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ABSTRACT

DISTANCE FUNCTION CONSTRUCTIONS
IN TOPOLOGICAL SPACES

by

Laurie J. Sawyer
University of New Hampshire, December, 1990

This work i1nvestigates the use of distance function
constructions in the study of semimetrizable spaces, especially
as this relates to developable, K-semimetrizable and 1-
continuously semimetrizable spaces.

A distance function for X i1s a nonnegative, symmetric,
real-valued function d: XxX—R such that d(p,q) = 0 iff p = q.
A distance function d is developable iff, when d(x,,p)—0 and
d(y,,p)—0, then d(x,,y,)—0; and d is a K-distance function iff
whenever d(x,,p)—0, d(y,,q) >0 and d(x,,y,)—0, then p = q.

A topological space (X,7T) is semimetrizable iff there is a
distance function d for X such that, for every A C X, d-cl(A) =
AT. A topological space is developable (resp. K-, 1-continuously)
semimetrizable when d is a developable (resp. K-, 1-continuous)
distance function.

First, we use our approach to prove the classical
metrization theorems. Then, in searching for new results, we
establish characterizations involving sequences of open covers

and diagonal conditions.



Theorem. (X,7) is Hausdorff and developable semimetrizable

iff it 1s a wA-space with a Gg"-diagonal.

Theorem. (X,T) is K-developable semimetrizable iff it 1s a

wA-space with a regular Gg-diagonal.

We conclude our study with characterizations which are
given in terms of neighborhood structures; {U,(p): ne N, peX} is
a neighborhood structuyre for (X,T) iff peU,(p)eT and
Un.1(p)C U,(p), for every ne N. We characterize open, K- and

developable semimetrizable spaces. For example,

Theorem. (X,T) is developable semimetrizable iff there is a
neighborhood structure {U,(p): neN, pe X} for (X,T) such that:
(1) N{U,(p): neN} = {p}; and
(1) if x,, p € Uy(y,) for some y, € X, then x,,—p (in T).

In retrospect, we have found new characterizations or
improved old characterizations of developable semimetrizable
spaces and other more restricted kinds of developable spaces,
while our study of 1-continuously semimetrizable spaces

remains quite incomplete.

Vi
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OVERVIEW

The focus of this work is on the use of distance function
constructions 1n topological spaces. The proofs will explicitly
construct distance functions, as opposed to merely proving
thelr existence.

A distance function for a set X 1s any nonnegative, real-
valued function d: X x X—= R such that d(x,y) = d(y,x), and
d(x,y) = 01ff x = y, for every x,y € X.

Distance functions are appealing because of their
geometric nature. As such, they come equipped, topologically,
with an intrinsic notion of convergence. Given a distance
function d for a set X, a sequence {x,) is d-convergent
provided that d(x,,p)—0 for some p € X. They also have a
‘neighborhood” structure. Namely, Sy(x,e) = {y € X: d(x,y) < ¢}
I1s the sphere of radius € about Xx.

In attempting to describe or characterize a topological
space (X,T), we often identify neighborhoods for each point.
Then, the closed sets are those which contain their limit points.
Thus, the question of how to describe the convergent sequences
must also be answered. In dealing with these i1ssues, we might
make use of the concept of a "distance” for the set X.

In Chapter | we include a brief description of the various
kinds of distance functions and some of their properties, and
show that they can indeed be used to describe these topological

structures.



Chapter 1l shows how our approach may be used to
establish the classical metrization results.

Chapter IIl provides new proofs of old results, and
establishes new results for developable semimetrizable and 1-
continuously semimetrizable spaces.

Chapter IV characterizes the topological spaces under
consideration in this work with neighborhood properties.

The reader is referred to Willard's General Topology [52]
for definitions and standard topological notation which are not

defined in this dissertation.



CHAPTER 1

AN INTRODUCTION TO DISTANCE FUNCTIONS AND THEIR
TOPOLOGIES

1. Kind . Di F .

A metric i1s a distance function which satisfies the triangle
inequality, that is, d(x,y) < d(x,z) + d(z,y), for every x,y,z € X.

A distance function d 1s continuous 1ff when d(x,,p)—0
and d(y,,q)—0, then d(x,,y,)—d(p,q); it is 1-continuous 1iff, for
any q € X, when d(x,, p)—0, then d(x, qg)—d(p,q).

A distance function d is developable 1ff, when d(x,,p)—0
and d(y,,p)—0, then d(x,.y,)—0; it is coherent 1iff when
d(xp,p)— 0 and d(xp,yn)— 0, then d(yp,p)—0.

A distance function d 1s a K-distance function iff
whenever d(x, p)—0, d(y,q)—0, and d(x,,y,)—0, then p = g;
1t has unique limits iff when d(x,,p)— 0 and d(x,,q)—0, then
p = q.

[.1.1 Theorem. A metric is a continuous distance function.

Any continuous distance function 1s a l-continuous,
developable, K-distance function. K-distance functions and 1-

continuous distance functions always have unique limits.

These facts are summarized in the following diagram:



developable

metric = continuous = 1-continuous

K-distance function

This thesis will focus on developable distance functions, 1-

continuous distance functions, and K-distance functions.

Given a distance function d for a set X, a sequence {x,} is
d-cauchy iff for every € > 0, there is an N ¢ N such that for
every m, n 2 N, d(x,,,X,) < €. One expects that d-convergent
sequences are d-cauchy. However, this is not always the case.

An immediate observation is the following theorem.

1.1.2 Theorem. If d is a distance function for X, the following
are equivalent:

(1) d is developable;

(11) for every p € X, there are spheres, centered at p, of
arbitrarily small diameter;

(111) d-convergent sequences are d-cauchy.

The remainder of this section is devoted to constructing
examples which will be used throughout this thesis. In each

case, we define a distance function for the given set.



L.1.3 Example (The Single Sequence Space).
Let X = {a,: n € N} U (0}, where a, = 1/3", and define d as
follows:

d(aj,am) = 1, n = m; and

d(x,y) = Ix - yl, otherwise.

The distance function d is a K-distance function which 1s not
developable, since {a,} is a d-convergent sequence which 1s not
d-cauchy. It is not 1-continuous since d(a,,0)—0, but for any

m € N, d(a,,a,,) #d(0,a,,).

1.1.4 Example (The Double Sequence Space).
Let X = AU B, where A = {a,;:n € N} U {0}, B ={(b,:n e N}U
{1}, a, = 1/3", and b, = 1 + a,. Define d as follows:

d(a,,b,) = d(b,,a,) = 1/3"; and

d(x,y) = Ix - vl, otherwise.

Then, d is developable (each d-convergent sequence 1s d-
cauchy) and 1-continuous. It is not a K-distance function
because d(a,,0)—0, d(b,,1)—0, d(a,,b,)—0, but 0=1. Thus, a
l-continuous, developable distance function need not be a

continuous distance function nor a K-distance function.

11.5 Example (Galvin [20]). Another double sequence space
Let X = A UB, where A ={a;:n e N} U {0}, B =1{b,:n e N} a,

= 1/3"%, b, = -a,. Define d as follows:

d(x,y) = d(y,x) = max{2y,y-x}, if x < 0 < y; and



d(x,y) = Ix - yl, otherwise.

A sequence {x,} 1s d-convergent iff it is eventually constant or
Ix,|— 0. Therefore, d is a developable K-distance function.
However, d i1s not 1-continuous, since d(b,,0)— 0, but for any k

€ N, d(bn,ak) - 2ak = d(O,ak).

[.1.6 Definition. Two distance functions dy and d, are
equivalent provided that dy(x,,p)—0 iff dy(x,,p)—0 for any

sequence {x,} in X.

In both Examples [.1.3 and 1.1.4 (the Single and Double
Sequence Spaces), the usual Euclidean metric p(x,y) = [x - yl1s
an equivalent distance function for X. This is not the case in

the remaining examples of this section.

1.1.7 Example (Arhangel'skii [3]).
Let X = [0,1], and A C X be such that A = {1/3": n € N} U {0}.

Define d as follows:

d(x,0) = d(0,x) = 1 if x¢A; and

d(x,y) = Ix-yl|, otherwise.
Then, d 1s a developable K-distance function that is not 1-
continuous (for 1 = x ¢ A, we have d(a,,0)>0 while

d(ap,x) 7 d(0,x)).



[.1.8 Example (Shore-Uhland).
Let X = (0,1) and define d as follows:

min{x,y}, if x = vy,
dx.y) = 1o, if x =y,

A sequence {a,} is d-convergent iff it has at most one constant
subsequence or it has a subsequence {a, } such that la, |—0.
Therefore, d 1s a developable distance function for X. This
distance function fails to have unique limits, since {1/3")
converges to any point tn X; hence, d is neither l-continuous

nor a K-distance function.

[.1.9 Notation. When X ¢ R x R, we denote x € X by (x;,x,)

and use |x - y| to denote the usual Euclidean distance,

\}(xl-yl)2+(x2-y2)2, between x and vy.

1.1.10 Example (The Split Disk Space).
Let X = AU B where A =R x {0}, B=R x (0,1) and define d as

follows:

Ix - vl + 1, f x,;y € A, x = vy,

d(x,y) = dly,x) = {Ix - vl otherwise.

The distance function d is a developable K-distance function.
However, d 1s not 1l-continuous since we can choose points p,q
€ A, and a sequence {x,} in B such that d(x,,p)—0, while

d(x,,q) # d(p,q).



L1.11 Example (McAuley's Bow-Tie Space [41)).

Let X = AU B where A =R x {0}, B=R x (0,1). For any x,y ¢
X, define a(x,y) to be the smallest positive angle (expressed in
radians) between the x-axis and the line joining x and v.

Define d as follows:

Ix-vi+x(x,y), if x,=0or y,=0;
d(x,y) = Ix-vl, otherwise.

The distance function d 1s a K-distance function which is not
developable (spheres at p € A have diameter at least mn/2).
Since we can choose points p € A, g € B, and a sequence {x,} I1n
B such that d(x,,p)—0, while d(x,,q9) #d(p,q), d is also not 1-

continuous.

.1.12 Example (Borges [7]).
Let X = AU B where A = Pyx{0}, Pg = R -{x € R:x € Qor x =

q t J/2/n for someqe€ Q, ne€ N}, and B = Q x {/2/n: n € N}. For

any x,y € X, define «(x,y) as in Example 1.1.11 and

Ix-yt, if ax(x,y) < m/4;
d(x,y) = [x-vI+o(x,y), if o(x,y) > n/4.

Notice that o(x,y) = m/4 for every x,y € X. The distance
function d is a 1-continuous K-distance function which 1s not

developable (spheres at p € Py have diameter at least m/2).



1.1.13 Example (Burke [8)).

Let X = AU B, where A = AgU Ay, Ag= P x {0}, A; = P x {-1},
B=Q x{qgeQO0<q<«1} For each a € Apy, let W, = {x ¢ X: x,
> x; + aand x; 2 a}. For each a € Ay, let W, = {(a,-1)} U (x ¢
X: X, 2 -%; + a and x; < a}. Define a distance function d for X
as follows:

Xo, if x € W,
For each a € A, d(a,x) = d(x,a) = 1, ifx ¢ W,,

and d(x,y) = Ix - yl, otherwise.

The distance function d i1s developable since any d-convergent
sequence 1s d-cauchy.

By using an argument similar to that given in Example
1.1.11 (McAuley's Bow-Tie Space), it follows that d is not 1-
continous.

To show that d is not a K-distance function, suppose a ¢
Q. If weletp = (a,0),q = (a,-1), ¥, = (a + 1/2",1/2") and y,. =
(a - 1/2",1/2") for each n ¢ N, we have d(x, p)—0, d(y, q)—0,

and d(x,,y,)—0, while p = q.

1.1.14 Example (The Isbell-Mrowka Spaces [22; 51]).

Let X = A U B where B = N, and A is an infinite maximal
family R of infinite, almost disjoint subsets of N.

Define d as follows:



a, if x = v;

; . J1r2n f x ey € R;
Gay) = dlyx) =0y ox o107, i xy € N,
1, otherwise.

For p € A, p ¢ N; if we denote p = {p,} with p, < p,.y,
then d(p,,p)— 0. Essentially, for any p € A, {p,} and its
subsequences are the only nonconstant convergent sequences.
Since any d-convergent sequence is d-cauchy, d 15 a
developable distance function for X.

The distance function d is not 1-continuous. Consider p €
A, and q ¢ N - A. Then d(p,,p)—0, while d(p,,q)—1/29 = 1 =
d(p,q).

The distance function d i1s not a K-distance function.
Consider p,g € A, p = q. Then d(p,,p)—0, d(q,,9)—0, and
d(p,.9,)—0, while p = q.

1.1.15 Example (Heath's V-space [27)).
Let X = A U B, where A =R x {0} and B = R x (0,1). For each

a € A let Vya = {x € Xixy = a+x,0r xy = a-x,} (le, a "V’

with vertex at (a,0), sides with slopes of 1 and -1). Define d as

follows:
0, if x = vy;
d(x,y) = {max(x;,y,), if x,y € V, for some a € A,
1, otherwise.

A consideration of cases shows that d 1s a continuous distance

function.

10



[.1.16 Example (The Niemytzki Space [22; 3K]).

Let X = A UB where A ={xeR xR x,%2+x,°=1}and B = (x
¢ R ~ R: x12 + x22 < 1}, For any disk D, let «(D) be the usual
Euclidean diameter. Define a distance function d for X as

follows:
d(x,y) = d(y.x) = inf{a(D): D is a disk with x,y € D ¢ X}.
Then d 1s a continuous distance function for X [37].

We conclude this section by recording some notation

which will be used throughout this work.

[.1.17 Notation. For A, B ¢ X, x € X, and € > 0, we use the
following notation:

d(x,A] = 1nf{d(x,y): y € A} is the distance from x to A;

d(B,A] = inf{d(x,A): x ¢ B} is the distance between A and B:
d-cl(B) = {x € X:d(x,B] = 0} i1s the d-closure of B;

841A] = sup{d(a,b): a,b € A} 1s the d-diameter of A; and

B4 = {S4(x,e): x € X, € >0} is the set of spheres generated by d.

11



2. Topological Connection

For any topological space (X,T) we may consider its
convergent sequences, that is, any sequence (x,} such that
x,—p (in T) for some p € X. For any distance function d, we
have its d-convergent sequences, that is, any sequence {x,}
such that d(x,,p)—0 for some p € X. This leads us to the
question of when these two types of convergence are the same.

First, we note that any distance function d determines a
topology for X, namely,

T4 = {A C X: when a € A, then Sy(a,x) ¢ A for some o},

which is called the symmetric topology for X [3].

121 Definition. A distance function d is a symmetric for
(X, T) iff T = Ty4.

1.2.2 Remark. Concerning convergence of sequences

(i) For any distance function d, when d(x,,p)—0, then
x,—p (in Ty).
(i1) However, the converse may fail.
Let us consider the set X = A U B, where A = {a,: n € N}
U {0}, B = {by;n € N}, a, = 1/3"%, b, = -1/3" with the following
distance function d for X:
dlam,b,) = d(b,,a,,) = 1/3%
d(0,b,) = d(b,,0) = 1; and

12



d(x,y) = Ix - yl, otherwise.

In this example, b,—0 (in Ty), but d(b,,0)»0. The
pathology of this example stems from the fact that for any p ¢
X, d(b,,p)—0.

(i11) On the other hand, if d is a distance function with
unique limits, then

Xn—p (in Ty) iff d(x,,p)—0.

1.2.3 Remark. We note that, for a metric d, the following are
equivalent:

(1) d 1s a symmetric for (X,T);

(i) B4 = {S4(x,e): x € X, € > 0} is a base for T,

(i) for every A ¢ X, AT = {x € X: d(x,Al = 0} = d-cl(A),
where AT is the topological closure.

We inquire about generalizing this result, and find that,
for an arbitrary distance function d, (iii) = (i); however, the
converse may fail. In Arhangel'skil's Example (1.1.7), the d-
closure i1s not a topological closure (since d-cl{X-A) = (0,1] =
[0,1] = d-clld-cl(X-A))).

Historically, distance functions whose d-closure is a

topological closure have been called semi-metrics [53].

1.2.4 Definition. A distance function d is a semimetric for
(X,T) iff for every A ¢ X, d-cl(A) = AT,

A topological space 1s semimetrizable iff there 1s a

semimetric for (X,T).

13



Note that, if d is a semimetric for (X,T), then T = T,
When T4C T, we say that d is a distance function on (X,7).

1.2.5 Theorem. For any distance function d, the following are
equivalent:

(i) dis a semimetric for (X,7);

(i1) for every x € X, {Sy(x,£): € » 0} is a neighborhood base
for x in T; and

(iii) (X,T) is first countable and x,—p (in T) iff d(x,,p)—0.

1.2.6 Remark. Symmetrizable vs. semimetrizable spaces
If (X,T) is semimetrizable, then it is symmetrizable. For

Hausdorff spaces, the converse holds if (X,T) is first countable.

127 Remarks. When 8, is a base for T
(1) In the Single Sequence Space (Example 1.1.3), the set of

spheres generated by d, 84 = {Sy(x,e): x € X, € > 0} is not a base
for a topology (since the spheres a;’e not necessarlily open, eg.,
S4(1/3,1/2) is not open).

(i) If d is a semimetric for (X,T) and 84 ¢ T, then 84 1s a
base for (X,T). Surprisingly, the converse may fail.

Consider Galvin's Example (1.1.5). The distance function d
determines a semimetric topology T4, while the set of spheres
generated by d is a base for another topology T,. Both the
sequence {b,} and the sequence {a,} converge to 0 in T,.
However, the sequence {bn} does not converge to 0 in T,. Note

that A 1s 1n 7, but not In 7.

14



With the exception of the Single Sequence Space (Example
1.1.3), Arhangel'skii's Example (1.1.7), and Galvin's Example
(I.1.5), all of our examples have distance functions whose
spheres form a local base.

(i) If d is a symmetric for T and 84 ¢ T, then d 1s a
semimetric for (X,T) and 8,4 is a base for T.

(v) If x € Sylp,a) = S4(x,8) € Sy(p,x) for some § > 0, then
2415 a base for T4 and d 1s a semimetric for T,.

If d 1s 1-continuous, then d is a semimetric for T4 such

that {S4(p,e): € > 0} is a local base for p 1n (X,T).

].2.8  Remark (28], (35]). Countability conditions In
Semimetrizable spaces
If (X,T) is a semimetrizable space, then

(1) (X,T) is a first countable Ty-space;

() (X,T) 1s Lindelof 1ff it is Rj-compact; and

(un) if (X,7T) 1s Lindelof, then it 1s separable.

1.2.9 Remark Compactness conditions 1n Semimetrizable
spaces

(1) If (X,T) 1s a semimetrizable space, then (X,7) 1s
compact If and only if 1t 1s sequentially compact.

(1) 1f (X,T) 1s semimetrizable, compact space, then it is

metrizable.

15



1.2.10 Remark Separation in Semimetrizable spaces

(1) Semimetrizable spaces need not be Hausdorff, eg., the
Shore-Uhland Example (1.1.8).

(11) Hausdorff semimetrizable spaces need not be regular,
eg., the Split Disk Space, (Example 1.1.10).

(i) Tychonoff semimetrizable spaces need not be normal,
e.g., Borges’ Example (1.1.12), Heath's V-space (Example [.1.3),
The Isbell-Mrowka Spaces (Example 1.1.14), and the Niemytzki
Space (Example 1.1.16).

A topological space is continuously semimetrizable iff
there is a semimetric d for (X,7T) which iIs continuous; in this
case we call d a continuous semimetric for (X,7T). Developable
semimetrizable and l1-continuously semimetrizable spaces are
defined similarly. A topological space 1s K-semimetrizable iff
there is a semimetric d for (X,T) which is a K-distance

function. In this case d is called a K-semimetric for (X,7).

1.2.11 Remark. Concerning developable semimetrics

(1) In developable semimetrizable spaces, second
countable, Lindelof, and X|-compact are equivalent [28], [35].

(ii) Hausdorff developable semimetrizable spaces need
not be regular (the Split Disk Space, Example 1.1.10).

(iii) If a topological space is Hausdorff, developable

semimetrizable, and paracompact, then it is metrizable [4].
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1.2.12 Theorem. Concerning 1-continuous semimetrics

If d 1s a 1-continuous distance function, then (X,T,) is a
completely regular Hausdorff space such that &, 1s a base for

T4. Thus, d is a semimetric for (X,Ty).

12,13 Theorem. Concerning K-semimetrics
If d i1s a semimetric for (X,7), then,
(1) if d is a K-distance function, then (X,7) is Hausdorff;
(1i) d 1s a K-distance function iff d separates disjoint
compact sets in T (i.e, for disjoint compact sets A,B ¢ X,

d[A,B] > 0).

Proof. (i) Suppose d is a semimetric for (X,7) and that X is
not Hausdorff. Choose distinct points X,y € X which cannot be
separated by disjoint open sets. Since (X,7T) is first countable,
there are decreasing neighborhood bases, respectively, (U, (x):
nelN} for x, and {U,(y): neN} for y. Now choose z, € U,(x) N
Uyly) for every n € N. Thus z,—x and z,—y. Since d is a
semimetric for T, d(z, x)—0, d(z,y)—0, and d(z,,z,)— 0, while
x=y. Therefore d is not a K-distance function.

(i) First, suppose that d is a K-semimetric for (X,7).
Suppose that A and B are compact subsets of X such that
d[A,B]=0. Thus, we may choose sequences {x,} in A and {y,} in
B such that d(x,,y,)—0. Since A and B are compact subsets of
a semimetric space, they are also sequentially compact. Thus,
we may choose subsequences {a,} of {x,} in A and {b,} of {y,}

in B such that a,—a € A, b,—b € B, and d(a,,b,)—0. It
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follows that d(a,,a)—0, d(b,,b)—0, and d(a,,b,)—0. Since d is

a K-distance function, a = b and, hence, AN B = &
Conversely suppose that d is not a K-distance function.

Then there are sequences {x,}, {y,} in X such that d(x, p)—0,

d(y, q)—0, and d(x,,y,)—0 for some p,q € X, and p = q. It

follows that A = [{x,;n € N} - ({y,;n € N} U {qD] U {p} and B

{y, n € N} U {q}] - {p} are disjoint compact sets with d[A,B]

0, 1.e., d does not separate disjoint compact sets in T .
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3. Historical Remarks

The history of distance functions is as extensive as the
history of general topology itself. At its inception, topological
activity centered around the construction of distance functions.
Given a particular type of distance function, 1t was not
uncommon for the researcher to try to find an equivalent
metric. In trying to find an appropriate theory of litnit points,
which would ultimately describe the closed sets of a topology,
this approach made sense because of a metric's relationship to
Euclidean geometry. We begin this section by sketching the
progression of the development of this theory.

In his 1906 thesis Frechet [15] initiated the study of
distance functions. Given a yolsinage, which is a distance
function d such that for every ¢ > 0, there is a 8(¢) > 0 such
that d(p,x) < € and d(x,y) < € implies that d(p,y) < 8(¢), he asked
the question of whether or not there was an equivalent metric.
At this time, he called a metric an gcart. This type of distance
function was appealing because it had a geometric, as opposed
to a topological property. In 1917 Chittenden [10] showed that,
for any voisinage, there i1s an equivalent metric. In 1918,
Pitcher and Chittenden [46] introduced the idea of a Jocal ecart,
which 1s a distance function d such that for every ¢ > 0 and
every p € X, there is § > 0 such that, when d(p,x) < § and

d(x,y) < 8, then d(p,y) < €. They proved that, if the given
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topological space was compact, for any local ecart, there was
an equivalent metric. Whether or not the condition of being
compact was necessary was left as an open question. In 1927
Niemytzki [45] showed, by establishing the existence of an
equivalent metric, that for any local ecart, there is always an
equivalent metric. He gave two proofs, one based on the work
of Chittenden and the other on the work of Alexandroff and
Urysohn [2]. We present the second approach in the next
chapter, but instead of giving an existence proof, the desired
metric 1s explicitly constructed.

As the study of distance functions continued, it became
clear that the following two problems needed to be resolved: (i)
for limit points generated by arbitrary distance functions, a
limit point of the set of limit points of a set A was not
necessarily a limit point of A; and (ii) d-convergent sequences
need not be d-cauchy.

Pitcher and Chittenden introduced developable and
coherent distance functions and showed that, for coherent
distance functions, a limit of a sequence of limit points of a set
A is itself a limit point of A. As it was noted in Chapter [, it is
the developable distance functions for which d-convergent
sequences are necessarily d-cauchy.

The study of metrics culminated with a result by Frink in
1937 which we discuss in more detail in chapter II.

Frechet's introduction of abstract spaces with a
topological structure marked the beginning of the evolution of

the notion of a topological space. In the 1920's, the open set
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was one of the most important topological considerations. The
definition of a topological space which is generally accepted
today was formulated (in terms of a closure operator) by
Kuratowski in 1922 [14]. After the notion of a topological space
was established, the question of what topological spaces were
generated from metrics arose. We discuss the earliest solutions
to this question, which involve sequences of open covers, 1n
chapter Il. This work of Alexandroff and Urysohn (1923) and of
Bing, Smirnov, and Nagata (1951) motivated the "Moore
School” (developable topological spaces) which we discuss 1n
chapter Il In chapter IV we discuss neighborhood
characterizations, as motivated by the "Jones School”, including

the work of McAuley, Heath, and Hodel.
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CHAPTER 11

EXPLICIT METRIZATION

This chapter provides an historical basis for this work. We
highlight distance function constructions and provide direct

proofs of the most famous metrization theorems.

1 C ne Metrics f | Di F .

Historically, these results illustrate the earliest of the
metrization investigations. We note an early result of Pitcher
and Chittenden and suggest that it is a precursor to the

powerful result of Frink.

11.1.1 Theorem (Pitcher-Chittenden’'s Theorem [46]). If d is a
coherent distance function for X, then there is an equivalent

coherent developable distance function for X.

Proof Suppose that d is a coherent distance function for X.
Then the distance function d; such that
di(x,y) = Inf {d(x,2) + d(z,y): z €X}

1s an equivalent coherent developable distance function for X.

It follows immediately from the definitions that a distance

function is coherent iff it is a local ecart. Since any local ecart
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is equivalent to a metric, the above theorem is really about
metrizable spaces. This leads us to a Frink's result. We give a
proof which invokes the explicit construction of the desired

metric.

11.1.2 Frink's Theorem (1937; [17]). If d is a distance

function for X such that

(%) for any a,b,z € X, it is not possible that both
d(a,z) < "2d(a,b) and d(b,z) < 2d(a,b),

then there is a metric p which is equivalent to d; in fact, the

distance function p such that

p(x,y) = inf{d(x,z{)+d(2zy,2,)+ ... +d(z,,y): 21,25, ... 2,€X for some

ne N}

1s such a metric.

Proof. Suppose that d i1s a distance function for X which
satisfies (*). We use (x) to prove:
Frink's Claim. For any 24,2,, .. ,2, in X,
(xx) d(a,b) < 2d(a,zy) + 4d(zq,zp)+ ... + 4d(z,,_4,2,) + 2d(z,,b).
Proof. The proof is given by induction on n.
(a) For n = 1, the property is obvious from (x) since

either '2d(a,b) = d(a,z;) or *2d(a,b) = d(b,zy).
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(b) Next, assume that the property holds for fewer than n
z's and consider 24,2, ... ,2,.

If either ’2d(a,b) = d(a,zy) or *2d(a,b) = d(b,z,), then the
property (% =) again holds. Otherwise, d(a, z,) < »2d(a,b) and
d(b,z,) < 2d(a,b). From the second of these and (x) it follows
that ’2d(a,b) < d(a, z,).

Thus, there is a k* € N such that 1 < k* < n and
d(a,zy«) < 2d(a,b) =< d(a,zy=.q).

From the first inequality and (x) it follows that:
2d(a,b) < d(zy«,b)

< 2d(zp=, 2Zp=.q )+ 4d(zpe.q,2=0)+ o
4d(z,.4,2,) + 2d(z,,b)
and from the second:
2d(a,b) < d(a,zy=.q)

2d(a,zq)+4d(zy,2,)+ ... +4d(zp« 4,2y «)+2d(z =2 -, 4).

A

tA

Thus,
d(a,b) < 2d(a,zy)+4d(zy,2))+ ... +4d(z, 4,2,)+2d(z,,b).

Next, consider the distance function p for X such that:
p(x,y) = infld(x,zy) + d(zy,25) + ... +d(z,,y¥): 21,25, ... 2peX

for some ne N}.

It follows, by Frink's claim, that p < d < 4p. Therefore p is
a metric such that d(x,,p)—0 iff p(x,,p)—0. Hence p 1is

equlvalent to d.



1.1.3 Remark Frink's original theorem assumed that the

distance function d was such that, when d(x,2) < € and d(z,y) <

£, then d(x,y) < 2e. Our version of Frink's result uses a

formally weaker condition which we call (»).
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2. The Classical Metrization TI

This section begins with an alternative construction
technique which involves the use of a countable family of
pseudometrics. We use this approach to prove several of the

early metrization theorems.

11.2.1 Theorem. For any first countable Hausdorff space (X,7),

if {dy: ke N} is a countable family of pseudometrics for X such

that, for any sequence {x,} in X,

(»xx) x,—p (in T) if and only if, for each k, dy(x,,p)—0;

then p = Zmin{d,,1/2k} is a metric for (X,T).

Proof. Clearly, p is a pseudometric and x,—p (in 7) if and
only 1If p(x,,p)—0. Since (X,T) is first countable, p is a

pseudometric for (X,7). Finally, p is a metric because (X,7T) is

Hausdorff.

11.2.2 The Urysohn-Tychonoff Theorem (1925; [50], [51]). A

second countable, regular Hausdorff space is metrizable.

Proof Suppose that B is a countable base for the regular,
Hausdorff topology T for X. Then T is first countable, and
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since T 1s regular and Lindelof, it follows ([14], [52, p. 111]) that
1t 1s also normal.

Next, index the countable set A = {(V,U): V.U € B with V
C U} with the positive integers k. For each k, use Urysohn's
Lemma [52, p. 102] to obtain a continuous function f,: X—{0,1]

such that:

_ O, if X € Vk,
B®) = 11, ifx ¢ U

and use f, to define a pseudometric d; for X as follows:

dp(x,y) =1 fi,(x) -, (y) |

Since each dy is continuous, it follows that, when x,—p
(in 7), then d,(x,,p) = 0. Conversely, suppose that, for each
k, dy(x,,p) = 0. If p e G e T, then since (X,T) is regular, there
are basic open sets V and U in B such thatpe V ¢ V ¢ U C G,
Thus, (V,U) = (V,,U,) for some k.

It follows that the sphere Sdk(p,l) C G so that, from our
supposition, x, is eventually in G, and, therefore, x, — p (in
T). We have now shown that x,—p (in T) if and only if, for
each k, dy(xp,p)—0, ie, that (x=x=) holds.

Since (X,T) 1s first countable, Hausdorff, and satisfies

(xxx), p = Emin{d,,1/2k} is a metric for T.
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11.2.3 The Nagata, Smirnov, or Bing Theorem (1951; (4],

(44], [49]). A regular, Hausdorff space with a o-locally finite

base is metrizable.

Proof. Let B = U{B,: n € N}, the countable union of locally
finite families B,, be a base for the regular Hausdorff topology
T for X. Since B is a countable union of locally finite families,
1t follows that T is first countable. T is paracompact, since we
have a regular T,-space such that each open cover has an
open o-locally finite refinement [52, p.146] and therefore 1t 1s
also normal.

Next, index the countable set NxN with the positive
integers k. For each (my,ny) in NxN, if U ¢ B”k and

mG= u{V:V ¢ Bmv with V' ¢ U}, then we may use Urysohn's

Lemmma to obtain a continuous function fk U X—1[0,1], such

that:

0, If x € mG;
fu® =1, ik qu

Note that, because locally finite families are always
closure-preserving, mG= U{V : Ve mekwith V¢Uulg U

Next, for each k, define the pseudometric d, for X such

that:

de(x,y) = 2{ 1 £, y(x) -f yly) | : Ue ‘Bnk}.
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Note that, due to the fact that we have a o-locally finite
base, for any x,y € X, there are only finitely many nonzero
terms in this sum.

Since each dy 1s continuous, it follows that, when x,—p
(in T), then d,(x,,p) — 0. Conversely, suppose that, for each
k, dy(x,,p) = 0. If p € Ge T, then since T is regular, there

are basic open sets V and U in B such that p ¢ V ¢ V ¢ U ¢
G. Therefore, V ¢ ‘Bmk and U € ank for some k.

It follows that the sphere Sdk(p,l) ¢ G so that, from our

supposition, X, 1s eventually in G, and, therefore, x,—p (in 7).
We have now shown that x,—p (in T) if and only if, for each

k, dx(xp,p)—0, 1.e., that (xxx) holds.
Since (X,T) 1s first countable, Hausdorff, and (xxx=) holds,

p = Zmin{dy,1/2k} is a metric for T.

11.2.4 Remark. In this proof, we used paracompactness to

imply normality. However, it can be shown directly that a

regular space with a o-locally finite base 1s always normal.

We conclude this section with the following well known,

but non-classical, result.

11.2.5 Theorem. Any compact Hausdorff space whose diagonal

1s a Gg-set in X x X is metrizable.

Proof Suppose that (X,T) is a compact Hausdorff space whose

diagonal 1s a Gg-set iIn X x X. Since X x X is normal, the
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diagonal (a closed Gg-set) is the zero set of a real-valued,
continuous function F: X x X — [0,1]. We may also assume
that F(x,y) = F(y,x).

For each x € X, let U,(x) = {y € X: F(x,y) < 1/2"}). Then
{Up(x): n € N} is a countable local base for x. It follows that
(X,T) is separable with countable dense set A = {a,: k € N}.
Hence, for each k, dy(x,y) = |F(ay,x) - F(ay,y))l is a continuous

Zmin{d,,1/2k)} is a

pseudometric for (X,T) so that p

continuous metric on X (because F(x,a) F(y,a) for each a € A
1ff x = y). Since compact topologies are minimal among

Hausdorff topologies, p determines the topology 7.

11.2.6 Remark. Since any semimetrizable space (X,7J) has a
diagonal which is a Gg-set in X x X, Theorem I[1.2.5 generalizes
Remark 1.2.9(i1) which notes that a compact semimetrizable

space Is metrizable.
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3. C ng Metrics f Famil C

We conclude this chapter with a proof of the first
metrization theorem which was established by P.S. Alexandroff
and Paul Urysohn in 1923. They raised the question of which
topological spaces were generated from metrics and, in their
solution, use a countable family of covers to construct the

metric.

131 T) A ] iroff-U | M : : I]
(1923; [2]). If there is a sequence {3,} of open covers of X such
that:
(1) {3,) is a regular sequence (i.e., when AN B = & for
AB € @,, then AUB ¢ C, for some C € 3, 4);

(i1) {3,) is a Gg-diagonal sequence (ie., for x = y, there is
an n such that x ¢ st(y,3,) = U{Ae€Q, y € A}); and

(ii1) {F,) is a wl-sequence (i.e., when a,est(p,3,) for
some p, then the sequence {a,} clusters in X),

then X Is metrizable.
Proof Let {3,} be a sequence of open covers of X satisfying

(1)-(i1i) as above, and let T denote the topology for X. Consider

the distance function d for X such that:
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1/2%, where k=min(n € N:x¢st(y,3,)), 1ifx = y;
d(x,y) = 0, if x = v.

Clearly d(x,y) = d(y,x). Because {3,} is a Gg-diagonal
sequence, d(x,y) = 0 1iff x = y.

Because {3, } is a regular sequence, we have,
(») for any a,b,z € X, it is not possible that both d(a,z) <
“2d(a,b) and d(b,z) < %2d(a,b).

Thus, as In Frink's Theorem [1.1.2, there is an equivalent

metric d* such that:
d=(x,y) = inf{d(x,z4) + & d(z;,zi.y) + d(z,,¥): 21,29,.. , 2,€ X}

and d(x,,p)—0 iff d*(x,,p)—0. Note that the metric d*
determines a topology T* for X which has as its base the set of
all spheres {Sy«(p,e): p € X, € > O}.

Since Sy4(p,1/27) = st(p,3,), which is open in (X,7), it
follows that T* ¢ T and, hence, A T ¢ AT*. To show that the
reverse inclusion also holds, suppose that p € AT*. Then, since
d(p,A] = 0, for each n € N, there is a, € A such that a, ¢
Sa(p,1/27) = st(p,@,). Thus, since {3,} is a wA- sequence, the
sequence {a,} clusters to some point q € X. For A, = {a,: ne N},

it follows that ¢ € A,T ¢ A, T" and, therefore, that there must
be a subsequence {a, } of {ap} such that d*(a, ,q)—0. But,
n n

d*(a, ,p)—0 sothatp =q and p ¢ AT. Thus it follows that
n

AT = AT~ hence, T = T* so that X is metrizable.

32



11.3.2 Remarks Concerning the Alexandroff-Urysohn

Metrization Theorem

(1) The ideas of both a regular sequence and a G4z-diagonal
sequence were introduced by Alexandroff and Urysohn in [2]
and are discussed in [34]. The "Gg-diagonal” terminology is well
chosen. It is easy to show [9] that a topological space has a Gg-
diagonal sequence iff its diagonal Ay is a Gg-set in the product
space X x X.

The original version of this theorem included a condition,
which they said made {3,} complete, ie., for any p € X, if, for
each n € N, p € G, € §,,, then {G,: neN} is a local base for p.
The condition of being complete is equivalent to a condition,
which R.L. Moore [(42] said made {3,} a development, i.e., for
any p € X, {st(p,g,): n € N} is a local base for p. If a topological
space has a development, it is called developable. A Moore
space is a regular Hausdorff space which has a development.

The notion of a wA-sequence was introduced by Borges
[6], and is a condition which is weaker than the condition of
being complete.

(ii) The converse of Theorem I1.3.1 also holds. If d is a
metric for (X,T) and @, = {S4(x,1/2"): x € X}, then {3} is a
sequence of open covers which is a regular sequence, a Gg-

diagonal sequence, and a wA-sequence.
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CHAPTER III

EXPLICIT SEMIMETRIZATION

1. Developable Semimetrizable Spaces

In the study of developable semimetrizable spaces, our
aim 1s to find conditions which characterize Hausdorff
developable, K-developable and 1-continuous-developable
semimetrizable spaces. We begin with several definitions
which are used 1n these characterizations. Recall that a
topological space (X,T) has a Gs-diagonal iff there 1s a G4~
diagonal sequence for X; that is,

there is a sequence {3,} of open covers of X such that

{p} = N{st(p,3,): n € N}

II1.1.1 Definition. A topological space (X,T) has a Gs =
diagonal [31] iff there is a Gs"-diagonal sequence for X; that is,

there is a sequence {3,} of open covers of X such that

{p} = N{st(p,3,):n € N}

(X,T) has a regular Gs-diagonal [54] iff the diagonal of X,
Ay = {(x,x): x € X}, is a countable intersection of regular closed
sets; that is, there is a sequence {V,} of open sets in X x X such

that
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Ay = n{Vyne N) = n{V,:n e N).

(X,T) has a zero set diagonal iff its diagonal 1s a zero set
in the product X x X.

111.1.2 Remark. Concerning Gg-diagonals
For any topological space (X,T),

(1) (X,T) has a zero set diagonal iff there is a continuous
distance function on X;

(m) if (X,T) has a zero set diagonal, then 1t also has a
regular Gg-diagonal;

(i) if (X,T) has a regular Gg-diagonal, then it has a Gg"-
diagonal [31];

(iv) if (X,T) has a Gg"-diagonal, then it is Hausdorff; and

(v) if (X,T) is semimetrizable, then it has a Gg-diagonal.

1I1.1.3 Definition [6]. A topological space (X,7T) is a wdl -space

iIff it has a wA-sequence (see Theorem 11.3.1).

Hodel [31, Theorem 2.5] used sequences of open covers to
prove that every Hausdorff wA-space with a Gg"-diagonal has
a development (as in 11.3.2(i1)). It is known that a topological
space (X,7T) is developable semimetrizable iff it is a T;-space
and has a development (see IV.3.2). Our theorem, which
includes Hodel's Theorem, is established with distance function

constructions.



[11.1.4 Theorem. A topological space is Hausdorff and

developable semimetrizable iff it is a wA-space with a Gg"-

diagonal.

Proof Suppose that d is a developable semimetric for the
Hausdorff space (X,T). For each n € N, let 3, = {G € T: §4(G] ¢
1/2"}. Since d is a semimetric for (X,T), the set of spheres
{Sq(p,e): € > 0} Is a neighborhood base for p in (X,T). Since d is
developable, there are spheres centered at p of arbitrarily
small diameter. Therefore, for each n € N, 4, i1s an open cover
of X.

Next, we show that st(p,3,) ¢ S4(p,1/2"). Suppose x ¢
st(p,9,). Then, there is a G € T such that x,p € G and §,4(G] ¢
1/2". Therefore, d(x,p) < 1/2" and x € S4(p,1/2"). It follows
that {st(p,3,): n € N} is a local base for p in (X,T ).

Hence, if for every n € N, x, € st(p,3,), then d(x,,p) <
1/2" so that x,—p; thus, {3,} is a wA-sequence for (X,T).

Since (X,T) 1s Hausdorff, if q = p, then there is an ng € N

such that q ¢ st(p.gnq). Since we can find such an ng for any

q = p, it follows that {p} = N{st(p,3,): n € N} and, therefore,
that {3,} is a Gg"-diagonal sequence.

Conversely, suppose that {W,} is a wA-sequence and that
{3,} is a sequence of open covers of X such that {p} =
N{st(p,3,): n € N} for each p € X. We may also assume that,
for each n € N, 4,.; refines 4,,, and W, ., refines W,. If, for
eachn € N, welet U, = (W NG We W, Ge 3,}, we have a

new sequence {U,} of open covers such that U, refines both
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W, and 9,,. The sequence {U,} is also a wA-sequence. Since
(X,T) has a Gg"-diagonal, it is Hausdorff.

Define a distance function d for X as follows:

H

Y5
y.

1/2", where n=min{k € N:x¢st(y,U,)}, Iifx
d(x,y) = 0 if x

Then S4(p,1/2") = st(p,U,), and therefore T4¢ T. To
prove that d is a semimetric for (X,7T), we show that T ¢ Ty,
1e., if p € Ge T, then {Sy(p,1/2"): ne N} ¢ G for some n € N.

If not, then there is an open set G € T and a sequence
{(xn) such that p € G, x, € S4(p,1/2"), while x,, ¢ G. But {U,} 1s
a w/-sequence, so the sequence {x,} has a cluster point g; but,
q = p. Since {U,} refines {g,}, {p} = N{st(p,U,): n € N}. It
follows that there is an open set U € T and an n € N such that
qg € Uand U N st(p,U,) = &. Hence x, ¢ U for every n € N,
which contradicts that q is a cluster point of {x,}.

Since each open set U in U, has d-diameter less than

1/2", we conclude that d is developable.

111.1.5 Theorem. A topological space is K-developable

semimetrizable iff it is a wlA-space with a regular Gg-diagonal.

Proof. Suppose that d is a K-developable semimetric for (X,7).
For each n € N, let G, = {G € T: 84(G] < 1/2"}. As in the proof
of the preceding theorem, {3,} is a wA-sequence, and {S4(p,e):

£ > 0} is a neighborhood base for p in (X,T).
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To show that (X,T) has a regular Gg-diagonal, let U, =
U{G x G: G € 4,). Clearly Ay ¢ H{Un: n € N}. We will show
that Ay = N{U,: n € N).

Suppose (p,q) € N{U,: n € N}. Then for each n, there is
(xn,¥n) € G x G, for some G € @, such that (x,,y,) € S4(p,1/2™
x S4(q,1/2"). It follows that, for every n, x,,y,, € G where §4(G]
< 1/2". Therefore d{(x,p)—0, d(y,q)—0, and d(x,,y,) —0.
Since d 1s a K-distance function, p = q, and Ay = ﬂ{l_fn: n e N}

To prove the converse, suppose that the topological space
(X,T) 1s a wlA-space with a regular Gg-diagonal. Then there 1s
a wlA-sequence, {W,}, for X, and a decreasing sequence of open
sets, {U,}, in X x X such that Ayx = N{U, n € N} = n{U,: n ¢
N}. We may also assume that, for each n ¢ N, W,.; refines

W For eachn € N, let U, = (Ge T:G x G ¢ U_}, and note

n-
that U, 1s an open cover of X. If, for each n € N, we let G, =
{(Wn U We W, Ue U,}, we have a new sequence {3} of
open covers such that @, refines both W, and U,. The

sequence {Q,} 1s also a wA-sequence. Define a distance

function d for X as follows:

1/2", where n=min{k € N:x¢st(y,3,)}, if x =y;
dx.y) = 1o if x =y

By using a procedure which 1s similar to that of the proof
of the preceding theorem, it follows that d 1s a developable

semimetric for (X,7).
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To show that d is a K-distance function suppose that
d(x,p)—0, dly,q)—0, and d(x,,y,)—0. We may assume that
d(x,.yyn), dx, p), dly, q) < 1/2" for every n. Since x, €
Sq(p,1/2™), v, € S4(q,1/2M), and (X,,,¥m) € Uy, € Uy for m 2 k,
1t follows that (p,q) € D_k for every k (every open set G about
(p,q) intersects U,). Therefore, (p,q) € N{U,:n € N} = Ay,

which implies that p = q. Thus, d 1s a K-distance function.

[I11.1.6 Corollary. A developable semimetrizable space is K-

developable semimetrizable iff it has a regular Gg-diagonal.

Proof. A developable sernimetrizable space is a w/AA-space.

111.1.7 Theorem. A topological space (X,T) is developable

semimetrizable and subcontinuously semimetrizable (that is,
there is a continuous distance function on X) iff it is a wA-

space with a zero set diagonal.

Proof. Suppose that (X,7) is developable semimetrizable and
that there is a continuous distance function on X. Then (X,7)
1s a wA-space (since it is developable semimetrizable) with a
zero set diagonal (see Remark [11.1.2).

Conversely, suppose that (X,7T) is a wlA-space with a zero
set diagonal. Then (X,T) has a Gg"-diagonal; hence is a
Hausdorff space. It follows that (X,7J) is developable
semimetrizable (Theorem I11.1.4). Since (X,T) has a zero set

diagonal, there is a continuous distance function on X.
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Now we use the results of this section to investigate some

of the examples from Chapter I.

111.1.8 Remark Burke's Example

The distance function given in Burke's Example (1.1.13) 1s a
developable distance functon for X such that &5, ¢ T,.
Therefore d 1s a developable semimetric for the Hausdorff space
(X,T4). Thus, by Theorem II1.1.4, (X,T4) 1s a wlA-space with a
Gg"-diagonal.

Burke has shown that no semimetric for (X,7) 1s a K-
distance function [8]; hence, (X,T) is not K-developable
semimetrizable. Since (X,7) is a wA-space, it follows (from
Theorem 111.1.5) that Burke's Example does not have a regular

Gg-diagonal.

I1II.1.9 Remark. Borges' Example

By Theorem 1.2.11, no semimetric for Borges' Example ([.1.12) is
developable (since it Is Lindelof, but not second countable).
Since this example 1s subcontinuously semimetrizable (the
usual Euclidean metric is continuous on X), but not developable
semimetrizable, 1t follows from Theorem II[.1.7 that Borges’
Example is not a wA-space.

Similar remarks hold for McAuley's Bow-Tie Space

(Example 1.1.11).
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Before investigating the properties of the Isbell-Mrowka
spaces (Example [.1.14), we note the following theorem of

McArthur.

111.1.10 Theorem (McArthur [40)). If (X,T) 1s a

pseudocompact, completely regular, Hausdorff space with a

regular Gg-diagonal, then 1t 1s metrizable.

111.1.11 Theorem. The Isbell-Mrowka space Y 1s developable
semimetrizable and K-semimetrizable, but 1t 1s not K-

developable semimetrizable.

Proof. In considering Example [.1.14, note that the Isbell-
Mrowka space yp = N U R has the topology which has the
following properties: (i) each p € R has {U,(p): k € N} as a local
base, where U,(p) = {p} U {n € p: k < n}; and (i1) each n € N
has {n} as a local base {22]. The following distance function,

which 1s given in Example 1.1.14,

0, if x = vy;
1/2%, if x €y e R;

dxy) = dly.x) =1 /9% q /97, if x,y € N;
1, otherwise

i1s a developable semimetric for .

By modifying this distance function as follows, we obtain

a K-semimetric for ¢:
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0, if X = y;

d(x,y) = d(y,x) = {1/2%, fxeyeR;
1, otherwise.
By Theorem 1[.1.1.11, this distance function d 1s not

developable since each p € R, viewed as an increasing sequence
{pn} in N ¢ NU R, is d-convergent, but is not d-cauchy.

Next, we show that g 1s not K-developable
semimetrizable. Because (g Is not normal, 1t 1s also not
metrizable. Since 1tis a pseudocompact, completely regular,
Hausdorff space, it follows from McArthur's Theorem I[11.1.10
that ¢ must not have a regular Gg-diagonal. Therefore, by

Theorem II1.1.5 1t is not K-developable semimetrizable.
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2. 1-Continuously Semimetrizable Spaces

Our study of 1-continuously semimetrizable spaces
focuses on finding characterizations for K-1-continuously
semimetrizable spaces and developable-1-continuously
semimetrizable spaces. In this case we seek characterizations

In the context of diagonal properties and covering conditions.

111.2.1 Remark Concerning Gs"-diagonals

(1) If (X,T) is 1l-continuously semimetrizable, it has a Gg"-
diagonal.

(1) If (X,7) is continuously semimetrizable, it has a zero set

diagonal.

111.2.2 Theorem. If there is a 1-continuous distance function
d on the separable space (X,T) such that T4 ¢ 7, then (X,7)

1s submetrizable, that i1s, there is a metric p: X x X = R such

that T, ¢ 7.

Proof Suppose that the topological space (X,T) is separable
with countable dense subset A = {a,: n € N}, and that d is a 1-
continuous distance function on X such that 74 € 7. For each
n € N, define a distance function p,: X x X— R such that

Pr(x,y) = min{1/2", ld(x,a,)-d(y,a,)l}. Since each p, is a
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pseudometric, the distance function p: X x X — R such that

p(x,y) = E{pn(x,y): ne N} is also a pseudometric.

If p(x,y) 0, then ld(x,a,) - d(y,a,)l = 0, and, therefore

d(x,a,) = d(y,a,) for every n € N. Since A is dense, there is a
sequence {ank}, which is a subset of A, such that d(ank,x)—’O.

But d is 1-continuous, so that d(ank,y)—’d(x,y). Since d(ank,y)

= d(ank,x) and d(ank,x)—-*O, 1t follows that d(x,y) = 0. Therefore

X =y, and p is a metric.
Furthermore, if d(x,,p)—0, then p(x,,p)—0 so that T, ¢
T4c 7.

111.2.3 Corollary. ¢y 1is not 1-continuously semimetrizable.

Proof. Since ¢y does not have a regular Gg-diagonal (as noted
in the proof of Theorem II1.1.11), there are no continuous
distance functions (Remark I11.1.2), hence, no metrics on .
But g is separable, since N is a countable dense subset. It
follows from Theorem I[11.2.2 that there are no 1l-continuous

distance functions on Y.

[11.2.4 Corollary. If (X,T) is a separable l-continuously

semimetrizable topological space, then it is also K-1-
continuously semimetrizable, that is, there is a K-semimetric

for (X,T) which 1s also 1-continuous.

Proof Suppose that d I1s a 1-continuous semimetric for the

separable space (X,T). By Theorem II1.2.2 there is a metric p
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on X. Clearly, p 1s also a K-distance function. Because p i1s a K-
distance function, and both d and p are 1-continuous, the
distance function d + p 1s a K-distance function which 1s also 1-
continuous. Since T, ¢ Ty, 1t follows that d(x,,p)—0 iff (d +
p)(x,,p)— 0. Therefore d + p 1s a K-1-continuous semimetric for

(X, 7).

111.2.5 Remark Borges' Example Revisited

Borges has shown that his example (1.1.12) is 1-continuously
semimetrizable in [7]. From Corollary 111.2.4, since (X,T) 1s
separable, (X,T) 1s K-1-continuously semimetrizable. In fact,
the distance function d for X which we describe in Chapter [ 1s

a K-1-continuous semimetric for (X,7).

111.2.6 Remark. Burke's Example Revisited
It follows from Corollary 111.2.4 that Burke's Example (1.1.13) is

not 1-continuously semimetrizable, since 1t 1s separable but no

sermimetric for (X,7T) 1s a K-distance function (Remark [11.1.8).

111.2.7 Remark A K-developable semimetrizable, separable
space with a zero set diagonal need not be l-continuously
semimetrizable
The distance function given in Example 1.1.10 (the Split Disk
Space) i1s a developable distance function for X such that 34 ¢
T4 Therefore, d is a developable semimetric for 7.

We denote the usual Euclidean metric by e, and observe

that e < d. Then Sy(p,e) € S.(p,e) for every p € X, € > 0; hence
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84 ¢ B If dlx, p)—0, dly,q)—0, and d(x,,y,)—0, then
e(x,p)—0, ely,q)—0, and e(x,,y,)—0. But e is a metric, so p
= q. Therefore, d 1s also a K-distance function.

Thus, the Split Disk Space 1is K-developable
semimetrizable, separable, and has a zero set diagonal, but is
still not 1-continuously semimetrizable (since it is not

completely regular).

111.2.8 Remark. Concerning the wl-Space Problem

The distance function given in the Shore-Uhland Example
(1.1.8) is a developable distance function for X such that 34 ¢
T 4. Therefore, d is a developable semimetric for T4.

(X,T4) is not Hausdorff;, hence, it is also not K-
semimetrizable.

It is a wlA-space with a Gg-diagonal since it is developable
semimetrizable. However, it does not have a Gg"-diagonal since
1t 1s not Hausdorff.

The Shore-Uhland Example is of interest because of its
relationship to the wl-space problem: must every wlA-space
with a Gg-diagonal be developable?

For Hausdorff spaces, because of Theorem 1I1.1.4, this
becomes: must every wA-space with a Gg-diagonal have a
Gg*-diagonal?

The Shore-Uhland Example 1s a counterexample to this
conjecture since it is a wA-space with a Gg-diagonal, but does

not have a Gg"-diagonal.
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1HI1.2.9 Remark. Concerning the Normal Moore Space
Conjecture

Borges’ Example 1.1.12 is normal because it 1s regular and
Lindelof. Since it is not developable semimetrizable, 1t is also
not continuously semimetrizable. Thus we have an example of
a normal l-continuously semimetrizable space which 1s not
continuously semimetrizable.

Borges’ Example is of interest because of its relationship to
the pormal Moore space conjecture, which states that every
normal Moore space 15 metrizable [35]. Borges' Example shows,
without the use of extra set theoretic axioms, that a parallel

result for 1-continuously semimetrizable spaces does not hold.

We now note that only two of our examples are
continuously semimetrizable. In each case the distance
function described 1n Chapter | is a continuous semimetric for

(X,7).

I111.2.10 Theorem. Heath's V-space (Example 1.1.15) and the

Niemvytzki Space (Example 1.1.16) are continuously

semimetrizable.

We now consider any semimetrizable space which has the
strongest of our diagonal properties, that is, has a zero set

diagonal.
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111.2.11 Theorem. If (X,T) is a semimetrizable space with a

zero set diagonal, then (X,7T) is K-semimetrizable.

Proof. Suppose that d is a semimetric for the topological
space (X,7), and that f: X x X — [0,1] is a continuous function
such that Z; = Ayx. Let d; be the distance function for X such
that d,(x,y) = min{f(x,y),f(y,x)}). Then d; is a continuous

distance function, and d + d; is a K-semimetric for (X,7).

Since X 1s subcontinuously semimetrizable iff it has a zero

set diagonal, we have the following corollary to Theorem

[11.2.11.

111.2.12 Corollary. A semimetrizable topological space which

1s also subcontinuously semimetrizable is K-semimetrizable.

111.2.13 Remark McAuley's Bow-Tie Space Revisited

Since (X,7T) has a zero set diagonal (e is a continuous distance
function on X, since e < d), it follows from Theorem I[11.2.11
that (X,7) 1s K-semimetrizable. In fact, d is a K-semimetric

for (X,7).
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CHAPTER 1V

NEIGHBORHOOD CHARACTERIZATIONS
1. Neighborhood Structures

In this chapter our study seeks to establish neighborhood
characterizations for the topological spaces under consideration
in this work. Historically, Frechet [16] initiated this study, and

Hausdorff [24] recorded and added to the study.

For our work, we introduce a definition.

IV.1.1 Definition. A collection of sets {U,(p):n € N, p € X} 15 a

neighborhood structure for (X,T) iff p € Uy(p) € T and U,.,(p)

C Un(p), for every n € N.

We observe that:

IV.1.2 Theorem. If {U,(p):n € N, p € X} i1s a neighborhood
structure for (X,7J) such that:

for every sequence {x,}, whenever x, € U,(p) for

every n € N, then x,, = p (in 7),

then {U,(p)} 1s a local base for p in (X,T).
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IV.1.3 Corollary. A topological space (X,7T) is first countable
Iff there is a neighborhood structure {U,(p):n € N, p € X} for

(X,T) such that if x,, € U, (p) for every neN, then x,—p (in T).

Throughout this chapter we seek to characterize

topological properties with theorems analogous to this one.
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2. Semimetrizable Spaces

We begin with a characterization of semimetrizable
spaces and proceed to find characterizations for more

restricted semimetrizable spaces.

IV.2.1 Theorem. A topological space (X,7T) is semimetrizable
iff there is a neighborhood structure {U,(p): n € N, p € X} for

(X,7T) such that:
(1) N{Uu(p): n € N} = {p}
(i) if x, € U,(p), then x, = p (in T); and
(iii) if p € U,(x,), then x, — p (in T).

Proof. Suppose d is a semimetric for (X,T). For n € N, p € X,
let U,(p) = intgSy4(p,1/2"). Then {U,(p):n € N, p € X} is a
neighborhood structure for (X,7T) with properties (1) - (ii1).
Conversely, suppose that {U,(p):n € N, p ¢ X} 1s a
neighborhood structure for (X,T) with properties (i) - (i11).

Define a distance function d for X as follows:
d(p,q) = 1/2", where n = min{k: p ¢ U,(q) and q ¢ U,(p)}.
Since U,(p) C S4(p,1/2") and {U,(p): n € N} is a local base for p

in (X,7), it follows that (X,T) is first countable and x,—p (in
T) iff d(x,,p)—0. Thus, d is a semimetric for (X,T).
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1V.2.2 Remark. Factorization theorems

This theorem illustrates the attempts of the "Jones
School” to create theorems that "factor” topological properties;
see McAuley [41], and Heath [26]. Our theorem and its proof is
suggested by the work of Heath.

To further illustrate this factorization, we note that:
(a) A topological space (X,T) 1s a Ty-space if there 1s a
neighborhood structure (U, (p):n ¢ N, p ¢ X} for (X,T) with
[V.2.1(1), that is, N{U(p): n € N} = {p}.

We have already noted:
(b) A topological space (X,T) is first countable iff there 1s a
neighborhood structure {U.(p):n € N, p € X} for (X,T) with
IV.2.1(11), that 1s, if x €U, (p) for every neN, then x,—p (in T).

Following Hodel [31], we define:
(c) A topological space (X,T) is semistratifiable iff there is a
neighborhood structure {U,(p): n € N, p € X} for (X,7) with
IV.2.1G1), that s, if p € Uy(x,), then x, = p (in T).

Thus we have "factored” the concept of semmimetrizable 1n
our Theorem IV.2.3 as follows:
A topological space (X,7T) 1s semimetrizable iff it is

(a) a Ty-space that is

(b) first countable and

(c) semistratifiable.
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Finally, note that the notion of semistratifiability was
introduced by Michael as a derivative of stratifiable spaces [5].
Stratifiable 1s Borges' terminology for Ceder's "Mz-spaces”.
Semistratifiable spaces are studied by Heath's student, Geoffrey

Creede, in [13].

1V.2.4 Corollary. Other factorization theorems

(a) A topological space (X,T) is a first countable T;-space
iff there are neighborhood structures for (X,T) with IV.2.1()
and ().

(b) A topological space (X,T) 1s a first countable
semistratifiable space 1iff there are neighborhood structures for
(X,T) with IV.2.1(ii) and (iii).

(c) A topological space (X,T) is a semistratiliable T;-
space if there are neighborhood structures for (X,T) with

[V.2.134) and (iii).

Proof. We illustrate the nature of the proofs by proving (a).
The others follow similarly. Suppose (X,7T) is a first countable
T,-space. For each p € X, let {U,(p): n € N} be a local base for
p in (X,7) with U_,4(p) ¢ U,(p) for every n € N. Then {U,(p):
n € N, p € X} is a neighborhood structure for (X,7) with
IV.2.1(1) and (ii).

Conversely suppose there i1s a neighborhood structure
{Us(p): n € N, p € X} for (X, T) with IV.2.1(1), and a
neighborhood structure {V,(p): n € N, p € X} for (X,T7) with
IV.2.1(i). For each n € N and p € X, let G,(p) = U, (p) N V, (p).
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Then {G,(p):n € N, p € X} 1s a neighborhood structure for (X,7T)
with [V.2.1(1) and (ii). Therefore (X,T) i1s a first countable T;-

space.

Our next theorems strengthen the separation property for
semimetrizable spaces and continue to provide factorization

theorems.

[V.2.5 Theorem. A topological space (X,T) is Hausdorff and
semimetrizable iff there is a neighborhood structure {U, (p): n €
N, p € X} for (X,T) such that:

(i)  nN{U.(p):n e N} = {p)}

(1) if x, € U,(p), then x, = p (in T7); and

(iii) if p € U,(x,), then x, — p (in T).

Proof. Note first that (X,T) is Hausdorff iff p = q implies that
there is a G € T such that p € G and q ¢ G. Now the proof

follows as in Theorem IV.2.1.

IV.2.6 Theorem. A topological space (X,7) is regular and
semimetrizable iff there is a neighborhood structure {U,(p): n €
N, p € X} for (X,7T) such that:

(1) n{U,(p):n € N} = {p};

(1)  for every n € N, there is an m 2> n such that

Un(p) € U, (p);
(i) if x, € U,(p), then x, — p (in T); and
(in) if p € Uy(xy,), then x, = p (in T).
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Proof The useful local characterization here 1s that (X,7) is
regular iff p € G € T implies there is an H € T such that p € H
¢ H¢ G From this fact, the proofs follow easily, as In

Theorem 1V.2.1.

We now turn our attention to the characterization of K-
semimetrizable spaces. This requires a strengthening of

condition (1).

IVv.2.7 Theorem. A topological space (X,T) 1is K-

semimetrizable iff there is a neighborhood structure {U,(p): n €
N, p € X} for (X,7T) such that:

(1) For disjoint compact A,B ¢ X, thereis an n € N such
that U, [A] N B = &, where U, [A] = U{U,(a): a € A}

(i)  if x, € U,(p), then x, — p (in T); and

(1) if p € U,(x,), then x, — p (in T).

Proof. Suppose d is a K-semimetric for (X,T). For each n ¢
N, p € X, let Uy (p) = intyS4(p,1/27). Next suppose that A,B ¢ X
are disjoint and compact. Since d is a K-semimetric for (X,7)},
d[A,B] > 0, say d[A,B] > 1/2". Thus S4lA,1/2") N B = &
(otherwise if x € S4[A,1/2") N B, then d(x,a) < 1/2" for some a
€ A where x € B, which implies that d[A,B] ¢ 1/2", a

contradiction). It follows that U,[A] = uU{U,(a): a ¢ A}
U{intgS4(a,1/2"): a € A} ¢ S4lA,1/2") and therefore U, [A] N B
= &. Thus (i) - (iii) hold.
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Conversely suppose there 1s a neighborhood structure
{Up(p):n € N, p € X} for (X,T) with properties (1) ~ (111). Define

a distance function d as follows:
d(p,q) = 1/2", where n = min{k: p ¢ Uy(q) and q ¢ U,(p)}.

Then d 1s a semimetric for (X,7). To show that d is a K-

distance function, suppose A N B = &. By (1), there are n,,n, ¢
N such that U, [A] N B = & and A N Upn[Bl = @. Letn

max{n,,ny}. Then U JJA] N B =@ and AN U,Bl = &. Ifac A
and b € B, then a ¢ U/ [B] and b ¢ U_[A] so that k' = min{k: a ¢
Uk(b) and b ¢ Ug(a)} < n. Thus 1/2% < 1/2% = d(a,b). This
property holds for any a € A, b € B, so d[A,B] = 1/2". Since d

separates disjoint compact sets, d is a K-semimetric for (X,7).

1V.2.8 Remark. Note that since IV.2.7(i) implies that (X,7) 1s
Hausdorff, we still have N{U, (p): n € N} = {p}. This theorem
provides an alternative proof to Theorem 1.2.13(i), that is, any

K-semimetrizable space is Hausdorff.

We conclude this section with a characterization of open

semimetrizable spaces.

IV.29 Definition. A topological space (X,7) is open
semimetrizable iff there is a semimetric d for (X,7) such that
Aq¢C T.
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1V.2.10 Theorem. A topological space (X,7) Is open
semimetrizable iff there i1s a neighborhood structure (U, (p): n ¢
N, p € X} for (X,T) such that:

(i) N{U,(p): n € N} = {p);

(i) if x, € Uy(p), then x, — p (in T); and

(i) p e Uy(q) iff g € U (p).

Proof. Suppose that d is an open semimetric for the topological
space (X,T). For each n € N, p € X, let U, (p) = Sy(p,1/27).
Then {U,(p): n € N, p € X} is a neighborhood structure for
(X,7T) with properties (i) - (iil). Note that property (iil) make
properties (i1) and (iii) of the previous theorems in this section
equivalent.

To prove the converse, define a distance function d as

follows:

d(p,q) = 1/2", where n = min{k: p ¢ U,(q)}.

Since U,(p) = S4(p,1/2"), we conclude that d is a semimetric

for (X,T) and, hence, (X,7T) is open semimetrizable.
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3. Developable Semimetrizable Spaces

Here we seek to characterize the developable
semimetrizable spaces we have studied 1n this work. We begin
with a neighborhood characterization of developable

semimetrizable spaces.

1IV.3.1 Theorem. A topological space (X,7) 1s developable

semimetrizable iff there 1s a neighborhood structure {U,.(p): n ¢
N, p € X} for (X,7T) such that:
(i) N{U,(p):n € N} = {p}; and

(1) if x,, p € Upyly,) for some y, € X, then x,, — p (in 7).

Proof Suppose d is a developable semimetric for (X,T). For
each p € X, and n € N, choose an open set G,(p) such that
84[G,(p)] < 1/2". Let U,(p) = N{G(p): 1 = 1,2, ... n). Then
{Up(p): n € N, p € X} is a neighborhood structure for (X,7) with
conditions (i) and (ii).

Conversely, suppose that {U,(p):n € N, p € X} 1s a
neighborhood structure for (X,7) with conditions (1) and (i1).
Let U, = {U,(p): p € X}. One has immediately:

(11") if x, € st(p,U,) for each n € N, then x,—p.

Thus, from IV.1.2, {st(p, U,): n € N} is a local base for p In
(X,7); consequently,
{p} = N{stlp, U,): n € N}, since N{U,(p): n € N} = {p}.
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Now define a distance function d for X as follows:

d(p,q) = 1/2", where n = min{k: p ¢ st(q,U,))}.

Since Sy(p,1/27) = st(p,U,), d is a semimetric for (X,T). Each U

€ U, has diameter less than 1/27; therefore, d 1s developable.

1V.3.2 Remark. Concerning developable spaces
Recall (see Remark 11.3.2) that a topological space (X,T) 1s

developable iff there i1s a sequence {3,} of open covers such
that:

for any p € X, {st(p,3,): n € N} is a local base for p.

Thus, from our proof, we note that:

(a) a topological space (X,T) is developable iff there is a
neighborhood structure {U,(p): n € N, p € X} for (X,T) with
IV.3.1(01), that is if x,, p € U,(y,) for some y, € X, then x, = p
(in T).

Hence,

(b) a topological space (X,T) is developable semimetrizable

iIff 1t 1s a developable T,-space.

As In Section 1 of this chapter, we continue our study by

strengthening the separation property.
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[IV.3.3 Theorem. A topological space (X,T) i1s developable
semimetrizable and Hausdorff iff there is a neighborhood
structure {U,(p): n € N, p € X} for (X,T) such that:

(1) n{U,(p):n ¢ N} = {p}; and

(1) if x,, p € Uy(y,) for some y, € X, then x, — p (in T).

Proof. We again use the local characterization for Hausdorff

spaces, and the proof follows easily, as in Theorem 1V.3.1.

IV.3.4 Corollary. A topological space (X,T) is developable

semimetrizable and Hausdorff iff it i1s a developable, Hausdorff

space.

1V.3.5 Remark. Another Proof of Hodel's Theorem (IV.3.3)

First note that (i) and (ii) of Theorem [V.3.3 are
equilvalent to:

(i) {p} = N{st{p,U,): n € N} and

(i) af x, € st(p,U,) for each n € N, then x, clusters at p.
But, (i) holds iff (X,7) has a Gg"-diagonal, and in the presence

of (1), (i1') is equivalent to (X,T) being a wA-space.
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IV.3.6 Theorem. A topological space (X,T) is regular and

developable semimetrizable iff there is a neighborhood
structure {U,(p):n € N, p € X} for (X,T) such that:

1) n{U,(p):n € N} = {p};

(1) for every n € N, there is an m 2 n such that

Um(p) € U,(p); and

() 1of x,, p € Up(y,) for some y, € X, then x, — p (in T).

Proof We again use the local characterization for a regular

space, and the proof follows easily as in Theorem [V.3.1.

IV.3.7 Corollary. A topological space (X,7T) is regular and

developable semimetrizable iff it is a Moore space, l.e., it is

regular, Hausdorff and developable.

[V.3.8 Open Question. Note that we have characterized

developable, K-semimetrizable spaces. Namely,
(1)  for disjoint compact A,B ¢ X, thereis an n € N such
that U [A] N B = &, where U [A] = U{U_.(a): a € A} and
(1) if x,, p € U,(y,) for some y, € X, then x, — p (in T).
An open question 1s to find a neighborhood characterization for

K-developable semimetrizable spaces.
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4. ¥-spaces

The class of ¥-spaces has a long history as one
generalization of metric spaces. Interest in these spaces was
sparked by Ribeiro's false proof of what became the y-space
conlJectuyre: 1s every Hausdorff ¥-space quasimetrizable? Note
that if this conjecture had been true, it would have extended
Frink's metrization theorem to a quasimetrization theorem.
However, Fox [18] has constructed a completely regular
counterexample to this conjecture.

We begin with a neighborhood characterization of these

spaces.

IV.4.14 Definition. (X,7) 1s a x-space [32] iff there 1s a
neighborhood structure {U,(p): n € N, p € X} for (X,T) such
that if x, € U,(y,) and y, € U,(p) then x, — p (in T).

IV.4.2 Theorem. A topological space (X,T) i1s a ¥-space 1ff
there is a neighborhood structure {(U,(p): n € N, p € X} for
(X,T) such that:

(1) for disjoint K,F ¢ X, K compact, F closed, there 1s an
n € N such that U [KIN F = &, and

(i)  if x, € Uu(p), then x, — p (in T).
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Proof. Suppose {U,(p): n € N, p € X} 1s a neighborhood
structure for (X,7) as in IV.4.1. Then condition (1) follows
immediately. If condition (i) fails, then there are disjoint K,F ¢
X, K compact, F closed such that for every n € N, U [K] N F =
@. Thus, there are sequences {x,} and {y,} such that x, ¢

Uy, x, € F, and y,, € K. Since K i1s compact, thzre 1s a
subsequence {ynk} of {y,} which converges to p € K. Since

Xp, € Uk(ynk),ynke U,(p), and (X,T) is a ¥-space, Xn 2P € F.

Moreover, since xnke F and F 1s closed, we have p € F. Thus,

KnNnF = &, which 1s a contradiction.

To prove the converse, let {U,(p):n € N, p € X} be a
neighborhood structure for (X,T) with conditions (i) and (i1).
Our claim is that (X,T) 1s a ¥-space. Otherwise, for each n € N,
there is x, € U,(y,) and y, ¢ U, (p), but x,, # p (in T). Since

Vn € U,(p) for every n € N, y,—p (in 7). However, x,, # p.
Thus, there i1s an open set G, containing p, such that G N {xnk:

k € N} = & and ynke Unk(p) for some subsequence {xny} of
{x,}). If weletF =X - GandK = {ynk: Yn, € G} U {p}, then Xn,
€ Unk[K] N F for every k € N. Hence, U [K] N F = & for every

n € N, which 1s a contradiction.
Hodel has shown that a semistratifiable ¥-space 1is

developable. We show 1n the following theorem that, for

Hausdorff spaces, we can say more.
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IV.4.3 Theorem. If a topological space (X,T) is Hausdorff,

semistratifiable and a ¥-space, then it is K-semimetrizable and

developable semimetrizable.

Proof. Suppose (X,7) is a Hausdorff, semistratifiable ¥-space.
Then there is a neighborhood structure {U,(p): n € N, p € X}
for (X,7T) such that:

(1) N{U,(p):n € N} = {p}; and
(i) if p € Uy(x,), then x,, — p (in T).

Again let U, = {U,(p): p € X} and define two distance functions

d; and d, for X as follows:

dy(p,q) = 1/2", where n = min{k: p ¢ U,(q) and q ¢
Uy(p)}, and
d,(p,q) = 1/2", where n = min{k: p € st(q,U,)}.

It follows that d; is a K-semimetric for (X,7), and d,is a

developable semimetric for (X,T).

The proof of Theorem IV.4.3 follows easily from Theorem
IV.4.2 and Remark IV.4.3. However, our interest stems from
the construction of two distinct semimetrics for (X,7T), one a K-

semimetric and the other a developable semimetric.

To conclude this section, we turn our attention back to

several of the examples from Chapter I.
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IV.4.4 Remark Concerning Theorem [V.4.3
(a) Since Burke's Example (I.1.13) 1s Hausdorff and

developable semimetrizable, but not K-semimetrizable, it 1s not
a ¥-space.

(b) Theorem 1V.4.3 fails for Ty-spaces. Consider the
Shore-Uhland Example (1.1.8). Letting U,(p) = Sy(p,p/2"), one
shows that 1t 1s a ¥-space. It 1s developable semimetrizable,
but not K-semimetrizable. Therefore, the Shore-Uhland Space
1s a counterexample to the conjecture that a T, developable
semimetrizable ¥-space 1s K-semimetrizable.

(c) Since the Isbell-Mrowka Spaces (1.1.14) are Hausdorff
semistratifiable ¥-spaces which are not K-developable
semimetrizable, there need not be a single distance function

which 1s both developable and K-semimetrizable.
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CHAPTER V
CONCLUSION

In Chapter I we established the foundations for this work
by presenting definitions and illustrative examples. The focus
centered on developable semimetrizable, K-semimetrizable, and
1-continuously semimetrizable spaces.

Chapter [l shows how our approach can establish the
proofs for the classical metrization theorems by explicitly
constructing metrics.

In our search for new results 1n semimetrizable spaces,
we looked for characterizations of the spaces we studied.

In Chapter IIl we found characterizations which
developed  historically from the Alexandroff-Urysohn
Metrization Theorem (11.3.1). These characterizations involve
sequences of covers and diagonal conditions.

Alternatively, we found, in Chapter IV, characterizations
that are given In terms of neighborhood structures. Such
characterizations represent the spirit of the work of Frechet
and Hausdorff. Interest in these theorems sterms from the
‘factorization” quality of the results.

In retrospect, we have found new characterizations or
improved old characterizations of developable semimetrizable

spaces and many other more restricted kinds of developable
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spaces. QOur study of 1-continuously semimetrizable spaces
remains quite incomplete.

Among others, we are left with the following open
questions:

(1) Find a characterization, like those in Chapter IlI, for
l-continuously-developable (or developable-1-continuously)
semimetrizable spaces.

(2) Find a neighborhood characterization for:

(a) 1-continuously semimetrizable spaces and
(b) K-developable semimetrizable spaces.

(3) We have found that separable, 1-continuously
semimetrizable spaces are K-semimetrizable. Does the result
hold if separable 1s omitted?

(4) Under what restrictions (if any) are the spaces we

have considered ¥-spaces?
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