University of New Hampshire

University of New Hampshire Scholars' Repository

Doctoral Dissertations

Student Scholarship

Spring 1992

Comparing natural travel with artificial travel requirements in the study of foraging in the laboratory

Carlos Fernando Aparicio University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation

Aparicio, Carlos Fernando, "Comparing natural travel with artificial travel requirements in the study of foraging in the laboratory" (1992). *Doctoral Dissertations*. 1675. https://scholars.unh.edu/dissertation/1675

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

I ŀM·I

University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 313-761-4700 800-521-0600

_		

Order Number 9225250

Comparing natural travel with artificial travel requirements in the study of foraging in the laboratory

Aparicio, Carlos Fernando, Ph.D.

University of New Hampshire, 1992

U·M·I 300 N. Zeeb Rd. Ann Arbor, MI 48106

	-	-

COMPARING NATURAL TRAVEL WITH ARTIFICIAL TRAVEL REQUIREMENTS IN THE STUDY OF FORAGING IN THE LABORATORY

by

Carlos F. Aparicio

- B.A. National Autonomous University of Mexico, 1978
- M.A. National Autonomous University of Mexico, 1983

DISSERTATION

Submitted to the University of New Hampshire
in Partial Fulfillment of
the Requirements for the Degree of

Doctor of Philosophy

in

Psychology

This dissertation has been examined and approved.

Dr. William M. Baum, Dissertation Director, Professor of Psychology

Dr. Kenneth Fuld, Associate Professor of Psychology

Dr. John A. Nevin, Professor of Psychology

Dr. Michelle Scott, Assistant

Professor of Zoology

Dr James T. Taylor Professor of Zoology

TO MY FATHER

Jose Carlos Aparicio Mier

TO MY WIFE

Rossy Aparicio

TO MY SON

Christian I. Aparicio

TABLE OF CONTENTS

DEDICATIONii ABSTRACT	
INTRODUCTION	
EXPERIMENT 1	9
Method	9
Subjects	9
Apparatus	
Procedure10	
Results1	2
EXPERIMENT 222	2
Method2	3
Subjects2	3
Apparatus	
Procedure23	
Results24	1
DISCUSSION31	L
Optimal Foraging Theory34	1
Equivalence of Natural and Artificial Travel41	L
Conclusions47	7
FIGURES 1 TO 1850	`
	•
TABLES 1 TO 1886	5
APPENDIX A94	ŀ
APPENDIX B184	ļ
APPENDIX C196	j
REFERENCES201	

ABSTRACT

COMPARING NATURAL TRAVEL WITH ARTIFICIAL TRAVEL REQUIREMENTS
IN THE STUDY OF FORAGING IN THE LABORATORY

by

Carlos F. Aparicio University of New Hampshire, May, 1992

Is moving from place to place equivalent to pressing a lever or pecking a key? This dissertation addressed this question by comparing natural travel (moving from place to place) with artificial travel requirements (to press on a lever). In two experiments foraging was modeled with operant behavior. Rats "searched" for food by pressing on the left lever. The patch provided a maximum of 1, 2, or 8 pellets. When the patch provided 1 pellet, rats captured the first prey with a .10 probability. The probability dropped to zero after one pellet. When the patch provided 2 or 8 pellets rats captured the first prey with a 1.0 probability. Each prey delivered on the left lever caused this probability to decrease to 0 in steps of .5 or .125 simulating patch depletion. Lever-press on the right lever reset the probability on the left lever to .10 or 1.0. To model artificial travel different reset-probabilities were scheduled on the right lever. The experimental situation was modified to model natural travel. Rats had to run 520 cm to travel back and forth between left and right levers. Experiments 1 and 2 revealed that as the number of available

prey in the patch increased the giving-up time increased. Experiment 1 showed that natural travel produced longer residence and giving-up times than the artificial travel conditions. Experiment 2 revealed that by pressing on retractable levers, rats made shorter residence and givingup times than by pressing on standard levers. Sometimes, but not in systematic way, natural travel produced longer residence and giving-up times than by responding to the reset-probabilities. The natural travel with obstacles produced the longest residence and giving-up times. The natural travel with obstacles had more of an effect on residence and giving-up times that any other travel requirement. The residence and giving-up times obtained in Experiments 1 and 2 are in accordance with predictions derived from McNair's (1982) model. As the travel requirement increased the residence and giving-up time increased. This is predicted because the average rate of capture decreased as travel time increased.

INTRODUCTION

The study of foraging behavior by ecologists and biologists has led to the development of optimal foraging theory. The basic assumption of optimal foraging theory is that animals behave to maximize their fitness. To succeed in reproduction, foragers need to maximize net energy gain over the cost of foraging. If so, optimal foraging maximizes fitness. Many researchers have evaluated the assumption that animals behave to maximize their fitness by testing models of optimal foraging with experiments. Their main goal has been to develop an optimal foraging model able to characterize real foraging situations, the environmental aspects to be maximized, and the constraints imposed on the animal (Shettleworth, 1988).

Optimal foraging theory maintains that evolutionary events and conditions have shaped the behavior of species over generations. However, to be effective, evolutionary events and conditions must operate through proximate causation (Mellgren, 1982). Proximal causes are environmental events and conditions that operate in the immediate environment to affect foraging behavior and patterns of optimal behavior (Mellgren, Misasi, & Brown, 1984).

Biologists have studied evolutionary events and conditions, and psychologists have studied the proximate

causes of behavior. Nevertheless, evolutionary biologists and psychologists have the same purposes: to study and understand behavior.

In the last thirteen years, the analysis of foraging behavior by ecologists and biologists has joined the study of schedules of reinforcement by psychologists. In the study of foraging behavior, ecologists and biologists have generated experiments similar to studies of reinforcement schedules (e.g., Houston & McNamara 1985; Kacelnik & Krebs 1985; Lea 1979; Redhead & Tyler 1988). In the study of choice, psychologists have designed experiments similar to studies of foraging (e.g., Baum 1982a, 1982b, 1987; Fantino, 1987; Fantino & Abarca 1985; Hanson & Green 1989a, 1989b).

Instrumental behavior is viewed as foraging, and foraging is studied as instrumental behavior. Both activities involve locomotion, and both are modified by their consequences (Baum, 1982b). Operant simulations of foraging have become common (Baum, 1982a, 1982b; Pietrewicz and Kamil, 1981). For example, operant techniques have been used (Collier & Rovee-Collier, 1981) to test MacArthur and Pianka's (1966) model of prey selection. Moreover, it has been suggested that the methods utilized in the laboratory by operant psychologists represent a suitable way to test optimal models of foraging (Kamil & Yoerg, 1982; Pulliam, 1981; Schoener, 1987).

By using optimal models of foraging, researchers try

to predict how an animal (forager) searching for food will behave in a situation where its behavior depletes a small area (patch). That is, researchers try both to take account of the depletion of food by the forager within the patch, and to identify the variables that determine the animals' decision of when to move to a new patch (Redhead & Tyler, 1988). Among the variables to be considered in such a decision, the quality of a patch and the travel cost to other patches are the most important factors.

Optimal models of foraging have suggested that animals adopt rules to decide when to move to a new patch.

Accordingly, foragers may leave the patch: 1) when a specific rate of prey capture is reached, 2) a fixed time after the most recent capture (the giving-up time rule), 3) after a fixed time, or 4) after they have captured a fixed number of prey.

To support the rule of rate of prey capture, optimal models of foraging assume that the environment provides food in a smooth continuous flow (MacArthur & Pianka, 1966; Charnov 1976). According to such a theory, foragers estimate the quality of the patch at any given moment by using the instantaneous rate of intake within a patch. As the patch is depleted the rate of intake decreases. When the rate of intake falls below that of the environment as a whole, it becomes necessary for foragers to leave the patch (Charnov, 1976).

Based on this assumption, optimal models of foraging predict an optimal residence time in a patch. This prediction has been supported qualitatively by observing foraging behavior in the field and by simulating foraging in the laboratory (e.g., Pyke 1984; Schoener 1987; Stephen & Krebs 1986). However, it has not been supported quantitatively (e.g., Fantino & Abarca 1985; Lea 1979), and the paradigm that optimal models of foraging follow to predict optimal residence time has been criticized (Gray, 1987).

McNair (1982) analyzed the assumption that the environment provides food in a smooth continuous flow. He argued that animals obtain discrete portions of food at irregular intervals. Under these circumstances the instantaneous rate of intake does not provide an accurate estimation of the quality of the patch. It would produce errors in estimations (Redhead & Tyler, 1988). To do an accurate estimation, one would need to make the instantaneous rate equivalent to the distribution of the patch yield over a specific residence time. McNair (1982) doubts that animals can adopt such a complicated strategy while foraging.

A viable strategy for animals while foraging is to check the length of time since the last prey capture, and decide to leave the patch when this time reaches a critical value, the giving-up time rule (Krebs, Ryan, & Charnov

1974). This rule has been supported by studies in which birds visited artificial patches, and their giving-up times fitted the predictions made by optimal foraging models (e.g., Ydenberg, 1984). However, some other experiments inspired by optimal foraging models, have found inconsistencies between observed and predicted giving-up times (Lea & Dow, 1984).

Rules based on a fixed time or a fixed number of prey captured, have been contemplated by optimal models of foraging as alternative strategies. Krebs and Cowie (1979) reported results suggesting that to leave the patch, foragers adopt the fixed time rule. However, Redhead and Tyler (1988) showed evidence indicating that animals use the rule of the immediate rate of reinforcement to leave the patch. Thus, under specific circumstances animals may adopt particular rules to leave the patch, the best strategy depends on food distribution within and between patches (Iwasa, Higashi, & Yamamura, 1981; McNair 1982).

The other major factor that determines the decision of when to leave the patch is the travel requirement to reach the next patch. For example, Mellgren, Misasi, and Brown (1984) allowed rats to forage for food by climbing nail ladders to boxes containing food mixed with sand. They varied the amount of food in the patch and the distance (travel) to other patches. When the travel was constant and food varied in density, rats showed optimal usage of the

patches. As the distance between patches increased the utilization of each patch increased. However, when the amount of food was constant or the distance between patches was short, rats did not behave in accordance with optimal models of foraging. Rats tend to underutilize high-density patches and overutilize low-density ones (Mellgren, Misasi, and Brown, 1984).

Optimal models of foraging predict that the utilization of the patch would increase if the travel time to other patches increase (Krebs, 1978). This prediction has been corroborated in the field (Anderson 1978; Zimmerman 1981), in the laboratory with no operant techniques (Cowie 1977; Hartling & Plowright 1979), and in several experiments in which all elements of the patch were simulated with operant techniques (Cuthill, Kacelnik, & Krebs, 1987; Fantino & Abarca, 1985; Hanson, 1987; Hanson & Green 1989; Killeen, Smith, & Hanson 1981; Lea 1979).

As predicted by optimal models, operant simulations that incorporate two sources of food (patches) have shown that travel requirements between patches affect foraging behavior. The residence time in one of the patches increases a function of the travel requirement to the alternative patch (e.g., Abarca & Fantino 1982; Fantino & Abarca 1985; Hanson 1987; Hanson & Green 1989a, 1989b; Killeen, Smith & Hanson 1981; Lea 1979). However, in operant simulations of foraging, travel has been modeled by

requiring rats to press a lever or pigeons to peck a key. Thus, foragers "travel" by responding on a schedule for a given time and waiting in the same spot. When there is no locomotion involved in travel, animals save energy and it may produce data that optimal models of foraging do not fit (Cowie 1977; Kacelnik & Cuthill 1987). As noted by Mellgren (1982), travel in an open area may have other costs for foragers.

In addition, the operant laboratory has produced data indicating that different responses produce different results. For example, pigeons learn quicker to peck a key for food than to press a treadle (McSweeney, 1978).

Nevertheless, there are data suggesting that pecking a key has qualitatively similar effects to moving from place to place. Baum (1982a) exposed pigeons to a choice between two patches that provided food in concurrent variable—interval schedules, and he varied the travel between patches. As the travel increased the residence time in the favored patch increased and the visits to the other patch decreased. With the minimal distance between patches, Baum found that residence times in the preferred patch decreased, and the number of visits to the other patch increased (Baum, 1982a). These results resemble those obtained by Pliskoff and Fetterman (1981) for key-peck "travel".

Although in choice situations the effects of moving from place to place appear to resemble those of comparable

instrumental responses (Baum, 1988), nobody has compared an operant response with a natural travel requirement within the same experimental situation.

The operant chamber has been modified to model natural travel in the laboratory (e.g., Baum 1982a; Krebs, Kacelnik, & Taylor 1978; Ydenberg 1984). However, the operant chamber has not been adapted to compare a natural travel requirement with operant behaviors such a pressing on a lever or pecking a key. Thus the following question remains unanswered: Is moving from place to place equivalent to pressing a lever or pecking a key? In two experiments, this dissertation addressed this question by comparing natural travel (moving from place to place) with artificial travel requirements (pressing on a lever).

EXPERIMENT 1

Natural travel was compared with artificial travel requirements. By pressing on the left lever rats depleted the patch in 1, 2, or 8 pellets. Under artificial travel conditions, the patch was reset by pressing on the right lever. Different reset-probabilities were scheduled. Under the natural travel condition, the patch was reset by passing around the central partition and pressing once on the right lever.

METHOD

Subjects

Four Long-Evans male, experimentally naive rats (A-104, A-230, A-101, and A-123) between 90 and 110 days old at the beginning of the experiment served. Animals were housed in individual cages with water permanently available, and maintained at 80% of their free-feeding weights (± 8 g).

Apparatus

The experimental chamber was a rectangular box 147 cm long, and 51 cm wide (see Figure 1). The box was divided all along by wire mesh except at the extreme end. Three 9 v DC lights were mounted on each side of the box: at 23 cm, 51 cm, and 117 cm from the front wall. Two response levers were mounted on the front wall, 3 cm from the floor and 33 cm apart. A pellet dispenser delivered pellets in a hopper on the left of the same wall, 3 cm from the floor, 7.5 cm

from the left lever. The experiment was controlled by using a microprocessor (BCC-52). The data were collected and analyzed by using a Zenith PC computer.

Procedure

To run artificial travel conditions, direct passage from one lever to the other was permitted. Passage beyond 17 cm from the front wall (see Figure 1) was blocked with wire mesh. To run the natural travel condition, direct passage from the left to the right lever was blocked with wire mesh (see Figure 2). Changing from one side of the box to the other required passing around the central partition at 130 cm from the front wall. The total distance from left to right and back to left lever was 520 cm.

The left lever (patch) provided 1, 2, or 8 pellets (prey). When the patch provided 1 prey, the probability (p) of obtaining the prey by pressing on the left lever was .10. This probability dropped to zero after one pellet was obtained. When the patch provided 2 or 8 prey, p on the left initially was equal to 1.0. Pressing on the left lever caused p to decrease to zero in steps of .5 or .125, simulating patch depletion.

Pressing on the right lever reset p on the left to .10 or 1.0. Artificial travel was produced by five reset-probabilities (1.0, .25, .10, .05, and .025) scheduled on the right lever. The first response on the left lever turned off the lights on the left side and turned on the

lights on the right side. Presses on the right lever that satisfied the schedule reset p on the left, turned off the lights on the right, and turned on the lights on the left, signaling reset of the patch.

Sessions ended when one of three conditions was met:

1) there were 90 visits to the levers, 45 to the left and 45 to the right lever, 2) subjects stopped pressing on both levers for more than 300 seconds, or 3) when subjects obtained within a session a maximum of 190 pellets.

Tables 1 to 3 show the different conditions, grouped by the number of prey available on the left side. The order in which they were studied and the number of sessions per condition appear in the last two columns of Tables 1 to 3.

A minimum of ten sessions per condition were conducted. However, the number of sessions was increased when the natural condition or low reset-probabilities showed variability in the data.

Travel time was the predictor variable. It was recorded from the last press on the left lever until the first press on the left following reset on the right lever.

There were three criterion variables: residence time, giving-up time, and capture accuracy. Residence time was recorded for each visit from the first press on the left lever to the last press on the left lever. Giving-up time was recorded from the last pellet obtained in the patch to the last press on the left lever. Capture accuracy

represents the percent of prey obtained per visit in the patch out of the available number.

Results

For each session of each condition, the arithmetic means of travel time, residence time, giving-up time, and capture accuracy were calculated.

An exploratory data analysis (EDA) was conducted. All sessions were included in the analysis. The arithmetic means of the giving-up and travel times were represented in clusters. Some examples are shown in Appendix A.

To summarize the data, I utilized an alternative measure of central tendency, "the bisquare-weighted mean" (BWM). The BWM technique was designed by Mosteller & Tukey (1977) to assign less weight to observations that depart from the middle of the distribution. The BWM technique was adapted (Killeen, 1989) to run in Basic machine language and utilized to calculate BWMs and median absolute deviations (MADs) for travel, residence, and giving-up times. B19 to B21 (Appendix B) summarize the BWM values. For each condition, the variability in travel, residence and givingup times was estimated. The MAD was added to or subtracted from the BWM values, to represent with two values the range of variability in these measurements. The BWM plus its MAD was called the BWM value. The BWM minus its MAD was called the BWM value. In tables B19 to B21 (Appendix B) the BWMs appear in the center columns. The numbers to the right and

left are BWM' and BWM' values.

The BWM, BWM and BWM values were utilized to determine areas in the plot in which travel, residence, and giving-up times overlapped. The idea was to see if travel times caused by the different reset-probabilities overlapped with travel times produced by the natural requirement.

If natural travel and low reset-probabilities produced travel times of similar duration, then residence and giving-up times produced by low reset-probabilities should have values that overlapped values produced by the natural condition.

The BWM, BWM, and BWM values for travel, residence, and giving-up times were used to construct Figures A21 to A29 (Appendix A). Travel, residence, and giving-up times produced by low reset-probabilities overlapped travel, residence and giving-up times caused by natural travel. However, there were some instances of no overlap between values produced by natural travel and values produced by artificial travel requirements.

Tables 1 to 3 (center columns) show BWMs for travel, residence and giving-up times. Figure 3 in the left-hand columns of graphs, shows the BWMs for travel time (Y-axis) plotted against the reset-probabilities (logarithmic X-axis). Different symbols indicate the different subjects. Figure 3 shows that the reset-probabilities on the right lever produced systematic changes in travel times. As

expected, as the reset-probability increased artificial travel time decreased. The function relating artificial travel time to reset-probability, was steeper when the patch was depleted in 2 pellets than when the patch was depleted in 1 or 8 pellets (see panel B, Figure 3).

Residence and giving-up times produced by artificial travel requirements were transformed to logarithmic numbers, and then the arithmetic means of these values were obtained for the conditions depleted in 1-, 2-, and 8-prey. Residence and giving-up times produced by natural travel were also transformed to logarithmic numbers, and the arithmetic mean of these values was obtained for each prey condition. In Figure 4, the arithmetic means obtained for residence and giving-up times (Y-axis) are plotted against the number of available pellets in the patch (X-axis). filled squares indicate the residence times produced by artificial travel requirements. The empty squares represent residence times produced by the natural travel condition. The filled triangles symbolize the giving-up times produced by the artificial travel conditions. The asterisks represent the giving-up times produced by the natural travel condition. The bottom panel of Figure 4 shows the data averaged across subjects.

Figure 4 shows that on average natural travel produced longer residence and giving-up times than those produced by the reset-probabilities (see group mean in bottom panel of

Figure 12). Generally, as the number of available pellets in the patch increased, residence and giving-up times increased. With exception of the giving-up times for one subject (see asterisks in right-hand top panel for A-104), when the number of pellets in the patch switched from 1 to 2, the residence and giving-up times decreased in the natural travel condition. However, the giving-up times produced by artificial travel conditions increased with the same manipulation (see triangles across panels). When the patch was depleted in 8 prey, the longest residence and giving-up times were observed. Although Figure 4 show larger residence and giving-up time for natural travel, these means are misleading. The effect may be caused by an artifact of the arithmetic mean. The artificial travel requirements caused the residence and giving-up times to vary in duration.

In Figures 5 to 8 (left-hand panels), the residence and giving-up times (logarithmic Y-axes) are plotted against the travel times (logarithmic X-axis). Each figure shows results for one rat. All conditions are included in the left-hand graphs. The natural travel values are enclosed in boxes. Figures 5 to 8, left-hand columns of graphs, show that with exception of subject A-101 natural travel produced longer residence and giving-up times than artificial travel requirements. For A-101 when the patch was depleted in 1 or 2 pellets (top and middle panels, Figure 5), natural travel

produced residence and giving-up times similar to those produced by low reset-probabilities. However, when the patch was depleted in 8 pellets, A-101 in the natural travel produced longer residence and giving-up times than by responding to the reset-probabilities (bottom panel, Figure 5 left-hand).

Generally, low reset probabilities were associated with long residence and giving-up times, and high reset-probabilities with short residence and giving-up times.

Usually, natural travel was associated with long residence and giving-up times.

Regression lines were fitted to all residence and giving-up times produced by artificial requirements. The following linear equation was utilized:

$$Y(x) = a1 + a2 * x$$
 (1)

Coefficients: al= $(Sy * Sxx - Sx * Syx) / (N * Sxx - Sx^2)$

$$a2 = (N * Syx - Sx * Sy) / (N * Sxx - Sx^2)$$

Where $Sx = \Sigma xi$, $Sxx = \Sigma xi^2$, $Sy = \Sigma yi$, and $Syx = \Sigma yi * xi$. The BWM values of travel time were transformed to logarithmic numbers and entered in the equation as the values of the independent variable. The BWM values of residence or giving-up times were transformed to logarithmic numbers and entered in the equation as the values of the dependent variable. Values produced by the natural travel requirement did not enter the equation. Tables A34 to A39 summarize values and calculations (Appendix A).

Tables 7 to 12 show the regression outputs when the patch was depleted in 1 pellet (Tables 7 and 10), 2 pellets (Tables 8 and 11), or 8 pellets (Tables 9 and 12). The left-hand panels show regressions for the residence time, and the right-hand panels regressions for the giving-up time.

When the patch was depleted in 1 or 2 pellets, the linear equation accounted for the variability in residence and giving-up times (r² between .76 and .95, mean=.85). There were two exceptions, subject A-104 (r² between .05 and .48, mean=.23), and subject A-123 (r² between .26 and .90, mean=.68). When the patch was depleted in 8 pellets, the linear equation poorly accounted for the variability in residence and giving-up times (r² between .04 and .54, mean=.27).

Figures 5 to 8 show in the right-hand panels the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. The coefficient al is the Y-intercept of the regression line and gives an indication of overall level of residence and giving-up times, as long as the slope is not too steep. Results from the natural travel condition are

not included (compare left-hand columns of graphs with right-hand columns).

In general, the right-hand panels in Figures 5 to 8 show that there were not systematic deviations in residence and giving-up times from the regression lines. With exception of subjects A-101 and A-123 (middle panels of Figures 5 and 7), as the number of available prey in the patch increased the residence and giving-up times increased (compare values of al across panels). When the patch was depleted in 2 pellets, the residence and giving-up times of A-123 decreased (compare al in top panel with al in middle panel of Figure 7). However, when the patch was depleted in 8 pellets, the residence and giving-up times of A-123 increased (compare al in bottom panel with al in middle and top panels of Figure 7). The residence times of A-101 decreased when he depleted the patch in 2 pellets, but not the giving-up times (compare values of al in top and middle panels of Figure 5). Nevertheless, when A-101 depleted the patch in 8 prey, the residence and giving-up times were greater than when he depleted the patch in 2 or 1 prey (compare al value in bottom panel of Figure 5 with values of al in middle and top panels).

With the exception of A-101 in the 8-prey condition (a2= -.13), and A-104 in the 2-prey condition (a2= -.07), the slopes for residence and giving-up times were all positive (compare values of a2 across conditions in Figures

the number of available prey in the patch increased the slopes of residence and giving-up times decreased (mean=.41 for the depleted-in-1, mean=.20 for the depleted-in-2, and mean=.06 for the depleted-in-8 conditions). However, when A-104 depleted the patch in 8 prey, the slopes of residence and giving-up times were steeper than when he depleted the patch in 2 prey (compare values of a2 in Figure 6 middle and bottom panels). For A-123 the slope of residence and giving-up times increased as the number of available prey in the patch increased. When A-123 depleted the patch in 2 prey, the slopes of residence and giving-up times were steeper than when he depleted the patch in 8 prey (compare values of a2 middle panel of Figure 7 with values of a2 in top and bottom panels).

The artificial travel times usually produced systematic changes in giving-up time. The right-hand panels in Figures 5 to 8 show that there were only a few exceptions. Short giving-up times were associated with high reset-probabilities. Long giving-up times were associated with low reset-probabilities. However, the reset-probabilities generally caused less change in residence times across conditions (compare values of a2 for residence with values of a2 for giving-up times, right-hand panels in Figures 5 to 8), but see some exceptions (compare X coefficients of residence times with X coefficients of giving-up times) in

Tables 7 to 12.

When the patch was depleted in 8 prey, the longest residence and giving-up times were observed. Rats responding to the reset-probabilities produced less variation in giving-up times (see values of a2 in Figures 5 to 8), except for subject A-123 (right-hand bottom panel of Figure 7).

The BWM values of travel, residence, and giving-up times produced by the natural requirement were transformed to logarithmic numbers. Then, the slopes and intercepts from the regression lines were used to calculate estimates of the residence and giving-up times. Equations 2 and 3 were utilized

Est
$$GUT = a1 + (a2 * log TT [NT])$$
 (2)

Est
$$RT = a1 + (a2 * log TT [NT])$$
 (3)

where al was the constant and a2 the slope. GUT the givingup time, RT the residence time, and TT [NT] the travel time for the natural travel requirement.

The logarithmic residuals of residence and giving-up times were calculated by using equations 4 and 5

$$log res GUT = log GUT[NT] - Est GUT$$
 (4)

$$log res RT = log RT [NT] - Est RT$$
 (5)

Tables B25 to B28 summarize these calculations (Appendix B).

The logarithmic residuals of residence and giving-up time calculated for natural travel, were divided by the standard errors of residence and giving-up time estimated

for artificial travel requirements. In Figure 9, these calculations are plotted (Y-axes) against the number of available pellets per visit (X-axis). The Y-axis shows the number of standard error units that residence and giving-up time deviated from estimates based on the regression analysis. The larger these values the less natural travel produced residence and giving-up time durations that were equivalent to those produced by artificial travel requirements. In general, Figure 9 shows that when the patch was depleted in 2 pellets, residence time deviated more standard error units from estimates (mean= 7.14) than when the patch was depleted in 1 (mean= 5.59) or 8 pellets (mean= 2.50). However, giving-up time deviated more standard error units from estimates when the patch was depleted in 1 pellet (mean= 4.67) than when it was depleted in 2 (mean= 3.62) or in 8 pellets (mean= 3.44). Table C34 summarizes results of Figure 9 (see Appendix C).

EXPERIMENT 2

In Experiment 1 pressing on the right lever produced residence times that changed less than giving-up time durations. Travel time on the right lever produced systematic changes in giving-up times. Short durations were associated with high reset-probabilities and long durations with low reset- probabilities. However, residence times did not change in systematic way as a function of artificial travel. Sometimes the .10 reset-probability produced longer residence times than the .05 or .025 reset-probabilities.

In Experiment 1, variations in residence time may have been produced by deficiencies in stimulus control. At the beginning of a session, the first response on the left lever turned off lights on the left side and turned on lights on the right side. After that, presses on the right lever reset the probability on the left, turned off lights on the right, and turned on lights on the left, signaling reset in the patch. By switching from left to right and back to left without resetting the patch, sometimes animals produced longer travel times that actually included some unmeasured residence time.

Experiment 2 was designed to improve stimulus control. The idea was to provide better discrimination between residence and travel. To gain control over residence and travel times, the standard response levers were replaced with retractable levers. If a subject responding on the

left switched to the right lever and pressed on it, the left lever was retracted and not extended again until responding on the right lever reset the patch to its original condition. This prevented responding in the patch until reset.

The patch was depleted in 1, 2, or 8 pellets. Only low reset-probabilities were studied and compared with natural travel requirements.

Method

Subjects

Five Long-Evans male, experimentally naive rats (C-1, C-2, C-3, C-4, and C-5) between 90 and 110 days old at the beginning of the experiment served. Animals were housed in individual cages with water permanently available, and maintained at 80% of their free-feeding weights (±8 g).

Apparatus

The apparatus was the same as in Experiment 1, except that the two standard response-levers were replaced with retractable response-levers.

Procedure

The procedure was similar to that in Experiment 1. The idea was to repeat conditions in which low resetprobabilities were scheduled on the right lever. However,
when the patch was depleted in 8 pellets, a natural travel
condition with obstacles was included. Three hurdles
(obstacles), 25 cm wide and 12 cm high, were constructed

with wire mesh. Two hurdles were placed, one on each side of the box, at 50 cm from the front wall. The other hurdle was placed at 130 cm from the front wall. Tables 4 to 6 show the different conditions, grouped by the number of available prey on the left side. The order in which they were studied and the number of sessions per condition appear in the last two columns of Tables 4 to 6. A minimum of ten sessions per condition were conducted. However, the number of sessions was increased when the natural condition or low reset-probabilities showed variability in the data. Predictor and criterion variables were the same as in Experiment 1.

Results

The same techniques were utilized to analyze the data. The analysis followed the same strategy as in Experiment 1. All sessions from each condition were included in the analysis. Some examples of cluster analysis are shown in Appendix A.

Tables 4 to 6 (center columns) show BWMs for travel, residence, and giving-up times. Figure 3 in the right-hand columns of graphs, shows BWMs for travel time (Y-axis) plotted against the reset-probabilities (logarithmic X-axis). Different symbols indicate the different subjects. Except for C-3 in the two pellets condition, the reset-probability of .025 produced longer travel times than any other probability. Functions relating reset-

probabilities to travel times varied less than in Experiment

1. Travel time varied less with reset-probability but
generally travel time decreased as the reset-probability
increased.

Residence and giving-up times produced by artificial conditions were transformed to logarithmic numbers, and then the arithmetic means of these values were obtained for the conditions depleted in 1-, 2-, and 8-prey. Residence and giving-up times produced by natural travel were also transformed to logarithmic numbers, and the arithmetic mean of these values were obtained for each prey condition. Figure 10, the arithmetic means obtained for residence and giving-up times (Y-axis) are plotted against the number of available prey in the patch (X-axis). The filled squares indicate the residence times produced by artificial travel requirements. The empty squares represent residence times produced by the natural travel condition. The filled triangles symbolize the giving-up times produced by the artificial travel conditions. The asterisks represent the giving-up times produced by the natural travel condition. The X's represent residence and giving-up times produced by natural travel with obstacles. The right-hand bottom panel of Figure 10 shows the data averaged across subjects. Figure 10 shows that with some exceptions (see C-1 and C-5), as the number of available prey in the patch increased residence and giving-up times increased. Except for C-3

(the mean of residence times produced by artificial travel requirements), when the patch was depleted in 1 prey, the means of residence and giving-up time produced by natural travel were greater than the means of residence and giving-up time produced by artificial requirements (compare empty squares and asterisks with filled squares and triangles). When the patch was depleted in 2 or 8 prey, (except for C-1, giving-up times) the means of residence and giving-up time produced by natural travel were similar to the means of residence and giving-up time produced by artificial requirements. With the exception of one subject (C-1), the longest residence and giving-up times were produced by natural travel with obstacles (compare X's with other symbols).

Figures 11 to 15 show residence and giving-up times plotted against travel times in logarithmic coordinates. All conditions are included in the left-hand graphs. Each figure shows results for one rat. Natural travel results are enclosed in boxes. Figures 11 to 15, in the left-hand columns of graphs, show that except for one outlier each in the data of C-1, C-2, C-4, and C-5 in the depleted-in-one condition, natural travel produced residence and giving-up times of similar duration to those produced by low reset-probabilities (see Figures 11, 12, 14, and 15 top panels). Usually, natural travel with obstacles produced the longest residence and giving-up times (see subjects C-2,

C-3, and C-5 in Figures 12, 13 and 15).

Generally, low reset-probabilities were associated with long residence and giving-up times, and high reset-probabilities with short residence and giving-up times, but for some conditions the times did not appear to vary systematically.

Regression lines were fitted to residence and giving-up times produced by artificial travel requirements. The BWM values of travel time were transformed to logarithmic numbers and entered the equation as the values of the independent variable. The BWM values of residence and giving-up times were transformed to logarithmic numbers and entered the equation as the values of the dependent variable. Values produced by natural travel did not enter the equation. Tables A40 to A45 (Appendix A) summarize values and calculations.

Tables 13 to 18 summarize the regression results. When the patch was depleted in 1 pellet (Table 13), the linear equation accounted for the variability in residence times (r² between .64 and .99, mean=.77). With a few exceptions (C-4, Tables 15 and 18), when the patch was depleted in 2 or 8 pellets the linear equation poorly accounted for the variability in residence and giving-up times (r² between .01 and .96, mean=.41; Tables 14, 16, and 17).

Regression lines for residence and giving-up times are shown in right-hand columns of Figures 11 to 15. The

logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included (compare left columns of graphs with right columns).

In general Figures 11 to 15 show that there were not systematic deviations in residence and giving-up times from the regression lines. As the number of available prey in the patch increased the residence and giving-up times increased (compare values of all across panels in Figures 11 to 15). The increment in giving-up times was less consistent, but all was always greatest for the 8-prey patch. However, from the 1-prey patch to the 2-prey patch, all for giving-up times did not change for C-4, and decreased for C-1, C-2, and C-3 (compare values of all, middle panels in Figures 11 to 15).

With exception of C-5 in the 8-prey patch (a2= -.02), the slopes for residence times were all positive (compare values of a2 across panels in Figures 11 to 15). As the number of available prey in the patch increased, the slopes for residence time decreased (mean=1.08 for the 1-prey, mean=.51 for the 2-prey, and mean=.09 for the 8-prey conditions).

Most slopes for giving-up times were positive, there were 5 exceptions out of 15 slopes (compare values of a2 in Figures 11 to 15). For the 2-prey condition, the slopes for giving-up times were greater (mean=.74) than for the 1-prey (mean=.15) or for the 8-prey conditions (mean=.02). However, in the 8-prey condition, for C-1, C-3, and C-5 the slopes for giving-up time were negative or close to zero (see a2 in Figures 11, 13, and 15 right-hand top panel). However, the slope of giving-up times was highest in the 2-prey condition for C-3 and C-4. For C-2, as the number of available prey in the patch increased, the slopes for giving-up times increased (see values of a2 in Figure 12).

Logarithmic residuals of residence and giving-up times were calculated. The same equations were utilized as for Experiment 1. Tables B29 to B33 summarize these calculations (Appendix B). The logarithmic residuals of residence and giving-up time calculated for the natural condition, were divided by the standard errors of residence and giving-up time estimated for artificial travel requirements. In Figure 16, these results are plotted (Y-axes) against the number of available pellets per visit (X-axis). The number of standard error units that residence and giving-up time deviated from estimates are indicated by positive or negative values. Large values indicate situations in which natural travel produced residence and giving-up time durations that were not equivalent to those

produced by artificial travel requirements. In general,
Figure 16 shows that when the patch was depleted in 1 prey,
residence and giving-up time deviated more standard error
units from estimates to positive values (means of .64 and
2.21 respectively) than when the patch was depleted in 2
prey (means of .11 and .47). When the patch was depleted in
8 prey, residence time deviated from estimates to positive
values (mean= .15) and giving-up time deviated from
estimates to negative values (mean=-.13). In the natural
travel with obstacles residence time deviated more units
from estimates to positive values (mean= 9.38) than givingup time (mean= 6.02). Table C35 (Appendix C) summarizes
results of Figure 16.

Discussion

On the whole, the results of this dissertation supported the use of operant techniques in the study of foraging behavior in the laboratory. Three issues will be discussed: a) feasibility of the method of Experiments 1 and 2, b) their relation with the optimal foraging theory, and c) the issue of equivalence between natural and artificial travel conditions.

Experiments 1 and 2 revealed that as the resetprobabilities increased artificial travel decreased (see Figure 3). Rats made the longest artificial travels by responding to the .025 reset-probability. Rats responding to the 1.0 reset-probability produced the shortest artificial travels. The different reset-probabilities required a different variable number of presses for reset. For example, the .10 probability required on average 10 lever-presses to reset the patch, the .05 probability required on average 20 lever-presses to reset the patch, and the .025 probability required on average 40 lever-presses to reset the patch. However, the 1.0 probability required just 1 response on the right lever to reset the patch, and the .25 probability required on average 4 lever-presses to reset the patch. Obviously, to press on the right lever once, rats needed less time than to press on the lever 4, 10, 20 or 40 times. Thus, because the different resetprobabilities required a different variable number of

presses for reset, responding on the right lever produced artificial travels that changed as a function of the reset-probabilities (see Figure 3). This result confirmed that random ratio schedules of reinforcement can be used to vary artificial travel time (Baum, 1982b; 1987), but are artificial and natural travel equivalent?

Can rats pressing on a lever produce travel times of equivalent duration to the travel time they need to move from place to place? The answer to this question is yes. I compared artificial travel times with the travel time produced by the natural condition. I tried to determine if by pressing on the right lever, rats made travel durations equivalent to those they made by running in the natural condition.

In general, when the reset-probability was .10, the time rats used to press on the right lever an average of 10 times was similar to the time they needed to run in the natural condition. However, rats used more time to press on the lever an average 20 or 40 times (.05 or .025 reset-probabilities) than to run in the natural condition. Rats used shorter time to press on the lever 4 times or less (.25 or 1.0 reset-probabilities) than to run in the natural condition (see Figures A3 to A7, Appendix A).

Experiment 1 showed differences in the function relating reset-probabilities to travel times. The steepest function was obtained when the patch was depleted in 2 prey

(see middle left-hand panel in Figure 3). In addition, responding to low reset-probabilities (.025 and .05), produced longer artificial travel times in Experiment 1 than in Experiment 2 (see group means in Figure A8, Appendix A). The differences in artificial travel times produced by low reset-probabilities suggested that in Experiment 1 the stimulus control functioned differently from Experiment 2. In Experiment 1, where lights were utilized to signal when the patch was replenished, rats sometimes switched from the left to the right lever and back to the left before they reset the patch. When this occurred changeover caused long artificial travel times. Rats switched prematurely between levers when the reset-probability was low (.025 or .05). addition, when the patch provided 2 pellets, more premature changeovers from right to left lever were observed than when the patch provided 1 or 8 pellets. This caused the steepness of the functions relating reset-probabilities to artificial times (see left-hand middle panel in Figure 3).

In Experiment 2, responding on the retractable levers to low reset-probabilities, produced shorter artificial travel times than responding on the standard levers (compare group means in Figure A8). Responding on the retractable levers produced less variation in artificial travel times. The function relating reset-probabilities to travel times was similar across conditions (see right-hand graphs in Figure 3). Thus, the retractable levers produced more

uniformity and better control of travel times.

Optimal Foraging Theory

According to Charnov's (1976) marginal-value theorem, foragers follow optimal rules to decide when to leave a patch. Charnov assumes that foragers will remain longer in a patch that offers high energy intake per unit of time (E/T) than in a patch that offers low E/T. Accordingly, foragers estimate the quality of a patch based on an instantaneous rate of intake. Charnov's marginal-value theorem says that the forager will leave a patch when the rate of intake decreases to a point at which it falls below the average provided by the environment, and "that this marginal capture rate should be equalized over all patches within a habitat" (Krebs, Ryan, & Charnov, 1976).

The marginal-value theorem predicts that the forager's residence time in a given patch will increase if the travel to other patches increases or if other patches have low quality (Charnov 1976; Krebs 1978). Krebs, Ryan, & Charnov (1974) interpreted this to mean that an optimal forager will use the same giving-up time for all type of patches within an environment, even if these patches differ in quality. In addition, they suggested that the "giving-up time should be shorter in better habitats, where the average capture is higher" (Krebs, Ryan, & Charnov, 1974). Accordingly, the giving-up time should be inversely related to the average capture rate for the environment. Since as travel time

increases average rate of capture decreases, giving-up time should increase with travel time.

The predictions from the marginal-value theorem have generated controversy in the study of foraging behavior. It is necessary to differentiate the marginal-value theorem from the marginal value rule (Stephens & Krebs, 1986). marginal-value theorem is not a rule that foragers use to leave the patch. It is a method that a theorist may utilize to estimate optimal residence times based on gain functions and travel times. The marginal-value theorem is a method "that finds the rate-maximizing rule from a known set of rules" (Stephens & Krebs, 1986). The marginal value rule is a rule that foragers may use namely, to assess the instantaneous rate of gain in a patch and leave when the rate of intake falls below the average provided by the environment (McNamara, 1982). So, the marginal value rule may or may not control the forager's decisions of when to leave the patch, and it may or may not be an optimal rule in a given environment (Stephens & Krebs, 1986).

In Experiment 1 and 2, foraging was studied in different environments, each environment had one type of patch, and travel was varied within each environment. The patches differed in quality by varying the number of available prey. Each prey-condition lasted many days. The probability (p) of obtaining the prey by pressing on the left lever, and each reset-probability scheduled for the

right lever formed a pair of probabilities. Each pair of probabilities constituted a different patchy environment. For the depleted in 1-, 2-, and 8-prey conditions, there were 7 different patchy environments: five reset-probabilities, the natural travel without obstacles, and the natural travel with obstacles. With 1 available prey in the patch, p of obtaining the prey was .10, with 2 prey p finished at .5, and with 8 prey p finished at .125. So, the giving-up time should be shorter for the 2-prey condition and about the same for the 1-prey and 8-prey conditions. However, in Experiments 1 and 2 the giving-up time increased as a function of the number of available pellets in the patch (see bottom panel in Figure 4 and right-hand bottom panel in Figure 10). Rats did not keep the same giving-up time in the patch within an environment.

Often, rats obtained all the available pellets and still persevered in the patch. Ideally, rats should have adopted a strategy of obtaining a fixed number of prey, and then leaving the patch. But rats did not do this, particularly in the 1-prey patches, where one might expect the giving-up time to be zero.

Thus, Experiments 1 and 2 showed that as the number of available pellets in the patch increased the giving-up times increased (see Figures 3 and 10). The richer the patch was, the longer rats persisted in the patch. When the patch provided 8 pellets per visit, rats produced the longest

residence and giving-up times. This result is consistent with the conclusion that more plentiful schedules of reinforcement produce greater persistence of responding than less plentiful ones (Nevin, 1979).

In addition, Experiments 1 and 2 showed that the residence and giving-up times increased as a function of the travel requirement. The residence times obtained in Experiments 1 and 2 agreed with predictions from the marginal-value theorem; as the travel requirement increased the residence time increased (compare residence time across conditions in Figures 5-8 and 11-15). This result has been corroborated in both the field (e.g., Anderson 1978; Zimmerman 1981) and in the laboratory (e.g., Cowie 1977; Killeen, Smith, & Hanson 1981; Lea 1979; Mellgren, Misasi, & Brown, 1984). However, the giving-up times obtained in Experiments 1 and 2 did not agree with Krebs, Ryan, & Charnov's (1974) prediction that an optimal forager will use the same giving-up time in the patch within an environment.

If rats were following the "marginal-value rule" as Stephens and Krebs (1986) call it, how would giving-up time be expected to change with increases in travel? If giving-up time depends only on final capture rate, then it ought to remain constant, because final capture rate was unaffected by travel (see capture accuracy measure in Tables 4-6, the number of pellets obtained remained high throughout Experiment 2). Moreover, when the number of available

pellets in the patch switched from 1 to 2, the giving-up time produced by artificial travel conditions increased (see triangles in Figures 4 and 10). This deviation of giving-up time from that of optimal models of foraging, suggested that an optimal decision to leave the patch may not be to maintain the same giving-up time in the patch within an environment (Krebs et al., 1974), but to increase the giving-up time as the quality of the patch improves (McNair, 1982).

charnov's (1976) marginal-value theorem offers no clear explanation of why giving-up time should covary with residence time. The reason is that "giving-up time never enters into the model on which the marginal-value theorem is based" (McNair, 1982). The marginal-value theorem was designed to make predictions concerning patch residence times, it was not designed to predict giving-up times.

McNair (1982) designed a model, analogous to Charnov's (1976) model, to predict optimal giving-up times. McNair (1982) provided some numerical examples demonstrating that larger giving-up times should be used in better quality patches. Moreover, McNair's model predicts that "increasing the mean interpatch travel time increases the optimal GUT's, as well as the mean patch yields and residence times" (McNair, 1982).

The residence and giving-up times obtained in Experiments 1 and 2 are in accordance with predictions

derived from McNair's (1982) model. As the travel requirement increased the residence and giving-up time increased. This is predicted because the average rate of capture decreased as travel time increased. The right-hand graphs of Figures 17 and 18 illustrate these results. group means of residence, giving-up time, and average rate of capture (Y-axes) are plotted against the group mean of travel time (X-axis). The filled squares represent the group means of residence time, the triangles the group means of giving-up time, and the asterisks the group means of the average rate of capture. The average rate of capture was estimated by taking the mean of prey captured per visit (the capture accuracy measure in Tables 1-3 and 4-6) and dividing it by the mean of travel time plus the mean of residence time (results are summarized in Tables C36 and C37, Appendix C). Natural travel results are enclosed in boxes. In the left-hand panels of Figures 17 and 18, the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis) to facilitate comparisons between natural travel and artificial travel requirements (the data for each rat are plotted in Figures A39-A43, Appendix A).

Right-hand panels of Figures 17 and 18 show that in general residence and giving-up time increased as travel time increased. The average rate of capture decreased as travel time increased. Left-hand panels of Figures 17 and

18 show that natural travel and the .025 reset-probability produced longer residence and giving-up times, and lower average rates of capture than any other artificial travel requirement. In Experiment 2, natural travel with obstacles produced the lowest average rate of capture and the longest residence and giving-up times (see right-hand bottom panel of Figure 18 and Table C37). When the patch was depleted in 1 or 2 pellets residence time, giving-up time, and average rate of capture varied more with travel time than when the patch was depleted in 8 pellets.

An alternative optimal strategy to both Charnov's (1976) optimal residence time and McNair's (1982) optimal giving-up time, is the strategy of hunting by expectation developed by Gibb (1962). Accordingly, foragers leave the patch after a fixed number of prey captured. Redhead and Tyler (1988) trained rats to press on the right lever to obtain food according to a progressive variable-interval schedule of reinforcement that simulated patch depletion. The schedule was reset by pressing on the left lever. model travel time, Redhead and Tyler (1988) increased to 25 seconds the time between pressing the left lever and obtaining a reinforcer from the right lever. They found (Experiment 2), in accordance with the marginal-value theorem, that when the travel time increased the overall residence times increased. However, they reported that rats "appeared to dispense with the giving-up time after the

first few trials (p.92)". Redhead and Tyler reported that to decide when to leave the patch, rats used the inter-reinforcement interval value (Redhead & Tyler, 1988).

Experiments 1 and 2, the rats may have used the interreinforcement interval as an indication of when to leave the
patch, rather than using the giving-up time. Since the
inter-reinforcement interval was not recorded, I have no
data to support this conclusion. However, if rats used the
inter-reinforcement interval as in Redhead and Tyler's
(1988) experiment, giving-up times should have decreased
from 1 to 2 pellets. On the whole, results of Experiments 1
and 2 agreed with the conclusion that the forager's decision
of when to leave the patch is determined by the number of
available prey in the patch (Iwasa, Higashi, & Yamamura,
1981).

I tried to determine if rats responding to the resetprobabilities generated equivalent residence and giving-up
times to the natural condition. The arithmetic mean of
residence and giving-up times produced by artificial
requirements was compared with that produced by the natural
condition. Although Figures 4 and 10 appear to show larger
residence and giving-up times for natural travel, these
means are misleading. The effect may be caused by an
artifact of the arithmetic mean. The artificial travel
requirements caused the residence and giving-up times to

vary in duration. High reset-probabilities (1.0 or .25) produced short residence and giving-up times, and low reset-probabilities (.01, .05, and .025) generated long residence and giving-up times. Thus, short times produced by high reset-probabilities may have brought down the mean for artificial times.

Experiment 1 suggested that residence and giving-up times in the natural travel were not equivalent to residence and giving-up times in the artificial travel requirements (see Table C34). Often, residence and giving-up times in the natural condition deviated from estimates based on artificial travel (see Figure 9). There were many instances of logarithmic residuals of residence and giving-up times that deviated from estimates more than 2 standard error units (see Table C34). But maybe that was due to the tendency to premature changeover from the right to the left lever (poor stimulus control).

Results of Experiment 2 indicated that there were few violations of equivalence with retractable levers (see Table C35). Only when the patch was depleted in 1 pellet, it was clear that giving-up times in the natural travel were not equivalent to giving-up times in the artificial travel requirements. In addition, these violations of equivalence were only consistent for two rats (see C-3 and C-4; maybe C-5 assuming that 2 standard error units constitutes an outlier). Moreover, Figure A33 (Appendix A) revealed that

all the overlap between the variability in giving-up times for natural and artificial travel requirements tends to undermine the significance of the large deviations in giving-up times in the one-pellet condition (see Table C35 and Figure 10). The giving-up times of C-3 produced a negative slope in the regression analysis (see right-hand panels of Figure 13) and that tended to inflate the deviations, when the giving-up times for natural travel were actually not that different from the others. For C-4, the giving-up times were close to a line, producing an unusually small standard error, which tended to inflate the calculated deviation.

Although Experiment 1 suggested that natural travel had more of an effect on residence and giving-up times than artificial travel, Experiment 2 showed much less effect (see Figure 10 and Table C35). However, the natural travel with obstacles had a strong effect in the rats' residence and giving-up times. In this condition, rats produced the longest residence and giving-up times. That is, rats persevered a long time in the patch before they switched to the right lever. With some exceptions, in the natural condition with obstacles, the residual of residence and giving-up times deviated more standard error units (means of 9.38 and 6.02 in Table C35) from estimates based on artificial travel than in the natural condition without obstacles means of .15 and -.13 respectively. The natural

condition with obstacles had more of an effect on residence and giving-up times than the natural travel without obstacles and produced the longest residence and giving-up times (see left-hand panels in Figures 11, 12, 13, and 15). These results suggested that the natural condition with obstacles demanded from rats more energy than any other travel requirement. Rats reacted differently to natural travel with obstacles than to artificial travel requirements, indicating a possible non-equivalence between natural travel with obstacles and artificial travel requirements. The results of Experiments 1 and 2 call for more research in which natural and artificial travel requirements are compared within the same experimental situation, particularly experiments in which travel will be more difficult than running (e.g., climbing).

The results of Experiments 1 and 2 supported the conclusion that with minimal modifications to the operant chamber, it is possible to introduce natural travel into operant experiments (e.g., Baum 1982a; Krebs et al. 1978; Ydenberg 1984). However, results of such experiments may change when natural travel is included. For example, choice situations in which a large travel is required between instrumental response alternatives produces different effects on the forager's behavior than choice situations that require a small travel between response alternatives.

Baum (1982a) utilized concurrent variable-interval schedules

response alternatives. Baum found a strong preference for one response alternative when the travel requirement was large. The pigeons' rate of changeover between response alternatives decreased as the travel requirement increased. Baum also included a natural travel condition with an obstacle (a hurdle). He found that the visit duration (residence time) increased on both response alternatives as the natural travel increased, and particularly as the hurdle was raised. In fact, Baum found that the natural travel by itself had less effect on the pigeon's behavior than the natural travel with the obstacle (Baum, 1982a).

Experiments 1 and 2 indicated that in a choice situation between two instrumental response alternatives, a large travel requirement without obstacles controlled the rats' behavior in a similar way to that in Baum's (1982a) experiment. For Experiment 2, in the natural travel without obstacles, rats spent about the same time on the left lever as with comparable artificial travel requirements. However, results of Experiment 2 suggested that by running in the natural condition without obstacles, rats did not consume more energy than by responding to the .05 or .025 resetprobabilities. In the natural travel condition with obstacles, rats may have spent more energy than in any other travel requirement. This suggests a possible nonequivalence between natural travel with obstacles and

artificial travel requirements.

On the whole, Experiments 1 and 2 demonstrated that by using operant techniques, it is possible to compare in the same experimental situation natural travel with artificial travel requirements. The residence and giving-up times obtained in Experiments 1 and 2, suggested that the effects produced by natural travel in patch utilization are sometimes not equivalent to those produced by artificial travel requirements. The conclusion that ratio schedules of reinforcement can be used to model travel in the laboratory (Baum 1982b; 1987; 1988) needs to be taken with caution.

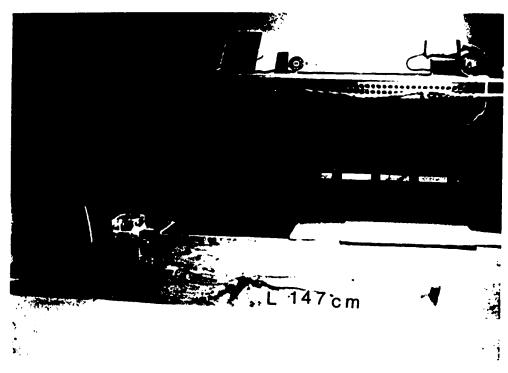
To determine if natural and artificial travel produced the same effects on the foragers' behavior, we must to evaluate them within the same experimental situation. Under these circumstances, the experimenter can make direct comparisons between natural and artificial travel requirements. The experimental situation can be adapted to reproduce a travel requirement that resembles travel in the real world. When this condition is satisfied, it maybe possible to demonstrate that natural travel does not produce the same effects on foraging behavior than artificial travel requirements. To predict that natural and artificial travel requirements affect the utilization of the patch in similar ways, we must demonstrate empirically that they do not differ from each other.

In summary, Experiment 1 showed that the natural travel

condition produced longer residence and giving-up times than the artificial travel conditions. But maybe that was due to a poor stimulus control. Experiment 2 revealed that by pressing on the retractable levers, rats made shorter residence and giving-up times than by pressing on the standard levers. Sometimes, but not in systematic way, natural travel conditions produced longer residence and giving-up times than the reset-probabilities. However, in the natural travel with obstacles, rats produced the longest residence and giving-up time durations. The natural travel with obstacles demanded from rats more energy than any other travel requirement.

Conclusions

- 1. This dissertation examined the utilization of operant techniques to the study of foraging behavior in the laboratory.
- 2. As expected, artificial travel times varied inversely with reset-probabilities.
- 3. In Experiment 1 rats made longer artificial travel times than in Experiment 2. This result indicated that in Experiment 1 the stimulus control functioned differently from Experiment 2. In Experiment 1 lights sometimes failed to control the rats' switching, with the result that rats switched from the right to the left before they reset the patch. Thus, changeover produced long artificial times and caused the functions relating reset-probabilities to travel


times to be steep.

- 4. Experiment 2, eliminated the premature changeover. Thus, the function relating reset-probabilities to travel times was similar across conditions.
- 5. Experiments 1 and 2 showed that the residence and givingup times generally increased as a function of the travel condition.
- 6. With some exceptions rats made the longest residence and giving-up times when they had to run in the natural condition or when rats had to respond to the .025 resetprobability.
- 7. Experiments 1 and 2 found that as the number of available pellets in the patch increased the giving-up times increased. The richer the patch was the longer rats persevered in the patch. Rats did not leave the patch when their rate of pellets intake decreased below the average provided by the environment. Often, rats obtained all the available pellets and still persevered in the patch.
- 8. Experiments 1 and 2 indicated that the quality of the patch interacted with the travel requirement to control the residence and giving-up times. When rats depleted the patch in 8 pellets, and they had to run in the natural condition or to respond to the .025 reset-probability, rats produced the longest residence and giving-up times.
- 9. Experiment 1 showed that residence and giving-up times in the natural travel were not equivalent to residence and

giving-up times produced by artificial travel requirements, but Experiment 2 showed much less of an effect.

- 10. By making more difficult the natural condition for the rats, I found that maybe a difference between the natural condition and the artificial requirements. Rats responding to natural travel with obstacles made the longest residence and giving-up times. The natural travel with obstacles had more of an effect on residence and giving-up times than any other travel requirement. That is, natural travel with obstacles demanded from rats more energy than any other travel requirement. In the natural travel with obstacles, rats persevered a long time in the patch.
- 11. Experiments 1 and 2 demonstrated that by using operant techniques, it is possible to compare in the same experimental situation natural travel with artificial travel requirements. The operant chamber can be modified to include natural travel in the laboratory. To determine if natural and artificial travel requirements produced the same effects on the forager's behavior, we must evaluate them within the same experimental situation. To predict that natural travel and artificial travel requirements control the utilization of the patch in similar way, we must demonstrate empirically that they do not differ from each other.

Figure 1. The experimental situation, the bottom panel shows the set-up for artificial travel conditions.

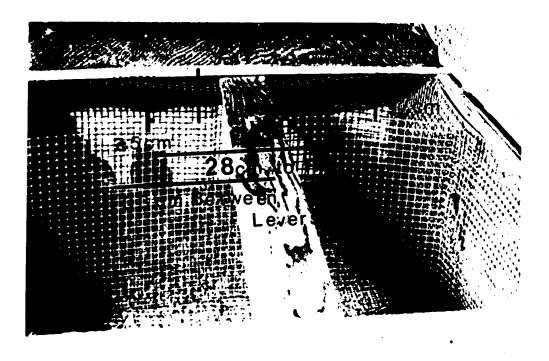
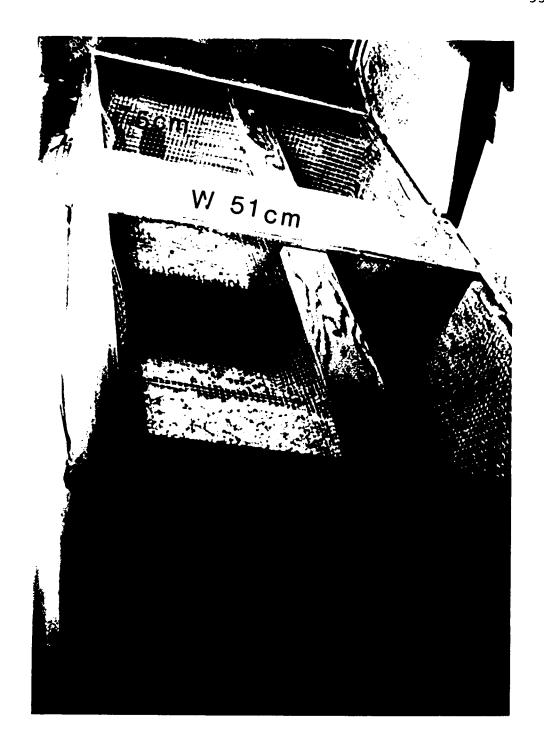
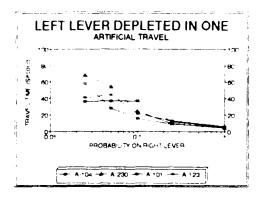
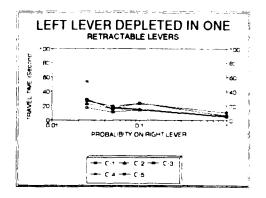
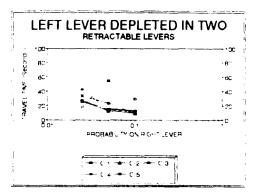
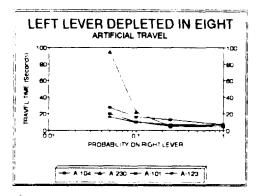


Figure 2. The experimental situation adapted to run the natural travel condition.




Figure 3. The BWMs of travel time (Y-axis) against the reset-probabilities on the right lever (logarithmic X-axis) for the depleted in 1-, 2-, and 8-prey conditions. The left-hand panels show results of Experiment 1, and the right-hand panels results of Experiment 2. The subjects are indicated by different symbols.

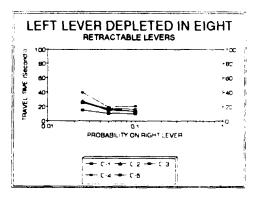
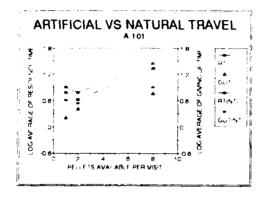
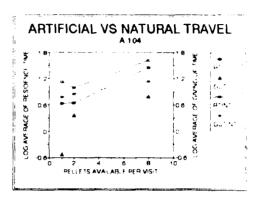
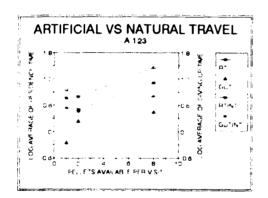
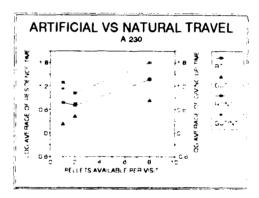
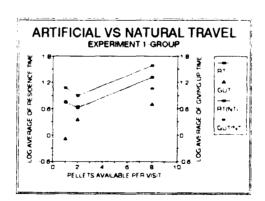
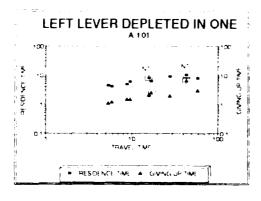
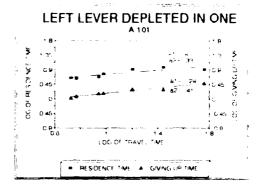
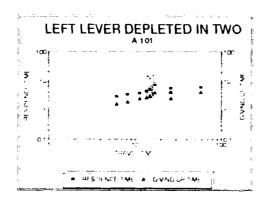
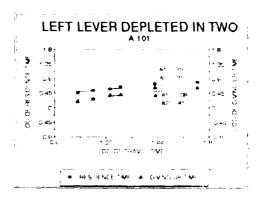
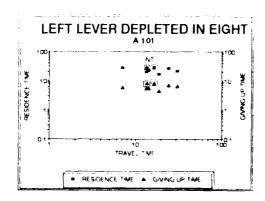
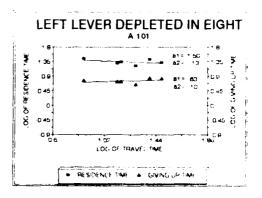
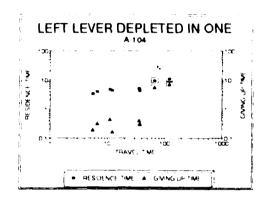
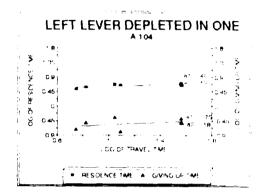
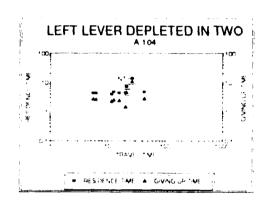
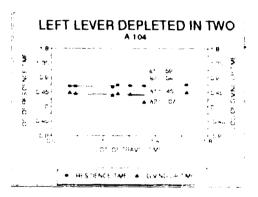
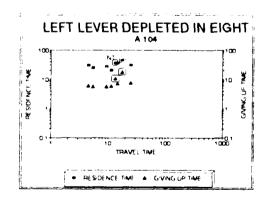






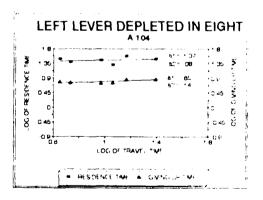
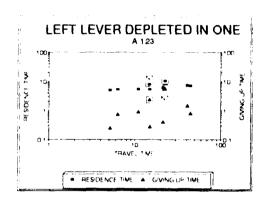
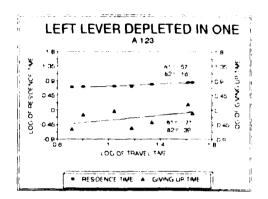
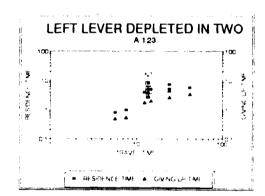
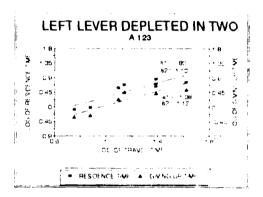
Figure 4. The arithmetic means of residence and giving-up times (Y-axes) against the number of available pellets in the patch (X-axis). The filled squares indicate the residence times produced by artificial travel requirements. The empty squares represent residence times produced by the natural travel condition. The filled triangles symbolize the giving-up times produced by the artificial travel conditions. The asterisks represent the giving-up times produced by the natural travel condition. The bottom panel shows the data averaged across subjects.

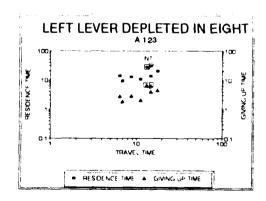






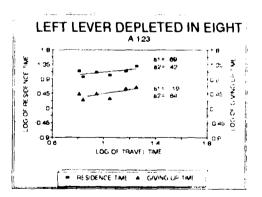
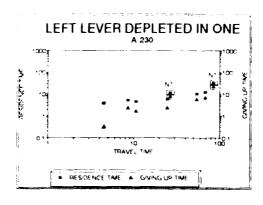
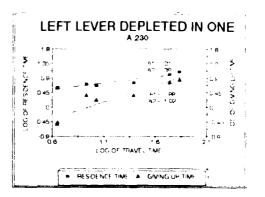
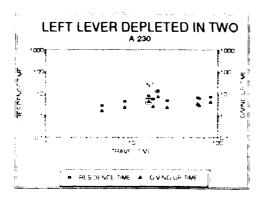
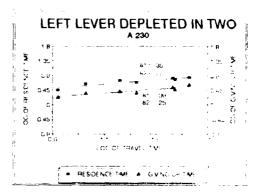

Figure 5. For subject A-101, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

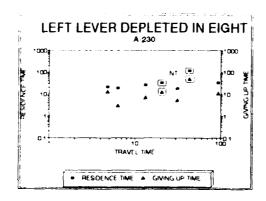







Figure 6. For subject A-104, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.


Figure 7. For subject A-123, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.


Figure 8. For subject A-230, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

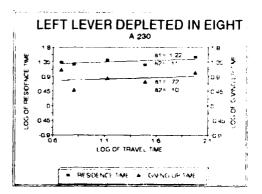
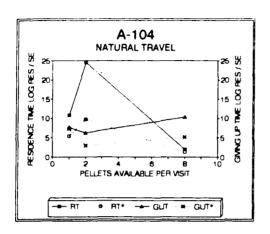
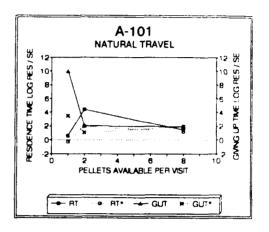
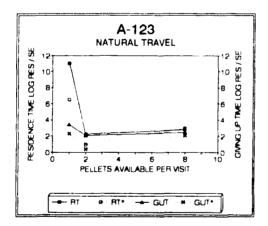
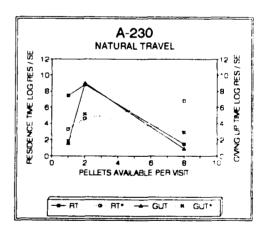
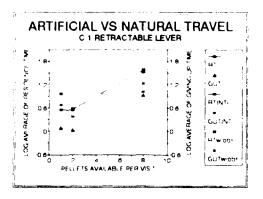
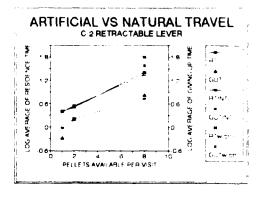
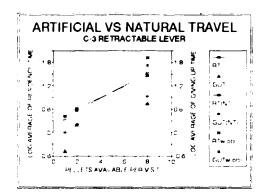
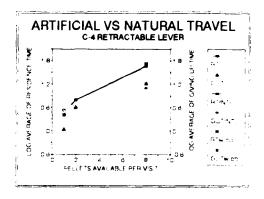
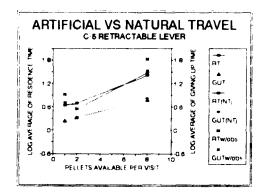
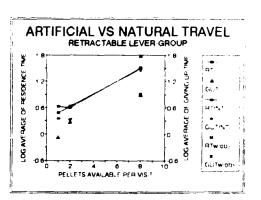
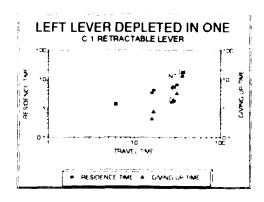
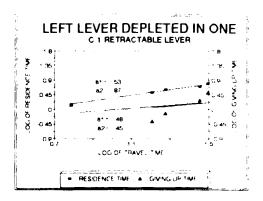
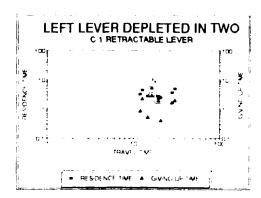
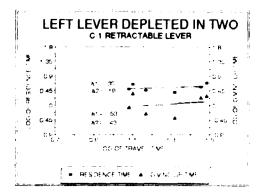
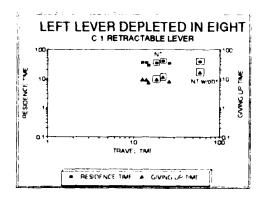





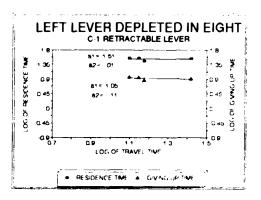
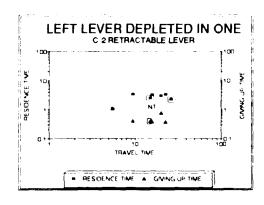
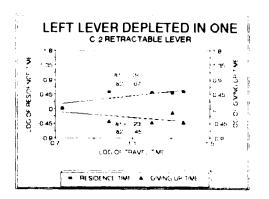
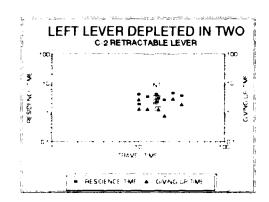
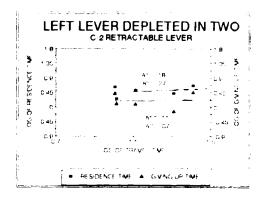
Figure 9. The logarithmic residuals of residence and giving-up time for natural travel divided by the standard errors of residence and giving-up time estimated for artificial travel requirements (Y-axes) against the number of available pellets per visit (X-axis). The Y-axis shows the number of standard error units that residence and giving-up time deviated from estimates based on the regression analysis. The filled squares indicate residence times, the triangles giving-up times, the empty squares redeterminations of residence time, and the Xs redeterminations of giving-up time.

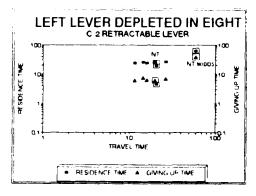






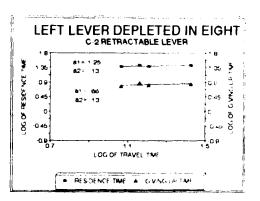
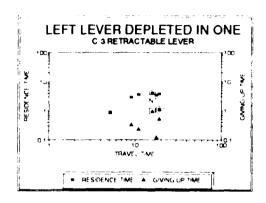
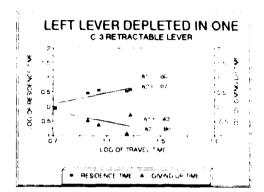
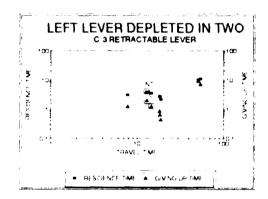
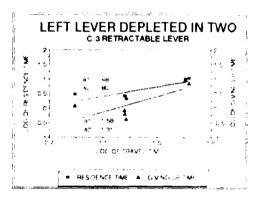

Figure 10. The arithmetic means of residence and giving-up times (Y-axes) against the number of available pellets in the patch (X-axis). The filled squares indicate the residence times produced by artificial travel requirements. The empty squares represent residence times produced by the natural travel condition. The filled triangles symbolize the giving-up times produced by the artificial travel conditions. The asterisks represent the giving-up times produced by the natural travel condition. The Xs indicate residence and giving-up times produced by natural travel with obstacles. The right-hand bottom panel shows the data averaged across subjects.

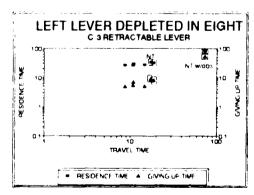






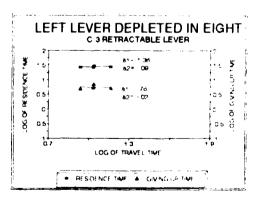
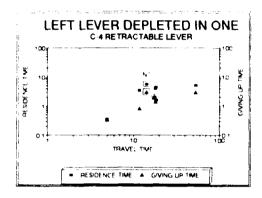
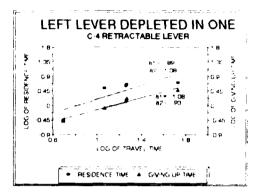
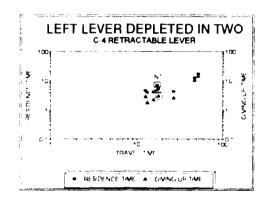
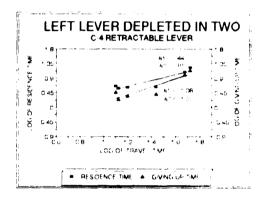

Figure 11. For subject C-1, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

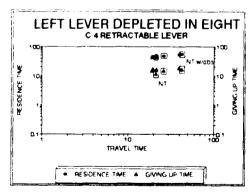






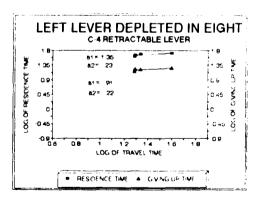
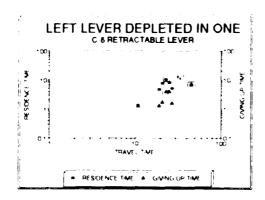
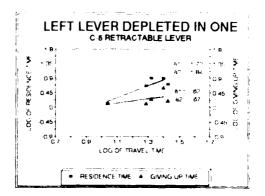
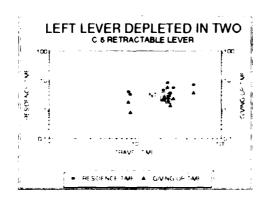
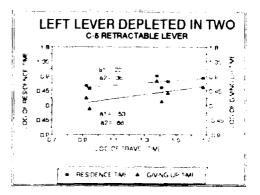

Figure 12. For subject C-2, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

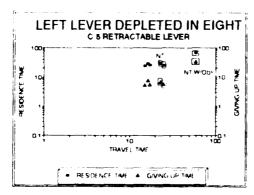







Figure 13. For subject C-3, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.


Figure 14. For subject C-4, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.


Figure 15. For subject C-5, the left-hand panels show the residence and giving-up times (logarithmic Y-axes) against the travel times (logarithmic X-axis). The natural travel results are enclosed in boxes. The right-hand panels show the regression lines for residence and giving-up times. The logarithmic values of residence and giving-up times (Y-axes) are plotted against those of travel times (X-axis). The filled squares indicate residence times, and filled triangles giving-up times. The coefficients al (Y-intercept), and a2 (slope) are included near each regression line. Results from the natural travel condition are not included.

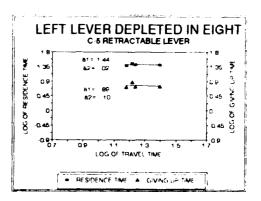
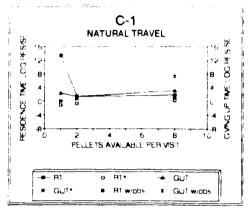
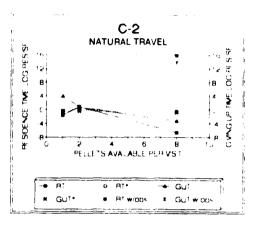
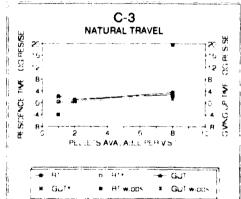
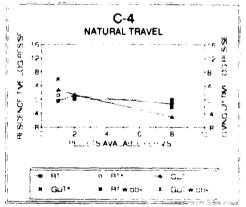
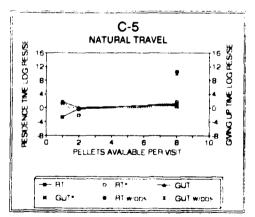
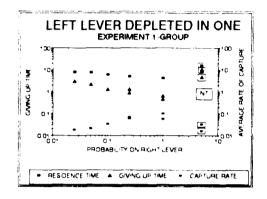
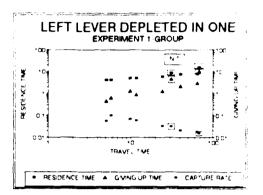
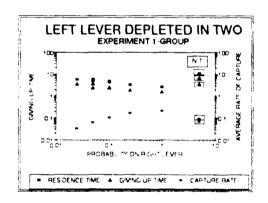
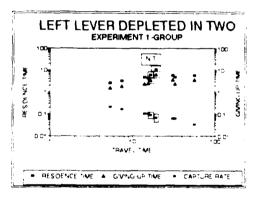
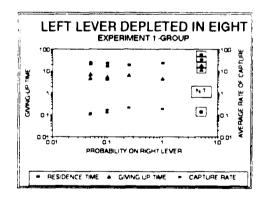
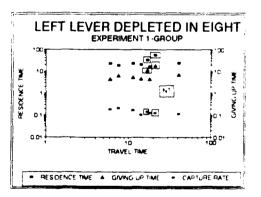
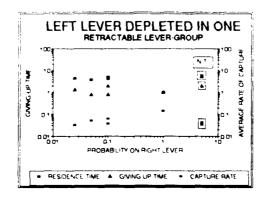
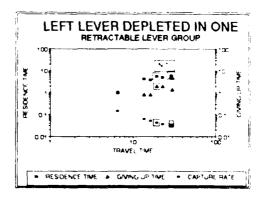
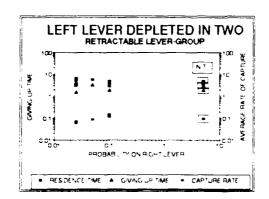
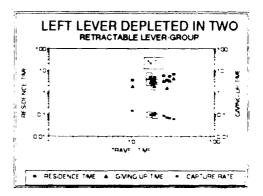
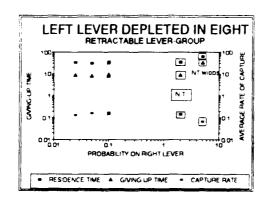






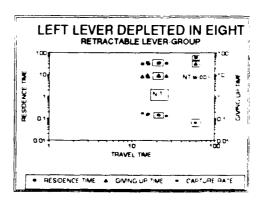
Figure 16. The logarithmic residuals of residence and giving-up time for natural travel divided by the standard errors of residence and giving-up time estimated for artificial travel requirements (Y-axes) against the number of available pellets per visit (X-axis). The Y-axis shows the number of standard error units that residence and giving-up time deviated from estimates based on the regression analysis. The filled squares indicate residence times, the triangles giving-up times, the empty squares redeterminations of residence time, and the X redeterminations of giving-up time. The results of natural travel with obstacles are indicated with different symbols.


Figure 17. In the right-hand graphs, for Experiment 1 the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the group mean of travel time (X-axis). The filled squares represent the group means of residence time, the triangles the group means of giving-up time, and the asterisks the group means of the average rate of capture. Natural travel results are enclosed in boxes. In the left-hand panels, the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis) to facilitate comparisons between natural travel and artificial travel requirements.


Figure 18. In the right-hand graphs, for Experiment 2 the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the group mean of travel time (X-axis). The filled squares represent the group means of residence time, the triangles the group means of giving-up time, and the asterisks the group means of the average rate of capture. Natural travel results are enclosed in boxes. In the left-hand panels, the group means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis) to facilitate comparisons between natural travel and artificial travel requirements.



		PROBABILITY	BISQUA	RE WEIGHTED	MEANS			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSIONS
A-104	NT	1.00	122.72	1068	6.78	93%	1	10
		010	36.49	4.23	0.31	96%	2	14
		0.06	36.93	4.48	0.30	96%	3	16
		0.25	12.42	4.46	016	99%	4	16
	NT*	1.00	66 98	9.36	5.35	99%	5	16
		0.025	36.32	5.12	0.40	99%	6	16
	•	0.25	11.12	4.66	0.45	99%	7	10
		1.00	6.64	3 91	0.31	96%	8	10
	••	1 00	5.58	3.33	0.19	52%	9	11
A 230	NT	1 00	85 02	33.02	22 39	98°£	1	10
		010	24 55	5.71	2 37	98°£	2	14
		0.05	54 37	1008	5 77	96 %	3	16
		0.25	10.65	4.51	1 67	99°:	4	16
	NT*	1 00	26.50	11.73	7.94	1 00%	5	16
		0 025	68 23	12.47	6.98	990	6	16
	•	0.25	8.52	5.27	2.34	1 00°a	7	10
		1 00	4 44	3 78	0 30	98°°	8	10
	••	1 00	4.49	3 95	0.34	50 °1	9	11
A 101	NT	1 00	43 01	10.04	6.61	98 ⁶ 6	1	10
		0.10	15 82	8 00	2.00	99%	2	14
		0.05	27 93	9.40	1.97	97%	3	16
		0.25	9 52	5.95	1 47	100%	4	16
	NT*	1 00	16 93	6 39	2.53	100%	5	16
		0.025	57 85	8 03	3.04	1 00°6	6	16
	•	0.25	8 74	4.80	1.46	100%	7	10
		1.00	5.86	413	1.17	100%	8	10
	••	1.00	5.32	4.45	1.06	53%	9	11
A-123	NT	1 00	22 53	1017	5 32	99%	1	10
		010	21 58	6 09	0 40	99%	2	1.4
		0.05	44 60	6 94	0 77	97%	3	16
		0.25	15 00	5 25	0 27	100%	4	16
	NT*	1 00	1471	7 72	2 29	100%	5	16
		0 025	41 12	7 04	1 44	94%	6	16
	•	0 25	11.04	5.42	0 90	1 00%	7	10
		1 00	6.35	5.18	0.71	99%	8	10
	••	1.00	514	4.99	0.25	84°£	9	11

* Re-determinations, **left lever from .10 went to .05 and then to 0

		PROBABILITY	BISQUA	RE WEIGHTED	MEANS			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSIONS
A-104		1.00	5.48	4.26	2.68	97%	1	10
		0.25	6.09	4.22	2.57	94%	2	10
		0.10	11.69	3.97	2.22	95%	3	10
		0.08	16.11	4.42	2.39	96%	4	10
	NT	1.00	26.38	13.92	10.67	1 00%	8	10
	•	0.05	20.57	4.29	1.41	100%	6	10
	•	0.10	12.92	4.74	2.53	96%	7	10
	NT*	1.00	21.34	6.84	4.56	100%	8	10
		0.025	43.38	4.63	2.73	100%	9	10
A 230		1.00	4.47	2.85	1.68	91%	1	10
		0.25	8.27	4 39	2.28	100%	2	10
		010	25.94	4.82	2.32	1 00%	3	10
		0.08	58.02	6.50	3 50	1 00°5	4	10
	NT	1.00	20.22	13.59	7.32	1 00%	5	10
	•	0.05	61.18	5.95	2.93	1 00%	6	10
	•	0.10	17.77	5.50	2.62	97%	7	10
	NT*	1.00	15.67	7.68	4.36	100%	8	10
		0 025	83.10	6.87	4.09	1 00%	9	10
A 101		1.00	6.09	2.83	1.56	95%	1	10
		0.25	8.20	3.42	1.91	97%	2	10
		0.10	11.32	3.86	2.50	98%	3	10
		0.06	26.18	5.54	4.13	100%	4	10
	NT	1.00	17.11	7.10	3.93	98%	5	10
	•	0.05	26.36	4.02	2.46	100%	6	10
	•	010	13.70	4.41	2.55	100%	7	10
	NT"	1.00	15.05	5.17	3.09	100%	8	10
		0.025	58.14	6.09	4.13	100%	9	10
A 123		1 00	5 66	0.81	0 48	69 %	1	10
		0 26	7 55	0.97	0.53	70 °6	2	10
		010	1388	4 97	2.86	95%	3	10
		0.06	24.26	710	4.47	95 °⊱	4	10
	NT	1 00	1387	7 98	4.12	97°c	5	10
	•	0.05	24.25	5.04	2.58	1 00%	6	10
	•	010	12.49	3.92	1.73	1 00%	7	10
	NT-	1.00	14.87	4.83	1.98	100%	8	10
		0 025	41.99	5.65	3 32	97%	9	10

* Re-determinations

		PROBABILITY	BISQUA	RE-WEIGHTE	MEANS			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSIONS
A-104		1.00	4.50	30.26	6.04	79%	1	10
		0.10	11.54	20 79	5.77	67%	2	10
		0.25	5.38	24.61	5.65	83%	3	10
		0.05	24.83	30.29	7.40	88%	4	10
	NT	1.00	17.79	44.78	17 39	91%	5	10
	*	0.10	9.34	28 24	5.53	77%	6	10
	*	0.05	14.66	36.99	7.09	91%	7	10
	NT*	1.00	13.34	37.22	10.48	91%	8	10
A-230		1.00	6 37	18 57	3 00	63%	1	10
		0.10	31 09	18 04	5 38	55%	2	10
		0 25	4.81	21.88	12.83	80%	3	10
		0.05	94.29	32.04	10.38	95%	4	10
NT ◆	NT	1.00	20.50	32.08	1241	86%	5	10
	*	0.10	13.28	25.67	6.93	76 %	6	10
**	NT*	1 00	42 90	120 40	48 10	87%	8	10
A-101		1.00	7.06	27.99	5.85	71%	1	10
		0.10	18.73	16 97	4 41	56%	2	10
		0.25	13 37	19 91	5 33	79%	3	10
		0.05	30.55	21.02	6.62	77°0	4	10
	NT	1.00	16 49	28.87	8.10	88°。	5	10
	*	0.10	14.23	21.87	5 42	82%	6	10
	•	0.05	24.38	26.35	6.94	86%	7	10
	NT*	1.00	13.56	28.11	7.99	91%	8	10
A-123		1.00	6.40	14.03	2.76	48%	1	10
		010	11 15	10.47	2.01	36°。	2	10
		0 25	6 87	9 17	1 83	42 %	3	10
		0.05	14.79	13.88	4 01	59°。	4	10
	NT	1.00	13.31	27.75	6.57	97%	5	10
	•	0.10	8.71	12.78	2.77	49°°	6	10
	•	0.05	17.76	20.20	4.49	68%	7	10

30.39

6.34

84%

10

NT* 1.00 14.75

* Re-determinations, **A-230 sick (condition 7 miss).

		PROBABILITY	BISQUAF	RE WEIGHTED	MEANS			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSION
		1.00	6.13	1.42	1.37	100%	1	10
C-1	NT	1.00	36.64	17.17	1 3.86	1 00%	2	18
		0.10	16.84	4.06	0.73	1 00%	3	10
	NT"	1.00	27.88	8 05	1.63	100%	4	16
	•	0.10	31.19	6.22	3.21	100%	8	19
		0.06	16.06	3.24	0 42	1 00%	6	10
		0.025	28.39	5 00	1.90	100%	7	10
C-2		1.00	8.47	1.06	1.05	100%	1	10
	NT	1.00	26.57	2.34	2.32	100%	2	18
		0.10	9.51	3.32	0.40	99%	3	10
	NT-	1.00	15.17	2.52	0.39	100%	4	15
	•	0.10	20.24	3.00	0.74	99%	6	19
		0.06	15.92	3.13	0.37	99%	6	10
		0.025	23.08	3.34	0.37	100%	7	10
C-3		1.00	5.17	0.89	0.87	100%	1	10
	NT	1.00	19.19	1 08	1.06	100%	2	18
		010	9 06	2 88	0.33	1 00%	3	10
	NT*	1 00	15.91	4.08	0.98	100%	4	15
	-	0.10	19.00	3.66	0.51	1 00%	8	19
		0.06	11.02	3 59	0 23	96%	6	10
		0 025	1773	3.31	012	1 00%	7	10
C-4		1 00	4.99	0.35	0.33	1 00%	1	10
	NT	1.00	17.81	2.05	2 03	1 00%	2	18
		0.10	11.69	3.45	0.81	98%	3	10
	NT*	1.00	14.31	5.64	3.00	1 00%	4	15
	•	0.10	18.25	3.96	1.39	1 00%	5	19
		0.05	18.35	4.41	1.60	100%	6	10
		0.028	53.47	8.06	2.91	1 00%	7	10
C-5		1.00	10.89	1.30	1.28	1 00%	1	10
	NT	1.00	45.03	6.88	6.86	100%	2	18
		0.10	20 91	7.73	1 77	100%	3	10
	NT*	1.00	23.27	10.24	3 93	1 00%	4	15
	•	0.10	25.13	7.86	3.97	1 00%	8	19
		0.05	19.45	4.64	1.30	100%	6	10
		0.025	26.94	5.09	1.55	100%	7	10

		PROBABILITY			MEANS			
		ON	TRAVEL	RESIDENCE	GIVING	CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME	UP TIME	ACCURACY	ORDER	SESSIONS
C-1		010	1271	4 42	2 24	97%	1	10
	•	010	1210	312	086	98%	2	55
		ύ 0 5	14 79	585	0.53	99%	3	15
		0 025	20 92	247	0.41	97%	4	10
**	NT	1 00	16 45	4 94	285	100%	5	10
••	•	0.025	28 51	369	1.70	1.00%	6	13
••	NT •	1.00	1992	282	1 93	100%	7	7
••	•	0.025	30 68	4 87	1 93	99%	8	9
C 5		010	10.33	186	1 28	95%	1	10
	•	010	1011	410	264	96%	2	22
		0.05	1294	3 37	1 25	99%	3	15
		c 9 25	20.38	2 64	074	99%	4	•0
••	NT	• 500	1635	414	2 33	100%	5	•:
••	•	0.025	25 67	4 53	284	100%	6	• 3
**	N	• 00	1724	299	1 22	100%	7	1
••	•	0.0 25	35 56	363	1.80	100%	8	9
СЗ		016	7 73	296	1 20	96%	1	• 5
	•	010	51 48	9 76	896	96%	2	22
		0.05	55 Ū4	10.45	682	96%	3	• 5
			1885	2:3	0.42	58%	4	• 1
••	N.	• 55	1295	384	• 96	99%	5	• -
••	•	2.226	.8 55	271	∴ 85	99%	9	. 3
**	NT.	1.00	14 53	3 38	1 24	100%	7	7
**	•	0.025	1829	259	0.64	1.00%	8	9
C 4		0.10	1260	4 52	5 05	97%	•	• :
	•	2.5	1322	3.93	1 77	96%	2	25
		0.05	1573	415	225	99%	3	15
		5 0 2 5	27.26	4 29	2.56	99%	4	10
••	N*	1 00	1744	6.95	4 80	100%	5	٠٤
••	•	0 0 2 5	47 47	1233	1012	100%	6	13
••	V	• 00	18 OC	517	296	100%	7	7
••	•	വ 0225	52 36	1684	1419	100%	8	9
C 5		510	8 39	3.97	1 72	99%	•	1°C
	•	010	8.75	317	0.78	99%	5	55
		0.05	23 98	802	5 66	100%	3	•5
		5 325	47 57	687	373	100%	4	• :
••	√ .	• 00	21 54	4 51	232	100%	5	4.7
**	•	C 025	25 78	3 58	1 32	99%	6	13
••	NT*	1.00	24 61	274	1 92	100%	7	7
••	•	0.025	28 23	5.38	2.34	99%	Я	9

*He-determinations: **conducted at the end of the experiment (after the depleted in eight set of conditions).

		PROBABILITY						
		ON		RESIDENCE		CAPTURE		
SUBJECT	CONDITION	RIGHT LEVER	TIME	TIME		ACCURACY		
		0.10	14.00	35.54	8.85	84%	1	10
C-1	NT	1.00	22.01	40.60	11.63	94%	2	10
	•	0.10	12.55	34.94	9.22	87%	3	12
		0.05	14.96	28.44	7.24	88%	4	10
		0.026	26.21	34.18	8.12	96%	5	10
	NT*	1.00	18.54	34.10	9.13	96 %	6	10
	NT w/obst	1.00	59.22	38.29	16.49	97%	7	11
C-2		0.10	14.53	26.19	7.53	88%	1	10
	NT	1 00	20.66	19.57	4.65	92 %	2	10
	•	0.10	11.62	23.67	5.97	88%	3	12
		0.05	16.15	24.26	6.19	94%	4	10
		0.025	26.59	26.74	7.01	97 ⁰ 6	5	10
	NT*	1.00	20.13	25.74	6.13	97%	6	10
	NT w obst	1.00	89.98	62.83	38.44	94%	7	11
C 3		0.10	10.89	29.55	6.86	82%	1	10
	NT	1.00	17.27	33.99	9.10	96 %	2	10
	•	0.10	8.64	26.91	4.93	91%	3	12
		0.05	10.81	27.14	5.48	92%	4	10
		0.025	14.57	26.21	5.00	95°°	8	10
	NT*	1.00	18.56	3210	7.67	97%	6	10
	NT w/obst	1.00	74.08	80.76	52.38	96%	7	11
C-4		010	21.60	48.36	16.30	88%	1	10
	NT	1 00	21.28	41.50	11.18	93%	2	10
	•	0.10	19.19	41.35	14.27	93°°	3	12
		0.06	19.52	45.58	16.59	94%	4	10
		0.025	39.57	51.93	18.08	99%	5	10
	NT*	1.00	26.35	46.46	14.28	91%	6	10
	NT w/obst	1.00	42.37	53.43	16.38	91 %	7	11
C-5		010	16.54	28.57	7.43	87 %	1	10
	NT	1.00	23.4	28.88	6 75	89%	2	10
	•	0.10	1517	24 13	5.23	80%	3	12
		0.05	17.37	25.58	5 48	86 %	4	10
		0.025	24.97	25.28	5.59	85%	5	10
	NT*	1.00	23.01	30.43	6.52	90%	6	10
	NT w/obst	1.00	58.93	66.37	33.14	94%	7	11

Re determinations

	SCRIECTS					
Regression Output	A 114	A 230	A 101	A 123		
Constant	0.49	0.31	0.42	0.5		
Sid Errict Y Est	0.05	0.06	0.08	0.02		
R Squirred	0.45	11.0	Α΄ τι	n do		
No. of Observations		2	1	-		
Degrees of Freedom	5	5	5	5		
X Coefficient st	0.12	0.30	0.33	0.16		
Sid Fired Coef	0.05	0.05	0.08	0.07		

"IV = LOG TI, DV = LOG RES T, LL = .10.

Tunic à	Experiment	1, regression for	artificial trave	conditions.

· · · · · · · · · · · · · · · · · · ·	SUBJECTS						
Regression Output:	A:104	A 230	A 101	A-123			
Constant	0.59	0.35	0.25	-0.80			
Std Freef Y Est	0.02	0.05	0.05	0.20			
R Squared	0.23	0.86	0.83	0.76			
No of Observations	•	7	-	-			
Degrees of Freedom	5	5	5	5			
X Coefficient si	61.14	0.25	0.31	1.10			
Std Err of Coet.	0.03	0,05	0.06	0.21			

"IV= LOG II, DV= LOG RES I. LL DEPLETED IN TWO.

	SUBJECTS					
Regression Output	A 104	A 230	A 101	A 123		
Constant	1.3	1.22	1.50	11 00		
Std Errict Y Est	0.09	0.10	0.08	0.50		
R Squared	0.06	n 44	0 (3	0.40		
No. of Observations	6		^	6		
Degrees of Freedom	4		4	4		
X Coetholem s	0.08	0.11	0.13	0.42		
Sid Emild Cite!	0.15	11 190	0.1	0.26		

	SUBJECTS					
Regression Output:	A 104	A 230	A [0]	A 123		
Constant	0.75	0.95	0.24	0.		
Sid Errot Y Fe	0.16	0.23	0.04	0.2		
R Squared	0.15	0.85	0.95	0.76		
No of Observations	7	-	•			
Degrees of Freedom	5	5	5	5		
X Coefficient's)	0.18	1.02	0.41	11 30		
StJ Err of Coef	0.79	0.19	0.04			

*IV= LOG IT, DV= LOG GUT, I.L = .10

Table 11. Experiment 1, regression for artificial travel conditions

	SUBJECTS						
Regression Output:	A 104	A-230	A (0)	A 123			
Constant	0.45	0.09	0.08	1 08			
Std Err of Y Fet	0.11	0.05	0.05	0.20			
R Squared	0.05	0.85	11 '0	n 'a			
No of Observations	•	7	•				
Degrees of Freedom	5	5	5	\			
X Coefficient s	0.01	0.25	11.4	1.12			
Sid Fir of Coef	0:4	0.05	0.10	0.76			

IN LOG 11, DV = LOG GUT, LU DEPLETED IN TWO.

Lone 9. Experiment Lifegressions for artificial travel conditions.

Tighte 12. Experiment Lifegressions for artificial travel conditions.

Regression Output:	SUBIL C15						
	A 164	A 230	A 101	A			
Constant	0,65	0.77	0.63	11 9			
Sid Erriot Y Est	0.04	0.25	0.05	0.0			
R Squared	0.84	11.442	44 (35	0.54			
No of Observations	6	5	٨	٨			
Degrees of Freedom	4	3	4	4			
X Coefficient; s	0.14	0.70	0.70	0.64			
Std Err of Coet.	0.07	0.27	0.15	61,341			

WE LOG THOVE LOG REST. IT DEPLITED IN FIGHT WE LOG THOVE LOG GUT IT DEPLIETED IN FIGHT

	etractamie levets i intificial freavel i nout no SCBIECTS				
Regress, r. Output	C1	C 2	C3	(4	CS
Contant	0.54	0.14	0 00	0.14	3.3
Sta Fir J.Y bit	0.01	0:5	0.15	0.1;	0.16
R Squired	0 161	0 6.4	0 ' i	0.69	0.40
N - 1 Observations	•		5	5	
Degreer if Freed in	3	3	1	3	1
V. Cartte care r	0.5	0.4	A 0		1.64

Tith r 16. Experiment 2: retractable levers cartificial travels incides						
	SOBJECTS					
Represe in Output	C 1	C 2	- C 3	(* 4	C:	
Contant	444	0.71	0.1.	1.68	64.	
5td Errof Y Ext	0.3	0.70	0.40	6.68	9.70	
R Squared	0:1	9.1	0.1	0.96	9 %	
N. EObjervin in	•					
Degreer (Freed in	3	ŧ	4	3	ì	
X C efficient r	0.45	0.45	0 Ac.	0.41	9 6	
Std Err of Coef	9.66	0.30	0.65	611	0.65	

Table 14. Experiment 2 cretractivite levers carrifold travel conditions. Table 14.

Regression Output:	27.B.EC.12					
	C 1	C 2	C3	C 4	C 5	
Constant	0.30	0.14	4.41	0.44	0.22	
Std Err of Y Est	0.12	0.15	0.19	014	0.13	
R Squared	0 00	0:6	0.70	0 A ;	0.46	
N - FObjervati co	6			•	•	
Desirees (Freed in	4	4	4	4	4	
X C. efticlent r	0;9	0.7	0.40	6.9;	A ie.	
Section (Car	0.1	0.31	۵,	6.21	6.30	

No travel time, DV = residence time, left lever depleted in two prevs

Regression Output.	2.B.EC.2					
	C 1	C 2	CI	C 4	Č.S	
Constant	4.53	0.11	1.54	. 64	0.53	
Std Err of Y En	0.34	0.25	● 4:	A (O	0.7	
R Squared	ŷ 0e.	0.0;	0.	11.8	94,	
N f Observations	•	6	6	•,	•	
Degreek Greed in	4	.1	4	:	:	
X Clefticentic	0.41	90	5.45	. **	G ca.	
Stu Err. f C et	0.4	0 52	0.5	0.29	0.46	

Tarley's Experiment 2 services every Regient - Output , 11 661 96 -2 Cinetant Staletriif Y Est States of the end of t

Regierr is Output	5 3 EC.5						
	C:	C?	ĈЗ	(;	C :		
Corner	, 61	() then	0.76	οú;	0.49		
States of Medical	0.0	0.0	Ø 0a	99.	0.04		
R Squarer	0 ()	0 ; A	0.00	0.66	0.02		
No. 1 Objects in the	1	4	4	4	4		
Degrees if Freed in	?		2	?	2		
N.C. +15, +155	911	6:1	663	0.22	600		
Staffir (Cet	0.22	0.30	0.70	n , i	0 1		

TV travel time, DV (40%) up 1 me, patch depreted in eight peren

APPENDIX A

Figure A1, Experiment 1, shows clusters selected from conditions in which the patch provided 8 pellets. This condition was selected from the exploratory data analysis to show the typical performance of rats responding on standard The giving-up times (logarithmic Y-axis) are plotted against the travel times (logarithmic X-axis). first and last sessions are indicated by arrows. The legends (bottom) indicate the subjects' number. Figure Al illustrates that giving-up times varied proportionally to For travel times the range of variation was travel times. approximately from 10 to 38 seconds. For giving-up times the range was approximately from 3 to 10 seconds. However, A-104 in the natural condition produced giving-up times of about 80 seconds. Occasionally, giving-up times changed from one session to another and stood out of range in one or two sessions (see left-hand middle panel). There were conditions in which giving-up times stood out of range in the last three sessions (see left-hand top and middle panels and right-hand bottom panel in Figure A1).

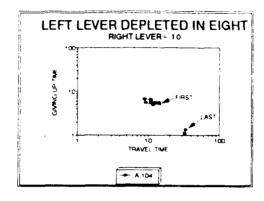
Figure A2, Experiment 2, shows clusters from conditions in which the patch was depleted in two pellets. This condition was selected from the exploratory data analysis to show the typical performance of rats responding on retractable levers. The arithmetic means of giving-up time (logarithmic Y-axis) are plotted against those of travel time (logarithmic X-axis). The first and last sessions are indicated with arrows. Figure A2 illustrates that travel and giving-up times generally did not vary in a wide range. For giving-up times the range was approximately from .2 to 3 seconds. For travel times, the range was approximately from 13 to 20 seconds. Usually, when travel times stood out of range, the first and last responses were located within the same range. Giving-up times rarely stood out of range.

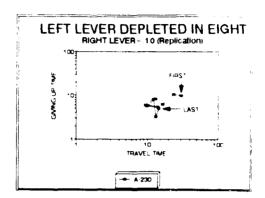
Based on observations of these clusters, I decided to include all sessions into the analysis, rather than to include only the last three sessions of each condition.

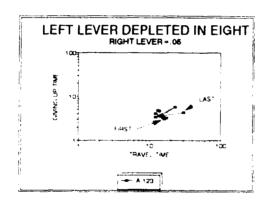
To compare travel times produced by reset-probabilities with those produced by natural travel, in Figures A3 to A7, the BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). With the exception of Figure A7 that shows results for one rat, each Figure shows results for two rats. The natural travel results are enclosed in boxes.

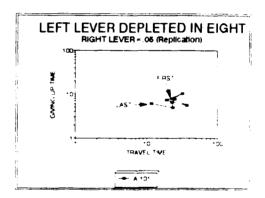
In general, Figures A3 to A7 show that travel durations for the .10 reset-probability were close to travel durations for the natural condition without obstacles. Travel durations for .25 and 1.0 reset-probabilities were shorter than those rats made by running the long distance without obstacles. However, rats responding to the .05 and .025 reset-probabilities, usually made longer travel durations than those they produced by running in the natural condition without obstacles. However, the natural travel with

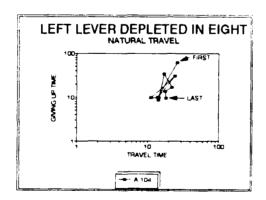
obstacles produced the longest travel durations (see bottom panels of Figures A5 to A7).

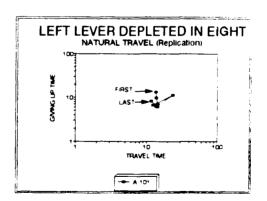
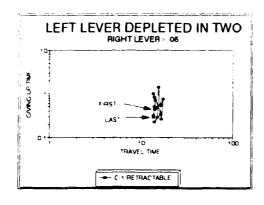
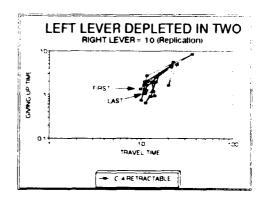
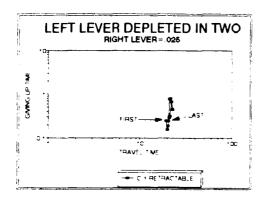
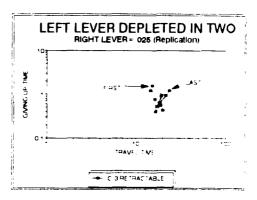

In Experiments 1 and 2, for each condition the variability in travel, residence, and giving-up times was estimated. The MAD was added to or subtracted from the BWM values, to represent with two values the range of variability in these measurements. The BWM plus its MAD was called the BWM value. The BWM minus its MAD was called the In Tables B19 to B24 (Appendix B) the BWMs BWM value. appear in the center columns. The numbers to the right and left are BWM' and BWM' values. The BWM, BWM', and BWM' values were utilized to determine areas in the plot in which travel, residence, and giving-up times overlapped. Figures A21 to A38 show the BWM, BWM', and BWM' values for travel, residence, and giving-up times. In each group of points the middle point represents the BWM (X and Y coordinates). Points around the BWM represent the variability expressed in BWM and BWM values. The open squares indicate results with natural travel. Different reset-probabilities were indicated by different symbols.

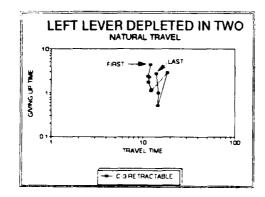

Figures A21 to A26 show that travel times produced by low reset-probabilities overlapped travel times caused by natural travel. Residence and giving-up times produced by natural travel fell within the range of residence and giving-up times caused by low reset-probabilities, but see A-104 (Figures A21-A26). In Figures A27 to A29, residence times (Y-axis) are plotted against giving-up times (X-axis). Overlap was again observed. Natural travel produced values on both measurements that fell within the range of times produced by low reset-probabilities. However, there were some instances in which overlapping between points of natural and artificial requirements was not observed. Sometimes residence and giving-up times for natural travel were out of range, did not overlap with artificial results. Often subjects A-104, A-230, and A-123 in the natural condition, produced longer residence and giving-up times than in the artificial conditions (see Figures A27 to A29). Residence times varied less than giving-up times (rectangles wider than high in Figures A27-A29).

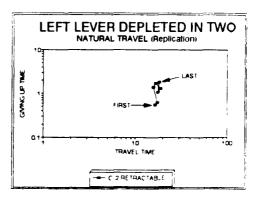
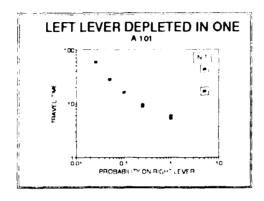
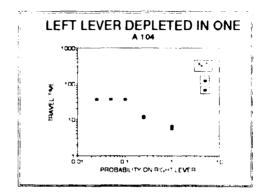
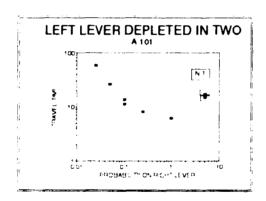
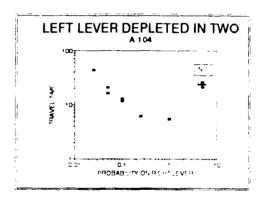

In Experiment 2, when the patch was depleted in 1 pellet (Figure A30), low reset-probabilities on the right produced travel times that overlapped those generated by natural travel at the high end of the range. When the patch was depleted in 2 pellets (Figure A31) travel times produced by low probabilities were generally longer than those produced by natural travel. Generally, travel times produced by the natural requirement fell between those caused by reset-probabilities of .05 and .025. With exception of subject C-3, when the patch was depleted in 8 pellets (Figure A32) always travel times produced by the natural condition fell between those caused by reset-probabilities of .05 and .025. The longest travel times

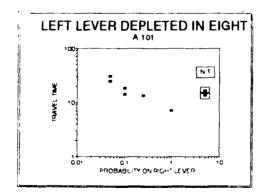

were produced by natural travel with obstacles. Except for C-1 in one condition (Figure A36), low reset-probabilities produced residence and giving-up times similar to those caused by the natural travel requirement (Figures A36-A38). That is, residence and giving-up times produced by natural travel fell within the range of residence and giving-up times caused by low reset-probabilities. However, natural travel with obstacles produced the longest residence and giving-up times (Figure A38). Residence times varied less than giving-up times (most rectangles wider than high in Figures A36-A38). The natural travel with obstacles produced giving-up times that varied over a relatively wide range (Figure A38).

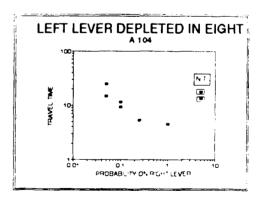
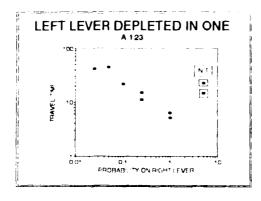
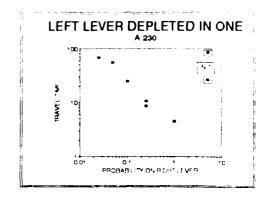
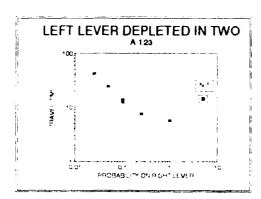
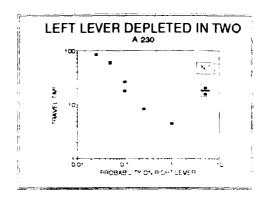

Figure A1. Clusters selected from conditions in which the patch was depleted in 8 pellets. This condition was selected from the exploratory data analysis to show the typical performance of rats responding on standard levers. The giving-up times (logarithmic Y-axis) are plotted against the travel times (logarithmic X-axis). The first and last sessions are indicated by arrows. The legends (bottom) indicate the subjects' number.

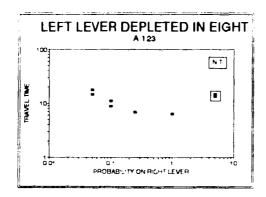






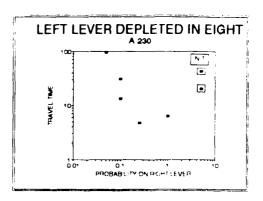
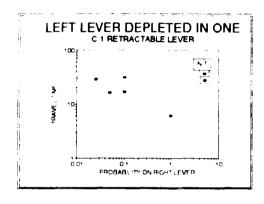
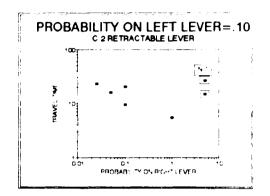
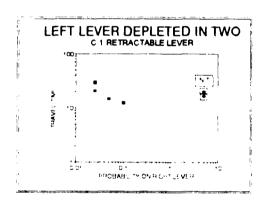
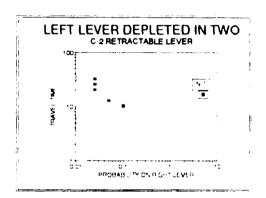

Figure A2. Clusters selected from conditions in which the patch was depleted in two pellets. This condition was selected from the exploratory data analysis to show the typical performance of rats responding on retractable levers. The arithmetic means of giving-up time (logarithmic Y-axis) are plotted against those of travel time (logarithmic X-axis). The first and last sessions are indicated with arrows. The legends (bottom) indicate the subjects' number.

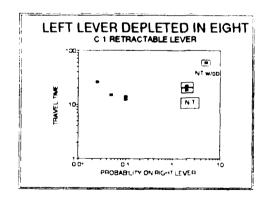






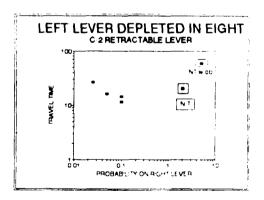
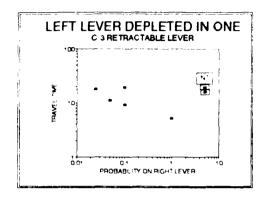
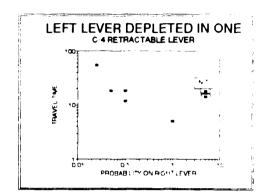
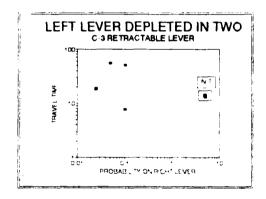
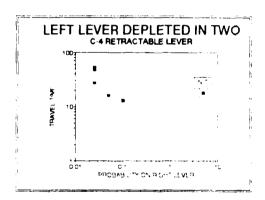

Figure A3. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The left-hand panels show results for subject A-101, and the right-hand panels for A-104. The natural travel results are enclosed in boxes.

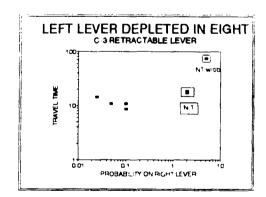







Figure A4. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The left-hand panels show results for subject A-123, and the right-hand panels for A-230. The natural travel results are enclosed in boxes.


Figure A5. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The left-hand panels show results for subject C-1, and the right-hand panels for C-2. The natural travel results with and without obstacles are enclosed in boxes.


Figure A6. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The left-hand panels show results for subject C-3, and the right-hand panels for C-4. The natural travel results with and without obstacles are enclosed in boxes.

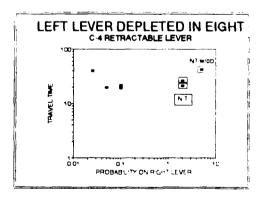
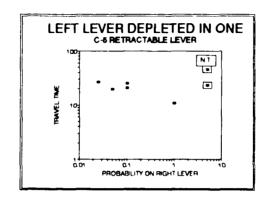
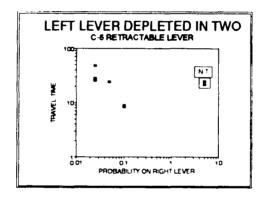




Figure A7. The BWMs of travel time (logarithmic Y-axis) are plotted against the probability on the right lever (logarithmic X-axis). The panels show results for subject C-5. The natural travel results with and without obstacles are enclosed in boxes.

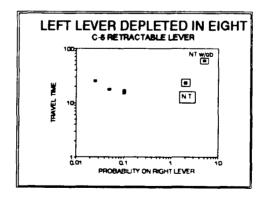


Figure A8. The group means of travel times (Y-axis) is plotted against the reset-probability on the right lever (X-axis). The filled squares represent the group means of artificial travel times for Experiment 1, and the triangles the group means for Experiment 2.

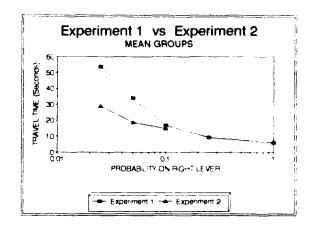
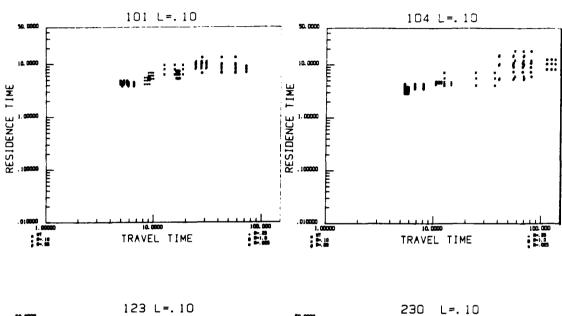



Figure A21. For the depleted in 1-prey condition, the BWM, BWM, and BWM values for residence time and travel time were used to construct this figure. The residence times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

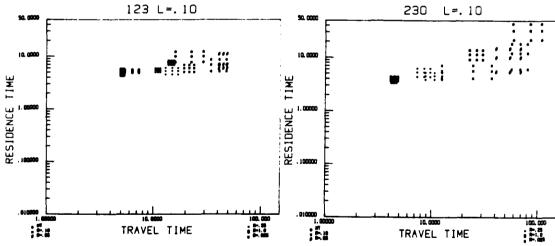


Figure A22. For the depleted in 2-prey condition, the BWM, BWM', and BWM' values for residence time and travel time were used to construct this figure. The residence times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM' and BWM' values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

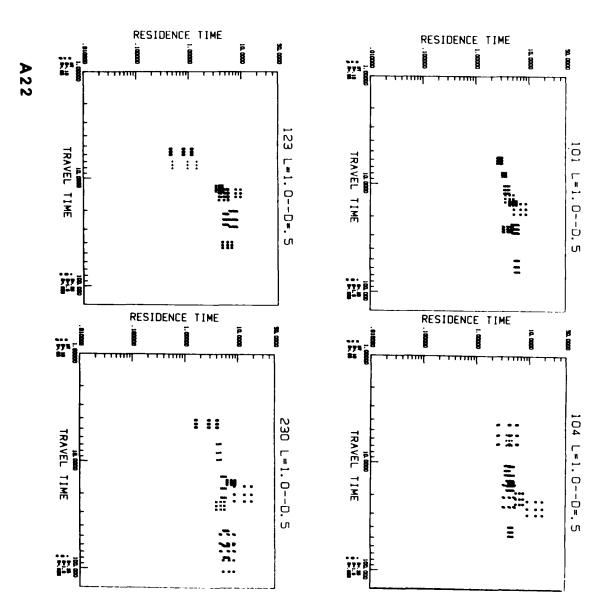


Figure A23. For the depleted in 8-prey condition, the BWM, BWM, and BWM values for residence time and travel time were used to construct this figure. The residence times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM, values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

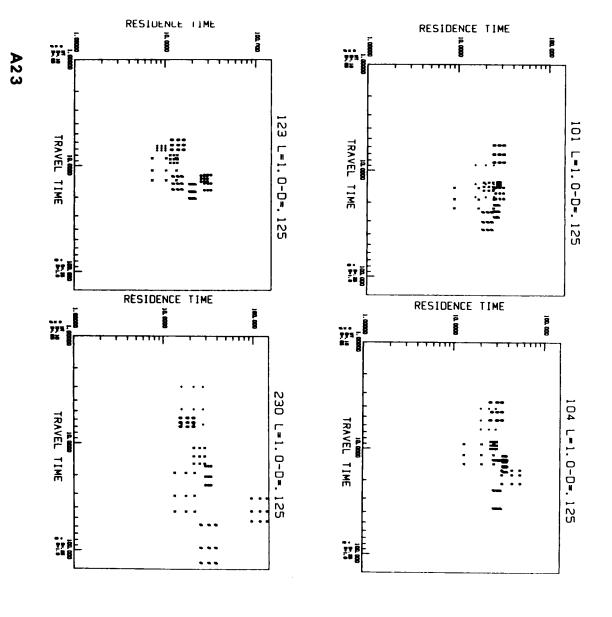


Figure A24. For the depleted in 1-prey condition, the BWM, BWM, and BWM values for giving-up time and travel time were used to construct this figure. The giving-up times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

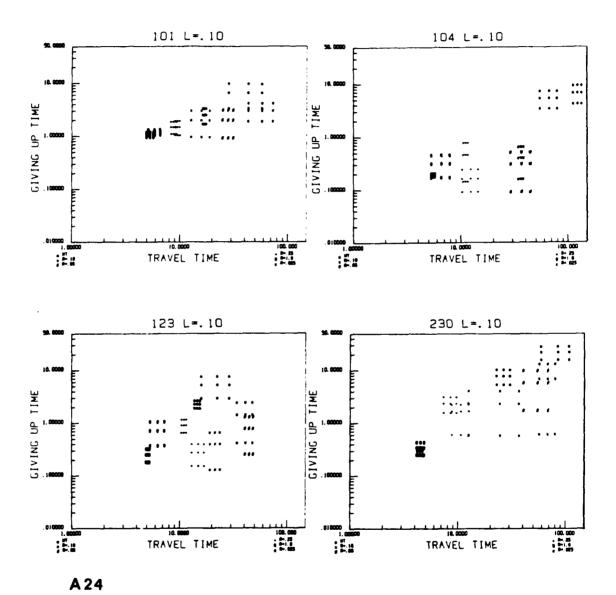
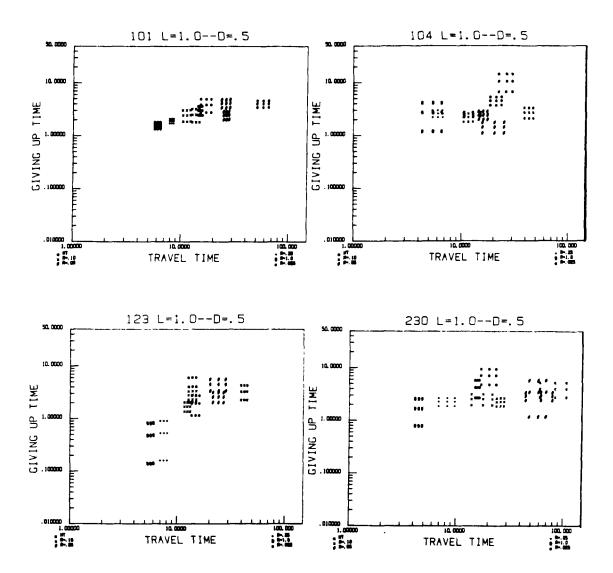
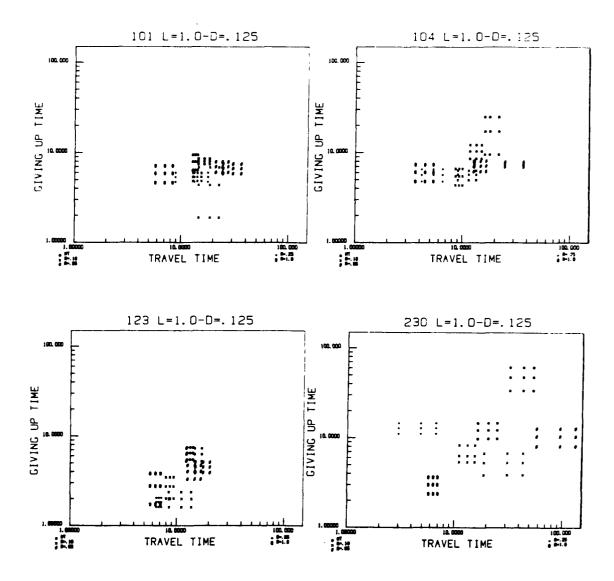




Figure A25. For the depleted in 2-prey condition, the BWM, BWM, and BWM values for giving-up time and travel time were used to construct this figure. The giving-up times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

A 25

Figure A26. For the depleted in 8-prey condition, the BWM, BWM', and BWM' values for giving-up time and travel time were used to construct this figure. The giving-up times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM' and BWM' values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

A26

Figure A27. For the depleted in 1-prey condition, the BWM, BWM, and BWM values for residence time and giving-up time were used to construct this figure. The residence times (Y-axis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM, values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

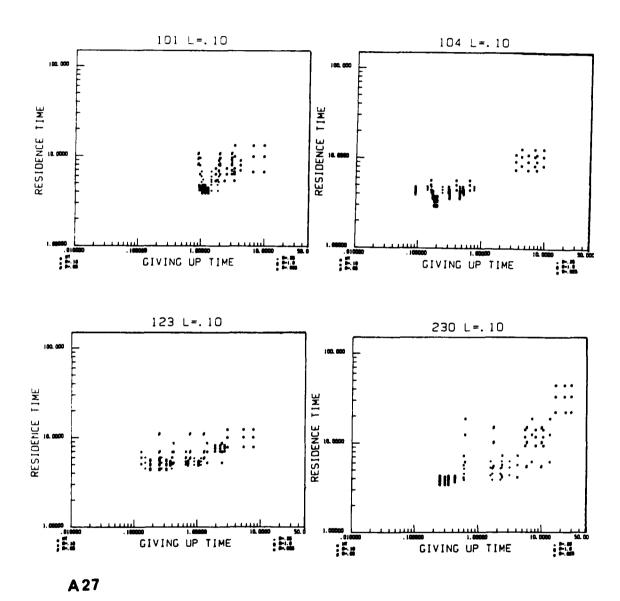


Figure A28. For the depleted in 2-prey condition, the BWM, BWM, and BWM values for residence time and giving-up time were used to construct this figure. The residence times (Y-axis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

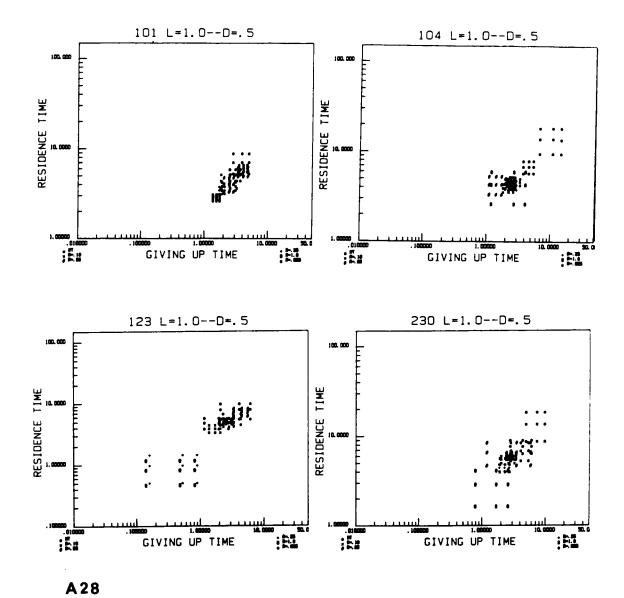
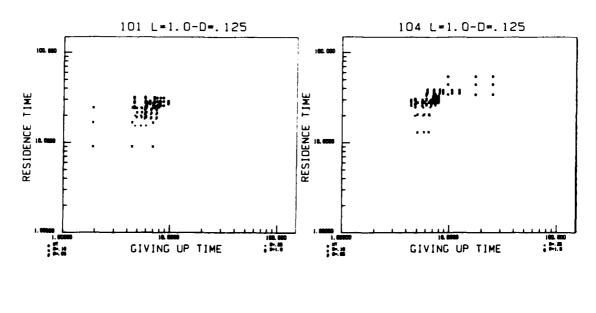
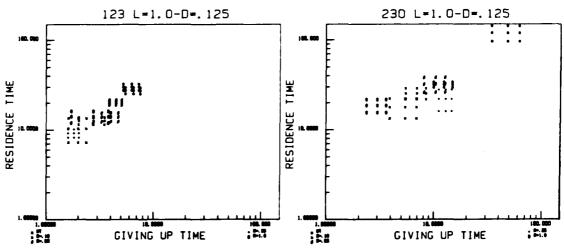




Figure A29. For the depleted in 8-prey condition, the BWM, BWM, and BWM values for residence time and giving-up time were used to construct this figure. The residence times (Y-axis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM, values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

A29

Figure A30. For the depleted in 1-prey condition, the BWM, BWM, and BWM values for residence time and travel time were used to construct this figure. The residence times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

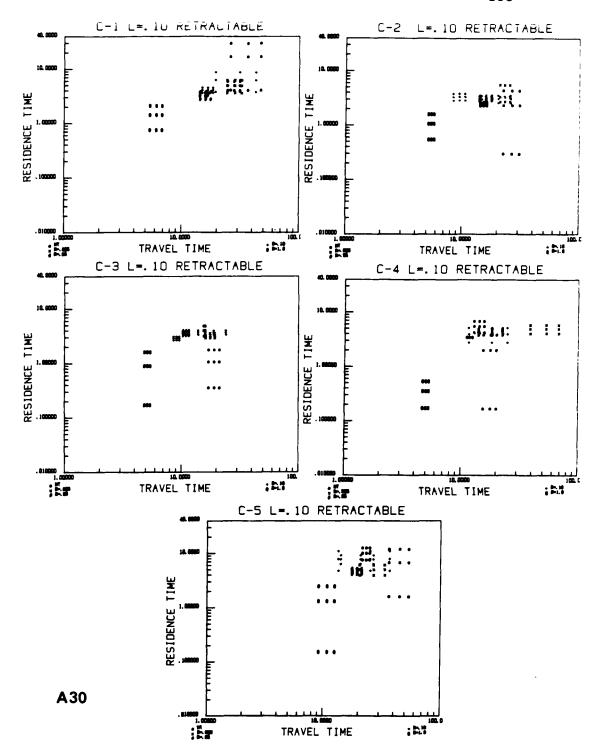


Figure A31. For the depleted in 2-prey condition, the BWM, BWM, and BWM values for residence time and travel time were used to construct this figure. The residence times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM, values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

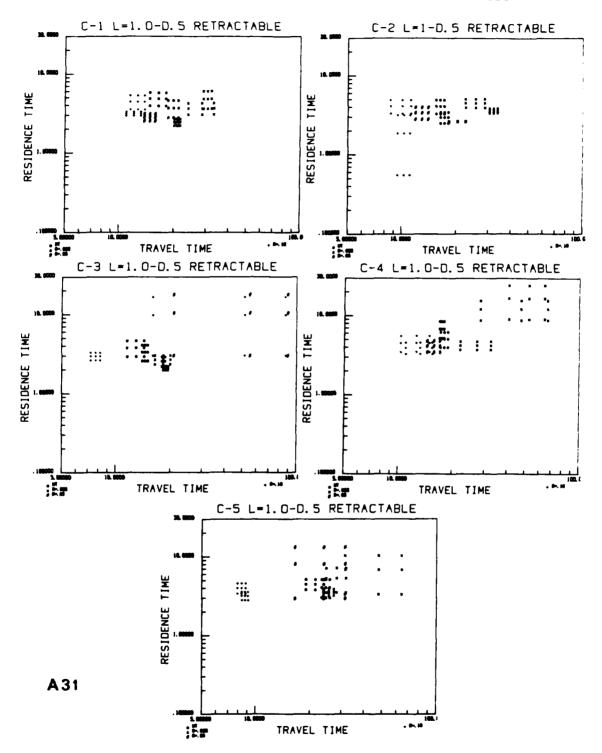


Figure A32. For the depleted in 8-prey condition, the BWM, BWM, and BWM values for residence time and travel time were used to construct this figure. The residence times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The resetprobabilities are indicated by different symbols.

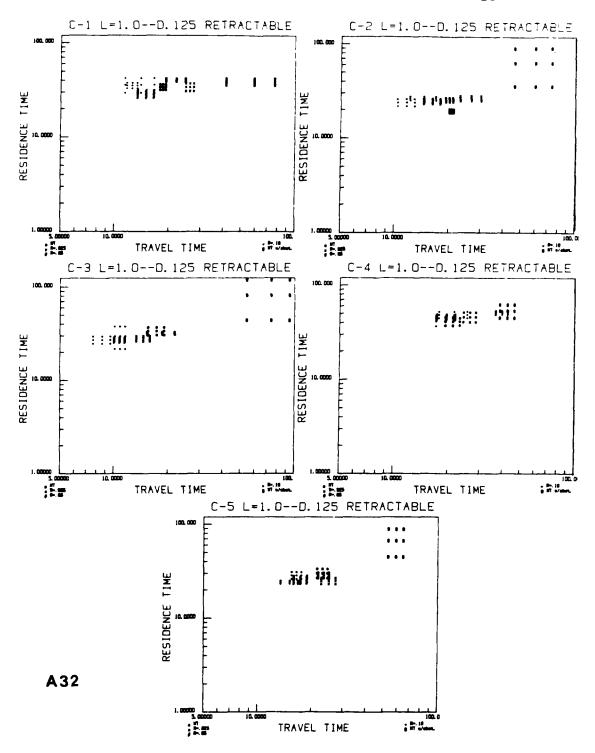


Figure A33. For the depleted in 1-prey condition, the BWM, BWM, and BWM values for giving-up time and travel time were used to construct this figure. The giving-up times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

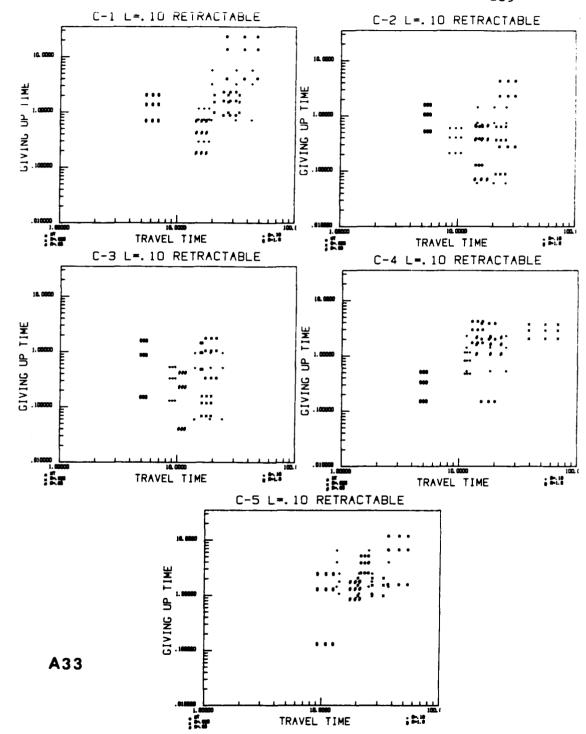


Figure A34. For the depleted in 2-prey condition, the BWM, BWM, and BWM values for giving-up time and travel time were used to construct this figure. The giving-up times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

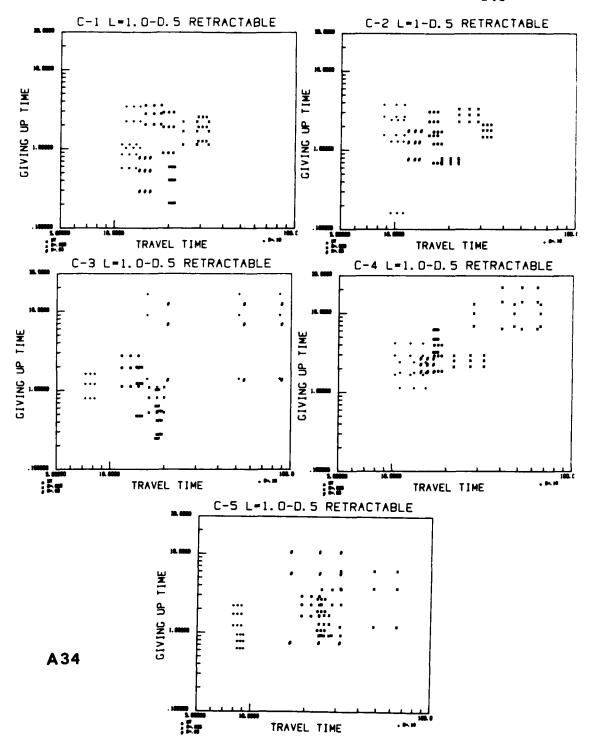


Figure A35. For the depleted in 8-prey condition, the BWM, BWM, and BWM values for giving-up time and travel time were used to construct this figure. The giving-up times (Y-axis) are plotted against travel times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

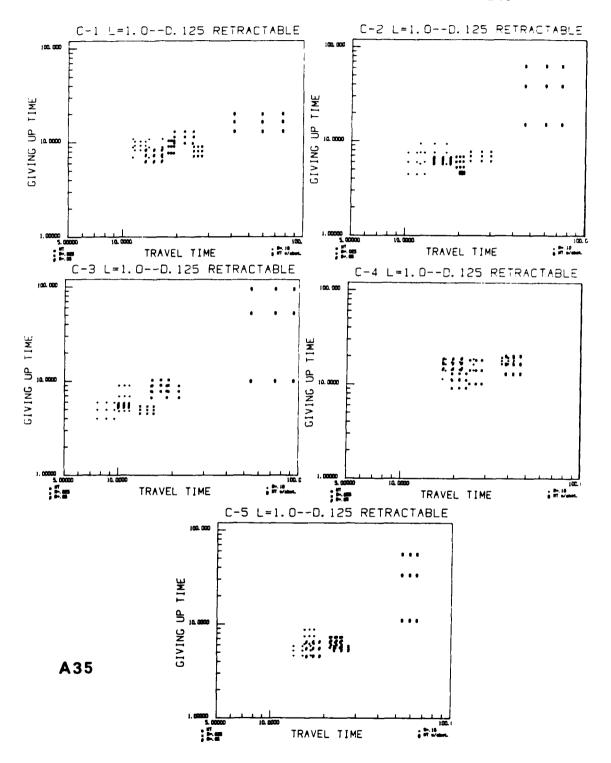


Figure A36. For the depleted in 1-prey condition, the BWM, BWM, and BWM values for residence time and giving-up time were used to construct this figure. The residence times (Y-axis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

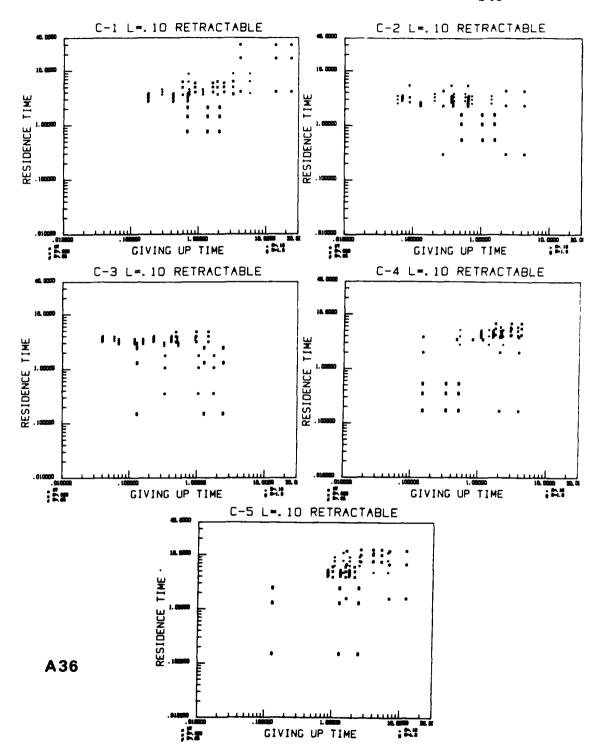


Figure A37. For the depleted in 2-prey condition, the BWM, BWM, and BWM values for residence time and giving-up time were used to construct this figure. The residence times (Y-axis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM, values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.

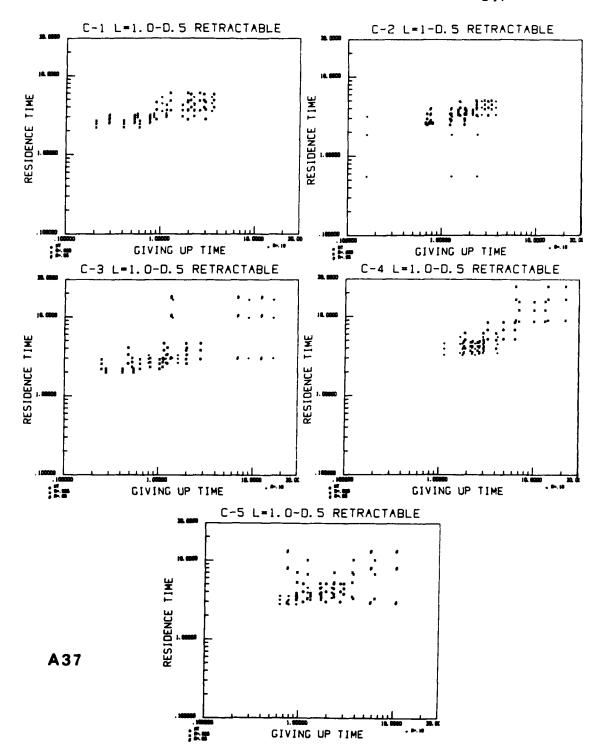
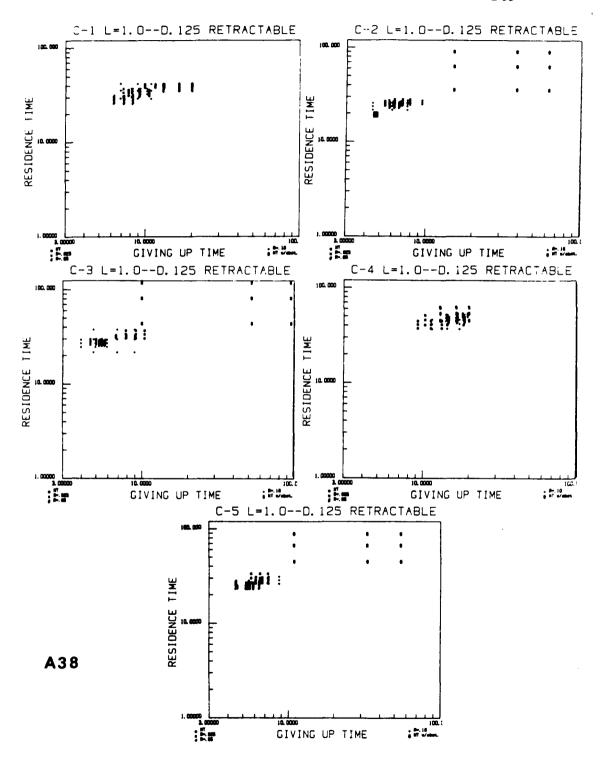
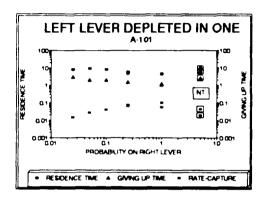
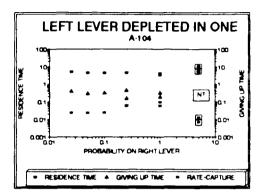
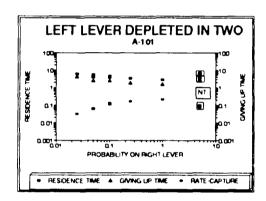
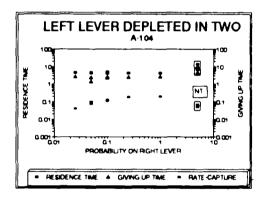
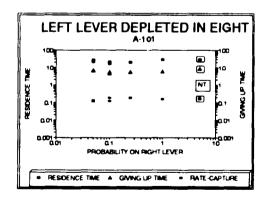
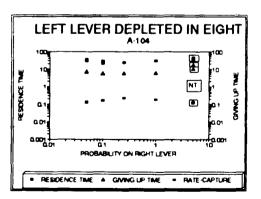
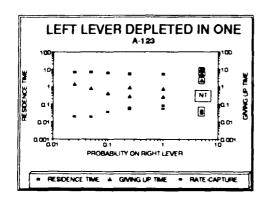
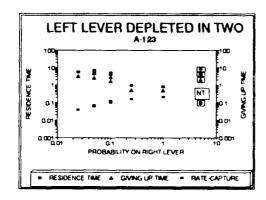
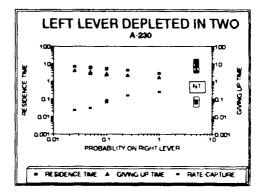
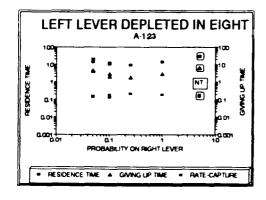


Figure A38. For the depleted in 8-prey condition, the BWM, BWM, and BWM values for residence time and giving-up time were used to construct this figure. The residence times (Y-axis) are plotted against giving-up times (X-axis). In each group of points the middle point represents the BWMs of these variables on the X and Y axes. Points around the BWM represent variability expressed in BWM, and BWM values. Each panel show results for one subject. The open squares indicate results with natural travel. The reset-probabilities are indicated by different symbols.


Figure A39. The means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results are enclosed in boxes. The left-hand graphs show results for subject A-101, and the right-hand panels results for subject A-104.


Figure A40. The means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results are enclosed in boxes. The left-hand graphs show results for subject A-123, and the right-hand panels for subject A-230.

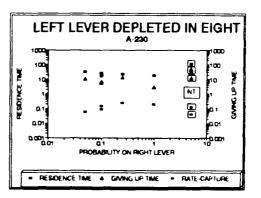
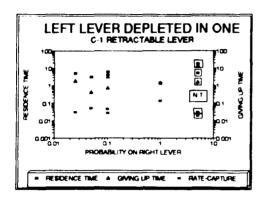
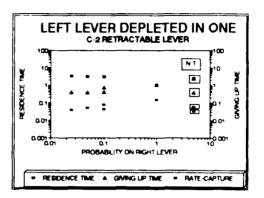
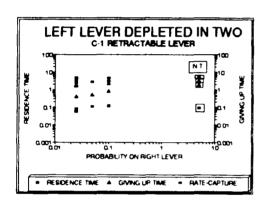
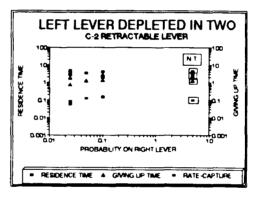
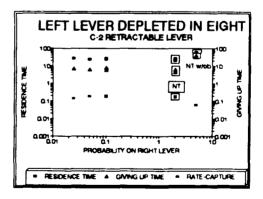
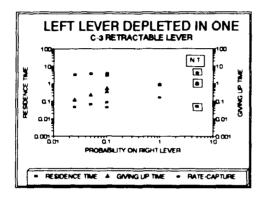
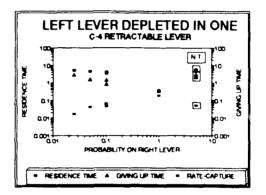
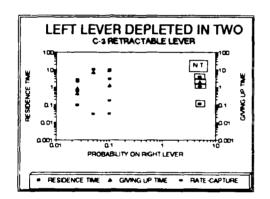
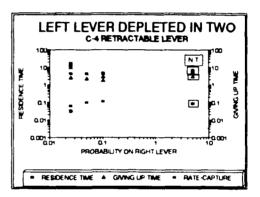
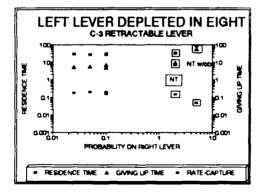






Figure A41. The means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results with and without obstacles are enclosed in boxes. The left-hand graphs show results for subject C-1, and the right-hand panels results for subject C-2.


Figure A42. The means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results with and without obstacles are enclosed in boxes. The left-hand graphs show results for subject C-3, and the right-hand panels results for C-4.

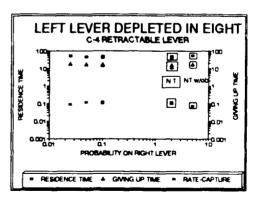
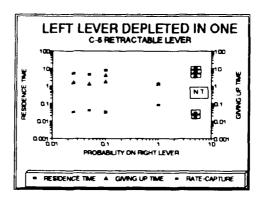
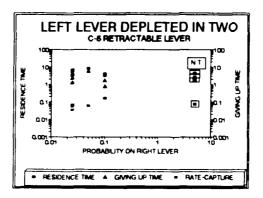




Figure A43. For subject C-5, the means of residence time, giving-up time, and average rate of capture (Y-axes) are plotted against the probability on the right lever (X-axis). The filled squares represent the means of residence time, the triangles the means of giving-up time, and the asterisks the means of the average rate of capture. Natural travel results with and without obstacles are enclosed in boxes.

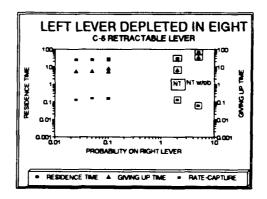


Table A34. Experiment 1, patch depleted in one prey.

A-104	Linear Eq	uation	n =	7		a 1 =	3.849
						a 2 =	0.022
x	у	x*y	x^2	y calc	% еггог		
36.32		185.96	1319.14	4.66	0.09		
36.93		165,45	1363.82	4.67	-0.04		
36,49		154.35	1331.52	4.66	-0.10		
12.42		55.39	154.26	4.13	0.07		
11.12		51.82	123.65	4.10	0.12		
6.64		25.96	44.09	4.00	-0.02		
5.58		18.58	31.14	3.97	-0.19		
145,50	30.19	657.51	4367.62				
A-230	Linear Equ	uation	n =	7		a1 = a2 =	3.322 0.128
x	v	x*y	x^ 2	y calc	% error	a.	0.128
68.23	<u>y</u> 12.47	850.83	4655.33	12.09	0.03		
54.37	10.08	548.05	2956.10	10.31	-0.02		
24.55	5.71	140.18	602.70	6.48	-0.02		
10.65	4.51	48.03	113.42	4.69	-0.04		
8.52	5.27	44.90	72.59	4.42	0.16		
4.44	3.78	16.78	19.71	3.89	-0.03		
4.49	3.95	17.74	20.16	3.90	0.01		
175.25	45.77	1666.51	8440.02	3.70	0.01		
							
A-101	Linear Equ	ation	u =	7		a1 =	4.984
		x*y	x^2	rı oolo	Ø	a 2 =	0.075
57.85	8.03	464.54	3346.62	y calc 9.34	% error -0.16		
27.93	9.40	262.54	780.08	7.09	0.25		
15.82	8.00	126.56	250.27	6.18	0.23		
9.52	5.95	56.64	90.63	5.70	0.04		
8,74	4.80	41.95	76.39	5.64	-0.18		
5.86	4.13	24.20	34.34	5.43	-0.31		
5.32	4.45	23.67	28.30	5.39	-0.21		
131.04	44.76	1000.11	4606.64	3.39	0.21		
	, DV= RES		1000.01				
A-123	Linear Equ		n =	7		a1 =	4.770
	<u> </u>					a 2 =	0.052
x	у	x*y	x^2	y calc	% error		
41.12	7.04	289.48	1690.85	6.90	0.02		
44.60	6.94	309.52	1989.16	7. 09	-0.02		
21.58	6.09	131.42	465.70	5.89	0.03		
15.00	5.25	78.75	225.00	5.55	-0.06		
11.04	5.42	59.84	121.88	5.34	0.01		
6.35	5.18	32.89	40.32	5.10	0.02		
5.14	4.99	25.65	26.42	5.04	-0.01		
144.83	40.91	927.56	4559.33				
*IV= TT.	DV= RES-	T. L=.10					

^{*}Note: TT=travel time, RES=residence time.

Table			/M values	transforme	d to logarith	mic numbe	TS.
A-104	Linear Ec	quation	n =	7		a1 =	0.492
						a 2 =	0.116
logx	log y	x*y	x^2	y calc	% error		
1.56	0.71	1.11	2.43	0.67	0.05		
1.57	0.65	1.02	2.46	0.67	-0.03		
1.56	0.63	0.98	2.44	0,67	-0.07		
1.09	0.65	0.71	1.20	0.62	0.05		
1.05	0.67	0.70	1.09	0.61	0.08		
0.82	0.59	0.49	0.68	0.59	0.01		
0.75	0.52	0.39	0.56	0.58	-0.11		
8,40	4.42	5.39	10.86				
*IV= T	r, DV= RE	S-T, L = .1	0				
A-230	Linear Ec	quation	n =	7		a1 =	0.309
						a 2 =	0.395
log x	log y	x*y	x^2	y calc	% еггог		
1.83	1.10	2.01	3.36	1.03	0.06		
1.74	1.00	1.74	3.01	0.99	0.01		
1.39	0.76	1.05	1.93	0.86	0.13		
1.03	0.65	0.67	1.06	0.71	-0.09		
0.93	0.72	0.67	0.87	0.68	0.06		
0.65	0.58	0.37	0.42	0.56	0.02		
0.65	0.60	0.39	0.43	0.57	0.05		
8.22	5.41	6.91	11.07	7.0	*****		
	, DV= RES						
A-101	Linear Eq		n =	7		a1 =	0.419
			•			a 2 =	0.328
log x	log y	x*y	x ^ 2	y calc	% error		
1.76	0.90	1.59	3.11	1.00	-0.10		
1.45	0.97	1.41	2.09	0.89	0.08		
1.20	0.90	1.08	1.44	0.81	0.10		
0.98	0.77	0.76	0.96	0.74	0.04		
0.94	0.68	0.64	0.89	0.73	-0.07		
0.77	0.62	0.47	0.59	0.67	-0.09		
0.73	0.65	0.47	0.53	0.66	-0.01		
7.82	5.50	6.43	9.60	0.00	0.01		
	, DV = RE						
A-123	Linear Eq		n =	7		a1 =	0.573
11 123	Dinver Ly	lest: An	ц —	,		a2 =	0.160
logx	log y	x*y	x^2	y calc	% еггог	42 -	0.100
1.61	0.85	1.37	2.61	0.83	0.02		
1.65	0.84	1.39	2.72	0.84	0.02		
1.33	0.78	1.05	1.78	0.79	-0.00		
1.18	0.72	0.85	1.38	0.79	-0.06		
1.18	0.72	0.83					
0.80	0.73		1.09	0.74	·0.01		
11.00	U. / I	0.57	0.64	0.70	0.02		
	· · · -	0.50	A 54	0.70	0.00		
0.71 8.33	0.70 5.34	0.50 6.48	0.51 10.73	0.69	0.02		

A-104	Linear E	quation	n =	7	_	a1 =	4.196
			x^2	y calc	% error	a 2 =	0.010
43.38	4.63	x*y 200.85	1881.82	4.63	0.00		
16.11	4.42	71.21	259.53	4.36	0.00		
20.57	4.29	88.25	423.12	4.40	-0.03		
11.69	3.97	46.41	136.66	4.31	-0.09		
12.92	4.74	61.24	166.93	4.32	0.09		
6.09	4.22	25.70	37.09	4.26	-0.01		
5.48	4.26	23.34	30.03	4.25	0.00		
116.24	30.53	517.00	2935.18	4.23	0.00		
A -230	Linear E		h =	7		a1 =	3.793
						a2 =	0.040
X	<u>y</u>	x*y	x^2	y calc	% error		
83.10	6.87	570.90	6905.61	7.11	-0.03		
58.02	6.50	377.13	3366.32	6.11	0.06		
61.18	5.95	364.02	3742.99	6.24	-0.05		
25.94	4.82	125.03	672.88	4.83	-0.00		
17.77	5.50	97.74	315.77	4.50	0.18		
8.27	4.39	36.31	68.39	4.12	0.06		
4.47	2.85	12.74	19.98	3.97	-0.39		
258.75	36.88	1583.86	15091.95				
A -101	Linear E	quation	n =	7		a1 = a2 =	3.133 0.055
х	у	x*y	x^2	y calc	% еггог		
58.14	6.09	354.07	3380.26	6.33	-0.04		
26.18	5.54	145.04	685.39	4.57	0.17		
26.36	4.02	105.97	694.85	4.58	-0.14		
11.32	3.86	43.70	128.14	3.75	0.03		
13.70	4.41	60.42	187.69	3.89	0.12		
8.20	3.42	28.04	67.24	3.58	-0.05		
6.09	2.83	17.23	37.09	3.47	-0.23		
149.99	30.17	754.47	5180.66				
A -123	Linear E	quation	n =	7		a1 =	1.498
		-4	-22		0%	a 2 =	0.138
41.99	5.65	237.24	x 2 1763.16	y calc 7.30	% error -0.29		
24.26	7.10	172.25	588.55	4.85	0.32		
24.25	5.04	122.22	588.06	4.85	0.32		
13.88	4.97	68.98	192.65	3.42	0.31		
13.00	3.92	48.96	156.00	3.42 3.22	0.31		
12.40		7.32	57.00	3.22 2.54			
12.49 7.55	007		37.00	L. 34	-1.62		
7.55	0.97 0.81		32.04	222	.1 91		
	0.97 0.81 28.46	4.58 661.56	32.04 3377.46	2.28	-1.81		

Table A.	35 (continue	ed), BWM	l values tra	nsformed	to logarithmi	numbers.	
A-104	Linear Eq	uation	n =	7		a1 =	0.594
						a2 =	0.040
log x	log y	<u>x*y</u>	x^2	y calc	% error		
1.64	0.67	1.09	2.68	0.66	0.01		
1.21	0.65	0.78	1.46	0.64	0.00		
1.31	0.63	0.83	1.72	0.65	-0.02		
1.07	0.60	0.64	1.14	0.64	-0.06		
1.11	0.68	0.75	1.23	0.64	0.06		
0.78	0.63	0.49	0.62	0.63	-0.00		
0.74	0.63	0.46	0.55	0.62	0.01		
7.86	4.47	5.05	9.40				
	, DV= RE		0D.5	_			
A-230	Linear Eq	uation	n =	7		a1 =	0.355
100 =	log y	x*y	x^2	y calc	% error	a 2 =	0.254
<u>log x</u> 1.92	0.84	1.61	3.68	0.84	-0.01		
1.76	0.84	1.43	3.11	0.80	0.01		
1.79	0.77	1.38	3.19	0.80	-0.04		
1.41	0.68	0.97	2.00	0.71	-0.04		
1.41	0.74	0.97	1.56	0.71	0.09		
0.92	0.74						
0.65	0.45	0.59 0.30	0.84 0.42	0.59	0.09		
9.70	4.95	7.20	14.81	0.52	-0.14		
	, DV= RE						
A-101	Linear Eq		D.5	7		a1 =	0.247
		,	-			a 2 =	0.309
log x	log y	x*y	x^2	y calc	% еггог		
1.76	0.78	1.38	3.11	0.79	-0.01		
1.42	0.74	1.05	2.01	0.68	0.08		
1.42	0.60	0.86	2.02	0.69	-0.13		
1.05	0.59	0.62	1.11	0.57	0.02		
1.14	0.64	0.73	1.29	0.60	0.07		
0.91	0.53	0.49	0.84	0.53	0.01		
0.78	0.45	0.35	0.62	0.49	-0.08		
8.49	4.35	5.49	11.00				
	, DV= RE		0D.5				
A-123	Linear Eq	uation	n =	7		a1 =	-0.798
1000	1		x^2		07	a 2 =	1.098
log x 1.62	log y 0.75	x*y 1.22	2.63	y calc 0.98	% error -0.31		
1.38	0.75						
1.38	0.70	1.18 0.97	1.92 1.92	0.72 0.72	0.15		
1.14	0.70	0.80		0.72	-0.03		
1.14	0.70	0.65	1.31		0.34		
0.88			1.20	0.41	0.31		
0.88	-0.01 -0.09	-0.0 1 -0.07	0.77	0.17	13.59		
8.26	3.49	4.74	0.57	0.03	1.32		
		4. /4 S-T, L=1.	10.31				

A-104	Linear Eq	uation	n =	6		a1 =	25,901
						a 2 =	0.224
х	у	x*y	x^2	y calc	% еггог		
24.83	30.29	752.10	616.53	31.47	0.04		
14.66	36.99	542.27	214.92	29.19	0.21		
11.54	20.79	239.92	133.17	28.49	-0.37		
9.34	28.24	263.76	87.24	28.00	0.01		
5.38	24.61	132.40	28.94	27.11	-0,10		
4.50	30.26	136.17	20.25	26.92	0.11		
70.25	171.18	2066.62	1101.05				
A -230	Linear Eg	uation	n =	5		a1 =	19.691
			x^2	1.	07	a 2 =	0.118
X 04.20	y 22.04	x*y		y calc 30,86	% error 0.04		
94.29	32.04	3021.05	8890,60				
31.09	18.04	560,86	966.59	23.37	-0.30		
13.28	25.67	340.90	176.36	21.26	0.17		
4.81 6.37	21.88	105.24	23.14	20.26	0.07		
0.37 149.84	18.57 116.20	118.29 4146.35	40.58 10097.26	20.45	-0.10		
A-101	Linear Eq	uation	n =	6		a1 =	24.584
						a2 =	0.123
x	у	x*y	x^2	y calc	% еггог		
30.55	21.02	642.16	933.30	20.81	0.01		
24.38	26.35	642.41	594.38	21.57	0.18		
18.73	16.97	317.85	350.81	22.27	-0.31		
14.23	21.87	311.21	202.49	22.82	-0.04		
13.37	19.91	266.20	178.76	22.93	-0.15		
7.06	27.99	197.61	49.84	23.71	0.15		
108.32	134.11	2377.44	2309.59				
A-123	Linear Eq	Bation	n =	6		a 1 =	6.72
						a2 =	0.61
x	у	x*y	x^2	y calc	% error		
	13.88	205.29	218.74	15.77	-0.14		
14.79				17.59	0.13		
14.79 17.76	20.20	358.75	315.42				
14.79 17.76 11.15		358.75 116.74	315.42 124.32	13.55	-0.29		
14.79 17.76 11.15 8.71	20.20 10.47 12.78	116.74 111.31			-0.29 0.06		
14.79 17.76 11.15 8.71 6.87	20.20 10.47	116.74	124.32	13.55 12.05 10.93	0.06 -0.19		
14.79 17.76 11.15 8.71	20.20 10.47 12.78	116.74 111.31	124.32 75.86	13.55 12.05	0.06		

*Note: TT=travel time, RES-T=residence time.

*IV = TT, DV = RES-T, L = 1.0-D.125

Table A	36 (continued), BWM va	lues transfe	ormed to lo	garithmic numl	bers.	
A-104	Linear Equ	nation	n =	6		a1 =	1.373
						a 2 =	0.076
log x	log y	x*y	x^2	y calc	% error		
1.39	1.48	2.07	1.95	1.48	0.00		
1.17	1.57	1.83	1.36	1.46	0.07		
1.06	1.32	1.40	1.13	1.45	-0.10		
0.97	1.45	1.41	0.94	1.45	0.00		
0.73	1.39	1.02	0.53	1.43	-0.03		
0.65	1.48	0.97	0.43	1.42	0.04		
5.98	8.69	8,69	6.34				
*IV = T1	, DV = RES	T, L = 1.0··	D.125		•		
A-230	Linear Equ	uation	n =	5		a1 =	1.219
					<u>-</u>	a2 =	0.112
logx	log y	x*y	x^2	y calc	% error		
1.97	1.51	2.97	3.90	1.44	0.04		
1.49	1.26	1.88	2.23	1.39	-0.10		
1.12	1.41	1.58	1.26	1.35	0.05		
0.68	1.34	0.91	0.47	1.30	0.03		
0.80	1.27	1.02	0.65	1.31	-0.03		
6.08	6.78	8.37	8.50	_			
	, DV = RES					_	
A-101	Linear Equ	uation	n =	6		a 1 =	1.500
			- 0.0		~	a 2 =	-0.130
log x	log y	x*y	x^2	y calc	% error		
1.49	1.32	1.96	2.21	1.31	0.01		
1.39	1.42	1.97	1.92	1.32	0.07		
1.27	1.23	1.56	1.62	1.34	-0.09		
1.15	1.34	1.55	1.33	1.35	-0.01		
1.13	1.30	1.46	1.27	1.35	-0.04		
0.85	1.45	1.23	0.72	1.39	0.04		
7.27	8.06 , DV = RES-	9.74 T. I. 1.0	9.07				
						.1	0.604
A-123	Linear Equ	ation	n =	6		a1 = a2 =	0.694 0.416
logx	log y	x*y	x^2	y calc	% еггог	42	0.410
1.17	1.14	1.34	1.37	1.18	-0.03		
1.25	1.31	1.63	1.56	1.21	0.07		
1.05	1.02	1.07	1.10	1.13	-0.11		
0.94	1.11	1.04	0.88	1.09	0.02		
0.84	0.96	0.81	0.70	1.04	-0.08		
0.81	1.15	0.92	0.65	1.03	0.10		
6.05	6.68	6.81	6.26				
	, DV= RES						

\ -104	Linear Equ	ation	n =	7		a1 =	0.2
x	y	x*y	x^2	y calc	% error	a 2 =	0,0
36.32		14.53	1319.14	0.34	0.16		
36.93		11.08	1363.82	0.34	-0.13		
36.49		11.31	1331.52	0.34	-0.09		
12.42		1.99	154.26	0.28	0.78		
11.12		5.00	123.65	0.28	0.37		
6.64		2.06	44.09	0.27	0.12		
5.58		1.06	31.14	0.27	0.42		
145.50		47.03	4367.62				
IV= TT	, DV= GUT						
\-230	Linear Equ	ation	n =	7		a1 = a2 =	0.3 0.0
x	у	x*y	x^2	y calc	% error	a	0.0
68.23	6.98	476.25	4655.33	7.02	-0.01		
54.37	5.77	313.71	2956.10	5.67	0.02		
24.55	2.37	58.18	602.70	2.78	-0.17		
10.65	1.67	17.79	113.42	1.43	0.15		
8.52	2.34	19.94	72.59	1.22	0.48		
4.44	0.30	1.33	19.71	0.82	-1.74		
4.49	0.34	1.53	20.16	0.83	-1.44		
175.25	19.77	888.72	8440.02	٧.٠٠	2.,,		
	DV= GUT						
-101	Linear Equ		n =	7		a1 = a2 =	1.0 0.0
x					~		
	у	x*y	x^2	y calc	% error		
57.85	y 3.04	175.86	3346,62	y calc 3.08	-0.01		
57.85 27.93							
	3.04	175.86	3346,62	3.08	-0.01		
27.93	3.04 1.97	175.86 55.02	3346.62 780.08	3.08 2.05 1.64	-0.01 -0.04		
27.93 15.82	3.04 1.97 2.00	175.86 55.02 31.64	3346.62 780.08 250.27	3.08 2.05	-0.01 -0.04 0.18		
27.93 15.82 9.52	3.04 1.97 2.00 1.47	175.86 55.02 31.64 13.99	3346.62 780.08 250.27 90.63	3.08 2.05 1.64 1.42	-0.01 -0.04 0.18 0.03		
27.93 15.82 9.52 8.74	3.04 1.97 2.00 1.47 1.46	175.86 55.02 31.64 13.99 12.76	3346.62 780.08 250.27 90.63 76.39	3.08 2.05 1.64 1.42 1.40	-0.01 -0.04 0.18 0.03 0.04		
27.93 15.82 9.52 8.74 5.86	3.04 1.97 2.00 1.47 1.46 1.17	175.86 55.02 31.64 13.99 12.76 6.86	3346.62 780.08 250.27 90.63 76.39 34.34	3.08 2.05 1.64 1.42 1.40 1.30	-0.01 -0.04 0.18 0.03 0.04 -0.11		
27.93 15.82 9.52 8.74 5.86 5.32 131.04	3.04 1.97 2.00 1.47 1.46 1.17 1.06	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78	3346.62 780.08 250.27 90.63 76.39 34.34 28.30	3.08 2.05 1.64 1.42 1.40 1.30	-0.01 -0.04 0.18 0.03 0.04 -0.11		
27.93 15.82 9.52 8.74 5.86 5.32 131.04	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78	3346.62 780.08 250.27 90.63 76.39 34.34 28.30	3.08 2.05 1.64 1.42 1.40 1.30	-0.01 -0.04 0.18 0.03 0.04 -0.11	a1 = a2 =	0.3 0.0
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT,	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV = GUT. Linear Equ	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64	3.08 2.05 1.64 1.42 1.40 1.30 1.28	-0.01 -0.04 0.18 0.03 0.04 -0.11 -0.21	a1 = a2 =	
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT,	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV= GUT.	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64	3.08 2.05 1.64 1.42 1.40 1.30 1.28	-0.01 -0.04 0.18 0.03 0.04 -0.11		0.3 0.0
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT,	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV = GUT. Linear Equ	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64 n =	3.08 2.05 1.64 1.42 1.40 1.30 1.28	-0.01 -0.04 0.18 0.03 0.04 -0.11 -0.21		
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT, -123	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV = GUT. Linear Equ	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78 ation x*y 59.21	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64 n = x^2 1690.85	3.08 2.05 1.64 1.42 1.40 1.30 1.28	-0.01 -0.04 0.18 0.03 0.04 -0.11 -0.21		
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT, -123 x 41.12 44.60	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV = GUT. Linear Equ	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78 ation x*y 59.21 34.34	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64 n = x^2 1690.85 1989.16	3.08 2.05 1.64 1.42 1.40 1.30 1.28 7	-0.01 -0.04 0.18 0.03 0.04 -0.11 -0.21		
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT, -123 x 41.12 44.60 21.58	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV = GUT. Linear Equ	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78 ation x*y 59.21 34.34 8.63	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64 n = x^2 1690.85 1989.16 465.70	3.08 2.05 1.64 1.42 1.40 1.30 1.28 7 y calc 0.99 1.04 0.69	-0.01 -0.04 0.18 0.03 0.04 -0.11 -0.21 % error 0.31 -0.35 -0.73 -1.19		
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT, -123 x 41.12 44.60 21.58 15.00	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV = GUT. Linear Equ y 1.44 0.77 0.40 0.27	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78 ation x*y 59.21 34.34 8.63 4.05	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64 n = x^2 1690.85 1989.16 465.70 225.00	3.08 2.05 1.64 1.42 1.40 1.30 1.28 7 y calc 0.99 1.04 0.69 0.59	-0.01 -0.04 0.18 0.03 0.04 -0.11 -0.21 % error 0.31 -0.35 -0.73 -1.19 0.41		
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT, -123 x 41.12 44.60 21.58 15.00 11.04	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV = GUT. Linear Equ y 1.44 0.77 0.40 0.27 0.90	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78 ation x*y 59.21 34.34 8.63 4.05 9.94	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64 n = x^2 1690.85 1989.16 465.70 225.00 121.88	3.08 2.05 1.64 1.42 1.40 1.30 1.28 7 y calc 0.99 1.04 0.69 0.59 0.53	-0.01 -0.04 0.18 0.03 0.04 -0.11 -0.21 % error 0.31 -0.35 -0.73 -1.19		
27.93 15.82 9.52 8.74 5.86 5.32 131.04 IV= TT, -123 x 41.12 44.60 21.58 15.00 11.04 6.35	3.04 1.97 2.00 1.47 1.46 1.17 1.06 12.17 DV = GUT. Linear Equ y 1.44 0.77 0.40 0.27 0.90 0.71	175.86 55.02 31.64 13.99 12.76 6.86 5.64 301.78 ation x*y 59.21 34.34 8.63 4.05 9.94 4.51	3346.62 780.08 250.27 90.63 76.39 34.34 28.30 4606.64 n = x^2 1690.85 1989.16 465.70 225.00 121.88 40.32	3.08 2.05 1.64 1.42 1.40 1.30 1.28 7 y calc 0.99 1.04 0.69 0.59 0.53 0.46	-0.01 -0.04 0.18 0.03 0.04 -0.11 -0.21 % error 0.31 -0.35 -0.73 -1.19 0.41 0.36		

A-104	Linear Eq	uation	n =	n = 7			-0,753
log x	log y	x*y	x^2	y calc	% error	a2 =	0.175
1.56	-0.40	-0.62	2.43	-0.48	-0.21		
1.57	-0.52	-0.82	2.46	-0.48	0.08		
1.56	-0.51	0.79	2.44	-0,48	0.06		
1.09	-0.80	-0.87	1.20	-0,56	0.29		
1.05	-0.35	-0,36	1.09	-0.57	0.64		
0.82	-0.51	-0.42	0.68	0.61	-0.20		
0.75	-0.72	-0.54	0.56	-0.62	0.14		
8.40	-3.80	-4.43	10.86	*****	***		
_	r, DV= GU						
A-23 0	Linear Equ	uation	n =	7		a 1 =	-0,977
			4.2			a 2 =	1.024
log x	logy	x*y	x^2	y calc	% error		
1.83	0.84	1.55	3.36	0.90	-0.07		
1.74	0.76	1.32	3.01	0.80	-0.05		
1.39	0.37	0.52	1.93	0.45	-0.19		
1.03	0.22	0.23	1.06	0.08	0.66		
0.93	0.37	0.34	0.87	-0.02	1.06		
0.65	-0.52	-0.34	0.42	-0.31	0.40		
0.65	-0.47	-0.31	0.43	-0.31	0.34		
8.22	1.58	3.32	11.07				
	DV= GUT,			7			0.220
\ -101	Linear Equ	ation	n =	7		a1 =	-0.238
long	loe v	x*y		ri colo	Ø	a 2 =	0.405
log x 1.76	log y 0.48		x^2	y calc 0.48	% error		
1.45	0.29	0.85	3.11		0.01		
1.20	0.30	0.43	2.09	0.35	-0.18		
		0.24	1.44	A 25	0.10		
0.00		0.36	1.44	0.25	0.18		
0.98	0.17	0.16	0.96	0.16	0.05		
0.94	0.17 0.16	0.16 0.15	0.96 0.89	0.16 0.14	0.05 0.13		
0.94 0.77	0.17 0.16 0.07	0.16 0.15 0.05	0,96 0,89 0,59	0.16 0.14 0.07	0.05 0.13 -0.07		
0.94 0.77 0.73	0.17 0.16 0.07 0.03	0.16 0.15 0.05 0.02	0,96 0,89 0,59 0,53	0.16 0.14	0.05 0.13		
0.94 0.77 0.73 7.82	0.17 0.16 0.07 0.03 1.50	0.16 0.15 0.05 0.02 2.03	0,96 0,89 0,59	0.16 0.14 0.07	0.05 0.13 -0.07		
0.94 0.77 0.73 7.82 IV= T1	0.17 0.16 0.07 0.03 1.50 T, DV = GUT	0.16 0.15 0.05 0.02 2.03 F, LL=.10	0.96 0.89 0.59 0.53 9.60	0.16 0.14 0.07 0.06	0.05 0.13 -0.07	a1	a 712
0.94 0.77 0.73 7.82 IV= T1 4-123	0.17 0.16 0.07 0.03 1.50 F, DV = GUT Linear Equ	0.16 0.15 0.05 0.02 2.03 F, LL=.10	0.96 0.89 0.59 0.53 9.60	0.16 0.14 0.07 0.06	0.05 0.13 -0.07 -1.22	a1 = a2 =	-0.712 0.392
0.94 0.77 0.73 7.82 IV = TI -123	0.17 0.16 0.07 0.03 1.50 T, DV= GUT Linear Equ	0.16 0.15 0.05 0.02 2.03 T, LL = .10 sation	0.96 0.89 0.59 0.53 9.60 n =	0.16 0.14 0.07 0.06	0.05 0.13 -0.07 -1.22		
0.94 0.77 0.73 7.82 IV= T1 -123	0.17 0.16 0.07 0.03 1.50 T, DV= GUT Linear Equilogy 0.16	0.16 0.15 0.05 0.02 2.03 T, LL = .10 nation	0.96 0.89 0.59 0.53 9.60 n = x^2 2.61	0.16 0.14 0.07 0.06 7 y calc -0.08	0.05 0.13 -0.07 -1.22 % error 1.50		
0.94 0.77 0.73 7.82 IV= T1 -123 log x 1.61 1.65	0.17 0.16 0.07 0.03 1.50 F, DV = GUT Linear Equilogy 0.16 -0.11	0.16 0.15 0.05 0.02 2.03 T, LL=.10 nation x*y 0.26 -0.19	0.96 0.89 0.59 0.53 9.60 n = x^2 2.61 2.72	0.16 0.14 0.07 0.06 7 y calc -0.08 -0.07	0,05 0.13 -0.07 -1.22 % error 1.50 0.42		
0.94 0.77 0.73 7.82 IV= TI -123 log x 1.61 1.65 1.33	0.17 0.16 0.07 0.03 1.50 F, DV = GU1 Linear Equilibrium 100 y 0.16 -0.11 -0.40	0.16 0.15 0.05 0.02 2.03 T, LL=.10 nation x*y 0.26 -0.19 -0.53	0.96 0.89 0.59 0.53 9.60 n = x^2 2.61 2.72 1.78	0.16 0.14 0.07 0.06 7 y calc -0.08 -0.07 -0.19	% error 1.50 0.42 0.55		
0.94 0.77 0.73 7.82 IV= T1 1.61 1.65 1.33 1.18	0.17 0.16 0.07 0.03 1.50 F, DV = GU1 Linear Equilibrium 100 108 y 0.16 -0.11 -0.40 -0.57	0.16 0.15 0.05 0.02 2.03 T, LL=.10 eation x*y 0.26 -0.19 -0.53 -0.67	0.96 0.89 0.59 0.53 9.60 n = x^2 2.61 2.72 1.78 1.38	0.16 0.14 0.07 0.06 7 y calc -0.08 -0.07 -0.19 -0.25	% error 1.50 0.42 0.56		
0.94 0.77 0.73 7.82 IV= TI 1.61 1.65 1.33 1.18 1.04	0.17 0.16 0.07 0.03 1.50 F, DV = GU1 Linear Equilibrium 100 108 y 0.16 -0.11 -0.40 -0.57 -0.05	0.16 0.15 0.05 0.02 2.03 T, LL = .10 nation x*y 0.26 -0.19 -0.53 -0.67 -0.05	0.96 0.89 0.59 0.53 9.60 n = x^2 2.61 2.72 1.78 1.38 1.09	0.16 0.14 0.07 0.06 7 y calc -0.08 -0.07 -0.19 -0.25 -0.30	% error 1.50 0.42 0.52 0.56 -5.62		
0.94 0.77 0.73 7.82 IV= TI 1.61 1.65 1.33 1.18 1.04 0.80	0.17 0.16 0.07 0.03 1.50 F, DV = GUT Linear Equivalent Services of the control of the cont	0.16 0.15 0.05 0.02 2.03 T, LL=.10 lation x*y 0.26 -0.19 -0.53 -0.67 -0.05 -0.12	0.96 0.89 0.59 0.53 9.60 n = x^2 2.61 2.72 1.78 1.38 1.09 0.64	0.16 0.14 0.07 0.06 7 y calc -0.08 -0.07 -0.19 -0.25 -0.30 -0.40	% error 1.50 0.42 0.52 0.56 -3.62 -1.67		
0.94 0.77 0.73 7.82 IV= TI 1.61 1.65 1.33 1.18 1.04	0.17 0.16 0.07 0.03 1.50 F, DV = GU1 Linear Equilibrium 100 108 y 0.16 -0.11 -0.40 -0.57 -0.05	0.16 0.15 0.05 0.02 2.03 T, LL = .10 nation x*y 0.26 -0.19 -0.53 -0.67 -0.05	0.96 0.89 0.59 0.53 9.60 n = x^2 2.61 2.72 1.78 1.38 1.09	0.16 0.14 0.07 0.06 7 y calc -0.08 -0.07 -0.19 -0.25 -0.30	% error 1.50 0.42 0.52 0.56 -5.62		

Table A3	88. Experi	ment 1, lef	t lever depl	eted in tv	vo prey.		
A-104	Linear E	quation	n =	7		a1 =	2.355
						a2 =	0.000
х	у	x*y	x^2	y calc	% еггог		
43.38	2.73	118.43	1881.82	2.37	0.13		
16.11	2.39	38.50	259.53	2.36	0.01		
20.57	1.41	29.00	423.12	2.36	0.68		
11.69	2.22	25.95	136,66	2.36	-0,06		
12.92	2.53	32.69	166.93	2.36	0.07		
6.09	2.57	15.65	37.09	2.36	0.08		
5.48	2.68	14.69	30.03	2.36	0.12		
116.24	16.53	274.91	2935.18				
	, DV= GU						
A-230	Linear E	quation	n =	7		a1 = a2 =	1.860 0.025
x	у	x*y	x^2	y calc	% error		****
83.10	4.09	339.88	6905.61	3.92	0.04		
58.02	3.50	203.07	3366.32	3.30	0.06		
61.18	2.93	179.26	3742.99	3.38	-0.15		
25.94	2.32	60.18	672.88	2.50	-0.08		
17.17	2.62	44.99	294.81	2.29	0.13		
8.27	2.28	18.86	68.39	2.07	0.09		
4.47	1.68	7.51	19.98	1.97	-0.17		
258.15	19.42	853.74	15070.99				
*IV=TT,	DV = GU	T.					
A-101	Linear E	quation	n =	7		$\begin{array}{c} \mathbf{a1} = \\ \mathbf{a2} = \end{array}$	1.777 0.045
х	у	x*y	x^2	y calc	% error		*****
58.14	4.13	240.12	3380.26	4.41	-0.07		
26.18	4.13	108.12	685.39	2.96	0.28		
26.36	2.46	64.85	694.85	2.97	-0.21		
11.32	2.50	28.30	128.14	2.29	0.08		
13.70	2.55	34.94	187.69	2.40	0.06		
8.20	1.91	15.66	67.24	2.15	-0.12		
6.09	1.56	9.50	37.09	2.05	-0.32		
149.99	19.24	501.48	5180.66				
*IV= TT	, DV= GL	JT.					
A-123	Linear Ec	quation	n =	7		a1 = a2 =	0.701 0.085
x	у	x*y	x^2	y calc	% error		
41.99	3.32	139.41	1763.16	4.27	-0.29		
24.26	4.47	108.44	588.55	2.76	0.38		
24.25	2.58	62.57	588.06	2.76	-0.07		
13.88	2.86	39.70	192.65	1.88	0.34		
12.49	1.73	21.61	156.00	1.76	-0.02		
7.55	0.53	4.00	57.00	1.34	-1.53		
5.66	0.48	2.72	32.04	1.18	-1.46		
5.66 130.08	0.48 15.97	2.72 378.44	32.04 3377.46	1.18	-1.46		

*Note: TT = travel time, GUT = giving-up time.

Table A	.38 (continu	ed), BWN	l values tra	nsformed	to logarithmi	c numbers.	
A-104	Linear Ec	quation .	n =	7		a1 =	0.447
		···				a2 =	-0.074
logx	logy	x*y	x^2	y calc	% error		
1.64	0.44	0.71	2.68	0.33	0.25		
1.21	0.38	0.46	1.46	0.36	0.05		
1.31	0.15	0.20	1.72	0.35	-1.35		
1.07	0.35	0.37	1.14	0.37	-0.06		
1.11	0.40	0.45	1.23	0.37	0.09		
0.78	0.41	0.32	0.62	0.39	0.05		
0.74	0.43	0.32	0.55	0.39	0.08		
7.86	2.55	2.82	9.40				
	T, IV = GU		0-D=.5				
A-230	Linear Ec	luation	n =	7		a1 =	0.085
						a2 =	0.247
logx	log y	x*y	x^2_	y calc	% error		
1.92	0.61	1.17	3.68	0.56	0.09		
1.76	0.54	0.96	3.11	0.52	0.04		
1.79	0.47	0.83	3.19	0.53	-0.13		
1.41	0.37	0.52	2.00	0.43	-0.19		
1.23	0.42	0.52	1.52	0.39	0.07		
0.92	0.36	0.33	0.84	0.31	0.13		
0.65	0.23	0.15	0.42	0.25	-0.09		
9.69	2.99	4.48	14.78				
DV = T	Γ, IV= GU7	Γ , LL = 1.0	D = .5				
A-101	Linear Eq	uation	n =	7		a1 =	-0.085
						a2 =	0.412
log x	log y	x*y	x^2	y calc	% еггог		
1.76	0.62	1.09	3.11	0.64	-0.04		
1.42	0.62	0.87	2.01	0.50	0.19		
1.42	0.39	0.56	2.02	0.50	-0.28		
1.05	0.40	0.42	1.11	0.35	0.12		
1.14	0.41	0.46	1.29	0.38	0.06		
0.91	0.28	0.26	0.84	0.29	-0.04		
0.78	0.19	0.15	0.62	0.24	-0.23		
8.49	2.90	3.81	11.00				
DV= T	r, IV= GU7	Γ , $LL = 1.0$	D=.5				
A-123	Linear Eq	uation	n =	7		a1 =	-1.082
						a2 =	1.121
log x	log y	x*y	x^2	y calc	% error		
1.62	0.52	0.85	2.63	0.74	-0.41		
1.38	0.65	0.90	1.92	0.47	0.28		
1.38	0.41	0.57	1.92	0.47	-0.14		
1.14	0.46	0.52	1.31	0.20	0.57		
1.10	0.24	0.26	1.20	0.15	0.38		
0.88	-0.28	-0.24	0.77	-0.10	0.64		
0.75	-0.32	-0.24	0.57	-0.24	0.25		
8.26	1.68	2.62	10.31	= -			
	r, IV= GUT			········			

A-104	Linear Eq		ver depleted n =	6		a1 =	5.210
	2		-	•		a 2 =	0.089
х	у	x*y	x^2	y calc	% error	_	
24.83	7.40	183.74	616.53	7.41	0.00		
14.66	7.09	103.94	214.92	6.51	0.08		
11.54	5.77	66.59	133.17	6.23	-0.08		
9.34	5.53	51.65	87.24	6.04	-0.09		
5.38	5.65	30.40	28.94	5.69	-0.01		
4.50	6.04	27.18	20.25	5.61	0.07		
70.25	37.48	463.49	1101.05				
*IV = TT,	$\overline{DV} = \overline{GU}$	Γ.					
A-230	Linear Eq	uation	n =	5		a1 =	6.825
				_		a2 =	0.029
x	у	x*y	x^2	y calc	% ептот		
94.29	10.38	978.73	8890.60	9.59	0.08		
31.09	5.38	167.26	966,59	7.74	-0.44		
13.28	6.93	92.03	176.36	7.21	-0.04		
4.81	12.83	61.71	23.14	6.97	0.46		
6.37	3.00	19.11	40.58	7.01	-1.34		
149.84	<u>38.52</u>	1318.85	10097.26				
*IV = TT,	DV = GUT						
A-101	Linear Eq	uation	n =	6		a1 =	4.761
						a2 =	0.055
x	<u>y</u>	x*y	x^2	y calc	% еггог		
30.55	6.62	202.24	933.30	6.45	0.03		
24.38	6.94	169.20	594.38	6.11	0.12		
18.73	4.41	82.60	350.81	5.80	0.32		
14.23	5.42	77.13	202.49	5.55	-0.02		
13.37	5.33	71.26	178.76	5.50	-0.03		
7.06	5.85	41.30	49.84	5.15	0.12		
108.32	34.57	643.73	2309.59				
						_	
A-123	Linear Eq	uation	n =	6		a1 =	0.842
					07	a 2 =	0.195
X 14.70	y 4.01	x*y	x^2	y calc	% error		
14.79	4.01	59.31	218.74	3.73	0.07		
17.76	4.49	79.74	315.42	4.31	0.04		
11.15	2.01	22.41	124.32	3.02	-0.50		
8.71	2.77	24.13	75.86	2.54	0.08		
6.87	1.83	12.57	47.20	2.18	-0.19		
6.40 65.68	2.76	17.66	40.96	2.09	0.24		
	17.87	215.82	822.51				

^{*} IV= TT, DV= GUT, LL=1.0-D=.125

* Note: TT=travel time, GUT=giving-up time.

Table A3			lues transfo	rmed to lo	garithmic numl	регз.	
A-104	Linear Eq	uation	n =	6		a1 =	0.651
						a2 =	0.143
logx	logy	x*y	x^2	y calc	% error		
1.39	0.87	1.21	1.95	0.85	0.02		
1.17	0.85	0.99	1.36	0.82	0.04		
1.06	0.76	0.81	1.13	0.80	-0.05		
0.97	0.74	0.72	0.94	0.79	-0.06		
0.73	0.75	0.55	0.53	0.75	-0.00		
0.65	0.78	0.51	0.43	0.74	0.05		
5.98	4.76	4.79	6.34				
$^{\bullet}DV = T$	T, IV= GUT		D = .125				
A-230	Linear Eq	uation	n =	5		a1 =	0.715
						a2 =	0.098
log x	log y	x*y	x^2	y calc	% еггог		
1.97	1.02	2.01	3.90	0.91	0.11		
1.49	0.73	1.09	2.23	0.86	-0.18		
1.12	0.84	0.94	1.26	0.83	0.02		
0.68	1.11	0.76	0.47	0.78	0.29		
0.80	0.48	0.38	0.65	0.79	-0.66		
6.08	4.17	5.18	8.50				
	, DV = GUT		D = .125				
A-101	Linear Equ	ation	n =	6		a1 =	0.632
						a2 =	0.102
log x	log y	x*y	x^2	y calc	% error		
1.49	0.82	1.22	2.21	0.78	0.05		
1.39	0.84	1.17	1.92	0.77	0.08		
1.27	0.64	0.82	1.62	0.76	-0.18		
1.15	0.73	0.85	1.33	0.75	-0.02		
1.13	0.73	0.82	1.27	0.75	-0.03		
0.85	0.77	0.65	0.72	0.72	0.06		
7.27	4.53	5.52	9.07				
	, DV = GUT		D=.5				
A-123	Linear Equ	ation	n =	6		a 1 =	-0.191
_						a2 =	0.637
log x	log y	x*y	x^2	y calc	% error		
1.17	0.60	0.71	1.37	0.55	0.08		
1.25	0.65	0.81	1.56	0.60	0.07		
1.05	0.30	0.32	1.10	0.48	-0.57		
0.94	0.44	0.42	0.88	0.41	0.08		
0.84	0.26	0.22	0.70	0.34	-0.30		
0.81	0.44	0.36	0.65	0.32	0.27		
6.05	2.70	2.83	6.26				
* IV = T1	r, DV= GUT	LL = 1.0	D = .125				

C-1	Linear Eq	uation	n =	5		a1 = a2 =	0.4 0.1
x	у	x*y	x^2	y calc	% error		•••
28.39	5.00	141.95	805.99	5.46	-0.09		
16.06	3.24	52.03	257.92	3.27	-0.01		
18.84	4.06	76.49	354.95	3.76	0.07		
31.19	6.22	194.00	972.82	5.96	0.04		
6.13	1.42	8.70	37.58	1.50	0.06		
100,61	19.94	473.18	2429.25		<u> </u>		
C-2	Linear Eq	uation	n =	5		a1 =	1.43
x		x*y	x^2	y calc	% error	a 2 =	0,0
23.08	y 3.34	77. 09	532.69	3.52	-0.05		
15.92	3.13	49.83	253.45	2.87	0.08		
9.51	3.32	31.57	90.44	2.29	0.31		
20.24	3.00	60.72	409,66	3.26	-0.09		
5.47	1.06	5.80	29.92	1.92	-0.81		
74.22	13.85	225.01	1316.15				
C-3	Linear Eq	uation	n =	5		a 1 =	0.98
						a 2 =	0.13
17.72	<u>y</u>	x*y	x^2	y calc	% error		
17.73 11.02	3.31	58.69	314.35	3.68	-0.11		
9.08	3.59 2.88	39.56 26.15	121.44 82.45	2.66	0.26		
19.00	3.66	69.54	361.00	2.36 3.87	0.18 -0.06		
5.17	0.89	4.60	26.73	1.77	-0.99		
62.00	14.33	198.54	905.97	4.77	V. 33		
 C-4	Linear Eq	uation	n =	5		a1 =	1.9
						a2 =	0.00
x	у	x*y	x^2	y calc	% еггог		
53.47	5.06	270,56	2859.04	5.68	-0.12		
18.35	4.41	80.92	336.72	3.24	0.27		
11.69	3,45	40.33	136.66	2.78	0.20		
18.25	3.96	72.27	333.06	3.23	0.18		
4.99	0.35	1.75	24.90	2.31	-5.60		
106.75	17.23	465.83	3690.38				
C-5	Linear Eq	uation	n =	5		a 1 =	-1.34
x	y	x*y	x^2	y calc	% error	a 2 =	0.3
26.94	5.09	137.12	725.76	7.35	-0.44		
19.45	4.64	90.25	378.30	4.93	-0.06		
20.91	7,73	161.63	437.23	5.40	0.30		
25.13	7.86	197.52	631.52	6.77	0.14		
10.89	1.30	14.16	118.59	2.16	-0.66		
103.32	26.62	600.69	2291.40				
			RETRACTA				

C-1	Linear Eq	uation	n =	5		a1 = a2 =	-0.5 3 0.87
log x	log y	x*y	x^2	y calc	% error		
1.45	0.70	1.02	2.11	0.74	-0.05		
1.21	0.51	0.62	1.45	0.52	-0.02		
1.28	0.61	0.78	1.63	0.58	0.05		
1.49	0.79	1.19	2.23	0.77	0.03		
0.79	0.15	0.12	0.62	0.15	-0.02		
6.22	2.76	3.71	8.04				
IV= TT,	DV= RES		RETRACT	ABLE			
C-2	Linear Equ	uation	n =	5		a1 = a2 =	-0.33 0.66
log x	log y	x*y	x ^ 2	y calc	% error	GI.	0.00
1.36	0.52	0.71	1.86	0.57	0.09		
1.20	0.50	0.60	1.44	0.47	0.06		
0.98	0.52	0.51	0.96	0.32	0.39		
1.31	0.48	0.62	1.71	0.53	-0.12		
0.74	0.03	0.02	0.54	0.15	-5.11		
5.59	2.04	2.46	6.51	V.15	<i>7.11</i>		
IV= TT,	DV= RES	T, $L = .10$,	RETRACI	ABLE			
C-3	Linear Equ	uation	n =	5		a1 = a2 =	-0.60 0.96
log x	log y	x*y	x^2	y calc	% error	a2 -	0.50
1.25	0.52	0.65	1.56	0.60	-0.16		
1.04	0.56	0.58	1.09	0.40	0.27		
0.96	0.46	0.44	0.92	0.32	0.30		
1.28	0.56	0.72	1.64	0.63	-0.12		
0.71	-0.05	-0.04	0.51	0.09	2.70		
5.24	2.05	2.35	5.71				
IV= TT,	DV = RES	T, $P = .10$, I	RETRACI			4	
		T, $P = .10$, I		ABLE 5		a1 = a2 =	
IV= TT,	DV = RES	T, $P = .10$, I	RETRACI		% error		
IV= TT, :-4	DV = RES Linear Equ	T, P = .10, I	RETRACI n =	5	% error -0.38		
IV= TT, C-4 log x	DV= RES Linear Equ	T, P=.10, I uation x*y	n = x^2	y calc			
IV= TT, C-4 log x 1.73	DV = RES Linear Equilog y 0.70	T, P = .10, I uation x*y 1.22	n = x^2 2.99	y calc 0.97	-0.38		
log x 1.73 1.26 1.07 1.26	DV = RES Linear Equilog y 0,70 0,64	x*y 1.22 0.81	x^2 2.99 1.60 1.14 1.59	y calc 0.97 0.47	-0.38 0.27		
iv = TT, 2-4 log x 1.73 1.26 1.07 1.26 0.70	DV = RES- Linear Equilibrium log y 0.70 0.64 0.54	x*y 1.22 0.81 0.57	n = x^2 2.99 1.60 1.14	y calc 0.97 0.47 0.26	-0.38 0.27 0.52		
lv = TT, 2-4 log x 1.73 1.26 1.07 1.26 0.70 6.02	DV = RES Linear Equ 0.70 0.64 0.54 0.60 -0.46 2.03	x*y 1.22 0.81 0.57 0.75 -0.32 3.04	x^2 2.99 1.60 1.14 1.59 0.49 7.80	y calc 0.97 0.47 0.26 0.47 -0.14	-0.38 0.27 0.52 0.22		
IV = TT, C-4	DV = RES Linear Equ log y 0.70 0.64 0.54 0.60 -0.46 2.03 DV = RES	x*y 1.22 0.81 0.57 0.75 -0.32 3.04 -T, L=.10, I	x^2 2.99 1.60 1.14 1.59 0.49 7.80 RETRACT	y calc 0.97 0.47 0.26 0.47 -0.14	-0.38 0.27 0.52 0.22	a2 =	1.07
lv = TT, 2-4 log x 1.73 1.26 1.07 1.26 0.70 6.02	DV = RES Linear Equ 0.70 0.64 0.54 0.60 -0.46 2.03	x*y 1.22 0.81 0.57 0.75 -0.32 3.04 -T, L=.10, I	x^2 2.99 1.60 1.14 1.59 0.49 7.80	y calc 0.97 0.47 0.26 0.47 -0.14	-0.38 0.27 0.52 0.22		1.07
V = TT, -4	DV = RES Linear Equ log y 0.70 0.64 0.54 0.60 -0.46 2.03 DV = RES	x*y 1.22 0.81 0.57 0.75 -0.32 3.04 -T, L=.10, I	x^2 2.99 1.60 1.14 1.59 0.49 7.80 RETRACT	y calc 0.97 0.47 0.26 0.47 -0.14	-0.38 0.27 0.52 0.22	a2 = a1 =	-0.89 1.07 -1.72 1.83
V = TT, -4 \log x 1.73 1.26 1.07 1.26 0.70 6.02 V = Tf,	DV = RES Linear Equ 0,70 0,64 0,54 0,60 -0,46 2,03 DV = RES Linear Equ	x*y 1.22 0.81 0.57 0.75 -0.32 3.04 T, L=.10, I	x^2 2.99 1.60 1.14 1.59 0.49 7.80 RETRACT n =	y calc 0.97 0.47 0.26 0.47 -0.14 ABLE	-0.38 0.27 0.52 0.22 0.69	a2 = a1 =	1.07
V = TT, 1.73 1.26 1.07 1.26 0.70 6.02 V = Tf, 1.43 1.29	DV = RES Linear Equ log y 0.70 0.64 0.54 0.60 -0.46 2.03 DV = RES Linear Equ log y	x*y 1.22 0.81 0.57 0.75 -0.32 3.04 -T, L=.10, I	x^2 2.99 1.60 1.14 1.59 0.49 7.80 RETRACT n = x^2	y calc 0.97 0.47 0.26 0.47 -0.14 ABLE 5	-0.38 0.27 0.52 0.22 0.69	a2 = a1 =	1.07
V = TT, 1.73 1.26 1.07 1.26 0.70 6.02 V = Tf, 1.43	DV = RES Linear Equ log y 0.70 0.64 0.54 0.60 -0.46 2.03 DV = RES Linear Equ log y 0.71	x*y 1.22 0.81 0.57 0.75 -0.32 3.04 -T, L=.10, I	x^2 2.99 1.60 1.14 1.59 0.49 7.80 RETRACT n = x^2 2.05	y calc 0.97 0.47 0.26 0.47 -0.14 ABLE 5	-0.38 0.27 0.52 0.22 0.69	a2 = a1 =	1.07
V = TT, 1.73 1.26 1.07 1.26 0.70 6.02 V = Tf, 1.43 1.29	DV = RES Linear Equ log y 0.70 0.64 0.54 0.60 -0.46 2.03 DV = RES Linear Equ log y 0.71 0.67	x*y 1.22 0.81 0.57 0.75 -0.32 3.04 -T, L=.10, I	x^2 2.99 1.60 1.14 1.59 0.49 7.80 RETRACT n = x^2 2.05 1.66	y calc 0.97 0.47 0.26 0.47 -0.14 ABLE 5 y calc 0.90 0.64	-0.38 0.27 0.52 0.22 0.69 % error -0.28 0.04	a2 = a1 =	1.07
log x 1.73 1.26 1.07 1.26 0.70 6.02 IV= Tf, 1.43 1.29 1.32	DV = RES Linear Equ log y 0.70 0.64 0.54 0.60 -0.46 2.03 DV = RES Linear Equ log y 0.71 0.67 0.89	x*y 1.22 0.81 0.57 0.75 -0.32 3.04 T, L=.10, I	RETRACT n = x^2 2.99 1.60 1.14 1.59 0.49 7.80 RETRACT n = x^2 2.05 1.66 1.74	y calc 0.97 0.47 0.26 0.47 -0.14 ABLE 5 y calc 0.90 0.64 0.70	-0.38 0.27 0.52 0.22 0.69 % error -0.28 0.04 0.21	a2 = a1 =	1.07

C-1	Linear E		n =	6	lepleted in to	a 1 =	2.652
		x*y	x^2		<i>M</i>	a 2 =	0.046
20.92	<u>y</u> 247	51.67	437.65	y calc 3.61	% error -0.46		
28.61	3.69	105.57	818.53	3.96	-0.07		
30.68	4.87	149.41	941.26	4.05	0.17		
14.79	2.82	41.71	218.74	3.33	0.18		
12.71	4.42	56.18	161.54	3.23	0.27		
12.10	3.12	37.75	146.41	3.21	0.03		
119.81	21.39	442.29	2724.14	3.27	.,,,,		
C-2	Linear E	quation	n =	6		a1 = a2 =	2.594 0.041
x	у	x*y	x^2	y calc	% error	a 2 =	0.041
20.38	2.64	53.80	415.34	3.43	-0.30		
25.67	4.53	116.29	658.95	3.64	0.20		
32.26	3.63	117.10	1040.71	3.91	-0.08		
12.94	3.37	43.61	167.44	3.12	0.07		
10.33	1.85	19.11	106.71	3.02	-0.63		
10.11	4.10	41.45	102.21	3.01	0.27		
111.69	20.12	391.36	2491.37				
C-3	Linear E	quation	n =	6		a1 =	-0.246
x	у	x*y	x^2	y calc	% error	a 2 =	0.189
18.85	2.13	40.15	355.32	3.31	-0.55		
18.22	2.71	49.38	331.97	3.19	-0.18		
18.29	2.59	47.37	334.52	3.21	-0.24		
55.04	10.40	572.42	3029.40	10.14	0.02		
7.73	2.95	22.80	59.75	1.21	0.59		
51.48	9.76	502.44	2650.19	9.47	0.03		
169.61	30.54	1234.56	6761.16				
C-4	Linear E	quation	n =	6		a1 = a2 =	-0.575 0.294
x	y	x*y	x^2	y calc	% еггог	a Z =	0.294
27.26	4.29	116.95	743.11	7.43	-0.73		
47.47	12.33	585.31	2253.40	13.36	-0,08		
52.36	16.84	881.74	2741.57	14.80	0.12		
15.73	4.15	65.28	247.43	4.04	0.03		
12.60	4.52	56.95	158.76	3.12	0.31		
13.22	3.93	51.95	174.77	3.31	0.16		
168.64	46.06	1758.18	6319.04				
C-5	Linear E	quation	n =	6		a1 = a2 =	3.207 0.082
x	У	x¹y	x^2	y calc	% error	a2 -	0.002
	6.87	329.55	2301.12	7.15	-0.04		
47.97	3.58	92.29	664.61	5.32	-0.49		
	3.50		796.93	5.52	-0.03		
47.97	5.38	151. 88	,,,,,,				
47.97 25.78		151. 88 192.32	575.04	5.18	0.35		
47.97 25.78 28.23	5.38			5.18 3.90	0.35 0.02		
47.97 25.78 28.23 23.98	5.38 8.02	19232	575.04				
47.97 25.78 28.23 23.98 8.39 8.75 143.10	5.38 8.02 3.97 3.17 30.99	192.32 33.31 27.74 827.09	575.04 70.39	3.90 3.93	0.02 -0.24		

			values tran		o logarithmic		
C-1	Linear Ed	ustion	n =	-6		a1 =	0.299
0.0	1		x^2		Ø	a 2 =	0.189
log x	log y 0.39	0.52	1.74	y calc 0.55	% error -0.40		
1.46	0.57	0.32	2.12	0.57	-0.40 -0.01		
1.49	0.69	1.02	2.21	0.58	0.16		
1.17	0.45	0.53	1.37	0.52	-0.16		
1.10	0.65	0.71	1.22	0.51	0.21		
1.08	0.49	0.54	1.17	0.50	-0.02		
7.62	3.24	4.14	0.84				
	r, DV= RE			TRACTA	BLE		
C-2	Linear Ec	ustion	n =	6		a1 = a2 =	0.182 0.265
log x	log y	x*y	x^2	y calc	% error		
1.31	0.42	0.55	1.71	0.53	-0.26		
1.41	0,66	0.92	1.99	0.56	0.15		
1.51	0.56	0.84	2.28	0.58	-0.04		
1.11	0.53	0.59	1.24	0.48	0.10		
1.01	0.27	0.27	1.03	0.45	-0.69		
1.00	0.61	0,62	1.01	0.45	0.27		
7.36	3.05	3.79	9.25				
	, DV= RE				BLE		
C-3	Linear Ec	uation	n =	6		a1 =	-0.479
loo w	loo e	x*y	x^2		% error	a2 =	0.802
log x 1.28	log y 0.33	0.42	1.63	y calc 0.54	-0.65		
1.26	0.33	0.55	1.59	0.53	-0.23		
1.26	0.41	0.52	1.59	0.53	-0.29		
1.74	1.02	1.77	3.03	0.92	0.10		
0.89	0.47	0.42	0.79	0.23	0.50		
1.71	0.99	1.69	2.93	0.89	0.10		
8.14	3.65	5.37	11.56	*****	***		
	, DV= RE			TRACTA	BLE		
C-4	Linear Eq		n =	6		a1 = a2 =	-0.444 0.907
log x	log y	x*y	x^2	y calc	% error		
1.44	0.63	0.91	2.06	0.86	-0.36		
1.68	1.09	1.83	2.81	1.08	0.01		
1.72	1.23	2.11	2.95	1.11	0.09		
1.20	0.62	0.74	1.43	0.64	-0,04		
1.10	0,66	0.72	1.21	0.55	0.15		
1.12	0.59	0.67	1.26	0.57	0.04		
8.25	4.82	6.9 7	11.73				
	, DV= RE				BLE		
C-5	Linear Eq		n =	6		a1 = a2 =	0.215 0.364
logx	log y	x*y	x^2	y calc	% error		
1.68	0.84	1.41	2.83	0.83	0.01		
1.41	0.55	0.78	1.99	0.73	-0.32		
1.45	0.73	1.06	2.10	0.74	-0.02		
1.38	0.90	1.25	1.90	0.72	0.21		
0.03		0.55	0.85	0.55	0.08		
0.92	0.60				0.44		
0.92 0.94 7.79	0.50 0.50 4.13	0,47 5.52	0. 89 10.57	0.56	-0.11		

C-1	Linear Eq	uation	n =	4		a1 =	32.69
						a2 =	0.03
x	у	x*y	x^2	y calc	% еггог		
26.21	34.18	895.86	686.96	33.59	0.02		
14.95	28.44	425.18	223.50	33.21	-0.17		
14.00	35.54	497.56	196.00	33.17	0.07		
12.55	34.94	438.50	157.50	33.12	0.05		
67.71	133.10	2257.09	1263.97				
C-2	Linear Eq	uation	n =	4		a1 =	22.33
		. <u> </u>				a 2 =	0.16
х	у	x*y	x^2	y calc	% еггог		
26.59	26.74	711.02	707.03	26.78	-0.00		
16.15	24.26	391.80	260.82	25.04	·0.0 3		
14.53	26.19	380.54	211.12	24.76	0.05		
11.62	23.67	275.05	135.02	24.28	-0.03		
68.89	100.86	1758.40	1314.00				
C-3	Linear Eq	uation	n =	4		a1 =	25.87
	•	•				a2 =	0.18
х	у	x*y	x^2	y calc	% error		
14.57	28.21	411.02	212.28	28.57	-0.01		
10.81	27.14	293.38	116.86	27.88	-0.03		
10.89	29.55	321.80	118.59	27.89	0.06		
8.64	26.91	232.50	74.65	27.47	-0.02		
44.91	111.81	1258.71	522.38				
	111.01						
C-4	Linear Eq	uation	n =	4		a 1 =	37.43
	Linear Eq				% error	a1 = a2 =	
x	Linear Eq	x*y	x^2	y calc	% error		
x 39.57	Linear Eq y 51.93	x*y 2054.87	x^2 1565.78	y calc 52.28	-0.01		
x 39.57 19.52	y 51.93 45.58	x*y 2054.87 889.72	x^2 1565.78 381.03	y calc 52.28 44.77	-0.01 0.02		37.45 0.37
39.57 19.52 21.60	y 51.93 45.58 48.38	x*y 2054.87 889.72 1045.01	x^2 1565.78 381.03 466.56	y calc 52.28 44.77 45.55	-0.01 0.02 0.06		
x 39.57 19.52	y 51.93 45.58	x*y 2054.87 889.72	x^2 1565.78 381.03	y calc 52.28 44.77	-0.01 0.02		
x 39.57 19.52 21.60 19.19 99.88	y 51.93 45.58 48.38 41.35	x*y 2054.87 889.72 1045.01 793.51 4783.11	x^2 1565.78 381.03 466.56 368.26	y calc 52.28 44.77 45.55	-0.01 0.02 0.06		0.3
x 39.57 19.52 21.60 19.19 99.88	y 51.93 45.58 48.38 41.35 187.24 Linear Eq	x*y 2054.87 889.72 1045.01 793.51 4783.11	x^2 1565.78 381.03 466.56 368.26 2781.63	y calc 52.28 44.77 45.55 44.65	-0.01 0.02 0.06 -0.08	a 2 =	
x 39.57 19.52 21.60 19.19 99.88	y 51.93 45.58 48.38 41.35 187.24 Linear Eq	x*y 2054.87 889.72 1045.01 793.51 4783.11	x^2 1565.78 381.03 466.56 368.26 2781.63 n =	y calc 52.28 44.77 45.55 44.65	-0.01 0.02 0.06 -0.08	a2 = a1 =	0.3° 26.8°
x 39.57 19.52 21.60 19.19 99.88 C-5	y 51.93 45.58 48.38 41.35 187.24 Linear Eq y 25.28	x*y 2054.87 889.72 1045.01 793.51 4783.11 uation x*y 631.24	x^2 1565.78 381.03 466.56 368.26 2781.63 n = x^2 623.50	y calc 52.28 44.77 45.55 44.65 4 y calc 25.56	-0.01 0.02 0.06 -0.08	a2 = a1 =	0.3° 26.8°
x 39.57 19.52 21.60 19.19 99.88 C:5 x 24.97 17.37	y 51.93 45.58 48.38 41.35 187.24 Linear Eq y 25.28 25.58	x*y 2054.87 889.72 1045.01 793.51 4783.11 uation x*y 631.24 444.32	x^2 1565.78 381.03 466.56 368.26 2781.63 n = x^2 623.50 301.72	y calc 52.28 44.77 45.55 44.65 4 y calc 25.56 25.95	-0.01 0.02 0.06 -0.08 -0.01 -0.01	a2 = a1 =	0.3
x 39.57 19.52 21.60 19.19 99.88 C:-5 x 24.97 17.37 16.54	y 51.93 45.58 48.38 41.35 187.24 Linear Eq y 25.28 25.58 28.57	x*y 2054.87 889.72 1045.01 793.51 4783.11 uation x*y 631.24 444.32 472.55	x^2 1565.78 381.03 466.56 368.26 2781.63 n = x^2 623.50 301.72 273.57	y calc 52.28 44.77 45.55 44.65 4 y calc 25.56 25.95 25.99	-0.01 0.02 0.06 -0.08 -0.01 -0.01 0.09	a2 = a1 =	0.3
x 39.57 19.52 21.60 19.19 99.88 C:5 x 24.97 17.37	y 51.93 45.58 48.38 41.35 187.24 Linear Eq y 25.28 25.58	x*y 2054.87 889.72 1045.01 793.51 4783.11 uation x*y 631.24 444.32	x^2 1565.78 381.03 466.56 368.26 2781.63 n = x^2 623.50 301.72	y calc 52.28 44.77 45.55 44.65 4 y calc 25.56 25.95	-0.01 0.02 0.06 -0.08 -0.01 -0.01	a2 = a1 =	0.3

Table A			alues trans	formed to l	ogarithmic nu	mbers.	
C-1	Linear Eq	uation	n=	4		a1 =	1.508
	1		x^2		07	a ? =	0.011
log x	10g y 1.53	2.18	2.01	y calc 1.52	% error 0.01		
1.42	1.33			1.52	-0.05		
1.17 1.15	1.45	1.71 1.78	1.38 1.31	1.52	0.02		
1.19	1.54	1.70	1.21	1.52	0.02		
4.84	6.08	7.36	5.91	1.32	0.02		
	, DV = RES			TRACTAR	I F		
C-2	Linear Eq		n =	4	·LL	a1 =	1.248
C Z	Linear Eq	Wation	и —	•		a2 =	0.126
log x	log y	x*y	x^2	y calc	% error	42 -	0.120
1.42	1.43	2.03	2.03	1.43	-0,00		
1.42	1.38	1.67	1.46	1.40	-0.01		
1.16	1.42	1.65	1.35	1.39	0.02		
1.07	1.37	1.46	1.13	1.38	0.01		
4.86	5.60	6.82	5.98	1.20	•		
	, DV= RES			TRACTAB	LE		
C-3	Linear Eq		n =	4		al =	1.357
						a 2 =	0.085
logx	log y	x*y	x^2	y calc	% error		
1.16	1.45	1.69	1.35	1.46	-0.00		
1.03	1.43	1.48	1.07	1.45	0.01		
1.04	1.47	1.53	1.08	1.45	0.02		
0.94	1.43	1.34	0.88	1.44	-0.01		
4.17	5.78	6.03	4.37				
*IV = T1	, DV = RES	-T, $L = 1.0$	D.125, RE	TRACTAB	LE		
C-4	Linear Eq	uation	n =	4		a1 =	1.351
						a 2 =	0.231
logx	log y	x*y	x^2	y calc	% error		
1.60	1.72	2.74	2.55	1.72	-0.00		
1.29	1.66	2.14	1.67	1.65	0.01		
1.33	1.68	2.25	1.78	1.66	0.02		
1.28	1.62	2.07	1.65	1.65	-0.02		
5.51	6.68	9.20	7.64				
	DV = RES				LE		
C-5	Linear Eq	uation	n =	4		a1 =	1.444
						a 2 =	-0.025
log x	log y	x*y	x^2	y calc	% error		
1.40	1.40	1.96	1.95	1.41	-0.00		
1.24	1.41	1.75	1.54	1.41	-0.00		
1.22	1.46	1.77	1.48	1.41	0.03		
1.18	1.38	1.63	1.39	1.41	-0.02		
5.04	5.65	7.11	6.37	PD ACTE A D	/ C		
JA = JJ	, DV = RES	\cdot 1, L = 1.0	D.123, RE	IKACIAB	LE		

Table 15.

C-1	Linear Ec			S S	ted in one pri		0,045
C-1	Linear Eq	luation	n =	,		a1 = a2 =	0.075
x	у	x*y	x^2	y calc	% error	a	0.07.
28.39		53.94	805.99	2.18	0.15		
16.06		6.75	257.92	1.25	-1.98		
16.84		12.29	283.59	1.31	0.79		
31.19		100.12	972.82	2.39	0.26		
6.13		8.40	37.58	0.51	0.63		
98,61	7.63	181.50	2357.89	9.31	0.03		
C-2	Linear Eq	uation	n =	5		a1 =	0,900
				-		a2 =	-0.021
х	y	x *y	x^2	y calc	% error		*****
23.08	0.37	8.54	532.69	0.41	-0.11		
15.92	0.37	5.89	253.45	0.56	-0.52		
9.51	0.40	3.80	90.44	0.70	-0.75		
20.24	0.74	14.98	409.66	0.47	0.36		
5.47	1.05	5.74	29.92	0.78	0.25		
74.22	2.93	38.96	1316.15	0.70	0.23		
	2	30.50	1010.10				
C-3	Linear Eq	uation	n =	5		a1 =	0.746
-				•		a2 =	-0.027
x	у	x*y	x^2	y calc	% error	az. –	-0.021
17.73	0.12	2.13	314.35	0.27	-1.24		
11.02	0.23	2.53	121.44	0.45	-0.95		
9.08	0.33	3.00	82.45	0.50	-0.52		
19.00	0.51	9.69	361.00	0.23	0.54		
5.17	0.87	4.50	26.73	0.61	0.30		
62.00	2.06	21.85	905,97				
C-4	Linear Eq	uation	n =	5		al =	0.332
				·		a2 =	0.050
x	у	x*y	x^2	y calc	% error		*****
53.47	2.91	155.60	2859.04	3.03	-0.04		
18.35	1.60	29.36	336.72	1.26	0.21		
11.69	0.81	9.47	136.66	0.92	-0.14		
18.25	1.39	25.37	333.06	1.25	0.10		
4.99	0.33	1.65	24.90	0.58	-0.77		
106.75	7.04	221.44	3690.38				
C-S	Linear Eq	uation	n =	5		a1 =	0.174
	•					a2 =	0.087
×	ÿ	x*y	x^2	y calc	% error		
26.94	1.55	41.76	725.76	2.51	-0.62		
19.95	1.30	25.94	398.00	1.90	-0.46		
20.91	1.77	37.01	437.23	1.99	-0.12		
25.13	3.97	99.77	631.52	2.35	0.41		
10.89	1.28	13.94	118.59	1.12	0.13		
103.82	9.87	218.41	2311.10				
. E. T	D17 G115		TRACTAB				

•Note: TT= travel time, GUT= giving up time.

Table A4			lues transfo	rmed to log	arithmic numb	ers.	
C-1	Linear Equ	uation	n =	5		a1 =	-0.479
						a 2 =	0.455
logx	log y	x*y	x^2	y calc	% error		
1.45	0.28	0.41	2.11	0.18	0.35		
1.21	-0.38	-0.45	1.45	0.07	1.18		
1.23	-0.14	-0.17	1.50	0.08	1.57		
1.49	0.51	0.76	2.23	0.20	0.60		
0.79	0.14	0.11	0.62	-0.12	1.89		
6.17	0.41	0.65	7.92				
	, DV= GU1		ETRACTA				
C-2	Linear Equ	uation	n =	5		a 1 =	0.228
						a 2 =	-0.450
log x	log y	x*y	x^2	y calc	% error		
1.36	-0.43	-0.59	1.86	-0.38	0.11		
1.20	-0.43	-0.52	1.44	-0.31	0.28		
0.98	-0.40	-0.39	0,96	-0.21	0.47		
1.31	-0.13	-0.17	1.71	-0.36	-1.75		
0.74	0.02	0.02	0.54	-0.10	5.89		
5.59	-1.37	-1.65	6.51				
*IV= TT	, DV= GUT	L=.10 RI	ETRACTA	BLE			
C-3	Linear Equ	ation	n =	5		a1 =	0.427
						a 2 =	-0.864
log x	log y	x*y	x^2	y calc	% error		
1.25	-0.92	-1.15	1.56	-0,65	0.29		
1.04	-0.64	-0.67	1.09	-0.47	0.26		
0.96	-0.48	-0.46	0.92	-0.40	0.17		
1.28	-0.29	-0.37	1.64	-0.68	-1.32		
0.71	-0.06	-0.04	0.51	-0.19	-2.13		
5.24	-2.39	-2.69	5.71				
·IV= TT	, DV= GUT	, L=.10 RI	ETRACTA	BLE	···		
C-4	Linear Equ	ation	n =	5		a1 =	-1.077
	-					a 2 =	0.935
log x	log y	x*y	x^2	y calc	% error		
1.73	0.46	0.80	2.99	0.54	-0.16		
1.26	0.20	0.26	1.60	0.10	0.49		
1.07	-0.09	-0.10	1.14	-0.08	0.13		
1.26	0.14	0.18	1.59	0.10	0.29		
0.70	-0.48	-0.34	0.49	-0.42	0.12		
6.02	0.24	0.81	7.80				
· IV= TT	, DV= GU1	L = .10 R		BLE			
C-5	Linear Equ		n =	5		a 1 =	-0.618
	•					a2 =	0.670
log x	log y	x*y	x^2	y calc	% error		-,
1.43	0.19	0.27	2.05	0.34	-0.79		
1.30	0.11	0.15	1.69	0.25	-1.22		
1.32	0.25	0.33	1.74	0.27	-0.08		
1.40	0.60	0.84	1.96	0.32	0.46		
1.04	0.11	0.11	1.08	0.32	0.28		
	1.26	1.70	8.52	V. V	V. 20		
6.49							

C-1	Linear E	quation	n =	6		a1 = a2 =	0,67
x	У	x*y	x ^ 2	y calc	% error	81Z =	0.034
20.92	0.41	8.58	437.65	1.31	2.18		
28.61	1.70	48.64	818.53	1.54	0.09		
30.68	1.93	59.21	941.26	1.60	0.17		
14.79	0.53	7.84	218.74	1.12	-1.11		
12.71	2.24	28.47	161.54	1.06	0.53		
12.10	0.85	10.29	146.41	1.04	-0.22		
119.81	7.66	163,02	2724.14				
C-2	Linear E	quation	n =	6		a1 =	1.499 0.014
		x*y	x^2	y calc	% еггог	a 2 =	0.01
20.38	9 0.74	15.08	415.34	1.78	-1.41		
25.67	2.84	72.90	658.95	1.86	0.35		
32.26	1.80	58.07	1040.71	1.95	-0.08		
12.94	1.25	16.18	167.44	1.68	-0.34		
10.33	1.28	13.22	106.71	1.64	-0.28		
10.11	2.64	26.69	102.21	1.64	0.38		
111.69	10.55	202.14	2491.37		V.5 V		
~ · ·	1:		***				4.04
C-3	Linear E	quation	n =	6		a1 = a2 =	-1. 848 -0.177
x	У	x*y	x^2	y calc	% еггог	a 2	0.177
18.85	0.42	7.92	355.32	1.48	-2.52		
18.22	0.82	14.94	331.97	1.37	-0.67		
18.29	0.64	11.71	334.52	1.38	-1.16		
55.04	6.82	375.37	3029.40	7.87	-0.15		
7. 73	1.20	9.28	59.75	-0.48	1.40		
51.48	8.95	460.75	2650.19	7.24	0.19		
169.61	18.85	879.96	6761.16				
C-4	Linear E	quation	n =	6		a1 = a2 =	-2.169 0.278
x	У	x*y	x^2	y calc	% error	a Z –	0.276
27.26	2.56	69.79	743.11	5.40	-1.11		
47.47	10.12	480,40	2253.40	11.01	-0.09		
52.36	14.19	742.99	2741.57	12.37	0.13		
15.73	2.25	35.39	247.43	2.20	0.02		
12.60	2.92	36.79	158.76	1.33	0.54		
13.22	1.77	23.40	174.77	1.50	0.15		
168.64	33.81	1388,75	6319.04				
C-5	Linear E	quation	n =	6		a1 =	1.142
x	У	x*y	x^2	y calc	% error	a 2 =	0.061
47.97	3.73	178.93	2301.12	4.06	-0.09		
25.78	1.32	34.03	664.61	2.71	-1.05		
28.23	2.34	66.06	796.93	2.86	-0.22		
23.98	5.66	135.73	575.04	2.60	0.54		
8.39	1.72	14.43	70.39	1.65	0.04		
	0.78	6.83	76.56	1.67	-1.15		
8.75							
143.10	15.55	436.00	4484.66 D.5 RETRA				

8 y x*y 39 -0.51 23 0.34 29 0.42 29 0.42 28 -0.32 35 0.39 .07 -0.08 13 0.24 = GUT, L=1 ar Equation 8 y x*y .13 -0.17 45 0.64 26 0.39 10 0.11 11 0.11 42 0.42 20 1.49 = GUT, L=1 ar Equation	1.22 1.17 9.84 .0-D.5 RET n = x^2 1.71 1.99 2.28 1.24 1.03 1.01 9.25	y calc 0.21 0.21 0.22 0.19 0.18 0.18	% error 2.58 0.53 0.13 -0.98 -0.72 0.56	a1 = a2 = a2 =	0.528 0.433 0.109 0.075
.39	1.74 2.12 2.21 1.37 1.22 1.17 9.84 .0-D.5 RET n = x ^ 2 1.71 1.99 2.28 1.24 1.03 1.01 9.25	0.04 0.10 0.12 -0.02 0.05 0.06 RACTABI 6 y calc 0.21 0.21 0.22 0.19 0.18 0.18	1.11 0.55 0.59 0.92 1.14 0.16 LE % error 2.58 0.53 0.13 -0.98 -0.72 0.56	a1 =	0.109
.39	1.74 2.12 2.21 1.37 1.22 1.17 9.84 .0-D.5 RET n = x ^ 2 1.71 1.99 2.28 1.24 1.03 1.01 9.25	0.04 0.10 0.12 -0.02 0.05 0.06 RACTABI 6 y calc 0.21 0.21 0.22 0.19 0.18 0.18	1.11 0.55 0.59 0.92 1.14 0.16 LE % error 2.58 0.53 0.13 -0.98 -0.72 0.56		
23 0.34 29 0.42 .28 -0.32 35 0.39 .07 -0.08 13 0.24 = GUT, L=1 ar Equation 8 y x*y .13 -0.17 .45 0.64 .26 0.39 10 0.11 11 0.11 .42 0.42 .20 1.49 = GUT, L=1 ar Equation	2.12 2.21 1.37 1.22 1.17 9.84 .0-D.5 RET n = x^2 1.71 1.99 2.28 1.24 1.03 1.01 9.25	0.10 0.12 -0.02 0.05 0.06 RACTABI 6 y calc 0.21 0.21 0.22 0.19 0.18 0.18	0.55 0.59 0.92 1.14 0.16 LE % error 2.58 0.53 0.13 -0.98 -0.72 0.56		
29 0.42 .28 -0.32 .35 0.39 .07 -0.08 .13 0.24 = GUT, L=1 ar Equation 8 y x*y .13 -0.17 .45 0.64 .45 0.39 .10 0.11 .11 0.11 .42 0.42 .20 1.49 = GUT, L=1 ar Equation	2.21 1.37 1.22 1.17 9.84 .0-D.5 RET n = x^2 1.71 1.99 2.28 1.24 1.03 1.01 9.25 .0-D.5 RET	0.12 -0.02 0.05 0.06 RACTABL 6 y calc 0.21 0.21 0.22 0.19 0.18 0.18	0.59 0.92 1.14 0.16 LE % error 2.58 0.53 0.13 -0.98 -0.72 0.56		
.28	1.37 1.22 1.17 9.84 .0-D.5 RET n = x ^ 2 1.71 1.99 2.28 1.24 1.03 1.01 9.25	-0.02 -0.05 -0.06 RACTABL 6 y calc -0.21 -0.21 -0.22 -0.19 -0.18 -0.18	0.92 1.14 0.16 LE % error 2.58 0.53 0.13 -0.98 -0.72 0.56		
35 0.39 .07 0.08 13 0.24 = GUT, L=1 ar Equation 8y x*y .13 0.17 45 0.64 46 0.39 10 0.11 11 0.11 42 0.42 20 1.49 = GUT, L=1 ar Equation	1.22 1.17 9.84 .0-D.5 RET n = x^2 1.71 1.99 2.28 1.24 1.03 1.01 9.25 .0-D.5 RET	0.05 0.06 RACTAB 6 y calc 0.21 0.21 0.22 0.19 0.18 0.18	1.14 0.16 Werror 2.58 0.53 0.13 -0.98 -0.72 0.56		
0.07 0.08 13 0.24 = GUT, L=1 ar Equation 8 y x*y .13 0.17 45 0.64 26 0.39 10 0.11 11 0.11 42 0.42 20 1.49 = GUT, L=1 ar Equation	1.17 9.84 .0-D.5 RET n = x^2 1.71 1.99 2.28 1.24 1.03 1.01 9.25 .0-D.5 RET	9,06 RACTAB 6 y calc 0.21 0.21 0.22 0.19 0.18 0.18	0,16 Werror 2.58 0.53 0.13 -0.98 -0.72 0.56		
13 0.24 = GUT, L=1 ar Equation 8y x*y .13 -0.17 45 0.64 26 0.39 10 0.11 11 0.11 42 0.42 20 1.49 = GUT, L=1 ar Equation	9.84 .0-D.5 RET n = x^2 1.71 1.99 2.28 1.24 1.03 1.01 9.25 .0-D.5 RET	y calc 0.21 0.21 0.22 0.19 0.18 0.18	% error 2.58 0.53 0.13 -0.98 -0.72 0.56		
By x*y .13	.0-D.5 RET n = x^2 1.71 1.99 2.28 1.24 1.03 1.01 9.25 .0-D.5 RET	y calc 0.21 0.21 0.22 0.19 0.18 0.18	% error 2.58 0.53 0.13 -0.98 -0.72 0.56		
8y x*y .13 .0.17 45 0.64 26 0.39 10 0.11 11 0.11 42 0.42 20 1.49 = GUT, L=1 ar Equation	n = x^2 1.71 1.99 2.28 1.24 1.03 1.01 9.25	y calc 0.21 0.21 0.22 0.19 0.18 0.18	% error 2.58 0.53 0.13 -0.98 -0.72 0.56		
.13	1.71 1.99 2.28 1.24 1.03 1.01 9.25	0.21 0.21 0.22 0.19 0.18 0.18	2.58 0.53 0.13 -0.98 -0.72 0.56		
.13	1.99 2.28 1.24 1.03 1.01 9.25	0.21 0.22 0.19 0.18 0.18	2.58 0.53 0.13 -0.98 -0.72 0.56		
26 0.39 10 0.11 11 0.11 42 0.42 20 1.49 = GUT, L=1 ar Equation	2.28 1.24 1.03 1.01 9.25 .0-D.5 RET	0.22 0.19 0.18 0.18	0.13 -0.98 -0.72 0.56		
10 0.11 11 0.11 42 0.42 20 1.49 = GUT, L=1 ar Equation	1.24 1.03 1.01 9.25 .0-D.5 RET	0.19 0.18 0.18	-0.98 -0.72 0.56		
11 0.11 42 0.42 20 1.49 = GUT, L=1 ar Equation	1.03 1.01 9.25 .0-D.5 RET	0.18 0.18	-0.72 0.56		
42 0.42 20 1.49 = GUT, L=1 ar Equation	1.01 9.25 .0-D.5 RET	0.18	0.56		
20 1.49 = GUT, L=1 ar Equation	9.25 .0-D.5 RET				
= GUT, L=1 ar Equation	.0-D.5 RET	RACTAB			
ar Equation		RACTAB			
	n =		LE		
		6		a1 = a2 =	-1.576 1.311
gy x*y	x^2	y calc	% error	42	1.511
.38 -0.48		0.10	1.25		
			1.88		
			1.40		
		0.70	0.15		
08 0.07	0.79	-0.41	6.21		
95 1.63	2.93	0.67	0.30		
	11.56				
= GUT, L=1	.0-D.5 RE1	RACTAB	LE		
ar Equation	n =	6		a1 = a2 =	-1.079 1.225
gy x*y	x^2	y calc	% error		
	2.06	0.68	-0.66		
01 1.69	2.81	0.97	0.03		
	2.95	1.03	0.11		
	1.43	0.39	-0.10		
	1.21	0.27	0.42		
	1.26	0.29	-0.19		
	11.73	_			
	.0-D.5 RET		E		
ar Equation	n =	6 		a1 = a2 =	-0.532 0.659
gy x'y	x^2	y calc	% error		
	2.83	0.58	-0.01		
	1.99	0.40	-2.30		
	2.10	0.42	-0.15		
	1.90	0.38	0.50		
24 0.22	0.85	0.08	0.67		
	0.89	0.09	1.82		
	10.57	RACTABI			
	08 0.07 95 1.63 21 2.32 = GUT, L=1 ar Equation 8y x*y 41 0.59 01 1.69 15 1.98 35 0.42 47 0.51 25 0.28 63 5.46 = GUT, L=1 ar Equation	1.19	119	119	119 -0.24

C-1	Linear Ec	quation	n =	4		a1 =	9.10
						a2 =	-0.04
x	y	x*y	x^2	y calc	% еггог		
26.21	8.12	212.83	686.96	7.95	0.02		
14.95	7.24	108.24	223.50	8.44	0.17		
14.00	8.85	123.90	196.00	8.49	0.04		
12.55	9.22	115.71	157.50	8.55	0.07		
67.71	33.43	560.67	1263.97				
C-2	Linear Ec	quation.	n =	4		a1 =	5.95
					OT.	a2 =	0.042
X 2650	<u>y</u>	x*y	x^2	y calc	% error		
26.59	7.01	186.40	707.03	7.06	-0.01		
16.15	6.19	99.97	260.82	6.63	-0.07		
14.53	7.53	109.41	211.12	6.56	0.13		
11.62	5.97	69.37	135.02	6.44	-0.08		
68.89	26.70	465.15	1314.00				
C-3	Linear Ed	quation .	n =	4		a1 =	5.968
			x^2		% error	a2 =	-0.03
14.57	<u>y</u>	x*y	212.28	y calc 5.45	-0.09		
10.81	5.00	72.85					
	5.48	59.24	116.86	5.58	-0.02		
10.89	6.86	74.71	118.59	5.58	0.19		
8.64 44.91	4.93 22.27	42.60 249.39	74.65 522.38	5.66	-0.15		
44.31	LLLI	243.33	JLL.30				
C-4	Linear Ec	quation	n =	4		a1 = a2 =	13.172 0.126
x	ý	x*y	x^ 2	y calc	% error	1 2 -	0.120
39.57	18.08	715.43	1565.78	18.14	-0.00		
19.52	16.59	323.84	381.03	15.63	0.06		
21.60	16.30	352.08	466.56	15.89	0.03		
19.19	14.27	273.84	368.26	15.58	-0.09		
99.88	65.24	1665.18	2781.63				
C-5	Linear Eq	uation	n =	4		a 1 =	6.666
-	***					a2 =	-0.040
X	<u>y</u>	x*y	x^2	y calc	% error		
24.97	5.59	139.58	623.50	5.68	-0.02		
17.37	5.48	95.19	301.72	5.98	-0.09		
16.54	7.43	122.89	273.57	6.01	0.19		
15.17	5.23	79.34	230.13	6.06	-0.16		
74.05	23.73	437.00	1428.92				
UV- TT	DV= GIT	T, L = 1.0 - D	125 RETRA	CTABLE			

Table A	45 (continue	d), BWM y	/alues trans	formed to	logarithmic nu	imbers.	
C·1	Linear Eq	uation	n =	4		a1 =	1.054
						a2 =	-0.110
log x	log y	x*y	x^2	y calc	% error		
1.42	0.91	1.29	2.01	0.90	0.01		
1.17	0.86	1.01	1.38	0.92	-0.07		
1.15	0.95	1.09	1.31	0.93	0.02		
1.10	0.96	1.06	1.21	0.93	0.03		
4.84	3.68	4.45	5.91				
	, DV= GU				Æ	_	
C-2	Linear Eq	uation	n =	4		a1 =	0.661
			- A a		27	a 2 =	0.133
log x	log y	x*y	x^2_	y calc	% error		
1.42	0.85	1.20	2.03	0.85	-0.01		
1.21	0.79	0.96	1.46	0.82	-0.04		
1.16	0.88	1.02	1.35	0.82	0.07		
1.07	0.78	0.83	1.13	0.80	-0.03		
4.86	3.29	4.01	5.98	ACTEADI	<u> </u>		
	, DV = GU				E		0.744
C-3	Linear Eq	uation	n =	4		a1 =	0.761
1000	loon		x^2	y calc	% error	a 2 =	-0.019
log x 1.16	log y 0.70	x*y 0.81	1.35	0.74	-0.06		
1.03	0.74	0.76	1.07	0.74	-0.00		
1.04	0.74	0.70	1.08	0.74	0.11		
0.94	0.69	0.65	0.88	0.74	-0.07		
4.17	2.97	3.09	4.37	0.74	*0.07		
	, DV= GU			ACTARI	F		
C-4	Linear Eq		n =	4	L	a1 =	0.908
	Diata Eq		••	•		a2 =	0.220
logx	log y	x*y	x^2	y calc	% еггог		V.DE V
1.60	1.26	2.01	2.55	1.26	-0.00		
1.29	1.22	1.57	1.67	1.19	0.02		
1.33	1.21	1.62	1.78	1.20	0.01		
1.28	1.15	1.48	1.65	1.19	-0.03		
5.51	4.84	6.68	7.64				
IV=TT,	DV= GUT,	L = 1.0 - D.	125 RETR	ACTABLE			
C-5	Linear Eq	uation	n =	4		a1 =	0.889
						a2 =	-0.095
log x	log y	x*y	x^2	y calc	% error		
1.40	0.75	1.04	1.95	0.76	-0.01		
1.24	0.74	0.92	1.54	0.77	-0.04		
1.22	0.87	1.06	1.48	0.77	0.11		
1.18	0.72	0.85	1.39	0.78	-0.08		
5.04	3.08	3.87	6.37				
*IV = TT	, DV= GU1	L = 1.0 - D	.125 RETR	ACTABL	E		

APPENDIX B

	_	π			RES			GUT	
		X			Y			Y	
A-104	<mad< th=""><th>BWM</th><th>MAD></th><th><mad< th=""><th>BWM</th><th>MAD></th><th><mad< th=""><th>BWM</th><th>MAD</th></mad<></th></mad<></th></mad<>	BWM	MAD>	<mad< th=""><th>BWM</th><th>MAD></th><th><mad< th=""><th>BWM</th><th>MAD</th></mad<></th></mad<>	BWM	MAD>	<mad< th=""><th>BWM</th><th>MAD</th></mad<>	BWM	MAD
NT	111.83	122.72	133.61	8.44	10.68	12.91	4.20	6.78	9.36
NT*	54.61	66.98	79.34	7.56	9.36	11.16	3.41	5.35	7.30
R=1.0	5.36	6.64	7.93	3.60	3.91	4.23	0.17	0.31	0.45
R=1.0**	5.36	5.58	5.79	2.95	3.33	3.71	0.18	0.19	0.20
R=.25	10.33	12.42	14.50	4.13	4.48	4.80	0.09	0.16	0.24
R=.25*	10.55	11.12	11.69	4.44	4.66	4.88	0.14	0.45	0.76
R=.10	29.08	36.49	43.89	3.98	4.23	4.49	0.09	0.31	0.52
R= .05	29.04	36.93	44.82	4.20	4.48	4.76	0.09	0.30	0.50
R=.025	34.25	36.32	38.39	4.48	5.12	5.75	0.16	0.40	0.65
A-230									
NT	58.89	85.02	108.15	22.16	33.02	44.20	16.08	22.39	28.69
NT*	22.76	26.50	30.24	9.36	11.73	14.10	5.43	7.94	10.44
R=1.0	4.21	4.44	4.68	3.44	3.78	4.11	0.25	0.30	0.34
R=1.0**	4.15	4.49	4.83	3.70	3.95	4.20	0.25	0.34	0.43
R=.25	8.76	10.65	12.54	3.85	4.51	5.16	0.60	1.67	2.23
R=.25*	7.35	8.52	9.69	4.33	5.27	6.20	1.56	2.34	3.11
R≖.10	12.49	24.55	36.61	4.16	5.71	7.26	0.59	2.37	4.14
R=.05	40.24	54.37	68.49	5.41	10.08	14.75	1.72	5.77	9.82
R=.025	56.51	68.23	79.95	6.20	12.47	18.74	0.62	6.98	13.34
A-101									
NT	28.36	43.01	57.65	6.75	10.04	13.32	3.36	6.61	9.86
NT*	16.34	16.93	17.52	5.38	6.39	7.40	1.71	2.53	3.3
R=1.0	5.14	5.86	6.58	3.90	4.13	4.36	1.05	1.17	1.30
R=1.0**	4.95	5.32	5.70	4.23	4.45	4.66	0.95	1.06	1.17
R=.25	9.06	9.52	9.98	5.16	5.95	6.75	1.03	1.47	1.9
R=.25*	8.27	8.74	9.21	4.11	4.80	5.48	1.09	1.46	1.84
R=.10	12.76	15.82	18.89	6.37	8.00	9.64	0.97	2.00	3.03
R=.05	24.78	27.93	31.07	8.13	9.40	10.66	0.91	1.97	3.03
R=.025	42.97	57.85	72.74	7.01	8.03	9.05	1.91	3.04	4.17
A-123									
NT	15.99	22.53	29.07	7.92	10.17	12.43	2.97	5.32	7.60
NT*	13.88	14.71	15.54	7.13	7.72	8.31	1.91	2.29	2.67
R=1.0	5.39	6.35	7.30	4.96	5.18	5.39	0.37	0.71	1.05
R=1.0**	4.95	5.14	5.33	4.40	4.99	5.57	0.18	0.25	0.32
R=.25	13.05	15.00	16.95	4.51	5.25	6.00	0.15	0.27	0.38
R= 25*	10.45	11.04	11.63	4.97	5.42	5.88	0.65	0.90	1.15
R=.10	19.30	21.58	23.86	5.16	6.09	7.03	0.13	0.40	0.66
R= .05	40.67	44.60	48.53	5.89	6.94	10.99	0.15	0.77	1.28
R=.025	34.33	41.12	47.91	5.29	7.04	8.79	0.42	1.44	2.45

Table B20. Experiment 1, left lever depleted in two preys. TT RES GUT X A-104 <MAD BWM MAD> <MAD BWM MAD> <MAD BWM MAD> NT 26.38 30.25 10.67 22.51 9.52 13.92 18.32 6.72 14.62 NT* 18.74 21.34 23.93 5.77 6.84 7.91 3.75 4.56 5.38 R=1.0 4.36 5.48 6.61 2.60 4.26 5.91 1.18 2.68 4.08 R=.25 5.43 6.09 6.74 3.72 4.22 4.72 2.18 2.57 2.95 R=.10 10.53 12.85 3.57 3.97 4.36 2.22 11.69 1.82 2.61 R=.10* 10.71 12.92 15.13 4 24 4.74 5.24 2.31 2.53 2.76 R=.05 14.58 17.64 4.42 16.11 3.87 4.97 1.97 2.39 2.80 R= .05* 15.82 20.57 25.32 3.32 4.29 5.27 1.09 1.41 1.73 R=.025 39.28 43.38 47.48 4.24 4.63 5.02 2.11 2.73 3.35 A-230 NT 16.98 20.22 23.46 8.73 13.59 18.45 4.91 7.32 9.73 NT* 14.96 15.67 16.38 6.38 7.68 8.98 2.77 4.36 5.96 R=1.0 4.13 4.47 4.81 1.62 2.85 4.08 0.79 1.68 2.57 A=.25 6.87 8.27 9.67 4.01 4.39 4.76 1.88 2.28 2.67 R=.10 23.85 25.94 28.03 3.98 4.82 5.65 1.92 2.32 2.71 R=.10* 5.50 13.85 17.77 21.69 5.00 5.99 2.01 2.62 3.23 R=.05 47.68 6.50 58 02 68.36 4 64 8 36 1.19 3 50 5.81 R=.05* 44.11 61.18 78.24 5.45 5.95 6.44 2.43 2.93 3.43 R=.025 60.06 83.10 106.15 5.31 6.87 8.42 2.83 4.09 5.36 A-101 NT 15.22 17.11 19.00 5.30 7.10 8.90 2.83 3.93 5.03 NT* 2.50 4.42 5.17 3.09 3.69 14.41 15.05 15.68 5.92 R=1.0 5.73 6.09 2.63 2.83 3.03 1.37 1.56 1.75 6 46 R=.25 7.85 8 20 8 55 3 11 3.42 3.74 1.72 1.91 2 10 R=.10 10.44 11.32 12.20 3.45 3.86 4.27 1.90 2.50 3.11 R=.10* 12.66 13.70 14.73 3.64 4.41 5.18 1.84 2.55 3.26 R=.05 23.84 26.18 28.52 4.90 5.54 6.18 3.41 4.13 4.85 R=.05* 24.85 26.36 27.87 3.30 4.02 4.73 2.04 2.46 2.88 R=.025 51.07 58.14 65.21 5.57 6.09 6.61 3.54 4.13 4.72 A-123 NT 12.79 14.95 5.55 7.98 9.91 2.10 4.12 13.87 6 14 NT* 13.69 14.87 16.04 3.87 4.83 5.78 1.17 1.98 2.79 R=1.0 5.30 5.66 6.02 0.46 0.81 0.14 0.48 0.82 R=.25 7.00 7.55 8.10 0.50 0.97 1.44 0.16 0.53 0.90 R=.10 12.76 13.88 15.00 4.20 4 97 5.73 2.34 2.86 3.38 R=.10* 11.73 12.49 13.26 3.38 3.92 4.46 1.39 1.73 2.08 R=.05 20.25 24.26 28.27 6.13 7.10 8.08 3.36 4.47 5.57 R= 05* 21.45 27.06 4.66 24.25 5.04 5.43 2.02 2.58 3.14

*Re-determination, TT=travel time, RES=residence time, GUT=giving-up time.

4.52

5.65

6.78

2.30

3.32

4.34

44.64

R= .025

39.34

41.99

Table B	21. Ex	perimen	t 1, left le	ver deple	ted in e	ight prey	'S		
		TT			RES			GUT	
		X			Υ			ΥΥ	
A-104	< MAD	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td></mad<>	BWM	MAD>
NT	16.05	17.79	21.52	34.67	44.78	54.89	9.64	17.39	25.14
NT*	11.77	13.34	14.91	35.59	37.22	38.84	8.66	10.48	12.30
R=1.0	3.64	4.50	5.36	26.51	30.26	34.02	4.76	6.04	7.31
R=.25	4.19	5.38	6.57	20.02	24.61	29.21	4.77	5.65	6.53
R=.10	9.08	11.54	13.99	13.25	20.79	28.31	5.02	5.77	6.39
R=.10*	8.63	9.34	10.04	26.12	28.24	30.36	4.38	5.53	6.69
R=.05	12.88	24.83	36.78	27.97	30.29	32.61	6.97	7.40	7.83
R=.05*	12.75	14.66	16.57	35.53	36.99	38.45	6.16	7.09	8.03
A-230									
NT	16.35	20.50	24.64	29.85	32.08	34.31	9.96	12.41	14.86
NT*	32.74	42.90	53.05	96.7	120.4	144	34.29	48.10	61.95
R = 1.0	5.78	6.37	6.97	15.5	18.57	21.64	2.37	3.00	3.63
R=.25	2.99	4.81	6.63	15.98	21.88	27.78	11.09	12.83	14.56
R=.10	18.91	31.09	43.27	13.51	18.04	22.57	3.92	5.38	6.84
R=.10*	11.06	13.28	15.50	22.12	25.67	29.22	5.46	6.93	8.40
R=.05	57.34	94.29	131.24	26.04	32.04	38.04	8.05	10.38	12.70
A-101									
NT	14.50	16.49	18.48	26.04	28.87	31.7	7.52	8.10	8.65
NT*	12.83	13.56	14.29	27.09	28.11	29.13	6.45	7.99	9.53
R=1.0	5.77	7.06	8.35	24.62	27.99	31.35	4.61	5.85	7.09
R=.25	8.90	13.37	17.85	15.37	19.91	24.45	4.71	5.33	5.95
R=.10	14.65	18.73	22.81	9.156	16.97	24.78	1.91	4.41	6.91
R=.10*	12.95	14.23	15.52	19.31	21.87	24.43	4.87	5.42	5.97
R=.05	24.83	30.55	36.26	18.73	21.02	23.31	5.81	6.62	7.43
R=.05*	21.16	24.38	27.59	25.03	26.35	27.67	6.01	6.94	7.86
A-123									
NT	12.47	13.31	14.15	25.51	27.75	29.98	5.54	6.57	7.59
NT*	12.31	14.75	17.18	27.9	30.39	32.88	5.29	6.34	7.38
R=1.0	5.70	6.40	7.11	11.92	14.03	16.13	1.72	2.76	3.81
R=.25	6.52	6.87	7.22	8.198	9.168	10.14	1.61	1.83	2.04
R=.10	8.54	11.15	13.76	7.32	10.47	13.62	1.62	2.01	2.40
R=.10*	8.00	8.71	9.43	11.61	12.78	13.94	2.03	2.77	3.52
R=.05	12.68	14.79	16.89	12.33	13.88	15.42	3.30	4.01	4.71
R=.05*	15.00	17.76	20.52	18.95	20.2	21.45	3.89	4.49	5.09
* Re-de	termina	tion.		.					

		-)			,	
•		×			>			>	
ပ်	< MAD	BWM	MAD>	< MAD	₽¥	MAD>	< MAD	BWM	MAD>
Z	26.02	36.64	47.26	4.15	17.17	30.19	4.12	13.86	23.59
Ļ	24.58	27.88	31.20	4.00 00	5.05		0.89	1.63	(A)
R=1.0	3.45	6.13	6.84	0.75	4.		69.0	1.37	2.05
R=.10	15.14	16.84	18.53	3.61	4.08 8.04		0.29	0.73	=
R≖.10*	19.46	31.19	42.91	3.77	6.22	8.67	0.71	3.21	5.7
R=.05	14.47	16.08	17.65	2.76	3.24		0.18	0. 54	9.0
R=.025	24.36	28.39	32.42	3.67	8.8		0.58	<u>6</u>	3.2
C-5									
۲	22.40	26.57	30.65	0.30	23	4.38	0.28	2.32	8.38
Ļ	14.24	15.17	16.10	2.33	2.52	2.71	0.13	0.39	0
R=1.0	5.17	5.47	5.78	0.54	8	1.58	0.52	1.05	£.
R= 10	4	9.51	10.58	2.85	3.32	3.79	0.21	0 4	0.55
R=.10*	14.67	20.24	25.81	2.53	9.8	3.47	80.0	0.74	4.
R=.05	14.06	15.92	17.78	2.88	3.13	3.39	0.07	0.37	0
R=.025	21.04	23.08	25.49	2.72	3.34	5.51	0.09	0.37	90
င်း									
۲	17.22	19.19	21.16	0.36	1.08	1.80	0.34	8	17
, L	15.68	15.91	16.14	3.23	4.08	40.4	0.49	0.98	4
R=1.0	4.88	5.17	5.46	0.17	0.89	99.	0.15	0.87	75
R=.10	8.57	80.6	9.59	2.66	2.88	3.10	0.13	0.33	0.5
R=.10*	14.03	9.00	23.97	3.34	3.66	3.98	0.0	0.51	0.0
R=.05	10.37	11.02	11.67	3.275	3.59	3.91	0.0	0.23	0.42
R=.025	16.16	17.73	19.30	2.98	3.31	3.64	0.07	0.12	9
4									
۲	15.49	17.81	20.04	0.17	2.05	3.92	0.15	2.03	3.90
.L	12.89	14.31	15.73	4.31	5.64	6.98	1.74	3.00	4.
R=1.0	4.70	4.99	5.28	0.17	0.35	0.53	0.15	0.33	0
R=.10	11.17	11.69	12.38	3.35	3.45	3.55	0.47	0.81	=
R=.10*	1.56	18.25	24.94	2.77	3.96	5.15	0.52	1.39	25
R=.05	14.08	18.35	25.62	3.87	4.4	4.95	1.07	8	<u>~</u>
R=.025	38.79	53.47	68.15	4.16	5.08	5.96 8.00	2.07	2.91	3.7
Ç.5									
۲	8 . 44. 44.	45.03	53.63	1.62	6.88	12.14	6 .	6.86	12
ř.	21.63	23.27	24.91	7.68	10.24	12.80	2.59	3.93	5.27
R=1.0	9.21	10.89	12.57	0.15	1.30	2.45	0.13	1.28	9
R=.10	14.20	20.91		6.32	7.73	4.0	1.07	1.71	%
R= 10*	13.48	25.13	36.78	4.75 7.86	7.86	10.97	4.6	3.97	6 0
R=.05	17.64	19.45		4.12	4.04	5.15	0.85	1.30	1.7

Table B2		11			RES			GUT	
		X			Y			Y	
C-1	<mad< th=""><th></th><th>MAD></th><th><mad< th=""><th>BWM</th><th>MAD></th><th><mad< th=""><th></th><th>MAD:</th></mad<></th></mad<></th></mad<>		MAD>	<mad< th=""><th>BWM</th><th>MAD></th><th><mad< th=""><th></th><th>MAD:</th></mad<></th></mad<>	BWM	MAD>	<mad< th=""><th></th><th>MAD:</th></mad<>		MAD:
NT	14.80	16.45	18.10	4.00	4.94	5.88	2.08	2.85	3.62
NT*	18.63	19.92	21.20	2.82	3.74	4.66	0.90	1.93	2.96
R=.10	11.58	12.71	13.84	3.52	4.42	5.31	1.03	2.24	3.44
R=.10°	11.00	1210	13.20	294	3.12	3.30	0.57	0.85	1.14
R=.05	13.80	14.79	15.78	253	2.82	3.11	0.29	0.53	0.77
R=.025	20.17	20.92	21.67	2.23	2.47	271	0.21	0.41	0.60
R=.025	24.00	28.61	33.23	3.08	3.69	4.30	1.15	1.70	2.25
R=.025*	29.10	30.68	32.27	3.66	4.87	6.10	1.27	1.93	2.56
C-2									
NT	15.50	16.35	17.20	3.31	4.14	4.97	1.55	233	3.10
NT*	16.40	17.24	18.09	2.52	299	3.47	0.70	1.22	1.73
R=.10	9.51	10.33	11.15	0.55	1.85	3.15	0.16	1.28	2.40
R≈.10*	8.65	10.11	11.27	3.30	4.10	4.91	1.54	2.64	3.74
R=.05	11.91	12.94	13.98	2.79	3.37	3.95	0.76	1.25	1.74
R=.025	18.25	20.38	22.52	2.61	2.84	2.68	0.68	0.74	0.80
R=.025	22.54	25.67	28.80	3.96	4.53	5.10	2.32	284	3.37
R=.025*	30.60	32.26	33.93	3.38	3.63	3.88	1.48	1.80	212
C-3									
NT	11.62	12.99	14.36	2.97	3.84	4.71	1.14	1.96	2.78
NT*	14.03	14.53	15.03	2.61	3.38	4.14	0.48	1.24	1.96
R=.10	7.26	7.73	8.19	2.62	2.95	3.27	0.79	1.20	1.61
R=.10*	16.01	51.48	86.95	3.00	9.76	16.53	1.40	8.95	16.46
R=.05	20.87	55.04	89.21	3.00	10.40	17.79	1.35	6.82	12.2
R=.025	18.26	18.85	19.43	201	213	2.24	0.28	0.42	0.58
R=.025	16.45	18.22	19.90	2.36	271	3.06	0.53	0.82	1.11
R=.025*	17.91	18.29	18.68	2.23	259	294	0.25	0.64	1.03
C-4									
NT	16.95	17.44	17.94	5.29	6.95	8.62	3.28	4.80	6.32
NT*	17.15	18.00	18.84	4.04	5.17	6.30	1.88	296	4.03
A=.10	10.35	12.60	14.84	3.48	4.52	5.56	1.67	292	4.17
R=.10*	11.04	13.22	15.40	3.28	3.93	4.58	1.13	1.77	2.41
R=.05	14.46	15.73	17.00	3.47	4.15	4.82	1.82	2.25	2.68
R=.025	22.06	27.26	32.46	3.78	4.29	4.81	215	256	2.96
R=.025	28.34	47.47	66.60	8.88	1233	15.77	6.99	10.12	13.25
R=.025*	40.68	52.36	64.03	9.15	16.84	24.54	6.47	14.19	21.61
C-5									
NT	19.10	21.54	23.98	3.84	4.51	5.19	1.67	232	2.97
NT*	23.42	24.61	25.80	3.05	4.12	5.19	1.10	1.92	274
R=.10	7.96	8.39	8.83	3.38	3.97	4.56	1.23	1.72	221
R=.10°	8.40	8.75	9.10	279	3.17	3.55	0.63	0.78	0.94
R=.05	16.55	23.98	31.41	2.93	8.02	13.11	0.75	5.66	10.58
R=.025	31.45	47.97	64.50	3.35	6.87	10.39	1.22	3.73	6.25
R=.025	23.93	25.58	27.23	3.25	3.58	3.91	0.94	1.32	1.71
R=.025*	24.70	28.23	31.76	3.53	5.38	7.22	0.95	234	3.63

Table B24	Exper		, left lever o	depleted		preys, ret	actable le		
		TT			RES			GUT	
		X			Υ			Υ	
C-1	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td><td><mad< td=""><td>BWM</td><td>MAD></td></mad<></td></mad<>	BWM	MAD>	<mad< td=""><td>BWM</td><td>MAD></td></mad<>	BWM	MAD>
NT	19.29	22.01	24.73	39.04	40.50	41.95	9.88	11.53	13.17
NT*	17.86	18.54	19.22	31.81	34.10	36.39	7.74	9.13	10.52
NT w/obs	41.42	59.22	77.01	35.53	38.29	41.05	12.99	16.49	19.99
R=.10	11.46	14.00	16.53	29.22	35.54	41.85	6.88	8.85	10.83
R=.10*	11.73	12.55	13.37	32.60	34.94	37.28	8.23	9.22	10.20
R=.05	13.43	14.95	16.47	26.18	28.44	30.69	6.23	7.24	8.25
R=.025	24.89	26.21	27.52	30.98	34.18	37.38	7.18	8.12	9.06
C-2									
NT	20.10	20.66	21.21	18.73	19.57	20.40	4.55	4.65	4.75
NT*	19.20	20.13	21.06	24.49	25.74	26.99	5.35	6.13	6.91
NT w/obs	46.10	59.98	73.86	35.58	62.83	90.08	15.00	38.44	62.33
R=.10	12.16	14.53	16.90	24.95	26.19	27.43	5.70	7.53	9.36
R=.10*	10.39	11.62	12.85	21.65	23.67	25.69	4.44	5.97	7.50
R=.05	14.46	16.15	17.84	23.07	24.26	25.65	5.74	6.19	6.64
R=.025	23.13	26.59	30.05	25.09	26.74	28.39	6.21	7.01	7.81
C-3									
NT	15.50	17.27	19.02	30.81	33.99	37.18	7.82	9.10	10.38
NT*	15.32	18.56	21.79	31.17	32.10	33.03	6.74	7.87	9.00
NT w/obs	54.30	74.08	93.86	43.50	80.76	118.02	9.96	52.38	94.81
R= 10	10.17	10.89	11.62	21.54	29.55	37.56	4.79	6.86	8.93
R= 10*	7.68	8.64	9.59	24.51	26.91	29.31	3.96	4.93	5.89
R=.05	10.08	10.81	11.54	25.64	27.14	28.64	5.24	5.48	5.71
R= 025	13.34	14.57	15.80	26.34	28.21	30.07	4.57	5.00	5.43
C-4							··· - ·		
NT	19.36	21.28	23.20	37.82	41.50	45.17	9.21	11.18	13.15
NT*	24.34	26.35	28.36	41.00	46.46	51.92	10.25	14.28	18.31
NT w/obs	38.42	42.37	46.32	44.94	53.43	61.92	12.86	16.38	19.91
R=.10	17.76	21.60	25.44	44.56	48.36	52.16	14.01	16.30	18.59
R=.10*	17.13	19.19	21.25	36.62	41.35	46.07	11.36	14.27	17.19
R=.05	17.22	19.52	21.82	43.05	45.58	48.12	14.59	16.59	18.59
R=.025	36.52	39.57	42.62	49.79	51.93	54.07	16.70	18.08	19.46
C-5				10.70	• 1•	•	10.70		10.40
NT	21.80	23.40	25.00	26.99	28.88	30.77	6.11	6.75	7.39
NT*	21.50	23.01	24.52	27.07	30.43	33.80	5.70	6.52	7.34
NT w/obs		58.93	64.49	44.62	66.37	88.11	10.94	33.14	55.34
R=.10	15.52	16.54	17.55	26.18	28.57	30.96	6.14	7.43	8.72
R=.10*	13.51	15.17	16.83	23.22	24.13	25.04	4.62	5.23	5.84
R=.05	15.93	17.37	18.81	23.55					
R=.025	22.69	24.97	27.25	23.55	25.58 25.28	27.61 27.15	4.52 5.27	5.48 5.59	6.44 5.90

*Re-determinations, NT/obs≃natural travel with obstacles.

A-104	LL=.10	LL D in 2	LL D in
al for GUT	-0.753	0.447	0.651
a2 for GUT	0.175	-0.074	0.143
Std Err of Y Est for GUT	0.160	0.110	0.040
al for RT	0.492	0.594	1.373
a2 for RT	0.116	0.040	0.076
Std Err of Y EST for RT	0.050	0.020	0.090
LOG TT(NT)	2.090	1.420	1.250
LOG TT(NT)~	1.830	1.330	1.130
LOG RT(NT)	1.270	1.140	1.650
LOG RT(NT) ~	0.970	0.840	1.570
LOG GUT(NT)	0.830	1.030	1.240
LOG GUT(NT) ~	0.730	0.660	1.020
a2 GUT * LOG TT(NT)	0.366	-0.105	0.179
*2 GUT * LOG TT(NT) ~	0.320	-0.098	0.162
a2 RT * LOG TT(NT)	0.242	0.057	0.095
*2 RT * LOG TT(NT) ~	0.212	0.053	0.086
Est1 GUT = a1 + (a2 * log TI[NT])	-0.387	0.342	0.830
Est2 GUT = a1 + (a2 * log TT[NT] ~)	-0.433	0.349	0.813
Est1 RT= a1 + (a2 * logTT[NT])	0.734	0.651	1.468
Est2 RT = a1 + (a2 * logTT[NT] ~)	0.704	0.647	1.459
log res1 GUT = log GUT(NT) - Est1 GUT	1.217	0.688	0.410
log res2 GUT = log GUT(NT) ~ Est2 GUT	1.163	0.311	0.207
log res1 RT = log RT(NT) - Est1 RT	0.536	0.489	0.182
log res2 RT = log RT(NT) - Est2 RT	0.266	0.193	0.111

A-230	LL = 10	LL D in 2	LL D in 8
al for GUT	-0.977	0.085	0.715
a2 for GUT	1.024	0.247	0.098
Std Err of Y Est for GUT	0.230	0.050	0.280
al for RT	0.309	0.355	1.219
a2 for RT	0.395	0.254	0.112
Std Err of Y EST for RT	0.060	0.050	0.100
LOG TT(NT)	1.930	1.310	1.310
LOG TT(NT) ~	1.420	1.200	1.630
LOG RT(NT)	1.520	1.130	1.510
LOG RT(NT)~	1.070	0.890	2.080
LOG GUT(NT)	1.350	0.860	1.090
LOG GUT(NT)~	0.900	0.640	1.680
#2 GUT * LOG TT(NT)	1.976	0.324	0.128
#2 GUT * LOG TT(NT)~	1.454	0.296	0.160
a2 RT * LOG TT(NT)	0.762	0.333	0.147
a2 RT * LOG TT(NT) ~	0.561	0.305	0.183
Est1 GUT = a1 + (a2 * log TT[NT])	0.999	0.409	0.843
Est2 GUT = a1 + (a2 * log TT[NT] ~)	0.477	0.381	0.875
Est1 RT = s1 + (s2 * log TT[NT])	1.071	0.688	1.366
$Est2 RT = a1 + (a2 * logTT[NT]^{-})$	0.870	0.660	1.402
log res1 GUT=log GUT(NT) - Est1 GUT	0.351	0.451	0.247
log res2 GUT = log GUT(NT) ~ · Est2 GUT	0.423	0.259	0.805
log res1 RT=log RT(NT) - Est1 RT	0.449	0.442	0.144
log res2 RT = log RT(NT) ~ Est2 RT	0.200	0.230	0.678

A 101	LL=.10	LL D is 2	LLDin
al for GUT	-0.238	-0.085	0.632
a2 for GUT	0.405	0.412	0.102
Std Err of Y Est for GUT	0.040	0.080	0.080
al for RT	0.419	0.247	1.500
a2 for RT	0.328	0.309	-0.130
Std Err of Y EST for RT	0.080	0.050	0.060
LOG TT(NT)	1.630	1.230	1.220
LOG TT(NT)~	1.230	1.180	1.130
LOG RT(NT)	1.000	0.850	1.460
LOG RT(NT) ~	0.810	0.710	1.450
LOG GUT(NT)	0.820	0.590	0.910
LOG GUT(NT) ~	0.400	0.490	0,900
#2 GUT * LOG TT(NT)	0.660	0.507	0.124
#2 GUT * LOG TT(NT) ~	0.498	0.486	0.115
#2 RT * LOG TT(NT)	0.535	0.380	0.159
#2 RT * LOG TT(NT) ~	0.403	0.365	0.147
Est1 GUT = a1 + (a2 * log TT[NT])	0.422	0.422	0.756
Est2 GUT = a1 + (a2 * $\log TT[NT]^{\sim}$)	0.260	0.401	0,747
Est1 RT = a1 + (a2 * logTT[NT] ~)	0.954	0.627	1.341
Est2 RT = $a1 + (a2 \cdot logTI[NT]^{-})$	0.822	0.612	1.353
log res1 GUT = log GUT(NT) Est1 GUT	0.398	0.168	0.154
log res2 GUT = log GUT(NT) ~ Est2 GU	0.140	0.089	0.153
log res1 RT=log RT(NT) - Est1 RT	0.046	0.223	0.119
log res2 RT = log RT(NT) - Est2 RT	-0.012	0.098	0.097

0.712 0.392 0.270	1.082 1.120	-0.191
0.392		
	1.120	
0.270		0.637
	0.200	0.120
0.573	-0.798	0.694
0.160	1.098	0.416
0.020	0.200	0.100
1.350	1.140	1.120
1.170	1.170	1.170
1.010	0.900	1.440
0.890	0.680	1.490
0.730	0.610	0.820
0.360	0.300	0.800
0.529	1.277	0.713
0.459	1.310	0.745
0.216	1.252	0.466
0.187	1.285	0.487
-0.183	0.195	0.522
-0.253	0.228	0.554
0.789	0.454	1.160
0.760	0.487	1.181
0.913	0.415	0.298
0.613	0.072	0.246
0.221	0.446	0.280
0.130	0.193	0.299
	0.573 0.160 0.020 1.350 1.170 0.890 0.730 0.360 0.529 0.459 0.216 0.187 -0.183 -0.253 0.789 0.799 0.791 0.991 0.991	0.573 -0.798 0.160 1.098 0.020 0.200 1.350 1.140 1.170 1.170 0.890 0.680 0.730 0.610 0.360 0.300 0.529 1.277 0.459 1.310 0.216 1.252 0.187 1.285 -0.183 0.195 -0.253 0.228 0.789 0.454 0.760 0.487 0.913 0.415 0.613 0.072 0.221 0.446

63	itions (retra	THE RIVER	
		LLDinZ	
al for GUT	4.479	4.528	1.054
a2 for GUT Std Err of Y Est for GUT	9.455 9.379	0.433 0.340	-0.110 0.050
al for RT	4.533	0.299	1.506
a2 for RT	0.874	0.189	0.011
Std Err of Y EST for RT	0.034	0.120	0.050
LOG TT(NT)	1.560	1.220	1,340
LOG TT(NT)*	1.450	1.300	1.270
LOG TT(NT) w/obs			1.77
LOG RT(NT)	1.234	0.690	1.610
LOG RT(NT)~	0.700	0.450	1.534
LOG RT(NT) w/obs			1.54
LOG GUT(NT)	114	0.450	1.060
LOG GUT(NT)~	0.210	0.290	0.360
LOG GUT(NT) w/obs			1.22
#2 GUT * LOG TT(NT) #2 GUT * LOG TT(NT) *	0.710	0.578	4147
a2 GUT * LOG TT(NT) w/obs	0.664	0.563	- 4.144 - 4.194 7
a2 RT * LOG TT(NT)	1.363	0.231	0.015
2 RT * LOG TT(NT)~	1.267	4.246	0.013
a2 RT * LOG TT(NT) w/obs	120	44.40	0.01947
Estl GUT = al + (a2 * log TT[NT])	6.231	0.000	0.507
Est2 GUT = a1 + (a2 * los TTINTI *)	0.1.81	0.035	0.914
Est3 GUT = a1 + (a2 * log TT[NT] w/obs)			0.4593
Estl RT = al + (a2 ° logTT[NT])	0.830	0.530	1.523
$Est2 RT = a1 + (a2 * logTT[NT]^{-})$	0.734	0.545	1.522
Est3 RT= a1 + (a2 * logTT[NT] w/obs)			1.52747
log rest GUT= log GUT(NT) - Est GUT	0.509	0.450	0.1 53
log res2 GUT = log GUT(NT) ~ Eat2 GUT	4.679	4.255	0.046
log res3 GUT = log GUT(NT) w/obs - Est3 GU			0.3607
log res1 RT= log RT(NT) Est1 RT	9.400	9.160	0.067
log res2 RT = log RT(NT) = - Est2 RT	4.034	4.095	0.006
log res3 RT = log RT(NT) w/obs - Est3 RT			0.05253
And the first of the second state of the secon		_	
Re-determination, (NT)w/obs = natural travel			•
Table B30. Experiment 2, randuals across cond	itions (retrac	table lever	ILDin I
	itions (retrac		1). LL D in 1
Table B34. Experiment 2, randuals across cond	LL=10	table laver	LLDin
Table B39. Experiment 2, residuals across cond C-7 al for GUT	LL= J0 0.228	LD in 7 0.109	0.661
Table B49. Experiment 2, residuals across cond C2 al for GUT a2 for GUT Std Err of Y Est for GUT al for RT	LL=30 0.228 4.459 0.200 -0.339	table lever LL D in 7 0.109 0.075	9.661 9.133
Table B34. Experiment 2, residuals across cond C.Z. al for GUT a2 for GUT Std Err of Y Est for GUT al for RT a2 for RT	LL= J0 0.228 -0.450 0.200	table lever LL D in Z 0.109 0.075 0.250	0.461 0.433 0.050
Table B49. Experiment 2, residuals across cond C2 al for GUT a2 for GUT Std Err of Y Est for GUT al for RT a2 for RT Std Err of Y EST for RT	LL= 30 0.228 -0.450 0.200 -0.339 0.669 0.150	table laver LL D in 2 0.109 0.075 0.250 0.182 0.265 0.150	0.461 0.461 0.133 0.050 1.244 0.133 0.020
Table B49. Experiment 2, residuals across cond C2 al for GUT a2 for GUT sid Err of Y Est for GUT al for RT a2 for RT Sid Err of Y EST for RT LOG TT(NT)	LL=30 0.228 -0.450 0.200 -0.339 0.669 0.150 1.420	120 le leven 12 D in 7 12 D in	0.661 0.133 0.050 1.244 0.133 0.020 1.320
Table B46. Experiment 2, residuals across cond C2 at for GUT a2 for GUT Std Err of Y Est for GUT a2 for RT Std Err of Y EST for RT LOG TT(NT) LOG TT(NT)	LL= 30 0.228 -0.450 0.200 -0.339 0.669 0.150	table laver LL D in 2 0.109 0.075 0.250 0.182 0.265 0.150	0.661 0.133 0.050 1.244 0.133 0.020 1.320 1.300
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT Sid Err of Y Est for GUT al for RT a2 for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT) w/obs	LL=_10 0.728 -4.459 0.200 -0.339 0.669 0.159 1.420 1.180	table laver 0.109 0.109 0.075 0.250 0.182 0.265 0.150 1.210 1.240	0.461 0.461 0.133 0.050 1.244 0.133 0.020 1.320 1.320 1.740
Table B49. Experiment 2, residuals across cond C2 at for GUT a2 for GUT Std Err of Y Est for GUT at for RT 2 for RT Std Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) w/obs LOG RT(NT)	LL=_10 	table lever LL D in 7 0.109 0.075 0.250 0.182 0.265 0.150 1.210 1.240	0.461 0.133 0.050 1.244 0.133 0.020 1.320 1.300 1.780 1.290
Teble BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT Sid Err of Y Est for GUT al for RT a2 for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) widts LOG RT(NT) LOG RT(NT) LOG RT(NT)	LL=_10 0.728 -4.459 0.200 -0.339 0.669 0.159 1.420 1.180	table laver 0.109 0.109 0.075 0.250 0.182 0.265 0.150 1.210 1.240	0.661 0.33 0.050 1.244 0.133 0.020 1.320 1.320 1.740 1.290 1.410
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT sid Err of Y Est for GUT al for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT)- LOG TT(NT)- LOG RT(NT)- LOG RT(NT) LOG RT(NT) wides	LL=18 0.228 -0.459 -0.209 -0.339 -0.669 -0.159 -1.420 -1.180 -0.376 -0.408	120 le lever 12 D in 2 0.109 0.075 0.250 0.182 0.265 0.150 1.210 1.240 0.620 0.440	0.461 0.461 0.33 0.050 1.244 0.133 0.020 1.320 1.300 1.760 1.250 1.410 1.400
Table BM. Experiment 2, residuals across cond C2 at for GUT a2 for GUT Sid Err of Y Est for GUT a1 for RT a2 for RT LOG TI(NT) LOG TI(NT) LOG TI(NT) w/obs LOG RI(NT) LOG RI(NT) LOG RI(NT) w/obs LOG RI(NT) w/obs LOG RI(NT) w/obs LOG GUT(NT)	LL=38 0.228 -0.459 0.200 -0.339 0.669 0.159 1.420 1.180 0.370 0.400	######################################	0.661 0.461 0.133 0.050 1.244 0.133 0.020 1.320 1.300 1.740 1.290 1.410 1.400
Teble BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT a1 for RT a2 for RT Std Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT)	LL=18 0.228 -0.459 -0.209 -0.339 -0.669 -0.159 -1.420 -1.180 -0.376 -0.408	120 le lever 12 D in 2 0.109 0.075 0.250 0.182 0.265 0.150 1.210 1.240 0.620 0.440	0.650 0.650 1.244 0.133 0.050 1.244 0.133 0.020 1.320 1.300 1.740 1.290 1.410 0.670 0.790
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT sid Err of Y Est for GUT al for RT 2 for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT)- LOG TT(NT)- LOG RT(NT)- LOG RT(NT) wides LOG RT(NT) wides LOG GUT(NT) wides LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)-	abous (retrac LL=30 0.224 -4.459 0.200 -4.339 0.659 0.1420 1.120 0.370 0.400	nable lever LL D in Z 0.107 0.075 0.259 0.162 0.265 0.150 1.240 0.620 0.446	0.650 0.650 1.244 0.133 0.050 1.244 0.133 0.020 1.300 1.760 1.760 1.410 1.600 0.670 0.790 1.500
Teble BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT 22 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT)	abous (retrac L = 30	table lever LD in Z 0.109 0.075 0.250 0.142 0.250 0.150 1.210 1.240 0.620 0.440 0.370 0.090	0.661 0.651 0.650 1.244 0.133 0.620 1.320 1.320 1.740 1.250 1.410 1.400 0.670 0.790 0.176
Table BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT al for RT Sid Err of Y Est for GUT al for RT Sid Err of Y EST for RT LOG TT(NT)- LOG TT(NT)- LOG RT(NT)- LOG RT(NT)- LOG RT(NT)- LOG RT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- LOG GUT(NT)- a2 GUT * LOG TT(NT)- a2 GUT * LOG TT(NT	abous (retrac LL=30 0.224 -4.459 0.200 -4.339 0.659 0.1420 1.120 0.370 0.400	nable lever LL D in Z 0.107 0.075 0.259 0.162 0.265 0.150 1.240 0.620 0.446	0.661 0.433 0.050 1.244 0.133 0.020 1.300 1.740 1.290 1.410 1.400 0.670 0.790 1.500 0.173
Teble BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT)	abous (retrac L = 30	table lever LD in Z 0.109 0.075 0.250 0.142 0.250 0.150 1.210 1.240 0.620 0.440 0.370 0.090	0.661 0.651 0.650 1.244 0.133 0.620 1.320 1.320 1.740 1.250 1.410 1.400 0.670 0.790 0.176
Teble BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sad Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT)	### ##################################	table lever LL D in Z 0.07 0.075 0.250 0.182 0.265 0.150 1.210 1.240 0.620 0.440 0.370 0.093	0.661 0.461 0.463 0.059 1.244 0.133 0.029 1.340 1.340 1.440 0.479 0.790 0.176 0.176 0.176 0.176
Table BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT)	boos (rette LI=10 0.223 4.459 0.209 -0.339 0.469 0.170 0.370 0.400 0.370 -0.410 -0.559	table lever LL D in 7 e109 e1075 e259 e159 e1249 e265 e159 e1240 e.400 e	0.461 0.461
Teble BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT a2 for RT Sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) ba5 Baf GUT = a1 * (a2 * ba TT(NT))	abons (retric LL=_10 	1210 1240 1250 12	0.461 0.433 0.656 0.244 0.133 0.050 0.1244 0.133 0.020 1.320 1.320 1.340 1.250 1.400 0.670 0.790 0.173 0.237 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) bed GUT * LOG TT(NT) bed GUT * LOG TT(NT) a2 RT * LOG TT(NT) bed GUT = a1 * (a2 * log TT(NT)) Bed GUT = a1 * (a2 * log TT(NT) = bed GUT =	abons (retric LL=10 12 13 14 15 15 15 15 15 15 15	table lever LL D in 7 e109 e1075 e259 e159 e1249 e265 e159 e1240 e.400 e	0.461 0.461 0.461 0.461 0.461 0.462
Teble BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a3 RT * LOG TT(NT) a4 RT * LOG TT(NT) a5 RT *	bbons (retrac LL=_18 -228 -4.459 -0.298 -4.459 -0.299 -0.399 -0.669 -0.1420 -1.420 -1.420 -1.420 -0.370 -0.410 -0.370 -0.410 -0.370 -0.410 -0.370 -0.410 -0.370 -0.410 -0.370 -0.410 -0.399 -0.411 -0.303	**************************************	0.461 0.461 0.461 0.133 0.050 1.244 0.133 0.050 1.320 1.320 1.320 1.320 1.340 0.173 0.273 0.476 0.770 0.176 0.177 0.176 0.237 0.176 0.237 0.176 0.237 0.176 0.237 0.176 0.237 0.176 0.237 0.176 0.237 0.176 0.237 0.176 0.237
Table BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) b2 RT * LOG TT(NT) b3 RT * LOG TT(NT) b4 RT * LOG TT(NT) b5 RT * LOG TT(NT) B6 GUT * 1 * (a2 * log TT(NT) B6 GUT = a1 * (a2 * log TT(NT) B6 RT * a1 * (a2 * log TT(NT) B7 RT * A1 * (a2 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7 RT * A1 * (a3 * log TT(NT) B7	bbons (retrice LL=1)0	**************************************	0.461 0.433 0.050 0.433 0.050 0.244 0.133 0.020 1.320 1.320 1.320 1.320 1.320 1.340 0.670 0.790 0.770 0.176 0.177 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237 0.237
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) A2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) b3 RT * LOG TT(NT) b4 RT * LOG TT(NT) b5 RT GUT = a1 + (a2 * log TT(NT) whobs b5 RT GUT = a1 + (a2 * log TT(NT) b5 RT RT = a1 + (a2 * log TT(NT) b5 R5 RT = a1 + (a2 * log TT(NT) b5 R5 RT = a1 + (a2 * log TT(NT) b5 R5 RT = a1 + (a2 * log TT(NT) b5 R5 RTT(NT) B5 R5	bbons (retrac LL=_18 -228 -4.459 -0.298 -4.459 -0.299 -0.399 -0.669 -0.1420 -1.420 -1.420 -1.420 -0.370 -0.410 -0.370 -0.410 -0.370 -0.410 -0.370 -0.410 -0.370 -0.410 -0.370 -0.410 -0.399 -0.411 -0.303	**************************************	0.461 0.461
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RINT) LOG RINT) LOG RINT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) A2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) b3 Est GUT = a1 + (a2 * log TT(NT) B42 GUT = a1 + (a2 * log TT(NT) B43 RT = a1 + (a2 * log TT(NT) B44 RT = a1 + (a2 * log TT(NT) B45 RT = a1 + (a2 * log TT(NT) B45 RT = a1 + (a2 * log TT(NT) B45 RT = a1 + (a2 * log TT(NT) B45 RT = a1 + (a2 * log TT(NT) B45 RT = a1 + (a2 * log TT(NT) B45 RT = a1 + (a2 * log TT(NT) B45 RT = a1 + (a2 * log TT(NT) B47 RT = a1 + (a2 * log TT(NT) B48 RT = a1 + (a2 * log TT(NT) B48 RT = a1 + (a2 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B49 RT = a1 + (a3 * log TT(NT) B4	bloss (retrice LL=_10 = LL=_10	**************************************	0.461 0.461 0.461 0.461 0.461 0.461 0.466
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sid Err of Y Est for GUT a1 for RT LOG TI(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) ba3 GUT = a1 + (a2 * log TT(NT) Ba4 GUT = a1 + (a2 * log TT(NT) Ba5 RT = a1 + (a2 * log TT(NT) Ba5 RT = a1 + (a2 * log TT(NT) Ba5 RT = a1 + (a2 * log TT(NT) Ba5 RT = a1 + (a2 * log TT(NT) Ba6 RT = a1 + (a2 * log TT(NT) Ba5 RT = a1 + (a2 * log TT(NT) Ba6 RT = a1 + (a2 * log TT(NT) Ba6 RT = a1 + (a2 * log TT(NT) Ba7 RT = a1 + (a2 * log TT(NT) Ba7 RT = a1 + (a2 * log TT(NT) Ba7 RT = a1 + (a2 * log TT(NT) Ba7 RT = a1 + (a2 * log TT(NT) wfobs) Ba7 RT = a1 + (a2 *	bbons (retric LL=10 0.223 -4.459 -0.239 -0.469 0.1429 1.429 1.120 0.370 -0.410 -0.410 -0.459 -0.4	**************************************	0.461 0.461 0.461 0.461 0.461 0.462
Teble BM. Experiment 2, residuals across cond C2 al for GUT a2 for GUT 2 for GUT 32 for GUT 31 for RT 32 for RT 32 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) 42 GUT * LOG TT(NT) 42 RT * LOG TT(NT) 42 RT * LOG TT(NT) 42 RT * LOG TT(NT) 52 RT * LOG TT(NT) 53 GUT = al + (a2 * log TT(NT) 54 RT = al + (a2 * log TT(NT) 55 RT = al + (a2 * log TT(NT) 56 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57 RT = al + (a2 * log TT(NT) 57	bloss (retrice LL=18	**************************************	0.461 0.461
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT a2 for RT Sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) A2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) b3 RT * LOG TT(NT) b4 RT * LOG TT(NT) b5 LOG GUT * LOG TT(NT) b6 LOG	bbons (retrice LL=_10	**************************************	0.461 0.461
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sid Err of Y Est for GUT a1 for RT b2 for RT Sid Err of Y Est for RT b3 for RT b4 for RT b5 for RT b6 for RT b7 b6 for RT b7 b6 for RT b7 b7 b6 for RT b7 b	bbons (retric LL=10 LL=10 0.223 4.459 0.293 4.459 0.299 0.469 0.1429 1.1280 0.376 0.400 0.376 0.400 0.376 0.411 0.459	**************************************	0.461 0.461 0.461 0.133 0.656 0.124 0.133 0.656 0.129 0.1320 1.300 1.700 0.70 0.70 0.77 0.176 0.227 0.176 0.176 0.227 0.176 0.176 0.227 0.176 0.
Teble BM. Experiment 2, residuals across cond C? al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT a2 for RT Sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) A2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) b3 RT * LOG TT(NT) b4 RT * LOG TT(NT) b5 LOG GUT * LOG TT(NT) b6 LOG	bbons (retrice LL=_10	**************************************	0.461 0.461

Table B31. Experiment 2, readuals across conc	litions (retri	ctable lever	LLD in I
al for GUT	0.427	1.576	0.761
a2 for GUT	4.864	1.311	4.019
Std Err of Y, East for GUT	4.344	0.410	9.000
al for RT	4.603	-0.479	1.357
a2 for RT	0.966	0.842	0.065
Std Err of Y EST for RT	0.150	0.190	0.020
LOG TT(NT)	1.200 1.200	1.110	1.237 1.268
LOG TT(NT)~ LOG TT(NT) w/obs	1.200	1.160	1.869
LOG RT(NT)	0.033	0.586	1.530
LOG RT(NT)~	0.610	0.524	1.506
LOG RT(NT) w/obs			1.907
LOG GUT(NT)	0.030	0.250	0.959
LOG GUT(NT)~	-0.006	0.093	6.895
LOG GUT(NT) w/obs a2 GUT * LOG TT(NT)	-1.106	1.455	1.719 - 4.02 4
2 GUT * LOG TT(NT)~	-1.037	1.521	4.624
a2 GUT * LOG TT(NT) w/obs	1.40	1.20	4.036
a2 RT LOG TT(NT)	1.236	0.890	0.105
a2 RT * LOG TT(NT)~	1.159	0.930	97.00
a2 RT * LOG TT(NT) w/obs			0.159
Esti GUT = a1 + (a2 * log TT[NT])	-0.679	-0.121	0.737
Est2 GUT = a1 + (a2 * log TT[NT] *) Est3 GUT = a1 + (a2 * log TT[NT] w/obs)	-0.610	-0.055	€.737 €.725
Esti RT = al + (a2 * logTI[NT])	0.633	0.411	1.462
Est2 RT = a1 + (a2 * logTT[NT] ~)	0.556	0.451	1.465
Est3 RT = a1 + (a2 * logTT[NT] w/obs)			1.516
log rest GUT = log GUT(NT) - Esti GUT	0.709	0.411	0.222
log res2 GUT = log GUT(NT) = - Est2 GUT	9.602	0144	0.1.58
log rest GUT = log GUT(NT) w/obs - Est3 GL			0.994
log resi RT= log RT(NT) - Esti RT log resi RT= log RT(NT) - Est2 RT	-0.600 0.054	0.169 0.077	0.068 0.041
log resi RT = log RT(NT) su/obs - Fert RT			0.391
log res3 RT = log RT(NT) w/obs - Est3 RT Re-determination, (NT) w/obs = natural travel			13/1
	WILD ODBUBC	es).	
Table B32. Experiment 2, renduals across cond	abons (retra	ctable levera)
Table B32. Experiment 2, renduals across cond	LL=30	ctable levers LL D in 2	LUMI
Table B32. Experiment 2, renduals across cond	LL = 30 -1.077	ctable levers LL D in 2 -1.079	0.506
Teble B32. Experiment 2, renduals across cond C-4 al for GUT	LL=30	ctable levers LL D in 2	LUMI
Table B32. Experiment 2, renduals across cond C-1 al for GUT a2 for GUT	LL = 10 -1.077 -9.935	ctable levers LL D in 2 -1.079 1.225	0.506 0.220
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT 5d Err of Y Est for GUT a1 for RT a2 for RT	LL=35 -1.677 -9.935 -0.640 -0.892 1.678	-1.079 1.225 0.180 -0.444 0.907	0.906 0.220 0.030 1.351 0.231
Toble BJ2. Experiment 2, renduals across cond C-4 al for GUT a2 for GUT suf Err of Y Est for GUT a1 for RT a2 for RT Sud Err of Y EST for RT	11.010 (retra 11.017 -1.077 -0.935 -0.00 -0.092 1.078 -0.310	ctable levers LL D in 2 -1.079 1.225 0.180 -0.444 0.907 0.140	0.906 0.220 0.030 1.351 0.231 0.030
Table B12 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT Sid Err of Y En for GUT a1 for RT a2 for RT Sid Err of Y EST for RT LOG TT(NT)	14008 (retra 11.= 18 -1.077 0.935 0.660 -0.892 1.078 0.310 1.250	ctable levers LL D in 2 -1.079 1.225 -0.180 -0.444 -0.907 -0.140 1.246	0.906 0.220 0.030 1.351 0.231 0.030 1.330
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT Sid Err of Y Ent for GUT a1 for RT a2 for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT)	11.010 (retra 11.017 -1.077 -0.935 -0.00 -0.092 1.078 -0.310	ctable levers LL D in 2 -1.079 1.225 0.180 -0.444 0.907 0.140	0.906 0.220 0.030 1.351 0.231 0.030 1.330 1.420
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT suffer of Y Est for GUT a1 for RT a2 for RT Suffer of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) wrobs	LL=10 -1.077 0.935 0.040 -0.892 1.078 0.310 1.250 1.160	ctable levers LL D in 2 -1.079 1.225 -1.80 -0.444 -0.907 -0.140 1.240 1.260	0.304 0.220 0.030 1.351 0.231 0.030 1.330 1.420 1.634
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT sid Err of Y Ear for GUT al for RT 22 for RT Sud Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) wrobs LOG RT(NT)	14008 (retra 11.= 18 -1.077 0.935 0.660 -0.892 1.078 0.310 1.250	ctable levers LL D in 2 -1.079 1.225 0.180 -0.444 0.907 0.140 1.240 1.260	0.906 0.220 0.030 1.351 0.231 0.030 1.330 1.420
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT suffer of Y Est for GUT a1 for RT a2 for RT Suffer of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) wrobs	LL=10 -1.077 -0.935 -0.040 -0.892 -1.076 -0.310 -1.160 -0.310	-table levers LL D in 2 -1.979 -1.225 -0.180 -0.444 -0.907 -0.140 -1.240 -1.260 -0.840 -0.710	0.506 0.220 0.010 1.351 0.231 0.030 1.330 1.420 1.630 1.620
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT)	LL=10 -1.077 -0.935 -0.040 -0.892 -1.076 -0.310 -1.160 -0.310	-1.079 -1.079 -1.275 -1.809 -0.444 -0.907 -0.140 -1.240 -1.260 -0.444 -0.710 -0.660	0.966 0.226 0.030 1.351 0.231 0.030 1.330 1.420 1.420 1.620 1.670
Table BJ2. Experiment 2, readuals across coad C-4 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sad Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT)	LL=39 -1.077 -935 -0.000 -0.002 1.076 -0.310 1.250 1.160 -0.310 -0.750	-table levers LL D in 2 -1.979 -1.225 -0.180 -0.444 -0.907 -0.140 -1.240 -1.260 -0.840 -0.710	0.906 0.220 0.010 1.351 0.231 0.030 1.340 1.420 1.630 1.670 1.730 1.050
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT)	shons (retra LL=30 -1,470 -975 -0,897 -0,897 -0,897 1,075 -0,310 -0,750 -0,310 -0,480	ctable levers LL D in 2 -1.079 -1.079 -1.225 -0.180 -0.444 -0.997 -0.140 -1.240 -1.240 -1.240 -0.910 -0.640 -0.710 -0.640 -0.470	0.906 0.220 0.930 1.351 0.231 0.030 1.310 1.420 1.630 1.670 1.730 1.050 1.210
Table B32. Experiment 2, readuals across coad C4 al for GUT a2 for GUT sid Err of Y Est for GUT al for RT sid Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG	abons (retra LL=30 -1.077 -0.975 -0.004 -0.892 -0.892 -1.078 -0.310 -1.250 -1.160 -0.310 -0.750 -0.310 -0.400 -	ctable levers LL D in 2 -1.079 -1.079 -1.225 -0.140 -0.444 -0.997 -0.140 -1.240 -0.444 -0.710 -0.440 -0.710 -0.440 -0.710 -0.440 -0.710 -0.440 -0.710 -0.450 -0.470 -1.519	0.996 0.229 0.030 1.351 0.231 0.030 1.330 1.420 1.630 1.620 1.670 1.730 1.050 1.150 1.210 0.293
Table BJ2. Experiment 2, readuals across cond C-4 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT)	shons (retra LL=30 -1,470 -975 -0,897 -0,897 -0,897 1,075 -0,310 -0,750 -0,310 -0,480	ctable levers LL D in 2 -1.079 -1.079 -1.225 -0.180 -0.444 -0.997 -0.140 -1.240 -1.240 -1.240 -0.910 -0.640 -0.710 -0.640 -0.470	0.394 0.226 0.296 0.296 0.291 0.291 0.291 1.396 1.426 1.679 1.796 1.150 1.210 0.231
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TT(NT) a3 GUT * LOG TT(NT) a4 GUT * LOG TT(NT)	abons (retra LL=30 -1.077 -0.975 -0.004 -0.892 -0.892 -1.078 -0.310 -1.250 -1.160 -0.310 -0.750 -0.310 -0.400 -	Cable levers LL D in 2 -1.879 -1.225 -1.369 -1.440 -1.24	0.394 0.229 0.939 0.231 0.231 0.231 0.231 0.339 1.429 1.439 1.639 1.679 1.770 1.730 1.210 0.233 0.339
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) A2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 RT • LOG TT(NT) a2 RT • LOG TT(NT) a2 RT • LOG TT(NT)	ubons (retra LL=30 -1.077 -0.975 -0.000 -0.897 -0.78 -0.310 -0.310 -0.750 -0.310 -0.750 -0.310 -0.480 -0	ctable levers LL D in 2 -1.079 -1.079 -1.225 -0.140 -0.444 -0.997 -0.140 -1.240 -0.444 -0.710 -0.440 -0.710 -0.440 -0.710 -0.440 -0.710 -0.440 -0.710 -0.450 -0.470 -1.519	0.394 0.226 0.296 0.296 0.291 0.291 0.291 1.396 1.426 1.679 1.796 1.150 1.210 0.231
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT • LOG TT(NT) a2 GUT • LOG TT(NT) a2 RT • LOG TT(NT)	hbone (retra LL-218 -1.077 0.995 0.000 0.000 0.000 0.100 0.310 0.750 0.310 0.400 1.169 1.340 1.340 1.344 1.250	ctable levers LD in 2	0.394 0.229 0.019
Table BJ2. Experiment 2, renduals across cond C-4 al for GUT a2 for GUT a2 for GUT a2 for RT Sud Err of Y Est for GUT a1 for RT 22 for RT Sud Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) A2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a3 RT * LOG TT(NT) a4 RT * LOG TT(NT) a5 RT * LOG TT(NT)	ubone (retra LL-137 -1,977 -9,955 -0,000 -0,892 1,078 -0,310 -	ctable levers L D in 2 - 1.879 1.225 - 0.140 - 0.444 - 0.907 - 0.149 - 1.240 - 1.240 - 1.240 - 0.710 - 0.440 - 0.710 - 0.441 - 1.519 -	0.984 0.294 0.896 0.896 0.896 1.351 0.291 1.396 1.426 1.428 1.476 1.476 1.176 1.210 0.297 0.312 0.397 0.397 0.397
Table BJ2 Experiment 2, residuals across cond C-4 al for GUT a2 for GUT a2 for GUT a1 for RT a2 for RT Sud Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG TT(NT)	hbone (retra LL-218 -1.077 0.995 0.000 0.000 0.000 0.100 0.310 0.750 0.310 0.400 1.169 1.340 1.340 1.344 1.250	ctable levers LD in 2	0.984 0.229 0.010 1.351 0.231 0.0394 1.429 1.429 1.429 1.429 1.429 1.429 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.317 1.201 0.312 0.312 0.312 0.317 1.201 0.312 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312 0.312 0.312 0.317 1.201 0.312 0.312 0.317 1.201 0.312
Table BJ2. Experiment 2, readuals across cood C-4 al for GUT a2 for GUT a2 for GUT a1 for RT 32 for RT Sad Err of Y Est for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) -2 GUT - LOG TT(NT) -2 GUT - LOG TT(NT) -2 RT - LOG TT(NT) -4 RT - LOG TT(NT) -	abone (retra LL-319 -1.077 -0.995 -0.004 -0.892 -1.078 -0.310 -0.790 -0.310 -0.790 -0.310 -0.790 -0.310 -0.400	ctable levers L D in 2 - 1.879 1.225 0.130 -0.444 0.997 1.246 1.246 1.246 0.471 0.471 0.470 1.519 1.544 1.125 1.143 0.446 0.445	0.394 0.229 0.019
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT 3d for GUT 3d for GT 3d for of Y Est for GUT al for RT 3d for of Y Est for RT LOG TI(NT) LOG TI(NT) LOG TI(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) AC GUT * LOG TI(NT) a2 RT * LOG TI(NT) a2 RT * LOG TI(NT) ba3 RT * LOG TI(NT) ba4 GUT a a1 * (a2 * log TI(NT) Ba4 GUT a 1 * (a2 * log TI(NT) Ba4 GUT a 1 * (a2 * log TI(NT) Ba4 GUT a 1 * (a2 * log TI(NT) Ba4 GUT a 1 * (a2 * log TI(NT) Ba4 GUT a 1 * (a2 * log TI(NT)) Ba4 GUT a 1 * (a2 * log TI(NT)) Ba4 GUT a 1 * (a2 * log TI(NT)) Ba5 GUT a 1 * (a2 * log TI(NT)) Ba6 GUT a 1 * (a2 * log TI(NT))	abone (retra LL-319 -1.077 -0.995 -0.006 -0.892 1.078 -0.310 -0.310 -0.310 -0.310 -0.310 -0.400 -	ctable levers LD In 2 LD In 2 LB D I	0.984 0.294 0.816 0.816 0.819 1.351 0.811 1.316 1.420 1.476 1.470 1.470 1.470 1.470 1.210 0.312 0.312 0.312 0.312 0.321
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT 3d for GUT 3d for GUT 3d for GT 4d for GT 3d for GT 4d	abone (retra LL-319 -1.077 -0.995 -0.004 -0.892 -1.078 -0.310 -0.790 -0.310 -0.790 -0.310 -0.790 -0.310 -0.400	ctable levers L D in 2 - 1.879 1.225 0.130 -0.444 0.997 1.246 1.246 1.246 0.471 0.471 0.470 1.519 1.544 1.125 1.143 0.446 0.445	0.984 0.290 0.010 0.010 1.351 0.231 0.039 1.439 1.420 1.620 1.620 1.620 1.210 0.312 0.312 0.312 0.317 1.220 0.321 0.377 1.220 1.257 1.260 1.267 1.277
Toble BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT 3d for GUT 3d for GUT 3d for GT 3d	abone (retra LL-319 -1.077 -0.995 -0.006 -0.892 1.078 -0.310 -0.310 -0.310 -0.310 -0.310 -0.400 -	ctable levers LD In 2 LD In 2 LB D I	0.984 0.294 0.816 0.816 0.819 1.351 0.811 1.316 1.420 1.476 1.470 1.470 1.470 1.470 1.210 0.312 0.312 0.312 0.312 0.321
Table BJ2. Experiment 2, renduals across cond C-4 al for GUT a2 for GUT sid Err of Y Ent for GUT al for RT 22 for RT Sid Err of Y EST for RT LOG TT(NT) LOG TT(NT) LOG TT(NT) LOG GT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG TT(NT) a2 GUT * LOG TT(NT) a2 GUT * LOG TT(NT) a2 RT * LOG TT(NT) a2 RT * LOG TT(NT) best GUT = a1 + (a2 * log TT(NT) Best GUT = a1 + (a2 * log TT(NT) Best GUT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log TT(NT) Best RT = a1 + (a2 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 * log RT(NT) Best RT = a1 + (a3 *	abone (retra LL-319 -1.077 -9.975 -0.040 -0.897 -1.078 -0.310 -1.250 -1.169 -1.445 -1.250 -1.169 -1.445 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.465 -1.250 -1.250 -1.465 -1.250 -1.250 -1.465 -1.250	ctable levers LL D in 7 -1.879 1.225 -0.130 -0.444 0.991 1.246 1.246 1.246 0.470 0.470 0.470 1.519 1.544 1.125 1.141 0.440 0.445 0.440 0.445	0.984 0.229 0.830 0.830 0.830 1.351 0.231 1.420 1.430 1.430 1.430 1.670 1.730 1.230 0.331 0.331 1.230 1.231 1.230 0.347 0.321 0.367 0.321 0.367 0.321 0.367 0.321 0.367 0.321 0.367 0.371 0.367 0.371
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT 3d for GUT 3d for GT 3d for of Y Est for GUT al for RT 3d for of Y Est for RT LOG TI(NT) LOG TI(NT) LOG TI(NT) LOG TI(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TI(NT) a2 GUT * LOG TI(NT) a2 GUT * LOG TI(NT) a2 RT * LOG TI(NT) b2 RT * LOG TI(NT) b3 RT * LOG TI(NT) b4 RT * LOG TI(NT) b5 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b7 RG GUT * a1 + (a2 * log TI(NT) b8 RG GUT * a1 + (a2 * log TI(NT) b8 RG GUT * a1 + (a2 * log TI(NT) b7 RG GUT * a1	ubona (retra LL-319 -1.077 -0.995 -0.004 -0.892 -1.078 -0.310	ctable levers LD In 7 - 1.879 1.225 - 0.140 - 0.444 - 0.907 - 0.149 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.241 - 1.255 - 1.143 - 1.440 - 1.465 -	0.984 0.296 0.896 0.896 0.896 1.351 0.291 1.396 1.496 1.476 1.676 1.776 1.156 1.216 0.321 0.321 0.321 0.321 0.321 1.281 1.286
Table BJ2 Experiment 2, readuals across cond C-4 al for GUT a2 for GUT 3d for GUT 3d for GUT 3d for GT 4d	abona (retra LL-187 -1.077 -9.955 -0.044 -0.892 1.078 -0.310 -0.750 -0.310 -0.400 -	cable levers LD in 2 L	0.984 0.229 0.010 0.010 1.351 0.231 0.031 1.429 1.420 1.420 1.420 1.210 0.339 0.312 0.377 1.201 1.220 1.255 1.465 1.479 1.756 1.479 1.756 1.479 1.470 1.470 1.470 0.331 0.377 1.201 1.200 0.312 0.377 1.201 1.200 0.301 0.377 1.201 1.200 0.301 0.377 1.201 1.200 0.301 0.377 1.201 1.200 0.301 0.377 1.201 1.200 0.301 0.377 1.201 1.200 0.301 0.377 1.201 1.200 0.301
Table BJ2 Experiment 2, renduals across cond C-4 al for GUT a2 for GUT 3d for GUT 3d for GT 3d for of Y Est for GUT al for RT 3d for of Y Est for RT LOG TI(NT) LOG TI(NT) LOG TI(NT) LOG TI(NT) LOG RT(NT) LOG RT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) LOG GUT(NT) a2 GUT * LOG TI(NT) a2 GUT * LOG TI(NT) a2 GUT * LOG TI(NT) a2 RT * LOG TI(NT) b2 RT * LOG TI(NT) b3 RT * LOG TI(NT) b4 RT * LOG TI(NT) b5 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b6 RG GUT * a1 + (a2 * log TI(NT) b7 RG GUT * a1 + (a2 * log TI(NT) b8 RG GUT * a1 + (a2 * log TI(NT) b8 RG GUT * a1 + (a2 * log TI(NT) b7 RG GUT * a1	ubona (retra LL-319 -1.077 -0.995 -0.004 -0.892 -1.078 -0.310	ctable levers LD In 7 - 1.879 1.225 - 0.140 - 0.444 - 0.907 - 0.149 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.240 - 1.241 - 1.255 - 1.143 - 1.440 - 1.465 -	0.984 0.296 0.896 0.896 0.896 1.351 0.291 1.396 1.496 1.476 1.676 1.776 1.156 1.216 0.321 0.321 0.321 0.321 0.321 1.281 1.286

C3	LL=:10	LL D in 2	LL D in
el for GUT	-0.618	-0.532	0.889
a2 for GUT	0.670	0.659	-0.095
Std Err of Y Est for GUT	0.200	0.270	0.040
al for RT	-1.772	0.215	1.444
m2 for RT	1.839	0.364	-0.025
Std Err of Y EST for RT	0.160	0.130	0.040
LOG TT(NT)	1.650	1.330	1.370
LOG TT(NT)~	1.370	1.390	1.360
LOG TT(NT) w/obs			1.770
LOG RT(NT)	0.840	0.650	1.460
LOG RT(NT)~	1.010	0.440	1.480
LOG RT(NT) w/obs			1.820
LOG GUT(NT)	0.840	0.370	0.830
LOG GUT(NT)~	0.590	0.280	0.810
LOG GUT(NT) w/obs			1.520
2 GUT · LOG TT(NT)	1.106	0.876	-0.130
■2 GUT * LOG TT(NT)~	0.918	0.916	-0.129
a2 GUT * LOG TT(NT) w/obs			-0.168
•2 RT • LOG TT(NT)	3.034	0.484	-0.034
•2 RT • LOG TT(NT)~	2.519	0,506	-0.034
a2 RT * LOG TT(NT) w/obs			-0.044
Est1 GUT= a1 + (a2 " log TT[NT])	0.487	0.344	0.759
Est2 GUT = a1 + (a2 * log TT[NT] ~)	0.300	0.344	0.760
Est3 GUT= a1 + (a2 * log TT[NT] w/obs)			0.721
Est1 RT= a1 + (a2 * logTT[NT])	1.262	0.699	1.410
$Ent2RT = a1 + (a2 * logTT[NT]^{\sim})$	0.747	0.721	1.410
Est3 RT = a1 + (a2 * logTT[NT] w/obs)			1.400
log res1 GUT = log GUT(NT) - Est1 GUT	0.353	0.026	0.071
log ree2 GUT = log GUT(NT) ~ Est2 GUT	0.290	-0.104	0.050
log res3 GUT = log GUT(NT) w/obs - Est3 GUT			0.799
log res1 RT = log RT(NT) - Est1 RT	-0.422	-0.049	0.050
log res2 RT = log RT(NT) ~ Est2 RT	0.263	-0.281	0.070
log res3 RT = log RT(NT) w/obs - Est3 RT			0.420

APPENDIX C

Table C34. Logarithmic residuals divided by standard errors.

		Residence Time			Giving-up Time			
			Pellets			Pellet	S	
Subject		1	2	8	1	2	8	
A-101		0.58	4.46	1.49	9.95	2.10	1.93	
	*	-0.25	1.96	1.21	3.50	1.11	1.91	
A-104		10.72	24.45	2.02	7.61	6.25	10.25	
	*	5.32	9.65	1.23	7.27	2.83	5.18	
A-123		11.05	2.23	2.80	3.38	2.08	2.48	
	*	6.50	0.97	2.99	2.27	0.36	2.05	
A-230		7.48	8.84	1.44	1.53	9.02	0.88	
	*	3.33	4.60	6.78	1.84	5.18	2.88	
Mean		5.59	7.14	2.50	4.67	3.62	3.44	

^{*} Redetermination.

Table C35. Experiment 2, logarithmic residuals divided by standard errors.

			Resid	ence Ti	me	Giving-up Time			
			Pe	ellets			Pel	lets	
Subject		1	2	8	**	1	2	8	**
C-1		13.33	1.33	1.74	1.05	2.46	1.32	3.06	7.21
	*	-1.13	-0.79	0.16		0.08	0.75	0.92	
C-2		-1.61	0.78	-6.70	15.75	3.91	0.68	-3.34	13.64
	*	-0.33	-0.21	-0.55		-0.54	-0.45	-0.88	
C-3		-4.00	0.89	3.40	19.55	2.36	1.00	2.78	1.24
	*	0.36	0.41	2.05		2.01	0.36	1.98	
C-4		-0.47	1.14	-1.27	0.07	2.73	1.33	-5.03	-1.90
	*	1.26	0.08	-0.30		5.90	0.03	-2.33	
C-5		-2.64	-0.38	1.25	10.50	1.77	0.10	0.89	9.90
	*	1.64	-2.16	1.75		1.45	-0.39	0.63	
Mean		0.64	0.11	0.15	9.38	2.21	0.47	-0.13	6.02

^{*} Redetermination, ** natural travel with obstacles.

Table C36 Experiment 1, average rate of previous

Table C36. Experiment 1, average rate of prey captured					
	PROBABILITY	PELLETS PER VISIT			
SUBJECT	RIGHT LEVER	11	2	8	
A -104	0 025	0 024	0.042		
	0.050	0.024	0.095	0.128	
	* 0.05		0.080	0.141	
	0100	0.024	0.121	0166	
	* 0.10		0111	0.164	
	0.250	0 059	0182	0.221	
	* 0.25	0 063			
	1.00	0.093	0199	0.182	
	** 1 00	0.058			
	NT	0.007	0.050	0.116	
	* NT	0.013	0.071	0144	
A-23 0	0 025	0.012	0 022		
A-500	0.060	0015	0.031	0.080	
	*005	0015		0.000	
		0.000	0 030	0.000	
	0100	0 032	0.065	0.090	
	* 010	5 5 65	0.083	0156	
	0.250	0.085	0158	0 240	
	* 0 25	0 073			
	1 00	0119	0 249	0 202	
	** 1 00	0.059			
	NT	0 008	0.059	0.131	
	* NT	0 026	0.086	0.043	
A -101	0.025	0.015	0.031		
	0.050	0.026	0.063	0.119	
	* 0.05		0.066	0.136	
	0.100	0.042	0.129	0.125	
	* 0.10		0.110	0.182	
	0.250	0.065	0.167	0.190	
	* 0.25	0.074			
	1.00	0.100	0.213	0.162	
	** 1 00	0.054			
	NT	0.018	0.081	0.155	
	NT*	0.043	0.099	0.175	
A-123	0.025	0.020	0.041		
ATIES	0.060	0.019	0.061	0.165	
	* 0.05	0.015	0.088	0.143	
	0.100	0.036	0.101		
	* 0.10	0.036		0.133	
		0.040	0.122	0.182	
	0.250 * 0.25	0.049	0.164	0.209	
		0.061	0040	0.400	
	1.00	0.086	0.213	0.188	
	** 1.00	0.053	0.000		
	NT + N.C.	0.030	0.089	0.189	
	* NT	0.045	0.101	0.149	

Table C37 Experiment 2, average rate of prey captured

_	pperiment 2, average PROBABILITY	PELLETS PER VISIT			
SUBJECT	RIGHT LEVER	1	2	8	
C-1	0.025	0.030	0.083	0.127	
	• 0.026		0.082		
	* 0.025		0.056		
	0.06	0.052	0.112	0.162	
	0 10	0.048	0.113	0.136	
	* 0.10	0.027	0.129	0.147	
	1 00	0.132			
	NT	0.019	0.094	0.120	
	• NT	0.030	0.098	0.146	
	NT w/obs			0.090	
C-2	0.025	0.038	0.096	0.146	
	* 0.026		0.086		
	* 0.025		0.056		
	0.06	0.062	0.121	0.186	
	0.10	0.077	0.156	0.173	
	* 0.10	0.043	0.130	0.199	
	1 00	0.153	U. TSE	U. 186	
	NT.		0.098	0.183	
	* NT	0.036			
		0.057	0.099	0.169	
	NT w/obs			0.061	
C-3	0.025	0.048	0.093	0.179	
	• 0.026		0.096		
	* 0.026		0.096		
	0.06	0.067	0.029	0.194	
	0.10	0.084	0.180	0.162	
	* 0.10	0.044	0.031	0.206	
	1.00	0.165			
	NT	0.049	0.118	0.163	
	• NT	0.060	0.112	0.153	
	NT w/obs			0.049	
C-4	0.025	0.017	0.063	0.087	
	* 0.025		0.033		
	* 0.025		0.029		
	0.06	0.044	0.100	0.116	
	0.10	0.086	0.113	0.101	
	* 0.10	0.045	0.112	0.123	
	1.00	0.187	G2	G.125	
	NT	0.060	0.082	0.119	
	* NT	0.060	0.086	0.100	
	NT w/obs	0.000	0.000	0.076	
C-5	0.025	0.004	0.004	0.136	
V-3		0.031	0.036	u. 130	
	* 0.026 * 0.025		0.067		
		0.040	0.059	0.45**	
	0.06	0.042	0.063	0.160	
	0.10	0.036	0.180	0.154	
	* 0.10	0.030	0.166	0.163	
	1.00	0.082		_	
	NT	0.019	0.077	0.136	
	* NT	0.030	0.073	0.136	
	NT w/obs			0.080	

* Redetermination.

REFERENCES

- Abarca, N., & Fantino, E. (1982). Choice and Foraging.

 Journal of the Experimental Analysis of Behavior, 38,
 117-123.
- Anderson, M. (1978). Optimal foraging area: Size and location of search effort. Theoretical Population Biology, 13, 397-409.
- Baum, W. M. (1982a). Choice, changeover, and travel.

 Journal of the Experimental Analysis of Behavior, 38,
 35-49.
- Baum, W. M. (1982b). Instrumental behavior and foraging in the wild. In M. L. Commons, R. J. Herrnstein, & H., Rachlin (Eds.). Quantitative analyses of behavior: Vol.2. Matching and maximazing accounts (pp. 227-240). Cambridge: Ballinger.
- Baum, W. M. (1987). Random and systematic foraging, experimental studies of depletion, and schedules of reinforcement. In A. C. Kamil, J. R. Krebs & H. R. Pulliam (Eds.), Foraging behavior (pp. 587-607). New York: Plenum.
- Baum, W. M. (1988). How to model foraging with operant behavior. Manuscript unpublished.
- Charnov, E. L. (1976). Optimal foraging: the marginal value theorem. Theoretical Population Biology, 9, 129-136.
- Collier, G. H., & Rovee-Collier, C. K. (1981). A comparative analysis of optimal foraging behavior: laboratory simulations. In A. C. Kamil & T. D. Sargent. Foraging behavior: Ecological, ethological, and psychological approaches (pp. 39-76). New York: Garland STPM press.
- Cowie, R. J. (1977). Optimal foraging in great tits. Nature, 268, 137-139.
- Cuthill, I. C., Kacelnik, A., Krebs, J. R. (1987).

 Starlings exploiting patches: The effects of recent experience on foraging decisions. Kings College Research Memo, Kings College, Cambridge.
- Fantino, E., & Abarca, N. (1985). Choice, optimal foraging, and the delay-reduction hypothesis. The Behavioral and Brain Sciences, 8, 315-330.

- Gibb, J. A. (1962). L. Tinbergen's hypothesis of the role of specific search images. *Ibis*, 104, 106-111.
- Gray, R. D. (1987). Faith and Foraging: A critique of the paradigm argument from design". In A. C. Kamil, J. R. Krebs, & H. R. Pulliam (Eds.), Foraging behavior (pp. 69-140). New York: Plenum.
- Hanson, J. (1987). Test of optimal foraging using an
 operant analogue. In A. C. Kamil, J., R. Krebs, & H.
 R. Pulliam (Eds.), Foraging behavior (pp. 335-362). New
 York: Plenum.
- Hanson, J., & Green, L. (1989a). Foraging decisions: prey choice by pigeons. Animal Behavior, 37, 429-443.
- Hanson, J., & Green, L. (1989b). Foraging decisions: patch choice and exploitation by pigeons. *Animal Behavior*, 37, 968-986.
- Hartling, L. K., & Plowright. (1979). Foraging by bumblebees on patches of artificial flowers: a laboratory study. Canadian Journal of Zoology, 57, 1866-1870.
- Houston, A. I., & McNamara, J. M. (1985). The variability of behavior and constrained optimization. *Journal of Theoretical Biology*, 112, 265-273.
- Iwasa, Y., Higashi, M., & Yamamura, N. (1981). Prey distribution as a factor determining the choice of optimal foraging strategy. American Naturalist, 117, 710-723.
- Kacelnik, A., & Cuthill, I. C. (1987). Starlings and
 optimal foraging theory: Modeling in a practical world.
 In A. C. Kamil, J. R. Krebs, & H. R. Pulliam (Eds.),
 Foraging behavior (pp. 303-333). New York: Plenum.
- Kacelnik, A., & Krebs, J. R. (1985). Rate of reinforcement matters in optimal foraging theory. Behavioral & Brain Sciences, 8, 340-341.
- Kamil, A. C. & Yoerg, S. I. (1985). The effects of prey depletion on the patch choice of foraging blue jays (Cyanocitta cristata). Animal Behavior, 33, 1089-1095.
- Killeen, P. R. (1989). The bimean: A measure of central tendency that accommodates outliers. In press, BRCMI & C.
- Killeen, P. R., Smith, J. P., & Hanson, S. L. (1981).

- Central place foraging in Rattus norvegicus. Animal Behavior, 29, 64-70.
- Krebs, J. R. (1973). Behavioral aspects of predation. In P. G. Bateson & P. H. Klopfer (Eds.), Perspectives in ethology (pp. 73-111). New York: Plenum Press.
- Krebs, J. R. (1978). Optimal foraging: Decision rules for predators. In J. K. Krebs & N. B. Davies (Eds.), Behavioral ecology: An evolutionary approach (pp. 23-63). Sunderlang, MA: Sinauer Associates.
- Krebs, J. R., Kacelnik, A., & Taylor, P. (1978). Test of optimal sampling by foraging great tits. Nature, 275, 27-31.
- Krebs, J. R., Ryan, J. C., & Charnov, E. L. (1974). Hunting by expectation or optimal foraging? A study of patch use by Chickadees. *Animal Behavior*, 22, 953-964.
- Lea, S. E. G. (1979). Foraging and reinforcement schedules in the pigeon: Optimal and non-optimal aspects of choice. *Animal Behavior*, 27, 875-886.
- Lea, S. E. G. & Dow, S. M. (1984). The integration of reinforcements over time. In J. Gibbon & L. Allan (Eds.), Timing and perception. Annals of the New York Academy of Sciences, 423, 269-277.
- MacArthur, R. H. & Pianka, E. R. (1966). On optimal use of a patchy environment. American Naturalist, 100, 603-609.
- McNamara, J. M. (1982). Optimal patch use in a stochastic environment. Theory Population Biology, 21: 269-288.
- McNair, N. J. (1982). Optimal giving-up times and the marginal value theorem. American Naturalist, 119, 511-529.
- McSweeney, F. K. (1978). Negative behavioral contrast on multiple treadle-press schedules. *Journal of the Experimental Analysis of Behavior*, 29, 463-473.
- Mellgren, R., Misasi, L., & Brown, S. W. (1984). Optimal foraging theory: Prey density and travel requirements and Rattus norvegicus. *Journal of Comparative Psychology*, 98, 142-153.
- Mosteller, F. & Tukey, J. W. (1977). Data analysis and regression: A second course in statistics. Reading, MA: Addison-Wesley.

- Nevin, J. A. (1979). Reinforcement schedules and response strength. In M. Zeiler & P. Harzem (Eds.)

 Reinforcement and the organization of behavior (pp. 117-158). New York: Wiley.
- Pietrewicz, A. T., & Kamil, A. C. (1977). Visual detection of cryptic prey by blue jays (Cyanocitta cristata). Science, 195, 580-582.
- Pliskoff, S. S., & Fetterman, J. G. (1981). Undermatching and overmatching: The fixed-ratio changeover requirement. Journal of the Experimental Analysis of Behavior, 36, 21-27.
- Pyke G. H. (1984). Optimal foraging theory: A critical review. Annual Review of Ecology and Systematics, 15, 523-575.
- Pulliam, H. R. (1981). Learning to forage optimally. In A. C. Kamil & Sargent (Eds.) Foraging behavior: Ecological, ethological, and psychological approaches, (pp. 379-388). New York: Garland STPM.
- Redhead, E. & Tyler, P. A. (1988). An experimental analysis of optimal foraging behavior in patchy environments. The Quarterly Journal of Experimental Psychology, 40B, (1) 83-102.
- Schoener, T. W. (1987). A brief history of optimal foraging ecology. In A. C. Kamil, J. R. Krebs, & H. R. Pulliam (Eds.), Foraging behavior (pp. 5-67). New York: Plenum.
- Shettleworth, S. J. (1988). Foraging as operant behavior and operant behavior as foraging: What have we learned? In G. H. Bower (Ed.), The psychology of learning and motivation, (pp. 1-49). New York: Academic Press, Vol., 22.
- Stephens, D. W. & Krebs, J. R. (1986). Foraging theory. Princeton, NJ: Princeton University Press.
- Ydenberg, R. C. (1984). Great tits and giving-up times: Decision rules for leaving patches. *Behaviour*, **90**, 1-24.
- Zimmerman, M. (1981). Optimal foraging, plant density and the marginal value theorem. Oecologia, 49, 148-153.