
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Master's Theses and Capstones Student Scholarship 

Winter 2020 

Why Does This Entity Matter? Finding Support Passages for Why Does This Entity Matter? Finding Support Passages for 

Entities in Search Entities in Search 

Shubham Chatterjee 
University of New Hampshire, Durham 

Follow this and additional works at: https://scholars.unh.edu/thesis 

Recommended Citation Recommended Citation 
Chatterjee, Shubham, "Why Does This Entity Matter? Finding Support Passages for Entities in Search" 
(2020). Master's Theses and Capstones. 1452. 
https://scholars.unh.edu/thesis/1452 

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire 
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized 
administrator of University of New Hampshire Scholars' Repository. For more information, please contact 
Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F1452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/1452?utm_source=scholars.unh.edu%2Fthesis%2F1452&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


WHY DOES THIS ENTITY MATTER? FINDING SUPPORT PASSAGES

FOR ENTITIES IN SEARCH

BY

SHUBHAM CHATTERJEE

MSc Computer Science, University of Calcutta, India, 2017

THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Computer Science

December, 2020



ALL RIGHTS RESERVED

©2020

Shubham Chatterjee

ii



This thesis has been examined and approved in partial fulfillment of the requirements for

the degree of Master in Science in Computer Science by:

Thesis Director, Laura Dietz, Assistant Professor

Department of Computer Science

Marek Petrik, Assistant Professor

Department of Computer Science

Elizabeth Varki, Associate Professor and Graduate Pro-

gram Coordinator

Department of Computer Science

On April 24, 2020

Original approval signatures are on file with the University of New Hampshire Graduate

School.

iii



TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT ix

1 PRELIMINARIES 1

1.1 What is an Entity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Properties of Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Representing Properties of Entities . . . . . . . . . . . . . . . . . . . . . . . 4

2 INTRODUCTION TO SUPPORT PASSAGE RETRIEVAL 6

3 RELATED WORK 13

3.1 Support Passage Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Entity Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Ad-Hoc Document Retrieval Using Entities . . . . . . . . . . . . . . . . . . . 17

3.4 Entity Relation Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 APPROACH 23

4.1 Overarching Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Constructing the Entity Profile . . . . . . . . . . . . . . . . . . . . . 25

4.2 Basic Retrieval and Expansion Models . . . . . . . . . . . . . . . . . . . . . 26

4.3 Main Approach: Weighted Entity Prominence (Weighted EPROM) . . . . . 27

iv



4.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Replacing the local context with the global context of the target entity . . . 30

4.6 Entity Salience for Support Passage Retrieval . . . . . . . . . . . . . . . . . 30

4.6.1 Methods Based on Entity Salience . . . . . . . . . . . . . . . . . . . . 31

5 EVALUATION, RESULTS, AND DISCUSSIONS 33

5.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Evaluation Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Input Entity Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.3 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.4 Candidate Passage Retrieval for Query . . . . . . . . . . . . . . . . . 35

5.2.5 Input Entity Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.6 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.7 Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.8 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.9 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.10 Difficulty Tests and Helps-Hurts Analysis. . . . . . . . . . . . . . . . 37

5.3 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Baselines from Blanco et al. . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Other Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.1 RQ1: Frequently Co-Occurring Entities . . . . . . . . . . . . . . . . . 43

5.4.2 RQ2: Entity Salience . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4.3 RQ3: Local Context Versus Global Context . . . . . . . . . . . . . . 48

6 CONCLUSION 51

LIST OF REFERENCES 53

v



LIST OF TABLES

5.1 Performance with standard error of individual support passage ranking meth-

ods on BenchmarkY1-Train and BenchmarkY2-Test. The best performing

baselines and the best performing methods are in bold. . . . . . . . . . . . . 41

5.2 Learning-To-Rank combination of all features including subsets on BenchmarkY1-

Train and BenchmarkY2-Test. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Results on BenchmarkY1-Train for subset of entities with at least one salient

mention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



LIST OF FIGURES

2.1 An example support passage for the entity Hypertension relevant to the in-

formation need Diabetes. This support passage explains how the entity is

related to the information need. Without this passage, the entity ranking

does not make much sense to a person who does not have knowledge about

Hypertension and Diabetes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Example query and entity with support passage. . . . . . . . . . . . . . . . . 10

2.3 Two example passages mentioning the entity Narendra Modi in context of the

query COVID-19 in India. Passage 1 is salient whereas Passage 2 is not. . . 11

4.1 Example Entity Context Document (ECD) for query-entity pair shown in Fig-

ure 2.2. For the query COVID-19 in India, the query-relevant passages men-

tioning the entity Narendra Modi are A and C. These passages are combined

together into one composite ECD shown on the right. This ECD contains the

candidate support passages (A and C) for the entity Narendra Modi, and the

entities such as Amit Shah, India, and BJP which co-occur with Narendra

Modi in it’s local context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Difficulty-test for MAP, comparing Blanco et al. to our proposed method

Weighted EPROM. We observe that for the more difficult query-entity pairs

according to the performance of Blanco et al. (0-50% on left), ranking support

passages using our method Weighted EPROM can help the task. . . . . . . 43

vii



5.2 Example query and entity with top ranked support passage found by method

Weighted EPROM. The frequently co-occurring entities with the entity Ge-

netic Disorder found in the passage are in bold. . . . . . . . . . . . . . . . . 45

5.3 Difficulty-test for MAP, comparing a L2R system using all features except

those based on co-occurring entities to one which uses all. . . . . . . . . . . . 46

5.4 Difficulty test for MAP, comparing different L2R systems. Difficulty percentile

is according to performance of All. . . . . . . . . . . . . . . . . . . . . . . . 49

viii



ABSTRACT

WHY DOES THIS ENTITY MATTER? FINDING SUPPORT PASSAGES FOR

ENTITIES IN SEARCH

by

Shubham Chatterjee

University of New Hampshire, December, 2020

In this work, we propose a method to retrieve a human-readable explanation of how a

retrieved entity is connected to the information need, analogous to search snippets for doc-

ument retrieval. Such an explanation is called a support passage.

Our approach is based on the idea: a good support passage contains many entities

relevantly related to the target entity (the entity for which a support passage is needed).

We define a relevantly related entity as one which (1) occurs frequently in the vicinity of the

target entity, and (2) is relevant to the query. We use the relevance of a passage (induced by

the relevantly related entities) to find a good support passage for the target entity. Moreover,

we want the target entity to be central to the discussion in the support passage. Hence, we

explore the utility of entity salience for support passage retrieval and study the conditions

under which it can help. We show that our proposed method can improve performance as

compared to the current state-of-the-art for support passage retrieval on two datasets from

TREC Complex Answer Retrieval.

ix



CHAPTER 1

PRELIMINARIES

In the modern world, search engines are an integral part of human lives. We use Google,

Bing, Baidu, etc. every moment as the main gateway to find information on the Web. With

the smartphones becoming ubiquitous, we have increasingly come to depend on search func-

tionality to find contacts, email, notes, calendar entries, apps, etc. The field of Information

Retrieval (IR) is concerned with developing technology for matching information needs with

information objects. According to Manning et al. [1],

Definition 1: Information Retrieval (IR) is finding material (usually docu-

ments) of an unstructured nature (usually text) that satisfies an information

need from within large collections (usually stored on computers)

Our query, i.e., the information need, may range from a few simple keywords (e.g., dark

chocolate health benefits) to a proper natural language question (e.g., Who are the members

of Eagle? ). The search engine then displays a ranked list of results, i.e., information objects

relevant to our query. Traditionally, these items were documents. In fact, IR has been seen as

synonymous with document retrieval by many. Traditional document retrieval models such

as Term Frequency Inverse Document Frequency(TF-IDF) [2–6], BM25 [7] and Language

Models [8] are term based models and do not have any notion of semantics in them. For

example, TF-IDF is a statistical measure used to evaluate how important a word is to a

document in a collection or corpus. The importance increases proportionally to the number

of times a word appears in the document but is offset by the frequency of the word in

the corpus, which helps to adjust for the fact that some words appear more frequently in
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general. Similary, BM25 is a bag-of-words(text represented as the bag (multiset) of its words,

disregarding grammar and even word order but keeping multiplicity) retrieval function that

ranks a set of documents based on the query terms appearing in each document, regardless of

their proximity within the document whereas Language Models are probability distributions

over sequences of words where a separate language model is associated with each document

in a collection and documents are ranked based on the probability of the query Q in the

document’s language model Md (P (Q|Md). None of these models consider the semantic

relationship between various places, events, organizations, etc. in the query or the document.

However, there has been a dramatic shift in paradigm in the last decade with the focus

shifting to leveraging the rich semantic information available in the form of entities. Analysis

of web search query logs has shown that a large portion of the queries now contain some

entity, reflecting an increase in the demands of users on retrieving relevant information about

entities such as persons, organizations, products, etc. Advances in information extraction

allow us to efficiently extract entities from free text. Since an entity is expected to capture

the semantic content of documents and queries more accurately than a term, there has

been much research in using entities to aid document retrieval and ranking. In this report,

we provide a brief overview of the existing methods in literature for leveraging entities for

passage retrieval. We then describe our current work in progress on explaining query-entity

relationships and then using these explanations to derive a better passage ranking.

1.1 What is an Entity?

Informally, we call an entity as a “thing” or “object” that one can refer to such as people,

locations, products, organizations, and events. However, consider the entity Apple. Does

this refer to the fruit or the company? Identifying entities is an important and difficult task

addressed by people in both the Natural Language Processing (NLP) as well as IR community

(although traditionally, the task has been looked upon as more of a NLP problem than an

IR problem). Balog [9] defines an entity as follows, taking inspiration from the Entity-
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Relationship (ER) Model proposed by Chen [10] in 1976:

Definition 2: An entity is a uniquely identifiable object or thing, characterized

by its name(s), type(s), attributes, and relationships to other entities.

We restrict our universe to some particular registry of entities, which we will refer to as the

entity catalog. Thus, we consider that an entity “exists” if an only if it is an entry in the

given entity catalog. Thus:

Definition 3: An entity catalog is collection of entries, where each entry is

identified by a unique ID and contains the name(s) of the corresponding entity.

1.2 Properties of Entities

We refer to all the information associated with an entity as the entity property. The following

are the most common entity properties:

• Entity Identifier. Each entity is associated with a unique identifier which helps to

identify an entity. Examples of entity identifiers from past IR benchmarking campaigns

include email addresses for people (within an organization), Wikipedia page IDs (within

Wikipedia), and unique resource identifiers (URIs, within Linked Data repositories).

• Name(s). Each entity is associated with a name. However, this name may not be

unique. For example, the entity name Apple can refer to either the organization or the

fruit. However, the ID associated with Apple, the organization is different from that

of the fruit, which helps to disambiguate the entity references.

• Type(s). Entities with similar properties are grouped together into a semantic type

called an entity type. The set of possible entity types are often organized in a hierarchi-

cal structure, i.e., a type taxonomy. For example, the entity Ed Sheeran is an instance

of the type “singer” which is a subtype of “person”.
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• Attributes. These are the characteristics or features of an entity. Each entity has

different attributes. For example, a person entity might have attributes such as date

of birth. place of birth, name, etc.

• Relationships. Relationships describe how two entities are associated to each other.

For example, the entities Barrack Obama and Michelle Obama are related by the

relation is married to.

1.3 Representing Properties of Entities

Consider the Wikipedia page of Barrack Obama. It contains information about him ranging

from his early life, education, early career in law to his rise to US Presidency. Hence, to us

humans, Wikipedia is a Knowledge Repository. According to Balog [9]:

Definition 4: A Knowledge Repository (KR) is a catalog of entities that con-

tains entity type information, and (optionally) descriptions or properties of enti-

ties, in a semi-structured or structured format.

Wikipedia is a classic example of a knowledge repository. Each article in Wikipedia is an

entry that describes a particular entity. Articles are also assigned to categories (which can be

seen as entity types) and contain hyperlinks to other articles (thereby indicating the presence

of a relationship between two entities, albeit not the type of the relationship). Wikipedia

articles also contain information about attributes and relationships of entities, but not in a

structured form.

With the development of knowledge repositories such as Wikipedia, a lot more infor-

mation about entities have become available but for machines, this knowledge needs to be

represented explicitly. A Knowledge Base(KB) is comprised of a large set of assertions about

the world. To reflect how humans organize information, these assertions describe (specific)

entities and their relationships. An AI system can then solve complex tasks, such as partic-

ipating in a natural language conversation, by exploiting the KB. According to Balog [9]:
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Definition 5: A Knowledge Base (KB) is a structured knowledge repository

that contains a set of facts (assertions) about entities.

Conceptually, entities in a knowledge base may be seen as nodes of a graph, with the re-

lationships between them as (labeled) edges. Thus, especially when this graph nature is

emphasized, a knowledge base may also be referred to as a Knowledge Graph (KG).
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CHAPTER 2

INTRODUCTION TO SUPPORT PASSAGE RETRIEVAL

Search engines have become ubiquitous in the present world, and search engines which rank

entities are integrated into large-scale commercial services such as Facebook (which allows

us to search for people), Amazon (which allows us to search for products), etc. Document

retrieval systems such as Google display a snippet of text along with the “ten blue links”

in response to a user’s information need to help the user decide if they are interested in the

content of the document pointed to by the link. However, the entity ranking systems lack

the “snippet retrieval” feature which is ubiquitous in document ranking systems. Search

snippets play an important role in guiding users to the right documents [11]. Large-scale

knowledge bases (such as Freebase and DBpedia) contain facts about entities such as their

attributes and relations to other entities. While retrieval of entities from knowledge graphs

is well-studied, it is an open problem how to extract search snippets for knowledge graph

entities, especially when the short description of the entity is not a meaningful explanation

of relevance [12].

Several studies show that 40-70% of all web searches target entities [9,13]. The informa-

tion need may be a factoid question such as Who is the Prime Minister of the UK? 1 which

requires the response to consist of only one entity, or a short information need which requires

the retrieval of all topically related entities. Such short information needs are best answered

by giving the user a ranking of relevant entities. Entity ranking as a task has been exten-

sively studied in the past [14–18] and several applications display a ranking of entities for a

1In this paper, we use the Computer Modern font for queries and Latin Modern Sans font for entities.
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user information need. For example, TextMed 2 is a search engine which displays a ranking

of entities for a medical information need such as Diabetes, whereas the search engine on

Amazon 3 displays a ranking of entities for an information need such as Best Cameras for

YouTube Videos.

For information needs such as the ones above, entities are retrieved and ranked according

to their relevance to the given information need. Many times, the reason for the relevance,

that is, the relationship between the information need and the retrieved entity may not be

apparent from the ranking. In such cases, it may be more useful to present a short text

snippet explaining how the retrieved entity is related to the information need along with the

retrieved entity. As an example, consider the medical information need Diabetes mentioned

above. Using TextMed displays the ranking of entities as shown in Figure 2.1. However, for

a user unfamiliar with the medical domain, it is not clear from this ranking how or why the

entity Hypertension at rank 1 is related to the information need Diabetes. In such a scenario,

displaying a short text snippet such as the one shown in Figure 2.1 can help to clarify the

relationship between Diabetes and Hypertension. It may also help the user decide if this entity

is of interest to them. As another example, in Figure 2.2, the passage explains how the entity

Narendra Modi is affecting the pandemic situation in India through his new policy related to

the pandemic, and hence provides an explanation of how or why Narendra Modi is relevant

to the information need COVID-19 in India. Without this supporting passage, a user might

not understand the relation of the Prime Minister of India to an ongoing pandemic.

Tombros et al. [11] have shown that in document retrieval systems, presenting the users

with a short textual description summarizing the document helps them judge the importance

and utility of the results. Analogously, we want to present a short passage to the user which

explains why the entity is relevant to the information need.

In this regard, it is important to note that it has been shown by Dietz et al. [12] that in less

than 50% cases, the entity description from a knowledge base or the Wikipedia article of the

2http://www.textmed.com/
3http://www.amazon.com/
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Figure 2.1: An example support passage for the entity Hypertension relevant to the in-
formation need Diabetes. This support passage explains how the entity is related to the
information need. Without this passage, the entity ranking does not make much sense to a
person who does not have knowledge about Hypertension and Diabetes.

entity are useful as explanations of entity relevance to query. Similarly, the organizers of the

TREC Complex Answer Retrieval (CAR) [19] track found that the lead paragraph from the

Wikipedia article of an entity is not a good explanation for the relevance of the entity, given

the query. The participants at the entity retrieval task of TREC Complex Answer Retrieval

(CAR) track were asked to submit entity rankings for a query, along with passages from

Wikipedia which explain how the entity is related to the query. However, not all participants

submitted results with entity explanations. Hence, during assessment, the assessors were

provided with the lead paragraph from the Wikipedia article of the corresponding entity. It

was found that the lead paragraph from the Wikipedia article of the entity was generally

not relevant [19].

Support Passage Retrieval Task. Given a user’s information need Q; an external

system predicts a ranking of entities E. For every relevant entity ei ∈ E, we want to retrieve

and rank K passages sik which explain why this entity ei is relevant for Q. We call the entity

ei target entity, and the passage sik entity support passage.

The importance of this task is also shown by the fact that recently, entity support passage

8



retrieval has been the subject of various tracks at conferences such as the Text Retrieval

Conference (TREC) and Forum for Information Retrieval Evaluation (FIRE). In particular,

the entity retrieval task of TREC Complex Answer Retrieval (CAR) track [20] is to retrieve

Wikipedia entities in response to a query, along with passages from Wikipedia which explain

how the entity is related to the query. Similarly, the current edition of TREC News [21] in

2020 4 offers a Wikification task where the goal is to link the entities in text to an external

resource such as Wikipedia which provides more information on the entity. The Retrieval

From Conversational Dialogues (RCD) 5 track at FIRE 2020 provides a passage retrieval

task where given an excerpt of a dialogue, the task is to return a ranked list of passages from

Wikipedia containing information on the entities in the dialogue.

Such a support passage retrieval system may also be utilized in a larger end-to-end

information retrieval system which aims to answer information needs of users about (yet)

unfamiliar topics such as Coronavirus Disease 2019 and present them with a Wikipedia-like

article on the topic. In fact, given a complex information need such as the one above, the goal

of CAR is the construction of an automated information retrieval system to retrieve, cluster,

and summarize, to organize relevant information. Topics (such as Coronavirus Disease 2019)

would have several facets (like “symptoms”, “diagnosis”, “prevention”, etc.) which would

need to be covered. A system which aims to create a Wikipedia-like article about the topic

would (1) retrieve relevant entities and passages, (2) cluster along relevant facets, and (3)

summarize each cluster with natural language generation. Here, we focus on the first step,

where relevant entities and passages are retrieved. In particular, we focus on the passage

retrieval step which retrieves passages relevant to the entity in the context of the query. We

envision that such support passages would then be clustered and summarized to generate

the Wikipedia-like article on the topic.

The current state-of-the-art for entity support passage retrieval [22, 23] uses methods

based on entity statistics such as frequency (number of candidate support passages mention-

4http://trec-news.org/
5https://rcd2020firetask.github.io/RCD2020FIRETASK/
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Query: COVID-19 in India
Target Entity: Narendra Modi
Entity Support Passage:
On 24 March 2020, the Government of India under Prime Minister Narendra
Modi ordered a nationwide lockdown for 21 days, limiting movement of the entire
1.3 billion population of India as a preventive measure against the COVID-19
pandemic in India.

Figure 2.2: Example query and entity with support passage.

ing the target entity), the KL-Divergence between the query and collection distributions,

relation extraction, etc. However, for support passage retrieval, it is essential to identify

the information about the entity which is relevant in the context of the given query. For

example, in Figure 2.2, the entity Narendra Modi has been mentioned in the support passage

in the context of his role as the Prime Minister of India. However, in some other passage, he

may be mentioned in context of his role as the Chief Minister of Gujrat (Gujrat is a state on

the west coast of India). The current state-of-the-art for support passage retrieval does not

model this. In this work, we identify the query-relevant entity information in query-relevant

passages mentioning the target entity ei to find support passages sik for the target entity.

For this, we use the other entities which frequently co-occur with the target entity. The

hypothesis is that a passage containing many entities which frequently co-occur with the

target entity and relevant to the query would also mention the target entity and would be

good support passage for the entity. We present a novel model called Entity Prominence

which uses the other entities which frequently co-occur with the target entity and show that

it achieves new state-of-the-art results on the task.

Several entity salience detection methods have been developed in recent years [24–26].

In addition to being relevant for the query Q, each support passage sik should mention the

target entity ei in a salient way. Salient means that the entity is central to the discussion in

the passage and not just mentioned as an aside. For example, given the query and entity in

Figure 2.2, consider the two passages in Figure 2.3. In this figure, Passage 1 discusses how

10



Passage 1. Indian Prime Minister Narendra Modi has extended the country’s
nationwide lockdown until May 3 in a bid to contain the continued spread of
the coronavirus, but said that some states which have avoided outbreaks may be
allowed to resume “important activities.”
Passage 2. Home minister Amit Shah said on Sunday that India, despite being
densely populated, had coped well with the Covid-19 crisis under Prime Minister
Narendra Modi while the health services of most developed nations collapsed
because of the pandemic. He added that there was no sense of panic in India
over the outbreak.

Figure 2.3: Two example passages mentioning the entity Narendra Modi in context of the
query COVID-19 in India. Passage 1 is salient whereas Passage 2 is not.

Narendra Modi is affecting the pandemic situation in India whereas Passage 2 just mentions

the entity on the side. We say that the entity Narendra Modi is salient in Passage 1 but not

in Passage 2. The current state-of-the-art for support passage retrieval does not consider

the salience of the target entity in the support passage. Hence, such methods might retrieve

Passage 2 in Figure 2.3 as a support passage for the entity Narendra Modi in Figure 2.2

although the entity is not central to the discussion in the passage and does not clarify the

relation between the query and the entity. Ideally, Passage 1 would be retrieved as the

support passage. We incorporate the salience of the target entity in a candidate support

passage. We show that these methods can achieve new state-of-the-art results on the task 6.

We explore the extent to which salience detection can help our task.

Contributions The contributions of this work are as follows:

1. We propose a new model for support passage retrieval called Entity Prominence. We

show that our method achieves new state-of-the-art results for support passage retrieval

by improving retrieval effectiveness by 80% (in terms of Mean Average Precision) on

average, on two publicly available datasets.

2. We show that entity salience is a useful indicator and can improve retrieval effectiveness

6In our work, we use the entity salience detection system from Ponza et al. [26] to predict the salience of
an entity in a given passage due to its superior performance on several datasets and its ease of use via an
API.
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by 70% (in terms of Mean Average Precision) on average on two publicly available

datasets.

3. We show that the performance on the task is dependent upon the type of background

information used. Using a background information about the target entity which is not

related to the query (such as the Wikipedia article of the target entity) can perform

well; however, the performance is inferior to using information from passages which

are relevant to the query and also mention the target entity.

Outline. The remainder of this thesis is organized as follows. Chapter 3 discusses some

related work on the topic. Chapter 4 presents our proposed method in detail. Chapter 5

presents a quantitative evaluation of our work. Finally, we conclude the thesis with Chapter

6.
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CHAPTER 3

RELATED WORK

3.1 Support Passage Retrieval

Blanco et al. [22] present a model that ranks entity support sentences with learning-to-

rank. They present several retrieval-based, entity-based and position-based methods and use

features based on named entity recognition (NER) in combination with term-based retrieval

models. Their approach consists of first segmenting the document into sentences and using

a sentence-entity matrix to represent the presence of an entity in the sentence. They frame

the problem as a ranking problem for triples of (sentence, query, entity), where ranking is

done in two ways: (1) using entity scores, and (2) using sentence scores. The sentence scores

come from a retrieval model such as BM25. They use several types of entity scores to rank

support sentences, such as: (1) sum of retrieval scores of entities in the sentence, and (2) the

distance between the last match of query and entity and the length of the sentence. Since

their work is the current state-of-the-art for the task, we include it as a baseline in our work.

Kadry et al. [23] use relation extraction using OpenIE for support sentence retrieval.

Their work studies whether relation extraction can help in support passage retrieval, and

the limitations of the current relation extraction approaches that need to be overcome. As

such, most of their features are relation-extraction and NLP based. These features are then

used in a learning-to-rank framework.

Blanco et al. use only retrieval-based and entity-based features whereas Kadry et al.

mainly focus on whether using relation extraction can help in support passage retrieval.

Both do not consider the role of the contextual entities, that is, entities which co-occur with
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another entity. In our work, we consider the role of these contextual entities in finding good

support passages by incorporating the relatedness of the co-occurring entities to the target

entity. Both works do not consider the salience of the entity while finding support passages,

nor do they identify query-relevant aspects of the entity. In this work, we incorporate entity

salience, and query-relevant entity aspects to find support passages.

3.2 Entity Retrieval

Given a keyword query, and an entity catalog E , the ad-hoc entity retrieval task is to return

a ranked list of entities in E , ranked by the relevance of each entity to the query [9]. This

relevance is inferred from a collection of unstructured and/or semi-structured data. A com-

mon approach to solving this problem is to represent each entity as a fielded document using

some entity description, and then utilize the extensive body of work on document retrieval.

There are two main groups of entity retrieval models: semi-structured models [27–35] and

learning-to-rank approaches [36–38].

Semi-Structured Models. These models utilize information from a large-scale knowledge

repository such as Wikipedia, which contain web pages dedicated to describing entities, to

represent the entity as a fielded document. Each field in the document consists of a specific

part from the semi-structured data being used, such as title, introductory text, names, etc.

Then, document retrieval methods are used to retrieve these document representations of the

entities. For example, Kaptein et al. [31] propose to utilize Wikipedia as a pivot for entity

ranking by treating each Wikipedia page as an entity. In this case, the title of the page

becomes the name of the entity, and the content of the page becomes the entity description.

To rank web entities given a query, they first associate target entity types with the query,

then rank the Wikipedia pages according to the similarity with the query and the target

entity types, and finally find web entities corresponding to the Wikipedia entities.

Balog et al. [30] utilize category information about an entity obtained from a user in a
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probabilistic framework, where the query and entity is represented as a tuple consisting of

a term-based model and a category-based model, both of which are represented using prob-

ability distributions. The entities are ranked using the similarity of these two distributions.

Similarly, Meij et al. [27] retrieve an initial candidate set of entities (they refer to them as

concepts) using the entity descriptions. Then, a supervised machine learning algorithm is

used to classify each candidate entity as relevant or not for the query. On the other hand,

Tonon et al. [29] propose a hybrid search system based on two components: (1) an inverted

index supporting full text search and, (2) a structured repository to maintain a graph rep-

resentation of the data. They utilize the inverted index-based search component to retrieve

an initial ranked list of entities, which is further refined using the structured repository by

selecting new entities or reinforcing the results obtained through the inverted index. More

recently, Garigliotti et al. [32] utilize the entity type information by using a generative prob-

abilistic model to rank entities for a query. The query is considered in both the term space

and type space.

There have also been approaches in literature which use the Markov Random Field

(MRF) [39] model to represent a joint distribution over the terms from an entity’s description,

and the information from a semi-structured data about the entity. The MRF was originally

proposed to model term dependencies for ad-hoc retrieval tasks. This model represents the

joint distribution over a set of random variables using an undirected graph, where the nodes

represent the random variables and the edges represent dependence semantics between them.

Raviv et al. [33] present an MRF-based model to model the various dependencies between

the query and entity. An entity is represented using the entity description, entity type and

entity name. Then, each of these entity representations is jointly modelled with the query

terms using three directed graphs. The first graph models the joint distribution of the entity

document with the query terms, the second graph models the joint distribution of the entity

type with the query target type, and the third graph models the joint distribution of the

entity name with the query terms. The final retrieval score of the entity is is estimated
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using a linear aggregation of the scores from the three graphs. More recently, Nikolaev et

al. [34] proposed the Parametrized Fielded Sequential Dependence Model (PFSDM) and

the Parametrized Fielded Full Dependence Model (PFFDM) as an extension to the Fielded

Sequential Dependence Model (FSDM) [28]. The FSDM is an MRF-based entity retrieval

model, which takes into account both the term dependencies and the document structure.

PFSDM assigns different weights to matches of different fields, query term types, and bia-

grams. Unlike PFSDM which accounts for only sequential dependencies between the query

terms, PFFDM accounts for all dependencies between the query terms. Hasibi et al. [35]

leverage the entity annotations in the queries for entity retrieval. Their method is based on

the MRF model wherein they introduce a new component for matching the linked entities

from the query.

Learning-To-Rank Approaches. These methods also use the information from a semi-

structured data; however, they treat them as features for a learning-to-rank system. For

example, Schuhmacher et al. [37] utilize the entity links in query-relevant web documents to

build on a document retrieval system and an entity linking tool. An initial candidate set

of entities for the query is built from the entity links contained in high-ranked documents

for the query. This initial candidate set is then re-ranked using a learning-to-rank method,

which uses several features based on the entity mention, the interaction of the query and

the entity mention, the interaction of the query with the entity, and the relation between

the entities in a knowledge base. Graus et al. [36] use the entity description obtained from

various sources to represent the entity as fielded documents, where each field corresponds

to content from one description source. This is done to address the vocabulary mismatch

problem between the queries and entities. Next, a classification-based entity ranker which

uses different features is trained to learn weights for these features and combine the content

from each field of the entity. More recently, Dietz [38] proposed ENT Rank, a learning-to-

rank model which utilizes the information about text for entity retrieval by defining neighbour
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relations between entities using the context of the entity. This results in a hypergraph with

the entities as nodes and the context-neighbour relations as edges.

In this work, we do not address the entity retrieval task. Rather, we assume that an

entity ranking is available as input to our system and we seek to embellish the entities in

this ranking with support passages explaining the relationship of the entity to the query.

Since our task is to rank passages according to relevance for both, the query and the entity,

we reuse some ideas found in the entity retrieval literature to find the relevance of a passage

for the entity. In particular, we treat the Wikipedia pages as entities and use the content

from the Wikipedia article to derive distributions over the terms and other entities in the

article. However, we also incorporate the salience of the target entity in a candidate support

passage, and the relatedness of the target entity to the other entities in its context, as well

as on its Wikipedia page. The focus is on using entity information for text retrieval.

3.3 Ad-Hoc Document Retrieval Using Entities

Since we utilize entity information for text retrieval, our problem is also related to the

problem of ad-hoc document retrieval where semantic information in the form of entities is

utilized for text retrieval. In this section, we review some methods available in the literature

for leveraging entities for the document retrieval task. The approaches in literature can be

grouped into three broad families as follows: Expansion-based, Projection-based and Entity-

based [9]. This particular order corresponds to the temporal evolution of research in this

area, where the tendency toward more and more explicit entity semantics is clearly reflected.

A component common to all approaches described in this section is finding semantically

related entities to a query. Three approaches are mainly used for this purpose: (1) Entities

mentioned in the query, (2) Entities retrieved from a knowledge base, and (3) Entities from

documents in an initial candidate set.
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Expansion-based Methods. These methods utilize entities as a source of expansion

terms to enrich the representation of the query. In query expansion, we retrieve an initial

candidate set of documents for the query and assume the top-k of this ranking to be relevant

for the query. We then expand the query using terms from these top-k documents and

retrieve documents using this expanded query. Akin to query expansion with terms, the

idea of entity-centric query expansion is to estimate the expanded query model θq by using

the set of query entities Eq. Meij et al. [40] propose a query expansion method based on

double translation: first, translating the query to a set of relevant entities, then considering

the vocabulary of terms associated with those entities as possible expansion terms to estimate

the expanded query model. Xiong et al. [41] use the entity description from a knowledge

base (Freebase) for the purpose of query expansion and rank documents using the expanded

query.

Another approach is to use an entity language model which captures the language usage

associated with the entity and represents it as a multinomial probability distribution over the

vocabulary of terms. Xu et al. [42] take a linear combination of term scores across multiple

entity fields. Meij et al. [40] suggest to sample the terms from documents mentioning the

entity if descriptions are not available in the knowledge repository. Dalton et al. [43] propose

the Entity Context Model (ECM) where a small context around the entity (such as a sentence

mentioning the entity or a small window around the entity mention) is considered and all such

contexts aggregated and weighted by the document retrieval score to derive a distribution

over the words.

Usage of surface forms for the query entities as expansion terms is another common

expansion technique [43,44].

Projection-based Methods. The vocabulary mismatch problem between queries and

documents often leads to many relevant document not being retrieved by the IR system.

Although query expansion can minimize this to a certain extent by bringing the original
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query closer to the actual information need, the problem still remains. One approach to

solving the problem might be to construct a high-dimensional latent entity space and project

the query and document to this entity space. The similarity between the query and document

is then calculated in this space. This approach allows to uncover hidden (latent) semantic

relationships between queries and documents. For example, Gabrilovitch et al. [45] propose

Explicit Semantic Analysis (ESA), where each term t is represented semantically as a concept

vector of length | E |. This vector consists of entities from a knowledge repository and the

strength of the association between the term t and the given entity is given by the values in

this vector. Each such value is computed by taking the TF-IDF weight of t in the description

of e (in ESA, the Wikipedia article of e). A given text (bag-of-words) is represented by the

centroid of the individual terms’ concept vector, after normalizing these vectors to account

for the differences in their lengths. Both the query and document are mapped to this ESA

concept space and the similarity is found by taking the cosine similarity of their respective

concept vectors. Although work on ESA has primarily focused on using Wikipedia as the

underlying knowledge repository [45–48], one could use any knowledge repository where there

is sufficient coverage of concepts and concepts are associated with textual descriptions. Liu

et al. [49] propose Latent Entity Space (LES) which maps both queries and documents to

a high-dimensional latent entity space, in which each dimension corresponds to one entity,

and the relevance between the query and document is estimated based on their projections

to each dimension in the latent space. Xiong et al. [50] propose EsdRank which incorporates

evidence from an external source by using terms and entities found in knowledge graphs

such as Freebase or WordNet. A new ranking model called Latent-ListMLE (based on the

learning to rank model called ListMLE) is used to rank documents with these objects and

evidence.

Entity-based Methods. These methods consider the entities in the documents explicitly

and not in a latent space, together with traditional term-based representations, in the re-
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trieval model. For example, Raviv et al. [51] propose some Entity-based Language Models

(ELM) which not only use information about terms in the query and document, but also

the entities. These language models are estimated using the query and the documents in

the corpus. These models account simultaneously for (i) the uncertainty in entity linking

— specifically, the confidence levels of entity markups; and, (ii) the balance between using

term-based and entity-based information. Similarly, Ensan et al. [52] present a Semantic

Enabled Language Model (SELM). SELM addresses the task of document retrieval based on

the degree of document relatedness to the meaning of a query. It is based on using an entity

linking system to extract concepts (entities) from documents and queries. The document is

represented as a graph where the nodes are the concepts and the edges are the relatedness

relationship between two concepts. The documents are ranked by finding the conditional

probability of generating the concepts observed in the query given all the document concepts

and the relatedness relationships between them.

In the ELM, the words and entities are mixed together. In contrast, in the Bag-of-

Entities representation, term-based and entity-based representations are kept apart and are

used in “duet”. The Bag-of-Entities model was proposed independently and simultaneously

by Hasibi et al. [35] (for entity retrieval) and Xiong et al. [53] (for document retrieval). A line

of work by Xiong et al. [53–55] is based on this bag-of-entities model. The basic idea is to

construct a Bag-of-Entities vector for the query and documents using the entity annotations,

and then re-rank an initial candidate set of documents for the query [53]. Two ranking models

are used for this purpose: the first model ranks a document by the number of query entities

it contains, and the second ranks a document by the frequency of query entities in it. Later,

two advanced models were proposed: (1) Explicit Semantic Ranking (ESR) Model [54], and

(2) Word-Entity Duet (WED) Model [55]. In ESR, the relationship information from a

knowledge graph is used to enable “soft matching” in the entity space. In WED, the query

and documents are represented using four types of vectors: two bag-of-words vectors and

two bag-of-entities vectors for the query and document respectively. Each element in these
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vectors corresponds to the frequency of a given term/entity in the query/document. This

gives rise to four types of interactions between the query and documents: query terms to

document terms, query terms to document entities, query entities to document terms and

query entities to document entities. These four-way matching scores are combined using

learning-to-rank.

Although related to the problem of ad-hoc document retrieval using entities in that we

too use entity-centric information for text retrieval, our problem is fundamentally different

in that we want to model the relevance of a passage for both, the query and the entity. We

use the entity information to model the relevance of the passage for the entity, whereas the

work described in this section try to model the relevance of a document for a query, using

entities in the query and document.

3.4 Entity Relation Explanation

Given a pair of entities in a knowledge graph, the entity relation explanation task is to find

a passage which explains the relationship of these two entities in the knowledge graph. Since

our work is about explaining query-entity relationships, this task is related to our task. All

methods use the relation between the two entities found in some knowledge graph, to find

suitable explanations describing those relations.

Several approaches exist in literature to solve this problem. One approach is to treat

the problem from a graph perspective and then apply various graph algorithms to it. For

example, Pirro et al. [56] considered the problem of explaining how two entities in a knowledge

graph might be related as a sub-graph finding problem where the sub-graph consists of nodes

and edges in the set of paths between the two input entities, whereas Aggarwal et al. [57]

rank all the paths between any two entities in a knowledge graph. This can help in explaining

relationships between seemingly unconnected entities.

However, Voskarides et al. [58] model the task as a learning-to-rank problem with a

rich set of features which include textual, entity and relationship features. Their follow up
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work [59] addresses the problem using a template based approach where they first identify

representative sentences describing some of the relationship instances type and then identify

textual descriptions of other instances of the same relationship type by selecting a suitable

template and filling it with appropriate entities. On the other hand, Bhatia et al. [60] address

the problem from a probabilistic perspective. Given a passage p and a relation R between

two entities, they model the problem using Bayes’ Theorem and try to find P (p | R).

In this work, our aim is not to explain relations between two entities in a knowledge

graph. Rather, given a query, and an entity relevant to the query which is retrieved by an

entity retrieval system, we want to explain why or how the entity is relevant to the query.

This is different from the entity relation explanation task in that we are not explicitly given

the relation between the query and entity, but the support passage retrieval method must

infer the implicit relation between the query and entity which makes the entity relevant to

the query, as in the case of example shown in Figure 2.2. For the entity relation explanation

task, the algorithm assumes that the relation between the two entities is explicitly provided.

For example, for the two entities Donald Trump and USA, the relation Is President Of is

available from the knowledge graph. However, in our example shown in Figure 2.2, such

explicit relation definitions are not available and must be inferred from the text.
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CHAPTER 4

APPROACH

Given a ranked list of entities for a query, we seek to embellish it with passages which would

explain to the user why the entity is relevant to the query. We call the entities in the ranking

as target entities. We only try to predict support passages for target entities which are also

relevant (according to an entity ground truth for the query). In this section, we present

our proposed methods for entity support passage retrieval in detail. First, we discuss the

overarching ideas of our work which underlay all our methods in Section 4.1. Then we discuss

our proposed micro-approaches in Sections 4.3 through 4.5. In Chapter 5, we evaluate each

micro-approach on its own and in a supervised setting.

4.1 Overarching Ideas

Consider again, the query and entity in Figure 2.2. For this query, the entity Narendra Modi

is relevant as the Prime Minister of India. However, the entity’s role as the Chief Minister

of Gujrat is not relevant to the query. Hence, at the heart of our approach is a model which,

given a query Q and a target entity eT relevant to the query, finds a passage p which is

relevant to eT in the context of Q. By relevant, we mean that p mentions eT in a context

which is relevant to Q. For example, for the example query and entity above, a good support

passage would not only mention the entity Narendra Modi but also mention it in the context

of its role as the Prime Minister of India.

To find such passages which are relevant to the target entity eT , we need the background

information on the target entity. We define this background information as passages which
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mention (contain a link to) the target entity. However, as noted above, this background

information must be query-specific. We find this query-specific background information on

the target entity in two steps: (1) Retrieve passages for Q using a corpus of Wikipedia

passages (discussed in Section 5.2.4), and (2) Use the relevant passages (to Q) which also

mention the target entity eT as the query-specific background information of eT (discussed

in Section 4.1.1). We refer to this query-specific background information about eT as the

local context of eT . Since this local context of eT contains only passages which are relevant

to Q and which mention eT , our assumption is that this local context would also contain a

good support passage for eT . We use the terms and entities from the local context of eT to

find good support passages for eT .

We also want eT to be salient to the discussion in the support passage. Hence, we

propose some methods which incorporate the salience of eT in the ranking method to find

good support passages.

We note that the background information about the target entity may also be obtained

using the Wikipedia article of the target entity. However, this background information would

not be query-specific, i.e., passages on the Wikipedia page of the target entity may or may

not be relevant to the query. We refer to this query-independent context of the target entity

as the global context. As a comparison, we include the results from our experiments using

this global context and show that this is not enough to achieve good results on the task.

This also motivates the use of the local context for the task.

For very popular topics such as COVID-19, support passage prediction can be addressed

with lexicalized text classification. However, our goal is to develop a support system that

also works for less popular topics, where the manual annotation of training data would defeat

the purpose. Hence, we frame the problem as a ranking problem.
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Figure 4.1: Example Entity Context Document (ECD) for query-entity pair shown in Figure
2.2. For the query COVID-19 in India, the query-relevant passages mentioning the entity
Narendra Modi are A and C. These passages are combined together into one composite ECD
shown on the right. This ECD contains the candidate support passages (A and C) for the
entity Narendra Modi, and the entities such as Amit Shah, India, and BJP which co-occur
with Narendra Modi in it’s local context.

4.1.1 Constructing the Entity Profile

We construct a representation of the target entity which we refer to as the entity profile [36].

This entity profile serves as the local context of the target entity and provides us with a

candidate set of support passages. We use the passages from a candidate passage ranking

for the query (Section 5.2.4) which also mention (contain a link to) the target entity to

construct this entity profile.

For this, we follow the idea in Dalton et al. [43] and “stitch” all passages which mention

the target entity eT into a composite document DeT . All passages in DeT mention eT and are

treated as candidate support passages for eT . This is explained in Figure 4.1 for the example
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query and entity in Figure 2.2. Our methods for support passage retrieval described below

use this entity profile.

4.2 Basic Retrieval and Expansion Models

Query expansion [61] is a common technique in information retrieval. It supplements key-

word queries with additional terms to get a better sense of the underlying information need.

This is often used in conjunction with Pseudo-Relevance Feedback (PRF). In PRF, a set of

documents are initially retrieved using the original query. The top-ranked documents from

this set are assumed as relevant and expansion terms are derived from these documents. In

this work too, we apply query expansion using PRF to expand our queries and retrieve sup-

port passages. We use two variations of the Relevance Model (RM) [62] to derive expansion

terms for the query:

1. Relevance Model 1 (RM1). In RM1, the probability of a word w given a query Q,

that is, P (w | Q), is estimated by using the query likelihood P (Q | D) as the weight

for document D, and taking an average of the probability of word w given by each

document language model θD.

2. Relevance Model 3 (RM3). This is similar to RM1 in the estimation of P (w | Q). After

estimating P (w | Q), the relevance model P (w | Q) is interpolated with the original

query model θQ, that is, interpolated with P (w | θQ)

We expand the queries using both, words and entities. We use the local context of the

target entity to derive expansion terms. However, we also include results from replacing

the local context with the global context (i.e., Wikipedia article) as previous work has

demonstrated the benefits of using external collections for query expansion [63–65].

We experiment with the following retrieval models: BM25, Language Models with Dirich-

let Smoothing (LMDS), and Language Models with Jelinek-Mercer Smoothing (LMJM). We
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use the Lucene 1 implementation of these retrieval models.

4.3 Main Approach: Weighted Entity Prominence (Weighted EPROM)

As discussed in Section 4.1, we use the query-relevant passages which also mention the target

entity eT as the local context of eT to find the query-relevant background information for eT .

To find good explanations of query-entity relations, it is important to model the relevance

of the passage for the target entity in the context of the query. For this purpose, we use the

entities from the local context of eT .

Our hypothesis is: A passage containing many entities which are relevant to the query and

frequently co-occurring with the target entity mentions the target entity in a query-relevant

aspect. To illustrate this with an example, for the query COVID-19 in India and target

entity Narendra Modi, other entities relevant to the query and frequently co-occurring with

the target entity might be the entities Amit Shah and India. Our intuition is that a passage

which mentions these entities several times would also likely mention Narendra Modi in the

correct query-relevant context.

Specifically, we find the frequency with which other query-relevant entities occur in the

local context of the target entity. These frequently co-occurring entities may be considered

as a measure of the importance of a candidate support passage, with passages which mention

many frequently co-occurring entities being more important than others. We refer to this

importance measure induced by the co-occurring entities as Entity Prominence (EPROM)

of a passage, given the query and target entity.

To find most frequently occurring entities in the local context the target entity eT , we use

the entity profile DeT of eT . All entities in the entity profile co-occur with eT . We use the

entity profile to derive a distribution over entities ed which are relevant to Q (according to

an entity ground truth) and which co-occur frequently with eT . We derive this distribution

1https://lucene.apache.org/

27

https://lucene.apache.org/


by finding the number of times an entity ed occurs in the entity profile. More formally,

P (ed | eT , Q) ∝
∑

p∈DeT

count(ed ∈ p) (4.1)

where p is a query-relevant passage mentioning eT , DeT is the entity profile of the target

entity eT , ed(6= eT ) is an entity co-occurring with eT and relevant to Q, and count(ed) is the

number of entity links to ed in p.

We define the Entity Prominence (EPROM) of a passage in an entity profile DeT as:

EPROM(p | Q, eT ) =
∑
ed∈p

P (ed | eT , Q) (4.2)

Weighted EPROM We score candidate support passage p ∈ DeT by interpolating the

entity prominence score from Equation 4.2 with the score of the passage for the query:

Score(p | Q, eT ) = λ · EPROM(p | Q, eT ) + (1− λ) · ScoreQ(p) λ ∈ [0, 1] (4.3)

where λ is learnt using a machine learning method. We set ScoreQ(p) equal to the original

retrieval score of the passage for the query, obtained from the candidate passage ranking

(described in Section 5.2.4).

4.4 Other Approaches

Entity Profile Terms (ProfileTerms) Analogous to using the frequently co-occurring

entities with the target entity in Section 4.3, term statistics may also be used to find passages

relevant to the target entity in the context of the query.

For this, we first obtain distribution over the terms t in the entity profile DeT of the
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target entity eT , weighted by the retrieval score of the passage in which it occurs. Formally,

P (t | eT , Q) ∝
∑
p∈De

ScoreQ(p) · tfp(t) (4.4)

where tfp(t) is the number of times term t occurs in passage p, and ScoreQ(p) is the original

retrieval score of the passage p for the query Q, obtained from the candidate passage ranking

(described in Section 5.2.4).

We then score a candidate support passage by accumulating the term scores of each term

in the passage. Formally,

Score(p | Q, eT ) =
∑
t∈p

P (t | eT , Q) (4.5)

Query Expansion Based Methods. As discussed in Section 3.3, query expansion with

pseudo-relevance feedback (PRF) using terms and entities has been successfully applied

previously in document retrieval systems. In this work too, we use query expansion with

PRF for support passage retrieval. We use two types of expansion units: entities and terms

(i.e., words). For every query, we expand the query using terms or entities from the local

context of the target entity eT , i.e., the entity profile DeT of eT . We retrieve support passages

using this expanded query from an index consisting of passages from DeT .

1. Query Expansion using Entities from Entity Profile (QE-Profile-Entities).

We expand the original query using the top 20 co-occurring entities ed ∈ DeT obtained

using Equation 4.1.

2. Query Expansion using Terms from Entity Profile (QE-Profile-Terms). We

expand the original query using the top 50 terms t ∈ DeT obtained using Equation 4.4.

For each method above, we experiment with the same variations of retrieval models and

expansion models as given in Section 4.2.
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4.5 Replacing the local context with the global context of the target entity

As noted in Section 4.1, it is also possible to obtain the background information on the

target entity using the Wikipedia article of the target entity. However, this background

information would not be query-specific. We refer to the Wikipedia article of the target

entity as global context of the target entity. To motivate the use of a query-specific local

context and the use of our more complicated entity profile (Section 4.1.1) for support passage

retrieval, we include results from replacing the local context (entity profile) with the global

context (Wikipedia article) in our proposed methods. We study the contribution of the local

versus the global context.

1. WikiTerms. Similar to our method ProfileTerms described in Section 4.4. Here, we

use the Wikipedia article of the target entity to find a distribution over the terms in

the Wikipedia article. We do not use the ScoreQ(p) component in Equation 4.5 since

the passages in Wikipedia do not have a retrieval score under the query.

2. WikiEntities. Similar to EPROM in Section 4.3 described above. However, here the

entities ew come from the Wikipedia article (global context) and not the Entity Profile

(local context) DeT of the target entity eT . We score a candidate support passage

p ∈ DeT by accumulating (with a sum), the frequency of all entities ew ∈ p which are

also on the Wikipedia page of eT .

4.6 Entity Salience for Support Passage Retrieval

A good support passage must not only mention the target entity but also be about the entity,

and must clearly capture how the entity is related to the query. It must be able to answer

the question: What is it about the entity that makes it relevant to the query? That is, the

entity must be central to the discussion in the passage and not just be mentioned in passing.

We call an entity as salient in some text, if the entity is central to the discussion in the
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text. For example, the entity Narendra Modi from Figure 2.2 is salient in Passage 1 from

Figure 2.3 but not in Passage 2.

Although entity salience detection in text has received attention as a stand-alone problem,

it is not clear how (or if) entity salience can help in passage retrieval. In this work, we try

to bridge this gap by proposing some support passage retrieval methods which take the

salience of the entity in the text into consideration and studying if salience is useful for

support passage retrieval.

Since the purpose of this work is not to propose a new entity salience detection method

but to study if, and how we can use salience for support passage retrieval, we leverage existing

work on salience detection. In particular, we use the salience detection system from Ponza

et al. [26] as it has been showed to outperform existing state-of-the-art in the field of entity

salience detection, and also due to its ease-of-use through as an API.

4.6.1 Methods Based on Entity Salience

We denote by Salience(eT | p), the salience score of the target entity eT for a support passage

p. We then score p as follows:

Score(p | eT , Q) = µ · Salience(eT | p) (4.6)

where µ is a weight which factors in the relevance of passage and entity respectively, given

the query. Hence, we set µ in two ways:

1. µ = Score(eT | q) where Score(eT | q) is the retrieval score of the entity eT for the

query Q obtained from the input entity ranking (The input entity ranking is described

in Section 5.2.5).

2. µ = Score(p | q) where Score(p | q) is the retrieval score of the passage for the query

obtained from the candidate passage ranking. (The candidate passage retrieval for

query is described in Section 5.2.4).
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We use two sources of candidate support passages p.

1. Candidate passages for the query which also mention the target entity. To investigate

whether entity salience can help us find good support passages, we rank passages from

the candidate passage ranking for the query (obtained in Section 5.2.4) which also

mention the target entity. To this end, we use the entity profile(Section 4.1.1) for the

target entity as a source of support passages for the entity.

2. Support passages already obtained from a support passage ranking method. To inves-

tigate the effect of entity salience on a support passage ranking, we re-rank support

passages obtained using any of our support passage ranking methods. In our experi-

ments, we use the support passages obtained using method Weighted EPROM but any

support passage ranking method will suffice.

The two settings for µ and the two candidate support passage sources give us the four

combinations of methods based on entity salience below:

1. Sal-Profile-Psg-Scores. Salience of target entity in a passage from the entity profile

and using score of the passage for the query. In this method, we rank passages from

the entity profile using Equation 4.6 with µ = Score(p | q).

2. Sal-Profile-Ent-Scores. Salience of target entity in a passage from the entity profile

and using score of the target entity for the query. In this method, we rank passages

from the entity profile using Equation 4.6 with µ = Score(eT | q).

3. Sal-SP-Psg-Scores. Salience of target entity in a passage from a support passage

ranking and using score of the passage for the query. In this method, we re-rank

passages in a support passage ranking using Equation 4.6 with µ = Score(p | q).

4. Sal-SP-Ent-Scores. Salience of target entity in a passage from a support passage

ranking and using score of the target entity for the query. In this method, we re-rank

passages in a support passage ranking using Equation 4.6 with µ = Score(eT | q).
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CHAPTER 5

EVALUATION, RESULTS, AND DISCUSSIONS

5.1 Research Questions

As discussed in Section 2, it is important to identify the query-relevant information of an

entity to find good support passages for the entity. In this work, we rely on the frequently

co-occurring entities found in the local context of the target entity, to find query-relevant

entity information in a passage. Our hypothesis, as mentioned in Section 4.3, is that a

passage containing many entities which frequently co-occur with the target entity, is a good

support passage. Hence, the first research question that we aim to answer is:

RQ1 To what extent are frequently co-occurring entities from the local context of a target

entity helpful in support passage retrieval?

The problem of entity salience detection has received attention from the research com-

munity; however, it has always been studied separately, and whether or not it can contribute

to text retrieval problems has gone answered. In this work, we use the salience of the tar-

get entity in the support passage as an indicator of good support passages. With this, the

research question we aim to answer is the following:

RQ2 To what extent is entity salience helpful in support passage retrieval?

As noted in Section 4.1, we may obtain the background information on the target entity

in two ways: (1) Query-specific, using query-relevant passages which mention the target

entity, and (2) Query-unspecific, using the Wikipedia article of the target entity. We refer
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to the former as the local context, and the latter as the global context of the target entity.

We study the following research question:

RQ3 Which background information about the target entity is more useful for support pas-

sage retrieval–local or global? Which aspects of that information, terms or entities,

contribute more to the overall results?

5.2 Evaluation Paradigm

5.2.1 Datasets

We use two datasets from the TREC Complex Answer Retrieval (CAR) track [20]1 to evaluate

our methods. They are:

1. BenchmarkY1-Train. It is based on a Wikipedia dump from 2016. The Wikipedia

articles are split into the outline of sections and the paragraphs contained in each

section. The information about which paragraph originated from which section, and

the entity links in each paragraph are retained. Each section outline is treated as a

complex topic. There are 117 such sections (complex topics),

2. BenchmarkY2-Test. A part of this dataset is based on a Wikipedia dump from

2018 whereas the remainder is based on the Textbook Question Answering (TQA) [66]

dataset which consists of questions taken from middle school science curricula. This

dataset consists of 27 sections.

5.2.2 Input Entity Ranking

Since the input to our methods is an entity ranking, we use an entity ranking obtained using

the Wikipedia page titles as queries. We convert TREC CAR title queries into keyword

queries by using the page name of the Wikipedia page to construct a boolean query of

1http://trec-car.cs.unh.edu
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the terms in the page name. We then retrieve entities from an index containing fielded

documents, each representing an entity, using BM25. However, any system could be used to

obtain an entity ranking here.

5.2.3 Corpus

We use the corpus of passages from TREC CAR. It is an entity linked corpus consisting

of paragraphs from the entire English Wikipedia. This corpus is constructed by collecting

all paragraphs from Wikipedia, assigning unique IDs to each paragraph through SHA256

hashes on the text content (excluding links), and de-duplication through min hashing using

word embedding vectors provided by GloVe. In addition to entity links that are provided in

the corpus, we create entity link annotations using WAT [67].

5.2.4 Candidate Passage Retrieval for Query

We use Wikipedia page titles as our queries for the initial candidate passage retrieval. To

retrieve passages for a Wikipedia page title as query, we use all the section headings on

the Wikipedia page to construct a boolean query of the terms in the section headings, and

retrieve candidate passages with this boolean query using BM25 (Lucene default). However,

any passage ranking method could be used here.

5.2.5 Input Entity Ranking

Since the input to our methods is an entity ranking, we use an entity ranking obtained using

the Wikipedia page titles as queries. We convert TREC CAR title queries into keyword

queries by using the page name of the Wikipedia page to construct a boolean query of

the terms in the page name. We then retrieve entities from an index containing fielded

documents, each representing an entity, using BM25. However, any system could be used to

obtain an entity ranking here.
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5.2.6 Ground Truth

The TREC CAR datasets contain both passage and entity ground truth data. For BenchmarkY1-

Train, both passage and entity ground truth were generated automatically. A paragraph is

deemed as relevant, if it is contained in the page/section, whereas if a page/section contains

an entity link, then the link target entity is defined as relevant. The passage ground truth

contains 4530 positive assessments, whereas the entity ground truth contains 13,031 positive

assessments.

As mentioned above, the BenchmarkY2-Test dataset was constructed using pages from

the Wikipedia dump of 2018. However, very few paragraphs from the Wiki-16 dump existed

in the Wiki-18 dump. Moreover, the paragraph sets from Wiki-16 and TQA are disjoint.

Due to this difference in the dataset construction procedure for BenchmarkY2-Test, the

automatic ground truth extraction procedure used for constructing the passage ground truth

for BenchmarkY1-Train could not be applied for deriving the passage ground truth for

this dataset. Hence, the passage ground truth was constructed after manual assessment,

and consists of 9633 positive assessments. The automatic entity ground truth construction

was not affected as it does not depend on paragraph overlap. Both automatic as well as

manual entity ground truth is available for BenchmarkY2-Test and consist of 1356 positive

assessments.

Support Passage Ground Truth. We use the automatically generated ground truth

(both passage and entity) for BenchmarkY1-Train and the manually generated ground truth

(both passage and entity) for BenchmarkY2-Test. We derive a ground truth for entity

support passage retrieval from the ground truth of relevant passages and entities provided

with the data sets (article-level) as follows: any relevant passage that contains an entity link

to a relevant entity for the query is defined as relevant for the given query and entity.
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5.2.7 Knowledge Base

We use Wikipedia as a knowledge base in our work. The TREC CAR dataset consists of a

large, unprocessed collection of Wikipedia pages which may be used to derive a knowledge

base. It contains all pages except those in the benchmarks. We perceive the knowledge base

as text and build a knowledge base index, which associates each entity in the knowledge base

with text that includes the Wikipedia article, as well as anchor text, names and type labels.

5.2.8 Machine Learning

We apply our methods to produce a support passage ranking for every query-entity pair.

We then treat each ranking as a feature and perform 5-fold cross validation with a listwise

learning-to-rank (L2R) method (Coordinate Ascent) optimized for Mean Average Precision

(MAP). We also use Coordinate Ascent optimized for MAP to set the weights in Equation

4.3.

5.2.9 Evaluation Metrics

In this work, we are interested in precision more than recall. This is because although there

may be many passages explaining the relationship between a query and an entity, a typical

user is interested in one or two of them. Moreover, the user interfaces of entity retrieval

systems tend to be very crowded and would typically contain space enough for only one or

two such support passages. Hence, we use the following precision-oriented retrieval metrics

to evaluate our work: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), and

Precision at R (P@R).

5.2.10 Difficulty Tests and Helps-Hurts Analysis.

To analyze the extent to which a method affects the performance of our system, we perform

two types of analysis:
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1. Difficulty Test: We divide the query-entity pairs into different levels of difficulty ac-

cording to the performance (MAP) of a baseline method, with the 5% most difficult

pairs for this method to the left and the 5% easiest ones to the right. Performance

scores for the ranking of each query-entity pair are reported as macro-averages, that

is, average across all entities first, then average across queries. We then study the

performance of our methods on these different subsets of the query-entity pairs.

2. Helps-Hurts Analysis: As compared to a baseline, we calculate the number of query-

entity pairs on which one of our methods improved performance (helps) or lowered

performance (hurt).

5.3 Baselines

In this section, we describe the baselines against which we compare our methods.

5.3.1 Baselines from Blanco et al.

We re-implement the methods from Blanco et al. [22] and include them as our baselines.

Section 3.1 describes their work. Their methods make use of a named entity recognizer

to find entities in the candidate support sentences. We use the Stanford Named Entity

Recognizer [68] 2 for this purpose. Below, we give a short description of their methods which

we include as baselines in this paper.

Given a query q and an entity e, Blanco et al. score a candidate entity support passage

p by:

Scoreqe(p) =


∑

e′∈pE(q, e′) if e ∈ p

0 if e /∈ p
(5.1)

where E(q, e′) is an entity ranking method which scores an entity for the query. Although

their formulation uses a summation in the Equation 5.1, in their work, Blanco et al. also

2https://nlp.stanford.edu/software/CRF-NER.html
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experiment with using an average instead of the summation.

Blanco et al. experiment with several entity ranking methods and substitute them for

E(q, e′) in Equation 5.1. These are:

1. Entity Frequency. Number of candidate support passages mentioning an entity.

This is akin to Term Frequency (TF) for terms.

2. Entity Rarity. Entity inverted sentence frequency to penalize very frequent entities.

This is akin to Inverted Document Frequency (IDF) for terms.

3. Combination. Combination of Entity Frequency and Rarity as described above. This

is akin to TF-IDF weighing scheme for terms.

4. KLD. KL-Divergence between query and collection distributions. Formally,

EKLD(q, e) = P (e|θq) · log
P (e|θq)
P (e|θC)

(5.2)

where P (e|θq) is the proportion of the candidate passages for the query q which also

mention the entity e, and P (e|θC) is the proportion of the passages in the entire corpus

which also mention the entity e.

Although their formulation uses a summation in the Equation 5.1, in their work, Blanco

et al. also experiment with using an average instead of the summation. In our work too, we

include as baselines, the results from using both, an average and a summation in Equation

5.1 with the various entity ranking methods described above. We found that many of these

methods have similar performance with no statistical difference and hence we choose to

include the ones with combination and KLD as entity ranking methods above. The results

on BenchmarkY1-Train and BenchmarkY2-Test are included in Table 5.1.
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5.3.2 Other Baselines

In addition to the methods from Blanco et al. we include two additional baselines which

use the query and entity, without any other components of our approach. These are:

1. Frequency of relevant entity links (FreqOfRelLinks). We rank passages for a

query-entity pair by the number of relevant entities in the passage. For example, if a

passage p contains entities {e1, e2} and the entities {e1, e2, e3, e4} have been retrieved for

the query q, then the score of p for each of the query-entity pairs is fqe1(p) = fqe2(p) = 2

because the passage has two entities in common with the list retrieved for q.

2. Compound entity-query score (CompundQuery). We retrieve passages using a

compound query, where the query is a combination of the original query and the target

entity.

5.4 Results and Discussions

In this section, we discuss each research question presented in Section 5.1.

The most interesting results from our support passage retrieval methods on the two

datasets are shown in Table 5.1. To study the contribution of the methods in a supervised,

learning-to-rank system, we also present results from an ablation study on the two datasets

in Table 5.2.
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(a) BenchmarkY1-Train Results. (b) BenchmarkY2-Test Results.

Figure 5.1: Difficulty-test for MAP, comparing Blanco et al. to our proposed method
Weighted EPROM. We observe that for the more difficult query-entity pairs according to
the performance of Blanco et al. (0-50% on left), ranking support passages using our method
Weighted EPROM can help the task.

5.4.1 RQ1: Frequently Co-Occurring Entities

Difficulty Test. We observe from Table 5.1 that the state-of-the-art method from Blanco

et al. (Row 2) achieves MAP = 0.15 on BenchmarkY1-Train and MAP = 0.21 on

BenchmarkY2-Test. However, our proposed method Weighted EPROM achieves MAP =

0.30 on BenchmarkY1-Train, and MAP = 0.38 on BenchmarkY2-Test. This gives us an

improvement of 100% over Blanco et al. on BenchmarkY1-Train, and 80% on BenchmarkY2-

Test, with an average improvement of 90% on the two datasets.

The observations above indicate that frequently co-occurring entities are good indicators

of support passages. To investigate the extent to which such co-occurring entities can help

the task, we perform the difficulty test explained in Section 5.2.10. We use Blanco et al. [22]

as our baseline for comparison, and compare its performance with our method Weighted

EPROM. The results on the two datasets are shown in Figure 5.1. We observe that for

the more difficult query-entity pairs (according to performance of Blanco et al.), ranking

support passages using our proposed method Weighted EPROM helps the task. For example,
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we observe in both Figures 5.1a and 5.1b that for the 5% most difficult query-entity pairs

(extreme left of the charts), our method Weighted EPROM can find support passages. This

supports our hypothesis from Section 4.3 that a support passage mentioning frequently co-

occurring entities with the target entity likely also mentions the target entity.

Helps-Hurts Analysis. To quantify the discussion above, we also perform the helps-

hurts analysis explained in Section 5.2.10 where we analyze how many query-entity pairs

were helped by using our method Weighed EPROM as compared to Blanco et al. We found

that using Weighted EPROM can help find support passages for 2131 query-entity pairs

when compared to Blanco et al. In other words, Blanco et al. cannot find support passages

for these query-entity pairs but our proposed method can. This further proves that our

initial hypothesis about frequently co-occurring entities is correct.

Example. As an example, we show a difficult query-entity pair found during the Help-

s/Hurts analysis, along with its support passage in Figure 5.2. For this query-entity pair,

Blanco et al. was unable to find a support passage; however, our method Weighted EPROM

did find one. We found that the top three most frequently co-occurring entities with Genetic

Disorder (except itself) are: Gene Therepy, Severe Combined Immunodeficiency and Muscular

Dystrophy. We observe in Figure 5.2 that the support passage clarifies that genetic disor-

ders could be treated using genetically modified organisms. Hence, this passage is a good

explanation of why the entity Genetic Disorder is relevant to the query Genetically Mod-

ified Organism. Our method Weighted EPROM has correctly identified this passage as

a support passage since it contains many frequently co-occurring entities with the entity

Genetic Disorder and in particular, contains the top three most frequently co-occurring enti-

ties. This confirms and supports our hypothesis that a passage mentioning many frequently

co-occurring entities with the target entity is a good support passage.

Ablation Study. From Table 5.2, we observe that a learning-to-rank system using only

methods based on frequently co-occurring entities as features (Profile Entities, Subset-
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Query: Genetically Modified Organism
Entity: Genetic Disorder
Support Passage:
Gene therapy, uses genetically modified viruses to deliver genes that can cure
disease in humans. Although gene therapy is still relatively new, it has had
some successes. It has been used to treat genetic disorders such as severe
combined immunodeficiency, and Leber’s congenital amaurosis. Treatments
are also being developed for a range of other currently incurable diseases, such as
cystic fibrosis, sickle cell anemia, Parkinson’s disease, cancer, diabetes,
heart disease and muscular dystrophy.

Figure 5.2: Example query and entity with top ranked support passage found by method
Weighted EPROM. The frequently co-occurring entities with the entity Genetic Disorder
found in the passage are in bold.

3) outperforms all baselines in Table 5.1. For example, on BenchmarkY1-Train, Profile

Entities achieves MAP = 0.32 and a learning-to-rank system with all features (All, Row 7)

achieves MAP = 0.34. However, if we remove all the features based on co-occurring entities

from our full system, there is a slight drop in performance, from MAP = 0.34 on All to

MAP = 0.30 on Subset-5. We observe similar results on BenchmarkY2-Test as well.

The observations above further show that frequently co-occurring entities are strong

indicators of good support passages. They perform well on their own and outperform the

state-of-the-art-baseline for the task. Moreover, they also contribute to the performance of

a learning-to-rank-based system which uses other features. This clearly demonstrates the

benefits of using frequently co-occurring entities in the support passage retrieval task. We

also show the results from a difficulty test, comparing a learning-to-rank system which uses

all features except those based on frequently co-occurring entities, to a system which uses all

the features, in Figure 5.3. We observe that a system which uses the frequently co-occurring

entity-based features can find support passages for even the most difficult 5% of the query-

entity pairs. We lose these query-entity pairs when we use a system which does not use the

frequently co-occurring entity-based features.
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Figure 5.3: Difficulty-test for MAP, comparing a L2R system using all features except those
based on co-occurring entities to one which uses all.

Conclusions. Regarding RQ1, frequently co-occurring entities are beneficial for the sup-

port passage retrieval task as good support passages mention many co-occurring entities with

the target entity. Using frequently co-occurring entities can help to improve performance

over the current state-of-the-art baseline by helping to find support passages for query-entity

pairs which are difficult for the baseline. We outperform the current state-of-the-art method

for the task using our proposed measure called entity prominence (which uses frequently co-

occurring entities) on two publicly available benchmarks. Frequently co-occurring entities

show their strength by not only performing very well on their own and achieving new state-

of-the-art results over several established baselines, but also in a learning-to-rank system

which uses several other features.

5.4.2 RQ2: Entity Salience

Observations and Discussions. From Table 5.1, we observe that retrieving support

passages using entity salience performs very poorly. For example, on BenchmarkY1-Train,

both methods Sal-Profile-Psg-Scores and Sal-Profile-Ent-Scores achieve a MAP = 0.02.
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Table 5.3: Results on BenchmarkY1-Train for subset of entities with at least one salient
mention.

MAP P@R MRR

Blanco et al. [22] 0.14 0.12 0.19
Weighted EPROM 0.27 0.25 0.42

Sal-Profile-Psg-Scores 0.24 0.24 0.38
Sal-Profile-Ent-Scores 0.23 0.23 0.35
Sal-SP-Psg-Scores 0.25 0.25 0.40
Sal-SP-Ent-Scores 0.22 0.22 0.35

Similarly, on BenchmarkY2-Test, both methods Sal-Profile-Psg-Scores and Sal-Profile-Ent-

Scores achieve a MAP = 0.03. This is much below the baseline of Blanco et al. which

achieves a MAP = 0.15.

Moreover, re-ranking support passages using entity salience too performs very poorly. For

example, in Table 5.1, on both BenchmarkY1-Train and BenchmarkY2-Test, both methods

Sal-SP-Psg-Scores and Sal-SP-Ent-Scores achieve a MAP = 0.02. This is much below the

method Weighted EPROM 3 which achieves MAP = 0.30.

The observations above indicate that entity salience is not helping the support passage

retrieval task. A helps/hurts analysis shows that as compared to baseline Blanco et al.,

Sal-ECD-Psg-Scores helps 237 but hurts 635 query-entity pairs. Similarly, as compared to

Weighted EPROM, Sal-SP-Psg-Scores helps 154 but hurts 1118 query-entity pairs.

We manually confirmed that the system SWAT [26] correctly identifies salient and non-

salient entities; however, only few retrieved entities have a passage with a salient mention in

the candidate set. While entities with salient passages are often relevant, a majority (95%) of

retrieved entities do not have a passage with a salient mention in the candidate pool. Since

the salience is only applicable to very few entities, it only has a limited impact on the overall

result.

To study whether salience is a useful indicator when it is applicable, we analyze results

3We compare Sal-SP-Psg-Scores and Sal-SP-Ent-Scores to Weighted EPROM because our results for both
methods are obtained by re-ranking the support passages obtained using Weighted EPROM. However, any
support passage retrieval method will suffice.
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on the subset of rankings for query-entity pairs for which the passage ranking contains at

least one passage in which the target entity is salient. The results on BenchmarkY1-Train

are shown in Table 5.3. We now observe that Sal-Profile-Psg-Scores with MAP = 0.24

outperforms Blanco et al. with MAP = 0.15. This is an improvement of 60% over Blanco et

al. in terms of Mean Average Precision. Moreover, Sal-Profile-Psg-Scores has performance

only slightly worse than that of Weighted EPROM. Hence, salience is a useful indicator;

however, it is only applicable for entities which have a salient passage in the candidate pool.

Conclusions. With respect to RQ3, we conclude that entity salience is a useful indicator

of support passages. However, many entities do not have a passage with a salient mention in

the candidate set and hence salience is not applicable to these entities. This hurts the per-

formance of a learning-to-rank system using entity salience as a feature. However, whenever

applicable, entity salience can help improve performance over the state-of-the-art.

5.4.3 RQ3: Local Context Versus Global Context

Global Versus Local Context. From Table 5.1, on both datasets, we observe that the

performance of method WikiTerms (Row 9) which uses terms from the global context of

the target entity, and ProfileTerms (Row 6) which uses the terms from the local context of

the target entity are similar. However, EPROM (Row 5) which uses entities from the local

context outperforms WikiEntities (Row 10) which uses entities from the global context by a

huge margin. To investigate further, we present results from an ablation study in Table 5.2.

From Table 5.2, we observe that a learning-to-rank system using only local context

features (Subset-2) outperforms the system using only global context features (Subset-

1). For example, on BenchmarkY1-Train, Subset-2 achieves MAP = 0.30 compared to

Subset-1, which achieves MAP = 0.24. Similarly, on BenchmarkY2-Test, Subset-2 achieves

MAP = 0.35 compared to Subset-1, which achieves MAP = 0.31. Both systems (Subset-1

and Subset-2 ) outperform all baselines in Table 5.1. This shows that although global infor-
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(a) Difficulty test to determine the importance
of knowledge base information versus contextual
information.

(b) Difficulty test to determine the importance of
entities from profile of target entity versus terms
from profile of target entity.

Figure 5.4: Difficulty test for MAP, comparing different L2R systems. Difficulty percentile
is according to performance of All.

mation from the Wikipedia article of the target entity is a strong indicator of good support

passages, they are less informative than the local information from the ECD of the target

entity.

To verify the above, we also perform a difficulty test, comparing the learning-to-rank

systems consisting of features based on only global context and only local context of the target

entity respectively, to a system consisting of all features. The results for BenchmarkY1-Train

are shown in Figure 5.4a. The results for BenchmarkY2-Test are similar and hence omitted

for brevity. We observe that whenever the system All finds it difficult to predict support

passages for some query-entity pairs, the local and global features help to improve the mean

statistics. However, the contribution of the local context is always more than that of the

global context.

Terms Versus Entities. From the discussion above, we may conclude that information

from local context is more important and informative than that from global context of the

target entity. However, which local contextual information is more important – Terms or
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Entities? From Table 5.2, we observe that a learning-to-rank system consisting of only

profile entity features outperforms that consisting of only profile terms features. For ex-

ample, on BenchmarkY1-Train, Profile Entities achieves MAP = 0.32 whereas Profile

Terms achieves MAP = 0.27. Similarly, on BenchmarkY2-Test, Profile Entities achieves

MAP = 0.39 whereas Profile Terms achieves MAP = 0.34. Moreover, from the difficulty

test for BenchmarkY1-Train in Figure 5.4b, we observe that the contribution of the profile

entity features is always more than that of the profile term features. This shows that profile

entities are more informative than profile terms.

Conclusions. With respect to RQ4, we may say that although the global context of the

target entity can provide useful information for support passage retrieval, it is more useful

to use the local context as it provides a query-specific background information on the target

entity. Moreover, entities in local context contribute more to the retrieval performance than

the terms.
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CHAPTER 6

CONCLUSION

In this work, we address the problem of entity support passage retrieval. We present a

novel method which identifies the query-relevant entity information in candidate support

passages using the local context of the target entity. The local context is obtained from

the query-relevant passages mentioning the target entity. Such local context is incorporated

using a distribution over the frequently co-occurring entities with the target entity, and a

distribution of frequent words in the context of the target entity. We show that our method

achieves new state-of-the-art results on the task.

We propose a model called entity prominence which scores a candidate support passage

for an entity in the context of a query. Our model uses the entities which occur frequently

with in the local context of the target entity. The scoring of a candidate support passage

is based on the intuition that a good support passage would mention many entities which

frequently co-occur with the target entity. We show that our proposed method achieves new

state-of-the-art results on the task.

We also explore the utility of entity salience for support passage retrieval. We use the

salience of the target entity in the support passage to find good support passages for a given

target entity. Our experiments show that although the usefulness of entity salience-based

methods depends on quality of the underlying candidate passage ranking being used, salience

can help improve retrieval effectiveness over the current state-of-the-art methods in the field.

To study the importance of the local entity context versus a global context, we treat we

treat each Wikipedia page as an entity and use the information from the Wikipedia article
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of the target entity as the global context. We find that entity information derived using

the global context of the target entity are as good as those derived using the local context.

However, the local context provides better entity information as they are query-relevant and

query-dependent.

Our contribution to entity support passage retrieval contributes to new knowledge-based

information access systems. For once, it allows to construct query-specific knowledge graphs

on the sub-entity level where the support passages model the knowledge base description of

the entity in the context of the query. Furthermore, entity support passages allow better

information access for journalists, researchers, as well as any user who is seeking to un-

derstand fine-grained connections between entities and queries for open-domain information

needs, and takes us one step closer to query-focused summarization.
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