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Abstract Many research and monitoring networks in recent decades have provided publicly available 
data documenting environmental and ecological change, but little is known about the status of efforts 
to synthesize this information across networks. We convened a working group to assess ongoing and 
potential cross-network synthesis research and outline opportunities and challenges for the future, 
focusing on the US-based research network (the US Long-Term Ecological Research network, LTER) 
and monitoring network (the National Ecological Observatory Network, NEON). LTER-NEON cross-
network research synergies arise from the potentials for LTER measurements, experiments, models, and 
observational studies to provide context and mechanisms for interpreting NEON data, and for NEON 
measurements to provide standardization and broad scale coverage that complement LTER studies. Initial 
cross-network syntheses at co-located sites in the LTER and NEON networks are addressing six broad 
topics: how long-term vegetation change influences C fluxes; how detailed remotely sensed data reveal 
vegetation structure and function; aquatic-terrestrial connections of nutrient cycling; ecosystem response 
to soil biogeochemistry and microbial processes; population and species responses to environmental 
change; and disturbance, stability and resilience. This initial study offers exciting potentials for expanded 
cross-network syntheses involving multiple long-term ecosystem processes at regional or continental 
scales. These potential syntheses could provide a pathway for the broader scientific community, beyond 
LTER and NEON, to engage in cross-network science. These examples also apply to many other research 
and monitoring networks in the US and globally, and can guide scientists and research administrators in 
promoting broad-scale research that supports resource management and environmental policy.

Plain Language Summary Today many research networks and monitoring networks exist in 
ecology and environmental science. Their complementary designs and publicly available results and data 
can create powerful synergies. Long-term, hypothesis-based mechanistic research can provide context and 
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Earth’s Future

1. Introduction
Ongoing changes in the Earth system and its component ecosystems affect environmental quality and 
human health and well-being (Weathers et al., 2016). To predict and mitigate such changes, research 
in environmental sciences must address continuing challenges in understanding Earth's biogeochem-
ical cycles; the causes and consequences of biological diversity and climate variability; changes in 
freshwater resources; controls of infectious diseases; and land-use dynamics (National Research Coun-
cil, 2001). Research and monitoring networks collect environmental data and make it publicly available 
(Hampton et al., 2013). Efforts to synthesize across networks can support progress toward these grand 
challenges.

Many studies have outlined the potential for the scientific community to address challenges in environ-
mental science using concepts and data from multiple environmental science networks (e.g., Hinckley 
et al., 2016a). However, progress toward this goal is limited by lack of understanding of ecological insights 
that can be gained through syntheses of existing data, including testing of outstanding hypotheses and the 
generation of new hypotheses (LaDeau et al., 2017). Specifically, there is a lack of understanding of how the 
complementary structures of various networks might be used to formulate research syntheses. In addition, 
research agendas or frameworks are lacking that connect research questions to available data for specific 
combinations of existing networks in ecology and environmental science.

This study aims to fill these gaps. We explore the potential for combining long-term experimental results 
and hypotheses from research networks with highly standardized long-term observations from monitoring 
networks to elucidate the mechanisms that drive long-term ecological and environmental change. Our ob-
jectives are to:

 1.  Describe types of environmental science networks and their complementary features
 2.  Assess the progress to date for cross-network synthesis studies of Long-Term Ecological Research (LTER) 

and National Ecological Observatory Network (NEON), and
 3.  Identify opportunities and challenges that build on the work accomplished to date

We highlight potential synergies between the LTER Program, a research network, and the NEON, a mon-
itoring network, both funded by the US National Science Foundation (NSF) (Collins & Childers, 2014). 
Both networks address major challenges in environmental science and make their data publicly availa-
ble for use by researchers, educators, policy-makers, and others. Our findings are also relevant to other 
research and monitoring networks in the United States and internationally (Richter et al., 2018). These 
networks include the Critical Zone Observatories (CZO) (White et al., 2015) funded by NSF; the Forest 
Service Experimental Forests and Ranges (e.g., Lugo et al., 2006) and agricultural experimental water-
sheds and ranges (Bartuska et al., 2012) funded by the U.S. Department of Agriculture; the AmeriFlux 
network funded by the Department of Energy (Novick et al., 2018); the international Global Lakes Eco-
logical Observatory (GLEON) (Hanson et al., 2016); programs managed by the United States Geological 
Survey (USGS, 2016); and the cooperative National Atmospheric Deposition Program (NADP) (see sup-
porting information).

In this study, we describe the results of an NCEAS working group on LTER-NEON synergies. The working 
group included scientists from LTER, NEON, and the broader ecological community whose research draws 
on environmental research networks. In two workshops and successive discussions, we analyzed the struc-
ture of LTER and NEON and their complementarities (Section 2), created a typology of synthesis efforts 
(Section 3), and evaluated the progress to date and challenges and opportunities for future efforts in six 
broad research areas of ecosystem and environmental science (Section 4).

JONES ET AL.

10.1029/2020EF001631

2 of 17

explanations for data produced by monitoring networks while the standardization and broad coverage 
of monitoring networks can provide context for Long-Term Ecological Research (LTER). Recent efforts 
have combined results and data from two US-based science networks: the LTER network and the National 
Ecological Observatory Network (NEON). We describe how these initial efforts could be expanded in six 
broad areas, that would provide opportunities for the broader scientific community to engage with LTER 
and NEON, and may also be relevant to other cross-network syntheses in the US and globally.
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Earth’s Future

2. Principal Features of Research and Monitoring Networks
While many networks encompass both aspects, research and monitoring networks have distinct designs 
and administration (Table 1, Table S1, Figure S1). Research networks (e.g., LTER, CZO, GLEON, US For-
est Service Experimental Forests and Ranges [USFS EFR]) focus on question-driven research, based on 
observational studies and experiments that test mechanistic hypotheses about ecological processes, and 
are designed and conducted by a community of researchers, who make their data available. Sites may be 
funded individually, and may seek renewed funding on a competitive basis, based on agency guidelines and 
priorities. Sites in research networks may adopt and extend prior long-term studies, and engage in synthesis 
efforts across sites, but synthesis among sites may be limited by inconsistent methods. In contrast, monitor-
ing networks (e.g., NEON, NADP, USGS National Water Information System [NWIS]) focus on long-term, 
standardized data collection of patterns in a set of predetermined variables, based on a predefined sampling 
design. Science and technical staff manage instruments, lab analyses, and data collection, quality control, 

and archiving procedures. Data collection involves standardized proto-
cols, sensors, and technologies and data are collected using a predefined 
sampling frequency. Sites were selected and are funded as a group, for 
a specified period. While the dichotomy of network types illustrated in 
Table 1 represents well the differences between LTER and NEON, many 
other networks share features of both research and monitoring networks 
as defined here.

We identify synergies between research and monitoring networks, us-
ing the US LTER Program as an example research network and the US 
NEON as an example monitoring network (Figure 1). Synergies between 
LTER and NEON arise from their complementary designs: LTER focus-
es on mechanistic understanding of ecological processes, and provides 
conceptual models, hypothesis-testing, long-term experiments, tempo-
ral coverage, and information management, while NEON focuses on 
quantification of ecological trends, and provides consistent design, stand-
ardized measurements, spatial coverage, and a data resource (Figure S1).

The LTER Program, a research network, was initiated in 1980 and pres-
ently includes 28 sites in a wide range of ecosystems (Callahan,  1984, 
https://lternet.edu/site/, Figure 2, Table S1, Table S2). Researchers pro-
pose sites, establish the research agenda at each site, and conduct re-
search on long-term ecological processes. The five core areas: primary 
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Attribute Research Monitoring

Why To test mechanistic hypotheses explaining ecological processes. To monitor ecological processes and environmental conditions.

Who A community of researchers designs and conducts the research and 
make data available.

Science and technical staff design sampling strategies, collect data, 
conduct lab analyses, manage data and make data available.

What Observational studies and manipulative experiments test 
fundamental concepts.

Data are collected and processed based on standardized protocols, 
sensors, and technologies

How many Funded individually in response to solicitations. Selected as part of an overall sampling design.

Where Locations proposed by groups of researchers. See Table S1, Figures 2 
and 3.

Selected by an overall sampling design. See Table S1, Figures 2 
and 3.

How often Must seek renewed funding on a case-by-case basis. Funded for a predefined period.

How long May adopt and continue datasets from prior efforts. Predefined duration.

Note. Research networks are focused on answering research questions and are bottom-up, whereas monitoring networks are focused on data collection and are 
top down. Examples of research networks include NSF's Long-term Ecological Research sites, as well as other examples in the text. Examples of monitoring 
networks include the National Ecological Observatory Network, as well as others mentioned in the text. Some networks in environmental biology may have 
attributes of both research and monitoring.

Table 1 
Basic Attributes of Two Types of Networks for Environmental Biology: Research and Monitoring

Figure 1. Synergies between research networks and monitoring networks 
are powerful because they link research concepts to monitoring data. 
In this example, core areas of inquiry in a research network (Long-
Term Ecological Research [LTER]) and major areas of standardized 
measurements in a monitoring network (National Ecological Observatory 
Network [NEON]) provide complementary contributions to potential 
synergies that address key questions in environmental science.
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Earth’s Future

production, population studies, movement of organic matter, movement of inorganic matter, and distur-
bance (https://lternet.edu/core-research-areas/) provide a research framework for synergies that address 
major questions in environmental science (Figure 1). Data are available from the Environmental Data Initi-
ative (https://environmentaldatainitiative.org/).

NEON is a monitoring network, which began to provide data in 2015, and was designed to examine ecologi-
cal change over time at a set of 47 terrestrial and 34 aquatic sites selected to represent the diversity of eco-cli-
matic domains in the continental U.S. (Kampe et al., 2010; Kao et al., 2012; Goodman et al., 2015; Springer 
et al., 2016; Thorpe et al., 2016; https://www.neonscience.org, Figure 2, Table S1, Table S2). The network 
includes 30-year installations in core “wildland” ecosystems within each of the 20 NEON domains as well as 
additional sites that cover environmental variability within the domain. The major measurements of NEON 
include flux tower measurements, airborne remote sensing, aquatic measurements, soil measurements, 
and terrestrial organism sampling to document how U.S. ecosystems are changing (Figure 1, supporting 
information). NEON data are available via the NEON data portal (https://www.neonscience.org/data/
about-data/getting-started-neon-data).

NEON was designed by the research community, including LTER researchers. Its top-down standardized 
measurement programs complement the bottom-up, research-question driven approaches in LTER. Prox-
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Figure 2. Physical locations of sites in the NEON and LTER networks. NEON core sites are shown as open symbols; LTER sites are shown as closed symbols. 
Numbers refer to NEON eco-climatic domains, and three-letter acronyms refer to LTER sites (see Table S1). Further details on site locations are available at 
https://lternet.edu/site/ (LTER) and https://www.neonscience.org/about-neon-field-sites (NEON).
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Earth’s Future

imity to LTER sites was one factor considered in selecting NEON sites. Hence, cross-network syntheses 
with LTER were envisioned from the beginning of NEON. Both LTER and NEON address issues of broad 
social relevance. Social science is not a core area of LTER (J. A. Jones & Nelson, 2020), but social-ecological 
systems and related questions (e.g., S. L. Collins et al., 2011) are central to many LTER programs. Consider-
ation of social-ecological systems motivated the selection of many of the variables measured by NEON, such 
as disease-transmitting organisms, that are not consistently measured at LTER sites. Social and economic 
factors also are central to international LTERs (Mirtl et al., 2018).

3. Goals and Approaches for Cross-Network Synthesis Efforts
Cross-network synthesis efforts are needed, and can be very powerful, because of the insights they provide. 
Goals for such syntheses include: generalize patterns and processes among locations, identify interactions 
among ecological processes at one or multiple sites, generalize across temporal scales, reveal differences 
among methods, or test the potential and limitations of models (Table 2). One form of synthesis tests the 
generality of a finding (or concept or hypothesis) about a single property or process across sites (Type 1, Ta-
ble 2). Examples include how C flux varies among locations in the AmeriFlux network (Novick et al., 2018); 
how atmospheric deposition varies among locations in the NADP network (Lajtha & Jones, 2013); how 
streamflow trends vary among locations in the USGS NWIS (Lins & Slack, 1999); or how climate trends vary 
among locations in the US Historical Climatology Network (USHCN) (Menne et al., 2018). Type 1 synthesis 
spans the geographic coverage of the networks. For example, the 28 LTER sites and the 47 NEON sites are 
distributed throughout the United States and LTER sites also occur in Antarctica and the Pacific (Figure 2).
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Type Goal Approach
Research network 

contribution
Monitoring network 

contribution Requirements

1) Single process or 
property, across sites

Generalize patterns and 
processes among 
locations

Test concepts about 
a single property 
or process across 
locations

Concepts and 
hypotheses 
about ecological 
mechanisms across 
locations

Data on ecological 
properties across 
locations

Comparable 
measurement 
methods

2) Multiple properties 
or processes, within 
site

Elucidate relationships 
among processes at 
a location

Test concepts about 
interactions among 
properties or 
processes at a single 
location

Concepts and 
hypotheses about 
mechanisms linking 
ecological processes 
at one location

Data on multiple 
complementary 
properties at a 
location

Measurements of 
complementary 
processes or 
properties at a 
location

3) Multiple properties 
or processes across 
sites

Generalize patterns 
and elucidate 
relationships among 
processes and 
locations

Test concepts about 
interactions 
among properties 
or processes at 
multiple locations

Concepts and 
hypotheses about 
mechanisms linking 
ecological processes 
at multiple locations

Data on multiple 
complementary 
properties at 
multiple locations

Complementary and 
comparable data at 
all locations

4) Across temporal 
scales

Generalize patterns and 
processes across 
temporal scales

Test concepts about 
a single property 
or process across 
temporal scales

Concepts and 
hypotheses 
about ecological 
mechanisms across 
temporal scales

Data on ecological 
properties at 
multiple temporal 
scales

Comparable 
measurement 
methods

5) Across approaches Generalize effects of 
methods on data

Test effects of methods 
on a single property 
or process

Concepts and 
hypotheses of 
causes and effects of 
methods

Data on a property 
collected using 
different methods

Different measurement 
methods of same 
property or process

6) Modeling Refine models and 
identify data gaps

Test concepts about 
properties or 
processes

Concepts and 
hypotheses 
about ecological 
mechanisms

Data on ecological 
properties

Measurements relevant 
to model variables 
and parameters

Table 2 
Six Approaches to Synthesis That can Build Synergies Across Research and Monitoring Networks to Address Fundamental Questions in Ecology and 
Environmental Science
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Analysis of multiple data streams can produce a more complete or nuanced understanding of a phenom-
enon or opportunities to test hypotheses using independent datasets. A second type of synthesis, “multi-

ple properties or processes within a site,” aims to elucidate interactions 
among ecological processes using data on multiple complementary prop-
erties or processes at a site (Type 2, Table 2). Long-term mechanistic ex-
periments (e.g., from LTER) provide insights for interpreting monitoring 
data (e.g., from NEON) at a site. Examples include how long-term manip-
ulations of vegetation influence C exchange, or how an invasive insect 
affects ecosystem water exchange (Giasson et al., 2013; Kim et al., 2017). 
Type 2 synthesis studies could be based on complementary measure-
ments from multiple networks. Many opportunities for Type 2 synthesis 
exist at sites which are “co-located” (participate in) both the LTER and 
NEON networks (Figure 2, Table S1).

Analyses of multiple data streams from different networks could con-
tribute to more general understanding of patterns and trends at regional 
to continental scales over the long term. A third approach to synthesis, 
“multiple properties or processes across sites” (Type 3, Table  2) seeks 
generalizations about interactions among ecological processes at many 
locations. For example, long-term experiments at multiple locations pro-
vide insights for interpreting monitoring data within or among biomes 
or ecosystem types, such as how vegetation manipulations affect stream-
flow in multiple different forest ecosystems (J. A. Jones & Post, 2004), 
or how climate change is affecting ecosystem water use (J. A. Jones 
et al., 2012). Type 3 synthesis studies could be based on complementary 
measurements from the nine co-located sites in LTER and NEON (itali-
cized in Table S1, Figures 2 and 3a), grouped by biome or ecosystem type, 
or across all sites in the two networks, which span much of the range 
of mean annual precipitation and temperature in North America (Fig-
ure 3b) (Villarreal et al., 2018).

Additional forms of synthesis among research and monitoring net-
works include syntheses across scales, across methodological approach-
es, and using modeling (Table 2). Syntheses across scales (Type 4) build 
on data collected at more than one temporal scale to elucidate temporal 
patterns in ecological processes, including trends, cycles, and thresh-
olds. For example, long-term datasets and experiments at research net-
works such as LTER complement short-term, high-resolution data from 
NEON or other monitoring networks. Syntheses that compare methods 
(Type 5) can reveal differences in ecological patterns that result from 
disparate measurement approaches. Different types of data pertaining 
to a single phenomenon permit comparisons among multiple modes 
of observation. Model syntheses (Type 6) combine data from mecha-
nistic experiments and monitoring to inform and constrain models, to 
understand uncertainty in projections, and to identify needs for model 
improvements.

4. Opportunities for Cross-Network Synthesis 
Studies Linking LTER and NEON
We provide examples of potential cross-network synthesis studies that 
can accelerate environmental science by linking the five core areas of 
long-term research (in LTER) with the five main measurement programs 
(of NEON) (Figure 1). These examples comprise six broad research areas: 
(1) ecosystem fluxes of C and energy; (2) remote sensing and ecosystem 
models; (3) aquatic-terrestrial linkages; (4) soil biogeochemical and mi-
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Figure 3. Climate overlap and coverage of NEON and LTER networks. 
(a) Mean annual temperature (MAT) and precipitation (MAP) for LTER 
sites and core terrestrial NEON sites, oriented in Whittaker biome space. 
A total of nine LTER sites are co-located with NEON sites: seven (ARC, 
BNZ, HFR, KNZ, NTL, NWT, SGS) are co-located with core terrestrial 
NEON sites, and two (AND, JRN) are co-located with noncore NEON 
sites. The three-letter acronyms for LTER sites and the D01 notation for 
NEON domains are defined in Table S1. Climate data from co-located sites 
are enclosed within circles. Co-located sites may have slightly different 
climate values because climate varies within each domain, and climate 
data may have been obtained from different meteorological stations and/
or for different time periods (see Table S1). Source (J. A. Jones et al 2012; 
NEON data from Cove Sturtevant.) (b) Mean annual temperature and 
precipitation for LTER sites and all NEON sites (core terrestrial, core 
aquatic, noncore terrestrial, noncore aquatic). Outline is range of MAP 
and MAT in North America, adapted from Novick et al. (2018). Solid dot 
outside of polygon in middle right is NEON domain 20 (Hawaii); open 
circles outside of polygon in upper left corner are Antarctic LTER sites.
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Earth’s Future

crobial dynamics; (5) organism and species distribution models; and (6) land use and disturbance history, 
resilience and stability (Figure 1). A key theme in all these examples is how synergies emerge from the 
interaction of LTER hypothesis-based, mechanistic science interacting with NEON standardized, spatially 
distributed monitoring.

4.1. Ecosystem Fluxes of Carbon, Energy and Water

Complementarities among research and monitoring networks can address broad questions about C cy-
cling at regional and continental scales (Figure  1). Long-term experiments and observational studies 
have documented multidecade changes in ecosystem C storage, and the mechanisms underlying these 
changes. These experiments and studies complement high-resolution information on C exchange from 
eddy flux towers. In the Arctic tundra and boreal forest (LTER sites in Alaska), warming climate has 
reduced soil C stocks (Euskirchen et al., 2017). In the desert (Sevilleta LTER), vegetation change from 
grassland to shrubland increased C sequestration (Petrie et al.,  2015). In freshwater marsh and man-
grove forests (Florida Everglades LTER), C sequestration depended on vegetation type, temperature, and 
flooding (Malone et al., 2016). In a temperate freshwater marsh (Plum Island LTER), increased rainfall 
reduced soil salinity thereby increasing productivity and C (Forbrich et al., 2018). In an urban site (Phoe-
nix LTER), outdoor water use increased evapotranspiration as well as C storage (Templeton et al., 2018). 
There is great potential synergy between these experiments and networks of eddy covariance flux towers 
that provide continuous measurements of carbon dioxide (CO2), water vapor, and energy fluxes that 
are used to estimate ecosystem productivity and water and C exchange between ecosystems and the 
atmosphere (Campioli et al., 2016). The global network of eddy flux towers (e.g., AmeriFlux, Fluxnet) 
(Novick et al., 2018) includes 40 flux towers at LTER sites, and NEON has added a flux tower at each 
of the 47 NEON sites; data from the NEON towers are shared with AmeriFlux and FLUXNET (Metzger 
et al., 2019).

Syntheses of ecosystem experiments and observations from LTER research with monitoring data from 
NEON and other networks can reveal interactions among factors influencing C and energy fluxes, char-
acterize variability, and guide efforts to scale estimates of ecosystem C exchange (Table 3). For example, 
in northern temperate forest (the Harvard Forest LTER and NEON site), combining data from long-term 
experiments on vegetation manipulation from LTER with information from multiple eddy flux towers (Type 
2 synthesis) revealed how soil respiration varied with weather, phenology, invasive insects, forest manage-
ment practices, and atmospheric N deposition over 22 years (Giasson et al., 2013). In another example, 
long-term monitoring of vegetation and streamflow from LTER was combined with data from flux towers 
to show how invasive insect outbreaks reduced leaf area and increased water yield at the Harvard Forest 
(Kim et al., 2017).
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Biome Research question LTER site NEON site

Arctic tundra How land cover and fire disturbance affect net ecosystem exchange Arctic (ARC) Toolik (TOOL)

Boreal forest How upland versus lowland landscape position and varying permafrost 
affect C fluxes

Bonanza Creek (BNZ) Caribou Creek 
(BONA)

Temperate forest How various historic land uses and invasive insects affect C exchange 
(Figure 4)

Harvard Forest (HFR) Harvard Forest 
(HARV)

Desert How vegetation and landforms affect spatial variability in water and energy 
fluxes

Jornada (JRN) Jornada (JORN)

Tallgrass prairie How experimental fire regimes and grazing affect C exchange (Figure 5) Konza (KNZ) Konza (KONZ)

Temperate forest-lake How aquatic ecosystems affect terrestrial C exchange North Temperate Lakes (NTL) UNDERC (UNDE)

Alpine tundra How fine scale heterogeneity in topographically complex terrain affects C 
exchange

Niwot Ridge (NWT) Niwot Ridge 
(NIWO)

Note. Details of eddy flux tower locations and relevant publications are in Table S3.

Table 3 
Examples of Ongoing Type 2 (Multiple Properties or Processes, Within Site) Synthesis Research Questions Linking Long-Term Experiments and Observations From 
the LTER Research Network With Eddy Flux Tower Measurements in LTER and the NEON Monitoring Network
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Earth’s Future

Going forward, there is great potential for testing general hypotheses by combining information from LTER 
long-term experiments or observations with data from multiple eddy flux towers maintained by NEON, LTER, 
or other networks, which replicate measurement conditions or sample local variation in vegetation or land-
form conditions (Table 3). Examples include how past fire severity affects C flux in the Arctic tundra (Rocha & 
Shaver, 2011); how various permafrost conditions affect C flux response to climate warming in the boreal forest 
(Bonanza Creek) (Euskirchen et al., 2014); and how various land use histories or insect invasions affect C ex-
change (Harvard Forest, Figure 4). Moreover, such studies could show how local variation in soil temperature, 
water table fluctuations, and plant activity (measured by LTER and NEON) affect C flux (measured at eddy flux 
towers in NEON, LTER, and other networks) (e.g., Sturtevant et al., 2016). Combining information from mul-
tiple towers at a site can assist efforts to scale up eddy fluxes for modeling (Xu et al., 2017) (Table 3, Table S3).

In the future, Type 3 (multiple properties or processes across sites) syntheses could contribute to more 
general understanding of C and water exchange over the long term (Figure 1). For example, Type 3 syn-
theses could combine long-term observations of vegetation and climate at LTER sites with data from eddy 
flux towers to test hypotheses about how trends in winter precipitation influence C uptake in warm de-
sert shrublands (e.g., Biederman et al., 2018). Type 6 (models) syntheses could combine results from long-
term experiments and observations at LTER sites with data on C exchange from eddy covariance sites from 
NEON, LTER, and AmeriFlux in order to test hypotheses linking rising atmospheric CO2, plant functional 
traits and forest structure, and ecosystem water use efficiency in forests (e.g., Mastrotheodoros et al., 2017). 
Type 4 (across temporal scales) and Type 6 (models) syntheses also could combine data from long-term 
experiments and monitoring with shorter-term eddy flux data in models to predict the response of net eco-
system exchange to long-term ecosystem change (e.g., Wright & Rocha, 2018).

4.2. Remote Sensing and Ecosystem Models

Several forms of synthesis could combine long-term field data from LTER with lidar and hyperspectral 
data from NEON to assess how land cover change and vegetation dynamics influence ecosystem processes 
(Figure 1). Each year, the NEON Airborne Observing Platform (AOP) obtains acquires lidar (Light Detec-
tion and Ranging) and imaging spectrometer data with a nominal spatial resolution of 1–2 m2, and 0.25 m 
resolution digital orthophotos for hundreds of square kilometers surrounding each NEON site (Figure 2). 
Data are made available at various postprocessing levels and include topography, vegetation structure, and 
canopy physical and chemical properties.

Initial efforts have used field data in combination with NEON airborne mapping products to improve re-
mote-sensing based vegetation classifications (e.g., Scholl et al., 2020), infer structures that may influence 
ecosystem function (LaRue et al., 2019), or to map biodiversity patterns that are difficult to assess from field 
data (Hakkenberg et al., 2018; Musavi et al., 2017). Type 2 (multiple properties or processes within sites) and 
Type 3 (multiple properties or processes across sites) syntheses could combine field data from LTER with 
NEON remotely sensed data to explore how landforms influence disturbance, climate, and vegetation dy-
namics (e.g., Antonarakis et al., 2014; S. J. Frey et al., 2016; Yousefi Lalimi et al., 2017). Repeat NEON map-
ping using hyperspectral imagery may reveal ecosystem responses, such as plant water stress (e.g., Brodrick 
& Asner, 2017), that correspond with long-term trends in vegetation measurements from LTER. Type 2 or 
type 3 syntheses also could combine long-term data on vegetation from LTER sites with analyses of NEON's 
laser scanning and imaging spectroscopy to examine how ecosystem changes are related to plant functional 
traits such as foliage height diversity, leaf chlorophyll and water content (e.g., Schneider et al., 2017) or 
plant biomass (Goulden et al., 2017).

Type 6 syntheses (models) have used NEON eco-climate domain polygons as the basis for efforts to extrap-
olate ecosystem processes across regions. For example, Iwema et al. (2017) used data from the AmeriFlux 
network to examine how soil moisture measurements in eight NEON domains influenced surface energy 
flux parameters in a land surface model. Swann et al. (2018) used the Community Earth Systems model to 
test how simulated forest loss in 13 forested NEON eco-climatic domains altered climate dynamics, transpi-
ration, and primary productivity in other NEON domains.

Going forward, Type 6 synthesis (models) have great potential to be used in conjunction with LTER and 
NEON data to develop continental-scale projections. For example, Liu et al. (2018) used gridded remote-

JONES ET AL.

10.1029/2020EF001631

8 of 17

 23284277, 2021, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020E

F001631, W
iley O

nline L
ibrary on [23/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Earth’s Future

ly sensed data products and data from an eddy flux tower network (FLUXNET) to calculate spatial and 
temporal sensitivity of GPP and total ecosystem respiration to temperature and precipitation in 17 NEON 
eco-climatic domains. In addition, information from the NEON AOP could be used to track albedo and veg-
etation phenology dynamics near eddy flux towers (e.g., Wang et al., 2017) in combination with long-term 
vegetation observations to elucidate factors affecting ecosystem exchange.

4.3. Aquatic – Terrestrial Linkages

Combining long-term experiments and observations from LTER with data provided by NEON could im-
prove whole-catchment C and nutrient budgets (Figure  1). Although they occupy small areas, aquat-
ic ecosystems can make a disproportionately large contribution to terrestrial C storage in some regions 
(Buffam et al., 2011), and rivers export a significant fraction of terrestrial net ecosystem production in 

JONES ET AL.

10.1029/2020EF001631

9 of 17

Figure 4. Long-term LTER-based research and NEON sampling are co-located across multiple land use histories 
at the Harvard Forest (Type 2 synthesis). LTER retrospective studies of land use at the Harvard Forest indicate that 
the contemporary forest has been shaped by several hundred years of land use. Detailed studies of ownership deeds, 
stonewalls, barbed wire fences, and soil plow horizons reveal spatial and temporal patterns of cultivation, pasture, 
forest harvest and woodlot management since 1730 (Foster, 1992). NEON sampling points are arrayed across the entire 
Harvard Forest site to document broad-scale patterns. Thus, plots surrounding the eddy flux tower are located in areas 
that have been exposed to different combinations of land use histories (black triangles in figure). These historic land uses 
alter carbon distribution in soil profiles and soil respiration (Giasson et al., 2013) in ways that affect carbon exchange, 
which is measured by the NEON flux tower. These ongoing type 2 efforts (multiple properties or processes, within site) 
demonstrate the potential for co-location of LTER land use history studies and NEON sampling to reveal novel results of 
LTER long-term studies, while concurrent LTER data collection and complementary experiments provide mechanistic 
explanations and context for interpreting responses to contrasting land-use histories. Going forward, such studies could 
be pursued at any site where current short-term measurements and land-use history are available.
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Earth’s Future

the U.S. each year (Butman et al., 2016). However, spatial variability of C storage and transport is high 
(Argerich et al., 2016) and strongly linked to terrestrial processes (McCullough et al., 2018), including 
past disturbance (Lajtha & Jones, 2018; Meyer et al., 2014). Terrestrial ecosystem processes also influence 
spatial and temporal variation in N export from streams (Beaulieu et al., 2015; Neilson et al., 2018; Web-
ster et al., 2019). Improved integration of ecosystem properties linking terrestrial and aquatic ecosystems 
would more accurately reflect C and nutrient budgets at scales relevant to Earth system models (Wollheim 
et al., 2018).

In the future, Type 3 (multiple properties or processes across sites) analysis of linked aquatic-terrestrial 
dynamics could link aquatic and terrestrial installations at NEON sites, some of which are co-located with 
LTER (or other network) eddy flux towers (Table 4, Table S4). Combined terrestrial and aquatic measure-
ments have helped to estimate how changes in C loading may also influence N and P in lakes (Corman 
et al., 2018) or how N and P loading influence C dynamics in streams (Mutschlecner et al., 2018). They have 
shown how fire and grazing influence inorganic nutrient dynamics of streams (P. L. Sullivan et al., 2019), 
or how ecosystems process N deposition (Litaor et al., 2018). Fluorescence measurements of dissolved or-
ganic matter have helped discriminate land use and climate effects on the chemistry of exported DOC at the 
Andrews Forest LTER in Oregon (e.g., Lee & Lajtha, 2016); fluorescent DOC measured at many NEON sites 
could be used in future syntheses linking multiple sites. At the North Temperate Lakes LTER in Wisconsin, 
the contribution of lakes to total CO2 flux can be estimated by combining LTER lake metabolism and CO2 
data and models with terrestrial flux estimates from a nearby NEON terrestrial flux tower (Table 3). Com-
bined NEON and LTER installations will facilitate estimates of allochthonous and autochthonous sources 
of C in aquatic ecosystems (Hanson et al., 2016), which are essential to constructing C budgets at regional 
to continental scales.

Integration of NEON with LTER and other networks might also advance understanding and prediction of 
N fluxes at continental scales. For example, Type 3 studies could use NEON and LTER data to test how veg-
etation cover and phenology from remotely sensed imagery are related to stream N fluxes in various biomes 
(Table 4). Trends and fluxes of N in precipitation or streams that have been described for various networks 
(e.g., Argerich et al., 2013; Lajtha & Jones, 2013) could be combined in Type 3 (multiple properties or pro-
cesses across sites) studies with aquatic N data from NEON aquatic sites and N content of plant canopies in 
those watersheds, estimated from hyperspectral data collected by the NEON AOP.

4.4. Soil Biogeochemical and Microbial Dynamics

Many opportunities exist to combine long-term studies from LTER with soil measurements from NEON 
to better understand how soil biogeochemistry and microbial processes drive ecosystem response to envi-
ronmental change (Figure 1). Long-term experiments on soil N additions, soil warming, and soil detrital 
additions and removals have been conducted at many locations, including LTER sites. NEON samples bio-
geochemical stocks and soil N processes, microbial community composition and biomass, and vegetation 
one to three times per year at 5-year intervals at multiple plots in each NEON site (Hinckley et al., 2016b).
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Biome LTER site name NEON aquatic site NEON terrestrial site

Arctic tundra Arctic (ARC) Oksrukuyik Creek (OKSR) Toolik (TOOL)

Temperate forest Baltimore (BES) Posey Creek (POSE) Blandy Experimental Farm (BLAN)

Boreal forest Bonanza (BNZ)* Caribou Creek (CARI) Caribou-Poker Flats watershed (BONA)

Savanna Georgia Coastal Ecosystem (GCE) Barco Lake, Suggs Lake (BARC, SUGG) Ordway-Swisher Biological Station (OSBS)

Grassland Konza (KNZ)* Kings Creek (KING) Konza Prairie Biological Station (KONZ)

Alpine tundra Niwot Ridge (NWT) Como Creek (COMO) Niwot Ridge (NIWO)

Note. See details of site locations and instrumentation in Table S4. LTER sites marked with asterisk are located in the same watershed as the NEON sites.

Table 4 
Examples of Potential Future Synthesis Opportunities to Characterize Whole-Watershed Elemental Budgets and Examine Interactions Between Aquatic and 
Terrestrial Ecosystem Processes by Combining Aquatic Studies with Eddy Flux Tower and Other Measurements at Sites That are Co-located in LTER (Research 
Network) and NEON (Monitoring Network)
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Earth’s Future

Type 2 (multiple properties or processes within sites) and Type 3 (multiple properties or processes across 
sites) synthesis efforts could inform our understanding of drivers of microbial abundance, diversity, and 
community composition; organic matter and nutrient cycling dynamics; and C stabilization and N transfor-
mations across different ecosystems. For example, long-term experiments have shown that despite strong 
compositional differences across sites, microbial communities shifted in a consistent manner in response 
to N or P additions (Leff et al., 2015) as well as climate variability and soil C content (Delgado-Baquerizo 
et al., 2016). Type 2 and Type 3 syntheses could link long-term experiments at LTER sites to data on micro-
bial populations, climate, and nutrient fluxes from NEON sites to examine hypotheses about how microbial 
dynamics mediate biogeochemical fluxes.

In addition, new syntheses could improve predictions of which systems are most vulnerable to C and nutri-
ent loss at regional to global scales. A long-term experiment showed that two decades of elevated nitrogen 
inputs increased forest soil C, largely due to a suppression of organic matter decomposition (S. D. Frey 
et al., 2014). Type 3 syntheses could link the findings from long-term soil nutrient addition experiments 
and soil warming experiments to soil surveys and distributed NEON data (e.g., soil C and N concentrations 
and stocks) to predict soil C and N sinks and sources at the continental to global scales (e.g., Crowther 
et al., 2016; Wieder et al., 2015).

LTER studies also have shown that soil C and N responses to long-term warming and nutrient additions vary 
seasonally (Contosta et al., 2011) and may continue to change over multiple decades (Melillo et al., 2017; 
Reich et al.,  2018). Type 2 syntheses could enhance understanding of soil N response to environmental 
change by combining long-term experiments and observations of effects of atmospheric N deposition, 
windthrow, fire, grazing, and other changes at LTER sites with NEON observations of soil properties at 
those sites (Figure 1). Type 6 syntheses (models) could use ecosystem models that combine long-term data 
on atmospheric deposition from NADP (Lajtha & Jones, 2013; T. J. Sullivan et al., 2018) with NEON's stand-
ardized N mineralization data to predict and interpret effects of air pollution on soil ecosystem processes.

4.5. Animals and Species Distribution Models

Syntheses linking long-term observations and experiments from LTER with data from NEON can provide 
insights into population and species responses to environmental change (Figure 1). Long-term observation-
al studies reveal how populations and communities respond to land use, disturbance, and climate. NEON 
provides data on microbial communities, aquatic and terrestrial plants, breeding birds, and fish, as well as 
focal species of small mammals and insects. NEON is also analyzing eDNA (i.e., organism DNA in the en-
vironment) in aquatic ecosystems. Environmental DNA has great potential for monitoring common species 
and to detect and identify the presence of many species (Bohmann et al., 2014).

Synthesis of new data from NEON with long-term studies can address key questions in biodiversity, popula-
tion dynamics, species distribution models, and metacommunity dynamics. For instance, long-term studies 
at Harvard Forest LTER in Massachusetts have shown that small mammal community structure is relatively 
unaffected by species invasion (e.g., of hemlock woolly adelgid) or disturbance (e.g., experimental mortality 
of hemlock) (Degrassi, 2018). Spatial analyses of small mammal data across the continental United States 
(from NEON) indicated that body size variation and mammal species richness were positively associated 
with temperature (Read et al., 2018). Type 2 or Type 3 synthesis efforts could combine results of long-term 
experiments from LTER showing mechanistic organism response to invasion or disturbance with data from 
NEON sampling of small mammals to examine how climate change, disturbance, and invasion process-
es are affecting mammal populations at local or continental scales. For example, at the Konza Prairie in 
Kansas, NEON small mammal and tick survey plots are located in areas where fire and grazing have been 
manipulated in LTER long-term experiments, potentially revealing how small mammal and tick popula-
tions respond to disturbances (Figure 5). The co-location of LTER experiments and NEON sampling enable 
NEON data to reveal novel results of LTER long-term experiments, while concurrent LTER data collection 
and complementary experiments provide mechanistic explanations and context for interpreting species 
data from monitoring networks.

Type 2 (multiple properties or processes within sites) and Type 3 (multiple properties or processes 
across sites) syntheses also can unravel underlying causal mechanisms linking long-term fish popu-
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Earth’s Future

lation responses to environmental change by combining systematic fish surveys and eDNA measure-
ments in aquatic systems conducted by NEON to results from long-term experiments and observations. 
Long-term studies at LTER sites have documented native fish population responses to invasive fish 
species (Hansen et al., 2017), to climate and trophic interactions (Parks & Rypel, 2018), and to distur-
bance and vegetation change (Dodds et al., 2012). Initial studies indicate that eDNA can be used in 
conjunction with long-term monitoring of fish populations in lakes (Klobucar et al., 2017). Given the 
high variance of many aquatic populations over time (e.g., Batt et al., 2017), Type 2 (multiple properties 
or processes at a site) or Type 6 (model) syntheses that combine NEON data on both fish population 
dynamics and physicochemical conditions within lakes and streams with LTER and other long-term 
studies of streams and lakes will help reduce uncertainty in population models and causes of popula-
tion change in fish.

Several forms of synthesis efforts also could contribute to species distribution models (Figure 1). NEON is 
collecting systematic data on focal taxa, including soil microbes; ticks, mosquitoes, and ground beetles; small 
mammals; and breeding birds (Egli et al., 2020; Springer et al., 2016; Thorpe et al., 2016). LTER studies have 
documented long-term trends and constructed models for species distributions of birds (Betts et al., 2018), 
arthropods (Lister & Garcia, 2018), and invasive insects (Schliep et al., 2018). Long-term experiments and 
observational studies also document community level responses, for example, to species loss (e.g., hemlock 
removal, Record et al., 2018) or disturbance (e.g., saltwater intrusion, Zhai et al., 2016). NEON data are 
being used to model spatial patterns of tick abundance (Klarenberg & Wisely, 2019). Data from long-term 
experiments and observations have been used to test ecological theory and improve models of species dis-
tribution and dynamics (e.g., Snell Taylor et al., 2018; Thomas Clark et al., 2018). Going forward, synthesis 
studies could combine results from long-term experiments at LTER sites with measurements of species 
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Figure 5. Long-term LTER-based research and NEON sampling are co-located across multiple fire and grazing treatments at the Konza Prairie Biological 
Station. LTER sampling at Konza Prairie is designed to document a suite of ecological responses to specific combinations of prescribed fire and grazing 
treatments, which also represent a range of potential land-use and land-cover scenarios for the region. In contrast, NEON sampling points are arrayed across 
the entire Konza Prairie site to document broad-scale patterns. As a result, NEON small mammal and tick survey plots are located in areas that have been 
exposed to different combinations of experimental burning frequency (left figure) and grazing by bison or cattle (right figure) as part of LTER long-term 
experiments. These treatments alter vegetation composition and structure in ways that affect both small mammal and tick populations (Cully, 1999; Matlack 
et al., 2008). In ongoing studies, the co-location of LTER experiments and NEON sampling enable NEON data to reveal novel results of LTER long-term 
experiments, while concurrent LTER data collection and complementary experiments will provide mechanistic explanations and context for interpreting 
responses to contrasting land-use practices.
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across the NEON network to draw inferences about general factors influencing species distributions (Type 
3) and to identify knowledge gaps in models of species distributions (Type 6).

4.6. Disturbance History, Stability and Resilience

Combining theory, long-term experiments, and observations of disturbances from LTER with high-frequen-
cy data provided by NEON can provide insights and generalizations about ecosystem response to distur-
bance, stability and resilience (Figure 1). Long-term studies demonstrate how land use legacies and distur-
bance history shape modern-day landscape patterns and ecological communities (Acker et al., 2017). Data 
from NEON, including flux towers, remote sensing, aquatic, soil, and organism sampling, provide informa-
tion on current ecosystem status. The combination of long-term experiments and observations from LTER 
on land use history and disturbance could provide context for understanding monitoring data from NEON 
on ecosystem fluxes (Figure 4) and species distributions and abundance (Figure 5).

Long-term studies have documented alternative stable states and associated mechanisms, but records may 
be insufficient to test tor regime shifts (Bestelmeyer et al., 2011; Ratajczak et al., 2014; Yu et al., 2019), be-
cause detection of their approach and validation of the change in feedbacks that accompany regime shifts 
require unbroken series of frequent observations sustained for long periods of time (Butitta et al., 2017). 
LTER-developed theory (e.g., Adam et al., 2011; Bestelmeyer et al., 2013; Chapin et al., 2010) provides a 
framework for combining long-term data from LTER with high-resolution NEON data to gain insight into 
ecosystem resilience. In aquatic systems, NEON will collect high-frequency (subhourly) measurements of 
several variables including nitrate, dissolved organic matter, and conductivity. Type 4 syntheses (across tem-
poral scales) of NEON data combined with LTER data and understanding of ecosystem states could help 
test a key hypothesis that changes in the variance of biogeochemical fluxes (P, N, and C) may reveal regime 
shifts in ecosystems (e.g., Webster et al., 2016) (Figure 1).

In summary, many examples exist of ongoing synthesis between the LTER research network and the NEON 
monitoring network, but these are mostly Type 2 (multiple properties or processes within sites) syntheses 
based at sites that are co-located in both networks. While a great many studies have been published describ-
ing the potential for LTER-NEON syntheses, very few studies have been published that report results of 
such syntheses. Moreover, there is a dearth of studies that utilize the many other potential types of synthe-
sis, including Type 3 (multiple properties or processes across sites), Type 4 (across temporal scales), Type 5 
(across methodological approaches), and Type 6 (models) syntheses. Nevertheless, as described above, on-
going studies provide exciting potentials for specific research questions that could be explored using these 
varied synthesis approaches.

5. Conclusions
In this era of rapid, broad-scale environmental change, publicly available information from complemen-
tary environmental science research networks, such as LTER, and monitoring networks such as NEON 
offer opportunities for discovery, arising from the potentials for LTER measurements, experiments, models, 
and observational studies to provide context and mechanisms for interpreting NEON data, and for NEON 
measurements to provide standardization and broad scale coverage that complement LTER studies. Many 
different types of cross-network synthesis are possible, in six broad areas of ecology. To date, cross-network 
efforts are addressing topics including how long-term vegetation change influences C fluxes; vegetation 
structure and function revealed by detailed remote sensing; aquatic-terrestrial connections of nutrient cy-
cling linking vegetation to streams and lakes; effects of soil biogeochemistry and microbial processes on 
ecosystem response; population and species responses to environmental change; and ecosystem response to 
disturbance, stability and resilience. Current efforts focus primarily on synthesis of properties and processes 
at individual sites where NEON and LTER are co-located, but they could be extended in ways described 
in this study to address broader questions in ecology and environmental science, at a wider range of sites. 
These potential syntheses also provide a pathway for the broader scientific community, beyond LTER and 
NEON, to participate in cross-network research. These findings apply to cross-network syntheses among 
other research and monitoring networks in the US and globally, and can guide scientists and research ad-
ministrators in promoting broad-scale research that supports resource management and environmental 
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policy. The emergence of these synergies should also help to make long term research networks and sites 
more open to new investigators as they will facilitate the flow of information and ideas and the development 
of new collaborations. This flow, and the links to resource management and policy, could also contribute to 
broadening participation of groups traditionally underrepresented in science.

Data Availability Statement
Data were not used, nor created for this research.
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