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ABSTRACT

A STATISTICAL STUDY OF NARROW BANDWIDTH, HIGH LATITUDE 

GEOMAGNETIC PULSATIONS

by

Mark A. Popecki 
University of New Hampshire, December, 1991

Micropulations are the ground signature of plasma waves that originate in the 

magnetosphere. In the Pcl-Pc2 frequency band, the wave mode that is amplified by 

energetic ions is also the mode that is guided by a magnetic field. These waves serve as 

evidence o f energetic, loss-cone type ion distributions in the magnetosphere. The spectral 

character of the waves is often characteristic of the wave growth location. If the location 

for a particular wave may be identified, that wave provides immediate information about 

ion populations whenever it is observed on the ground. The location of the wavegrowth 

site may be identified by observing occurrence patterns at stations at a range of latitudes. 

This is because the Earth's field lines connect stations at different latitudes to different 

parts o f the magnetosphere, with respect to the field-guided waves. The problem 

addressed by this study is to locate the growth site of Pcl/2 waves. The benefit of this 

knowledge is that the appearance o f Pcl/2 on the ground will indicate the presence of an 

energetic loss cone type population of ions, in a well-known part of the magnetosphere, 

without the need for in situ measurements.

This study is a survey o f micropulsations at three high-latitude ground stations. It 

revealed a diurnal occurrence pattern for waves below 0.4 Hz, and showed that the 

pattern was not due to the effects of sunlight on the ionosphere, but instead indicates a 

postnoon magnetospheric source region. The importance of He+ ions in the



magnetosphere to wave growth and generation is also indicated. The waves above and 

below 0.4 Hz have different diurnal and seasonal occurrence patterns. The waves above 

0.4 Hz come primarily from plasmapause latitudes, while those below 0.4 Hz, in the 

Pcl/2 band, come from farther out. The different source locations for waves above and 

below 0.4 Hz, combined with the typically sharp, approximately 0.4 Hz upper frequency 

limit o f the Pcl/2 spectra, suggest strongly that He+ ions in the outer magnetosphere 

influence wavegrowth and propagation. This fits well with the observations of Anderson, 

et al. (1990), who showed with a spacecraft study that the region beyond L=7 dominates 

over the region of L<7 as a wave source above the He+ gyrofrequency. This ground 

study shows that these outer magnetosphere waves above the He+ gyrofrequency are not 

readily reaching the ground. The organization of ground observations has never been 

shown before in previous ground studies. Since He+ has the capacity to prevent waves 

above its gyrofrequency from reaching the ground, its presence may limit the use of 

plasma waves to Pcl/2 as probes of the outer magnetosphere.

An extensive search for correlations between Pcl/2 occurrence and solar wind pressure 

and magnetic field orientation rules out the solar wind as a direct source of Pcl/2 

generation. The diurnal pattern and apparent source location for the Pcl/2  are consistent 

with a source of plasma sheet ions that have drifted sunward on the dusk side of the 

magnetosphere (Kaye & Kivelson, 1979; Anderson et al., 1991).

x



Chapter 1

T he M agnetosphere 

In tro d u c tio n

The solar wind flow past the Earth's magnetic field creates a magnetosphere and 

establishes many distinct plasma regions within it. Energy input from the solar wind 

drives current systems and amplifies plasma waves throughout the magnetosphere. 

Micropulsation studies are conducted on the ground to explore this region of space. This 

is possible because the ultra low frequency plasma waves that are amplified by energetic 

ion populations are also guided by the Earth's magnetic field. These waves follow the 

Earth's field, which extends throughout the magnetosphere, down to the surface. Ground 

detectors observe these waves as perturbations in the local magnetic field, or 

micropulsations.

The magnetic field of the Earth is similar to a dipole, particularly in the dayside portion of 

the magnetosphere. The high latitude field lines cross the equator the furthest from the 

Earth, while lower latitude field lines pass through a closer region of space. Since these 

field lines act as waveguides, one can gain information about different parts of the 

magnetosphere by choosing a ground site at the appropriate latitude.

Additional information about the source of a wave comes from its spectral character. 

Wave-particle interactions in certain parts of the magnetosphere produce distinctive 

spectral signatures on the ground. If  the source region of a particular wave signature is

1
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known, that wave becomes a remote sensing tool for ground observers. It provides 

information about the location and type of particle populations that amplified the waves. 

Also, the fact that certain waves are observed at certain station locations provides insight 

into the propagation of the waves from their remote source to the ground. In the 

frequency range of this study, 0.1-5.0 Hz, the waves may be amplified by ion cyclotron 

resonance between ions and guided, circularly polarized waves.

Some features of the magnetosphere and solar wind that are important for wave 

generation will be described next, beginning with the solar wind. After that, the topology 

of the magnetosphere will be discussed. Emphasis will be placed on those parts 

particularly important for wave generation in the frequency range of interest in this study.

The Solar W ind

Tne magnetic field in the solar wind strongly affects the efficiency with with energy from 

the solar wind may enter the magnetosphere. Certain orientations relative to the Earth's 

field can provide direct access to the magnetosphere for solar wind plasma under a 

process known as reconnection. This is the source of energy for substorms and current 

systems in the magnetosphere, and for the aurora in the atmosphere.

As the solar wind leaves the Sun, it takes the Sun’s magnetic field with it, due to the high 

conductivity in the plasma and to the high energy density in the plasma, compared to the 

energy density of the magnetic field (Hess, 1965). This has the effect of stretching the 

dipole lines until they become nearly antiparallel at the Earth's orbit. Since a curl in a 

magnetic field is associated with a current (VxB = 4jc/c J), a current sheet exists 

between the antiparallel magnetic field lines in the solar wind (Kelley, 1989). The 

direction of this current is in a sense such that if it were carried by a sheet of many 

parallel wires, the field from the wires would be antiparallel above and below the sheet in 

the same way as the Sun's field. This current sheet is not a flat disc; it has flutes, and has
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been described as a ballerina skirt (for example, Kelley, 1989). The current sheet may be 

above or below the Earth at any time, and it may change position quickly compared to an 

hour. Consequently, the magnetic field in the solar wind may have a wide range of 

orientations near the Earth. For example, it may point toward or away from the Sun, 

depending on whether the sheet is above or below the Earth.

Since the Sun is a rotating source of plasma, one might imagine the solar wind being 

squirted out like water from a rotating sprinkler, This creates a spiral pattern in the 

magnetic field embedded in the solar wind (Hess, 1965). Close to the Earth, the ecliptic 

component of the solar wind magnetic field is found to be typically toward the Earth and 

East (as viewed from the subsolar point at the surface of the Earth) or vice versa. This 

pattern is clear in Figure 7-21 in the data analysis section of this work, which is a 

scatterplot o f magnetic field measurements from the IMP8 satellite, located upstream of 

the magnetosphere.

F orm ation  o f the  M agnetospheric B oundaries

When the solar wind reaches the vicinity of the Earth, a balance is established between 

the dynamic pressure of the solar wind (mnv2) and the pressure of the Earth's magnetic 

field, B2/8rc (Haerendel & Paschmann, 1982). This balance takes place at approximately 

10 Re away from the Earth, along the Sun-Earth line (Fairfield, 1971), and the flow is 

deflected around the obstacle of the magnetosphere. The pressure balance surface is 

called the magnetopause. A shock exists just outside the magnetopause, since the solar 

wind speed, at approximately 400 km/s, is well above the speed of sound and other 

waves (such as Alfven waves) in the interplanetary medium (about 50 km/s; Hess,

1965).

The ions and electrons in the solar wind separate somewhat at the magnetopause due to 

their opposite charge and mass difference under the influence of the vswxBE force
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(Haerendel & Paschmann, 1982). The resulting surface current is known as the 

Chapman-Ferraro current, and it is induced to cancel the Earth's magnetic field in the 

conductive solar wind plasma. By canceling the Earth's field in the solar wind, the 

current adds to the field inside the magnetopause, approximately doubling the field there 

(Nishida, 1982; Haerendel & Paschmann, 1982). Increases in solar wind dynamic 

pressure (nmvsw2) establish a new pressure balance surface closer to the Earth, in a 

region of stronger magnetic field. This calls for enhanced Chapman-Ferraro currents, 

which increases the magnetic field inside the magnetosphere. This is referred to as a 

compression of the magnetosphere.

The magnetopause is a current sheet covering the entire magnetosphere, and is on the 

order o f 100 km thick (Haerendel & Paschmann, 1982). On the dayside, the 

magnetopause carries the Chapman-Ferarro currents. A direct funnel-like opening 

through this surface exists in each hemisphere. These are the cusp/cleft regions, and there 

is some direct solar wind flow into them, down toward the Earth. The funnel shape of the 

cusp is along a line extending up from the Earth at approximately 79 degrees latitude 

(Lundin, 1988). The equatorward surface of the cusp/cleft region is on magnetic field 

lines forming a closed loop in the dayside magnetosphere. The poleward surface is on 

field lines that are swept back toward the tail of the magnetosphere.

Boundary Layers and Convection within the Magnetosphere

The solar wind energy, which is the source for all the waves observed at the ground, 

enters the magnetosphere in two principal ways. One is directly through a magnetic 

reconnection process (described briefly below) that temporarily joins the magnetic field of 

the solar wind and the Earth, and the other is through a class of viscous processes 

through the boundary surfaces of the magnetosphere (Baumjohann, 1986).
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Inside the magnetopause is the boundary layer. At latitudes above the cusp, the boundary 

layer is called the high latitude boundary layer (HLBL), or plasma mantle (Lundin,

1988). At lower latitudes and around the sides of the magnetosphere it is the low-latitude 

boundary layer (LLBL). These layers are thought to be important for the transfer of solar 

wind energy and plasma to the magnetosphere (Lundin, 1988). Also, their dynamo action 

strongly influences the convection pattern within the magnetosphere. The LLBL is 

populated by magnetospheric and magnetosheath plasma flowing tailward (Lundin,

1988, with reference to Eastman et al., 1976). The magnetosheath itself contains a flow 

of solar wind plasma that has encountered a shock upstream of the magnetopause 

(Haerendel & Paschmann, 1982).

The tailward flow in the boundary layer could be established in at least two ways. 

One way is through viscous interaction, in which momentum is transferred from the solar 

wind flow across the magnetopause to the boundary layer plasma. Another way is 

through a process known as reconnection (Dungey, 1961; see Kelley, 1989, Nishida, 

1978, Lundin, 1988 for further discussion), where adjacent, antiparallel field lines 

reorient themselves to become V-shaped lines meeting at their vertices (Figure 1-1).

When the interplanetary magnetic field (IMF) in the solar wind has a southward 

component, it is directed oppositely to the Earth's field where the solar wind first meets 

the magnetopause, and reconnection may occur. Field lines that led from the south to the 

north pole of the Earth now connect to the IMF. The result is a field line that extends 

from the Sun through the polar caps and interior of the Earth, back to the Sun. This line 

is carried tailward by the solar wind, until in the tail it re-reconnects to a state of two 

separate field lines again: one looping through the Earth's poles, the other through the 

Sun's. In the magnetic merging/reconnection model, the HLBL is on "open" field lines, 

or field lines extending into the solar wind. These lines provide direct access for the solar 

wind to the boundary layer (particularly in the tail lobe; Lundin, 1988). In the "boundary-
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layer model", solar wind plasma enters the LLBL from a layer just outside the 

magnetopause, known as the magnetosheath, via diffusion or steady-state reconnection.

A dawn to dusk electric field is impressed on the magnetosphere by the solar wind flow. 

This is because of a dynamo action in the boundary layer, which is described by Lundin, 

(1988, with reference to Lundin & Evans, 1985), or a dynamo action in the field of the 

mantle (HLBL) that have been connected to the solar wind field. In the boundary layer, 

since the flow is tailward, there will be a vxB force there that separates the ions and 

electrons somewhat (Figure 1-2). The effect can be seen in the equatorial plane of the 

dawnside boundary layer, for example. The electrons will be driven toward the 

magnetopause, and the ions inward toward the Earth, creating a separation electric field.

Charged particles may move along the magnetic field lines easily; there is little or no 

dissipative loss. This makes the magnetic field lines approximately equipotential lines 

(Kelley, 1989). They permit the separation electric field to be applied to the ionosphere 

where the field enters the Earth. If one follows the outermost field lines of the boundary 

layer, which are negatively charged because of the vxB force, they will enter the 

ionosphere near the lowest latitude of the polar cap. The positively charged inner lines of 

the boundary layer will enter the ionosphere at still lower latitudes. The electric field 

impressed on the ionosphere by the boundary layer will then be directed from dawn to 

dusk. Another dawn to dusk electric field is produced by the dusk side boundary layer. 

This electric field drives some of the tailward convection, via E xB drift (discussed 

below), at high latitudes in the ionosphere (Lundin, 1988, with reference to Cowley, 

1982).

The separation electric field in the boundary layer creates currents along the the field lines 

from the boundary, down to the auroral region of the ionosphere, back up to the opposite 

boundary layer, and back via the magnetopause currents. The field-aligned current on the
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dayside, between the boundary layer and the ionosphere, is known as the region 1 

current (Lundin, 1988,with reference to Bythrow et al., 1981).

When the connection of the solar wind and Earth fields exists (reconnection), however, 

solar wind plasma may enter the magnetosphere along the field line (Nishida, 1978). The 

solar wind plasma would now have direct access to the boundary layer, enhancing the 

tailward flow as the solar wind streams past (see Lundin, 1988). This in turn would 

increase the dawn-dusk electric field.

In another dynamo model, the solar wind on reconnected field lines generates a cross- 

polar cap electric field. This arises because there is no net Lorentz force in the conductive 

solar wind (E + vxB  = 0). In the Northern hemisphere, the tailward vsw crossed with a 

B that points from the solar wind down into the polar cap produces a charge separation 

that creates a dawn to dusk electric field. This electric field is imposed on the ionosphere 

by the equipotential field lines (Figure 1-3).

Observations have shown that the electric field magnitude increases in association with a 

southward turning of the IMF (Reiff & Luhmann, 1986; Doyle & Burke, 1983; from 

Kan, 1990). It also has a minimum value when the IMF is North, at which time much 

less reconnection is expected to occur. This remnant electric field might be due to viscous 

momentum transfer from the solar wind (Kamide, 1988, with reference to Akasofu, 

1979).

A return flow is established in the magnetotail on closed field lines. This sunward 

flowing plasma contains the dawn to dusk electric field, consistent with its drift through 

the Earth's magnetic field. The closed field lines map to the auroral zones, probably 

below the "open" polar cap lines, but above plasmaspheric field lines (see below about 

the formation of the plasmapshere and the exclusion of sunward convecting plasma from 

it). The dawn to dusk electric field in the sunward flowing plasma is impressed on the
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auroral zone along the magnetic field lines as a dusk to dawn field (Kelley, 1989), 

extending from the equatorward edge of the polar cap to plasmaspheric latitudes. At 

altitudes low enough for ion collisions with neutrals and other ions to impede ion ExB 

drift in the auroral zone, with the dusk to dawn electric field, a Hall current (see the 

chapter on ionospheric modification of waves) will develop in the -ExB direction as 

electrons continue to ExB drift. In a quiet state, these are called the Eastward and 

Westward electrojets in the dusk and dawn auroral zones, respectively. However, during 

substorm activity, the Westward electrojet extends into the dusk-midnight sector (current 

systems in the ionosphere during substorms are discussed in more detail by Nishida, 

1978, Kamide, 1988, and Akasofu, 1989). The status of the electrojets is logged by the 

AE index.

T he C om ponent D rifts of Convection

The dawn to dusk electric field combines with the magnetic field of the Earth to convect 

plasma sunward from the tail via an Eq-d x Be drift. In general, a force F  applied to a 

plasma in a magnetic field will produce a displacement perpendicular to the force and 

magnetic field :

Vp = e ^ W ~  (Chen’ 1974)’

If the force is eE, the E  x B drift results :

which is independent of charge, mass and energy. Ions and electrons E x B  drift at the 

same speed, in the same direction.

Other drifts develop as a consequence of the gradients in magnetic field magnitude and its 

curvature. This is particularly important near the Earth, and unlike E x B  drift, these two
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drifts are energy and charge dependent. In a magnetic field where the magnitude changes 

spatially, the gyroradius of a charged particle will change, moving it away from its 

gyrocenter. This is known as gradient-B drift and is, to a first order perturbation in B:

Vvb = ± ~ 2"~ B° r  (Chen, 1974),

where R is the approximate gyroradius (Chen, 1974). This drift depends on the sign of 

the charge.

In a magnetic field with curvature, such as the curvature o f a dipole pattern, another drift 

known as curvature drift develops :

V r  =  ( C h e n ’ 1 9 7 4 ) ’

where R* is the radius of curvature of the field, pointing away from the center of 

curvature; and vB is the speed of the particle parallel to B. The curvature drift is much less 

than the gradient B drift in the inner magnetosphere (Nishida, 1978).

Another Drift Component: the Corotation Electric Field and the Formation

of the Plasmasphere

The convecting plasma is kept out of a region close to the Earth known as the 

plasmasphere. This is because, inside this region, motion is dominated by the corotation 

electric field, while outside, it is dominated by the dawn-dusk convection electric field 

(Kelley, 1989). The boundary of the plasmasphere changes with the level of magnetic 

activity (and magnitude of the convection electric field, but is typically at a distance of 4-6 

Earth radii (from the center of the Earth) in the equatorial plane (Nishida, 1978, with 

reference to Chappell, 1972). One of the stations in this study, Siple station, is on a field 

line that passes near the surface of the plasmasphere, at about 4.3 Earth radii in the 

equatorial plane. The corotation electric field arises because the neutral atmosphere drags



10

the plasma along with it. The motion of the plasma in the magnetic field of the Earth 

causes a charge separation because of the force:

(Q x r) x B0 (Nishida, 1978),

where Q is the angular velocity of the Earth's rotation and r  is a vector to the plasma. 

This moves the ions to higher altitudes and electrons to lower altitudes, creating a 

polarization, or corotation electric field that points toward the Earth and cause the plasma 

to EcorxB drift along with the atmosphere (Kelley, 1989). This corotation electric field is 

transmitted up into the magnetosphere along the magnetic field (Kelley, 1989). The 

corotation electric field becomes smaller at higher latitudes.

All four drifts, gradient-B, curvature, corotation and ExB, operate simultaneously and 

drive energetic ions around the Earth on the dusk side and colder ions around the dawn 

side as they convect sunward. For ions with a small Vj.R, or small magnetic moment 

(evj.R/2), the gradient B drift will be small compared to the corotation drift. These ions 

will drift around the dawn side, because of the corotation electric field, as they ExB drift 

past the Earth. For ions with a large magnetic moment, the gradient B drift will dominate 

the corotation, and the ions will go around the Earth on the dusk side. If they continue to 

drift long enough, the ions may leave the magnetosphere on the dayside. This depends in 

part on the strength of the dawn-dusk electric field over time (Nishida, 1978). Ions 

whose magnetic moments are such that the corotation and gradient-B drift cancel each 

other may penetrate most deeply into the plasmaspheric "forbidden" region (Nishida, 

1978). Electrons convect around the dawn side only, because the gradient, curvature and 

corotation drift all work in the same direction for them. Sunward convection of energetic 

particles (tens of keV) is associated with substorms, and is thought to come from the 

plasma sheet (DeForest & Mcllwain, 1971; Nishida 1978). This is a region in the center 

o f the magnetotail that contains relatively energetic particles, compared to most of the
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magnetospheric volume. Typical energies are 1-10 keV for electrons (Jursa, 1985), and 

at least that for protons (Nishida, 1978).

Convecting ions starting in the tail from a distance of 10 RE take between two and 20 

hours to reach the subsolar magnetopause (Ejiri, 1978), depending on initial energy and 

pitch angle. These ions may be responsible for amplifying the Pcl/2  waves discussed in 

this study.

The Ring C urren t

During a substorm, ions from the plasma sheet drift under an intensified dawn-dusk 

electric field (DeForest & McUwain, 1971), as described above. The gradient and 

curvature drift dominte for the ions, and after repeated substorms, a current is established 

in a ring around the Earth. At the surface o f the Earth, the magnetic field of this current is 

opposite to the steady field there. The proton energy density in the earthward regions of 

the plasma sheet (< 6-7 RE) is higher by almost a factor of 10 than the electron energy 

density, so the energy in the ring current is mostly carried by the protons (Nishida, 1978, 

with reference to Frank, 1971).

The ring current decays mostly by charge exchange (Nishida, 1978), in which a collision 

of an energetic ion with a cold neutral particle results in an energetic neutral and a cold 

ion. However, some of the ring current energy is carried away by ion-cyclotron 

interaction, in which ions pass energy to left polarized Alfven waves, typically in the 0.2- 

5.0 Hz frequency band (see, for example, Heacock & Kivinen, 1972).
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Figure 1-1 A schematic of the magnetic reconnection process is shown. This occurs on the dayside and 
in the magnetotail. It connects the Earth's magnetic field to the Sun's.
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Figure 1-2 The boundary layer dynamo drives some of the tail ward convection at high latitudes in the 
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Figure 1-3 The dynamo in the mantle region operates by reconnection of the Earth and Sun's magnetic 
field. This accounts for most of the tailward convection in the polar cap. The dynamo is most effective 
for southward orientations of the IMF Bz component. (After Kelley, 1989).



Chapter 2

PC  waves a n d  previous w ork on P c l/2  

In tro d u c tio n

In this section, the classification scheme for micropulsations and some examples of their 

sources will be discussed. Next, previous work on Pcl/2 pulsations, the subject of this 

study, will be presented.

M icropu lsation  C lassification Schem e

Micropulsations have been organized by a classification scheme, based on the wave 

period and the spectral nature. The scheme, approved at the 1963 Berkeley meeting of the 

International Association of Geomagnetism and Aeronomy (IAGA) is as follows (Saito, 

1969):

Table 2-1 Micropulsation Classification Scheme

Type Period (s)

Pci 0.2 - 5.0
Pc2 5 -1 0
Pc3 10-45
Pc4 45 -150
Pc5 150 - 600

P il 1 -40
Pi2 40-150

13
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The "c" stands for "continuous", and the "i" for "irregular. The continuous emissions 

have a well-defined spectral peak, while the irregular are broad-band (many Fourier 

components are required to represent them). The "P" stands for "pulsation" (Saito, 

1969).

Some Sources of Micropulations

The following are a few examples of the geophysical processes connected to the 

occurrence o f these waves. Pi2 pulsations are associated with the initiation of substorms, 

and are among the first signs of substorm commencement (for example, see Samson, 

1982 and Olson & Rostoker, 1975). Some Pc5 pulsations are associated with Kelvin- 

Helmholtz "wind over water" instabilities at the surface o f the magnetosphere, caused by 

the flow of solar wind (Saito, 1969; Takahashi, 1991). This is consistent with observed 

diurnal polarization patterns, in which the Pc5 are left polarized (ccw rotation of the 

electric field vector, looking along the magnetic field) in the morning and right polarized 

in the afternoon (Saito, 1969, Nishida, 1978). Pc5 are also associated with standing 

waves on field lines (Nishida, 1978), as are Pc3 and Pc4. These field line resonances 

could be excited when their frequencies match those of waves from Kelvin-Helmholtz 

instabilities at the magnetopause, or some other wave of external origin (Nishida, 1978). 

For example, they might also be excited by impulsive distortion of the magnetopause 

(Takahashi, 1991, with reference to Lee & Lysak, 1989). Pc3 and Pc4 waves are also 

seen upstream of the magnetopause, in the solar wind. The detection of these waves on 

the ground is associated with the occurrence of a nearly radial interplanetary magnetic 

field (Nishida, 1978; Engebretson, et al., 1991; and references therein).

Pci pulsations have been classified by Fukunishi (1981). A dozen separate types were 

noted, depending primarily on their spectral signatures. A pulsed-type emission, referred
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to as "pearls" is thought to be amplified and propagate along field lines that pass near the 

plasmapause. Another class, called IPDP (Intervals of Pulsations of Decreasing Period) 

is distinguished by a generally rising frequency in events that last about an hour. These 

are apparently waves amplified in regions of progressively stronger magnetic field.

Quite often, these different Pci waves will be superimposed on a spectrogram. For 

example, it is common to see a pearl type signature embedded in a diffuse emission, 

perhaps 0.5 Hz in bandwidth, and more than 2 hours long. They may well come from 

different source regions and arrive simultaneously at the ground stations.

P revious W ork  on P c l/2  M icropulsations

Pcl/2  waves are defined by Fukunishi (1981) as being characterized by a diffuse band 

mainly in the frequency range 0.1-0.4 Hz. This is a combination category from the 

classification scheme above. These waves have been investigated in both ground and 

satellite studies.

Heacock (1966) noted a broad afternoon/evening occurrence peak for pulsations in what 

he called the 4 second band. This band included some structured, or pulsed (pearl), 

events, along with some broad-band Pi events. A summer seasonal peak occurrence was 

found for these 'four second band' pulsations.

Rokityanskaya (1969) discussed the diurnal occurrence of micropulsations in the 4-6 

second period range. A broad afternoon maximum was found, from approximately 1200- 

1700 LT.

Heacock (1974) noted a post-magnetic noon occurrence maximum at a 70°N 

(geomagnetic) station. Magnetic noon is when the magnetic meridian of a station
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intersects the Earth-Sun line (Montbriand, 1970). He also found a seasonal occurrence 

variation, with a local summer maximum. Correlation studies between the occurrence of 

the Pcl/2 and the AE index, which is a crude measure of the convection electric field that 

will be described in more detail below. Although it was concluded that there was a weak 

correlation, no significant association was found. An associative study with the Dst 

index, a measure of ring current strength, yielded similar results. The Pcl/2  as defined by 

Heacock were mainly unstructured (diffuse pattern on a spectrogram), and in the 

frequency range 0.05-1.0 Hz, mostly 0.1-0.4 Hz.

Kaye and Kivelson (1979) surveyed Pcl/2  with the OGO-5 satellite, from about 7 to 14 

Re in the equatorial plane. They published 11 events, whose frequencies ranged from 

0.06-0.60 Hz, and typically less than 0.2 Hz. All of the events occurred in the afternoon 

quadrant of the magnetosphere. In addition, all were associated with both enhanced 

pressure regions in the solar wind and a southward component of the interplanetary 

magnetic field (IMF). The threshold above which pressure was defined as "enhanced" 

was a value one standard deviation higher than the mean pressure from OGO-5 

measurements during 1968-70. This was 2.80x10-8 dyn/cm2 They found that "no Pcl- 

2 were found during extended intervals when the solar wind pressure remained less than 

2.80x10-8 dyn/cm2 ". For the seven events presented in a figure, the pressure 

enhancements precede or follow the observation of the P c i2 by half an hour or less. The 

duration of the enhancement is at least one hour for five of the seven events shown, 

however, and approximately half an hour for the other two.

The possibility of an IMF relation was also studied, and they suggest that the IMF has a 

"significant southward component" two hours before the event. Hourly averages of the 

North-South component of the IMF, in GSM coordinates, were used. In this system, the 

x  axis extends from the Earth to the Sun. The z axis moves as necessary to keep the
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Earth's dipole axis is in the x-z plane. The z axis is positive in the same direction as the 

north magnetic pole. The y  axis is perpendicular to these (Russell, 1971).

No close association of the Pcl/2 and storms or substorms were found. However, they 

suggested that during times of enhanced cross-magnetospheric electric field, both cold 

plasma that initially corotated with the earth, as well as energetic plasma, would convect 

sunward. Both types would move to the noon-dusk quadrant. The necessary pitch angle 

anisotropy for the energetic ions would develop from charge exchange (Kaye & 

Kivelson, 1979, with reference to Cornwall, 1977 and Cowley, 1977) and pitch-angle 

scattering from interactions with electrostatic waves (with reference to Ashour-Abdalla & 

Thome, 1977). Cold ion density enhancements in the postnoon quadrant were observed 

by Chappell (1974) with OGO-5, however they noted that no correlations betwen Pcl/2 

and the enhanced density regions had been made.

Bossen et al. (1976) studied waves in the 2-6 s period range (0.17-0.5 Hz) at 

synchronous orbit on ATS-1. They found that the afternoon quadrant was the most likely 

time to see these waves, particularly in the 1600-1700 local time hour. The wave 

frequencies of the majority of the events were 10-20% of the local ion (proton) 

gyrofrequency. They also noted that almost every event followed a substorm expansion 

onset, as determined by ground records, by less than 1.75 hours. AE values relative to 

the time of maximum wave amplitude were averaged over 120 wave events. This showed 

that the AE index rose about 40 minutes prior to the maximum wave amplitude at the 

spacecraft, which they said is consistent with the delay time between substorm expansion 

onsets and Pc 1 activity.

Fraser (1982) shows ground-satellite study between ATS-6 and Great Whale River, a 

ground station about 500 km east of the satellite's northern conjugate point. An afternoon
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occurrence peak (12-15 LT) was observed at both, although the frequency range is not 

restricted to the 0.1-0.4 Hz Pcl/2  band of Fukunishi (1981). Pcl-2 is taken to be 0.1-5.0 

Hz (see Fraser & McPherron, 1982). however, another occurrence peak about 10 h 

before is at Great Whale. The morning peak was attributed to pulsed "pearl" type 

emissions amplified at the plasmapause and ducted to Great Whale. This occurrence peak 

was not seen at ATS-6, which was at synchronous orbit, beyond the typical plasmapause 

radial distance.

Bolshakova et al. (1980) conducted a ground study of Pcl/2 at several latitudes. They 

noted the seasonal behavior, in which the Pcl/2 occur most often in local summer. A 

variety of diurnal patterns were presented for the stations. Some had single occurrence 

peaks near noon, others had small morning and large afternoon peaks. These patterns 

appeared to depend on latitude, and the authors associated them with the proximity of the 

stations to the cusp. In addition, when the magnetic activity increased, as determined by 

the Kp index (discussed below in the data analysis section), the Pcl/2 amplitude 

maximum shifted to lower latitude stations. This is consistent with the equatorward 

motion of the polar cap and cusp during times of increased activity in the magnetosphere.

They suggested a Pcl/2 source region near the entry layer, which is the open end of the 

cusp, on magnetosheath field lines. Since this source region is on solar wind field lines 

that have reconnected to the Earth's, instead of a closed line extending from one 

hemisphere to the other, not on field lines closed, they predicted very few conjugate 

observations would be made.

Finally, Sato & Saemunsson (1989) examined Pcl/2, according to Fukunishi's (1981) 

definition at stations in both northern and southern hemispheres. They also found the 

seasonal Pcl/2 occurrence pattern, and presented evidence to suggest conjugacy is most 

likely near the equinoces. They also plotted the diurnal occurence of events seen only in
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one hemisphere at a time (non-conjugate). They found a UT time difference in the 

occurrence peaks in the stations. Since they have approximately the same magnetic local 

time, the difference was attributed to the difference in solar noon between the two. They 

calculated that the occurrence peak at 10 UT in the Antarctic station, and 14 UT at the 

Iceland conjugate station, corresponded to 1300 local solar time at both. Yamagishi 

(1989), studying ELF, found that waves tend to propagate along magnetic field lines in 

the summer hemisphere where the electron density increases along the magnetic field. 

Following this work, Sato & Saemunsson (1989) suggested sunlight effects as the 

reason for the seasonal and diurnal occurrence patterns they observed.



Chapter 3

Station Location, Instrumentation and Data Analysis 

Station Location

The data for this study was acquired primarily at three high latitude arctic sites. These 

were:

Table 3-1 Station Location
Geomagnetic Geomagnetic

Station Local Noon (UT) Latitude

Sondre Stromfjord, Greenland 1330 +74.1°
South Pole, Antarctica 1530 -74.9°
Siple, Antarctica 1700 -61°

The first two stations, Sondre Stromfjord and South Pole, are at approximately the same 

geomagnetic latitude, but in opposite hemispheres. There is also a two hour time 

difference in local magnetic noon, which is when the magnetic meridian of the station 

crosses a line extending from the Sun to the center of the earth (Montbriand, 1970). 

Sondre Stromfjord and South Pole are nearly conjugate stations. Both are close to the 

poleward edge of their respective auroral zones, which are bands in which aurora are 

most likely to occur, but they are at or below the latitude where low latitude boundary 

layer (LLBL) field lines would intersect the Earth. The LLBL comes to the surface of the 

Earth as a sort of buffer blanket around the funnel shape of the cusp, mainly the 

equatorward half of the funnel. This puts Sondre Stromfjord and South pole typically, 

but not always, depending on magnetic activity, on closed field lines that connect the 

southern and northern hemispheres (see data analysis section on DMSP data, and

20
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Lundin, 1988 for an illustration of the cusp, cleft and LLBL relation), and pass close to 

the inner surface of the low latitude boundary layer. In times of increases magnetic 

activity, the boundary layer becomes closer to field lines connecting the South Pole and 

Sondre Stromfjord latitudes.

The third station is Siple, which is on a field line that crosses the equator at about 4.3 RE. 

This is close to the radial extent of the plasmasphere in the equator (the plasmapause), 

although the plasmasperic radius varies by about +1.5/-0.5 RE for different levels of 

magnetic activity (Nishida, 1978, with reference to Chappell, 1972). The radial limit of 

the plasmasphere increases beyond 4R E during quiet times because the cross

magnetosphere electric field is weaker. In this case, Siple is connected to a field line that 

goes to the opposite hemisphere completely within the plasmasphere.

Instrumentation

The instrumentation at each station consists of two or three induction coil antennas, and a 

data acquisition system. These are oriented along magnetic North-South (X axis), East- 

West (Y axis), and in the case of Sondre Stromfjord after August 1986, along the 

magnetic field (Z axis). The X and Y axes are actually perpendicular to the magnetic field 

line. However, at these high latitude stations, the dip angle, which is the inclination of the 

magnetic field above the surface of the Earth, is at least 70°, so the X-Y plane is almost 

tangent to the surface.

In the Southern hemisphere, the signals are such that a positive dB/dt toward magnetic 

North corresponds to a positive X axis voltage output on a data plot. The same is true for 

a positive dB/dt toward magnetic East for the Y axis. In the Northern hemisphere,
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positive X means a positive Northward dB/dt; positive Y means a positive Westward 

dB/dt, and a positive Z means an upward dB/dt.

Coil design and construction are documented in Parady (1974) and Taylor, et al. (1975). 

The coils consist of approximately 540,000 turns of #36 magnet wire, wrapped around a 

2.5 cm mumetal (permalloy) core. The overall core length is 1.8 m. The wire is wound in 

sections of 30,000 turns (Lin & Plombon, 1985). A "calibration" coil of 15 turns is 

wound around the main coil. A current is passed through this winding with a periodic, 

alternating polarity, ramp signal. This produces a pulse train of alternating sign, constant 

magnitude dl/dt, or dB/dt, inducing a square wave output from the main coil. The 

calibration signal is generated automatically, approximately every four hours. Each axis 

signal is sampled at 10 Hz, so the maximum useable frequency is 5 Hz (the Nyquist 

frequency).

The signals are amplified by a preamplifier with a gain of 1000. The responses of the 

coil, the preamp, and the combination are shown in Figures 3-1 to 3-3 (Lin & Plombon, 

1985). System sensitivities for the 1973 Siple coils are presented in Taylor, et al. (1975). 

The sensitivity plot is reproduced in Figure 3-4. At 0.3 Hz, the sensitivity is 9x 10-4 y  

(1 y = 1 nanoTesla), or one digitization unit in a 12 bit analog to digital converter (A/D). 

One digitization unit corresponded to 0.5 mV of final output voltage in the installation 

described in Taylor, et al. (1975).

At Sondre Stromfjord, the same type of coils and preamplifier were used, but an extra 

amplification was introduced just before A/D conversion. This changed the output voltage 

for one digitization step. Before August 28,1986, -1 to +1 (preamplifier) volts were 

converted to +10 to 0 volts (a signal inversion was performed). The +10 to 0 volt range 

was converted by a 12 bit A/D. The same scheme was in use at McMurdo during 1986 

(up through at least 1991). After that date, -2 to +2 volts were converted to +10 to 0
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volts. The voltage value of a digitization step was doubled, which allowed a larger signal 

to be measured. All of the 1986 data was acquired with the UNH S79 controller.

South Pole and Siple data were acquired with a system operated by the University of 

Maryland (the "umd" controller). The amplification introduced just before the A/D 

conversion was such that -2 to +2 preamplifier volts were converted to +10 to -10 volts. 

These two stations utilized a 16 bit A/D converter. Data plots take all polarity changes and 

buffer amplification into account, and preamplifier output voltage is the quantity plotted.

The coil-preamplifier combination was tested by Hujanen (1987). A function generator 

was used with coils and a known series resistance to create a dB/dt in the micropulsation 

coils. The response of the system, in terms of output voltage/nT, was plotted against 

frequency. The output is approximately constant (±0.025 volts), at 0.25 volts/nT, 

between 1 and 10 Hz. The output falls off above and below this frequency range. At 0.3 

Hz, the output is 0.2-0.25 V/nT, and at 0.1 Hz, it is 0.1 (±0.01) V/nT. The variation 

depends on the individual coil.

Data Analysis

The data from all three stations for all of 1986 was fast Fourier transformed, and 

spectrograms were printed in six hour panels. The transforms were performed using 25.6 

second windows of data (128 frequencies, from 0 to 5 Hz, with data points 0.1 seconds 

apart) for each axis. The time steps between successive transforms was 25 seconds. This 

choice made it possible to clearly see "pearl" structure, which typically has two minutes 

between pulses. The data was stored on magnetic tape, which had between 2 and 11 days 

per reel, depending on the station. This variation was because other information, such as 

VLF antenna or riometer data from other experments were written on the same tape. More
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than 4200 six-hour spectrograms were printed. Around the clock tape processing and 

printing took almost seven months.

Events were visually selected from these spectral plots if  they were least 10 minutes long 

and had a well defined spectral peak (i.e., distinctly band limited). Events separated by 

more than 10 minutes or 0.05 Hz were considered separate. The 10 minute standard was 

chosen because it is several "pearl" bounce times for an Alfven wave packet following the 

field between conjugate points. For each event, the center frequency (±0.05 Hz), 

maximum bandwidth, start and stop times were recorded in a database system on a 

Macintosh Plus computer. Other information, such as the presence of "pearl" or pulse 

structure, or the stations that observed the event, were noted. Some 4,500 events were 

collected from all three stations combined.

A sample of two database records is presented in Figure 3-5. The wave was seen at both 

stations, and it has the common event serial number 403.0 at each. Separate serial 

numbers are also given for the events at each station. In addition to the date, time, 

frequency information already described, other information is given. The "type" is used 

to distinguish any structured events (where periodic pulse strings dominate the 

frequency-time area in the spectrogram) from unstructured events (where such strings, if 

present, are a minor component). The "fragment" flag in each record indicates that the 

event is part o f a series that correspond to an event at another station. Finally, a memo is 

attached, in which keywords are used to describe various features of the event. Memos 

might point out, for example, that some structure, or a pulse string, is present, but that 

the string is a minor part of the signal spectrum. The use of keywords here allows event 

selection on the basis of other information besides frequency or time.

Serial numbers were issued to each event at a station. Separate numbers were added for 

common events, which were seen at more than one station at a time. An additional
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database was developed, in which all the common events were recorded, as well as the 

identity of the stations that observed them.

Examples of the Micropulsation Events in This Study

Structured (Pearl) and Pcl/2 Events

Examples of two structured (pearl) events are shown in Figure 3-6. One has a constant 

bandwidth (referred to as type 1 in the database), and the other has a widening, then 

narrowing bandwidth (type 4 in the database). A Pcl/2 is also present at approximately 

0.4 Hz. Pcl/2  have a narrow-band structure that may persist for up to 17 hours. They are 

in the 0.1-0.4 Hz band, and have a diffuse character, usually with no pearl structure. 

Except for Figure 3-7, these figures are displayed in the 0-5 Flz frequency range and the 

six hour timespans of the survey plots from which the events were selected.

Another Pcl/2 is shown in Figure 3-7. Note the exceedingly sharp upper and lower 

frequency bounds. This feature of Pcl/2 will be discussed further in the section on 

results of data analysis. This event was seen in both hemispheres (South Pole and Sondre 

Stromfjord).

Common Station and Fragmented Events 

(Hydromagnetic Chorus Example)

If several segments at one station corresponded to one monolithic event at another, the 

segments were identified as being seen in common with the single event. It is often the 

case that several events in a frequency-time plot have the same distinctive overall shape as 

a single event at another station, but with intermittent signal loss. This is no doubt due to 

the condition of the ionosphere during the observation time, which would be typically 2-6 

hours in these cases. This is discussed further in the section on ionospheric modification
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of micropulsation signals. An example of a fragmented event is shown in Figure 3-8. It is 

complete at Siple, but appears as two separate events at the two high latitude stations.

This event is also referred to as a common event, since it was observed at more than one 

station. This is an example of a type 3 event, which is the general designation for events 

that are band limited, mostly diffuse emission, and are above the 0.1-0.2 Hz Pc2 

frequency band.

Multiple Segment Events

Occasionally, many events overlap in such a way that it is difficult to separate them by 

any standard other than intensity on the spectrogram. An example o f this is shown in 

Figure 3-9. This case was recorded as a single event, since it is impossible to say 

whether the component signals come from different sources, and should therefore be 

treated separately. A memo with the keywords "many segs" would be used in this kind of 

case. The selection process was intended to simply record individual occurrences on the 

spectrograms, without any assumptions about the association of one event with another.

Type 5 Events

An event type distinguished by nonperiodic, broadband pulses on a diffuse emission is 

illustrated in Figure 3-10. These were designated type 5 events for the database, but were 

not included in this study because they are irregular, impulsive and not band-limited.

They are more common at the two high latitude stations than the plasmapause station 

(Siple); 120 were seen at South Pole, 128 at Sondre Stromfjord, but only 29 at Siple. 

Type 5 events have a postnoon peak occurrence and Kp distribution similar to that of the 

Pcl/2. These topics will be discussed further in the chapter on results of data analysis.
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BPDP (Intervals of Pulsations of Decreasing Period) events were also noted, but not used 

in this study. These weere far more common at the plasmapause station (Siple) than the 

high latitude stations (68 at Siple, vs. 9 at South Pole and 10 at Sondre Stromfjord).

Illustration of Event Selection

The selection of events is outlined in Figure 3-11. The event beginnings and ends are 

noted in the figure, as are the frequency limits. A calibration pulse appears as a dark 

vertical (broadband) line in the spectrogram at 1507 UT. Several of the wave types above 

are also noted in this figure.

No previous ground study has simultaneously published the length of events, their 

frequencies and which stations observed them. All of this information led to new insights 

about source regions and the presence of helium in the outer magnetosphere, which will 

be discussed below in the data analysis section.
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Figure 3-1 The response o f the coil alone is shown as a function o f fiequency.The amplitude of the 
applied magnetic field was approximately 2.1 x 104 nT (Lin & Plombon, 1985)
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Figure 3-2 The gain of the preamplifier is shown vs. frequency (Lin & Plombon, 1985).
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Figure 3-3 The combination o f the coil and preamplifier together is shown as a function of frequency 
(Lin & Plombon, 198S).
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I UNCERTAINTY

FREQUENCY* H i

Figure 3-4 This sensitivity for the 1973 Siple coils was presented in Taylor, et al. (1975). At 0.3 Hz, 
in the P cl/2  band, the sensitivity is 9 x 10*4 y  (1 y  =1 nanoTesla) for one digitization unit in a 12 bit 
analog to digital converter (A/D). One digitization unit corresponded to 0.5 mV o f final output voltage in 
the installation described in Taylor, et al. (1975).
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Sondre Stromfjord

Common 
Serial Event

No. Serial No. Date Start Stop Frequency Bandwidth Type
753.0 403.0 07/12/86  1220 1715 0.40 0.40 3

Fragmented Memo:
.F. some str, nb seg; wb seg at beg

Siple

Common 
Serial Event

No. Serial No. Date Start Stop Frequency Bandwidth Type
1004.0 403.0 07/1 2/86 1225 1800 0.40 0.50 3

Fragmented Memo:
.F. some str, mostly diffuse; wb gradually going to nb.

Figure 3-5. A Foxbase event database record records information about the date, the beginning and end of 
an event, as well as its center frequency and maximum bandwidth. The type is a simple classification of 
the spectral character of the event Each event has a serial number at each station; if it was seen at more 
than one station, it has an additional number, in this case, 403.0, which is used in a separate database to 
keep track of which stations saw the event Fragmented events are those in which several segments at one 
station correspond to a single, monolithic event at another station.
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Figure 3-6 These are examples o f two structured (pearl) events. One (labelled a) has a constant 
bandwidth (referred to as type 1 in the database), and the other has a widening, then narrowing bandwidth 
(labelled b, type 4 in the database). A Pcl/2 is also present at approximately 0.4 Hz (labelled c).
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Figure 3-7  Two more P cl/2  events are shown in this figure from South Pole. In the left hand Pcl/2 (at 
0.15 Hz, 1730-2000 UT), note the exceedingly sharp upper and lower frequency bounds. The one on the 
right, from 2200-2300 UT, is just above 0.4 Hz. Both events were seen in both hemispheres (South Pole 
and Sondre Stromfjord).
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Figure 3-8 An example o f a fragmented event is shown in this figure. It is complete at Siple, but 
appears as two separate events at the two high latitude stations. This event is also referred to as a 
common event, since it was observed at more than one station. This is an example of a type 3 event, 
which is the general designation for events that are band limited, mostly diffuse emission, and are above 
the 0.1-0.2 Hz Pc2 frequency band.
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Figure 3-9 Sometimes many events overlap in such a way that it is difficult to separate them by any 
standard other than intensity on the spectrogram. This is an example of such an event It was recorded as a 
single event, since it is impossible to say whether the component signals come from different sources, 
and should therefore be treated separately. A memo with the keywords "many segs" would be used in this 
kind of case.
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Figure 3-10 An event type distinguished by nonperiodic, broadband pulses on a diffuse emission is 
illustrated in this figure, labelled (a). These were designated type 5 events for the database, but w oe not 
included in this study because they are irregular, impulsive and not band-limited. They are more common 
at the two high latitude stations (SP, SS) than the plasmapause station (Siple). A Pcl/2 also appears at 
this time, labelled as (b). Type S events have not been studied in depth.
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Figure 3-11 The selection of events is outlined in this figure from Siple. The same panel is 
shown twice. The top panel represents a typical survey plot, and the bottom indicates the 
events that were selected for the database. Lines have been drawn to show the center 
frequency, start and stop times. The maximum bandwidth was also noted, but not shown 
here for clarity. A calibration pulse appears as a dark vertical (broadband) line in the 
spectrogram at 1507 UT. Several of the wave types in previous figures also appear in this 
one.



Chapter 4

Alfven waves 

In tro d u c tio n

Micropulsations in the Pci range (0.2-5.0 Hz) are at such low frequencies that they 

resonate with and acquire energy from ions, unlike VLF and higher frequency waves 

which interact with ions and electrons together, or primarily with electrons. There are 

three solutions (wavemodes) to the dispersion relation, which is of order (co/k)6. Each of 

these three is of order (co/k)2, so two more solutions exist for each mode, representing 

waves traveling in opposite directions. In total, it may be said that six solutions exist. The 

three modes are the fast, the Alfven and slow modes. In a cold plasma, where sound 

speed is negligible, only the fast and Alfven modes exist. The Alfven mode is guided by 

the local magnetic field, while the fast mode is isotropic. These are electromagnetic waves 

in a medium which permits material currents J. The displacement current 3E/3t is small 

for these waves, in comparison to J , because of the low frequencies (Dawson, 1966).

The hydromagnetic modes will be derived in the following sections, assuming a single 

ion species plasma. After that, the effects of multiple ion species will be discussed. The 

presence of multiple species places certain restrictions on wave propagation, and this 

study will show that heavy ions in the magnetosphere strongly influence the pattern of 

waves observed on the ground.

39
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D erivation o f general d ispersion  relation

The dispersion relations for the wave modes may be derived from the equations of 

motion for ions and electrons, together with the wave equation, and in the case of a warm 

plasma, the equation of state. The necessary equations to do any case in which quasi

neutrality may be assumed will be presented in this section. In the following sections, 

some simple cases will be discussed for a physical description of the waves and a 

demonstration of the effect of various wavenormal directions, low wave frequencies, and 

finite plasma temperature.

Assuming harmonic, small amplitude electromagnetic perturbations and particle 

velocities, the equations of motion are:

where n is the number density (quasi-neutrality is assumed here, so that n; = ne = n); V; 

and ve are first order perturbations, with zero constant velocity; E is the wave electric 

field. Pi and Pe are the ion and electron pressures:

P = nkBT ,

where kB is Boltzmann's constant and T is the ion or electron temperature (Chen, 1974). 

Note that since ^  and ve are first order, the time derivative in the equation o f motion 

becomes:

M n ^ r  = n e (E + ^ V ix B 0) - VP£ (ions) (4-1)

and

dv 1
m n - ^  = -ne(E + - v ex B0) - VPe (electrons) (4-2)



41

since v^Vv; involves second order quantities. Also, the wave magnetic field b is not in 

the equation of motion, since vex b would be of second order.

The wave equation is derived from the time derivative of Ampere's law and the curl of 

Faraday's law:

where

J  = nee(Vi - ve) .

The displacement current may be neglected at ULF frequencies (Dawson, 1966). First 

order pressure amplitudes may be accounted for as follows, for either ions or electrons. 

For example, for ions, we may write:

(Halliday & Resnick, 1988) w here/is  the number of degrees of freedom (f = 3 for pure 

translational motion). An adiabatic state has been assumed, which is reasonable for 

motion perpendicular to the magnetic field (Chen, 1974). This means that

and

When added, the wave equation results:

VxVxE = V(V*E) - V2 E  =
47C0J J_3E 

" c2 a t " c2 at * (4-3)

where y  = p 2, the ratio o f specific heats (Chen, 1974), or equivalently y = 1 +
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VPj = y p i ^ V p i  = Y ^ - V p i  . (4-4)
P i

With the equation of continuity,

^gr- + V -(p iVi) = 0  ,

and with mass density represented by a constant, plus a first order variable:

Pi =  Poi +  P li  »

pressure may be written in terms of k and Vi .'First we have, assuming e’(k'r ■ “ 9 

harmonic dependence,

V-(piVi) = Vi-V(poi + p i i ) +  (poi + pii)V-Vi -» poiV-vi -» ipoik-Vi .

With this, mass conservation becomes 

-icopji + ipoik-Vi = 0 

and so

V p j i= ik —  k-vj . (4-5)
Cl)

Inserting (4-5) into (4-4), we can write an expression for the pressure variation:

VPi = - y P i  k-Vi . (4-6)
co

This can be written in terms of the total pressure from electrons and ions, P = Pi + Pe , 

assuming Pi = Pe = P/2 (Cross, 1988):

V7n ik P .VPj = — Y y k*Vi .
co z
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The dispersion relation between k and to may be derived from the ion and electron 

equations of motion (4-1,4-2), the wave equation (4-3) and the pressure gradient 

equation (4-6). There are nine unknowns for the simple case of the electron-single ion 

species plasma: three components of velocity for each particle type, and three electric field 

components. If k = kx $  + ky y + kz £, and Bo = Bo £, the equations may be written 

in their component form (cgs units), with mass M  representing the ions, and mass m  

representing the electrons, a s :

riM (0- kx2 ^ - 1  vix + [ |B o  - kxky viy - kzkx va  + 0 vex + 0 vey+ 0 vez
L 2tonJ Lc 3 2tonJ 2con 3

+ eE* + 0 Ey + 0 Ez = 0

£ - | b 0 - k xky vix+ j^iMco- ky2 ^ - J  viy -k zky v * + 0vex+ 0 vey+ 0 vez

+ OEjt+ eEy + 0EZ = 0

-kxkz^-V ix  - kzky ^ - v iy+ [iM co-kz2 viz+0veX+0vey+0vez 
2con 2(on L 2conJ

+ 0  Ex + 0 Ey + e Ez= 0

Ovjx +0viy+ 0v jz+ f"imco-kx2 ~ ^ “ l v ex - [ |B o  + kxky vey -kzkx p^-Vez 
L 2conJ Lc 2conJ 2wn

- e Ex+ 0 Ey+ 0  Ez=0

0 vix+ 0 viy+Oviz+ [ > 0 - k xky vcx+ Timo)- ky2 ^ - 1  vey- kzky — -v«
Lc 2conJ L 2conJ 3 2(on

+ 0 E X -eE y + 0 E Z=0

Ovjx+Oviy+Oviz - kxkz vex - kzky vey + [imco- kz2 -p^-1 vez
2con 2con L 2o)nJ

+ 0 E x+ 0E y -e E z =0

-i^O )nev iX+0viy+0viZ+ i^ © n e v ex+0vey+0vez+(ky2+ k z2)E x -kxky Ey -k xkzEz= 0



This set of equations yields the dispersion relation for all three unique modes, in a warm 

plasma, with an arbitrary k direction. The components have been written here in a form 

suggestive of a matrix. The coefficients of these nine variables may be arranged in a 

matrix. For nontrivial solutions, the determinant of the coefficients must be zero.

A physical p icture o f the  Alfven wave

A simple case has k = k £ , Bo = Bo E = E x  (the wave electric field) and no pressure 

gradient force (cold plasma approximation). The particle velocities and wave fields for 

this case will be described below.

A physical picture of the Alfven wave may developed by first showing the dependence of 

particle velocities on the magnetic field (Bo) and the wave electric field (Figure 4-1). The 

ion equations of motion without pressure are:

iMcovix + |B o v ,y  + e E x = 0  

- |B o  Vix + iMcoviy + eEy = 0 

iMcovjz + e E z = 0 .

Cramer's rule may be used to find v;x and Viy . They are:
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-ieExMco + eEveBo/c 
V‘x ”  -M 2co2 + e2B 02/c2

(4-7)
-ieEv Mo) - eEx eBp/c 

iy ~ -M2co2 + e2B0 2/c2

The electron velocities may be found by letting e -» -e and M -» m. If the low frequency 

limit is taken, where M2©2« e2Bo2/c2, the velocities of both electrons and ions are 

consistent with an oscillating ExBo drift, due to the wave electric field. If this limit is not 

taken, there will be velocity components in the direction of the wave electric field.

This shows how particle motion is related to the wave electric field and Bo. Next, the role 

of the wave magnetic field will be displayed. The wave magnetic field b is in phase with 

the electric field:

bx = — (kyEz - kzEy) -> -  - k zEy 
CO CD

(4-8)

by = (kzEx - kxEz) —> kz Ex
co to

Note first that in the low frequency limit, b is 180° out of phase with particle velocities, 

because the electric field components in (4-7) and (4-8) have the opposite signs. Also, the 

velocities in this limit maximize at the same time as the wave fields, but point in opposite 

directions (see Figure 4-1). The result is that the magnetic field is undisturbed by the 

wave at maximum plasma displacement, and is most disturbed as plasma rushes across 

the equilibrium position. The field line and mass appear to move together as a loaded 

string (Figure 4-2).

The restoring force for this plasma oscillator is the J p x Bo force of a polarization current 

that arises from the difference in ion and electron masses. This follows from the
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expressions for ion and electron velocities. From equation (4-7), the x  component of the 

current is, in the low frequency lim it:

Jpx =  n e (v jx  -  Vex)

j" -ieExMco + eEv eBo/c ieE x m© + eEv eBo/c"l 
~  n e L e2B02/c2 '  e2B02/c2 J

-in (M+m) coEx 
Jp* '  Bo2/c2

With this, the restoring force is :

pc2 dE R 
* ~ B02 dt x 0 ’

where p is the total mass density: p = pi + pe . The i in the velocity expression (4-7) 

shows that this force is 90° out o f phase with the electric field and plasma velocity, in the 

same manner as a simple harmonic oscillator.

F as t and Alfven modes in a  cold plasm a in the low frequency lim it;

k n o t  parallel to  Bo

This case allows a straightforward derivation of the dispersion relations for both the 

Alfven and fast modes. If the low frequency limit is not applied, and/or the case of a 

warm plasma is considered, the derivation is lengthier; so for these cases, only results 

will be presented.

The Alfven mode is the one just discussed in terms of a physical picture. In that case, k  

was restricted to the z axis, parallel to Bo, and the low frequency approximation was 

applied. If k is allowed to have a component perpendicular to Bo, however, another 

mode appears. The second mode is the fast mode. In this section the dispersion relations
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will be derived. In later sections, it will be shown that these two modes have different 

phase speeds and that one is guided by the local magnetic field, while the other is 

isotropic.

Both modes may be derived in the low frequency limit (to « Q ;), with an arbitrary 

direction for k as follows. If k = kx x + k y y + k z z , the force equations (the first six 

of the matrix above) may be arranged to give particle velocities as a function of the 

electric field. These velocities may be used to write the components of J  in the wave 

equation (last three equations in the matrix) in terms of E, co and k, with Bo || z . The ion 

velocities have been worked out above (equation 4-7). In the low frequency limit,

M2©2 « e2Bo2/c2, which is true for ions and electrons. Using m « M.and beginning 

with the x  component, the currents are:

. 4rc _ . 4ji .
i-^-coJx = i-^-cone(vix - vex)

. 4 k  f(-ieE jM co +  eE ye B o /c )  - ( ieE jn co  +  eE yeB o /c )  
1- 5-cone ------------------1— ----------------------- 1-----------c2t0neL e2B02/c2

where V, (the Alfven speed). The y  component o f current is
yj 47tnM



48

.4 ti .4 tc
= 1̂ r c°ne(viy - vey)

. 47t f (-ieEyMco - eExeBo/c) - (ieEymo) - eExeBo/c) 1 
= i-^-wneL -------------- e2B0Vc2 -----------------------J

4 k  03?
i ^ - fl)Jy = v ? ^  •

Finally, from the equations of motion for electrons and ions, the current along the z axis 

i s :

47t 4tc
i7 rw j z = -rcone(viz-vez) 

c c /

c  L iMco imco J

4 7 t eE,
- - 5- cone 7 ^  

0  imco

t  ~  n e 2 E z  
J z  ~

mco

Jz will be finite only if Ez is small, because the electron mass is small (see, for example, 

Hughes & Southwood, 1976).

The wave equation's x  and y  components are (with Ez = 0)

4tc
-i-^-coJx + (ky2+ k z2)Ex - k xky Ey = 0  

4tc
-i-^COjy - kykXEX + (kX2+kZ2) Ey = 0 .

With the current terms, the components become

(-TTT + ky2+ k z2) Ex = kxky Ey 
v A

(4-9)
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(- ^  + kx2+ kz2 ) Ey = kykx Ex (4-10)

The determinant of the coefficients must be zero for nontrivial solutions, so we have 

( - ^  + ky2+ k z2 )(-  ^  + kx2+ k z2 ) .  kx2ky2 = o .

We may define k|| = kz and kx = kx2+ ky2 , so that k2 = kx2 + k(l2 .

With these substitutions, the determinant becomes

[ ^  '  k « 2  ][ V? '  k2 1 = 0 (Cross’1988) ’

which yields two dispersion relations:

0) = k|| VA (Alfven mode; also called shear, torsional, oblique or transverse) (4-11) 

and

co= kVA (fast mode; also called compressional or isotropic). (4-12)

Fast and Alfven modes in a cold plasma, without the low frequency limit

If the low frequency approximation is not made, then the phase speed dependence on 

wave frequency becomes clear. This is the subject of this section. The dispersion relation 

for the two modes without the low frequency limit is (for the special case of k || Bo):

1 ± (Dawson, 1966), (4-13)

where the upper sign is for the fast mode, and the lower for the Alfven mode. Note that 

the phase speed of the fast mode is always greater than that o f the Alfven mode, and also
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increases with wave frequency. On the other hand, the Alfven mode phase speed 

decreases with increasing wave frequency.

It is also clear from (4-13) that the Alfven mode will stop propagating when co > Q i, 

because the phase speed becomes imaginary. However, the fast mode will propagate at 

these frequencies. This opposite behavior is due to resonance of the Alfven mode with 

ions. The Alfven mode is left polarized, so the electric field has counter clockwise 

rotation, looking parallel to Bo (Chen, 1974), which is the same sense as ion cyclotron 

motion in a magnetic field.

The dispersion relation (4-13) clearly shows the upper frequency limit for the Alfven 

mode as the ion cyclotron frequency, while the fast mode can propagate at higher 

frequencies, up to the electron cyclotron frequency. This is due to resonances arising 

from the rotation sense of ions and electrons in a magnetic field. The ion rotation matches 

the left polarized Alfven mode, while electrons match the fast mode polarization. A 

"cutoff frequency exists for the Alfven mode. This will be discussed below, in the 

section on plasmas with multiple ion species. The cutoff frequency is (for C0pe « Qe and

C0pi«Qi):

CO
coCo = Qi + —^  (Swanson, 1989)

Q

where ©pi is the ion plasma frequency, CDpi = (47tne2/  M )1#  (cgs units), and CDco > Q i. 

This cutoff frequency was derived by keeping the displacement current, which is often 

disregarded at ULF frequencies. The displacement current becomes significant at high 

phase speeds, however, and the phase speed approaches infinity near a cutoff. The effect 

o f  the displacement current on the magnetic field may be quickly shown as follows. 

Combining
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with

we have

c J '  k2c2 B •

The second term on the right hand side, which arises from the displacement current, 

becomes important for high phase speeds.

If the warm plasma case is chosen, the pressure gradient force terms will remain in the 

equations of motion for the electron and ions, since VP = kBT Vn, which depends on 

temperature. This introduces the sound speed into the dispersion relation. There are three 

modes in the low frequency limit for a warm plasma, which are the w2/k2 roots of the 

zero determinant condition (Cross, 1988):

Fast, Alfven and slow modes in a warm plasma

V a2cos20

where cs2 = ^P/p (square of the sound speed).

From the first bracketed term, the first dispersion relation is

^  = VA cos0 , (4-15)

where 0 is the angle between k and Bo. This is called the "torsional", or Alfven, wave, 

and is unaffected by the pressure (Cross, 1988).
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The second bracketed term yields the other two modes. One may write 

=  (Ĉ V )  ±  I ^ ( Cs2 + v A2)2 - 4 c s2VA2cos2e

= (Cs2+2Va2) ±  \  V  cs4 + VA4 + 2 cs2V a2 (1 - 2cos29 ) . (4-16)

At 0 = 0°,

= {•
0* = J c *2 ( 4 - 1 7 )

V,k2 i \ i  2

The fast wave phase speed is the greatest of the two, and the slow wave speed is the 

smallest. At 0 = 90°,

oj2 J  (cs2 + V A2) ( f a s t  w a v e )  ( 4 - 1 8 )
k2 = I{ 0 (slow wave)

If cs « VA, the dispersion relation for the fast and slow modes may be written as : 

co
= cs cos0 (slow wave), (4-19)

and

co
£  = VA (fast w ave).

If more terms are kept in (4-16), these relations may be rewritten as: 

co? c 2
■£2 = ‘2- (1 +cos20) (slow wave),

and
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fifi c2
-̂ 2 = Va2+ (1 - cos20) (fast w ave).

These expressions reduce to the 0° and 90° cases above (4-17,4-18), in which no 

approximation was made.

The fast wave is isotropic, while the Alfven (4-15) and slow (4-19) waves are field- 

guided, which will be shown below. Although these dispersion relations were derived 

for the low frequency limit, the two guided modes are still guided if this limit is not 

taken, as long as the medium is collisionless (Dawson, 1966; Cross, 1988). The fast 

mode does not have the same phase speed in all directions, but it may propagate in any 

direction. Cross (1988) diagrams the phase speeds vs. the angle between k and B o.

The slow wave may propagate perpendicular to Bo only if the ion collision frequency is 

on the order of the wave frequency (see Dawson, 1966). This will be covered further in 

the section on ionospheric modification of micropulsations.

The sound speed may be estimated for the plasmasphere where cold plasma thermal 

energies are a few eV. Assuming three degrees of freedom in the particles (y= 5/3), we 

have:

YP 5 nk T
cs2 = —  = 3 ~ 10* m2/s2, or, cs = 104 m/s. For comparison, at 3 RE in the

equatorial plane, where the electron density is approximately 500/cc (see Kelley, 1989), 

and the magnetic field is approximately 0.01 gauss (T89 model, D. Larson, pc; or about 

1/9 of the Earth's surface magnetic field), the Alfven speed, B o /\4 jtn M  , is

approximately 106 m/s, 100 times greater than the sound speed.



Group velocity : the isotropic and field-guided nature of the modes

The propagation direction of a localized wave packet is described by its group velocity. 

Calculation of the group velocity shows that the Alfven (transverse) mode is field-guided, 

while the fast mode is isotropic. From Cross (1988),

, 7 _  30) * 3C0 a 3C0 a

v « -  -  a £ 4  + 5 ^ + a s *  •

The component of group velocity parallel to Bo for the two modes in a cold plasma, 

whose phase velocity is given by equation (4-13), is :

If the derivative of Vg with respect to co is taken, it is found that the group (and phase, as 

shown above) velocities increase with frequency for the fast mode (3Vg /3co > 0), but 

decrease with increasing frequency for the Alfven mode. This is apparent in the 

spectrograms of "pearls", or discrete pulses in the 0.2-5.0 Hz P ci band, about two 

minutes apart. The pulses first arrive as vertical lines on a frequency-time spectrogram, 

broadband in frequency, narrow in time. As successive pulses are seen, the vertical lines 

tip over, so that higher frequencies arrive last. The waves are thought to follow the 

magnetic field of the Earth, alternately mirroring from both hemispheres. The higher 

frequencies of these waves travel slowest, so they arrive later each time the wave packet 

reflects from the ionosphere.

I Vg 11 = VA (Dawson, 1966) .

The fast wave may propagate in all directions with the same speed (VA), since the group 

velocity at low frequencies is
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The Alfven and slow waves only propagate parallel to the magnetic field, however, since

co = kVA cos0

3co a l 3to a 
Vg = 0 (Swanson, 1989)

= VA cos0 it - VA sin0@ .

The dot product of Vg with the magnetic field vector is:

Vg-Bo/IBol = (VA cos0)(k-Bo/IBol) + (-VA sin0)(0-Bo/IB0l)

= (VA cos0)(cos0) + (-VA sin0)(-cos(9O-0))

= VA .

The group velocity of the Alfven mode has magnitude VA parallel to the magnetic field. 

Another, less general way to show this is to say that co = VA k|,, so that (3co/3k J  = 0. The 

wavenormal k of the Alfven mode may be at an angle 0 to Bo, but the group velocity is 

not parallel to k.

On the other hand, in the cold plasma case, the fast wave group velocity is always in the 

k direction, because there is no 0 dependence. This makes the fast wave isotropic. In the 

warm plasma case, the phase speed of the fast wave does depend on 0 (see 4-17 and

4-18), but the group velocity is not necessarily parallel to the magnetic field.

P olarization  of the fast an d  Alfven modes in a  cold plasm a

The polarization of the Alfven and fast modes is discussed in the low-frequency limit by 

Denisse & Delcroix (1963) and Cross (1988). The polarization o f a mode is the ratio of 

Ex to Ey . From the first component of the wave equation (4-9), the ratio of Ex to Ey is
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E, _  kxkv______

n* [ - ^  + V + k z2]

The dispersion relation for the Alfven mode in the low frequency limit, equation (4-11), 

may be substituted to find the polarization for that mode. This gives :

Ex _  _______ kxkv_________ _ kx
Ey [  co? ] ky

L" VA2 + k y + va2J

From this, it may be concluded that if k is confined to the x-z plane, then for the Alfven 

mode, Ey -»0. This means that the electric field vector for the low-frequency Alfven 

mode is confined to the k-Bo plane.

The polarization for the low-frequency fast mode is derived by using the fast mode 

dispersion relation (4-12) instead. In that case,

E x  _  ___________k x k y ___________  _  k y

Ey (-k 2 + ky2 + k z2 ) ‘ kx ’

so that Ex -»0  for k in the x-z plane. In the low frequency limit, then, the fast mode 

electric field is perpendicular to the k-Bo plane. This is the opposite o f  the Alfven mode. 

When k  1  Bo, this makes the E wavexBo motion of the plasma parallel to k, which gives 

the fast mode a compressional nature.

Circular polarization in a cold plasma

If k || B o , circular polarization can occur, since there is no k-Bo plane. If the low 

frequency approximation is not used, the polarization for the Alfven and fast modes can 

be derived from the ratio of electric field components. If  they are linearly polarized, with 

no phase difference, this ratio will be 1. A phase difference will be represented by -1, for 

a 7t radian phase difference, or a complex number for any other phase difference. For
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example, if  the ratio is ±i, there is a rc/2 difference, since the electric field has a harmonic 

variation. The NPco2 terms may not be neglected in the ion velocity expressions above 

(4-7). When they are included in they  component of the wave equation, with k = k z ,  

the ratio of Ex to Ey is

iE. Oi (Qi2 -£D2)VA2k2 , ^
^  - — ------ — -----  = ± 1 (Dawson, 1966) .

co Qi co3

The dispersion relation (4-13) that does not arise from a low frequency approximation 

was used. The upper sign refers to the fast mode, and the lower to the Alfven mode. The 

+1 means that

Ey e'(k,r - “0 = ei(k-r-C0t+7l/2> Ex ,

so that Ey is ahead of Ex by 7t/2, which is right circular polarization (cw rotation of the 

electric field vector) for the fast wave. The Alfven wave is left circularly polarized when 

k || B0 , which allows it to resonate with ions gyrating in a magnetic field.

P ropagation  in the  presence of m ultiple ion species in a  cold plasm a

If more than one type of ion is present, the Alfven mode may be found at a higher 

frequency than the lowest ion cyclotron frequency, and the right polarized mode is 

magnetic field-guided in certain frequency bands.

The effect of multiple ion species on the dispersion relation and wave polarization will be 

discussed in this section. They may be accounted for by modification o f the single ion 

equations (Dawson, 1966). When this is done, the current density becomes:

J = e(£niVi - neve) ,

and charge neutrality requires:
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If co « Qe and Q j« Q e , the velocities of the ions and electrons may again be expressed in 

terms o f electric field. The dispersion relation will look the same as for the single ion 

species case if two changes are made. A composite ion gyrofrequency replaces the single 

ion gyrofrequency:

y  _ 2S i__
_  Qj2 - co2

**com — _ >
y   j

Qj2 - CD2

which becomes the j*  gyrofrequency when co approaches Q j. The composite Alfven 

velocity is (quoted from Dawson (1966) in MKS units):

B o 2 2
Vcon,2 = ------------- m j (Qj_2 - co2) (Dawson, 1966) .

^ 2  - ni - v  - J h —
Q j - co Q j + co

Special frequencies due to the presence of heavy ions

Below every ion gyrofrequency, there will be other special frequencies introduced 

because of the presence of the next more massive ion. These are the crossover, the cutoff 

and the bi-ion hybrid frequencies. In a plasma with H+ and other ions, the H+ 

gyrofrequency will be the highest. The gyrofrequency is called a resonance, since ions 

may pass energy to a left-circularly polarized wave, or vice versa, when co = Q j, the j*  

ion gyrofrequency.

One o f the frequencies created by the presence of multiple ion species is the zero-current 

frequency, or when Qom = 0, which occurs at
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X  - njQj = 0 .  (Dawson, 1966)
Qj2 - co2

At this frequency, also called the bi-ion hybrid in literature (for example, Perraut et al., 

1984), there will be no current parallel to the transverse wave electric field. Only the fast 

mode may propagate here (Dawson, 1966, unless k 1 Bo (Rauch & Roux, 1982, Perraut 

et al., 1984, Roux et al., 1982). This is discussed further in the next section. Above this 

frequency, the fast mode is guided by the magnetic field, but below, die fast mode is not 

guided. If the two ions are H+ and He+, the bi-ion hybrid frequency is given by Young et 

al. (1981):

A -*  - \ l •
\  1 + 3r|/4

where T| is the concentration o f He+ (rj = Nĥ /N^u!), and Ntoul is the density of both hot 

and cold ions (Perraut et al., 1984).

A cutoff frequency will occur when

y ,  — ^ —  = 0 (Dawson, 1966) ,
Q j - to

which makes the phase speed infinite (see Ichimaru, 1973; and Dawson, 1966). This 

sum involves positive and negative terms because co may be between gyrofrequencies. 

Another expression for the cutoff is given by Young et al., (1981). The ion 

gyrofrequency just below the cutoff, and the concentration of that ion determine the 

cutoff frequency:

fCF = Q V  1 + 3ti (Young eta l., 1981)

Finally, the crossover frequency is defined by
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Q com  “ » 00 .

which takes place when the sum 

2  — ^ —  = 0 (Dawson, 1966).
Qj2-© 2

At this frequency, the polarization of the wave changes to the opposite sense (left to right 

or vice versa). The faster mode is always isotropic in the vicinity of this frequency, 

regardless of polarization (Dawson 1966). Above this frequency, the isotropic mode has 

the opposite polarization for propagation parallel to the magnetic field as below. The same 

is true for the field-guided mode. At the crossover frequency, the polarization of the wave 

is linear.

It is necessary for the wavenormal k to have some component perpendicular to Bo for the 

polarization switch to occur (Young et al., 1981); otherwise, the left and right polarized 

modes will not couple. Even if k and Bo are initially parallel at the equator, where 

wavegrowth is expected to occur (see section below on wavegrowth), the angle between 

them will increase as the left polarized wave propagates away from the equator (Young, 

etal . ,  1981).

Another expression for the crossover frequency, is given by Young et al. (1981). The ion 

gyrofrequency just below the crossover, and the concentration of that ion determine the 

crossover frequency:

fCR = Q ”V 1 + 15t| (Young et al., 1981, with reference to Smith & Brice,

1964).
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Im plications o f m ultip le ion species fo r m icropulsations

Micropulsations are thought to be Alfven waves that are amplified in the left-polarized 

mode near the equator, and propagate to the ground. A guided, left polarized wave, after 

resonance and amplification by energetic ions, will pass through the crossover and 

become a guided, right polarized wave. This wave, moving into a region of increasing 

magnetic field, will reach a point where the local bi-ion frequency matches the wave 

frequency. The wave will become unguided and the wave normal will quickly become 

perpendicular to B o. Then, at a frequency slightly below the bi-ion frequency, when k 1 

Bo, the group velocity parallel to Bo goes to zero, and the wave is reflected (Rauch & 

Roux, 1982). It will then return to a guided mode, and reflect from the bi-ion frequency 

region in the opposite hemisphere. In the case o f H+ and He+ as the major constituents, 

the wave may tunnel through their bi-ion hybrid frequency if  the He+ concentration is 

only a few percent (Perraut et al., 1984). This means that waves amplified at the equator, 

between the H+ and He+ gyrofrequencies, will not reach the ground unless the He+ 

density is low enough along their magnetic field path to ground.

The bi-ion hybrid frequency, or zero-current frequency, is important for the interpretation 

o f micropulsation observations. When micropulsation studies are combined with 

spacecraft measurements, the importance of heavy ions to wave propagation can be 

determined.

The propagation of ULF waves in a H+, He+ plasma in the magnetosphere has been 

discussed by Rauch & Roux (1982), who did ray tracing, and Young et al. (1981), Roux 

et al. (1982) and Perraut et al. (1984), who studied propagation in light of their GEOS 1 

and 2 spacecraft measurements. They describe three classes of waves that are 

distinguished by the characteristic frequencies described above. Class EH waves are
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described above. They can exist from a frequency of zero up to the H+ gyrofrequency, 

and are sensitive to the bi-ion hybrid frequency and the crossover.

Class I waves are amplified below the local He+ gyrofrequency and are left polarized. As 

they move toward the ground, the local He+ gyrofrequency increases further above the 

wave frequency, so these waves never encounter the bi-ion hybrid or crossover 

frequencies due to the He+ ions. They can easily reach the ground, and the Pcl/2 in this 

study are in this class.

Class II waves exist above the cutoff due to the He+ ions, so these waves are already 

above the local He+ gyrofrequency. They can only be amplified by resonance with H+ 

ions. Above the cutoff, but below the crossover, they are left polarized. Above the 

crossover, they are fast waves that are right polarized when k || Bo. The crossover does 

not make them guided, it just switches their polarization. For this reason, these waves are 

unguided, regardless of polarization, and hence are not greatly amplified. They propagate 

away toward regions of weaker Bo, since they only exist above the cutoff (Rauch & 

Roux, 1982). These classes will be discussed below in regard to ground observations in 

this study.
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7XB0 restoring force
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Figure 4-1. The slow mode with kllSo • in the low frequency limit. £ may 
have x and y components, but It has been aligned with the x axis for 
simplicity in the figure.

k,B0

f

Plasma displacement = 0 
Maximum V _
Maximum wave b (maximum perturbation 
from 7 0 hare)

Maximum plasma displacement 
V=0 _
Ewov»=0 (no perturbation from Bq here)
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Figure 4—2. The plasma displacement and local magnetic field perturbation 
as a slow mode, low frequency Alfven mode propagates parallel to F0.



Chapter 5

Ionospheric  M odification o f M icropulsations 

In tro d u c tio n

All ground observations of waves from the magnetosphere are made after the waves have 

passed first through the ionosphere. As a wave approaches the Earth, the increasing 

magnetic field strength, the changing ion density and even the tilt angle the field makes 

with the ground all modify the propagation of the wave and alter the magnetic signature 

on the ground. When an Alfven wave follows the Earth's magnetic field toward the 

ground, its energy splits into three branches at the ionosphere. It is mostly reflected, but 

some is transmitted to the ground, and some transported horizontally. The horizontal 

transport, or ducting, carries some energy beyond the region o f the incident wave. Some 

of the ducted energy always escapes from the duct, partly by a Poynting loss, and partly 

by dissipative loss. The ducted wave fields are evanescent below the duct, but the 

wavelengths are long compared to the altitude of the duct, so the initial disturbance may 

be seen up to at least one or two thousand kilometers away (Hayashi, 1981). For the 

transmitted waves, certain polarization patterns are expected, depending on how far away 

the observations are made (Fujita & Tamao, 1988, Greifinger, 1972b).

Directly beneath the incident disturbance, the transmitted magnetic field is rotated by 90° 

from the initial Alfven wave. This is due to the finite conductivity of the ionosphere and 

the lack of currents in the atmosphere (Hughes, 1974; Nishida, 1978). This finite 

conductivity is also responsible for coupling the incident Alfven wave, which follows the 

Earth's magnetic field toward the Earth from the magnetosphere, to the fast or isotropic

64
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wave, which carries energy away in the ionospheric duct, perpendicular to the Earth's 

field.

Another contribution to the ground observation comes from the fact that the magnetic 

field of the Earth intersects the surface at an angle. The incident Alfven wave induces 

field-aligned currents because it is localized in space. These currents add an East-West 

magnetic component to the ground observation which increases in magnitude with the tilt 

of the Earth's field (Tamao, 1986).

The Incident Wave

All these processes can be illustrated by following an Alfven wave as it arrives at the 

ionosphere. There, the Pedersen and Hall conductivities cause the rotation of the wave 

magnetic field below the ionosphere and couple the Alfven to the fast wave. Suppose an 

Alfven wave, with k2 = kx2 + k22, and with a wave electric field in the k-Bo (orx-z) 

plane, is incident downward on the ionosphere (see Figure 5-1). Bo points downward, 

parallel to the z axis. The x  axis is in the meridian, North-South. A fast wave in this 

arrangement, such as the one induced by coupling in the ionosphere, would have an 

electric field perpendicular to the k-Bo plane (Dawson, 1966). Ex represents the Alfven 

wave, and Ey the fast wave, but all variations in the x-y plane go as eUc*x. Other plane 

waves, with e ^ y  dependence, may be added in a Fourier sum to represent any localized 

Alfven disturbance (Greifinger, 1972b).

Pedersen and Hall conductivities and currents

To show how waves propagate at different altitudes, it is necessary to account for height- 

dependent conductivities. Their effect may be shown by combining conductivity relations
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between E and J  with the wave equation. In the ionospheric E-layer, the Hall 

conductivity links the Alfven and fast modes. Starting with Maxwell's equations,in 

gaussian units, we have (following Greifinger & Greifinger, 1968):

and, as in chapter 5, by taking 3/3t of the first and Vx of the second, the wave equation 

results:

The conductivities are derived from the equations of motion for ions and electrons, along 

with the definition of current density. When these equations of motion are written in 

terms o f E and v, and the definition of current density J  = nee(vi - ve) (Dawson, 1966) 

is used, it is found that

J x =  O p E x - C n E y

J y =  O p E x +  CHEy

Jz = Ob Ej

(5-1)

and

(5-2)

VxVxE = V(V*E) - V2 E = - • (5-3)

when the magnetic field is directed along the z axis. This means that the current J  may be 

written as J  = c*E, where o  is a tensor composed of Hall (o h ) , Pedersen (op) and direct 

(Co, along the magnetic field) conductivities. The conductivity tensor is, then:
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a  p -oh  0 
o =  oh  op  0

_ 0 0 o 0 _

and in general,

J  = o 0 E,| + o P Ex + o H E x g ^ ~  (Nishida, 1978),

where parallel and perpendicular components are relative to the Earth's field Bo. For 

altitudes between 200 and 1000 km (the ionosphere and above), conductivity parallel to 

the magnetic field, Oo, is several orders of magnitude greater then either the Pedersen (Op) 

or Hall (O h) conductivities (Kelley, 1989). For midday at sunspot minimum, the Hall 

conductivity maximizes near 120 km and falls off by an order of magnitude at altitudes 

approximately 40 km above and below. This provides a relatively narrow range of 

altitude in which the screening process and coupling of Alfven and fast modes can take 

place (see Greifinger & Greifinger, 1968, and Fujita & Tamao, 1988). The Pedersen 

conductivity maximizes about 20 km higher and falls off more gradually with altitude 

(Hughes, 1974).

Nishida (1978) and Greifinger & Greifinger (1968) show ionospheric conductivity 

forms, which involve collision and gyrofrequencies for electrons and ions. They are, 

including the ion collision frequency (from Greifinger & Greifinger, 1968):

47tVA2 {1 + [ ( V i - i © ) 2 /Q i2 ]}
(5-4)

(5-5)

where £2i is the ion gyrofrequency, co is the wave frequency and Vi is the ion-neutral 

collision frequency.
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Pedersen currents are parallel to the electric field, while the Hall current is perpendicular. 

In the lower ionosphere, the ion collision frequency (with neutrals and electrons) is larger 

than the wave frequency, but approximately the same as the ion gyrofrequency. On the 

other hand, the electron collision frequency is less than the electron gyrofrequency 

(Kelley, 1989), so the Hall conductivity in the lower ionosphere,

aH = UT
_ Q 2  

.  £2i2 +  V i2 Q e2 + v e 2

is negative (Nishida, 1978). This is also true for the real part of (5-5) in the same region, 

where terms in co/Vi are negligible. This means that a conventional current equivalent to 

this Hall current is in the -ExB direction. The collisions inhibit the ion motion, leaving 

the electrons to ExB drift, which results in a net current.

Since the conductivities are derived from the equations of motion for ions and electrons, 

the terms in the conductivity expressions depend on what forces are significant in the 

regime of interest. For example, the rate o f momentum transfer by collision, from ions to 

neutrals, is only important at certain altitudes (see Kelley, 1989 and Nishida, 1978). 

Above those altitudes, terms in Vi /to are negligible.

The incident wave as it approaches the ionosphere from  above

Now that the wave equation may be written in terms of the conductivities at different 

altitudes, the waves may now be followed down through the ionosphere into the 

atmosphere. At the interface between any two regions, such as the ionosphere and 

atmosphere, the wave electric and magnetic fields on both sides are matched to each 

other. This process determines coefficients and yields reflection coefficients. When the 

tangential magnetic fields are different, there are currents in the plane of the interface:
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B x2 ■ Bxi — c Kx — c (SpEy — 2 hEx)

By2-Byi = ^ K y = ^ ( S PEx + 2 HEy)

The assumption of harmonic field variations provides the following substitutions:

3/3t -> -ico and Vx -> ik x , where k = kx x + kz z

(5-6) 

(5-7) 

(5-8)

Greifinger and Greifinger (1968) note that Ez is approximately zero below 1000 km 

because of the high parallel conductivity Oo (see also Hughes & Southwood, 1976a). 

Note also in the z component that even if Ez = 0,

Vz (V-E) - V2Ez = ^ ic o J z -  E x + ^ E y)  = § ic o J z , (5-9)

and there will be a field-aligned current if there is a variation in Ex or Ey in the horizontal 

(x-y) direction. This variation could arise from a wavenormal k that is not parallel to the z 

axis, so that a kx or ky exists. Nishida (1964) gives an example o f this, as he treats a sum 

of non-vertically propagating waves (a Fourier representation of the electric and magnetic 

fields). It could also arise from a localized disturbance, in which the horizontal electric 

field goes to zero over a finite distance. Greifinger (1972a) noted the few hundred 

kilometer extent o f micropulsation disturbances and suggested that they are composed o f

and 9/3z - » ikz , so that kz = -i d/dz.

With these, the components of equation (5-3) become

Air A ir
-kx (kx Ex + kzEz) + (kx2 + kz2)Ex = F icoJx = ico(apEx + a HEy)

(kx2 + kz2)Ey = ^iCOjy = ^iOX-OHE, + OpEy) 

4ji 4jt
-kz (kx Ex + kzEz) + (kx2 + kz2)Ez = io)Jz = iwo,oEz .



a superposition of plane waves, with a distribution of amplitudes and phases. Given 

harmonic variations in z and x, Jz would be out of phase with the wave electric field by 

tc/2.

Wave-mode coupling in the ionosphere

If  the x and y components of the wave equation are rearranged, we have

^ 2 +  -^ricoap Ex + iCi)CTHEy = 0 (5-10)

iaxjHEx = 0 (5-11)

Note that the Hall conductivity couples Ex and Ey. At altitudes where the Hall 

conductivity is small, the magnitude of Ex is not related to that of Ey and the two 

components are uncoupled. There, (5-10) becomes an equation for the Alfven wave (£*), 

and (5-11) becomes an equation for the fast wave (Ey). This is because the fast wave 

electric field is perpendicular to the k-B0 plane, and the Alfven wave electric field is in 

that plane (Dawson, 1966). An Alfven wave propagating down the field toward the 

ionosphere will reach the altitude range where the Hall conductivity is increased by ion- 

neutral collisions (Greifinger & Greifinger, 1968) at the E-layer, near 120 km. Coupling 

of the two modes occurs there, so the reflected waves consist of both an Alfven and a fast 

wave.

Dawson (1966) suggests how the presence of collisions can couple a wave which 

propagates along the magnetic field (Alfven) to a ducted fast wave which can propagate 

perpendicular to the magnetic field. He includes ion-electron collisions in the derivation 

of the dispersion relation for Alfven waves. The collision frequency V;e becomes 

important when it approaches the wave frequency, while co » n^Vie/mi and Vje « Qe • This
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occurs below 20,000 km. The Hall and Pedersen conductivities are not changed under 

these circumstances, but the parallel conductivity goes from

inee2 inee2
meCO me(C0+iVie)

which has the effect of changing the electron mass:

me (co+ivje) _
me - > ------------------  (Dawson, 1966).

co

In this case, the Alfven wave can have a real wave normal component perpendicular to 

the steady magnetic field. In this case, for propagation perpendicular to the field,

co2 2CC02 coo

instead of 

k  _  -iCQp
co cco

The real part becomes large as Vie/co becomes large.

Reflectivity of the ionosphere

The Poynting flux of the incident Alfven wave is substantially reflected. Hughes & 

Southwood (1976a) give the dayside reflection as at least 97%, and the nightside as 40- 

70% (at sunspot minimum and maximum, respectively). An Alfven mode is reflected, 

with an oppositely directed electric field, because the wave reflects from a medium with a 

higher index o f refraction. A fast mode, in which the electric field is perpendicular to the 

k-Bo plane, is also reflected, and is vertically evanescent, so it carries no energy flux 

(Hughes & Southwood, 1976a). The reflectivity of the ionosphere depends on
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T JL ẐÊ E. I 2 [~ c . ẐÊ E 1 2 
" L V a "  c  J L Va  c  J ’

where for good conductivity, as on the dayside, Ip  » c2 /  4jiVa • These are approximately 

equal for poor, nightside conductivity (Hughes & Southwood, 1976a). Consequently, 

the Poynting flux transmitted into the ionosphere is relatively small. The electric field 

magnitude does not change much through the ionosphere (Nishida, 1964), and in fact, 

since the E-layer is thin compared to the wavelength, some authors treat the ionosphere as 

a thin surface. The tangential components of the electric field are conserved across this 

surface (Hughes, 1974; Nishida, 1964).

The ro tation  of th e  m agnetic field as seen on the ground

Although most of the incident Alfven wave energy is reflected, some is ducted 

horizontally in the ionosphere and some penetrates to the ground via the Hall current. The 

wave magnetic field observed on the ground, from the incident Alfven wave, is 

perpendicular to the wave magnetic field above the ionsophere. This 'rotation' process is 

caused by the Pedersen and Hall currents.

Beneath the ionosphere, the magnetic field o f the Pedersen current is antiparallel to that of 

the incident Alfven wave. This opposition greatly reduces the magnitude of the incident 

wave magnetic field at the ground. However, the Hall current creates a magnetic field 

perpendicular to both of these, and this is seen on the ground (see Hughes &

Southwood, 1976a).

Cancellation of the wave b at the ground by the Pedersen current at the ionosphere is 

realizable for low frequency waves. The phase of the wave at the E-layer is not much 

different from the phase at the ground because of the long wavelengths of ULF. For a 

0.1 Hz wave, the wavelength is at least 1000 km, since the Alfven speed is at least 105
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m/s (Dawson, 1966). This is approximately 10 times the height of the E-layer above the 

ground. Moreover, the magnetic field from the Pedersen sheet current probably does not 

change much with height below the ionosphere, since the field at a point above a current 

sheet of infinite extent depends only on the magnitude of the current/unit width, not on 

the height.

The role of the Pedersen and Hall conductivities is shown more explicitly by Fujita & 

Tamao (1988). The fields seen on the ground are explained in terms of height-integrated 

conductivities and the incident Alfven and induced fast mode electric fields. The height- 

integrated conductivity is the conductivity a  integrated over the height of the current 

layers (Hughes, 1974). For the Hall current:

£ h =  J  <*h dz ,

and Zp (Pedersen) is similarly defined. The current layers could be the E-region (Fujita & 

Tamao, 1988). The units of a  are ohnH nr1 (mks units), which gives amps/m2 when 

multiplied by the electric field in volts/m. The units of Z are ohm-1, so the product of Z 

and E results in current/m (or current/unit horizontal width).

The magnetic field below the ionosphere depends on the Hall current from the incident 

Alfven wave, and both the magnetic field and the Pedersen current of the induced fast 

mode wave (Fujita & Tamao, 1988). Fujita & Tamao (1988) match the tangential electric 

and magnetic fields at the atmosphere-ducting layer interface (that is, across the thin E- 

layer), taking the surface currents into account, and derive the following (mks units):
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z x (8 B atmos-8Bf)/|io = Sp 8Ef + Sh z x 8Ett (5-12)

(- z x 8Btr )/|Xo = 2p SEtt + Zh z x 8Ef , (5-13)

where the subscript tr refers to the Alfven wave, and th e /to  the fast wave. The magnetic 

field seen on the ground is 8Batmos, and is described by equation (5-12). It arises from 

the Hall current of the Alfven wave and the Pedersen current o f the fast wave. It is 

polarized in the direction of the incident Alfven wave's k  projection in the ay plane 

(Greifinger, 1972a). Beneath the wave injection point in the E-layer, the Hall current 

associated with the Alfven wave produces the magnetic field variations. These are seen 

on the ground in what Fujita & Tamao (1988) call the central region, where the incident 

Alfven mode is dominant. The radius of the central region is approximately equal to 1/3 

the thickness of the ducting layer.

An intermediate region below the E-layer extends from the outer limit of the central region 

to a distance where the ducted fast wave is dominant. In the intermediate region, the 

Pedersen current of the induced fast wave produces the magnetic field variation on the 

ground.

The cancellation of the magnetic field of the incident Alfven wave, described by equation 

(5-13), is carried out by the Pedersen current of the incident Alfven wave and the Hall 

current of the induced fast wave. (Pedersen cancellation dominates in central region - 

Fujita & Tamao, 1988) The Pedersen current is part of a circuit that also includes the 

field-aligned current of the localized Alfven wave and the cross-field polarization drift 

current in the magnetosphere (Fujita & Tamao, 1988); i.e., j  = (p/B2) 3E/3t (Chen, 

1974).

Although it does not give as much information as the work of Fujita & Tamao (1988), a 

simple way to conclude that the incident Alfven wave field is cancelled in the atmosphere
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comes from an argument by Nishida (1978). In the atmosphere, there should be no

vertical (or any other) currents. The displacement current, 3E/3t, is negligible because of

the low frequencies of ULF, so Vxb = 0. In the example above, the incident Alfven wave

electric field is E  = Ex x , and the magnetic field is b = by.y. The z component o f Vxb,

given the wave in example above, is:

. t  n 3by 3bx 3by .
^  “  0 ~ 3x '  3y = 3x = *by ’

therefore, by = 0 .

In the case of localized fast mode incidence, in which the electric field has a spatial 

variation in the horizontal (ionospheric) plane, the polarization axis of the magnetic field 

seen on the ground is not rotated. The ground magnetic field is from the Pedersen current 

of the incident fast wave, the same current that almost shields the wave magnetic field 

from the ground. The fast wave's Hall current carries part of the induced Alfven wave's 

field-aligned current and has no magnetic effect on the ground (Fujita & Tamao, 1988) as 

in equation (5-13). Nishida (1964) also shows the lack of axis rotation of an incident fast 

wave magnetic field as seen on the ground.

The magnitude of the magnetic field component on the ground is related to the Alfven 

wave b in the magnetosphere as:

bg/lbl = - e-** (£h/Ep)[1 + (kd/2)] (Hughes and Southwood, 1976a)

where h is the height where the Hall conductivity is no longer important, and d  is the 

thickness o f the Hall conducting region. The ratio of the height integrated conductivities 

is always near unity (Hughes, 1974), ranging from 0.28 at night during sunspot 

maximum to 1.23 during the day at sunspot minimum; h -  120 km, and d -  20 km 

(Hughes and Southwood, 1976a). For small ionospheric wavenumbers, k < 0.01 k m 1,
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the magnetic field on the ground has a magnitude similar to the wave magnetic field in the 

magnetosphere. Otherwise, the ground magnitude is reduced exponentially from the 

magnetospheric value.

Duct ing

Introduction

The coupling of the Alfven and fast modes affects the way energy ducts away and the 

way it leaks from the duct itself, in addition to creating the magnetic field perturbation 

seen on the ground. The ducting fast mode can couple to the Alfven mode every time it 

reflects from the E-layer duct floor. The field-aligned Alfven wave can then carry some 

energy up through the Alfven speed-gradient ceiling of the duct.

After the Alfven wave is incident on the ionosphere, some energy is ducted horizontally 

in a duct bounded above by a sharp increase in Alfven speed with height, and below by 

another sharp speed increase and the E-layer (see Figure 5-1). The speed variations arise 

because the Alfven speed,

VA = - p U  (Chen, 1974) 
vMoP

depends on the mass density of the ions, p,and the Earth's magnetic field Bo. The 

magnetic field changes monotonically with altitude, but charged particle density 

maximizes in the ionosphere (see Kelley, 1989).

The Alfven speed minimum is located at about 400 km (Greifinger & Greifinger, 1968, 

with data from Sims & Bostick, 1963; Dawson, 1966), and the ducted wave is totally 

internally reflected because of the high index of refraction inside the duct compared to the 

low index outside; a situation similar to light in an optical fiber.
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Evanescence of the ducted wave above and below the duct

The part of the ducted fast wave that is transmitted through the upper and lower 

boundaries of the duct is evanescent. The same is true for the electric field of the Alfven 

wave that is transmitted through the lower boundary into the atmosphere. The 

evanescence of the transmitted part will be discussed in this section. The reason for this 

in the atmosphere is that the conductivities decrease. Consequently, the terms

4jciO)CTp/c2 and i47ttocH/c2

both become very small in equations (5-10) and (5-11). The result for the fast wave 

(5-11) can be seen easily:

which becomes

the solution to which is an evanescent exponential in z, subject to the condition of a zero 

or near zero electric field at the highly conductive earth (Greifinger & Greifinger, 1968).

The Alfven wave is also evanescent in the atmosphere. Note that the Ez term may be kept 

in the atmosphere (Hughes & Southwood, 1976a). This does not change the 

circumstances for the fast wave because there is no ky in this case (see equations 5-6 and

5-7), but it does affect the Alfven wave electric field. If conductivities become negligible 

in the atmosphere, equation (5-6) becomes:
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Ex + ikx Ez = 0 . (5-14)

If V*E = 0 in the atmosphere (zero charge density), we have

ikx Ex + — ® (V*E ss 0 ) . (5-15)

Using (5-15) in (5-14), we have

so that

Ex « exp(±kx z ) .

The combination of these functions is subject to the boundary condition that Ex = 0 at the 

ground (following Hughes & Southwood, 1976a), so the Alfven wave is evanescent 

below the ionosphere. When a conductivity model is used, it is found that the Alfven 

wave electric field decay occurs mostly below an altitude of 50 km, according to Hughes 

& Southwood (1976a) calculations (see their Figure 3, for example). The evanescent 

nature of the wave means that disturbances whose amplitudes are still large enough at the 

ground to be measured, despite the exponential decay with height, must have horizontal 

scales (kx) longer than the thickness o f the neutral atmosphere (Hughes & Southwood, 

1976a).

The fast mode wave that is transmitted through the top of the duct is evanescent also (the 

Alfven mode is not). Fast mode decay is due to the low frequency o f the micropulsations 

and the projection of the wavenormal k in the plane of the ionosphere. If the time and 

space variations of the fields are given by

exp( i( kx x + ky y + kzz - tot) ) ,
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then the phase speed of the wave is 

kx2 + ky2 + kz2 = ô / V a2 •

Let the Alfven speed be V/j in the ducting layer (near the Alfven speed minimum) and 

Vm in the magnetosphere (near the sharp increase in Alfven speed). If  the frequency is 

low, such as (0.1 x 2k) rad/s, and the projection of k in the E-layer x -y  plane has ky = 0, 

then

kx2 + kz2 = co2 /V j)2  (ductinglayer), and 

kx2 + kz2 = cb2/VM2 = o  (magnetosphere) 

where since Vm » Vd .

In the magnetosphere, then, k22 -  - kx2 , since kx is real for all the above calculations 

involving wave propagation. This means that the induced fast wave is evanescent in the 

vertical (z) direction upon transmission through the upper boundary o f the duct (see 

Nishida, 1964; and Hughes, 1974). As long as Vq k ^ a i  < co < VMkxreal, the ducted 

fast wave will be vertically evanescent in the magnetosphere, and simultaneously 

vertically propagating in the ducting layer (Fujita ,1988).

Note from equations (5-10) and (5-11) that when the fast and Alfven waves are 

uncoupled in regions of low Hall conductivity and small Ez, the fast mode (equation 

5-11) is different from the Alfven mode because of the k projection in the x y  E-layer 

plane. The coupling due to the Hall conductivity and this projected k component, kx, 

create the fast wave with the same kx as the incident Alfven wave, but not the same k2. 

For the Alfven mode: kz = co/Va « kx , which propagates vertically (see Hughes,

1974; and Fujita, 1988).
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Propagation in the duct

Some aspects of duct propagation will be touched upon next. For the induced fast wave 

whose wavelength is on the order of the ionospheric thickness or less, the wave is ducted 

in a region at the Alfven speed minimum, and has a phase speed o f approximately the 

Alfven minimum. The duct is bounded on the top where the Alfven speed rises sharply 

(about 1000 km) and on the bottom by the E-layer (100 km) and an another increase in 

Alfven speed. Ideally, only certain fundamental and harmonic bands exist for waves that 

travel in the duct. Poynting losses (Fujita, 1988) occur at the upper duct 'surface' as the 

induced Alfven wave escapes upward. Fast waves will be observed on the ground far 

from the injection site via Pedersen currents in the E-layer. Under ideal circumstances, 

certain polarization patterns are expected on the ground, depending on the horizontal 

distance from the injection site.

At high frequencies, most o f the Poynting flux is contained in the duct above the E-layer 

(see Figure 5, Fujita, 1988). As the frequency of the fast wave decreases, more of the 

Poynting flux is above the upper duct 'wall'. At frequencies near the lower cutoff for the 

duct, the energy is transported by a vertically evanescent boundary wave along the top of 

the duct (Fujita, 1988). The vertical wavenumber of the evanescent wave becomes small 

(large vertical wavelength) above the top surface of the duct:

kz2 = g)2 /V m2 - k x2 -> 0 ,

because kx2 -> co2 /V m  2 in the magnetosphere (Fujita, 1988) at altitudes above the 

sharp increase in Alfven speed.

Within the duct, only waves in certain harmonic frequency bands may propagate. This is 

a consequence of the limited vertical dimension of the duct, the matching of tangential 

electric and magnetic fields across the duct surfaces, and the finite thickness of the
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atmospheric layer. The lowest frequency of the lowest band depends on daylight and 

solar activity because of the effect these have on the dimensions o f the ionosphere (see 

Greifinger & Greifinger’s (1968) Table 1). For example, in the day at sunspot maximum, 

the lowest band low-frequency cutoff is calculated as 0.10 Hz, vs. 0.36 Hz for the night 

at sunspot minimum (Greifinger & Greifinger, 1968). The presence of a finite thickness 

atmosphere over conducting earth leads to the nonzero low-frequency cutoff, but these 

bands have no high frequency cutoff. Minimum attenuation takes place near the lowest 

frequency cutoff in any band (or harmonic; see Fujita, 1988; Greifinger & Greifinger, 

1968).

The fast wave reflects from the top and bottom of the duct as it propagates away fom the 

central region. At the low frequency cutoff, the vertical wavelength of the fast wave is 

4D/(2j -1 ), where D  is the thickness of the duct, and j  is the harmonic. The electric field 

intensity has a node (approximately) at the conducting E-layer and an antinode at the 

upper surface of the duct (Fujita, 1988).

Losses in the duct

Losses in the duct are partly due to dissipative "Joule" losses in the E-layer (via the 

Pedersen current, so J'Efast > 0) and the solid Earth, and partly to a Poynting loss as 

energy is carried away by waves escaping the duct. Each time the fast wave reflects from 

the E-layer, it can recouple to an Alfven wave (via the Hall current of the fast wave,

Fujita, 1988), which may then carry energy up the field line. Some of this will be 

reflected, but the rest will go through into the magnetosphere as the Poynting loss. In 

addition, the Pedersen current o f  the fast wave creates an observable signal on the 

ground, far from the central region (a Joule loss). Overall, the Poynting loss accounts for 

less than 15% of the total, unless Zh/£ p > 10 and jiqV dEp < 0.1. In this case, the
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Poynting loss becomes about three times greater than the ionospheric Joule loss (Fujita, 

1988).

When the two conductivities are comparable, the ionospheric Joule loss contributes most 

to the attenuation of the ducted wave. This loss depends on the Pedersen conductivity 

(Fujita, 1988), which is highest during the day (Kelley, 1989).

The relative heights of the conductivity maxima and the electric field amplitude are also 

important. When the maxima in the electric field and Pedersen conductivity coincide, the 

Joule loss is maximized (Fujita, 1988). The maximum Poynting loss will occur when the 

maximum fast wave electric field intensity is at the maximum Hall conductivity altitude.

The standing wave nature o f the induced Alfven wave in the duct can create a frequency- 

dependent attenuation. If the duct thickness is half a wavelength (coD/Va = jrc, where j  is 

an integer), the magnetic field of the induced, standing Alfven wave nearly cancels at the 

E-layer. Since the two waves couple as -b tt/po = EnEf > where 'tr' and ’f ' refer to the 

Alfven and fast wave (Fujita, 1988), the reduced magnetic field inhibits coupling and 

reduces Poynting loss under those resonant conditions.

Off-meridian propagation

Greifinger & Greifinger (1973) found that coupling between the fast and Alfven waves 

caused attenuation of ducted waves traveling in off-meridian directions. Their calculations 

showed a resonance-type pattern that depended on magnetic latitude and ionospheric 

parameters. They concluded that attenuation was significant for propagation directions 

other than N-S or E-W. Tepley et al. (1965) found a restricted longitudinal span over 

which pearls (pulsed Pci) were detected, compared to the range in latitude. Berthold et 

al. (1960) examined signals from the high altitude nuclear explosion ARGUS-3 that were
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thought to be ducted. They fell off in amplitude when observed off the geomagnetic 

meridian that passed through the point of detonation. Manchester (1968) observed waves 

propagating both toward and away from the equator at calculated speeds that agreed with 

corresponding Alfven speeds. It was concluded that the waves were traveling 

approximately parallel to the geomagnetic meridian. All of these suggest that the ducted 

wave traveling parallel to the meridian would suffer the least attenuation.

The contribution to ground observations from field-aligned currents

The Earth's magnetic field is not perpendicular to the ground, although at high latitudes it 

is approximately so. The tip angle of the field relative to the ground introduces two 

effects. First, the coupling between the fast and Alfven modes is enhanced, which 

increases the Poynting loss (Fujita, 1988, and references therein). Second, the field- 

aligned currents are allowed to contribute to the magnetic field observed on the ground 

(Tamao, 1986).

A horizontally localized Alfven wave guided downward by the Earth's magnetic field 

carries a field-aligned current. This is due to the variation of the horizontal electric field 

components, as shown above (equation 5-9). The field aligned current is out of phase 

with the wave electric field, and it can produce a magnetic field below the ionosphere. To 

do this, the current must have a component in the plane of the ionosphere, and there must 

be a variation of the wave electric field as a function of distance along the East-West axis 

(see Figure 5-2). This creates a variation in the N-S component of the field-aligned 

current. The magnitude o f this current is 90° out o f phase with the ionospheric Hall 

current along the E-W axis, so the ground magnetic field signatures from the two are also 

90° out of phase. The ground magnetic field from the N-S component of the tipped, field- 

aligned currents is E-W.
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Tamao (1986) calculated the contribution from the field aligned currents at 60° 

geomagnetic latitude for an ionospheric electric potential of:

0>(x,y,0) = <D0 exp[ -(x /a)2 - (y/b)2 ]

where a = b (horizontally isotropic). The contribution was 80% of the field due to the 

ionospheric current.

If the Earth’s field were vertical, the Hall current from the wave electric field would be 

the only one to produce a magnetic disturbance on the ground under the incident wave. 

Since the Earth's field is tipped, the magnetic field from the field-aligned current is 

enhanced if the horizontal scale of the disturbance is shorter in the longitudinal than the 

latitudinal direction (Tamao, 1986).

Polarization p a tte rn s on the ground

The 'rotation' of the magnetic field by the action of the Pedersen and Hall currents will 

not affect the sense of circular polarization, but it will rotate the axis of the polarization 

ellipse by 90° (Hughes, 1974; Fujita & Tamao, 1988). A circularly polarized incident 

Alfven wave may be represented with a Fourier series with wavenumbers in the x  andy 

direction. Rotation of the wave magnetic field will occur for each component, and in a 

given hemisphere, all components will rotate in the same sense by 90°.

The polarization o f the ground signal ideally depends on the horizontal distance from the 

injection source. Directly under an incident Alfven wave, the magnetic field on the 

ground will be polarized the same way as the incident wave electric field (see for 

example, Greifinger, 1972b). The ducted wave is isotropic, or spherical (Tamao, 1964), 

and is right polarized when its wavenormal k is parallel to Bo (Hayashi et al., 1981; 

Manchester, 1968; see Dawson, 1966). In the central region, the Alfven wave amplitude
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is largest, so the signal at the ground will be left polarized. Beyond the central region, a 

horizontal distance of about 30% of the duct thickness, the ducted wave amplitude will be 

larger than the incident Alfven wave, so the polarization will have a right-hand sense 

(Greifinger, 1972b; Fujita & Tamao,1988).

Greifinger (1972b) shows that the magnitude of the ducted signal magnetic field depends 

on Ibl ~ r 1/2 exp(-r/A), where A is the attenuation length (very large at night, hence long 

distance propagation), and r  is the horizontal radial distance from the injection center. On 

the other hand, the incident Alfven wave depends on r-2 for distances where the fast 

wave amplitude dominates. Greifinger & Greifinger (1968) tabulate attenuation lengths, 

and these range from 650-950 km during the day, up to thousands of km at night. These 

attenuation lengths depend on collision frequencies.

Far from the central region, the polarization ellipse on the ground points toward the 

injection center (Fujita & Tamao, 1988). This was discussed by Baranskiy (1970), 

Greifinger (1972b) and used by Fraser & Summers (1972) and Fraser (1975) to locate 

the central region of Pci disturbances on the ground. Fraser & Summers (1972) used 

polarization measurements from low latitudes. They expected to be far enough from the 

central region that the polarization properties of the ducted wave would be dominant. This 

is because in the central region dominated by the incident wave, the ellipse major axis 

does not point to the source. Instead, it is perpendicular to the radial vector.

In the magnetosphere, the polarization sense has the same pattern as it does on the 

ground. The ellipse axis pattern is the opposite of that on the ground, though. The major 

axis points to the source in the central region and azimuthally in the distant region.

The polarization pattern does not always materialize, though. Hayashi et al. (1981) 

measured the amplitudes and polarizations of Pci events on the ground. They used 

thirteen stations across the auroral zone in a 30° (long.) by 15° (lat.) area. They found that
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left hand polarization was observed outside the source region; in one case beyond a 

measurement of right hand polarization. At sites far from the center, polarization was 

predominantly linear. They concluded that left-hand polarization is not a sure sign of 

location in the central region, below the incident Alfven wave. The source region size 

was estimated by the attenuation of the wave amplitude. Events in their study were seen 

by stations separated by 1000 km when one of them was at the source.

The proposition that the polarization ellipse major axis should point toward the source 

when observed on the ground, far from the source, seems reasonable when considering 

the simple example above. In that example, the fast wave electric field is in they 

direction, so the Pedersen current of the fast wave creates a ground magnetic field parallel 

to the x  axis.

Since the wavenormal k  is in the x-z plane, the wave magnetic field (cob = k x E) is also 

in that plane. However, only a component o f bfast is in the ionospheric plane, so bfast 

does not fully cancel the Pedersen current's magnetic field on the ground. This is 

different from the situation of the incident Alfven wave, where EAWas in the x  direction. 

That led to an incident Alfven wave bA completely parallel to the ionospheric plane. Due 

to this orientation, the Pedersen current's magnetic field fully canceled the incident Alfven 

wave bA-

The fast wave magnetic field is not rotated during passage through the bottom of the duct. 

Far from the source along the x  axis, where the fast wave amplitude dominates, it is 

reasonable that the magnetic field observed on the ground should be along the x  axis, 

pointing toward the source. In the case o f elliptical polarization, where some Alfven wave 

magnetic field is present due to recoupling, the major axis should still point along the x  

axis because of the dominant fast wave signal.
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Ducting appears to play a significant role in the transmission of Pci waves above 0.4 Hz 

from their magnetospheric source to the auroral zone stations in this study. In fact, they 

may routinely duct from latitudes close to where plasmapause field lines intersect the 

Earth’s surface, up to Sondre Stromfjord and South Pole latitudes. Meanwhile, the Pci 

that are amplified in the distant dayside magnetosphere may be blocked from directly 

reaching these high latitude stations by He+ ions in the magnetosphere. The lower 

frequency Pcl/2  are also likely to duct, but not as efficiently as the shorter wavelength 

Pci. This will be discussed further in the wave growth and data analysis sections.
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Chapter 6

W ave grow th 

In tro d u c tio n

Ion-cyclotron wave growth will be discussed in this section. This process involves a 

resonance between ions and cyclotron waves in which energy is passed to the waves. 

Energy can go to the particles under certain conditions, as well. In a plasma with many 

ion species, these two processes compete and create some frequency bands in which 

waves may grow and others in which they do not propagate. The dependence o f the 

growth rate on the cold ion density, the local magnetic field (Bo), and ion speeds parallel 

and perpendicular to Bo will be presented.

Ion-cyclo tron  resonance

The field-guided Alfven mode can resonate and exchange energy with ions, since they 

both have the same rotation sense. The wave can become circularly polarized when k || 

Bo, since then E is not confined to a k-Bo plane. Left circular polarization means a 

counterclockwise rotation of the electric field vector when looking parallel to Bo (Chen, 

1974). At resonance, a particle finds itself in an electric field over most of one orbit or 

more. At a given instant, the electric field everywhere points uniformly in one direction. 

As the electric field of the wave rotates, it increases or decreases a particle's tangential 

speed ( v j ,  depending on the dot product vx’E. Resonance may occur between charged 

particles and waves much lower then their gyrofrequencies through a Doppler shift of the 

gyrofrequency. The resonance condition may be expressed as (Amoldy et al., 1988):

90
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to = Q + k-v ,  (6-1)

where v or v„ is the charged particle velocity, CO is the wave frequency, k is the 

wavenormal and £2 is the ion gyrofrequency. Ions satisfy this relation by meeting left 

polarized waves head-on. The condition then becomes:

co = f 2 - k l v | | l ,

which permits resonance o f Pci waves with ions with tens of keV in energy (Gendrin et 

al., 1971).

Ions pursuing right polarized (fast) waves may resonate with waves whose frequencies 

are higher than the gyrofrequency of the ion, since the wave frequency would be Doppler 

shifted down to the gyrofrequency. Resonance may also be satisfied for electrons 

pursuing left polarized waves along the magnetic field (£2 has the opposite sign for 

electrons and ions), or meeting right polarized waves head-on.

Probable resonance mechanism for Pci micropulsations

The resonance consideration alone would suggest that electrons, ions and waves o f both 

polarizations could be responsible for P ci seen on the ground. However, the resonance 

o f left polarized waves with electrons is not as likely as resonance with ions because of 

the energy requirements. Resonance requires either relativistic energy electrons or keV 

ions, and there are many more such ions available than electrons (Gendrin et al., 1971).

The right polarized waves are isotropic, not guided, and so are less likely to be seen on 

the ground with amplitudes comparable to the guided mode (Tamao, 1964). 

Consequently, they are not as efficient as the guided mode in transporting energy from 

the magnetosphere to the ground
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Other indications that Pci are from ions that resonate with left polarized waves come 

from the 'pearl', or pulsed P ci. These are pulses detected about 1-2 minutes apart, and 

are seen alternately in opposite hemispheres. Their spectral shapes usually change, 

indicating that the higher frequencies travel more slowly then low, hence arrive later on 

each sucessive pulse. This behavior is consistent with a wave mode that follows the 

Earth's magnetic field, alternately mirroring from the northern and southern hemispheres. 

The dispersion shows that higher frequencies in the pulses travel slowest, which is the 

case for the guided mode, and opposite to the dispersion pattern of the isotropic (right 

polarized along Bo) mode.

Wavegrowth in the presence of a distribution of ion velocities

The Doppler resonance condition will be satisfied by many ions over a range of 

velocities, because waves will have some finite frequency bandwidth and will not be 

monochromatic. The dispersion relation that describes wavegrowth in the presence of a 

distribution of ion velocities will be presented in this section.

The Vlasov equation is derived from a statistical average of many single particle 

distribution functions. It describes the macroscopic properties of the plasma, and tells 

how the distribution function changes in the presence of Bo and the wave fields. It does 

not include effects due to the discreteness o f particles (Ichimaru, 1973). Nishida (1978) 

writes the first order approximation to the Vlasov equation (no collisions):

+ W rfj + ^ (vxB ohV vfj + - ĵ-(E + vx b)*Vv Fj = 0 ,
9t mj mj

where Fj + f j  is the distribution function for each of three species in the wave-perturbed 

plasma; j  = 1,2,3 refers to cold protons, cold electrons and hot protons. Fj is the 

distribution function of the unperturbed species. Bo is parallel to the z axis. A Fourier
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transformation is applied, which gives f j , E  and b (the wave fields) a harmonic 

dependence exp[i(kz - cot)]. The wave b is written in terms of E by Faraday's law, and 

the perturbation part of the distribution function is then written as:

-Ex = ± i E y s E ± ,

and the upper sign refers to a right polarized wave, the lower to a left polarized wave. 

Ez = 0. The parallel speed vN is a signed quantity in this expression.

The definition of current density is combined with the wave equation to yield the 

dispersion relation (six equations for three unknown current components and three 

unknown electric field components). The current density arises from the wave-induced 

perturbation ( f j )  in the distribution function:

m j  ( c o  -  k  v N±  £ 2 j ) (Nishida, 1978)

where

j = X n i v e j I e i J  v  f j v i  d v x  de  d v „  ,
j j

where v  refers to the velocity of species j .  The wave equation is:

These equations lead to the dispersion relation (Nishida, 1978):
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The cold population distribution functions are represented by Maxwellians with thermal 

velocity v^, and all cold components and electrons satisfy Q j» kv,hj (Kozyra et al., 

1984).

The hot populations are represented by a bi-Maxwellian, which has separate temperatures 

to describe motion parallel and perpendicular to the field:

Fhog = M S -  - E L - T '2 exp f-  1 ,
' L2ltkBTi  2ltkBT,J L 2k»~ i 2k»Tl J

where kB is Boltzmann's constant. The integral above must be done for each species, and 

the imaginary part of co, which gives the growth rate, comes out of the integral. The 

harmonic form used above with the Vlasov equation, exp[i(kz - cot)], may be expressed 

as

exp[i(kz - (co,- + icoOt)] -» exp[ikz-io)rt + a)it] ,

so the imaginary part gives exponential change in the wave amplitude. If C0i > 0, wave 

growth will result.

Kozyra et al. (1984) included ions heavier than protons in both hot and cold species. 

Also, instead of simply calculating the temporal growth rate (coi), Kozyra et al. (1984) 

calculated the convective growth rate (S = cOimagAPpVgroup)). The argument was made 

that the convective growth rate was more important than the temporal growth rate because 

wave amplification depends on the time the wave spends in the amplifying region. The 

convective growth rate is:
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S = <Oi/QP _ fOj/Qp 
dco, /3 k  — Vg

= <

1
2 X 2

Tliw ( M i X  - 1 ) 2 

H  PlwX2

U
(1

(1 + 8) 
( 1 - X ) + ̂ (T1iw  + Tlic) j . J } . ;

-1

+ S ) V  (ly+TiiJM,  
- X ) +  L a  1 - M j X

(Kozyra et al., 1984).

Summations over / include all ions, and summations over i and j  include only ions 

heavier than H+. It is assumed that cpr» C0i and only the field-guided mode is considered 

(Kozyra et al., 1984). The subcript w  refers to warm components, and c refers to cold. 

The variables in the expression are:

§7Cn 1c T
Piw =  p  i  1,1 , where nlw is the density of the warm species /;J*o

x  = —

m 2
5 = , the plasma frequencies of the cold and warm protons,

V

TL/I m iM j =  — L-
mp

Tiiw(c) =
Ĝ pw2

V|i is the parallel thermal velocity of the energetic species /,

Ai = ^  -1  is the anisotropy of species /, and

Tp is the temperature of the component 1 measured parallel to B0.



96

The dependence of wavegrowth on anisotropy

In the expression for the convective growth rate above, the term 

[ (A ^ lX l - M ^ - l ]  (6-2)

must be greater than zero for C0i > 0 and growth to occur.

In a simple proton plasma, it is clear from (6-2) how the anisotropy affects wavegrowth, 

since it must be greater than a certain threshold value:

A > ——— .

The minimum necessary anisotropy decreases for lower wave frequencies. On the other 

hand, for waves near the cyclotron frequency, ions must have nearly infinite anisotropy 

for growth to occur.

The effect of increasing anisotropy on wavegrowth has been plotted by Gendrin et al. 

(1971) and discussed by Kennel & Petschek (1966). Increased anisotropy increases 

wavegrowth for ion resonance with left circularly polarized waves. This requires 

Tj. > T|t, which is to say that large ion pitch angles (arctan(vj./V||)) enhance wavegrowth. 

The resonance of ions with right polarized waves, as ions overtake the waves, requires 

T|( > Tj. (Kennel & Petschek, 1966; Nishida, 1978).

Wave amplification has the effect of removing some o f the perpendicular energy from the 

ions, consequently lowering their pitch angles. This is discussed in the case of an 

individual VLF electron-cyclotron resonance by Brice (1964). Electron cyclotron 

resonance is analagous to ion-cyclotron resonance discussed here, except that an electron 

resonates with a right-circularly polarized wave. He showed that the perpendicular energy 

of the electron decreases more than the amount passed to the wave, so the parallel energy
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of the electron increases as the overall electron energy decreases. This means that the 

particle is scattered to a smaller pitch angle.

Inan et al. (1978) discussed pitch angle scattering in electron-coherent VLF interactions. 

The equations o f motion of the electron in resonance with a cyclotron wave were derived 

there. They showed that cyclotron waves may change the pitch angle of a particle, by up 

to almost 100%, through the wave magnetic field, with a total particle energy change of a 

few percent. The magnetic field changes the pitch of the particle in the magnetosphere, 

but not its energy. Energy is exchanged via the wave electric field. Changes in Vn, vx and 

the initial phase angle between bwave and vx of the particle depend partly on the wave 

forces (v±x bwave) and (v, xbwave + Ewave)» and partly on adiabatic pitch angle changes 

necessary to conserve magnetic moment along the field line. The change in 

gyrofrequency is important for determination of the wave-particle interaction time.

M arg inally  unstab le  wave frequency

In a composite o f many ion masses, equation (6-2) also defines the marginally unstable 

wave frequency. Below this frequency (Xm), the energetic ions of species / may 

contribute to wavegrowth; above this frequency, the species / ions damp the wave 

(Kozyra et al., 1984). The marginally unstable wave frequency is below the 

gyrofrequency of species / and is:

y  tOrm A]
m= Q, = M i(1 + A,) ’

where is the real part of the wave frequency at the marginal limit, and the cyclotron 

frequency is used for normalization. For example, below the He+ marginal limit, 

wavegrowth comes from He+ and H+ ions. Above the He+ marginal limit, growth comes 

from H+, but there is damping from He+. The effect of the marginal instability, then, is



98

that wavegrowth in the higher frequency passbands, for example between the He+ and 

the H+ gyrofrequencies, is inhibited (Kozyra, 1984). Note that the marginal instability 

frequency limit for an ion depends only on anisotropy, and is raised as anisotropy 

increases (Kozyra et al., 1984).

T he effects of an  increased  D oppler shift

An increased Doppler shift (from vn/VA) in a pure proton plasma, with constant 

anisotropy also increases wavegrowth, but the frequency of maximum growth decreases 

(Gendrin, 1971). The increase in wavegrowth comes from the exponential dependence 

on T||. The decrease in the frequency at maximum growth is because a lower wave 

frequency is being raised to the gyrofrequency o f the ion, which is fixed by Bo and the 

ion mass, not the ion's parallel velocity.

T he frequency bands o f m axim um  grow th

The wavegrowth in a multicomponent plasma tends to maximize just below the heavy ion 

gyrofrequencies. This is because the wavenumber k  increases near a resonance (Kozyra 

et al., 1984), decreasing the phase speed and reducing the resonant energy of all ions 

whose marginally unstable frequencies are above the wave frequency. Resonant energy 

involves speed parallel to the magnetic field. The resonant energy for the energetic ion of 

species a  in a cold, purely H+ plasma comes from the resonance condition (6-1), and

Eres = 1/2 mVres2; it i s :

1 Ma (Ga -co)2 
Er,a = 2  jp  (Kozyra et al., 1984).

Another expression for resonant energy is given by Kozyra et al. (1984), for the case of 

multiple cold ion species. Reduction of the resonant parallel speed makes a difference in
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wave growth because it allows lower energy ions to participate. This means more ions 

may participate, if  their speeds have a Maxwellian distribution, as assumed here. For 

example, a wave just below the He gyrofrequency would have a low phase velocity and 

would receive energy from slower H+ ions than would otherwise contribute. Note also 

that in regions of increased magnetic field strength, the gyrofrequency Qa would be 

increased, which in turn would increase the resonant energy E^a. This suggests that 

wave growth would be enhanced in regions of weaker B, since lower energy particles 

could participate.

When the expression for the real wave number k  of the field-guided mode is imaginary, 

the range of frequencies in which this occurs is called a stop band. In the completely cold 

plasma case, the bands are bounded below by an ion gyrofrequency, and above by the 

cutoff due to that ion (Dawson, 1966). In these bands, no propagation, and consequently 

neither wavegrowth nor damping take place (Kozyra et al. 1984).

The effect of cold ion density on the growth rate

The presence of either cold or energetic heavy ions will create stop bands. In single 

energetic ion plasmas (H+, He+ or 0 +), the increase of cold plasma density will increase 

the growth. The phase speed of the wave will go down if ion density p goes up 

(VA = Bo/V4np). This will increase the Doppler shift (Halliday & Resnick, 1988), by 

shortening the wavelength, for an ion whose parallel speed was previously too low. The 

effect is to decrease the resonant energy, which allows more ions to participate in 

wavegrowth.

In the passband between the 0 + cutoff and the He+ gyrofrequency, wavegrowth is 

affected by changes in these cold ion densities. An increase in the He+ density increases 

the convective growth rate in that passband and lowers the frequency of maximum
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growth. However, an increase in the 0 + density has the opposite effect (Kozyra et al., 

1984). The same damping effect occurs above the He+ gyrofrequency when He+ or 

heavier ions are added to either warm or cold populations.

The effect of magnetic field on the growth rate

The effect o f the magnetic field has been examined by Anderson et al. (1990), who took 

logarithmic derivatives (31nSmax/31nx) of the expression for maximum growth rate with 

respect to magnetic field, anisotropy and particle densities in a pure proton plasma. The 

rate depends inversely on magnetic field, and is more sensitive to this than to warm or 

cold densities. It is reasonable for a strong inverse relation to magnetic field to exist, 

since the convective growth rate expression above depends on Bo in the exponent, 

through the P (« 1/Bo2) and X  («= 1/Bo) terms. This would suggest enhanced growth 

with increasing radial distance from the Earth (Anderson et al., 1990).

It also suggests that the equatorial region at any radial distance would be favored for 

wavegrowth. A dipole field can be expressed as (Kelley, 1989)

IB(r,e)l = (1 + 3sin20)1/2

where 0 is the latitude and B is in gauss. This has its minimum value at the equator (zero 

latitude). The increase in magnetic field away from the equator also raises the resonant 

ion energy by increasing the difference between the cyclotron and wave frequencies 

(Kennel & Petschek, 1966). Increased Doppler shifting becomes necessary to resonate 

with the same wave further from the equator.
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The implications for Pcl/2 micropulsations

An enhancement o f wavegrowth just below the He+ gyrofrequency, at a distance of 6-7 

Earth radii in the equatorial plane, may be responsible for Pcl/2 production. The He+ 

cyclotron frequency may form the sharp high frequency bound of these waves. The sharp 

low frequency bound typical of the Pcl/2 may be due to a sharp fall-off in wavegrowth 

below the He+ gyrofrequency. The wavegrowth just below the He+ gyrofrequency is 

mainly from H+ ions, suppressed in part by He+ ions. 0 + may assist in creating this 

wavegrowth spectrum, but the fact that the Pcl/2 are seen on the ground, as discussed 

below, argues against large concentrations o f 0 + ions near the wavegrowth region. 

Otherwise, their presence could have the same blocking effect as the He+ ions appear to 

have.



Chapter 7

Results of data analysis 

Introduction

The survey of the micropulsation data from 1986 has revealed distinctive patterns among 

waves in the 0.1-5.0 Hz range. The data is organized by a frequency of about 0.4 Hz. 

The patterns suggest that most of the waves above this frequency appear to come from L- 

shells near Siple, the plasmapause station. An L-shell is a surface formed by dipole field 

lines that would leave the Earth at the station's latitude. Below 0.4 Hz, most seem to 

come from L-shells between the plasmapause and the auroral zone. The conclusion is 

drawn that He+ ions along the path from the wave growth region to the ground are 

responsible for this organization. This study suggests, from ground-based observations 

alone, that He+ is modifying wave propagation. The patterns also identify the afternoon 

sector of the magnetosphere as the source region for the low-frequency branch.

The survey was also used, in conjunction with solar wind measurements and magnetic 

indices, to identify the mechanism that brings ions to the post-noon sector, far from the 

Earth, with the right pitch-angle distribution and energy to amplify Pcl/2  waves. Values 

o f solar wind parameters, such as the pressure and magnetic field, were selected during 

the occurrence of Pcl/2 to look for a direct solar wind-magnetosphere energy source. 

Possible sources inside the magnetosphere, such as substorms and storms, were also 

examined through magnetic index values during and before the occurrence of Pcl/2 

waves on the ground. The Pcl/2  appear to be amplified at L-shells between the

102
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plasmapause and the auroral zone by ions that convect from the plasma sheet into the 

afternoon sector.

Indications that He+ is important are provided by the diurnal occurrence pattern of the 

micropulsations, their event length and bandwidth distributions, and seasonal occurrence 

at opposite-hemisphere ground sites. Simultaneous observations from two stations at 

different latitudes, but in the same hemisphere, suggest that Pcl/2  come from higher L- 

shells than the waves above 0.4 Hz that are seen on the ground.

This is different from what is seen in space. For example, Fraser (1982) discussed wave 

spectra observed at ATS-6 (L=6.6), with power above and below a notch at the He+ 

gyrofrequency. Anderson (1989) found that the outer magnetosphere, beyond L=7, was 

a stronger source of waves above the local He+ gyrofrequency than the plasmapause 

region. Perraut (1984) concluded with a limited GEOS study that only about half of the 

waves above the local He+ gyrofrequency would reach the ground at 70° magnetic 

latitude. Observations from this study will be discussed below, followed by the 

associative studies between Pcl/2 occurrence and the solar wind and magnetic indices.

Diurnal Occurrence Patterns

T he P c l/2  (0.1-0.4 Hz) B and

When all the unstructured events of 1986 at Sondre Stromfjoid are superimposed on each 

other (Figure 1-la), an intense diurnal variation appears for waves below 0.4 Hz. This 

frequency clearly organizes the wave data, since the diurnal pattern above 0.4 Hz is quite
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different from that below. The peak occurrence for waves in the Pcl/2 band is bewteen 

1600 and 1800 UT.

The horizontal axis in Figure 7-1 a is time of day in UT. It is divided into 20 minute 

segments. The vertical axis is the observed wave frequency, in 0.1 Hz steps, beginning 

at 0.1 Hz. The intensity of the grayscale is the number of times wave power was 

observed at Sondre Stromfjord, at a given wave frequency and 20 minute segment of the 

day in 1986.

At 1330 UT, Sondre Stromfjord is at local magnetic noon. This means that its 

geomagnetic longitude is subsolar, or on a line joining the center of the Earth and the Sun 

(Montbriand, 1970). The wave power counts in the Pcl/2 band were summed for each 

20 minute segment of day and replotted as a line plot in local magnetic time, instead of 

UT, in Figure 7-1 b. Also plotted are the counts from Siple and South Pole in the Pcl/2  

band. When presented in local magnetic time, all three stations show a common post- 

noon peak occurrence for Pcl/2.

Sato & Saemundsson (1989) suggested that the emission intensity of Pcl/2  on the 

ground was linked to sunlight They said that an increase in electron density in the 

topside ionosphere makes wave propagation from the magnetosphere through the 

ionosphere more efficient Sunlight would create this increase on a seasonal and diurnal 

cycle. However, the diurnal pattern at South Pole, which has no solar day, rules out the 

possibility that sunlight enhancement of the ionosphere is responsible for the diurnal 

pattern. The South Pole observation means that the Pcl/2 source is in the afternoon sector 

o f the magnetosphere, although it does not address the question of whether it is inside, or 

at the boundary layer.

The diurnal patterns for all unstructured waves at South Pole, Siple and McMurdo are 

shown in Figure 7-2. This has the same format as Figure 7-la  for Sondre Stromfjord
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events. Each station plot is in UT, with local magnetic noon indicated. The Pcl/2 peak 

stands out in each case. South Pole, like Sondre Stromfjord, is near the auroral zone, 

with a magnetic latitude o f -74.9°. Siple is close to the plasmapause, with a latitude of - 

61°. At a latitude of 80°, McMurdo is in the polar cap, where the magnetic field lines 

through the Earth's surface extend into interplanetary space, back to the Sun (Nishida, 

1978).

McMurdo was surveyed from 9/13*9/17,9/27-10/4 and 10/18-11/29, or 55 days in the 

local fall/winter season. Local summer is the most likely time to see the Pcl/2, as shown 

by Bolshakova et al (1980), Troitskaya et al., (1980), Heacock (1974) and Sato and 

Saemundsson (1989). The McMurdo survey did not include enough events to be as 

convincing as the other three, and Figure 7-2 is the only McMurdo data shown here. 

Nevertheless, the post-magnetic noon, Pcl/2  occurrence peak is quite clear.

The diurnal distributions for each station are shown by month in Figure 7-3. The Pcl/2 

afternoon peak persists, regardless of season, in all three cases. This shows that the 

mechanism which produces the Pcl/2 in the afternoon operates independently of the 

mechanism that keeps most Pcl/2  from the winter hemisphere.

The trend for all Pcl/2 is for an afternoon maximum occurrence. However, some waves 

might come from other sources, such as the cusp or plasmapause. They might exhibit a 

different diurnal variation, which could be overwhelmed by the great number of Pcl/2 

that have the afternoon peak occurrence. By selecting events with the right set of 

parameters, such as the Pcl/2  that are narrow band, or Pcl/2  with some pulse (pearl) 

structure, or just the lower frequency Pc2 waves, a different diurnal pattern might be 

apparent. This could suggest the source region for these waves. The diurnal patterns of 

some of these Pcl/2 band subsets are plotted in Figure 7-4 and described next
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Three subsets of Pcl/2  are the Pc2 waves (0.1-0.2 Hz), Pcl/2  with some periodically 

structured elements and Pcl/2 that are narrow-banded (s 0.1 Hz wide). Their diurnal 

patterns (Figure 7-4) are substantially similar to the Pcl/2 overall, but some possibly 

significant differences exist Both the narrow-band Pcl/2 and the Pc2 have a postnoon 

peaks that are narrower in local time than for Pcl/2 overall.

At Sondre Stromfjord, the postnoon full-width half-maximum is 5.4 (± 0.5) hours for 

narrow-band Pcl/2, vs. 7 hours for all Pcl/2 at that station. At South Pole, the widths 

are 4.6 hours vs. 5.7, and at Siple, 6.0 vs. 8.6. The edge of the peak near noon generally 

shifts more than the edge near evening. The narrow-band Pcl/2  are shown in Figure 

7-4c.

The Pc2 daily occurrence peaks are shown in Figure 1-Aa. The full-width half maxima 

are narrow: 3.3 (± 0.5) hours at Sondre Stromfjord and Siple, and 5 hours at South Pole. 

The most dramatic narrowing is at Siple, compared to the Pcl/2  waves overall. Waves 

near 12-13 MLT may be of a higher frequency than waves later in the afternoon, because 

the low-frequency limit of the Pc2 seems to exclude events near 12-13 MLT.

Pcl/2  with some periodically structured elements are fewer in number than the other two 

subsets of Pcl/2, but they are spread more into the prenoon hours (Figure 7-46). In these 

events, the structured elements occupy a relatively small part of the frequency-time area 

on a spectrogram, so overall, the events are considered unstructured. If the structured 

elements come from the same source region as these particular Pcl/2, they could provide 

some information through dispersion and travel time analysis (Gendrin et al., 1971). It 

could also be true that the Pcl/2 and the structured elements are produced simultaneously 

in different places. In that case, the associated Pcl/2 may appear more often near noon 

because the structured events preferentially occur there See Figure 7-5 for the diurnal 

pattern of structured events.
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The Importance of Structured Events and What They Suggest About the

Source Region

The Pcl/2 classification includes events with structured elements as a minor part of the 

area on a frequency-time spectrogram. This type is known as "some str" in the database 

used for this work, and are considered unstructured. However, structured events, in 

which the periodic elements cover most of the area, are not included in Figures 7-1 and 7- 

4. There are relatively few such events in the Pcl/2  band, but there are enough to make a 

suggestion about source regions. The fraction of all events in the Pcl/2 band that are 

structured is: 6% at South Pole (37/601 events), 4% at Sondre Stromfjord (21/596), and 

8% at Siple (53/641). Consequently, plots o f unstructured Pcl/2 include nearly all events 

in the Pcl/2  band.

Siple has a greater fraction of structured events in the Pcl/2 band than the higher latitude 

stations. It is possible to estimate whether it is significantly greater. If it is, then two 

conclusions may be drawn. First, without knowing the origin of the structured features, 

it could be said that Siple is closer to their source than the higher latitude stations. Siple is 

close to the plasmapause, which is a source of Pci (Kozyra, 1984; Roth & Orr 1975, for 

example). Second, if  structured events are observed in this band, then some Siple Pcl/2 

may be from the plasmapause as well.

The above fractions are estimates of the fractions one would expect to find at these 

latitudes. It will be assumed that they are in fact the expected fractions, since we have 

only one survey. If the survey were repeated, with different stations at the same latitudes, 

the fractions might be somewhat different. This spread around the expected value might 

be described by binomial statistics, since only two outcomes are possible: structured and 

unstructured With binomial statistics, there is a 96% chance that a measurement would
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fall within two standard deviations of the expected value (Dowdy & Wearden, 1983). 

One standard deviation is: a  = [n7t(l-7t)]1/2, where n is the total number of events in the 

band and % is the fraction that are structured (Dowdy & Wearden, 1983).

One may postulate that all three stations should have the same fraction of structured 

events in the Pcl/2 band, and then test that postulate. The postulate in fact is not true. 

Siple has a bigger fraction of structured events than the higher latitude stations, as will be 

shown next.

At Siple, one standard deviation in the number of stuctured events is 7, given that 

/t=53+588, and 8% of these are structured. If there were 14 fewer structured events at 

Siple (two standard deviations), the structured fraction would have been 6%. This is the 

same as the expected fraction of structured events at South Pole, and more than at Sondre 

Stromfjord. Since the fractions at the higher latitudes are at least two standard deviations 

below the expected value at Siple, there is probably a physical reason for it, not just 

random variation. As suggested above, the reason could be that Siple has better contact 

with the plasmapause than the higher latitude stations.

D iu rnal P a tte rn s  fo r W aves Above 0.4 Hz

The diurnal plots for all events above 0.4 Hz are shown in Figure 7-5. All such events, 

structured or not, are in Figure 7-5a. The unstructured events are in 7-5b, and the 

structured in 7-5c. There is a clear difference between the unstructured events above and 

below 0.4 Hz (compare Figure 7-5 to 7-1). This suggests a different source region for 

the two bands as seen on the ground. Structured events above 0.4 Hz span a wide range 

o f  mostly prenoon magnetic local times: approximately 0300-1300 MLT at Siple, with a
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peak near 1000 MLT and 0.6 Hz. At Sondre Stromfjord, they peak at approximately 

0600 MLT and 0.6 Hz.

At South Pole however, the structured events are spread more uniformly than at the other 

two stations, from 0200 to 1430 MLT (Figure 7-5c). This pattern is partly due to the 

source location and partly to the efficiency of the ionospheric waveguide. South Pole may 

observe Pci more uniformly throughout the day than Sondre Stromfjord because it has 

more seasonal darkness without daily variation. Darkness aids wave ducting by reducing 

losses to the E region (Manchester, 1968; Greifinger & Greifinger, 1968). During Fall 

and Spring, the lack of a solar day may expose South Pole to the source region for 

structured waves above 0.4 Hz without the daily attenuation suffered by Sondre 

Stromfjord.

The larger quantity of structured events at Siple compared to the higher latitude stations is 

apparent in Figure 7-5. This indicates that the general location for their production is 

closer to Siple, the plasmapause station, than the two auroral zone stations. This is 

consistent with other work that has associated the structured ("pearl") events with the 

plasmapause region (for example Roth & Orr, 1975; Heacock, 1971 and Kozyra et al., 

1984).

Event Length and Bandwidth

Event length is another characteristic that distinguishes the waves above from those 

below 0.4 Hz. The waves below 0.4 Hz tend to be longer than those above, and the 

following plots also suggest that events at Siple in the Pcl/2 band come from two 

sources. One is the high-latitude region seen by South Pole and Sondre Stromfjord, and 

the other is the plasmapause region. Event length analysis on a large scale has been rare
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in the p a s t There is a significant time expense in recording the beginning and end o f each 

event but the database approach has made some new insights possible. The results will 

be presented in this section.

Figure 7-6 is a scatteiplot of all Pcl/2  events. It illustrates the afternoon clustering, and 

shows how the number and length of events are distributed. A dot represents the event 

length and the mid-event time for a Pcl/2. The data are plotted in UT, so the occurrence 

peaks do not line up among the stations. Most of the events are less than 200 minutes 

long and are clustered in the local magnetic afternoon. The longest events at South Pole 

and Siple are 10-11 hours, and the longest at Sondre Stromfjord is over 17 hours. This 

indicates the stability of which the Pcl/2  source is capable.

One of the two 17 hour Sondre Stromfjord Pcl/2 events is plotted in a spectrogram 

(Figure 7-7). Although other waves are detected during this long interval, one extends 

throughout the spectrogram. It happens to be a good example of what was concluded 

from the association studies, described below. The Pcl/2  seem to occur under a variety 

of solar wind conditions and magnetospheric activity levels. The 17 hour Pcl/2 begins 

near 0645 UT and runs to about 2330 UT. The values of solar wind pressure, IMF Bz, 

Dst, AE and Kp are noted throughout. Increased pressure can enhance cyclotron wave 

growth. Southward IMF facilitates energy transfer from the solar wind into the 

magnetosphere. Dst, AE and Kp are all measures of currents in the magnetosphere that 

are ultimately driven by solar wind energy. During this long event, Dst, AE and Kp 

values are all typical of a magnetically quiet time, and the event continues despite 

changing solar wind pressure and Bz polarity. The IMF Bz went from northward to 

southward and back twice. Dynamic solar wind pressure is as high as 6.2, and as low as 

2.6 xlO'8 dynes/cm2. Dst ranges from -2 to +10, which are values representative of either 

magnetically quiet times or pressure pulses. The Kp index varied from Oo to 2o, and AE 

from 54 to 133 nT, all typical of quiet times.
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Note also that the bandwidth of the event is £ 0.2 Hz, and the upper frequency edge has a 

stable, sharp cutoff. This could be partly due to the discrete nature of the Fourier 

transform, but this is still a rapid dropoff of power with increasing frequency compared 

to other types of events. The reason could be that a limited ion-cyclotron resonance is 

taking place, where a narrow band o f frequencies are being amplified. It would be a 

remarkable feat o f nature to maintain such a resonance over 17 hours, when solar wind 

parameters change and substorms take place in about an hour or less. Alternatively, the 

narrow-band nature could be due to the heavy ion composition at the amplification site 

and along the path to ground. Fraser (1982) shows a spectrum from ATS-6, a 

geosynchronous (L»6.6 Re) satellite. The presence of 0 + and He+ created a passband in 

the Pcl/2  range in which wave power was detected. The bandwidth of the Pcl/2  is 

typically very narrow. At Sondre Stromfjord and South Pole, 94% are £ 0.2 Hz in 

bandwidth, and at Siple, the fraction is 87%.

Comparison of Event Length for Waves Above and Below 0.4 Hz

At Sondre Stromfjord and South Pole, the longest events occurred in the local summer. 

Scatterplots of Pcl/2  length vs month are presented in Figure 7-8, and the seasonal length 

maxima are clear. This suggests that the two auroral zone stations are best connected to 

the Pcl/2 source during local summer.

The trend is not as clear at Siple. This might be due to events below 0.4 Hz that come 

from the plasmapause region, which is closer to Siple than the higher latitude stations. 

Some of the longest Siple events below 0.4 Hz are during June and July, which are 

winter months there. The plasmapause events would be more noticeable in winter, when 

Pcl/2 are less common (see the section on seasonal Pcl/2 patterns).
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At all three stations, Pcl/2  are typically longer than waves above 0.4 Hz. Cumulative 

distributions are plotted in Figure 7-9. The length difference is most extreme at Sondre 

Stromfjord. Approximately 43% of the Pcl/2  are one hour or less, compared to 65% for 

waves above 0.4 Hz.

A Kolmogorov-Smimov (KS) test (Press, 1987) compares cumulative distributions of 

unbinned data. It was applied to the cumulative length distributions and it indicates a 

significant difference between the length o f events above and below 0.4 Hz at both high- 

latitude stations. The KS significance level is less than 0.01% in both cases. This is the 

significance level of the null hypothesis that the two distributions are randomly drawn 

from the same parent. A large value of this number means that the difference in event 

lengths above and below 0.4 Hz is just due to random selection. Press (1987) considers a 

level of 1% or less to be a strong rejection o f the null hypothesis.

The two bands are not as clearly distinguished at Siple. Events above 0.4 Hz are longer at 

Siple than at the other stations, and the Pcl/2  are shorter. The KS significance level in 

this case is 1.4%. This means they are significantly different, but not as much as at the 

high latitude stations.

Since 44-57% of the Pcl/2 at the three stations are longer than one hour, hourly-averaged 

values o f magnetic indices and solar wind parameters could be used to look for possible 

associations with the occurrence of Pcl/2. IMP8 solar wind speeds and interplanetary 

magnetic field (IMF) measurements are available from the National Space Science Data 

Center in hourly-averaged values, as are the Dst and AE indices from the World Data 

Center C2 in Kyoto, Japan. These results will be discussed in a separate section.
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Pcl/2 Global Event Onset

In 29 cases, segments of the same Pcl/2 event were observed at more than one station 

simultaneously. For these events, onset times at each station were studied for patterns 

consistent with a spatially localized, fixed-position source, such as the cusp, as suggested 

by Bolshakova et al. (1980). In the simplest case, such a source would be seen by each 

station, in order of station longitude, as the source came within view. However, only 4 

of 29 events began in the order of station longitude. Moreover, none o f the events that 

started in order of station longitude ended in that order. The start times at Sondre 

Stromfjord, the lead station in longitude, ranged from six hours before noon to two hours 

after noon. The source position seems to wander, and local ionospheric conditions may 

add to the variety in onset times at the stations.

The differences in onset times at each station for the 29 global Pcl/2  are shown 

graphically in Figure 7-10a. Figure 7-106 shows relative onset times for Pcl/2 seen at the 

two Antarctic stations. Most of the events observed at South Pole and Siple together were 

not seen by Sondre Stromfjord. South Pole is as likely to see a Pcl/2  before Siple as the 

reverse, which again suggests a variability in source position.

The source region seems to be mostly in the afternoon, but it can expand to the morning 

sector. These moming-onset events are plotted in the scatterplot o f all Pcl/2 occurrence 

and duration in Figure 7-6. The longest simultaneously-observed P cl/2  was 10.3 hours, 

beginning four hours before Sondre Stromfjord local noon. The events that start before 

noon have the same narrow-band spectra of the more common afternoon Pcl/2. The 

range in global onsets suggests that the Pcl/2 source region can extend over several 

hours of local time. Although the cusp and cleft can be approximately 3 and 8 hours 

wide, respectively (Newell & Meng, 1989), the spread in local time for the global events 

is even wider, so the source region may not be localized in either the cusp or cleft.



Seasonal Occurrence

Another difference between the waves above and below 0.4 Hz is the seasonal 

occurrence pattern. It clearly indicates a different production or propagation environment 

for waves above and below 0.4 Hz, because these two bands have the opposite seasonal 

pattern. Figure 7-11a shows all the events above 0.4 Hz observed in both hemispheres at 

Sondre Stromfjord and South Pole, the two auroral zone stations. The horizontal axis is 

time in months, and the height o f a column represents 100% of the events that occurred at 

one or both of the two stations in any given month. The dark portion is the fraction of the 

events that were only seen at Sondre Stromfjord, the white for those only at South Pole, 

and the gray for events simultaneously at both.

Comparing the white and dark sections, it is clear that the local winter station sees more 

events above 0.4 Hz than the local summer station. However, the Pcl/2 band has the 

opposite seasonal behavior. The local summer station sees more than the local winter 

station. The winter maximum for the higher frequency waves is consistent with the 

notion that they are ducted up to these high latitude stations from a remote injection point, 

because the wave guide is expected to be lossy in the daytime hours due to enhanced 

absorbtion in the E-region (Manchester, 1968). The same seasonal pattern is shown in 

actual event counts in Figure 7-12.
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Latitude Dependence of Pcl/2 and Pci Occurrence

Observations of events common to South Pole and Siple (auroral zone and plasmapause) 

suggest that the Pcl/2 source may be located between the L-shells of the two stations. In 

the top panel of Figure 7-13, the observations o f waves above 0.4 Hz are shown for all 

of 1986. The horizontal axis is the month of the year, and the height of the each column 

represents 100% of the events that occurred during each month.The dark gray section of 

each column is the fraction that were seen at Siple, but not at South Pole. The white 

section is the opposite case. The light gray is the fraction seen in common at both 

stations. The waves above 0.4 Hz are rarely seen at the auroral zone station alone. They 

are generally at Siple alone, or Siple and South Pole together, as though appearance at 

Siple is a prerequisite for detection at South Pole. The source for waves above 0.4 Hz 

seems to have better independent access (i.e., seen only at one or the other) to the lower 

latitude station. The same data is shown in event counts in Figure 7-14.

On the other hand, AMPTE/CCE satellite observations have shown that the outer 

magnetosphere, beyond L=5, is a stronger source for Pci above the local He+ 

gyrofrequency (approximately 0.4 Hz at L=7) than the plasmapause region (Anderson, 

1989). If this is the case, one would expect the opposite pattern for South Pole-Siple 

observations of waves above 0.4 Hz. This is an indication that the presence of He+ may 

be important to the propagation of these waves from outer magnetospheric sources down 

to the ground. If one were not aware of the Pci above 0.4 Hz at high L-shells, it would 

appear that there are two separate source regions: one for waves above 0.4 Hz, near the 

plasmapause, and one for 0.1-0.4 Hz waves between the plasmapause and the auroral 

zone.

The waves in the Pcl/2 band are more evenly distributed between the two stations 

(Figure 7-13b). The source for these waves clearly has better independent access to either
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latitude, and may be located between their L-shells. To be more specific, for waves above 

0.4 H z, a monthly average of 37% (±11%) are at Siple alone, which is more than two 

standard deviations higher than the fraction at South Pole alone: 12% (±3). On the other 

hand, the monthly averages for Pcll2  are: 28% (±8) at South Pole alone, which, with the 

uncertainty, is equivalent to the fraction at at Siple alone: 39% (±8). Note that the 

designation of "South Pole only" is not meant to imply that South Pole is the only station 

to see the event; just that Siple does not.

The events in Figure 7-13 marked "all SP-Siple" include both events known to be seen 

simultaneously at both, plus those that might be common sightings. The uncertainty 

arises because their bandwidths overlap, or they start at one station before stopping at the 

other. The uncertain events cannot be ignored when studying these common-observation 

patterns. It is necessary to know the maximum fraction that could be common to both in 

order to expose the trend for events observed at either station alone. However, they 

would not be suitable for studies of conditions during simultaneous observations.

The waves above 0.4 Hz in Figure 7-13 include structured events, which have 

periodically spaced elements, and are thought to be associated with the plasmapause 

region. However, the unstructured waves may not necessarily be from the same place, 

nor have the same latitude dependence as events above 0.4 Hz overall. The Pcl/2  class 

does not include structured events, although some have minor quantites of structured 

elements. These "some str" Pcl/2 are a  small fraction of all Pcl/2  (compare Figure 7-1 

with Figure 7-46).

To examine the latitude dependence o f unstructured wave types, the structured events 

were removed from the waves above 0.4 Hz, along with events containing structured 

elements as a minor p a r t The South Pole-Siple comparisons were repeated as described 

above. Once again, the waves above 0.4 Hz were associated with Siple, the plasmapause
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station. The monthly fraction at Siple alone was 35% (±8%); which is more than two 

standard deviations higher than the fraction at South Pole alone: 13% (±3%).

Possible Significance of the 0.4 Hz Frequency

The diurnal pattern for all unstructured waves (Figure 7-1) is organized by a frequency of 

approximately 0.4 Hz. The diurnal variation is different below this frequency than above. 

This first indication that 0.4 Hz is important is supported by the latitudinal, seasonal and 

event length patterns for waves above and below this frequency.

The He+ gyrofrequency at the magnetic equator, beyond a distance of 6 RE is near 0.4 

Hz. Figure 7-15 shows the He+ gyrofrequency at the magnetic equator, as calculated with 

the T89 model (D. Larson, p.c.). It approaches 0.4 Hz near L=7, and then decreases 

more slowly with L-shell beyond L=7. Near L=3, the O '1’ gyrofrequency approaches 0.4 

Hz at the equator, but the Pcl/2 seem to come from a higher L-shell, as indicated by the 

latitude dependence. Finally, spacecraft spectra discussed below show signs of He+ ion 

cyclotron resonance. This means it is reasonable to suggest that the 0.4 Hz division in the 

data is due to an ion cyclotron resonance.

Another indication that He+ ions have an effect on wave propagation in the outer 

magnetosphere is the appearance of notches at the local He+ gyrofrequency in wave 

spectra as seen on spacecraft. Perraut, et al. (1984), Roux, et al. (1982) and Young, et 

al. (1981) show notches in data from GEOS 1 (with an orbit of 1.3 RE perigee, 7.0 RE 

apogee, and a 26 inclination to the equatorial plane (Young, et al., 1981), and GEOS 2 

(synchronous orbit, at 6.6 RE, (Young, et al., 1981). At GEOS 2, the notches are at 

approximately 0.4 Hz. At GEOS 1, they are 0.4 Hz or above, since GEOS 1 comes in 

closer to the Earth. Fraser and McPherron (1982), and Fraser (1982) show the presence
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of He+ ions in their ATS-6 (synchronous orbit) spectra as well. Finally, Anderson (1990) 

have AMPTE/CCE (8.8 RE apogee, 1000 km perigee) data that also show gaps at the 

He+ gyrofrequency.

Waves amplified below the He+ gyrofrequency at the equator will propagate in the left 

polarized mode down to the ionosphere. The local He+ gyrofrequency will rise above the 

wave frequency as the wave approaches regions of stronger magnetic field closer to the 

Earth. This means that waves above 0.4 Hz may easily reach the ground if they are 

amplified below the local equatorial He+ gyrofrequency. This could take place on L-shells 

lower than L=7.

Waves amplified above the local He+ gyrofrequency at the equator will be reflected by 

He+ ions along their field-line path to the ground if the He+ concentration is high enough 

(Rauch & Roux, 1982; Perraut, et al., 1984). This will occur at CO = C0bi-ion even if  the 

wave-normal vector k was initially parallel to the local magnetic field (Roux, et al.,

1982). In the same way, a sufficient concentration o f oxygen ions along the field line 

could prevent waves amplified between the local 0 + and He+ gyrofrequencies at the 

equator from reaching the ground. This is apparently not the case when Pcl/2  are seen on 

the ground.

Notches in wave spectra have been observed at the 0 + gyrofrequency at synchronous 

orbit (Fraser & McPherron, 1982; Fraser, 1982) near 0.16 Hz. However, the density of 

oxygen ions along the field line path seems to be insufficient to reflect the Pcl/2 before 

they reach the ionosphere.

The plasmapause region appears to be the source for most waves above 0.4 Hz that are 

seen on the ground, since those from higher L-shells cannot easily get past the He* ions. 

The division in the data near 0.4 Hz suggests that the Pcl/2 are amplified most often in a 

region where the He+ gyrofrequency is approximately 0.4 Hz. Otherwise, the effect of
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the He+ ions would be smeared out in the ground data, because the He+ gyrofrequency 

increases near the Earth (see Figure 7-15).

Possible Connection of Pcl/2 Occurrence with the Solar Wind and

Magnetic Indices

A variety of energy sources for Pcl/2 have been discussed in literature. Previous work 

by Kaye & Kivelson (1979) suggested that dynamic solar wind pressure was responsible 

for Pcl/2  production and that the IMF Bz polarity was important Heacock (1974) 

speculated that the plasma on the last closed field lines near the cleft, as well as detached 

plasma regions convecting sunward within the magnetosphere might be the energy 

source. Bolshakova, et al. (1980), considered the source to be in the magnetosheath 

region, on field lines that enter the cusp. All considered Pcl/2 to be ion-cyclotron waves. 

With so many explanations available, it was decided to use the large number o f events in 

this 1986 survey, along with readily available solar wind measurements and magnetic 

indices, to test these ideas.

Associative studies were done between the occurrence of Pcl/2  and solar wind 

parameters and magnetic indices. Direct solar wind-magnetosphere interactions that might 

provide the energy were investigated through IM F orientation and dynamic solar wind 

pressure. Pressure pulses are known to cause Pc2-Pc5 waves (0.1 Hz-1.7mHz; Nishida, 

1978). A southward component of the IMF is associated with magnetic activity within the 

magnetosphere, and energetic ions that could resonate with P c l/2  are part o f that activity. 

The dawn-dusk component o f the IMF is known to affect convection in the 

magnetosphere, which could in turn decide where the principal wave growth region will 

be.
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The solar wind data came from the National Space Science Data Center (NSSDC) 

database o f IMP8 measurements, an on-line database available via the Space Physics 

Analysis Network (SPAN). This database, and network access procedures, are 

documented in the NSSDC Data Listing (Horowitz & King, 1990). A limited set of 

DMSP F7 measurements were used in conjunction with Pcl/2  occurrences, and these 

came from the online database described by Newell, et al. (1991).

Possible energy sources inside the magnetosphere were explored using the AE, Dst and 

Kp indices. These indices describe certain current systems within the magnetosphere by 

measuring the magnetic field at the surface of the Earth, in different places and for 

different lengths of time. One form of activity is the substorm, in which some energetic 

ions are injected into the ring current. Other ions are convected sunward, untrapped, on 

open drift paths within the magnetosphere. Either o f these ion populations might 

ultimately resonate with and amplify Pcl/2 waves. The AE index is a measurement of 

part of the substorm process. It represents auroral electrojet intensity, which grows 

stronger during substorms. The AE index for this study was published in the World Data 

Center - C2 for Geomagnetism Data Book #19 (Kamei, Sugiura & Araki, 1990).

Geomagnetic storms are described by the Dst index. During storms, energetic particles 

are repeatedly injected into the ring current in a sequence of substorms. The calculation of 

the Dst index is an attempt to measure the magnetic field of this current at the surface of 

the Earth. Solar wind pressure pulses can also affect Dst measurements. Ring current 

ions are known to be an energy source for Pci (0.2-5.0 Hz) waves. The Dst index for 

1986 was published by the same source as Provisional Values o f Equatorial Dst (Sugiura 

& Kamei, 1986/87).

The Kp index is a general measure o f  variations in the magnetic field at the surface of the 

Earth. It describes the most extreme variation in a three-hour period, taking into account
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measurements from 13 midlatitude stations around the world. Unlike the other two 

indices, it does not identify the source of the magnetic field disturbance. The Kp index is 

published monthly in the Journal o f Geophysical Research. All data were either imported 

directly as files into the database software (solar wind parameters, DMSP data), or 

manually typed into files from paper documents (AE, Kp, Dst).

Except for the Kp index and DMSP measurements, the data were available in one-hour 

averages. Since the start and stop times for the Pcl/2 are known, events of less than 45 

minutes duration were rejected in order to ensure comparison of similar timescales. 

Additionally, complete events, or segments of multiple-hour events, that overlapped an 

IMP8 or index data hour by less than 45 minutes were also discarded. For a given event, 

the solar wind or index values could either be averaged over the event duration, or treated 

as separate data points. Averaging over the event duration allows the event to be 

characterized by a single value. On the other hand, treating the values separately exposes 

extreme levels during the event, which could otherwise vanish due to averaging.

The timescale of the available index and solar wind data limits the scope of the associative 

studies. Statements made here about Pcl/2 associations strictly apply to Pcl/2 at least 45 

minutes long. This represents 70.3% of the Pcl/2  at Sondre Stromfjord, 62.4% at South 

Pole and 60.7% at Siple. The shorter events may be produced in a different way, or in 

different places, but the available time resolution is not sufficient to address the question. 

The longer events should provide the best chance for insight from associative studies.

The longer the physical mechanism producing the long Pcl/2  has to remain in operation, 

the easier it should be to identify. It is possible that none o f the solar wind or index 

measurements in fact measure the key physical quantity, but they can narrow the range of 

possibilities through negative results.
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Solar Wind Measurements: the IMP8 spacecraft

Approximately 40% of 1986 was covered for purposes of solar wind measurements 

(NSSDC1989), which were all from the IMP8 spacecraft. IMP8 had a 30x40 Re orbit 

with a 12.5 day period. It was in the solar wind for six to eight days per orbit (NSSDC, 

1986). The maximum travel time of the solar wind from IMP8 to the magnetopause can 

be estimated, taking the the modal solar wind speed for 1986 (350-400 km/s) and the 

maximum distance between EMP8 and the magnetopause. The magnetopause location 

moves in and out, depending on the solar wind pressure and IMF orientation. For 

example, it moves inward for either IMF Bz south or increased solar wind pressure 

(Sibeck et al., 1991).

Sibeck et al. (1991) show the radial dependence of the subsolar point of the 

magnetopause on pressure and Bz, from a data set o f 1821 magnetopause crossings. The 

subsolar point is at 8.8 Re for pressures in the range 4.9-9.0 nPa, which is higher than 

most of the pressures during Pcl/2 events (see Figure 7-17). For Bz in the range -6 to -4 

nT, it is at 9.6 Re, which is again an extreme value for Pcl/2  (see Figure 7-20).

A scatterplot of magnetopause crossings during 1963-68 IMP measurements (Fairfield, 

1971) shows a typical value of 10-11 Re and a minimum of approximately 7 Re along the 

Earth-Sun line at the equator. This gives a maximum travel time of (40-7)x6400 km/350 

km/s =603 sec, or 10 minutes. The IMP8 data are hourly-averaged values, and the 

segments o f Pcl/2 used were at least 45 minutes long, so this maximum delay between 

IMP8 and the magnetopause is small compared to the time periods of the data.

Sibeck and Croley (1991) compare solar wind pressure and IMF measurements on IMP8 

to ISEE 2 and cast doubt upon IMP8 solar wind pressures measured over periods of two 

minutes or less. They suggest this may be due in part to the time resolution of IMP8
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plasma measurements. This does not create a problem for the IMP8 data used here, 

however.

Figure 7-16 shows the monthly distribution of IMP8 IMF hourly-averaged measurements 

during 1986. The measurements are not uniform throughout the year, and in fact are 

lowest in February, March and December, which are summer months in the southern 

hemisphere. Since Pcl/2 occur most often in local summer, the South Pole Pcl/2  would 

have fewer coincident IMP8 measurements than Sondre Stromfjord Pcl/2.

Dynamic Solar Wind Pressure During Pcl/2

Solar wind dynamic pressure depends on the mass of the solar wind particles, their 

number density and speed as: P = mnVsw2 (for example, Kaye & Kivelson, 1979). 

Increased solar wind pressure aids the amplification of Alfven waves by 'compressing' 

the magnetosphere. Greater pressure means a greater charged particle speed or number 

density, and either one increases the magnetopause current (for example, Nishida, 1982). 

This increases the magnetic field inside, which in turn increases the anisotropy (pitch 

angles) o f energetic ions, which may then more effectively supply energy to waves 

(Nishida, 1978). Nishida (1978) says that compression tends to increase the average 

frequency and bandwidth o f a wave.

The solar wind pressure distribution for all Pcl/2 is shown in Figure 7-17. All three 

stations are presented, and the 1986IMP8 solar wind pressure distribution is shown for 

comparison. There is a weak trend for the solar wind pressures during Pcl/2 at Sondre 

Stromfjord and Siple to be higher than the 1986IMP8 reference. If the two distributions 

were offset from one another, the peak offset would be toward higher pressures by 

approximately 0.5-1.0 xlO'8 dynes/cm2. It would be surprising if  Sondre Stromfjord and
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Siple Pcl/2 occurred during higher solar wind pressures than Pcl/2 at South Pole, 

because of the latitude similarity for South Pole and Sondre Stromfjord, compared to 

Siple.

It is possible that pressure variations on a timescale that is short compared to the one hour 

average could be the source. If there are pressure pulses which are short compared to one 

hour, they must be present in a train that can be several hours long. Kaye & Kivelson 

(1979) suggested a relation between solar wind pressure and the occurrence of Pc 1/2, 

from OGO-5 observations. However, the increases in pressure lasted approximately one 

hour for the events shown in their paper.

Note that approximately 8% of the pressures are below 2.5xl0‘8 dyn/cm2. This is below 

Kaye & Kivelson's (1979) threshold defining "enhanced" solar wind pressure. They saw 

no pressures associated with Pcl-2 below this value, a point which suggested that Pcl/2 

required elevated levels of pressure.

A x2 comparison of each station's pressure distribution to the 1986 reference shows that 

all three are similar to the reference. If  one randomly draws a  subset from a  parent 

distribution, such as from the 1986IMP8 solar wind pressures, the subset should have 

the same shape as the parent. This means that the solar wind pressures for Pcl/2 

occurrence are consistent with a random selection from the 1986IMP8 distribution. If 

there is a relation between solar wind pressure and Pcl/2 occurrence, then the complete 

range of all 1986 solar wind pressures satisfied it. Some other element of such a relation 

is still unidentified, because if  solar wind pressure is both necessary and sufficient, one 

would expect to see Pcl/2 every day at each station, and this is not the case.

All three stations consistently have a lower count in the 2.0-2.5 xlO-8 dyn/cm2 pressure 

bin, compared to the 1986 reference. However, the weak trend and the count deficiency 

are not sufficient to distinguish the distributions from the 1986 solar wind pressure
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distribution. Assuming that Poisson statistics apply, the probability of exceeding y}  is 

greater than 5% for pressures during Pcl/2, at any station, compared to the 1986IMP8 

reference.

As a check for consistency, the pressures for the first hour of those Pcl/2 which were 

long enough to overlap at least one hour of IMP8 data were selected. No averages were 

taken in this approach. These Pcl/2 had to be at least two hours long to ensure complete 

overlap. Their pressure distribution is plotted in Figure 7-18. For South Pole and Sondre 

Stromfjord, the distributions are similar to the 1986IMP8 reference.

Siple shows some departure toward higher pressures. A comparison over the range of 

1.5-6.0, with bins 5.0,5.5 and 6.0 xlO'8 dynes/cm2 gathered into one, gives a 1.4% 

probability o f exceeding %2, a borderline level of significance. This is similar to the trend 

for event-averaged solar wind pressures there. It could suggest that Pcl/2 may be 

associated with higher solar wind pressures when seen at Siple than at the higher 

latitudes. If there is an association, it may be that the increased pressure is part of a larger 

mechanism for Pcl/2 amplification, but is not directly responsible for wave growth.

Solar Wind Pressure: Discussion

The long P cl/2  in Figure 7-7 rises no more than 0.1 Hz over a 2.5 xlO 8 dyne/cm2 rise 

in average pressure. The initial segment does rise more than that in frequency, but the 

difference in average pressure is less than half of what is seen during the long, stable 

part Apparently, a pressure change of more than 2.5 xlO '8 dyne/cm2 is necessary to 

affect wave growth in the Pcl/2 band.

This study tested an association of Pcl/2  occurrence with average pressure. There is a 

possible threshold at approximately 2.0 xlO-8 dyne/cm2, but overall, there is no general
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preference for a particular value. Possibly the what is important is a change in pressure 

over some time, instead of some large absolute value. A sufficiently large change might 

increase anisotropy and temporarily add ions to the population that can promote wave 

growth. It may be that if  the pressure remains at an arbitrary level, the drift paths of the 

ions and the wave growth rates may return to a  state similar to the one before the change.

If a change in average pressure is important, it must be greater than 2.5 xlO’8 dyne/cm2, 

because a change o f this much made no difference in the character of the event in 

Figure 7-7. In addition, for most o f the events in Figure 7-17, the pressures during 

Pcl/2, appear in a pressure range from 2.0 to 4.5 xlO'8 dyne/cm2. This does not leave 

much room for a change in pressure greater than the change in Figure 7-7. It may be 

tentatively concluded that neither absolute values of, or changes in solar wind pressure 

are associated with the occurrence of Pcl/2. Since this study recorded the occurrence of 

micropulsations, not their amplitudes, the possibility of a pressure-amplitude relation is 

left open.

Sondre Stromfjord events show a variety of pressure patterns. One event lasted 5h30m 

(SS ser_no 258.0,10/30/86), during which the hourly-averaged pressure went down, 

then up, in the following sequence: 4 .8 ,3 .5 ,3 .9 ,2 .6 ,1 .9  and 3.0 (x lO 8 dynes/cm2). 

Another lasted for 2h10m, beginning during relatively low pressure and turning off during 

high pressure (SS ser_no 478.0,9/11/86): 2.1, 2.2 and 6.1 (xlO'8 dynes/cm2). If 

pressure acts to produce Pcl/2, sometimes up to  17 hours long, it is not a simple 

mechanism.
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IMF Orientations During Pcl/2

The possibility of an association of P cl/2  occurrence with the IMF was also examined. 

IMF orientations during Pcl/2 were compared to the IMF orientations during 1986, as 

measured by IMP8. When the IMF has a southward component, it is directed oppositely 

to the Earth's field, and reconnection may occur. Field lines that led from the south to the 

north pole o f the Earth connect to the IMF. The result is a field line that extends from the 

Sun through the polar caps and interior of the Earth, back to the Sun. This line is carried 

tail ward by the solar wind, until it ie-reconnects to a state of two separate field lines 

again: one looping through the Earth's poles, the other through the Sun's.

While the connection o f the solar wind and Earth field exists, however, solar wind 

plasma may enter the magnetosphere along the field line (Nishida, 1978). Much o f this 

plasma travels tailward, ju st inside the magnetopause, in the mantle (also called the high 

latitude boundary layer (see Lundin, 1988). This plasma flow is believed to be 

responsible for the dawn-dusk electric field over the polar cap, which drives convection 

inside the magnetosphere (for example, Lundin, 1988). Other solar wind plasma goes 

down to the cusp region through the entry layer (see Figure 2 in Lundin, 1988).

The fact that a southward IMF is associated with energy input to the magnetosphere has 

been shown in many past studies. Fairfield & Cahill (1966), using Explorer 12; Rostoker 

& Falthammar (1967), using IMP1; and Schatten & Wilcox (1967), using IMP3 all 

found that southward IM F was associated with increased magnetic activity on the 

ground. Amoldy (1971) showed that the time-integrated southward IMF was related to 

the input o f  solar wind energy to the magnetosphere. Integrated over one hour intervals, 

the integrated southward IMF component was correlated with hourly averages of AE, 

with AE lagging by approximately one hour. Meng, et al. (1973) performed a similar 

study with 5.5 minute time resolution, and found a delay of approximately 40 minutes.
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Other associative studies were done by Rostoker, et al. (1972), between the rate of 

southward flux arrival at the magnetosphere and AE; by Akasofu (1979) between the 

polar angle of the IMF and AE; and by Reif, et al. (1981), between the polar cap 

convection potential and parameters involving IMF orientation.

An example of the magnetospheric response to a southward-turning of the IMF is shown 

in Figure 7-22. The IMF Bz component, as measured by IMP8, is plotted, along with the 

AE index. Both are hourly-averaged values from the same databases used in this work.

In Figure 7-22, Bz remains positive for about seven hours, during which the AE index 

remains relatively low. Low AE indicates a quiet auroral electrojet condition. After Bz 

turns south, the AE index rises, indicating an intensified electrojet and a substorm in 

progress. There is a brief northward-turning near 0 UT, which is followed by a slight 

reduction in the AE index. Near the end of the plot, Bz nears zero and then turns north, at 

which time the AE index decreases to its original level.

To summarize, a period of southward IMF is important for wave generation for two 

reasons. First, it can supply solar wind ions directly to the magnetosphere via the Sun- 

Earth magnetic field line connection ("reconnection"). Second, it enhances the dawn-dusk 

electric field, which convects ions into the afternoon sector. Convection time depends on 

the starting point of the ions, their pitch angles and energies (for example, see Ejiri,

1978). Once ions are present, wave growth may occur. Consequently, the Bz component 

at the time of Pcl/2  occurrence was selected, as well as from one and two hours before. 

The delay of two hours was suggested by observations by Kaye & Kivelson (1979).

The Geocentric Solar Magnetospheric (GSM) coordinate system was chosen for IMF 

data because it moves with the magnetic dipole o f the Earth. The X  axis is in the direction 

of the sun from the center of the Earth, and positive toward the Sun; the Y  axis is 

perpendicular to the dipole axis, lies in the magnetic equatorial plane and is positive
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toward dusk; and the Z axis is in the plane of the X axis and the Earth's magnetic dipole 

and is positive North. The Z axis is not always perpendicular to the ecliptic; it rotates 

(oscillates) about the X axis daily .

The X and Y components of the IMF are important to solar wind-magnetosphere 

coupling, so their values during Pcl/2 events were plotted and compared to the IMP8 

reference. The Y component of the IMF (dawn to dusk) has an influence on the 

symmetry of convection in the magnetosphere (Kelley, 1989), so an association of Pcl/2 

with the polarity o f By could explain the postnoon occurrence. Small cone angles of the 

IMF to the X axis (Earth to Sun) have been associated with Pc3 and Pc4 waves directly 

transmitted into the magnetosphere (Nishida, 1978; Engebretson, et al., 1991) from the 

solar wind. Engebretson, et al. (1991) found broadband wave power up to at least 0.5 

Hz in the magnetosheath during times of small IMF cone angles and Pc 3-4 activity, but 

no narrow-band waves are seen. Earthward-pointing IMF has also been associated with 

increased magnetic activity in the magnetosphere, particularly when accompanied by a 

southward component (Schatten & Wilcox, 1967).

Bx and By Dependence

The angles the IMF made with the Xgsm and Ygsm axes during Pcl/2  events are plotted in 

Figure 7-19. Data for all three stations are presented, along with the 1986 IMF angles to 

X and Y as measured by IMP8. At all three stations, the angles of the IMF to the X and Y 

axes during Pcl/2 follow the distribution o f the 1986 IMF angles. For the IMF-to-Y 

angles, a chi-square test that assumes Poisson statistics puts the probability of exceeding 

chi-square at greater than 4% for Sondre Stromfjord, and more than that at the other two 

stations. For the angles to the X axis, the probability is at least 5% for any station. This
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indicates a similarity between all three station distributions and the 1986IMP8 

measurements.

In addition, there are some single-bin departures from the 1986 reference, such as the 

excess in the 50°-60° bin for Siple. Since they are confined to one 10° bin, and there are 

no similarities in these departures between South Pole and Sondre Stromfjord, they are 

probably not meaningful. Once again, this suggests that if the IMF orientation to the X 

and Y axes is involved in the production of Pcl/2, it may be necessary, but is not 

sufficient to do so.

Bz Dependence

The distribution of IMF Bz values during Pcl/2 events is presented in Figure 7-20. Bz 

values for every hour o f each event were treated as separate counts, because the magnetic 

activity within the magnetosphere is higher during southward IMF than northward. 

Averaging IMF values over the event duration could mask the presence of Bz south 

during Pcl/2.

The hourly-averaged IMP8 IMF Bz peak for 1986 is in the range 0-2 nT; it is not 

symmetric about zero. Chi-square tests assuming Poisson statistics suggest a difference 

for all three stations, but this is due to differences of 5-10 counts between the reference 

and the station distributions, usually in one bin with 21 counts or less. Compared to the 

number of counts in the peak bins, which range from 84 at Siple to 177 at Sondre 

Stromfjord, 5-10 is a small number. Each bin is 2 nT wide.

Nevertheless, if there is a significant difference in the Bz distributions for Pcl/2 vs the 

IMP8 Bz values, it would be useful to calculate the peak centroids to quantify any
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preference for positive or negative Bz during Pcl/2 . The centroids were calculated for 

each peak as:

where Xt is the center value of the Bz bin, N,- is the quantity in the bin and the sum runs 

over all bins that contain at least 15% of the peak bin quantity. The uncertainty in the peak 

value was calculated following Bevington (1969):

The IMF Bz peak positions for the three stations a re : Siple 0.9 ± 0.5 nT; Sondre 

Stromfjord 0.4 ± 0.5 nT; and South Pole 0.9 ± 0.6 nT.

The 1986IMP8 IMF Bz peak using this method is 0.5 ± 0.5 nT. This centroid value was 

calculated from a distribution with bins that are 2 nT wide. To check the quality of this 

centroid value, the average of all IMP8 hourly-averaged Bz values was calculated from 

the IMP8 database. Based on 3618 measurements, the mean Bz value from 1986 was 

0.3 nT, which agrees with the centroid calculation.

where

and
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All of the Pcl/2 centroids are within one standard deviation of each other and the 1986 

IMF Bz reference. Evidently, the differences detected by the chi-square test are not 

collectively arranged to create a preference for positive or negative Bz during Pcl/2 

events, compared to the 1986 Bz distribution.

Since a southward-turning of Bz is associated with enhanced energy input to the 

magnetosphere, and since this turning precedes the appearance of energetic ions inside 

the magnetosphere which could amplify Pcl/2, it is necessary to look for Bz values prior 

to the Pcl/2  occurrence. Such a relation was suggested by Kaye & Kivelson (1979). The 

process of finding Bz values for Pcl/2 and segments of Pcl/2  was repeated, but Bz for 

the hour preceding the Pcl/2 hour was taken from the IMP8 database instead. Bz values 

were also taken for the hour that was two hours before the Pcl/2. The centroids of all 

three stations' Bz distributions remained consistent with each other. In addition, at any 

given station, there were no significant changes in the Bz distribution due to the hour 

offsets.

It may only be necessary for the IMF to turn southward for a short time to supply the 

energy for the Pcl/2, then it may be northward again. During the longer events, inclusion 

of Bz values for every hour might explain the lack of association with negative Bz. 

Consequently, another approach was used, in which Bz was selected for the hour 

preceding every Pcl/2  that was at least 45 minutes long and began within 10 minutes 

after the hour.

No evidence of a preference for southward Bz was found in the hour preceding these 

selected Pcl/2. If there is any trend, it is toward positive Bz instead. Table 7-1 shows the 

number of Pcl/2 that were preceded by positive or negative hourly-averaged Bz. If they 

are described by binomial statistics, then the fraction of hours with Bz positive is assumed 

to be the probability of seeing Bz positive on all other samples. One standard deviation
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(o  = [n7t(l-7c)]I/z) is the uncertainty in that assumption. The standard deviation is listed 

for each station in Table 7-1.

Siple and Sondre Stromfjord each have as many positive as negative Bz, within two 

standard deviations. The opposite is true for South Pole; there is a preference for Bz 

positive in the hour preceding Pcl/2. This pattern is repeated for all stations for Bz values 

two hours before Pcl/2.

Also shown in Table 7-1 are the number of Pcl/2 that were preceded by IBZI a 2 nT to 

show how the more extreme Bz values were distributed. Again, if  there is a relation, it 

seems to be toward positive Bz.

Table 7-1. Bz Values in the Hour Preceding Pcl/2 Events

Station Qty Bz 3:0 Qty Bz <0 Qty Bz £2 nT Qty Bz <2 nT

Siple 14 (±3) 13 (±3) 2 5

SP 23 (±3) 15 (±3) 12 5

SS 32 (±4) 28 (±4) 14 5

The possibility of a seasonal association of Pcl/2 occurrence with the IMF projection in 

the XY GSM plane was also checked. Figure 7-21 is a scatterplot showing the angles of 

the hourly-averaged IMF to the X  and Y axes for Pcl/2  events at Sondre Stromfjord. The 

events are from June and December solstice, ± 45 days each. There is no clear seasonal 

pattern. The Parker Spiral can be seen in this figure, since the IMF during most of the 

P c l/2  events points westward and Sunward or eastward and Earthward.
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IMF Relation to Pcl/2: Discussion

No direct association o f Pcl/2 occurrence with the IMF has been found. The Bz 

component during and at fixed offsets prior to the Pc 1/2 shows no preference for 

negative values. This is consistent with Troitskaya, et al., (1980) found "no clear 

relationship" between Bz and Pcl/2  observations, although they did not discuss this 

point in any detail. The lack of a southward IMF just before, or during Pcl/2 indicates 

that the ions that enter the magnetosphere through reconnection do not immediately 

amplify the Pcl/2.

The solar wind ions that enter the magnetosphere may amplify the Pcl/2 after convecting 

sunward from the tail, however. A complication for this study is that convection times for 

ions to go from the plasma sheet to the postnoon sector might be irregular because the 

enhancements in the electric field occur when the IMF turns south. In fact, sudden 

enhancements and decreases in the convection electric field can create plasma "clouds", 

whose sunward drift from the plasma sheet is affected by later enhancements o f the 

electric field (DeForest & Mcllwain, 1971). If the irregularities in drift times are more 

than one hour, the technique of looking a fixed number o f hours before an event may not 

reveal the southward IMF connection to the Pcl/2. The association of southward Bz two 

hours before Pcl/2  noted by Kaye & Kivelson (1979) may be a coincidence due to small 

sample size (11 events).

There is no association of Pcl/2 occurrence with the polarity of the IMF X or Y 

components either. Apparently IMF Y component does not explain the postnoon 

occurrence maximum. The lack o f X association is consistent with the Bz case, since the 

negative sense for both is connected to higher levels of activity within the magnetosphere 

(Rostoker, 1968; Schatten & Wilcox, 1967). Since the energy in the magnetosphere 

comes primarily from the solar wind, the solar wind is ultimately the energy source for



135

Pcl/2. However, the link is not prompt, and the Pcl/2 do not seem directly related to 

either pressure or IMF orientation.

Possible Association of Pcl/2 with Magnetospheric Sources

The possibility that the Pcl/2 may have a source inside the magnetosphere that is 

associated with substorms was tested by selecting Dst, AE and Kp values during the 

Pcl/2. Substorms are an energy source for Pci because the energetic ions injected into 

the ring current may lose their energy in part via the ion-cyclotron instability (Bossen & 

McPherron 1976, Kozyra 1984,). The production of P ci by this process occurs during 

the recovery phase o f a storm, which can be observed 2-5 days after the main phase, 

depending on the latitude of the station (Kuwashima et al., 1981; see also Mullen & 

Heacock 1972, Heacock & Kivenin 1972, Heacock & Akasofu 1973).

The Dst, AE and Kp indexes are designed to provide an indication of substorm activity. 

All three are simply measurements of the magnetic field at the surface of the Earth. 

However, the location and time resolution of the measurement are chosen in order to 

follow variations in certain current systems. Inevitably, other current systems will be 

present as well, and will somewhat degrade the fidelity to the system of interest, so the 

various indices are not exact measurements. Dst is a measure of the ring current, AE 

describes the auroral electrojet intensity and Kp provides a planetary-scale estimate of 

extremes in magnetic disturbances. Each of these will be further described below..
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Dst During Pcl/2

The ring current builds after a series of substorms inject energetic ions into drift paths that 

encircle the Earth. The magnetic moment of these trapped charged particles is opposite to 

that of the Earth. The ring current field reduces the net field tangent to the Earth's surface 

near the equator, often by 30-40 nT. This is illustrated in Figure 7-24 by the December 

solstice ±45 day Dst distibution. Storms, composed o f many energetic substorms and 

repeated particle injections, can reduce the field by up to 300 nT or more (see Dst 

February 9,1986), or 1% of the steady field at the Earth's equator (Kelley, 1989).

The Dst index, "Disturbance Amplitude, storm-time", is an index intended to measure the 

ring current magnitude. It is an hourly average of the disturbance in the horizontal 

component of the Earth's magnetic field (not the magnitude of the component itself), as 

measured at four stations near the equator. The stations are not located at the equator in 

order to avoid the E-region equatorial electrojet (Kelley, 1989).

Although storms can cause dramatic reductions in the magnetic field at the Earth's 

surface, an estimate of typical storm levels was made by surveying Dst values on the 

most "disturbed days" of May, June and July 1986 (see the "Geomagnetic and Solar 

Data" listing in the Journal o f Geophysical Research). The mean hourly Dst value over 

disturbed days from all three months was -29 nT, with daily averages ranging from -10 

to -78 nT. The same average over the quietest days was -7 nT. The figure of -29 nT is 

simply an estimate o f a disturbed level of Dst; the storm threshold of Dst is not well 

defined.

Compressions of the magnetosphere can produce an effect opposite to that of the ring 

current. This magnetic field change is a consequence of increased currents at the 

magnetopause due to increased solar wind dynamic pressure. Their fields add to the 

magnetic field of the Earth (Nishida, 1982). A compressional change is typically 20 nT or
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less (Figure 7-24). Since storms and compressions affect the Dst measurement in 

opposite ways, there is no way to tell from the Dst index alone which one is changing.

Figure 7-23 illustrates the 1986 Dst and solar wind pressures for those hours during 

which both were available. The effect of pressure on the Dst index is apparent at Dst 

values near and greater than zero. Increasing pressure and increasingly positive Dst are 

associated. At negative values of Dst, however, the effect of pressure vanishes; a range 

of pressures can occur for any negative Dst value.

A scatterplot o f Dst and pressure during Sondre Stromfjord Pcl/2 is shown in the same 

figure, and it is clear that a range of solar wind pressures of 2-5 xlO-8 dyn/cm 2 exists for 

all Dst values less than zero. The extent of negative Dst values for Sondre Stromfjord is 

limited to approximately -40 nT for the bulk of the Pcl/2, while the 1986 Dst distribution 

extends to approximately -85 nT.

Using the 45 minute criteria, Dst values were selected for each hour of Pcl/2. These 

hourly Dst values are plotted for each station in Figure 7-24, for Pcl/2  during the June 

and December solstice (±45 days). Also plotted in that figure are all Dst values for the 

same time periods, as a reference. Dst during December solstice Pcl/2  have a distribution 

similar to the seasonal reference. On the other hand, Dst during June solstice Pcl/2  are in 

fact skewed to more positive values (Figure 7-24). In neither season is there a preference 

for large-magnitude negative values during Pcl/2 events.

If the Dst values are averaged over the Pcl/2 events, instead of plotting Dst for each hour 

of a Pcl/2 separately, the same trend appears. Some o f the differences between the South 

Pole December solstice distributions and the seasonal reference are less distinct as a result 

of averaging.
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Kaye & Kivelson (1979) found no Dst relation to the occurrence of Pcl/2, although their 

sample size was small (11 events). In this study, the trend for Pcl/2  to occur during 

quiet-time Dst suggests that the ring current is not usually very intense at the time. 

Enhanced solar wind pressure could give the same Dst pattern, but this is not a likely 

explanation because there is no evidence of enhanced pressure during Pcl/2

Possibility of Pcl/2 Occurrence during the Recovery Phase of Storms

Quiet-time values of Dst during Pcl/2 could also suggest that Pcl/2  are produced during 

the recovery phase o f a storm. This is an accepted mechanism for Pci production, in 

which the energetic ions of the ring current provide the energy for wave amplification 

(Heacock, 1974; Roth & Orr, 1975; Kuwashima, 1981). The wave growth then 

maximizes near the contact surface between the plasmasphere and the ring current as the 

plasmasphere expands after a storm. As the plasmasphere expands, the wave growth 

will then be observed on increasingly higher latitude field lines on the ground. 

Kuwashima (1981) shows delays of approximately 2 and 5 days for Pci detected at 

about 30° and 70° magnetic latitude, respectively.

Dst values up to 7.5 days before Pcl/2 event hours were selected in a search for storm 

activity before the Pcl/2  at Sondre Stromfjord (74.1°). The June solstice events were 

used for this study because they are the most different from their seasonal reference 

toward quiet time values. If  Pcl/2 tended to occur in the recovery phase of storms, the 

Dst values at some time prior to the Pcl/2  should be at storm levels. In fact, Dst at that 

time could be skewed enough toward storm levels to be significantly different from some 

standard reference. The reference used here was the seasonal Dst distribution, because it 

has values ranging from quiet to storm levels. In addition, if a Dst distribution is similar 

to the seasonal reference, it is consistent with a random selection from the reference.
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It is possible to estimate what will happen if one looks at Dst values from very far before 

a Pcl/2  event. If the Dst are selected from far enough before, perhaps even before the 

storms that may produce the event, those Dst values will have no physical relation to the 

Pcl/2. One can guess what those Dst values be. The most likely would be the value most 

likely to occur in that season. This means that the distribution of Dst from very far before 

the Pcl/2  should be similar to the seasonal Dst distribution.

The Dst at the time of the Pcl/2, as well as those in the hours before, were selected. At 

each time before the Pcl/2, the distribution of Dst values were compared to the June 

solstice Dst reference. The similarity was characterized by the chi-square statistic. Small 

values of chi-square indicate close similarity, and this means there is no association of 

Pcl/2  with storm time Dst, since most Dst values during the June solstice were not at 

storm levels (estimated above at approximately -30 nT or less).

Large chi-square values indicate significant differences between the distributions. This 

happens at 0, 8 and 40 hours before the Pcl/2, because the Dst values at those times were 

even more positive than those of the June solstice (see the previous figure). The 99% 

confidence level in Figure 7-25 occurs at a chi-square value so large that the two 

distributions are significantly different. The "confidence" is in the rejection of the null 

hypothesis that the two distributions are randomly drawn from the same parent. Except 

for 136 hours before, there were no large chi-square values due to storm levels of Dst 

prior to Pcl/2. However, even at 136 hours before (see Figure 7-25), there is no 

convincing evidence that Pcl/2 were systematically preceded by storm-time Dst levels. 

This means most Pcl/2  do not appear in the recovery phase of storms.

In addition, it is often the case that Pcl/2 are produced during long periods without storm 

activity. For example, from May 18 to June 26,1986, there were no Dst values less than 

-34 nT, yet Pcl/2  were observed.
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AE D uring  P cl/2

The AE index was also examined for an association with Pcl/2 occurrence. This index is 

intended to monitor the auroral electrojet, a current system that intensifies in the westward 

direction during a substorm. Kamide et al., (1982) diagram the equivalent ionospheric 

current systems for different values of AE.

AE comes from a measurement of the horizontal component of the magnetic field by 12 

stations located in the auroral zone between 63.0° and 71.2° magnetic latitude (Kamei, 

1990), in the northern hemisphere. It was introduced by Davis and Sugiura (1966).

When two axes of measurement (X,Y) are used in the plane that is tangent to the Earth’s 

surface at the station (Hess, 1965), the horizontal component (H) is their magnitude 

( H = V(X2 +Y2)").

The index is compiled every month by first calculating a "quiet" baseline for each station. 

This is done by averaging the station's data from the five "international quietest days" of 

that month. Johnston (1943 as referenced by Mayaud, 1980) discussed the selection 

process for these days. The quiet base value is then subtracted from each minute's data. 

All the stations are compared for each minute, and the largest and smallest values are 

identified as AU and AL, respectively. The AU index is an indication of the largest 

current intensity of the eastward auroral electrojet (Kamei, 1990), not the total electrojet 

current (Akasofu, 1983, Kamide,1982). The AL index describes the maximum westward 

electrojet intensity. Another index, AO, is the average o f AU and AL ( AO = (AU + 

A L)/2). The AE index is defined as the difference ( AE = AU - A L ). Since AU is 

generally greater than zero, and AL is generally less, AE becomes the sum of their 

magnitudes and is an estimate of overall electrojet activity (Kamei, 1990). Hourly-
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averaged values of AE for January-June 1986 from WDC C-2 (Kamei, 1990) were used 

for this study.

A reference for what might be considered a quiet level of AE is provided by the average 

hourly AE value from the five international quietest days of each month. For January- 

June, 1986 the average hourly AE values for the quietest days are: 4 6 ,6 1 ,5 2 ,7 7 , 88, 

and 106 nT (WDC C2 Data Book #19,1990). The mean of all five is 72 ± 23 nT. For 

comparison, in distributions of AE during Pcl/2, the bin that typically has the most 

counts is 50-100 nT.

During relatively quiet times between substorms, the auroral oval contracts poleward 

(Akasofu 1973, Lui 1976), beyond many of the AE stations (Akasofu,1983). The 

consequence is that some substorm activity may take place without detection by the AE 

network. To quantify the effect this would have on the standard AE index, Akasofu 

(1983) and Kamide (1982) compiled an AE index from a 71-station network and 

compared it to the standard 12 station index. The 71 stations were spread over a broader 

latitudinal range, up to 86° geomagnetic. The 71 and 12 station AE indexes had a high 

correlation (0.93 correlation coefficient), but the 12 station AE value was generally lower 

than the 71 station AE by approximately 100 nT (Kamide et al., 1982). The high 

correlation and the constant 100 nT offset suggest that both versions are equally reliable 

above a threshold of the weakest or most poleward electrojet activity.

Heacock (1974) found a "moderate" correlation (cross-correlation coefficient of 

approximately 0.45) between AE and Pcl/2 occurrence. This was attributed to the 

approach of subcleft lines to the station as the cleft moved equatorward with increasing 

AE. The possibility of 'detached' plasma regions (Barfield & McPherron 1972) that 

could enhance the growth rate of Pcl/2  beyond the plasmapause was also raised. 

However, Heacock pointed out that the distribution of such regions (Chappell, 1974) is
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not consistent with the narrow diurnal peak of the Pcl/2. Kaye & Kivelson (1979) found 

no relation between AE and the occurrence of their Pcl/2 events.

The AE values during June solstice Pcl/2 hours were selected according to the 45 minute 

criteria and are plotted in Figure 7-26. Since the AE index can increase substantially in 

one hour (for example, 508 nT on 3/21/86), the hourly values were treated as separate 

counts to expose high, substorm values.

Note in Figure 7-26 that South Pole and Siple show excesses at or below 100 nT 

compared to the June solstice pattern, although their overall distributions are not 

significantly different. The same is true for South Pole, compared to the December 

solstice AE distribution. In both seasons, Sondre Stromfjord AE values were well- 

matched to the seasonal reference. The December solstice comparison did not include 

Siple because no data were available there until Feb 12,1986. Actually, neither solstice 

data set had 90 days of data because AE was only available for January-June 1986.

In this study, no significant difference was found between the AE distribution for Pcl/2 

events and the respective seasonal AE distribution. The probability of exceeding chi- 

square was never less than 2%, which is not low enough to be significant. Any 

departures from the seasonal models were toward lower AE values, particularly 100 nT 

or less. Pcl/2  do occur during substorm AE levels, but no more often than is consistent 

with a random selection from the seasonal AE distribution.

The AE distributions illustrate the need for caution when using statistical tests on 

micropulsation data. A very conservative statistical significance was required due to 

physical reasoning. Waves observed by stations at the same magnetic latitude should 

behave the same way, unless there are differences due to solar exposure, dipole tilt, or 

some other reason. Positive statistical results should be required for both stations if they 

are to be believed. The following is an example where a statistical relation appears to be
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significant for one station, but not at the other. It sets a conservative standard for the level 

of significance that should generally be required

The South Pole December solstice AE distribution showed the most difference from the 

seasonal model for any station for any season. There was a 2% chance o f exceeding x 2 • 

However, in the opposite season there is an approximately 90% chance o f exceeding %2 

for South Pole. This could be interpreted as a real seasonal phenomenon, except that it 

doesn't occur at the nearly conjugate station. Sondre Stromfjord AE distributions are both 

similar to their seasonal references. This is true even though the shape o f the AE 

distribution for the December solstice is different from that of the June solstice, in that the 

December reference peaks in the 0-50 nT bin.

This difference probably cannot be attributed to the fact that AE is calculated only from 

Northern hemisphere stations (McLennan, et al., 1991), and that ionospheric 

conductivities change seasonally (de la Beaujardiere, 1991), because South Pole Pcl/2  

AE values show an excess in the lowest bin in both seasons. The result is that the 2% 

confidence level for the South Pole Pcl/2 AE distribution is insufficient to conclude that it 

is different from the December solstice reference.

Substorms identified by AE may provide energy to ULF waves through energetic ions 

injected from the plasma sheet into the magnetosphere. These ions will drift sunward due 

to the enhanced convection electric field associated with the substorm (DeForest & 

Mcllwain, 1971). The drift paths will depend on energy, charge and pitch angle of the 

ions. Some o f these ions will be on trapped orbits when the substorm ends, and others 

will drift toward the sunward magnetopause on 'open' paths. The trapped ions add to  the 

ring current and may amplify Pci or be lost via charge exchange (the dominant loss 

mechanism; see Nishida, 1978). The open drift times may last from approximately one to 

perhaps twenty hours before the particle is lost at the magnetopause, depending on the
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initial energy and pitch angle (Ejiri 1978; Ejiri et al., 1980; Mcllwain 1972; DeForest & 

Mcllwain, 1971).

Hence, it is reasonable to look at AE values prior to the Pcl/2  event for indications of 

substorms. The AE values for 1-51 hours before each P cl/2  segment were selected, and 

distributions were formed for each hourly offset. These distributions were compared to 

the respective seasonal AE distribution with a %2 test, and the value of chi-square was 

plotted vs. offset before the Pcl/2  segments. AE values about 16 hours before the Pcl/2 

segments were distributed differently from the December seasonal reference. However, 

the reason was an excess of Pcl/2 segments during AE in the 0-50 nT range, compared 

to the number one would expect from the December reference. For either season, it was 

generally true that differences detected by the chi-square test were due to excesses in the 

number of Pcl/2  hours during AE values o f  150 nT or less.

AE of 150 nT represents a relatively quiet level and also indicates that the auroral zone 

has retreated poleward (Akasofu 1973, Lui 1976). Possibly the convection electric field 

during these low AE values is appropriate for convection o f ions that can resonate with 

Pcl/2. Otherwise there is no clear relation o f substorm activity to the production of Pcl/2 

as there is for Pci, since Pcl/2 may be produced during a variety of AE values, with no 

preference relative to the seasonal AE pattern.

The method o f selecting AE values the same number of hours before each event is a good 

first step because Pcl/2 amplification by ion-cyclotron resonance requires ions of similar 

energy and pitch angle distributions every time. However, if  the Pcl/2  are amplified by 

substorm-injected ions, there may be a range of delay times between the substorm and the 

beginning of the Pcl/2. The time it takes for the ions to drift sunward into the postnoon 

sector depends on the convection electric field, which may increase and decrease
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irregularly, depending on the level of solar wind-magnetosphere coupling; and the ion 

pitch angles and energies.

Other complications are ignored by this method. For example, the substorms might not 

last the same time as the events they may ultimately produce. That could hide a substorm- 

Pcl/2  relation from the method used here, because a range of AE values, from substorm 

to quiet time, could occur over the timespan of one event.

The fact that Pcl/2 can occur in the absence of substorms demonstrates the importance of 

ion convection during magnetically quiet times. The ions may be injected from the plasma 

sheet into a sunward drift inside the magnetosphere during substorms. However, some 

of the convection toward the postnoon sector may take place under quieter conditions 

(Kamide, 1988).

It might be possible to keep track of the convection electric field using the work o f Reiff 

et al. (1981), who found a correlation of the polar cap potential with IMF parameters in 

the expression: VswB2sir^(Q/2). If it is assumed that most of the ions are injected by 

substorm, it might be possible to identify the plasma sheet as the source by following the 

magnitude of the convection electric field between a substorm and the beginning of an 

event.

The latitude dependence of the Pcl/2 (Figure 7-13) that suggests a source region between 

the auroral zone and the plasmapause L-shells, plus the lack of a direct energy input in the 

form of solar wind pressure or IMF orientation (reconnection), all indicate that the waves 

are amplified within the magnetosphere. Although AE and Dst studies show no direct link 

between Pcl/2  and magnetospheric ion convection, the possibility is by no means 

eliminated.
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Kp During Pcl/2

A third indication o f magnetic activity is the Kp index. This is a planetary-scale index that 

is sensitive to auroral zone electrojets, field-aligned currents and the ring current (Kelley, 

1989) because it is calculated from mid-latitude stations. There are 13 stations between 

46°-63° north and south geomagnetic latitude. Eleven of those are in the northern 

hemisphere (Monthly Summary of Geomagnetic Activity, Jan., 1986).

Kp comes from a compilation of K indices at each station. The K  value at a given station 

is the largest excursion in the H component from maximum to minimum amplitude 

during a three hour period (Mayaud 1980, Rostoker 1972, Kelley, 1989), after first 

eliminating the Sr daily variation. Sr  magnetic variations are due to tidal motions of 

neutral wind that produce currents by vxB dynamo action in the dayside ionosphere 

(Nishida, 1978). These current systems are stably localized with respect to the Sun 

(Mayaud 1980) and produce a regular magnetic variation best observed in quiet times. 

Rostoker (1972) describes the method used to remove their contribution.

The K range at each station has nine steps. The excursion at the ninth step is chosen to be 

100 times as much as for the zeroth step (Rostoker, 1972). Since the activity varies with 

latitude, a K  step at one latitude can be different range in nanoTesla than the same K step 

at another latitude (Mayaud 1980). Moreover, the K steps themselves are not uniform at a 

given station. Mayaud (1980) points out that the K  steps are ordinal, and they could be 

represented equally well by non-numerical characters. The K indices are converted to Ks, 

a process that removes seasonal and diurnal variations, and divides each K step into three 

parts (Rostoker 1972, Mayaud 1980). The Ks indices from all stations are then averaged 

to give the Kp index for the three hour period.

Some charcteristics of Kp are worth noting. The fact that Kp is a measure of the most 

extreme variation in the H component in a three hour period means that three hours of
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great activity can be equivalent to a single large variation during the period. This makes it 

difficult to estimate the timescale of the Kp index for purposes of comparison to Pcl/2  

events. Also, the Kp index has limited sensitivity to substorms above the auroral zone 

(Rostoker 1972). When Kp does increase, it may be due to increased auroral electrojet 

magnitude, or to the approach of the electrojet as the auroral oval expands equatorward 

during the substorm (Akasofu & Chapman, 1963).

An association of Kp and the occurrence of Pcl/2 was noted by OV Bolshakova et al. 

(1980). The Kp values at the time o f the events were the lowest for Pcl/2 at the highest 

latitude stations, and vice versa. They concluded that the Pcl/2  were produced in the 

magnetosheath on field lines crossing the sheath and the dayside cusp. The Kp relation 

was consistent with the idea that equatorward movement o f the auroral oval during 

magnetic activity would bring the Pcl/2  source closer to the low-latitude stations. They 

expected no conjugate events because these field line are not conjugate to both 

hemispheres.

The Kp distributions for the Pcl/2  used in these associative studies are similar for all 

three stations. Kp values for the start times of the Pcl/2 that satisfy the 45 minute criteria 

are plotted in Figure 1-21 a. Only one value of Kp was selected for each event, regardless 

of event length. The distributions are the same for all three stations, with approximately 

40% chance o f exceeding chi-square.

If all Pcl/2 are used for Kp selection, however, including those <45 minutes long, the 

inverse Kp vs. latitude relation reported by Bolshakova (1980) seems to be reproduced 

here (Figure 1-21V). There are more Pcl/2 during active times (Kp>2„), and fewer during 

quiet times, at Siple than at the high latitude stations. A comparison of either high latitude 

station to Siple results in a difference so great that there is less than a 0.5% chance of 

exceeding chi-square. This development is mostly due to changes in the Kp distribution
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at Siple, the low-latitude station, after the length criterion is applied. This suggests that 

event length is an important part of such a relation, not the polar cusp latitude.

Although Bolshakova et al. (1980) anticipated no conjugacy for Pcl/2 , this study shows 

that up to 18% of Pcl/2 at South Pole and Sondre Stromfjord are seen in any month at 

both simultaneously (see Figure 7-1 lb). Of course, if the Pcl/2 source is near the cusp, 

this could be simply due to ion-cyclotron interactions in the magnetosheath, near both 

cusps simultaneously. The longest common-station event was seen near an equinox 

(3/30/86) at all three for 10 hours and 20 minutes, so this might be possible. However, 

the post-noon occurrence peak, without a By dependence, makes a cusp source unlikely. 

This suggests the source is on closed field lines, and that simultaneous observations in 

both hemispheres are of waves from one source region.

DMSP F7 Coincident Measurements of the Auroral Oval

To examine the possibility that the cusp/cleft region moves equatorward when a lower 

latitude station observes Pcl/2, DMSP data for selected events was reviewed. This 

provided an identification of the plasma mantle and low-latitude boundary layer latitudinal 

boundaries.

The DMSP F7 satellitewas in a sun-synchronous orbit (1030-2230 MLT plane) with an 

orbital inclination of 98.3° (Brautigam et al., 1991). Electrons and ions from 32 eV to 30 

keV are measured by electrostatic analyzers in the SSJ/4 package on the spacecraft 

(Newell & Meng, 1989). The orbit is nearly circular; always within 15 km of 835 km 

(Newell et al., 1991).

On each orbit, the cusp, cleft, low latitude boundary layer, plasma sheet boundary layer 

and central plasma sheet have been identified with a neural network. The identification is
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estimated to be most reliable near noon and midnight (Newell 1990, and 1991). 

Distinctions between the cusp and cleft are described in Newell & Meng (1989). The 

mantle features are described in Newell et al. (1991). All these identifications are 

available in a public database, which is accessible via SPAN, as described in Newell et 

al. (1991). Information with each identification includes: average energy flux 

(ergs/cntfs), averaged over an assumed n  radians (online help file), average ion and 

electron energies (all averaged over the time spent in a region), magnetic local times of the 

detections of each region and magnetic latitudes of the region boundaries.

The best cusp-observing times for DMSP F7 were 10-14 UT (Newell, p.c., 1991). 

DMSP overflights o f Sondre Stromfjord were the most likely of all three stations; mostly 

near 1000 MLT. Table 7-2 presents selected Pcl/2 events for which DMSP coincident 

measurements were available and the average energies for the LLBL agreed with Newell 

& Meng's (1989) definition. Pcl/2  events that began before 1400 UT and lasted more 

than three hours were chosen for possible DMSP conjugate measurements. Note that six 

out o f the 10 turned out to be on international quiet days, and one on an international 

disturbed day. This is an example of the variety of conditions in which Pcl/2 may occur. 

All three events with LLBL measurements put Sondre Stromijord (gm lat 74.1°) below 

the equatorward edge of the LLBL, well below the cleft.
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Table 7-2 DMSP F7 Measurements During Pcl/2 Events

LLBL M antle "Plasm a Approx DM SP SS

Date SS SP Siple E l Eq-Edge Sheet BL" UT MLT MLT

(UT) (UT) (U D Edge (deg) Eq-Edge (± lm in) (hours) (hours)

(* g )

3/20 0955- 0950- 1005- 79.1 79.6 76.9 1045 10.0 9.2

2130 1900 1930

7/15 0750- 0915- 1005- 81.2 79.1 1134 9.6 10.0

2120 fl825 1400

9/22 1220- 1250- 1250- 80.6 77.8 1145 9.9 10.2

2235 2230 2235

10/7 1015- 1025- 1015- 79.0 77.2 1142 10.1 10.2

1530 1515 1510

10/8 0945- 1605- 1635- 78.7 75.7 1122 10.2 9.8

1900 2055 2105

4/12 1050- pl645- -79.0 1036 8.8

2200 2245

79.3 74.9 1123 10.0 9.8

5/5 1105- 76.7 75.3 1200 9.8 10.5

1800

6/27 1320- -75.8 1331 11.7

1610

10/30 1140- pl250- 75.8 77.1 74.5 1218 10.2 10.8

1710 1410

SP

MLT

(hours)

7.1

10.0
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11/21 1120- p l215- 79.4 77.3 1136 10.3 10.1

1515 1440

A comparison of some cases in Table 7-2 shows that the Pcl/2  source may not be 

associated with the cusp/cleft position. The first case was on a disturbed day (6/27/86), 

where Kp was 5+ and 5- during the event. The LLBL location is from a southern 

hemisphere measurement, so this case has no reliable northern hemisphere LLBL 

position. Also, there is a 1.7 hour difference between the DMSP and South Pole 

longitudes. However, it is not surprising that the auroral zone was at a  low latitude 

(-75.8°) on a disturbed day. The Pcl/2 event was not seen at either southern hemisphere 

station, despite the relatively low latitude of the auroral oval in the southern hemisphere. 

Since this was during local winter for South Pole and Siple, the seasonal blocking 

mechanism may be in operation.

Another case in Table 7-2 shows a near-equinox event (10/30/86) during a low latitude 

oval. This was seen at Sondre Stromfjord, possibly at South Pole, but not at Siple. The 

seasonal mechanism is less likely to be in operation here than in the disturbed case. In 

addition, the Kp value was 2o for this event, although the LLBL location in the northern

hemisphere for this event is the same as in the southern hemisphere before (75.8°). This 

suggests that Kp is not always a good indicator of the auroral zone location.

In neither of these two cases were the Pcl/2 seen at Siple, even though DMSP indicated a 

low auroral zone. In the third example from Table 7-2, the Pcl/2  was on 3/20/86, again 

near an equinox. It was seen at all three stations, but the LLBL equatorward edge was at 

79.1°, well above Sondre Stromfjord (74.1°).
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Four other events in Table 7-2 have no LLBL determination. However, they do show 

three-station commonality when the mantle's equatorward edge is within 0.9° of where it 

was during the 3/20 event, in which the LLBL was well above Sondre Stromfjord at 

79.1°. There are not enough cases in Table 7-2 to do a convincing statistical study, but 

there are enough to doubt a simple link between the latitude of the auroral oval and the 

observation of Pcl/2 on the ground.

Discussion

The Pcl/2 appear to be amplified within the magnetosphere. South Pole-Siple common 

observations suggest the region is at L-shells between the plasmapause and the auroral 

zone. The clear division in the data at approximately 0.4 Hz (Figure 7-1), and the 

different qualities of waves above and below this frequency suggest that the two 

populations originate from a different source. Waves above and below 0.4 Hz are 

distinguished from each other by event length, diurnal and seasonal occurrence. The 

South Pole-Siple observations suggest that the waves above 0.4 Hz come from 

plasmapause region L-shells, while the Pcl/2  come from a region between the 

plasmapause and the boundary layer. If the clear frequency division in the ground data, 

plus the sharp frequency bounds o f the Pcl/2 spectra, are due to the presence of He+ at 

the equator, then the region near L=7 is favored for Pcl/2  wave growth. A small DMSP 

study also indicates a source region inside the magnetosphere, since Sondre Stromfjord 

was placed well below the cleft as determined by the authors of the DMSP F7 database. 

Additionally, the lack of a direct connection between the occurrence of Pcl/2 and solar 

wind pressure or IMF orientation suggest that the source of wave amplification is the ion 

population that convects sunward within the magnetosphere to the afternoon sector.
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The postnoon sector of the magnetosphere might be a source for Pcl/2  because ions of 

suitable pitch angles are there, along with cold He that can affect wave growth in this 

band. These ions convect into that region from the plasma sheet. Sibeck, et al.(1987) 

discussed convection patterns in the magnetosphere in the following way. If the 

magnetospheric field were a dipole, all particles would follow circular paths at constant 

radial distances from the Earth. However, the magnetopause currents, induced by solar 

wind flow past the magnetosphere, and cross-tail plasma sheet currents distort the field 

so that the dayside magnetic field strength is greater than on the nightside at the same 

radial distance. Particles trapped at the equator follow contours of constant equatorial 

magnetic field strength to maintain the first adiabatic invariant (mvx2/2Bo). This moves 

them radially outward when drifting from midnight to noon. Particles of lower pitch 

angles drift around Earth in more nearly circular orbits, and do not follow contours of 

constant equatorial B. This is drift shell splitting (see also Roederer, 1970). In the 

dayside magnetosphere, particles at large L with 90° degree pitch angles are more likely to 

intercept the magnetopause than particles with lower pitch angles. The ions would be lost 

to the magnetosheath at the postnoon magnetopause, and electrons go out at the prenoon 

magnetopause.

Ejiri (1978) shows calculated particle trajectories in the equatorial plane. For a given 

energy in one example, the ions with larger magnetic moments (mvx2/2Bo) generally 

drifted toward the duskside as they convected from the plasma sheet sunward on open 

drift paths. In another example, ions with 90° pitch angles and large energy (and magnetic 

moment) generally drifted to the duskside. Even if  they start from the same place, the 

exact paths depend on the energy and pitch angle o f the ions (Ejiri, 1978).

Takahashi & Iyemori (1989) simulated particle drifts for Kp=4 in the magnetosphere.

They showed the convection flow for 30° and 90° pitch angle, 10 keV ions as they drifted 

from the nightside, at 13 RE, sunward past the Earth on the dusk side. The flow of the 90°
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(initial) pitch angle particles converged farther from the Earth than the flow of the 30° 

particles. A simulation o f particles with initial pitch angles of 60°, and two energies, 5 

and 10 keV, showed a flow convergence o f  the lower energy particles closer to the Earth 

than the more energetic particles.

One might conclude that the tendency for ions with large pitch angles to separate outward 

from those with small pitch angles in the post-noon sector would lead to anisotropic pitch 

angle distributions, suitable for wavegrowth, at large distances from the Earth.

Moreover, beyond 3 RE, gradient and curvature drift velocities are higher on the nightside 

than the dayside.(Roederer, 1970; see also Takahashi & Iyemori, 1989). This would 

suggest that energetic, large pitch angle ions ions, ideal for wavegrowth, would spend 

the most time in the outer afternoon sector.

Roux et al., (1982), using GEOS 1 and 2, found that cold He+ (<110 eV) is concentrated 

in the postnoon sector, along with the maximum occurrence of waves below the He+ 

gyrofrequency. This cold He+ may come from the ionosphere, drawn out by the 

postnoon aurora. Evans (1985), using the TIROS/NOAA satellites, reported a region of 

persistent energy flux o f electrons of less than 3 keV in the 75-80° invariant latitude 

range, particularly for 14-16 MLT during low magnetic activity.

Anderson et al. (1990) calculated the logarithmic derivatives (91nSm/9X) of the maximum  

convective growth rate Sm with respect to X: the magnetic field magnitude, hot and cold 

proton density, hot proton perpendicular temperature and anisotropy (A = Tj/T|| -1).

This was done using the expression from Kozyra et al. (1984) for a pure proton plasma. 

They show that the growth rate is more sensitive to magnetic field magnitude (inversely) 

and anisotropy than hot o r cold plasma density, or even Tj.. This means that equatorial 

regions and regions far from the Earth are favored as wavegrowth sites. It may be
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necessary to include cold He+ in such a calculation, however, since satellite and this 

ground-based study indicate that it is clearly present.

The seasonal occurrence pattern o f the Pcl/2 may be due to the distortion in the Earth's 

magnetic field as the rotation axis inclines toward the Sun. An asymmetric pattern of hot 

proton anisotropy relative to the magnetic equator might develop. This could favor 

wavegrowth in the summer hemisphere below the He+ gyrofrequency. The cold He+ may 

play a role in blocking the Pcl/2 from the winter hemisphere, either by reflecting or 

absorbing the Pcl/2, depending on the magnetic field magnitude in the wavegrowth 

region compared to the region of cold He'h concentration.

The presence of He+ in the magnetosphere can block Pci from high latitudes and distant 

parts of the magnetosphere from reaching the ground. This study strongly suggests the 

role of He+ by the clear division at 0.4 Hz in the wave data. No previous study has 

shown this clear division, nor the fact that the strong diurnal pattern is in the waves 

below this frequency. Thewaves above this division come from latitudes near the 

plasmapause, while the Pcl/2 come from further out in the magnetosphere+.

For ground observations, He+ prevents the use o f Pci micropulsations as a reliable 

diagnostic tool for the outer magnetosphere. Pcl/2  waves seem to be the best probe of 

that region, because o f their low frequency compared to the He+ gyrofrequency. This 

study shows that as a diagnostic, Pcl/2  waves signal the presence of energetic ions in the 

afternoon sector, between the plasmapause and the boundary layer. These ions are at least 

as far away as L=6, and may spread over the entire dayside. They have probably drifted 

sunward from the plasmasheet, since no direct solar wind connection to Pcl/2  waves has 

been found in this large sample study.
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Conclusions

1. A natural frequency division at approximately 0.4 Hz exists in the ground data from 

three high latitude stations. Below this frequency, in the Pcl/2 band, the diurnal 

distribution, the event length distribution, and seasonal occurrence is considerably 

different from the Pci band above.

2. The Pcl/2 source region is centered in the postnoon sector of the magnetosphere. The 

diurnal occurrence pattern is not a consequence of sunlight effects on the ionosphere.

3. South Pole (auroral zone) and Siple (plasmapause) observations of Pcl/2  indicate a 

source region at radial distances between the plasmapause and the auroral zone. They 

also indicate that the Pci observed on the ground, above 0.4 Hz, comes primarily 

from plasmapause latitudes.

4. He+ ions appear to keep waves from the distant dayside magnetosphere from reaching 

the ground if they were amplified above the local He+ gyrofrequency there. Anderson, 

et al. (1990) found that Pci are about four times more common beyond L=7 than for 

L < 6, and occur primarily in the afternoon. In the outer region, waves above the local 

He+ gyrofrequency are the most common (Anderson, 1989). If He+ ions along the 

magnetic field path to the ground were not blocking these waves, the South Pole-Siple 

Pci (0.4 Hz) observation pattern would be reversed. Pci would be seen at South Pole 

alone more often than at Siple alone, since South Pole is closer to the L=7-9 region 

than Siple.

5. The characteristic nanow-band spectrum of the Pcl/2 events, with a typical upper 

frequency of 0.3 - 0.4 Hz, suggests the presence of He+ ions at the wavegrowth site. 

Heavy ion-modulated wavegrowth is also suggested by the persistence of the narrow

band spectrum for up to 17 hours, through changing magnetospheric and solar wind
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conditions. Such narrow band resonance in a pure proton plasma with monochromatic 

waves seems unlikely for such long periods o f time, under such changing conditions. 

If He+ ions are present, and wavegrowth occurs below the He+ gyrofrequency, as 

suggested by Kozyra (1984), the wavegrowth region is at least as far away as L=6. 

This agrees with the simple radial estimate from the South Pole-Siple observations 

above.

6. There is no direct solar wind connection to Pcl/2  occurrence that may be expressed by 

hourly averaged values o f solar wind parameters. This suggests an energy source 

inside the magnetosphere. It has been found that Pcl/2 may occur in quiet times, as 

described by the AE, Kp and Dst indices. This, plus the afternoon sector wavegrowth 

region, is consistent with sunward-convecting plasma sheet ions as the energy source 

(as suggested by Kaye & Kivelson, 1979, and Anderson et al., 1990).
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Figure 7-1. (Top) The waves above and below 0.4 Hz display different diurnal patterns. All the events in 
this survey from Sondre Stromfjord have been superimposed in a wave-frequency vs. time of day plot 
The frequency steps are increments of 0.1 Hz. Magnetic noon for Sondre Stromfjord is 1330 UT. Note 
the post-magnetic noon occurrence peak below 0.4 Hz.

(Bottom) The 0.1-0.4 Hz band (Pcl/2) are plotted in local magnetic time for all three stations in the 
study, l i ie  presence of the diurnal pattern at South Pole, which has no solar day, indicates a 
magnetospheric afternoon source region. It rules out propagation effects due to sunlight on the ionosphere 
as the cause of the diurnal pattern.
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Figure 7-2 (top) The unstructured events at South Pole are displayed by frequency and time of day as in 
Figure la. Note the different maximum grayscale values for each plot. Local magnetic noon at South 
Pole is 1530 UT.
(left) Siple unstructured events; the 0.1-0.4 Hz band again has a strong postnoon peak. Local magnetic 
noon is 1700 UT.
(right) McMurdo also displays the diurnal pattern. Local magnetic noon is approximately 1900 UT. 
McMurdo has a geomagnetic latitude o f -80°, well within the polar cap (open field lines).
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Figure 7-3. (top) The diurnal occurrence of Pcl/2 at Sondre Stromfjord is shown for each month of 
1986. The time scale is UT, and local magnetic noon at Sondre Stromfjord is 1330 UT. The post- 
magnetic noon peak persists throughout the year, but most Pcl/2 appear in local summer.

(middle) The South Pole Pcl/2 are shown. Local magnetic noon is 1S30 UT, and an afternoon peak 
appears at this station with no solar day.

(bottom) Siple Pcl/2  also have a peak occurrence in the afternoon. Local magnetic noon is 1700 UT. No 
data were available at Siple until after 2/12/86.
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Pc2 Events in Local Magnetic Time

80 t

0 2 4 6 8 10 12 14 16 18 20 22

Pcl/2  "Some Str" Events in Local Magnetic Time

0 2 4 6 8 10 12 14 16 18 20 22

Narrow-Band (0.1 Hz) Pcl/2  in Local Magnetic Time

70 j  

6 0 - -  
5 0 - -  

Q 40-■  
1 3 0 - -  

y 2 0 - -  

10 - -

0 2 4 6 8 10 12 14 16 18 20 22

Local Magnetic Time (bin 1.1. shown)

—  Siple —  SP —  SS

Figure 7-4. a) (top) Unstructured Pc2 diurnal occurrence at all three stations, in local magnetic time. The 
horizontal axis is divided into 20 minute segments, and the vertical axis is the number of times Pc2 were 
seen during 1986 at any given time. Their peaks have narrower local time spans than Pcl/2 overall.
b) (middle) Diurnal pattern of events in the Pcl/2 band that have some structured elements as a minor part 
of the event. These occur somewhat more in noon and prenoon hours than the Pcl/2 band as a whole.
c) (bottom) Diurnal pattern o f the narrow-band (0.1 Hz wide) subset of the Pcl/2  band. Their afternoon 
spread is less than for Pcl/2 overall.
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AH Events >0.4 Hz in Local Magnetic Time
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Figure 7-5. a) (top) All events above 0.4 Hz, structured or not, are presented in local magnetic time as 
in Figure 4. The diurnal pattern is quite different from that of the Pcl/2 band
b) (middle) The diurnal pattern of unstructured events shows a noon and prenoon peak occurrence.
c) (bottom) Note the larger number of structured events at the low-latitude station (Siple), relative to 
either higher latitude station.
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Duration vs. Mid-Event Tim e for Siple P cl/2
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Figure 7-6. a) (top) Each Pcl/2 (unstructured events in the 0.1-0.4 Hz band) event is plotted by mid
event time (horizontal axis, in UT) and length in minutes (vertical axis). Local magnetic noon at 
Siple is 1700 UT, and most events cluster in the region after that time.

b) (middle) South Pole Pcl/2 have a somewhat more distinct postnoon peak occurrence than Siple. Local 
magnetic noon is 1530 UT at South Pole. There is no solar day at South Pole to account for this 
pattern.

c) (bottom) Pcl/2 at Sondre Stromfjord are the longest at any o f the three stations. Note the vertical axis 
length scale difference in the plots. The longest Sondre Stromfjord event was approximately 17 hours.
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Figure 7-7. This Sondre Stromfjord Pcl/2 (indicated by an arrow) is one of the longest observed during 
1986 at any o f the three stations. The panels are each six hours long. The event runs from 0700 to 2400 
UT at approximately 0.25 Hz. Note the narrow-band (£0.2 Hz) nature throughout The solar wind 
pressure went from 2.6 to 6.2 xlO*1 dynes/cm2. The IMF Bz component turned southward, then 
northward, twice. Magnetic indices Kp, AE and Dst are all consistent with magnetically quiet times. 
Another Pcl/2 extends from 0600 to 1100 UT, rising in frequency. This could indicate an earthward 
motion of the cyclotron resonance region.
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Siple P cl/2  Events: Length vs. Month
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Figure 7-8. a) (top) Event length by month of 1986 is shown for Siple. None o f January and only half 
of February was available for Siple, but the local summer months generally have the longest Pcl/2.
b) (middle) The seasonal maximum length pattern is clearer at South Pole.
c) (bottom) The Sondre Stromfjord Pcl/2 are the longest in the summer as well. Note the scale 
difference for event length in this plot
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Siple Cumulative Event Length Distribution
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Figure 7-9. a) (top) Cumulative length distributions are shown for waves above and below 0.4 Hz. All 
those below 0.4 Hz are unstructured (Pcl/2). The vertical axis is the fraction o f events that are up to or 
equal to the length on the horizontal axis.
b) (middle) South Pole events below 0.4 Hz are similar in length distribution to Siple, but the higher 
frequency events are shorter than those at Siple.
c) (bottom) Sondre Stromfjord length distributions are the most extreme o f any station. Event lengths 
for waves above 0.4 Hz are similar to those at South Pole, but those below 0.4 Hz are longer than at any 
station.



167

SP after Siple 
150 T

100 ■ ■

Difference in Onset at SS, 
SP & Siple for P cl/2  
Common to All Three

SS before SP 

I----------- h
-200 -150 *100 -50

-Oi-
100

SS after SP 

 1
150 200

\ This event was seen 
first at SS, then SP, 

then Siple

-100 ■ ■

-150 *
SP before Siple

y
T his was seen at SS 120 m in after 
SP, and at Siple 125 m in after SP

Difference in Onset at SP and Siple for Pcl/2 Common to
Both

SP After

Difference 

in Onset 
(minutes)

SP before 

Siple

100

50

O o

-50

100.
points spread along horizontal 

axis for clarity-150

Figure 7-10. a) (top) The time delays between pairs of stations during Pcl/2 common to all three 
stations is shown. The vertical axis compares South Pole to Siple onset times, and the horizontal axis 
compares Sondre Stromfjord to South Pole. Most events occur with less than 40 minutes between any 
pair of stations. No systematic pattern exists that would suggest a localized cusp region source, as 
suggested by Bolshakova et al. (1980).

b) (bottom) Differences in onset times for Pcl/2 seen at both Antarctic stations indicate that there is no 
preference for the station that leads in longitude (South Pole) to see the events first
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Monthly SP-SS >0.4 Hz Distribution

I I

1 2 3 4 5 6 7 8 9 10 11 12

E S S  only □  SP only 11 SP-SS

Monthly SP-SS Pcl/2 Distribution

1 2 3 4 5 6 7 8 9 10 11 12

Month

H  SS only □  SP only H  SP-SS

Figure 7-11. a) (top) The fraction of events above 0.4 Hz seen in each month at South Pole alone, 
Sondre Stromfjord alone, or at both simultaneously. The waves above 0.4 Hz are more common at the 
local winter station.

b) (bottom) The same as above, but for the Pcl/2 band (0.1-0.4 Hz). These waves are more common at 
the local summer station; the opposite seasonal pattern from those above 0.4 Hz. This suggests that the 
presence of He+ at high latitudes.



169

Monthly SP-SS >0.4 Hz Distribution
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Figure 7-12. Events at South Pole and Sondre Stromfjord are presented by month, as in Figure 11, but 
in terms of event counts instead of fractions.
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Figure 7-13a. a) (top): The fraction o f events above 0.4 Hz seen in each month at South Pole alone, 
Siple alone, or at both simultaneously. These events are mostly at Siple alone or with South Pole, 
suggesting a source closer to Siple. At L=4.3, Siple is near the plasmapause. South Pole is near the 
auroral zone on the dayside. The Pci at high latitudes (Anderson, 1989,1990; Erlandson 1990) seem to
be blocked from reaching the ground, probably by the presence o f  He+, which has a gyrofrequency of 0.4 
Hz near geosynchronous orbit (see also Perraut 1984).

b) (bottom) The same as above, but for waves in the Pcl/2 (0.1-0.4 Hz) band. The source for these 
clearly has better independent access to both stations and may be located between their L shells.



171

Monthly SP-Siple >0.4 Hz Distribution
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Figure 7-14. Events at South Pole and Siple are presented by month, as in Figure 7-13, but in terms of 
event counts instead of fractions.
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He+ G yrofrequency  vs. L  (T89)
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Figure 7-15. The He+ gyrofrequency at the magnetic equator was calculated with the T89 Tsyganenko 
magnetic field model and plotted vs. L-shell. The gyrofrequency approaches the 0.3-0.S Hz range at 
L=6-9, and the slope flattens there. The presence of He+ at the equator, near the amplification site, may 
provide the sharp upper frequency bound that is typical of Pcl/2 events. He+ along field lines may also 
reflect waves above 0.4 Hz that were amplified near the equator at these high L-shells.

IM P8 IM F & P ressu re  M easurem ents by M onth
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Figure 7-16. The number o f hourly IMF and solar wind dynamic pressure measurements by IMP8 are 
plotted by month for 1986. Southern summer months, when Pcl/2 are most common there, are 
somewhat underrepresented.
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Solar W ind  P ressu re  A veraged O ver P c l/2  Events
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Figure 7-17. The dynamic solar wind pressure, averaged over Pcl/2 events, is similar to the distribution 
of 1986IMP8 measurements. The relatively small number of Pcl/2 with pressures in the range 
1.5-2.0 xlO-8 dynes/cm2 is not enough to create a significant departure finom the IMP8 reference. This 
suggests that solar wind pressure is not a sufficient condition for Pcl/2 amplification.
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Figure 7-18. The solar wind pressures during the first full hour o f Pcl/2 at the three stations are also 
similar to the 1986IMP8 distribution. More Siple Pcl/2 occurred during pressures o f  4.0 to 5.0 than the 
1MP8 distribution would have predicted. This maikes the Siple first hour pressure distribution different 
from IMP8 with borderline significance.
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Cone Half-Angles Between the IMF and Ygsm for Pcl/2
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Figure 7-19. (top) The cone angles between the IMF and the YgSm axis during Pcl/2 at the three 
stations are plotted, together with the IMP8 IMF-to-Y measurements during 1986. The distributions from 
all the stations are similar to that of IMP8, with at least a 4% chance o f  exceeding chi-square. The Y 
component of the IMF has an influence on the symmetry of convection in the magnetosphere, so an 
association of Pcl/2 with a polarity of By could have explained the postnoon occurrence.

(bottom) The cone angles between the IMF and the X axis also follow the 1986IMP8 cone angle 
distribution. Small cone angles have been associated with Pc3 and Pc4 waves directly transmitted into the 
magnetosphere (Nishida, 1978; Engebretson et al., 1991), and earthward-pointing IMF with increased 
magnetic activity in the magnetosphere, particularly when accompanied by a southward component 
(Schatten & Wilcox, 1967).
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IM F  Bz for P c l/2  Event H ours
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Figure 7-20. The Bz values during Pcl/2 are distinct from the 1986IMP8 measurements by a chi-square 
test, but centroids of all these peaks agree within one standard deviation (1 nT). There is no preference for 
negative or positive Bz compared to the IMP8 average for 1986. The 1986IMP8 average Bz is +0.3 nT 
over 3618 hourly measurements.
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Figure 7-21. The cone angles between the IMF and the X and Y axes are plotted seasonally for Sondre 
Stromfjord Pcl/2 event hours. The IMF scatter in the XY plane covers the same angle space in both 
seasons, so the X and Y components of the IMF do not explain the seasonal occurrence of the Pcl/2. 
Note the Parker Spiral in this Figure, where most IMF directions in the XY plane are Westward-Sunward 
or Eastward-Earthward.
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AE Response to IMF Bz 
(1/17/86 hr 9 - 1/18/86 hr 4, including hr 0)
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Figure 7-22. This is an example of how the magnetosphere responds to a southward-turning of the IMF. 
The AE index follows the auroral electrojet intensity, which increases during substorm activity. It is 
divided by 100 for scaling purposes. The z component of the IMF as measured by IMP8 is also plotted. 
Both quantities are hourly averaged values from the same databases as the AE and IMF used elsewhere in 
this work. The extended period of northward IMF (10-16 UT) is accompanied by a relatively quiet 
electrojet After the southward-turning o f the IMF near 17 UT, the electrojet intensity increases, 
indicating substorm activity in progress. The typical lag o f AE response behind the southward-turning of 
the IMF is approximately one hour (see text).
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SW Pressure and Dst Simultaneously Measured 
in 1986
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Figure 7-23. (top) The solar wind pressure and Dst values are plotted for 1986 whenever both were 
available. Above Dst=0, increased pressure is associated with more positive Dst 'Compression' of the 
magnetosphere, or increased magnetopause currents due to enhanced solar wind pressure, adds to the field 
o f the Earth, producing positive Dst Negative values are from an enhanced ring current, whose magnetic 
field subtracts from that of the Earth at its surface.

(bottom) Dst and solar wind pressures during Pcl/2 observed at Sondre Stromfjord appear to be similar 
to the 1986 distribution. The Dst values during Pcl/2 do not extend to the extremes of the 1986 Dst and 
have no preference for large negative storm values. There is also no indication that Pcl/2 are being 
amplified during the storm recovery phase.
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Dst for Pcl/2 Hours During June Sol +-45 Days
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Figure 7-24. (top) Dst values during Pcl/2 hours in the June solstice season are typical of magnetically 
quiet times, or high solar wind pressures. They are sigificantly different from the seasonal Dst reference. 
High pressure is an unlikely explanation, though, because the Dst distributions for Pcl/2 shift toward 
negative values in the December solstice, yet there was no seasonal difference in solar wind pressures.

(bottom) Dst during the December solstice season Pcl/2 are consistent with the seasonal Dst reference, 
and no preference exists for storm-time conditions.
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Chi-Square for Offset-Dst vs June Sol Dst Model 
for Hours Before SS Pcl/2
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Figure 7-25. (top) To see if  Pcl/2 occurred during the recovery phase of stoims, the Dst at the time of 
the Pcl/2, as well as those in the hours before, were selected. At each time before the Pcl/2, the 
distribution of Dst values were compared to the June solstice Dst reference. The similarity was 
characterized by the chi-square statistic. Small values indicate close similarity, and this means there is no 
association of Pcl/2 with storm time Dst, since most Dst values during the June solstice were not at 
storm levels.

Large chi-square values indicate significant differences between the distributions. This happens at 0 ,8  
and 40 hours before the Pcl/2, because the Dst values at those times were even more positive than those 
of the June solstice (see the previous figure). Chi-square values above the 99% confidence level indicate a 
significant difference between the two distributions under comparison. Except for 136 hours before, there 
were no large chi-square values due to storm levels of Dst prior to Pcl/2. The distribution for 136 hours 
before is shown below, and it shows no convincing preference for storm-time Dst levels. This means 
most Pcl/2  do not appear in the recovery phase.
(bottom) The Dst distribution for 136 hours before the Pcl/2 shows a slight excess in storm levels, 
near -20 nT and below, compared to the June solstice reference.
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AE for Pcl/2 Hours During June Sol +-45 Days
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Figure 7-26. (top) AE values during June solstice (±45 days) Pcl/2 hours have a distribution similar to 
that o f  the seasonal AE reference. The average AE during the "international quietest days" of Januaiy-June 
1986 was 72 nT. It serves as a quiet time standard. Some Pcl/2 occur during substorm AE levels, but no 
more than random selection from the reference distribution would predict

(bottom) The seasonal AE distribution during the December solstice peaks in the 0-50 nT bin, somewhat 
lower than the June solstice case. Note that Sondre Stromfjord follows the seasonal peak from June to 
December, but South Pole does not. Both are at about the same magnetic latitude, however, so the 
difference between South Pole and the June reference may not be significant
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Kp at Start of Pcl/2 >45 Min Long 
(with >= 45 min Data Hour Overlap)
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Figure 7-27 (a) (top) The Kp values at the start of Pcl/2 are compared to the Kp distribution for 1986. 
These Pcl/2 are the set used for the IMF, solar wind pressure, AE and Dst studies. They are at least 45 
minutes long, and they are required to overlap a data or index hour by at least 45 minutes. Kp values were 
selected for them to provide another view of the same events. There is no significant difference among the 
three stations, although there is a weak trend for the low-latitude station to observe Pcl/2  when Kp is 
high.

(b) (bottom) If all Pcl/2 are used for Kp selection, regardless of length, an inverse Kp-latitude relation 
becomes apparent. This was noted by Bolshakova et al (1980). The higher latitude stations see more 
Pcl/2 during low Kp than low-latitude stations, and vice versa. Event length is the only difference 
between the two Figures, and this suggests that short events are associated with higher Kp and lower 
latitudes.
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A ppend ix

The Chi-Square Test

When studying possible associations between the occurrence of Pcl/2 and a solar wind 

parameter or magnetic index, a chi-square test was often used to compare entire 

distributions to each other. One of these was usually some reference, or parent, such as 

all the measured IMF values during 1986. The other distribution was typically the same 

parameter, except during P cl/2  events. The question to be answered in these cases was 

whether or not the distributions were different. If not, then one could say that the values 

during the Pcl/2 were consistent with a random selection from the parent, and had no 

special association with any values of the parent. This is of interest for testing the 

importance of high solar wind pressure or negative Bz to the occurrence of Pcl/2, for 

example.

The chi-square test is appropriate for binned data (Press et al., 1986), and binning was 

often employed to display solar wind and other distributions in an easily visualized 

fashion. For k  terms in each distribution, the chi-square statistic is (Reiff, 1983):

A data point is represented by y i; ej is the corresponding expected value, and ©i is the 

uncertainty associated with each data point. The data points would be parameter values 

during Pcl/2, and the expected values would be those of the parent, such as the 1986

k

(A-l)
i - l
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IMF measurements. If the two distributions are similar, the chi-square statistic will have a 

small value.

When a sample distribution is randomly drawn from a parent distribution, it should have 

the same shape as the parent most of the time. If the parent is normalized by a factor of 

Nsampie/Nparent»to have the same total as the sample, a chi-square comparison of the two 

should result in a small value o f the statistic. Of course, the sample distribution will 

sometimes be so different that it will appear to be drawn from a different parent, and one 

might mistakenly conclude that it is. In these cases, the chi-square statistic will be large. 

The probability of having a large value, assuming the difference is only due to random 

selection, is estimated with the incomplete gamma function, which is (Press, 1986; or 

Mulholland, 1968), using the notation o f Press:

oo
Q(a,x) s  J  e 't1'1 dt ( a > 0 ) , (A-2)

where

oo

r(a )  = f e ^ d t  (A-3)
oJ

and

Q(a,0) = 1

and a = v/2, where v is the number of degrees of freedom; and r = %2 /2 (Mulholland, 

1968). Q(a,x) is the probability of calculating a chi-square value o f x  or more, given 2a 

degrees o f freedom. In the case of binned data, such as a range of IMF Bz in bin steps of 

2 nT, the number of degrees o f freedom is the number of bins, minus the number of
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calculations performed with the data. For example, one degree is subtracted if the parent 

distribution is normalized, as described above, or if  a mean value is calculated from the 

sample and then used as the expected value. Each such calculation "forces" some 

agreement between the two distributions under comparison (Young, 1962). The expected 

value o f the chi-square statistic is equal to the number of degrees of freedom. This is true 

either if  a sample is compared to a parent, or if  both distributions under comparison are in 

fact drawn from the same parent (Dowdy & Wearden, 1983).

The integral Q(a,x) can only describe how such distributions differ. The null hypothesis 

is that the two distributions are randomly drawn from the same parent; a large value of 

chi-square leads to the rejection of that hypothesis. In other words, if an observed 

distribution is compared to a model and the chi-square value is so large that there is less 

than a 1% chance of rinding a larger one through random selection, one might conclude 

that the two distributions are not drawn from the same source. Of course, it is possible 

that they are, but by chance appear very different from each other. In a sense, the 

probability (Q(a,x)) of exceeding the calculated chi-square can be thought of as the 

probability that the two distributions are drawn from the same parent. This probability is 

small for large values of chi-square.

The probability of rinding a chi-square value at least as large as the calculated value x  is 

estimated with Q(a,x), because Q(a,x) does not strictly describe the probability 

distribution of the chi-square statistic. However, it is close for either a large number of 

bins ( » 1 )  or a large number of counts in any bin ( » 1 ,  see Press, 1986). What Q(a,x) 

really represents is the probability of rinding a value o f 2t (see equation 2) at least as 

large as a specified*, where 2r is (Mulholland, 1968, and Press, 1986):

k

(A-3)

i -1
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The terms in the sum are samples from a normal distribution, which is described by the 

probability density:

Specific recommendations on sample sizes were taken from Dowdy & Wearden (1983; 

see also Mulholland, 1968). They note that the probability distribution of the chi-square 

statistic is well approximated by the integrand of Q(a,x) if no expected value is less than 

one, and not more than 20% of the expected values are less than five. These conditions 

were used for all chi-square comparisons here.

The uncertainty of each data point is specified in the denominator of its chi-square term.

If the data are described by Poisson statistics, then a,- = min( Vy? ,1) (Reiff, 1983). If 

the uncertainties in the y; are not known, or all known and are the same for all N  terms in 

the sum, the chi-square statistic is (Reiff, 1983):

where ay  is the uncertainty of the data. It is either the known constant, or else it is 

calculated from:

If two sample distributions are being compared, instead of a sample and a model, the 

denominator becomes the sum of the individual sample variances (Press, 1986; 

Bevington, 1969), because the (y, - z,)2 term in the chi-square statistic involves two 

quantities with uncertainties, instead o f one. This comes from the uncertainty of a 

calculation, which is, for f(y;,z,) = (y,* - z,) (Bevington, 1969; Young, 1962):

g (2jc)1/2
(A-4)

y i - i
(A-5)

N

(A-6)
i • 1
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—  + . . .  (A-7)

so that for a comparison of two sample distributions, such as Kp for Sondre Stromfjord 

Pcl/2  vs. Kp for South Pole Pcl/2, the denominator for each term in the chi-square sum 

would be a z2 + a y2 , assuming no correlation (o ^  = 0). If Poisson statistics apply to the 

data in bin i, then the denominator would be (y,- + z,), since the measured number in a 

bin is assumed to be the average for that bin over repeated samples, and the standard 

deviation for a Poisson distribution with an average of zx is Vz7 = V/Vp,-. In this case, N  is 

the sample size, and p t- = zJN. N  could be the total number of IMF measurements 

during Pcl/2, and p,- the probability of finding Pcl/2 counts in the 2-4 nT bin, for 

example.

Poisson statistics were assumed for all chi-square comparisons. However, the strictly 

correct way to estimate the uncertainty for the counts in each bin is to use binomial 

statistics. There, the uncertainty (standard deviation) is jN p ifli , where p; is the 

probability of finding counts in bin i, and qi = (i - p,). The use of Poisson statistics 

makes computation of the uncertainty simpler. They are used when p,- is small, since 

Poisson statistics are the large IV/small p,- limit of binomial statistics (Young, 1962). The 

uncertainty from a strict binomial calculation is a factor of smaller than a Poisson 

estimate. This factor is no less than about 80% for any of the bins in any comparisons 

canied out here. The use o f Poisson statistics will slightly overestimate the uncertainty 

and underestimate the chi-square statistic in the comparisons of this study. This slightly 

understates the difference between distributions. However, all conclusions remain the 

same, regardless of whether Poisson or binomial statistics are used to estimate the 

uncertainty of the data points, for all solar wind or magnetic index associations with 

Pcl/2  occurrence.
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