimates of Residential Heating Appliance Lifetimes 

Source Range of 
Estimates 

Appliance Type 1 

Appl. Mag. 

2 

Easton/GRI 

3 

LBL/REM 

4 

ASHRAE 

5 

EMS 

(min, max) 

Heat Pump 9-11-15 10 -12 -15 8-14-16 - 18 (a) 8-18 

Gas Furnace 13 -16 - 20 15-18-20 18 - 23 - 29 18 18 (a, e, e3) 

22 (e) non-

condensine 

13-29 

Oil Furnace 12 -15 -19 15-17-20 18 - 23 -

28 

18 12-28 

Electric Furnace 15 -18 - 22 20-20-25 18-23-

29 

- 15-29 

Gas Boiler 13-17-22 20 - 20 - 25 . 30 13-30 

Oil Boiler 12 -15 -19 20 - 20 - 25 - 30 12-30 

Sources: 1-4 come from Table 3.5, p. 24, of Hanford et al. 1994. 

(1) Appliance Magazine (annual) — first-owner lifetimes only 

(2) Easton/GRI: Lewis, J. and A. Clarke, 1990. Replacement Market for Selected Commercial 
Energy Service Equipment. (Topical Report: Phase IB - Commercial). Gas Research Institute. 
GRI-89/0204.02. June. 

(3) LBL/REM: Lawrence Berkeley Laboratory's Residential Energy Model. 

(4) ASHRAE: ASHRAE 1987 (HVAC Systems and Applications) 

(5) EMS 1993 
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Table 2.5: Market Size for Selected Weatherization Measures in Regions of the US1'^ 
Million U.S. 

Single Family or 
Mobile Home 
Units which 

in 1990 ' 
lacked insulation 

in/of: 

Northeast 
Census Region 

Midwest 
Census 
Region 

South 
Census Region 

West 
Census Region 

Million U.S. 
Single Family or 

Mobile Home 
Units which 

in 1990 ' 
lacked insulation 

in/of: 

>5500 
Heating 
Degree-

Days 

<5500 
Heating 
Degree-

Days 

2 4000 
Heating 
Degree-

Days 

<2000 
Heating 
Degree-

Days 

>2000 
Heating 
Degree-

Days 

>4000 
Heating 
Degree-

Days 

<4000 
Heating 
Degree-

Days 

Walls 1.1±12% 0.8±24% 1.7+ 9% 2.0±15% 2.4+17% 0.7+17% 2.2+13% 

Roof/Ceiling 1.0+14% 0.5+28% 1.3±10% 1.3±17% 1.5+20% 0.3+20% 1.2±16% 

Floor^ 2.5+10% 0.8+19% 4.2± 7% 4.8±12% 3.4±14% 1.6±14% 2.3±11% 

Water Heater 6.1± 7% 2.7+14% 12.6± 5% 9.4+9% 8.3±10% 2.8±10% 5.1 ±8% 

Units in region 8.7+6% 3.6+12% 17.6+4% 14.4+7% 11.2±8% 5.7+9% 8.3+7% 

•'•Derived from EIA 1992, pp. 147-148. 

^For each cell, the point estimate is reported along with the approximate relative standard 

error (RSE). 

^Includes only houses with basements or crawlspaces which are either un-heated or only 

partly heated. 
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Table 2.6 : Summary of Factors Leading to Uncertainty in Prototype+HDDM-Based 
Estimates of Population-Mean, First-Year, Weather-Normalized Energy Savings per 
Measure 
Type of Error or 
Uncertainty 

Instances which effect 
predictions of energy savings 

Comments 

Factor 1: 

Omitted Variables 

k;(n) * K^n) Not expected to be a major factor — see 
text 

Factor 1: 

Omitted Variables s,.(0)*S,.(0) Some of the un-modeled factors will 

be altered by weatherization, such as 
behavioral factors. 

Factor 1: 

Omitted Variables 

5,(1) *$(1) 

Some of the un-modeled factors will 

be altered by weatherization, such as 
behavioral factors. 

Factor 2: 

Measurement/ 
Reporting Error 

Kin pas,) * k^nfume) 
The standard deviation among 30-yr 
normals sampled from an 88-yr period of 
NH data was < 2%; see Table 5. 

Factor 2: 

Measurement/ 
Reporting Error 

S,(0) * J ,(0) Ex., mis-measuring or mis-reporting pre-
weatherization characteristics. 

Factor 2: 

Measurement/ 
Reporting Error 

?,(!)* s,(l) May include: 
• errors in s(. (0) for characteristics 

assumed not to change from year 1 to 2; 
• mis-characterization of ideal or 

"perfect" measure installations; 
• actual incidences of poor quality or 

"imperfect" matls./installation; 
• mis-characterized or neglected 

behavior within set s,-. 
Factor 3: 

Model 

Mis-specification 

e(sn k^^eis^ kt) Refers to model limitations (other than 
omission of variables) which would cause 
model predictions to be in error even if 
perfect input data s;(0) and s;(l) were 
available. 

Factor 4: 

Aggregation Error e j ^ e ( S j , K j ) .  

Although total energy savings for 
measure; equals A/y*(mean savings), 
it is not generally true that savings for the 
"mean house" equal mean savings. 

While this idealized case is obviously 
impossible to test, it can be shown (e.g., 

Eto et al. 1990) that i j  ̂  e ( J j ,  k j ) .  

Factor 5: 

Sampling Error 

"i 

XM") 
k j i n ) * k j ( n ) =  

Nj 

Differences between heating degree-days 
observed at weather station(s) and the 
mean heating degree-days for the 
population of eligible houses. 

Factor 5: 

Sampling Error 

L
s j j (y )  

S j ( y ) * S j i y ) =  
Nj 

For example, prototype wall area will not 
be equal to the mean wall area of all 
houses eligible for wall insulation. 

Factor 6: 

"Errant 
Prototypes" 

S + E&S 
For example, use of the same prototype to 
evaluate all measures; or use of 
judgement-based "typical" building 
characteristics rather than the mean 
characteristics of the sample of eligible 
homes. 
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Table 2.7: Components of Total Uncertainty in Prototype+HDDM-Based Estimates of 
Population-Mean, First-Year, Weather-Normalized Energy Savings per Measure 

lo Il23 h /5 Je 
Error Type: Measurement Audit+HDDM Aggregation Sampling Errant Prototype 
Nature of the 
Uncertainty: 

How well does the 
mean measurement-

based estimate 
predict the mean 
actual ANAHC? 

How well does the mean 
audit+HDDM-based 

estimate predict the mean 
measurement-based 

estimate? 

How well does the 
savings for the 

mean house 
predict the mean 
savings for the 
population of 

houses? 

How well do the 
savings for the 
sample-based 
estimate of the 

mean house predict 
the savings for the 
true mean house? 

How well do the 
prototype 

characteristics match 
the sample-based 

estimate of the mean 
characteristics of the 
eligible population? 

Table 1 Factors 
Contributing 
to Uncertainty: 

n/a 1,2, and 3 4 5 6 

Definition 
(notation) 

A e j [ s , k ]  A e\s,k\ 

Definition 
(notation) ANAHC j / ANAHC , / A e j [ s , k } /  

/ A e j [ s , k ]  
A e j [ s , k ]  A e\s,k\ 

Definition 
(notation) 

/ ANAHCj / Aejimium 

A e j [ s , k } /  
/ A e j [ s , k ]  

A  e j [ s , i c ]  A e j [ s  + £ , k  + v] 

Definition 
(words) 

mean 
actual 

weather-norm'd 
energy savings 

mean 
measurement-based estimate 

of 
energy savings 

mean 
energy savings 

prediction 

energy savings 
prediction for mean 

house 

energy savings 
prediction for sample-

based estimate of 
mean house 

Definition 
(words) 

mean 
measurement-based 

estimate of 
energy savings 

mean 
audit+HDDM-based 

prediction of 
energy savings 

energy savings 
prediction for 
mean house 

energy savings 
prediction for 
sample-based 
estimate of 
mean house 

energy savings 
prediction 
based on 
prototype 

Estimated 
Distribution 

= 1.0 ~ ey, Y ~ N(-0.3,0.32) - N(1.0,0.152) ~ N(1.0,0.12) - N( 1.0,0.12) 



Table 2.8: Summary of Factors Influencing Observed Mean First-Year Energy Savings 
Prediction Error Which Vary by Program Type 

Factor(s) Incomplete Installation, 
Mis-modeled Interaction, 
and Lack of Calibration 

Pilot Study Effects Very Small Sample Size Multiple Conservation 
Measures 
per Prediction 

Influence 
Observed in: 

Utility Programs only R&D Studies 
only 

R&D Studies 
only 

Utility Programs only 

Nature of 
Influence 

Generally contributes to 
observed prediction error 
by increasing tendency to 
over-predict savings 

Generally mitigates 
prediction error by 
reducing tendency to 
underachieve predicted 
savings 

Widens confidence 
intervals associated 
with each data point 

Within-study RMS 
error among per-home 
predictions may be 
smaller than that 
expected for per-
measure predictions. 

Summary This factor will increase the 
prediction error (bias and 
variance) observed in 
utility studies relative to 
that expected for 
conservation potential 
studies: 
The set of utility study 
ratios may over-estimate 
the uncertainty in 
conservation potential 
predictions. 

This factor will reduce the 
prediction bias observed in 
R&D studies relative to that 
expected for conservation 
potential studies: The set of 
R&D study ratios may 
under-estimate uncertainty 
in conservation potential 
predictions. 

This factor will reduce 
the weights applied to 
R&D study individual 
data points in a meta­
analysis; 
No clear effect on the 
set of R&D study ratios 
as an estimator of the 
uncertainty in 
conservation potential 
predictions. 

This factor may increase 
the weights applied to 
utility study data points 
in a meta analysis, but 
may need to be 
corrected for if inferring 
uncertainty of per-
measure predictions. 
No clear effect on the 
set of Utility study 
ratios as an 
estimator...etc. 



Table 2.9: Derivation of Energy Savings Mean Predicted and Mean Measured Savings Results 
Based on Data from Two Published Reports 

Measurement Method Prediction Method 
Avgerage Pre 
minus 
Average Post 

Last Pre 
minus 
Last Post 

Deviation from 
Estimated 
Trend 

Measurement 
selected by 
paper authors 

Basic 
HDDM-based 
prediction 

HDDM-based, 
scaled by prior 
consumption 

Results for Original Set of 12 Houses 
Herendeen et al 1983: 
En. Savings, MBtu/yr 41.6 33.0 29.4 35.8 53.0 43.2 

(j. measured/ 
p. basic prediction 0.785 0.622 0.555 0.676 1.000 0.815 

H measured/ 
|i calibrated prediction 0.963 0.764 0.681 0.830 1.227 1.000 

Hegan et al. 1982: 
En. Savings, Mbtu/yr 41.6 33.7 32.7 36.6 35.5 30.0 

|i measured/ 
H. basic prediction 

1.171 0.950 0.921 1.031 1.000 0.843 

(i measured/ 
H calibrated prediction 1.388 1.127 1.093 1.223 1.186 1.000 

Results for Set of 11 Houses ("Complex House" Removed) 
Herendeen et al 1983: 
En. Savings, MBtu/yr 40.3 34.2 27.7 34.6 44.4 36.9 

(i measured/ 
H basic prediction 

0.907 0.769 0.623 0.778 1.000 0.831 

|i measured/ 
(i calibrated prediction 1.092 0.925 0.749 0.936 1.203 1.000 

Hegan et al. 1982: 
En. Savings, Mbtu/yr 40.3 34.1 30.0 35.3 29.8 25.8 

|i measured/ 
|i basic prediction 1.353 1.146 1.008 1.186 1.000 0.866 

(i. measured/ 
(i. calibrated prediction 1.563 1.323 1.165 1.371 1.155 1.000 



Table 2.10: Statistics for Ratios of Mean Measured to Mean Predicted Energy Savings 

Study 
Type 

Statistic Characteristics of the Sample 

Included Reported All Observations 
Reported by 

Cohen et al (1991) 
Included 

Three Outliers 
Removed from 

Sample 

Statistics for 
Natural Logs of 

Ratios, with Three 
Outliers Removed 

Utility Minimum 0.443 
Studies Maximum 1.574 

Count 10 N/A N/A 
Mean 0.774 
Median 0.673 
Std. Dev. 0.358 
Variance 0.128 
Skewness 1.088 
Kurtosis 0.396 

R&D Minimum 0.118 0.488 
Studies Maximum 2.1 1.143 

Count 14 11 N/A 
Mean 0.792 0.790 
Median 0.777 0.792 
Std. Dev. 0.469 0.182 
Variance 0.220 0.033 
Skewness 1.329 0.264 
Kurtosis 2.623 -0.180 

Utility Minimum 0.118 0.444 -0.813 
and Maximum 2.1 1.574 0.454 
R&D Count 24 21 21 

Studies Mean 0.785 0.782 -0.299 
Com­ Median 0.752 0.763 -0.271 
bined Std. Dev. 0.418 0.273 0.333 

Variance 0.175 0.074 0.111 
Skewness 1.323 1.061 0.181 
Kurtosis 2.622 1.433 -0.449 
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Table 2.11: Persistance of First-Year Gross and Net Energy Savings from Two Sets of 
Weatherization Studies 

Annual Gross Savings as Percent ofFirst'Year Gross Savings 

First Year Year 2 Year 3 Year 4 Year 5 Year 6 

BPA1 100% 117% 119% 
BPA2 100% 98% 102% 
BPA3 100% 107% 
BPA4 100% 100% 110% 
BPA5 100% 82% 55% 
BPA6 100% 100% 116% 92% 88% 60% 
SCL1 100% 102% 138% 145% 117% 105% 
SCL2 100% 144% 151% 128% 126% 
SCL3 100% 105% 76% 59% 
SCL4 100% 67% 41% 

mean: 102% 101% 106% 110% 82% 
std. dev.: 20% 37% 38% 20% 32% 

Annual Net Savings as Percent of First-Year Net Savings 

First Year Year 2 Year 3 Year 4 Year 5 Year 6 

BPA1 100% 85% 61% 
BPA2 100% 89% 67% 
BPA3 100% 92% 
BPA4 100% 95% 100% 
BPA5 100% 79% 69% 
BPA6 100% 95% 60% 85% 85% 75% 
SCL1 100% 107% 104% 85% 81% 96% 
SCL2 100% 105% 81% 90% 129% 
SCL3 100% 73% 73% 86% 
SCL4 100% 80% 64% 

mean: 90% 75% 87% 98% 86% 
std. dev.: 11% 16% 3% 26% 15% 
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Table 2.12: Summary of Results for Contributors to Uncertainty in Inputs to Analysis of Current Weatherization Potential 
Uncertainty In 

Market 
Size 

7c 
Installed 

Cost 

Jn 
Useful 

Lifetime 

Jo 
Savings 

Meas. Er. 

h 23 
audit+ 
HDDM 

74 
Aggreg. 

Error 

Js 
Sampling 

Error 

7e 
Errant 

Prototype 

/HDD 
Climate 

Variability 

Ipersist 
Persistence 

Uncert. 
Availability 
of data to 

characterize 
uncertainty: 

O.K. O.K./ 
Poor 

Poor Good O.K./ 
Poor 

O.K. 
but 

needs 
analysis 

O.K. 
but 

needs 
analysis 

N/A 

needs 
analysis 

Good 
O.K./ 
Poor 

Jveri l)=l-0 
Estimated 

Uncertainty 
(H, std.dev) 

N(l, 0.14) N(l, 0.2) N(l, 0.25) 1.0 
it, Y= 

N(-0.3, -0.3) 
N(l, 0.15) N(l, 0.1) N(l, 0.1) 

Jhdd(y)= 

N(l, 0.06) 

7per(y>l)= 
/per(y-l)+ 
N(0,0.2) 

Notes: 1 2 3 4 5 6 7 8 9 10 

1. Uncertainty is very measure- and study-specific. Coming RASS compilations should reduce uncertainties considerably for sub-national 
studies. Otherwise, estimates (using RECS data) are very uncertain below the census region level. 

2. Few studies have been done to compare mean installed cost per measure with quote-based estimates; also, several studies have relied on 
cost data which was quite old and/or representative of other regions. 

3. Lifetime uncertainty's influence is greatest for shorter-lived measures (such as tune-up); these should be studied empirically. 

4. Has benefited from a standardized method (PRISM) which has been widely used and documented. Uncertainty appears relatively small. 

5. Needed are: a) a standardized method for calculating savings per measure, particularly for calibrating savings estimates to prior 
consumption; and b) a series of empirical tests of this method, applied to populations within full-scale programs rather than pilot 
programs. Absent these new initiatives, an exhaustive search for additional results might be coupled with meta-analysis techniques. 

6. This source of error has never been analyzed for the residential sector; only once for the commercial sector. 

7. This source of error should be analyzed next time RECS-based prototypes are updated, and the methods clearly documented. Sampling 
error suffers from same small-sample problem as estimates of market size; however, RASS compilations are not likely to help much here. 

8. This error is completely study-specific. It has never been documented; in fact, it has rarely if ever been calculated, since mean character­
istics for each measure-eligible population are rarely calculated themselves. This uncertainty may be understated by this estimate. 

9. For measures with lives well under 5 years (ex., tune-ups) this uncertainty may be significant. Not for longer-lived measures. 

10. This uncertainty needs more careful study. First, existing data should be further analyzed to determine whether net, gross, or some 
function of the two best represent the contribution of persistence-related effects to uncertainty in predictions of energy savings potential 
and measure cost-effectiveness. This analysis might clarify data needs to inform future empirical studies of persistence. 
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Four uncertain ni Cj A e} Nj 
Empirical Inputs 

Describe Each 
Conservation Measure: 

estimated 
mean lifetime 

of measure/ 

estimated 
mean installed cost 

of measure/ 

estimated 
mean annual 

energy savings 

from measure/ 

estimated 
market potential 

of measure/ 

Assumed 
Discount 

—-•— C, 
CCE =z±* 

Ae, 1 - ( 1  + d ) ~ " '  

Estimated (mean) 
"Cost of Conserved Energy" 

(CCE) for Measure / 

Cost 
of 

Conserved 
Energy 

• technical potential -

— cost-effective potential-

cost^ectivenessthreshold 

measure; r 

E = A e * N -
J J J 

Total Energy Savings Potential 
Associated with Measure j 

r 

Energy Conservation Potential (MBtu/yr) 

Figure 2.1: Usage of Uncertain Empirical Inputs in the Analysis of Energy Conservation Potential 



Material Cost Multipliers for 
Insulation Measures 

95 100 
Multiplier 
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Material Cost Multipliers for 
Heating System Measures 
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Installation Cost Multipliers for 
Insulation Measures 
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Figure 2.2: Histograms of R.S. Means Regional Multipliers for New England 
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4 

Lower 
Hot Water 

Temp. 
Pipe 

Insulation 
Air 

Sealing 

Ratio of Mean Actual to Mean Estimated Cost Per Measure 

Source: Ternes et al. 1991 

Statistics for Ratios of 
Mean Actual to 
Mean Estimated 

Installed Cost per Measure 

Minimum 0.400 
Maximum 3.5 
Points 12 
Mean 1.485 
Median 1.289 
Std Deviation 0.806 
Variance 0.649 
Skewness 1.342 
Kurtosis 1.445 

Statistics for Ratios of 
Mean Actual to 
Mean Estimated 

Installed Cost per Measure 
With 3 Outliers Removed 

Minimum 0.924 
Maximum 1.765 
Points 9 
Mean 1.275 
Median 1.276 
Std Deviation 0.272 
Variance 0.074 
Skewness 0.459 
Kurtosis -0.857 

Figure 2.3: Ratios of Mean Actual to Mean Predicted Cost per Residential 
Retrofit Measure 
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Count 

0 0.5 1 1.5 2 
Ratio of Actual to Estimated Weatherization Cost 

Source: Temes et al. 1991 

Statistics for Ratios of 
Actual to Estimated 

Total Weatherization Cost 
Per Home 

Minimum 0.549 
Maximum 1.803 
Points 36 
Mean 1.027 
Median 1.029 
Std Deviation 0.250 
Variance 0.062 
Skewness 0.507 
Kurtosis 1.043 

Figure 2.4: Ratios of Actual to Estimated Weatherization Cost per Home 
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The Four Uncertain 
Empirical Inputs 

to Analysis of 
Conservation Potential 

O 4s 

mean annual 
energy savings 
for measure j 

A 

ej X 
e 

market 
potential 

for measure j 

A 

"j 'a 

mean 
installed cost 
of measure j 

X. 
c 

mean 
lifetime 

of measure j 

-A. 

J. 
n 

Uncertainty in 
prototype+audit+ 

HDDM-based 
estimates of 
mean annual 

energy savings 
achievable 

per measure. 

1 

Uncertainty in 
measurement-based estimates of mean 

first-year 
weather-normalized energy savings 

Ae(/i) 

Uncertainty in 
prototype+audit+HDDM-based 

estimates of 
mean weather-normalized 

J\23 

Uncertainty in 
audit+HDDM-based estimates of mean 

weather-normalized annual energy savings 
as predictors of mean 

measurement-based estimates of 
weather-normalized annual energy savings 

Ae(/i) annual energy savings 
achievable by measure j. 

h 

Uncertainty due to 
energy savings in the "mean house" 

being different from the 
mean energy savings achievable 
in the population of all houses 

eligible for measure j 

Uncertainty due to 

J5 

sample mean characteristics 
being different from the 

mean characteristics for the 
population of houses 
eligible for measure j 

^:lim 

Uncertain tj^^^ 
caused by 

climate variability 
(i.e., the mean annual climate 

during a measure's life 
will not equalthe mean of the 

most recent prior 30-years' 
climates. 

h 

Uncertainty due to 
prototype characteristics 
being different from the 

sample mean characteristics 

Uncertain tj^^^ 
caused by 

climate variability 
(i.e., the mean annual climate 

during a measure's life 
will not equalthe mean of the 

most recent prior 30-years' 
climates. 

Uncertainty introduced by assuming 
that annual weather-normalized 

energy savings are equal to 
first-year weather-normalized 

k J 
energy savings 

(i.e., assuming perfect persistance) 
I ''per 

Figure 2.5: Decomposition of the Uncertainty in Annual Energy Savings Into Its Constituents 



"A" 

The actual mean, 
weather-normalized, 

first-year 
energy savings 

per eligible house 

"B" 
Measurement-
based estimate 

of mean, weather-
normalized, 

first-year 
energy savings 

per eligible house 

Mean of 
audit+HDDM-
predictions of 
savings per 

eligible house 

"D" 

HDDM-predicted 
savings for 

true mean of 
audit-quality 
data for all 

eligible houses 

HDDM-predicted 
savings for the 

mean of a 
sample of 

audit-quality data 
for the eligible 

population 

"P" 

HDDM-predicted 
savings for a 

prototype whose 
characteristics 
may not equal 
the mean of a 

sample of 
audit-quality data 

for the eligible 
nnniilaHnn 

/ 
ANAHC ANAHC Ae[s,£] A e[~s, £] Ae[s,jfe] Ae[s +s, k + v] 

\ 
mean 

measurement 
error 

mean 
audit+HDDM 

error 

aggregation 
error 

sampling 
error 

"errant 
prototype" 

error 

The quantity which 
( we want to estimate: 
V. mean energy savings per house^ CThe result which 

we use to estimate it: 
calculated energy savings 

for the prototype house 

Figure 2.6: The "Chain of Inequalities" Illustrating the Individual Sources of Uncertainty 
In Estimates of First-Year, Weather-Normalized, Mean Energy Savings 



Figure 7a: Histogram of Reported Ratios of 
Mean Measured to Mean Predicted Energy Savings 

For Utility Programs 
4 

Power 

0.5 1 1.5 2 
Ratio of Mean Measured to Mean Predicted 

First-Year Energy Savings 

Ratios of Mean Measured to 
Mean Predicted Energy Savings 

for Utility Programs 

Minimum 0.443 
Maximum 1.574 
Points 10 
Mean 0.774 
Median 0.673 
Std Deviation 0.358 
Variance 0.128 
Skewness 1.088 
Kurtosis 0.396 

Figure 7b: Histogram of Reported Ratios of 
Mean Measured to Mean Predicted Energy Savings 

For R&D Studies 

4 -Robinson , 
Foundation: 

' Insulation : 

Univ. of 
Illinois 

0 0.5 1 1.5 2 2.5 
Ratio of Mean Measured to Mean Predicted 

First-Year Energy Savings 

Statistics for the 
Ratios of Mean Measured to 

Mean Predicted Energy Savings 
for R&D Studies 

Minimum 0.118 
Maximum 2.100 
Points 14 
Mean 0.792 
Median 0.777 
Std Deviation 0.469 
Variance 0.220 
Skewness 1.329 
Kurtosis 2.623 

Figure 7c: Histogram of Reported Ratios of 
Mean Measured to Mean Predicted Energy Savings 

For Both Utility Programs and R&D Studies 

8 

• Utility Programs 

• R&D Studies 

Robinson 
Foundation 
Insulation 

Univ. of 
Illinois Power 

0.5 1 1.5 2 
Ratio of Mean Measured to Mean Predicted 

First-Year Energy Savings 

2.5 

Statistics for the 
Ratios of Mean Measured to 

Mean Predicted Energy Savings 
for R&D Studies and 

Utility Programs Combined 

Minimum 0.118 
Maximum 2.100 
Points 24 
Mean 0.785 
Median 0.752 
Std Deviation 0.418 
Variance 0.175 
Skewness 1.323 
Kurtosis 2.622 

Figure 2.7: Variability Among Ratios of Mean Measured to Mean Predicted 
Annual Energy Savings 
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Figure 2.8: Statistics and Cumulative Probability of Jj-&t(n) 
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New Hampshire Historical Annual 
Heating Degree-Days (base 65°F) New Hampshire Annual HDDs Divided by 

Immediately Prior 30-yr Normals 
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Figure 2.9: Historical Annual Heating Degree Days and Their Predictability 
by the Prior 30-year Normal for Three States in the US 
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New Hampshire 
Period Mean HDDs Divided by 

Immediately Prior 30-yr Normals 
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Figure 2.10: Period-Mean Heating Degree-Days Divided by 
Immediately-Prior 30-Year Normals for Three US States 
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Coefficient of Variation in 88-yr HDD Record vs. 
88-Yr Mean Heating Degree Days (base 65°F) 

for 46 States in the Continental US 
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Figure 2.11: Climate Variability in Relation to Climate Severity 

110 



Persistance of Gross Savings | 

First year 

15 1.4-

Persistance of Net 

life; 
K. 

First year Yr 2 Yr 3 Yr 4 

X-Axis 

Yr 5 Yr 6 

Figure 2.12: Persistance of Gross and Net First-Year Energy Savings 
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Regression Results for Gross Savings: 
Model: Persistance(y+1)= a + b*Persistance(y) 

Constant (a): -0.085 
Std Err of Y Estimate: 0.195 
Coefficient (b): 1.081 
Std Err of Coefficient: 0.192 
R2 0.665 
# of Observations: 18 
Degrees of Freedom: 16 

Regression Results for Net Savings: 
Model: Persistance(y+1)= a + b'Persistance(y) 

Constant (a): -0.131 
Std Err of Y Estimate: 0.174 
Coefficient (b): 0.296 
Std Err of Coefficient: 0.350 
R2 0.043 
# of Observations: 18 
Degrees of Freedom: 16 

Figure 2.13: Autocorrelation in Persistance of Gross and Net Savings 



CHAPTER 3 

PROBABILISTIC ANALYSIS OF CONSERVATION POTENTIAL 

Introduction 

Chapter 1 examined the sensitivity of the principal cost-effectiveness indices to 

variations in the inputs to conservation potential analysis. Chapter 2 developed 

probabilistic estimates of the uncertainty in each of these inputs. The present chapter 

effectively combines these two strands into a third and new one: probabilistic analysis of 

energy conservation potential. 

The chapter begins with a review of the terminology and the standard 

(deterministic) methods of conservation potential analysis. Next, an application of the 

methods of uncertainty propagation (e.g., Iman and Helton 1988, Morgan and Henrion 

1990) to conservation potential analysis is illustrated. That is, the probabilistic 

descriptions of the uncertainty in the inputs which were developed in Chapter 3 are here 

used in, or "propagated through," the constitutive equations of energy conservation 

potential analysis, in order to characterize their effects, singly and jointly, upon the 

uncertainty in the results of such analyses. Finally, extensions to the conservation supply 

curve framework are introduced which allow reporting of the results of probabilistic 

conservation potential analysis. A numerical example illustrates the methods and 

results. 

Methods and Terminology of Conservation Potential Analysis 

This section provides an overview of existing approaches to conservation potential 

analysis. The variety of perspectives, time frames, definitions of conservation potential, 

and classes of conservation potential studies are illustrated in Figure 3.1. An outline of 
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the basic steps and iterative process at the heart of measure-level analyses (which are the 

focus of the present study) is provided in Figure 3.2. 

Some Basic Terminology 

Analyses of energy conservation potential attempt to develop quantitative estimates 

of the potential for using energy more efficiently through investments in available 

technologies. Energy provides energy services (e.g., warm homes, cold beer, well-lit 

stores) in numerous end-uses (e.g., space heating, water heating, refrigeration, lighting). 

An energy conservation measure is an investment in a particular technology which allows 

the same level of energy services to be provided using less energy input. For most end-

uses a host of individual conservation measures are technologically feasible; in addition, 

measures addressing one end-use may influence the energy consumption in another 

end-use (as when high-efficiency lighting may increase space heating requirements and 

reduce space cooling requirements). Measures can be divided into two broad classes: 

retrofits, which upgrade the efficiency of existing capital stocks (examples include adding 

insulation to existing buildings, replacing light bulbs or appliances before wear-out with 

higher-efficiency alternatives, or cleaning and tuning a furnace), and new purchases, 

which upgrade the efficiency of newly added capital stocks at their time of purchase or 

construction (examples include appliance or building standards which set minimum 

efficiency levels for suppliers, or purchaser selection of higher-efficiency alternatives). 

Supply curve analyses generate several different types of conservation potential 

estimates. The cumulative energy savings attributed to the entire set of technically 

feasible, non-mutually measures, regardless of their cost-effectiveness, is the estimate of 

technical potential. The cumulative energy savings attributed to all technically feasible, 

non-mutually exclusive measures which also satisfy a chosen cost-effectiveness criterion 

constitutes the estimate of cost-effective conservation potential. A few studies (Brown 1993, 

Nadel and Tress 1990, Krause et al. 1987) have further estimated the achievable cost-

effective conservation potential — that fraction of the estimated cost-effective potential 
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which is considered to be realizable by programs and policies having prior precedent, in 

light of such programs' demonstrated levels of participation and effectiveness. 

A conservation supply curve is generally a "snapshot" of a relationship between 

available technology and either the current energy-using capital stock, or the forecast 

state of the capital stock in some future year, assuming no new policies are initiated 

(other than those already scheduled to take effect). Supply curves of current potential are 

usually based on currently available measures and on the most recent building and 

equipment stock data available (which is in fact usually a few years old). Estimates of 

future potential require descriptions of current building stocks and forecasts of how those 

stocks will evolve, including expected rates and characteristics of new construction, 

expected rates of demolition, and "a detailed baseline forecast of typical future 

technologies that will be installed in the absence of policy action, including the number 

of devices, their cost, and their expected energy consumption." (Koomey et al. 1991) 

Estimates of future potential may be based on presently available measures only, or may 

employ forecasts of future commercial availability and /or cost reductions for measures 

which are presently at a research stage or not yet economically viable. Finally, estimates 

of future achievable potential must explicitly account for the fact that measures cannot be 

adopted overnight. These studies make use of estimated measure adoption rates based 

on the performance of prior programs and on natural rates of capital stock wearout and 

replacement. 

Not all analytical perspectives on energy conservation potential explicitly consider 

individual measures or even end-uses. The so-called "top-down" economic modeling 

perspective considers technologies in a highly aggregate fashion, using parameters such 

as the elasticity of price-induced substitution between capital-labor and energy, and the 

autonomous rate of energy efficiency improvement. In contrast, the "bottom-up" or 

"technology costing" perspective seeks to generate estimates of total energy conservation 

potential by aggregating the estimated savings from specific technologies applied to 
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each end-use under consideration. These two approaches to modeling the potential for 

energy efficiency improvements are compared in, for example, Komor and Moyad 1992, 

and Howarth and Monahan 1992. The present research is directed at the methods and 

results of technology costing studies. 

Classes of Technology Costing Studies 

Within the class of technology costing studies there is wide variety in levels of 

regional, stock-descriptive, and technological detail. It is possible to identify three 

broad classes of "bottom-up" conservation potential studies: (1) those which build 

aggregate results from an end-use level of detail; (2) studies which build from the more 

detailed level of individual measures; and (3) studies which incorporate program 

characteristics but do not attempt to treat either end-uses or measures in exhaustive 

fashion. Each class of study is described briefly below. Of course it must be 

acknowledged that within these three categories, actual studies vary considerably in 

both detail and methodology. 

Several recent analyses (e.g., EIA 1990, Carlsmith et al. 1990, EPRI 1990, OTA 1991, 

OTA 1992) have identified sets of efficiency improvement options at an end-use level of 

detail. Individual energy conservation options in these studies are of the sort: "increase 

space heating efficiency of existing residential housing", "increase new-purchase water-

heating efficiency." etc. For each end-use option, cost and energy savings estimates are 

identified. Energy savings estimates for these options are frequently expressed as a 

percent of current or projected "business as usual" energy consumption for the given 

end-use, and tend to draw upon results of other more detailed measure-level studies 

and /or summaries of actual measured savings results, rather than conducting detailed 

engineering analyses of their own. 

Measure-level studies identify cost and savings estimates for host of individual 

conservation measures addressing each end-use. Results for separate measures are 

synthesized and aggregated using supply curve analysis (see below). Studies of this 
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type have been done at national, state, and utility service area scales. Recent examples 

for the US residential sector include Boghosian and McMahon 1993 and Koomey et al. 

1991, as well as UCS 1991 and NAS 1991 which were not restricted to the residential 

sector. Recent state or regional residential supply curve studies include WCDSR 1994, 

XENERGY 1990, NPPC 1989, Miller et al. 1989, NEEPC 1987, Lovins 1987, Krause et al. 

1987, Geller et al. 1986, and Hunn et al. 1986. Most of these studies have addressed only 

electricity-using end-uses, but even so, the number of individual measures examined per 

study exceeds 100 in the more detailed studies. 

The third class of supply curve studies in addition to end-use and measure-level 

analyses is program-based supply curve studies of demand-side management (DSM) 

resources, which are used in utility least-cost integrated resource planning. 

Introductions to methods associated with this class of supply curves are found in EPRI 

1991a and Krause and Eto 1988, for example. The studies are "program based" in that 

they account for the influences of program design upon total costs, technology choice, 

and size of market potential. In addition to material and installation costs associated 

with each measure, these studies account for the administrative, marketing, and 

evaluation costs of utility programs designed to achieve measure implementation. Not 

only are more cost elements included, but there are also a number of different 

perspectives from which DSM program costs and resources must be evaluated (e.g., total 

resource cost, societal cost, utility cost, rate payer impact measure, etc.), each of which 

can lead to a particular rank-ordering of the alternatives. Finally, the full set of costs 

avoided by the potential conservation program may go well beyond simple avoided 

energy costs, and may be a function of both the magnitude and timing of load 

reductions. (Krause and Eto 1988, EPRI 1991a, EPRI 1991b, Chernick et al. 1993) 

Measure-level analysis provides an initial assessment of the availability of DSM 

measures, which may motivate and provide a basis for subsequent program-level 

studies. In order to provide at least a rough accounting for program-related expenses 
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even at this earlier stage of analysis, several authors (e.g., Berry 1989, Krause et al. 1987, 

Nadel 1990, Koomey et al. 1991) have recommended and/or applied a "rule of thumb" 

that the "societal" cost of conserved energy should be increased by 10 to 20% to reflect 

utility "program costs." However, Koomey et al. caution that "Program costs for 

particular end-uses may be lower or higher than these crude averages; individual 

programs for specific end-uses may differ from these overall averages" (p.4). A survey 

of utility-reported program administrative costs as a fraction of direct measure costs by 

Joskow and Marron (1992) bears this out, reporting values ranging from 11% to 261% for 

residential programs. 

In summary, it should be clear that each of the three classes of studies differ both in 

terms of the inputs used in the analysis and in terms of their objectives ~ that is, the 

types of decisions they are designed to support. End-use-based studies are generally 

designed to inform policy deliberations in rather broad terms. Since they are usually 

assembled from the results of measure-specific studies for other regions, climates, and 

capital stocks, they are mainly useful when qualitative conclusions about the energy 

savings potential for all sectors and fuels are of interest. Program-based studies are at 

the other end of the spectrum, in that they are tools used in energy planning and/or 

initial program design, are region- and fuel-specific, do not attempt to characterize the 

potential associated with all technically feasible measures, but do include program 

characteristics among the inputs to the analysis. Measure-level studies are intermediate 

between these other two study classes, in that they are more detailed and complex than 

end-use level summaries, but still omit consideration of program characteristic data used 

in program-based studies. They are used, for instance, to support federal and state 

policy makers by providing detailed engineering-economic estimates of the costs of 

reducing carbon emissions (Koomey et al. 1991), and provide a basis for the other two 

types of studies. Uncertainty analysis for measure-specific studies is the focus of the 

present research. 
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Overview of Measure-Level Supply Curve Analysis Methods 

Methods for generating measure-level supply curves of energy conservation 

potential have been developed and elaborated by authors including Meier (1982), Krause 

et al. (1987), and Vine and Harris (1990), and have been applied widely, as indicated by 

the citations in the previous section. Supply curve analysis specifies a procedure for 

systematically accounting for measure energy savings interaction when aggregating the 

effects of multiple measures. Supply curves also provide a standardized way of 

graphically summarizing the results of conservation potential analysis. Four elements of 

measure-level supply curve analysis are: (1) an iterative framework; (2) estimation of 

per-measure savings; (3) rank-ordering measures using a cost-effectiveness criterion; 

and, (4) plotting final results together with a cost-effectiveness threshold. 

An iterative framework. 

The iterative process of conservation supply curve development is summarized in 

Figure 3.2. Conservation measures are considered to be implemented one at a time. At 

each iteration, the set of not-yet-implemented measures is ranked using a cost-

effectiveness criterion, and the most cost-effective measure from this set is selected for 

implementation. Following each new measure's implementation, the energy-using 

capital stock must be re-defined to reflect the measure's impacts on energy consumption 

in each end-use it effects (directly and indirectly), and also to preclude later 

implementation of measures which are mutually exclusive with previously-

implemented measures. Measure interaction is modeled explicitly to avoid double-

counting energy savings. 

Estimating per-measure energy savings. 

Methods for estimating the energy savings of energy conservation measures in 

buildings range widely in complexity, from simple percent-savings methods to the use 

of sophisticated hourly building energy simulation models. 
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Percent-savings methods characterize each measure in terms of the fraction or 

percentage by which it will reduce baseline per-end-use annual energy consumption. 

The analysis starts with estimates of baseline energy use per end-use, and measure 

interaction is modeled simply by reducing end-use energy consumption for each prior 

measure; more details and example calculations are provided in EPRI 1991a. While 

percent savings methods can be adequate for estimating residential energy conservation 

potential in end-uses such as lighting, electrical appliances, and perhaps water-heating, 

they are generally not adequate for space-conditioning measures. This is because the 

percentage of baseline energy saved per measure is strongly influenced by building and 

climate characteristics (which are typically heterogeneous within study areas), and 

because the interaction of space heating measures is not well-represented using the 

percent-savings approach. 

Heating-degree-day methods for analysis of space-heating conservation measures 

(and the analogous use of cooling-degree days to address space cooling energy 

consumption) make use of data such as pre- and post-retrofit shell and glazing R-values, 

floor area, envelope surface and window areas, foundation type, and estimated 

infiltration rates, together with basic climate data, in order to estimate annual 

consumption for a given building.1 Studies of residential conservation potential 

generally make use one or a few prototypical single-family and multi-family building 

specifications and climate descriptions intended to be representative of either typical or 

mean characteristics of the population. Commercial sector studies generally require a 

larger number of buildings prototypes than residential studies due to greater diversity in 

the commercial stock. 

1 Another method similar to heating-degree day methods in terms of data requirements and 
computational complexity is component loads analysis (see, for example, Huang et al. 1987a and 
1987b, and Hanford et al. 1994. 
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Building energy simulation models require and make use of the basic prototype 

characteristic data listed above, together with much more detailed building information 

including solar orientation and shading, thermal mass properties, foundation geometry, 

etc. Since such detailed information is not realistically available for use in energy 

conservation potential studies, the use of sophisticated energy simulation models for 

such studies is not practical either. 

Ranking measures by cost of conserved energy. 

The standard cost-effectiveness index which has been used in virtually all 

conservation supply curve analyses to date is the cost of conserved energy (CCE), 

defined as: 

where E is the assumed constant annual energy savings due to the measure (e.g., in 

MBtu/year), C is the measure installed cost ($), n is the measure lifetime (years), and d is 

the selected real annual discount rate (% per year). The term erf is the "cost recovery 

factor." Multiplying the measure cost C by erf yields the effective value of equal annual 

payments to be made n times over the life of the conservation measure. Discounting 

accounts for the opportunity cost of purchasing the conservation measure, since the 

effective annual payments could (at least in principle) have instead been invested in its 

year of payment at a fixed rate of return d until the year t=ti.2 

Other cost-effectiveness indices which could be used to rank measures in supply 

curve analysis include the cost-benefit ratio (CBR), which is equal to the CCE divided by 

the fuel price and is unitless; benefit-cost ratio (BCR) which is simply the inverse of CBR; 

or net present value (NPV), which subtracts costs from benefits rather than dividing 

2An equivalent view is that the conservation measure is paid for by borrowing the amount C at 
an interest rate d; C*crf is the annual loan payment to be made each year during the measure life. 

Cost of Conserved Energy (CCE) (1) 
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them by benefits.3 The primary benefit of CCE relative to these other indices is its 

independence from assumptions (or altered forecasts) about the fuel prices, which may 

vary regionally as well as temporally. On the other hand, since they are ratio-based 

indices, CCE, BCR and CBR have the disadvantage that they do not indicate the 

magnitude of the energy savings or benefits. Given a budget constraint (spending limit), 

the use of ratio-based indices (BCR, CBR, or CCE) is generally recommended for 

screening or ranking competing investments (e.g., ASTM 1992). However, others have 

argued that when ranking competing and cost-effective conservation measures or 

conservation programs in energy planning, NPV should be used, since the budget 

constraint does not properly apply in this context, (e.g., Chernick et al. 1993) 

Further discussion and citations related to the choice of a cost-effectiveness index is 

provided in the references noted above. There are two summary points worth noting 

here. First, an estimate of cost-effective energy conservation potential from a supply 

curve analysis which ranks measures based on NPV may differ from the corresponding 

estimate based on the use of CCE (or CBR or BCR). Second, neither estimate may strictly 

represent the best estimate of the maximum possible energy savings achievable by measures 

which are all cost-effective when applied together. This last estimate could be identified at 

least in principal by evaluating all possible measure-sequences, which seems 

computationally prohibitive for the larger studies; it might also be found by ranking 

measures iteratively in terms of ascending "benefits if the measure is cost-effective" 

(BICE). It is recommended that future studies of conservation potential explore the 

sensitivity of their results to the use of NPV vs. CCE, and explore the possible usefulness 

of BICE as a ranking index as well. 

^The use of these and other cost-effectiveness indices in energy investment decision-making is 
described in, for example, (Ruegg and Petersen 1987) and (ASTM 1992). 
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Plotting the supply curve and the cost-effectiveness threshold. 

The measures are plotted as steps in a supply curve of energy savings versus 

incremental cost per Btu, as illustrated in Figure 3.3. The width of each step is equal to 

that measure's annual energy savings potential, and its height is equal to its CCE. The 

cost of conserved energy for a particular measure (in $/MBtu) can be directly compared 

with the real price of displaced energy P (e.g., in $/MBtu) to determine its cost-

effectiveness: measures whose CCE is less than the cost of the energy they displace are 

cost-effective. A line indicating the "cost-effectiveness cut-off price" is often drawn on 

the supply curve at CCE=P to indicate the threshold of cost-effectiveness. As mentioned 

above, when measures are ranked by CCE the supply curve is independent of fuel price 

assumptions, so that these analyses need not be re-done every time fuel price forecasts 

change. 

A common simplifying assumption in supply curve analysis is that the real price of 

displaced energy P will remain constant over the measure life; this assumption is not 

required, however. If real energy prices are forecast to escalate ahead of inflation at a 

constant rate r, starting from a current price P0, the use of a levelized price Pievelized as 

the cost-effectiveness threshold has been recommended (Meier 1982), where the 

levelized price is the arithmetic average real price over the measure lifetime, T: 

In fact, by taking the arithmetic average, the levelized price fails to adequately 

discount the value of energy cost savings occurring later in the measure life relative to 

those occurring earlier in the measure life (when fuel prices are lower). Therefore, 

equation (2) will slightly over-estimate the full-discounting cost-effectiveness threshold, 

Pcutoff, which is given by: 

levelized (2) 

(3) 
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In practice, for measure lives below 20 years, discount rates at or below 5% and annual 

fuel price escalation rates below 5% real, Pievelized will overestimate Pcutoff by less than 

20%. It must also be kept in mind that the forecast real escalation rate r and therefore 

the cost-effectiveness thresholds Pievelized and Pcutoff are all uncertain estimates in any 

case. 

Uncertainty in Estimates of Mean Savings. Total Potential. 
and Cost of Conserved Energy 

Recall from Chapter 2 the following formulae. The temporal mean of the 

population mean energy savings for measure /, denoted Aey, is defined as 

Ae; =-j^Ae,00 (4) 

where n is the measure life in years, and Aej(y)  is the population-mean energy savings 

in year y achieved by measure j. The total (temporal mean) potential for annual energy 

savings achievable by the/th measure is related to the market potential for that measure, 

N j :  ^  =  

Ej=Aej*Nj (5) 

Lastly, the mean "cost of conserved energy" (CCE) of measure j can be written as: 

CCEj= 3 = _ 3 = _ 3 (6) 

£(=/«•«-) 
y=l y=l 

Recall also from Chapter 2 that the uncertainty in estimates of these three quantities 

will be characterized through the use of uncertainty propagation analysis employing 

Monte Carlo simulations ("MCS") of the expressions in equations (4), (5), and (6).4 These 

4For compactness of notation, the functional notation "MCS{...}" will be used to represent the 
estimated pelf which results from a set of Monte Carlo simulations. 
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simulations will make use of the probability density functions ("pdfs") for the random 

variables 7^ , Jn, and JN, which were developed to characterize the uncertainty in 

point estimates for the empirical inputs Ae, n, Cj and N, respectively. Thus, it is 

suggested that the uncertainty associated with measure-specific point estimates for 

CCEj. A ej, and Ej which are used in studies of current weatherization potential be 

estimated as indicated by equations (7), (8), and (9). 

<= MCs\ -J— )*XA^(n)*(7s(n))(^flD^))(V^'(>'))j 
\ n * J n j  v = i  

V— 1 

(7) 

f ( 1 ^ n*Jn A 1 
pdf[Ej] <= MCS\NJ*Jn* -2—J- * Y^e'{n^{he(n)){J UDDiy)){JpcruAy)) f (8) 

pdf[CCEj] <= MCS 
Cj*Jc 

n*J„ A 

]T a  ej(n)*[j^M)(J
HDD(y))(jpersist(y))*e~> \d 

(9) 

The (estimated) uncertainty in estimates of the three outputs Aey, Ej, and CCEj 

can be characterized in more general terms using the estimate of the pdf of the ratio of 

the true quantity to its point estimate. The result is a "normalized pdf for each of the 

three outputs of interest. 

pdf^J= j = est'd pdf 
A ej 

A 

Ae; 

4= A/CSj 
J— \"J' 1 

JX, *A/DD(v) J persistI (10) 

pdf[Jz\ = est'd pdf Ei 

% 

-MCS\ 
f J J \fiJ, 

^ = MC5{ywy=} (ii) 
n J y~\ 

PdAJcci\= es{ d Pdf 
CCEj 

CCE J _ 

--MCS- 'Jr." 
V / 

nJH 

o-y* 

V=1 

-A/DO(v) J persist{y)e ^ 
V >,=l 

(12) 
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These normalized pdfs have the advantage that they are not functions of the point 
A —— A ^ 

estimates for the input parameters Aej («>/ Aej (which equals Aej (">)/ Cjr and Njt  

although they are all functions of njr and is a function of the discount rate d as 

well.5 Figures 3.3, 3.4 and 3.5 present the cumulative distributions and confidence 

intervals corresponding to each of these normalized pdfs , derived from the expressions 

above, using the pdfs estimated to characterize the input uncertainties which were 

developed in Chapter 2, and employing 200-sample Latin Hypercube simulations for 

each.6 

Note from Figures 3.3-3.5 that all three outputs are influenced by an important 

result from Chapter 2: namely that audit+prototype-based estimates of mean energy 

savings per measure have tended to over-estimate mean measured savings by 

approximately 25% on average. Thus, the results of Chapter 2 lead to the conclusion 

that "best-estimates", or estimated expected values for Aej and Ej, are approximately 

0.78 times the point estimates for these quantities developed by "typical" analyses of 

residential weatherization potential, whose methods and data sources were described in 

Chapter 2 and earlier in the present chapter. Likewise, the "best-estimate" for the mean 

CCE of a weatherization measure is found to be on the order of 1.7 times the typical 

point estimate. Ninety percent confidence intervals for actual population mean 

temporal mean annual energy savings per measure appear to range from roughly 35% to 

160% of "typical" point estimates, while ninety percent confidence intervals for 

population mean cost of conserved energy are estimated to range from roughly 60% to 

nearly 400% of typical point estimates developed as described in Chapter 2. 

5The described independence of the normalized pdfs from the input parameters relies on the 
simplifying assumption made in Chapter 2 that the "f s" are not functions of the input parameters. 
This in turn relies on the simplifying assumption that the coefficient of variation characterizing 
the estimated uncertainty in a given input parameter is invariant across different measures. 

6The simulations employed the Median Latin Hypercube sampling method (e.g., Morgan and 
Henrion 1990); the model was constructed using the DEMOS probabilistic analysis software, 
available from Lumina Decision Systems, Inc., Palo Alto, CA. 
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Figures 3.3 through 3.5 illustrate that neither 7=, 7^, nor J— are particularly 

sensitive to estimated measure life. Confidence intervals for each tend to widen slightly 

for longer-lived measures, but this effect is small relative to the overall uncertainty. 

Only Jwg is mathematically a function of the discount rate, and Figure 3.3 shows that 

for discount rates at or below 10%, the actual influence of discount rate variation upon 

the uncertainty in predictions of CCE appears to be negligible. The virtual independence 

of 7=, J-g, and 7^ from measure life, (and of 7^ from d as well) derives primarily 

from the much larger uncertainty in first-year weather-normalized savings (relative to 

measure-life uncertainty) and from the assumed time-invariance of the expected values 

and variances of Jpersisl (y) and JIWD(y), as will become more clear below. 

Finally, comparison of Figures 3.4 and 3.5 shows that JN does not contribute 

appreciably to 7g (which = JN*J=). Based on the tentative estimates for input 

uncertainties developed in Chapter 2, the lion's share of the uncertainty in predictions of 

total (population-wide) weatherization potential per measure is contributed by the 

uncertainty in predictions of mean savings per measure. Although 90% confidence 

intervals for Nj were estimated to be on the order of ± 40% of Nthe confidence 

intervals for Jj are virtually indistinguishable from those of 7=. For this reason, along 

with the simplicity of the relationship between Jj and 7=, (equation (11)) only the 

results for 7= (and 7^g) will be plotted in the remainder of the paper. 

Comparative Influence of Separate Input Uncertainties 

The functional forms and relative magnitudes of the influence of each input 

uncertainty upon the two output uncertainties 7^ and 7= are examined in this 

section. The appearance of an uncertain term (7„) in the summation operators in 

equations (10) and (11) dictates that neither the variance of 7= nor of is simply 

decomposable as a sum or product of the variances of the inputs. Instead, the approach 
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taken herein is to characterize the influence of each uncertain input independently, 

conditional upon the uncertainties in the other inputs all being negligible. For each of 

these scenarios, expressions for and 7= are presented in Table 3.1. Numerical 

simulations of these scenarios using the input uncertainty pdfs which were developed in 

Chapter 2 are presented in Figures 3.6 and 3.7. 

Figures 3.6 and 3.7 clearly illustrate that for weatherization measures, based upon 

the results of Chapter 2, the most influential input uncertainty by far among the three 

which contribute to the total uncertainty in predictions of CCEj and Aej is the 

uncertainty in predictions of Ae;(>). Comparison of Figure 3.6 with Figure 3.3, and 

Figure 3.4 with Figure 3.7, indicates that even if the uncertainties in estimates of both C 

and n were reduced to zero, this would not appreciably reduce the width of the 

estimated confidence intervals for either CCEj or Ae; (or Ej), given the estimated 

uncertainty in estimates of Ae/oo which was derived in Chapter 2. Figure 3.6b shows 

that the influence of energy savings uncertainty upon CCEj uncertainty diminishes very 

slightly at higher discount rates. Figures 3.6a and 3.7 indicate that the influence of 

energy savings uncertainty upon both J^ and J= grows somewhat with measure life. 

In relative terms, the uncertainty in estimates of mean installed cost per measure 

(C) is found to be least significant (see Figure 3.6). This low significance is due to the 

much smaller uncertainty in estimates of C than in those of Aeyoo; recall that the 

sensitivity of CCE to both energy savings and installed cost were equal to unity. 

Uncertainty in C affects only the cost of conserved energy, and its influence is not a 

function of either measure life or discount rate. 

The influence of lifetime uncertainty (in isolation) is roughly equivalent to that of 

installed cost uncertainty for very-long estimated lifetimes (e.g., 30 years) and high 

discount rates (> 10%), but grows appreciably for shorter measure lifetimes and lower 

discount rates. Energy savings discounting is the reason that the influence of measure 

life uncertainty lessens for longer estimated lifetimes; this is illustrated by Figure 3.8, 
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which plots the boundaries of the 90% confidence interval for CCEj as a function of 

measure life and discount rate, assuming that mean measure life is the only uncertain 

input parameter. Finally, it should be noted that measure life uncertainty does influence 

the total uncertainty in estimates of mean annual energy savings Aej, its entry in Table 

3.1 notwithstanding. It does so through its interaction with the product of climate and 

persistence uncertainties (see equation (10)). The independent influence of measure life 

uncertainty, as well as the independent influences of each of the input uncertainties 

which are characterized in Table 3.1, are based upon the restrictive assumption that the 

other input uncertainties are negligible. 

Probabilistic Supply Curves 

The results obtained in the previous section relate to estimates of CCE and energy 

savings potential for an isolated measure. On the other hand, analyses of energy 

conservation potential generally examine and aggregate the savings potential associated 

with a host of measures. The present section explores how such multi-measure analyses 

might utilize probabilistic characterizations of the input parameters, and how 

probabilistic estimates of the size and cost of energy conservation potential could 

thereby be generated. This section also presents a suggested generalization of the 

method of plotting conservation supply curves, which accommodates and portrays the 

results of probabilistic analysis. 

Deterministic Base-Case Analysis 

To provide a basis for the numerical examples presented in this chapter, use is made 

of an example pertaining to weatherization of a "hypothetical house," which was 

presented in detail in the original exposition of the methods of deterministic 

conservation supply curve analysis (Meier 1982). In the present example it is assumed 
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that the "hypothetical house" defined below represents the prototype for a population of 

houses, each of which is eligible for all seven conservation measures analyzed. Results 

are presented in terms of estimated mean cost of conserved energy and estimated mean 

savings potential per house. 

A summary of the assumptions underlying Meier's single-house example is 

provided in Table 3.2, together with the point estimates for installed cost, measure life, 

and energy savings for seven weatherization measures. As in the original reference, 

energy savings interaction among these measures is modeled by the following equation, 

e  = p (13) 
Tlfum*Tljuc,S 

where 

H is the heat load, equal to the sum of the annual heat loss through attic, walls, 

windows, and via air leakage: H = Hatuc + HwaUs + Hwindom + Hair-

Vfum and Vduds are the furnace and duct efficiency, respectively; and 

p is the furnace pilot loss. 

The measures are ranked in terms of ascending cost of conserved energy, and 

energy savings are evaluated using equation (13) in an iterative fashion, as was 

described in Figure 3.2. The results are plotted in Figure 3.9, which will serve as a 

"prototypical" deterministic conservation supply curve for current weatherization 

potential. The width of each step in the supply curve is equal to the point estimate of the 

mean energy savings potential for the given measure, while the location of each step 

vertically is equal to the point-estimated mean cost of conserved energy for that 

measure. This figure provides the point of departure for the development of 

probabilistic supply curves. 
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Incorporating Uncertainty in Measure Mean Installed Cost 

First, consider only the uncertainty in final results caused by uncertainty in 

estimates of mean installed cost per measure. The influence is strictly upon the 

estimated mean cost of conserved energy per measure; mean energy savings per 

measure is unaffected by measure cost uncertainty. Thus, the width of the steps in the 

deterministic supply curve remain deterministic, while the vertical location of each step 

is now uncertain. The influence of installed cost uncertainty upon a single step in the 

conservation supply curve is represented in the key to Figure 3.10. That key shows how 

steps may be replaced by bars of finite vertical thickness, and illustrates how such bars 

can be shaded to convey estimated confidence intervals for the mean cost of conserved 

energy per measure. 

Figure 3.10 also shows how the single-step example can be extended to generate 

multi-measure, probabilistic supply curves. An important issue arising in probabilistic 

supply curve analysis is one of ordering of measures. Generally, the sooner a measure is 

implemented, the more energy it will save (because of energy savings interaction — 

recall equation (13)), and the lower will be its cost of conserved energy. Measure 

ordering in turn can influence conclusions about the size of cost-effective conservation 

potential. In deterministic supply curves the ordering of measures is unambiguous; 

measures with lower point-estimated CCEs are implemented earlier than those with 

higher point-estimated CCEs. But what should be the basis for measure ordering in 

probabilistic analyses? 

Two broad styles of probabilistic supply curve analysis appear possible: single-

curve and multi-curve analysis. The single-curve approach is illustrated in Figure 3.10. 

In this approach (as in deterministic supply curve analysis), use of a single parameter to 

rank-order measures leads to a unique measure order and thus a unique supply curve. 

In Figure 3.10 measures have been ranked by the expected value of their individual 

CCEs at each iteration in the development of the curve, which happen to equal their 
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point-estimated CCEs since cost estimates are assumed to be unbiased (based on 

Chapter 2). The advantages of deterministic ordering are its computational simplicity 

and its preservation of clearly discernible results for each individual measure. Each 

point-estimate step is "transformed" by the results of probabilistic analysis (Figures 3.3 

through 3.7) from a step into a bar, and the bars are plotted to construct the supply 

curve. For deterministic measure-ordering, the iterative ranking and measure-

interaction analysis must only be performed once, just as in deterministic supply curve 

analyses. Note that this "once" will still consist of as many re-evaluations of the rankings 

as there are measures, since the CCEs of not-yet-implemented measures are altered with 

the implementation of each measure, and this alteration can change the CCE-rankings 

among not-yet-implemented measures. 

In multi-curve analysis, the entire supply curve plotting process would be 

performed many times, where each supply curve is based upon a sampled value 

obtained for the each of the uncertain input parameters for each measure. Thus, in this 

simplest case where only installed costs are uncertain, the set of supply curves would be 

derived as follows. A cost estimate for each measure would be drawn by random 

sampling from the distribution for each measures' cost, which (for the /th measure) is 

given by C *Jc. Then, given this set of cost estimates, a supply curve analysis would 

be performed in deterministic fashion. Next, another set of cost estimates would be 

obtained by sampling, and the process repeated. After a sufficient number of 

repetitions, confidence intervals for the total curve could be estimated from the 

aggregate results. 

The advantage of multi-curve analysis is that it would enable direct evaluation of 

the effects of input uncertainties upon conclusions related to the supply curve as a whole. 

The disadvantages are that it obscures measure-specific results, is quite computation-

intensive, and requires explicit specification of any statistical dependence among 

different measures' input uncertainties in order to generate accurate confidence intervals 
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for the curve as a whole (as will be discussed later). Table 3.3 suggests a summary of the 

sorts of results which could be obtained using each analysis method. It appears that the 

two separate approaches are complimentary, each serving different decision-making 

perspectives and providing a different view of the implications of input uncertainties. 

Ideally the results of both approaches would be available to consumers of conservation 

potential analyses. For the remainder of the present analysis, only the results of the 

simpler single-curve approach will be illustrated. 

Adding Uncertainty in Measure Lifetime Estimates 

The joint effects of weatherization measure mean installed cost uncertainty and 

mean measure lifetime uncertainty upon the estimated mean cost of conserved energy 

are shown in Figure 3.11, based upon a 200-sample Latin Hypercube simulation and the 

input uncertainty descriptions developed in Chapter 2. As with the influence of 

measure lifetime uncertainty alone, confidence intervals for CCEj widen for shorter 

estimated lifetimes. The expected value of CCEj is also slightly sensitive to the estimated 

mean measure life (see Figure 3.11), but as this dependence is small relative to the width 

of the confidence intervals, it will be neglected in the present analysis. The results in the 

lower plot in Figure 3.11 were used together with the original deterministic supply curve 

results (Table 3.2 and Figure 3.9), and measures were rank-ordered by expected value of 

CCEj during each iteration as described above, in order to generate a probabilistic 

supply curve reflecting the joint influence of cost and lifetime uncertainties. As with the 

case examining cost uncertainty alone, only CCEj is influenced by the input 

uncertainties, not energy savings per measure. The results are shown in Figure 3.12. 

Adding Uncertainty in Annual Energy Savings 

Uncertainty in predictions of population mean annual energy savings contributes 

uncertainty to estimates of both the mean cost of conserved energy per measure and the 
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energy savings potential per measure. Thus, while the cost and lifetime uncertainties 

considered earlier contributed strictly a vertical dimension of uncertainty to the steps in 

a supply curve (uncertainty in CCEj) ,  energy savings uncertainty contributes 

uncertainty in both the vertical and horizontal dimensions. The other notable 

characteristic of energy savings uncertainty is that (at least for weatherization measures, 

based upon the results of Chapter 2) energy savings uncertainty is the dominant 

contributor to total uncertainty in predictions of the mean cost of conserved energy per 

measure (recall Figure 3.6). 

To see how the supply curve framework might be extended to accommodate 

uncertainty in two dimensions, first consider the functional relationship between annual 

energy savings and the cost of conserved energy for a given measure. As indicated by 

equation (6) earlier, CCE is inversely related to the sum of the present values of 

population mean annual energy savings. Under the conventional assumption of 

constant (deterministic) annual energy savings Ae, the equation for CCE takes the 

simple form: 

r 
CCE = — 

Ae 

' d 
(14) .1-0+ </r. 

The dependence of CCE upon Ae in equation (14) has been plotted in Figure 3.13, 

reflecting the confidence intervals for predictions of mean first-year weather-normalized 

energy savings (" Ae(n)") developed in Chapter 2. That is, the influence of the sources of 

dynamic uncertainty in predictions of annual energy savings, which are persistence 

uncertainty and climate uncertainty, do not contribute to the confidence intervals 

portrayed in Figure 3.13. The figure illustrates how the nonlinear relationship between 

CCE and Ae, together with the upward bias in point estimates of Ae(n), jointly cause 

the upper confidence intervals for CCE to be considerably higher than the value of CCE 

obtained using the point estimate for Ae(n); the CCE based upon the estimated 95th 
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percentile of Ae(n) is 2.5 times the nominal value of CEE obtained using the standard 

point estimate for Ae(n) in equation (14). 

Finally, Figure 3.13 also introduces the concept of a "confidence shoe" — that is, a 

shoe-shaped graphical object analogous to the "bars" which were plotted in the 

probabilistic supply curves earlier (Figures 3.10 and 3.12), which portrays the 

uncertainty in estimates of energy savings as well as the uncertainty in CCE induced by 

the energy savings uncertainty. It is proposed that probabilistic conservation supply 

curves (in single-curve analyses) be constructed out of such "confidence shoes" when 

attempting to represent the uncertainties in predictions of both the conservation 

potential per measure and the mean cost of conserved energy per measure. 

The vertical extent of each "shoe" indicates the uncertainty in mean CCE, while the 

horizontal distance from the top right corner to the "toe" of each shoe indicates the 

uncertainty in predicted savings potential for each measure. The top of the shoe is a step 

plotted vertically at the 95th percentile for CCEj, and its horizontal width is equal to the 

estimated 5th percentile for Aej. The base of the shoe is a step plotted vertically at the 

5th percentile for CCEj, and its horizontal width is equal to the estimated 95th 

percentile for Aej. Note that confidence shoes are only applicable in single-curve 

analysis, since multi-curve analysis generates families of curves and prevents rendering 

of measure-specific probabilities. A logical choice for the measure ordering parameter 

seems to be the expected values of CCEj, as was used before in the Figures 3.10 and 

3.12. 

The last issue to be resolved is how to horizontally locate all shoes besides the first 

(whose left edge is located at zero cumulative energy savings by default). Energy 

savings from multiple measures are represented as cumulative in supply curves; but 

which estimates for energy savings should be accumulated? A logical choice seems to be the 

expected values of Aej. Note that this plotting question mirrors an underlying analytical 

question: how (if at all) should uncertainty in prior-measure savings be propagated 
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through the calculations of measure savings interactions? For example, since the mean 

energy savings achieved by the first measure are uncertain, then the starting point of the 

savings calculation for the second measure is affected by this uncertainty, in addition to 

the uncertainties in specification of the original prototype and the conservation measure. 

It seems that the multi-curve approach is the more appropriate framework for explicit 

analysis of probabilistic measure interaction. It is recommended that in single-curve 

analysis, the starting point for each subsequent savings calculation be based on the 

expected values for the influence of all prior measures. 

A probabilistic conservation supply curve built out of confidence shoes for each of 

the seven measures of the present numerical example is portrayed in Figure 3.14. The 

uncertainties in both CCEj and Aej reflect the joint influence of all the input 

uncertainties, as those uncertainties were characterized in Chapter 2. Also displayed in 

Figure 3.14 is the original deterministic step curve of point estimates. The shoes 

themselves are effectively plotted astride a new curve of "best estimate" steps (shown as 

dashed in Figure 3.14), whose widths are equal to the expected values of Aej and whose 

vert ical  heights  are equal  to the expected values of  CCEj.  

The important messages to be read from Figure 3.14 derive from the relative 

location and shapes of the deterministic and probabilistic results' curves. For this 

reason, the physical units for the two axes are not indicated on the figure. As the figure 

illustrates, both the mean cost of conserved energy and the mean energy savings per 

house appear to be highly uncertain for residential weatherization measures. Also, 

because Chapter 2 found that standard techniques of conservation potential analysis 

have tended to overestimate savings and underestimate the cost of conserved energy for 

weatherization measures, the probabilistic approach's curve of "best estimates" lies 

above and to the left of the original point-estimate curve. 
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Probabilistic Conclusions for the Supply Curve as a Whole 

The results of this measure-specific, single-curve probabilistic analysis can be used 

to infer some first-order estimates about confidence intervals for the supply curve as a 

whole. First, it was already mentioned that the curve of expected value steps provides 

an estimate for the "true" curve as a whole. But can boundaries be drawn such that we 

have some estimated level of confidence that the "true" curve lies within those 

boundaries? 

The sets of percentile steps from each confidence shoe were spliced together to form 

four additional curves as shown in Figure 3.15. Two observations can be made about 

these spliced curves. First, they all reflect the same measure-ordering, which was based 

upon the expected mean CCEs for all not-yet-implemented measures at each iteration in 

the analysis. Second, the interpretation of these spliced curves depends heavily upon 

our judgments about the degree and nature of any statistical dependence among the 

input uncer tain ties' effects upon multiple measures. That is, it was already assumed in 

Chapter 2 that each of the separate input uncertainties were statistically independent of 

each other — that is, measure cost uncertainty is assumed to be independent of persistence 

uncertainty, etc. However, what about the possibility for correlation among the effects 

of the same input uncertainty upon two or more measures? 

At one extreme, we might hold that there is near-perfect (positive) correlation 

among the effects of a given uncertainty upon the set of individual measures. For 

example, the influence of climate upon energy savings is roughly equivalent among all 

weatherization measures; a series of warmer-than-normal winters will effectively reduce 

the average annual savings for all weatherization measures by an equal percentage. 

Another example might be the influence of sampling error upon estimates of prototype 

characteristics. Since homes with greater floor area tend to have greater wall areas, 

window areas, etc., then sample-induced over-estimates of mean floor area will be 

positively correlated with sample-induced over-estimates of mean wall area, etc. If 
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virtually all input uncertainties were characterized by such tendencies for strong 

correlations in their influence upon the savings and/or costs for the set of measures, 

then perfect correlation of uncertainties among measures might be adopted as a 

reasonable approximation. In this case, the spliced curve of 95th percentile steps would 

then provide a boundary below which one could be an estimated 95% confident that the 

entire true curve was located. Likewise, the spliced curve of 5th percentiles would 

bound the true curve from below with 95% confidence, etc. 

At the other extreme, we might determine that there is a virtual lack of evidence for 

any significant correlation among the influences of input uncertainties among measures. 

An example is hard to cite, since there appears to be a possibility for at least partial 

correlation in each uncertainties' influence upon multiple measures. But if each input 

uncertainty was considered to have a statistically independent influence from measure 

to measure, then the probabilities of true curves lying either fully outside or fully inside the 

spliced-percentile boundaries would both be significantly reduced, to a degree which is 

directly related to the total number of measures included in the analysis. Another way 

to express the situation is to note that the possibility that the true curve intersects our 

spliced-percentile curves would increase greatly if the influence of the uncertainties 

upon separate measures were statistically independent. 

For instance, in our example containing seven measures, the probability of the true 

curve lying entirely above the curve of 95th percentiles (crossing the spliced curve at no 

point) would be on the order of (0.05)^ = 7.8xl0~10 = 0. Indeed, the probability of the 

true curve lying entirely above the curve of 75th percentiles would be (0.25)7 = 0.00006; 

the algebra is similar for lower boundaries. On the other hand, the probability of the 

true curve lying entirely below the curve of 95th percentiles would be diminished as well 

(relative to the case of fully correlated influences), from 95% to (0.95)7 _ 70%. These few 

numerical examples illustrate the principles involved. 
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Summary of Results and Conclusions 

This chapter has introduced some basic concepts and methods related to the 

probabilistic analysis of conservation potential. In doing so, it has only scratched the 

surface of an area of investigation ripe for further elaboration and research. The 

preliminary results in the present chapter indicate that such further research is 

warranted. Specific recommendations for further research are deferred to the final 

chapter of the dissertation. 

The first conclusion to be drawn from the analyses in this chapter is that 

probabilistic analysis of current weatherization potential, employing the tentative 

characterizations of input uncertainties generated in Chapter 2, indicates that 

deterministic estimates of current weatherization potential are highly uncertain. This is 

particularly true for the estimated mean cost of conserved energy for measures. Ninety 

percent confidence intervals for population mean cost of conserved energy per measure 

are estimated to range from roughly 60% to nearly 400% of typical point estimates. 

Ninety percent confidence intervals for population mean annual energy savings per 

measure are not as wide but still significant, ranging from roughly 35% to 160% of 

"typical" point estimates. 

The dominant input uncertainties effecting estimates of current weatherization 

potential were found to be those influencing estimates of annual energy savings. Recall 

from Chapter 2 that among these influential factors, uncertainty in predictions of first-

year savings and in the persistence of such savings are more important than climate 

uncertainty. The final effect of measure lifetime uncertainty in isolation upon the 

estimated mean cost of conserved energy for a given measure grows appreciably for 

shorter estimated lifetimes and at lower discount rates. It is consistently greater than the 

influence of installed cost uncertainty upon the estimated mean CCE, and consistently 

much smaller than the influence of energy savings uncertainty. 
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Conservation supply curves can be plotted to represent the uncertainty in both the 

cost-effectiveness and the energy savings potential associated with each individual 

measure. The results of such an analysis can also be used to develop first-order 

estimates about the confidence in the aggregate results. However, it was found that 

more precise probabilistic conclusions about the supply curve as a whole, as well as 

confidence intervals for such summary results as the total technical potential and the 

total cost-effective conservation potential given a threshold price, all require 

specification of the statistical dependence of each uncertainty's influence upon separate 

measures. 
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Table 3.1: Expressions for Independent Influence of Input Uncertainties upon Outputs of Energy Conservation Potential Analyses 
Output: 

Input: 

CEEj  

Mean Cost of Conserved Energy 

Aes 

Mean Annual Energy Savings 

Cj 
^CCE 

= J C  
only C uncertain 

no relationship 

n, 
CCE 

,-yd 

_ >-1 

only n uncertain 
7= 

Ae only n uncertain 
= 1.0 

>= 

Aej(y) 
^CCE only Ae(y) uncertain Jir, , \ Mn) y 

V=sl 

^ HDD (-v) J persist(v) g 
xd 

v=l 

7= 
Ae 

/ 7 \ fi 
Mn) 

only A^(y> uncertain 
^HDD <>'' J persist (-v) 

>•=1 



Table 3.2: Weatherization Measure Parameter Point Estimates for a "Hypothetical House," Derived from (Meier 1982) 
Measure Parameter 

Before 
Measure3 

Parameter 
After 

Measure3 

Measure 
Lifetimec 

(years) 

Measure 
Installed 

Costc 

($) 

En. Savings 
without 
measure 

interaction'5 

(GJ/yr) 

CCE 
without 
measure 

interaction 
($/ GJ) 

En. Savings 
with 

measure 
interaction 

(GJ/yr) 

CCE 
with 

measure 
interaction 

($/GJ) 

Insulate 

Ducts 

'Hducis 

0.87 % 

^Iducts ~ 

0.96 % 
10 300 13 1.6 13 1.6 

Insulate 

Walls 

Hivalls= 

35 GJ/yr 

Hwalls= 

14 GJ/yr 
30 900 35 1.7 32 1.8 

Insulate 

Attic 

Hattic = 

20 GJ/yr 

Hattic = 

4 GJ/yr 
30 700 27 1.7 24 1.9 

Reduce 

Pilot Losses^ 

P= 

7 GJ/yr 

P= 

0 GJ/yr 
25 150 7 2.8 7 2.8 

Tune Up 

Furnace 

Vfurn = 

0.69 % 

Tlfum ~ 

0.75 % 
3 65 11 2.2 6 4.0 

Weather­

strip 

Hair= 

18 GJ/yr 

Hair= 

12 GJ/yr 
10 300 11 3.5 8 4.7 

Install Storm 

Windows 

Hwindow~ 

13 GJ/yr 

Jiwindow= 

3.5 GJ/yr 
20 800 16 4.0 13 4.9 

Total Energy 
Consumption: 

e = 

150 GJ/yr 
Total Savings w/o 

Measure Interaction: 120 
Total Svgs. 
w/ Interact.: 104 

a Values derived from information on pp. 20-22 of Meier 1982. 
c From Table 5-2, p. 61 of Meier 1982. 
b Cross-checked with p. 62 of Meier 1982. 
d Install Intermittant Ignition Device 



Table 3.3: Comparison of Single-Curve and Multi-Curve Probabalistic Analysis 
Single-Curve Analysis Multi-Curve Analysis 

Graphical 
Products 

• single curve of measure-specific 
"confidence shoes"; and 

• curves of spliced measure-specific 
percentiles. 

• Family of curves, with confidence 
intervals for the supply curve as a 
whole. 

Examples of 
Questions 
Addressed 

• which measures are highly 
uncertain in terms of energy 
savings and cost-effectiveness, and 
which are most reliable? 

• what are the 90% confidence 
intervals for the CCE of a 
particular measure? 

• is there evidence that once source 
of uncertainty is dominant for 
most measures? 

• does the best-estimate measure 
order appear to be robust or 
highly uncertain? 

• what are the 90% confidence 
intervals for the supply curve as a 
whole? 

• what is the expected value of the 
cost-effective conservation 
potential, and what are the 
confidence intervals for this 
estimate? 

• what is the effect of the 
uncertainty in measure-order 
upon confidence intervals for the 
supply curve? 

Advantages • computational simplicity 
• measure-specific probabalistic 

results 

• confidence intervals for the supply 
curve as a whole 

Disadvantages • single assumed measure order • obscures measure-specific results 
• computation-intensive 
• requires explicit characterization 

of the statistical dependence 
among different measures' input 
uncertainties 
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Perspectives: 

Economic Modeling 
(The "Top Down" Perspective) 

Time Frames: 

Current 
Potential 

Forecasts of 
new construction, 

demolition, 
equipment stock turnover, 

and autonomous 
investment in efficiency. 

(The 
Technology Costing 
ie "Bottom-Up" Perspective) 

Future 
Potential 

/ 

Study Classes: 

Definitions of Potential: 

Technological Potential 

Cost-Effective Potential 

Achievable Potential 

Utility 
regulatory 
economic 

impact 
criteria 

Program 
characteristics, 

influences, 
and costs 

Program-
Based 

Studies 

End-use-
Based 

Studies 

Individual 
investor 

cost 
effectiveness 

criteria 

Simplified 
program cost 

"rules of 
thumb" 

Measure-Level 
Studies 

Figure 3.1: Perspectives, Time Frames, Study Classes, and Definitions of Energy Conservation Potential 
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of Energy-Using Capital Stocks 
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most Cost-Effective 
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For Each measure: 

discount rate. 

Engineering Description 

Lifetimes 

Energy Savings 
per Measure 

Independently 

Energy Savings 
and value of 

cost-effectiveness index 
to supply curve 

Cost 
(material, installation, 
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CHAPTER 4 

SUMMARY OF CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

Individual chapters have each offered conclusions based on the results of the 

individual chapter itself. When the results of the three chapters are viewed as a whole, 

their synthesis leads to additional conclusions and recommendations for further 

investigation. The present chapter first provides a brief summary of the individual 

conclusions from each of the preceding chapters. Then, conclusions and 

recommendations are offered which derive from the results of the dissertation as a 

whole. 

Summary of Conclusions 

Chapter 1 found that conclusions about cost-effective energy conservation 

potential are not as sensitive to variations in the discount rate as they are to variations in 

empirical inputs, contrary to claims which have appeared previously in the literature. 

This result cast doubt on the sufficiency of discount rate scenario analysis as a proxy for 

multi-variate uncertainty analysis of conservation potential estimates, and motivated a 

careful examination of the levels of uncertainty in each of the inputs to calculations of 

conservation potential. 

Chapter 2 undertook such an examination for the inputs to analyses of current 

weatherization potential. It was found that the empirical basis for characterizing the 

uncertainty in the inputs was generally slim, and in a few cases was totally absent. 

Estimates of annual energy savings were found to be the most uncertain input to the 

analysis of current weatherization potential. This input's uncertainty was also shown to 
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be significantly more complex to analyze and characterize than that of either installed 

cost or measure lifetime (for weatherization measures), because of the number of 

separate factors contributing to it. 

Chapter 3 demonstrated how uncertainties in each of the empirical input 

estimates per measure can be translated into probabilistic measure-specific results, 

which in turn may be aggregated and plotted in a modified version of the conservation 

supply curve. Ninety percent confidence intervals for population mean cost of 

conserved energy per weatherization measure are estimated to range from roughly 60% 

to nearly 400% of typical point estimates. Ninety percent confidence intervals for 

population mean annual energy savings per weatherization measure are estimated to be 

not as wide but still significant, ranging from roughly 35% to 160% of "typical" point 

estimates. The most significant contributor to uncertainty in both of these output 

variables was the uncertainty in estimates of annual energy savings per measure per 

installation. Finally, it was found that probabilistic conclusions about the supply curve 

as a whole, as well as confidence intervals for such summary results as the total technical 

potential and the total cost-effective conservation potential given a threshold price, all 

require specification of the statistical dependence of each uncertainty's influence upon 

separate measures. 

Suggestions for Further Research 

The conclusions summarized above come from an investigation which just began to 

explore the complex topic of energy conservation potential uncertainty analysis. The 

methods and results which have been introduced and demonstrated require both further 

development and expanded application before they can make a central contribution to 

decision-making and to standard analytical practice related to energy efficiency 
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potential. To this end, it is suggested that further research proceed along four 

complimentary fronts: 

1) further examining and attempting to narrow the input uncertainties studied; 

2) extending the scope of application in order to clarify which uncertainties are most 

influential; 

3) expanding the applicability and utility of the analytical methods; and 

4) learning from the consumers of conservation potential analyses which 

information needs are the most pressing 

Examining and Narrowing the Uncertainties in the Inputs Investigated 

This initial effort to characterize the uncertainties in empirical inputs to the analysis 

of current weatherization potential has found them to be significant, and to lead to 

considerably wide confidence intervals on projections of total cost-effective potential as 

well as per-measure cost-effectiveness. It is essential that these characterizations receive 

critical review and critique from members of the demand-side management research 

community. 

For measure lifetimes and for several of the factors contributing to the final 

uncertainty in estimates of annual energy savings, the probability density functions 

("pdfs") developed in Chapter 2 to characterize the input uncertainties were subjective 

rather than objective. Clearly, broad evaluation and critique of the subjective 

distributions is essential. A systematic approach following the methods for expert 

elicitation outlined and referenced in, for example, (EPRI 1991b) and (Morgan and 

Henrion 1990) would be especially valuable. In addition, important assumptions were 

made in development of several of the "objective" pdfs. These, too should receive critical 

review. An immediate priority along these lines should be the interpretation of 

persistence data; this uncertainty was found to be quite significant, yet Chapter 2's 

mapping from empirical data to the pd/was particularly tenuous for this factor. 
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The empirical basis for estimates of the input uncertainties should be upgraded. 

First, a search for additional un-published program evaluation results should be 

conducted, particularly for estimates of mean first-year weather-normalized savings per 

measure. This search could require considerable resources, however, especially if study 

details required to support the use of meta-analytic techniques are sought, (e.g., Green 

and Violette 1994, Lagerberg et al. 1993) In any case, the study reporting requirements 

which are determined by the data needs of meta-analysic characterization of input 

uncertainties should be specified and publicized immediately. 

Three priorities are identified relating to the acquisition of new empirical data to 

support weatherization potential uncertainty analysis. First, experimental measure 

lifetime studies being initiated should estimate not only the mean but also the variability 

and the estimate uncertainty, particularly for the shorter-lived measures such as tune-

ups and perhaps air-sealing. Second, even short-term (2-4 years) persistence studies 

would be highly beneficial if they included efforts to characterize the underlying 

determinants of variability in annual weather-normalized out-year savings. For 

example, surveys as well as audit evaluations of measure performance and repair could 

help separate the contributions of measure performance degradation, behavioral 

changes affecting total consumption, and out-year investments in efficiency. This 

information would greatly assist and improve the interpretation of persistence results 

for characterizing the persistence-related contributions to energy savings prediction 

uncertainty. 

A third empirical priority should be the identification and testing of a standardized 

method and set of assumptions for calculating first-year weather-normalized mean 

energy savings. Such standardization could remove a considerable fraction of the total 

variability observed in savings estimate evaluations (as in the data reported by Cohen et 

al. 1991), and might help identify a standardized bias-correction procedure as well. Both 
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developments would greatly improve the reliability of projections of weatherization 

potential. 

Finally, analyses directed at the three factors related to prototype uncertainty 

(sampling error, aggregation error, and errant prototype specification) would clarify the 

estimates of these uncertainties and might significantly reduce them at modest cost as 

well. These uncertainties have not been systematically analyzed to date. The first two 

could be quantified through statistical analysis of existing data-sets which are used to 

specify prototypes. Also, analysts of conservation potential should clearly document the 

data sources and assumptions used in prototype specification, which would help 

characterization of all three uncertainties. Finally, the next project which updates the 

national residential prototypes should include statistical analyses which help subsequent 

users of the prototypes to quantify the uncertainty in conservation potential analyses 

which make use of these prototypes. 

Extending the Scope in Order to Clarify Which Uncertainties are Most Influential 

The focus of the present study has been necessarily narrow, limited to uncertainties 

affecting estimate of current potential in weatherization of the residential sector. 

Application of the present methods to other end-uses and sectors could yield 

significantly different conclusions about the degree of input and output uncertainties 

and the relative importance of different empirical input uncertainties. The results for 

current weatherization potential do not apply "as is" to these other end-uses and sectors. 

For one thing, it appears likely that the empirical inputs to estimates of 

weatherization potential are more uncertain than those for some other types of 

residential energy conservation measures. For example, the per-home energy savings 

associated with refrigerator replacements may be less variable than savings typical for 

weatherization measures; the energy-use characteristics of the stock of existing 
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refrigerators may be less heterogeneous than the stock of houses, and the mean cost of 

replacement is likely to be better-specified than the mean cost of per-home wall 

insulation, for instance.1 Another important extension is to the commercial sector, 

where, for instance, measure lifetime uncertainty may prove to be as or more important 

than energy savings uncertainty for measures such as lighting. 

A second important dimension along which to extend the scope of the present study 

relates to the realm of the uncertainties themselves. Estimates of current potential 

neglect potentially major uncertainties associated with evolution of the capital stocks 

and rates of autonomous investments in efficiency; these uncertainties affect estimates of 

future potential. Estimates of technical and cost-effective potential neglect uncertainties 

in estimates of the costs and performance of actual programs; these uncertainties affect 

estimates of achievable potential. Finally, uncertainty in future energy costs contribute 

uncertainty to projections of cost-effectiveness, and are strongly related to projections of 

base-case efficiency investments. 

The other application area to which the methods of the present study should be 

soon applied is the study of the effects of variability in stock characteristics upon the 

conclusions of mean-based estimates of conservation potential. Aspects of this topic 

were raised in the introduction to Chapter 2; they relate to the use of binning in 

estimating mean cost-effectiveness and total potential per measure, and are closely tied 

to the analysis of prototype-based uncertainty mentioned above. 

1 Summaries of research on variability in refrigerator energy consumption and energy savings 
from refrigerator replacement programs are found, for example, in (Heinemeier 1988) and the 
January/February special issue of Home Energy (volume 10, number 1). 
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Expanding the Applicability and Utility of the Analytical Methods 

The most important methodological advance relates to deriving and then applying 

estimates of the correlation in each uncertainty's influence across measures. An 

important conclusion of Chapter 3 was that the statistical dependence of each 

uncertainty's influence across multiple measures needs to be characterized before useful 

estimates of the uncertainty in aggregate conclusions can be derived. Initially, the 

results of (Smith et al. 1992) should be used in an effort to assess which statistical 

dependencies are important to characterize and which can be safely neglected with little 

loss of precision. Then, once the necessary dependencies have been estimated, they 

should be applied to the specification of confidence intervals for supply curves as a 

whole. This result will clarify the quantitative interpretation of the families of curves 

developed at the close of Chapter 3. Specifying the statistical dependence will also make 

feasible the methods of multi-curve analysis outlined in Chapter 3. 

Another potentially valuable contribution would be facilitating widespread 

availability of tools for exploring the implications of input uncertainties upon 

conservation potential conclusions. Software to enable both the calculations and 

plotting required by single-curve probabilistic analysis could be refined and made 

widely available for testing and "what if" analysis by the community of energy 

conservation potential researchers. A similar call for "flexible, public-domain software" 

to enable widespread (deterministic) supply curve analysis was made nearly ten years 

ago by Meier and Usibelli (1986), but does not appear to have been fulfilled. 

Widespread independent testing and exploration of single-curve probabilistic analysis 

should accelerate refinement of the tools and methods, and could in turn assist 

subsequent efforts aimed at the much more complex problem of multi-curve 

probabilistic analysis. 
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Learning From the Consumers of Conservation Potential Analysis 

Finally, now that the "ice has been broken" regarding quantitative estimates of the 

uncertainties affecting estimates of energy conservation potential, it would be 

particularly helpful to investigate the views of energy planners and energy policy 

decision-makers about what sorts of questions and answers related to conservation 

potential estimates are most pressing, or are expected to become so in the future. Such 

inputs would help guide the further development of methods for energy conservation 

potential uncertainty analysis in directions most beneficial to the cause of effective 

energy policy-making and planning. 
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