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ABSTRACT

THE EFFECT OF RAIN ON INTERTIDAL 

ESTUARINE SEDIMENT TRANSPORT

by

Thomas C. Shevenell 

University of New Hampshire, May, 1986

Storms are important aperiodic events, which intensify erosionaJ 

processes over short time periods. The effect of rain on the shallow 

intertidal water column was the focus of this study. The literature was 

extensively reviewed to identify parallel research in other scientific 

disciplines, which could be used to understand how raindrops may be acting 

as a sediment resuspension mechanism. Single-drop and multi-drop 

laboratory studies were conducted on the mtiation of motion of sediment. 

Results indicate single vortex rings in a quiescent environment can initiate 

motion of sand-sized noncohesive sediment in all water depths tested, up to 

and including 22.5 cm. Multidrop experiments (with estuanne muds.i 

indicated that rain can resuspend cohesive sediment at an average rate of 

2.8 gm/mVhr in water depths to 8 cm. Insitu experiments were conducted 

to compare the magnitude of rain resuspension with wind wave and boat 

wake effects. Rain effects were observed in water depths less than 7 cm. In 

these water depths wind effects were decreasing, because the shallow water

xix
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dampened out the larger waves. Observations during two storms illustrated 

the problem of isolating rain resuspension from wind wave resuspension.

The ability of drops to form vortex rings was utilized in a mixing test 

of aquaculture tanks used in toxicity testing. Drop-formed vortex rings were 

more effective in oxygenating the tanks than air bubbling at the strengths 

typically used for the tests.

xx
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CHAPTER 1

INTRODUCTION 

General Statement

Erosion and deposition of muddy intertidal sediments are controlled by 

many physical factors,! e.g. waves, currents, and ice formation), which 

temporally and spatially vary in importance (Anderson, 1983). Storms, 

which may intensify these factors over a short period, are important 

aperiodic events, that have a pronounced effect in estuarine sedimentation 

patterns (Laird, 1976). Attention has been focused on the response to 

storms with respect to fluvial contributions (Schubel, 1971), changes in net- 

estuarine circulation patterns (Nichols, 1977), and wind-wave resuspension 

(Anderson, 1972; Gabrielson and Lukatelich, 1985). Another storm related 

factor is the importance of rain, acting either directly on exposed tidal flats 

or indirectly through shallow (<50 cm) water. This effect on estuarine 

sedimentation has only been inferred (Settlemeyer and Gardner, 1975; 

Anderson, 1983 and 1984). Green and Houk (1980) hypothesized that drop- 

formed vortex rings may be a mechanism to transfer kinetic energy through 

the water column to the sediments. Laboratory studies of vortex ring 

dynamics indicate high transtional and rotational velocities of the inner ring 

core may create sufficient shear stresses to initiate sediment movement 

(Maxworthy, 1977; Sutherland, 1967).

1
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The primary purpose of this study was to investigate rain effects on 

sedimentation in the shallow intertidal water column. Anderson (1973 and 

1980) recognized the importance of sediment resuspension processes at the 

leading (and trailing) edge of the flooding (ebbing) water. This shallow 

wedge of water can cover a significant area, because of the low gradient (<1 

degree), which typifies a mud flat environment (Anderson. 1980). The scope 

of this investigation was limited to the mechanics of rain-induced 

resusupension and the investigation into the ability of rain to resuspend 

muddy intertidal sediments. The approach to the problem was by a 

combination of laboratory and controlled field studies. The "microprocess" 

was studied by using single-drop laboratory experiments. The "net-results" 

were studied by using rain simulation in both laboratory and controlled 

field experiments. Field observations during natural events were made to 

estimate the relative importance of rain as a sedimentation process.

A secondary purpose of this research was to determine if knowledge of 

drop mechanics could be utilized in solving a practical problem. Aquaculture 

tanks, used in toxicity testing, require water replenishment and oxygenation, 

typically accomplished by inflow of new high-oxygen water at a single point 

and discharge of excess low-oxygen tank water via a drain. Oxygen is also 

added by bubbling air into the bottom of the tank. A simple experiment was 

conducted to determine if drop-formed vortei rings could efficiently mix 

oxygen throughout the tank, eliminating the need for and cost of a separate 

air supply.

The dissertation is organized with an introductory chapter which first 

reviews pertinent literature to develop a conceptual picture of rain-induced 

sediment resuspension, then presents why this process is significant, and 

finally summarizes the objectives of this study. Chapter 2 presents the
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results of single drop studies, which define the important physical 

characteristics of the splash central jets and the resulting vortex rings.

These studies can then be used to develop a conceptual model for the 

erosion potential of rain on a shallow water column. Chapter 3 presents the 

results of an experiment in which single drops were used to initiate motion 

of non-cohesive sediment, after passing through a range of water depths. 

This study was to confirm that drop-formed vortex rings are a potential 

mechanism for sediment transport. Chapter 4 expands the investigation of 

rain as an erosional process by studying the response of the muddy 

intertidal sediment to rain action, and to determine the importance of 

rain, relative to other processes such as wind and boat waves, as a physical 

mechanism in resuspending sediment. Chapter 5 investigates the ability of 

drop-formed vortex rings to cause bedload movement of the larger 

aggregates, such as fecal pellets, which are commonly found on the cohesive 

sediment surface. Chapter 6 investigates the sedimentological characteristics 

of the muddy intertidal sediment used in the various experiments to see if 

the rain process significantly modifies the surface texture. Chapter 7 

presents a tank oxygenation technique using drop-formed vortex rings. The 

investigation of the effects of rain on sedimentation in the shallow intertidal 

water column is concluded in Chapter 8 with a discussion.and an 

identification of areas for future research.
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Literature Review

The ability of rain to affect sedimentation in a shallow water column can 

be visualized with a conceptual model (Figure 1-1J. Consider a single 

rain drop falling through the atmosphere attaining a terminal velocity and 

impacting a still water surface. The drop impact initiates a splash sequence, 

beginning with development of a drop-formed cavity, splash crown and 

bubble, if the crown closes over the cavity (Engel. 1964). With the loss of 

momentum, the crown and cavity collapse, a convergent flow develops, and 

a Rayleigh or central jet forms. Surface tension may segregate the central 

jet into one or more jet drops (Hobbs and Kezweeny. 1967). Collapse of the 

central jet (and/or fall of the jet drops) will form surface gravity-capillary 

waves, and subsurface turbulence or vortex rings (Green and Houk, 1980).

If turbulence occurs, energy dissipation is restricted to the near-surface: 

whereas if a vortex ring forms then mass and energy is transported beyond 

the turbulence limits. As the vortex ring moves downward in the fluid, ring 

momentum dissipates and the ring mass disperses into the ambient fluid.

Vortex rings can effect the distribution of suspended sediment. When a 

rain induced vortex ring forms, it may entrain near-surface suspended 

matter and transport the material to depth, where it is "deposited" as the 

ring energy decays. If the rain would strike more dense water (colder or 

saltier) the ring momentum w ill eventually be exceeded by fluid buoyancy, 

causing entrainment and upward transport of suspended matter.

If the waters are shallow enough the vortex ring strikes the bottom and 

the ring energy is transferred to the sediment via dissipation of impact and 

shear velocity. The detaching shear stress on the botton sediment near ring 

impact are caused by the rotational velocity within the ring's inner core.
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FIGURE 1-1. Conceptual model of how a raindrop may affect sedimentation 
in a shallow water column. (A) The impact of the drop forms an 
impact cavity and a splash crown. (B) The collapse of the drop cavity 
causes the formation of the central jet and possibily jet drops. It is 
the collapsing of this central jet, which forms the vortex ring. (C) The 
central jet can be compared to a "slug model," which has been used to 
define and describe the formation of vortex rings. The dimensions of 
the slug control the dimension of the vortex ring and its transitional 
velocity. (D) The vortex ring is comprised of two components, an 
inner core and an outer core. The inner core consists of rapidly 
rotating fluid which has very little exchange with the outer core. The 
outer core moves very slowly, but readily exchanges with the 
receiving water by injecting fluid into the wake of the downward 
moving ring. IE) If the ring impacts the bottom the rotational 
velocities are strong enough to initiate motion of sediment.
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Sediment may also be detached by direct impact of the ring mass with the 

bottom. Once motion is initiated, other physical mechanisms, such as weak 

tidal currents may transport the sediment.

Rain action may also cause secondary effects on other physical processes, 

for example: (1) dampening wave action (Houk. 1975: Reynolds. 1875): (2) 

decreasing currents by creating surface shear (Glass and Smerdon. 1967): (3) 

increasing density stratification (Katsaros. 1969): and (4) transferring 

momentum to settling particles (Bhuiyan et <z/. 1971).

Single-Drop Mechanics

A drop falling at terminal velocity has an oblate shape in response to a 

balance between surface tension and the hydrodynamic and aerodynamic 

forces (Pruppacher and Pitter. 1971). However, natural rain drops vary 

greatly from this static shape because of modification by non-equilibrium 

forces (Jones. 1959: Jamison and Beard. 1982). Beard and Johnson (1984) 

suggest that the mechanism for forcing drop oscillation include: (1) 

turbulence of shear: (2) drop collision: and (3) resonance with the wake 

shedding frequency. Exactly how the shape changes near impact is not clear. 

This is because of the changes in the air turbulence near the ground. Drop 

shape and fall velocities have been investigated in detail in still air (Laws. 

1941: Gunn and Kinzer. 1949: Spilhaus. 1948: Dingle and Lee. 1972: Berry 

and Pranger, 1974: Banks, 1978: and Beard and Johnson. 1984).

The splash sequence, when a drop hits a water surface, has been studied 

using high speed photography (Worthington and Cole. 1897: Engel. 1964 and 

1967; Harlow and Shannon. 1967: Mutchler. 1967: Hobbs and Kezweeny. 

1967: Macklin and Hobbs. 1969: Siscoe and Levin. 1971: and Macklin and 

Metaxas. 1976). Several studies have recognized that drops hitting a liquid
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surface can form vortex rings (Rodgers. 1858; Thompson and Newell. 1885; 

Worthington. 1894; Blanchard and Woodcock. 1957: Chapman and Critchlow. 

1967: and Carroll and Mesier. 1981).

How the drops form the rings has not been investigated quantitatively. 

Blanchard and Woodcock (1957) observed vortex rings forming when the 

central jet collapsed. Carroll and Mesier (1981) believe that the pinch-off jet 

drop, commonly observed above the central jet. forms the vortex ring. 

Chapman and Critchlow (1967) observed vortex rings forming without first 

creating the Rayleigh jet. when drops fell less than their splashing height. 

Not all drops w ill form vortei rings. Drops may form bubbles and/or 

disorganized turbulence. Chapman and Critchlow (1967) believed that this 

was related to the drop-shape oscillation. They observed that the most 

energetic vortex rings were produced when the drop impacted the surface as 

a sphere, going in shape from an oblate to a prolate spheroid.

The hydrodynamics of vortex rings has been studied theoretically 

(Batchelor. 1967: Whitehead. 1968; Maxworthy. 1972; Esudier and 

Maxworthy. 1973; Norbury. 1973; Widnall and Sullivan. 1973; and Linden, 

1973). as well as in laboratory studies (Banerji and Barave. 1931: Krutzch. 

1939; Turner. 1957; Magarvey and MacLatchy, 1964a; Chapman and 

Critchlow. 1967; Oshima. 1972; Chen and Chang. 1972; Maxworthy. 1974 and 

1977; Baird eta l, 1977; Rohatgi eta i. 1979; and Carroll and Mesier. 1981). 

All of the above laboratory studies used an orifice technique to form the 

vortei ring; whereby, a slug of dyed fluid is forced through a circular orifice 

by a plunger to produce the ring. The resulting ring dynamic history is then 

a function of the injection impulse. Magarvey and MacLatchy (1964b) 

investigated the disintegration of vortex rings upon collision with the 

boundary. Sutherland (1967) and Falco (1977) used vortex rings to
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approximate turbulent phenomena in the boundary layer. Sutherland's 

work was used to investigate sediment transport by turbulent flow.

Rainfall

Rainfall characteristics vary considerably depending upon location and 

type of rainfall event. The important characteristics in defining a rainstorm 

for erosion problems are (1) intensity. (2) drop-size distribution, and (3) 

duration (McCool. 1979). Storm impact on a particular intertidal area will 

depend upon how fast the storm moves through the area, the lateral extent 

of the storm, and the duration of the peak intensity of rainfall.

Cyclonic precipitation is typical of the rainfall events in the field study 

area. This type of precipitation event, which includes warm, cold and 

occluded fronts, is caused by the lifting of air masses, due to pressure 

differences (Luthin. 1966). The steady rains and thunderstorms, common in 

cyclonic precipitation, provide for the maximum erosion potential.

Rainfall intensity varies with time into a storm, as illustrated in Figure 1-

2. The one-hour rainfall expected once in ten years in the Northeast is 43 

mm/hr (Luthin. 1966 ). The 2-yr.. six-hour rainfall for the Northeast is 9.3 

mm/hr IHershfield. 1961). Thunderstorms are important storm events, 

which exhibit very high rainfall intensities over short duration. McCool 

(1979) observed that in one hour 16 to 65% of all rainfall occurs for a given 

storm (Figure 1-2B).

The drop size distribution varies as a function of rainfall intensity 

(Mutchler and MacGregor. 1979). Laws and Parsons (1943) related the 

median drop size, as determined by the volumetric distribution, to intensity. 

This relationship gives a median diameter of 1.86 and 2.45 mm for the 9.3
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FIGURE 1-2. Diagramatic distributions of important rainstorm parameters. 
(A) Rainfall intensity varies with time into storm. (B) Cumulative 
amount of rainfall with time into storm, with most rain occuring in 
less than the first hour. (C) The median drop size increases rainfall 
intensity. (D) Cumulative drop-size distribution for two rainfall 
intensities indicates that the entire drop-size spectra increases with 
intensity.
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and 43 mm/hr intensity storms (Figure 1-2). The maximum size of 

raindrops has been reported by Laws (1941) to be 6.1 mm.

The impact velocity is related to drop size. Terminal velocity is reached 

by most drops from a fall distance of 20m. and ranges from 485 cm/sec for 

1.25 mm drops to 930 cm/sec for 6.0 mm drops (Laws and Parsons. 1943).

It is believed that impact velocities may be different than terminal in the 

natural environment because of superimposed wind velocity (Van Dorn. 

1953: and Caldwell and Elliot. 1971) and turbulence (Bubenzer. 1979) in 

the boundary layer near the water surface.

Rain and Sedimentation

Rain on shallow water w ill act to change the level of turbulent motion. 

Although most rain induced energy is dissipated near the surface, drop- 

formed vortex rings can penetrate to depths exceeding 0.4 m (Houk. 1975). 

This increased motion will have an effect on the capacity of the water to 

transport sediment. However, the effect of turbulence on particle settling is 

still debated. Fine-particle settling lends to be decreased by turbulence 

(Torobin and Gauvin. 1960: Businger. 1965: and Murray. 1970). This 

decrease has been explained theoretically, as a non-linear drag response due 

to changes in fluid speed relative to the particle (Murray. 1970). However, 

this observation assumes isotropic turbulence, which is very rare in the 

natural environment, and is probably not the case in rain-induced water 

motion. Bhuiyan et a l (1971) observed the opposite effect in an experiment 

in quiescent water, where rainfall increased the settling rate of clay-sized 

particles.

Rain effects in flowing water is more difficult to interpret. Glass and 

Smerdon (1967) observed that rain reduced the mean flow by making the
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vertical distribution of velocity more uniform. Barfield (1968) observed that 

rainfall tends to decrease the turbulent time scales of flowing water.

Smerdon (1964), in channel flow 2.3 to 14 cm deep, observed that rainfall 

not only decreased the ability of flow to erode the sediment surface, but also 

reduced the suspended sediment capacity of the flow. In contrast. Walker et 

a l (1978) conclude that rain increases the transport capacity of sheet flow, 

less than 7 mm deep. They stressed the importance of impact frequency, 

rather than energy, in the sediment erosion process. This is analogous to 

the high energy “bursting" mechanism used by Sutherland (1966 and 1967) 

to describe entrainment of fine sediments by turbulent flow.

Sediment Response

The response of sediment to bursts of high flow, such as vortex rings or 

strong turbulent eddies of flowing water, is dependent upon the force 

transferred to the particles on the sediment surface. The classical concept is 

that for erosion to occur, the hydraulic shear stress must exceed the critical 

shear stress of the sediment (Ariathurai and Krone. 1976). Sutherland 

(1966) expanded this concept to include lift forces, due to the presence of 

high velocity gradients in the flow. The response of cohesive muds to excess 

shear is different than non-cohesive sediments, because erosion is not only 

particle by particle, but also by mass erosion.

The approach to understanding sediment transport has been primarily 

by laboratory studies (e.g Einstein. 1950; and Bagnold. 1966): however, 

significant deviation between theory and field observation typically occurs 

(White eta l. 1975). This difference is probably due to scaling effects, such 

as the way the sediment beds were prepared for the laboratory study. 

Typically laboratory erosion experiments use either placed or flow deposited
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beds, both usually quite different than one would expect in the natural 

environment.

The ability of cohesive sediment to resist erosion is controlled by 

properties that radically change if the bed is disturbed. These properties 

include compaction, desiccation, mucus binding by epifauna and infauna. 

and mat formation by flora. In addition, the antecedent stress history is 

quite important in governing the behavior of cohesive sediment (Mehta et 

a/, 1982; Amos and Mosher. 1985)

The muddy intertidal sediment presents a complicated (if not 

impossible) modelling problem, because of the extremely complex nature of 

the sediment fabric. This surface consists of cohesive flocculates and 

aggregates of clay and organic particles. Fecal pellets dominate the surface. 

Some of the feces( e.g. StrebJospioRenQ&vXi Webster. 1879) and pseudofeces 

are loosely bound together and easily disintegrate at very low shear stress. 

Other fecal pellets, such as those from Heteromastus filim orm is (Claparcde. 

1864: Polychaeta. Capitellae) and Macoma balthica (Linnaeus. 1758: 

Bivalvico. Tellindae). are quite rugged and act as low-density. sand-sized 

non-cohesive particles. Associated with the fecal pellets is mucus material, 

which tends to bind the surfaces of the individual pellets and groups of 

pellets together. Included in the sediment surface is gravel- and sand-sized 

organic debris. This material is light and irregularly shaped.

The muddy intertidal surface is not flat on the microscale (< 1 m2). It 

typically consists of hummocks and depressions created by epifaunal activity 

(e.g. horseshoe crabs). This surface expression changes seasonally, as does 

the concentration of fecal material (Rust. 1980; Anderson. 1983).
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Significance of Rainfall

The complexity of sedimentary processes in the muddy intertidal 

environment can be appreciated by reviewing Table 1-1. which lists the 

important physical and biological factors, causing erosion or deposition, and 

how these factors vary seasonally (Anderson. 1983). This study focused on 

one of the physical factors in detail -- rain. Unfortunately, it is difficult to 

isolate the effects of rain from the two most common processes affecting 

tidal flat sedimentation, wind waves and tidal currents. Therefore, to 

estimate the significance of rain, as a sedimentation process, it is necessary 

to design appropriate laboratory and field studies.

Intuitively, wind-wave action appears to be the most important 

physical factor in erosion of muddy intertidal sediments. Tidal currents, 

although strong in confined channels, tend to be relatively weak in the 

shallow water overlying broad intertidal areas (Anderson. 1973). A simple 

picture of how the wind, weak tidal currents and rain may be interrelated, 

during a storm event, is illustrated in Figure 1-3. Consider a hypothetical 

estuary, which has two broad intertidal areas separated by a deep channel, 

and a wind perpendicular to the axis of the estuary (Figure 1-3). The wave 

heights and periods will vary as a function of fetch, duration and water 

depth. Consequently, the upwind tidal flat w ill have much smaller wind 

waves than the downward tidal flat. Maximum wave activity will occur at 

the channel edge of the downward flat. Wave heights will decrease across 

this flat as the larger waves are attenuated in the shallow water (Anderson. 

1972; Figure 1-3B). This spatial variability is in contrast to rainfall, which
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TABLE 1-1. Physical and biological parameters, which control sedimentation 
on the muddy intertidal. How each parameter contributes to 
erosion (E) or deposition (D) is suggested by season 
(Anderson, 1983).

FACTORS Spring Summer Fall Winter

PHYSICAL FACTORS
Waves E D E E
Ice E E/D
Rain E E E E
Groundwater Discharge E D D E
Mud/Water Temperature D E D E/D

BIOLOGICAL FACTORS
Microbiology D D
Flora

Unicellular, motile algae D
Algal Mats D
Other plants D

Fauna
Bioturbation E E
Pelletization E E
Biodeposition by suspension feeders D D
Epifaunal tracks and depressions E/D E/D
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FIGURE 1-3. The effects of physical processes on sedimentation varies 
spatially in the estuary. (A) Windwaves will be more important on 
the downwind tidal flat. (B) Rainfall will be randomly distributed 
over the estuary. (C) Tidal currents are quite strong in the channel 
but weak over the tidal flats. These conditions would be typical in an 
idealized estuary with broad tidal flats (D).
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will tend to be random over the entire estuary (Figure 1-3C), and to tidal 

currents, which will be important only in the channels (Figure 1-3D).

Houk (1975) observed that almost all (97.7%) of the rain’s kinetic 

energy flux goes into turbulent dissipation. The depth of mixing in his 

studies varied from 8 to 42 cm. Although Houk hypothesized that organized 

vortex ring structures are a mixing mechanism. his studies did not 

differentiate the turbulence and vortex ring components (Green and Houk. 

1979). This differentiation is important from a sedimentological point of 

view, because the rings have the ability, if formed, to transport mass and 

energy to depths much deeper than disorganized turbulent eddies. In 

addition, the circulation of the inner core of a vortex ring is sufficiently 

intense to cause a significant shear stress at impact with the bottom.

If drop-formed vortex rings are important in resuspending bottom 

sediments, then it must be demonstrated that they can survive in a 

turbulent natural environment. For an initial approach to this problem, a 

dimensionless parameter can be calculated, which match the forces trying to 

maintain the structure of the ring, with the turbulent forces in the 

surrounding water, which are trying to break up the ring. The Reynolds 

number (Re) would be the most appropriate parameter, since it is a ratio of 

inertial to viscous forces. The general form is

u d
( 1- 1 )

where U - velocity 
D - diameter 
Y  - kinematic viscosity.
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Maxworthy (1977) in his study of vortex rings calculated a ring Reynolds 

number by using the ring translational velocity, and the radius of the orifice 

through which the ring was generated (Figure 1-1). The Reynolds number 

for the rings studied by Maxworthy (1977) ranged from 2000 to 70.000 

(Figure 1-4). By using Solitary Wave Theory to estimate the velocity and 

radius of the wave orbital at the water surface (U.S. Army Corps of 

Engineers, a similiar Reynolds number for wind wave turbulence can be 

derived. The distribution of Re for waves, which can exist in water depths 

of 2.5 to 40 cm. range from 100 to 200,000 (Figure 1-4). The distribution of 

Reynolds numbers for the vortex rings and wind waves coincide, suggesting 

that a quiescent environment may not be needed for vortex rings to persist.

A second approach to assessing the significance of rain, relative to 

tidal currents and wind waves, is to compare gross energy dissipation rales 

for each process. Tidal energy dissipation has been estimated for the Great 

Bay Estuary, site of our field experiment, by Trask (1979). The average tidal 

energy dissipation ranged from 5.4 to 390 ergs/cm2/sec. Although Trask did 

not differentiate between the channel and the tidal flat regimes, one would 

expect much lower rates on the tidal flat, because frictional energy 

dissipation is a function of the current speed squared (Filloux. 1973).

Wave energy dissipation will result when waves exert a shear on the 

bottom. The rate of dissipation is equal to the loss of wave motion energy 

(Madsen, 1979). For waves in 20 cm of water, with a 1.0 sec period (typical 

for the field study site; Anderson. 1972). the calculated rate of energy 

dissipation ranges from 1 erg/cm2/sec for a 1 cm wave height to 222 

ergs/cm2/sec for al5 cm wave height.

Rainfall energy dissipation has been related to rainfall intensity by 

Wischmeier and Smith (1978). For a rainfall intensity of 43 mm/hr. the
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FIGURE 1-4. Distribution of wave Reynolds numbers for short period (0.5 to 
1.5 sec) waves in water depths from 5 to 40 cm, using Solitary ’Wave 
Theory. The range of Reynolds numbers for vortei rings used by 
Maiworthy (1977) in laboratory studies is shown for comparison.
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dissipation rate is 7.2 ergs/cm2/sec. This implies that there is a reasonable 

amount of energy associated with a moderately intense storm which can 

affect sediment transport.

As discussed, the spatial distribution of energy dissipation will vary 

for each source (Figure 1-5). This may have implications in terms of 

sedimentation processes within the estuary during a storm event. The 

upwind intertidal areas of the estuary may be rain dominated to the point 

where the water depth and fetch are sufficient for wind waves to cause 

sediment transport. On the downwind intertidal, wave action will be the 

most important process, perhaps, overwhelming any effects of rain or tidal 

curents. Currents will be important, only in the channels and the outer 

margins of the tidal fiats.

In summary, it appears that rainfall has the potential to be the most 

significant process on the upwind portions of the intertidal area, when the

water is shallow (<50 cm), and wind waves are moderate (<5 cm in height).
*

It is with this justification that a better understanding of how rainfall acts 

as a sedimentation process is needed to fully understand the effects of a 

storm event in the estuarine environment.

Objectives

The purpose of this investigation is to develop a better understanding 

of the role that rain plays in modifying estuarine sedimentation patterns, 

during storm events. A secondary purpose was to identify a practical 

application for the use of drop-formed vortei rings. The objectives of this 

study are as follows:

1. Determine, in the laboratory, the percentage of drops which form
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FIGURE 1-5. The effect of rain on an idealized estuarv with broad tidal flats 
is shown in A. Rain should be a dominant process on the upwind tidal 
flat, where the fetch is too short for large wind waves to develop. The 
downwind tidal flat should be dominated by wind waves. An 
hypothesized spatial distribution of energy dissipation for rain, wind 
waves and tidal currents is shown in B. Tidal currents are stongest in 
the deeper channels. Wind energy will be greatest on the downwind 
tidal flat, except when the water depth is too shallow for the larger 
waves to penetrate. Rain energy will be uniform across the entire 
estuary if the rainfall intensity is uniform.
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vortex rings, rather than turbulence or bubbles.

2. Determine the physical properties of drop-formed vortex rings, 

including depth of penetration, dimensions and translational 

velocity profile.

3. Determine the ability of vortex rings to initiate motion oif sediment 

after passing through a range of water depths.

4. Determine the resuspension ability of artificial rain with an 

estuarine mud substrate.

5. Determine in the field, using artificial rain, the maximum depth of 

water in which rain can resuspend bottom sediment.

6. Observe changes in suspended sediment concentrations, during 

storm events, to estimate the importance of rain.

7. Develop a practical application for the use of drop-formed vortex 

rings.
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CHAPTER 2

MECHANICS OF DROP-FORMED VORTEX RINGS 

Introduction

The series of processes to transfer rain energy through a shallow water 

column to a sediment covered bottom are relatively complex. Therefore to 

better understand this mechanism, single-drop laboratory studies were 

conducted to describe these processes in a deterministic fashion. Although 

interaction effects are important, the single-drop studies can be used to 

conceptually model the effectiveness of rain as a sediment resuspension 

mechanism in a shallow water column. The model can then be tested using 

multidrop experiments and observations during natural rainfall events.

The single-drop studies were conducted in five separate experiments. 

These experiments are organized into four parts. Part 1 investigates how the 

drop impact controls the initial development of the vortex ring. Drops may 

cause either a splash central jet or bubbles; a central jet is needed for vortex 

ring formation. In addition, the nature of the drop-shape oscillation at 

impact may enhance vortex ring formation (Chapman and Critchlow, 1967). 

Part 2 investigates the central jet characteristics, how they are influenced by 

drop impact energy and water temperature, and how the drop energy 

relates to the vortex ring momentum. Salinity or density considerations 

were qualitatively observed, but were not tested in the single-drop studies, 

because accurate measurement of the surface water salinity was not 

possible. Part 3 develops the vortex ring characteristics, (i.e. inner core

22
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dimensions, translational velocity and depth of penetration). Part 4 studies 

the ability of the vortei rings to initiate motion of non-cohesive sediment 

and is the topic of Chapter 3.

Methodology

Experimental Procedure
Drop Formation. Drop water was prepared from tapwater by the addition 

of water soluble red fiourescent dye. The density of each dye batch, 

although not significantly different than tapwater ( greater by 0.000749 

gm/cc). was determined by hydrometer. Dyed water was used for all 

experiments except Experiment 3 (Table 2-1). Drop temperature was 

maintained at approximately room temperature, and measured with a lab 

grade thermometer (*/_ 0.2 C) at the start and end of each run or set.

Drops were formed from either hypodermic needles or tubing (Figure 

2-1). serving as capillary drip ends (Table 2-2). Silicone tubing with a 0.33 

mm inside diameter (ID) was used as the flow restrictor between the drop 

fluid reservoir and the drip end. This technique produced relatively uniform 

drops. The size of the drop depended primarily on the tip diameter, and 

secondarily on surface tension and flow rate (Robinette and McCOol. 1984). 

The flow rate was controlled by using either gravity feed (Experiment 3) or a 

Masterflex pump (Head No. 7013) with an electronic timer-dispenser (Figure 

2-1). The rate of drop production was approximately 1 per 3 seconds. This 

time interval was sufficient to allow dissipation of the surface waves 

between drops (Siscoe and Levin. 1971).

Drop diameter was determined by collecting duplicate samples of 23 

drops each in preweighed beakers. The drop volume was estimated using ' 

the fluid weight and density. Drop diameter was computed from drop
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FIGURE 2-1. Schematic diagram of the experimental set up used to
investigate the single drop-formed splashes and vortex rings. Two 
drops sizes depending upon the needle and/or adaptor size fell fixed 
distances to a receiving water tank. Scales were provided to measure 
fall distance, and dimensions of the splash and vortex ring. Drop rate 
was controlled by using a pumping system (S) with a timer (T) 
dispenser switch (Sj. The resultant splash and/or vortex ring was 
recorded on a video system. The water temperature was monitored 
with thermistors.
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TABLE 2-1. Summary of experimental operations.

OPERATION
1 2

EXPERIMENT 
3 4 5

Experiment
Location Lab Lab Stilling Tower Lab Lab

Drop
Water Dyed Dyed Undyed Dyed Dyed

Drop
Generation

Masterflex
Pump

Masterflex
Pump

Gravity Masterflex
Pump

Masterflex
Pump

No. Drops 
Per Set Variable 25 100 50 100

Drop
Heights 7-160cm l-184cm 50-600cm 50-125cm 120cm

Receiving Tank 
Dimensions 
Depth

14cm ID 
18cm

14cm ID 
18cm

30x240cm
40cm

15x 14cm 
16cm

14cm ID 
Variable

Data
Recording Manual Manual Video Video Manual
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Table 2-2. Drop formers used in each single-drop experiment.

TIP DROP DESCRIPTION OF TIP TIP EXPERIMENT
NO. SIZE USED ORIENTATION 1 2 3 4 5

20V 0.242cm 26g SS Hypodermic Vertical X
11V 0.304 21g SS Hypodermic Vertical X X
10V 0.330 18g SS Hypodermic Vertical X
11 0.367 21g SS Hypodermic Horizontal X
10 0.399 18g SS Hypodermic Horizontal X
15 0.469 0.32cm ID Silicone 

Tubing Vertical X X X
16 0.545 0.20cm ID Silicone

Tubing Vertical X X X
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volume by assuming a spherical shape. Drop diameter was varied depending 

upon the purpose of each experiment (Table 2-2).

Drop fall height was measured (+/- 0.5 cm) from the needle end to the 

water surface. Drops were allowed to fall in calm air by conducting 

experiments either in the lab or outside in stilling towers (Figure 2-1: Table 

2-1). Two stilling towers were used in Experiment 3, depending upon drop 

size. The larger drops fell through a 10 cm ID PVC pipe and the smaller 

drops through a plastic covered 30 cm square tower. The tower tops were 

closed and the tower extended to within 30 cm of the water surface to 

minimize any updrafting of air. The larger tower was needed for the smaller 

drops because of the observed side-wali effects in the smaller tower. 

Migration of drops toward the tower wall was probably due to the electrical 

charge differences between the wall and the drop (Engel, 1964), rather than 

boundary effects (Vanoni. 1977).

Receiving Water. The receiving water tanks varied in dimensions 

depending upon the purpose of the experiment (Table 2-1). Tapwater was 

used in all experiments. Except for Experiment 4. the water was allowed to 

equilibrate with atmospheric temperature. In Experiment 4 the tank water 

was cooled with ice to obtain 9-10° C water; heated tapwater was used in the 

50° C recieving water tests. Temperature was monitored near surface for all 

experiments, and also near bottom for the vortex ring experiments. Either a 

laboratory grade thermometer or a YSI thermistor (+/- 0.2 C) was used to 

make measurements. Special procedures unique to each experiment are 

summarized in Appendix 2A.
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Analytical Procedure

Experiment 1. This experiment consisted of several tests to determine the 

number of drops required to have statistically valid vortex ring data sets 

(Appendeces 2A. 2B and 2C). The procedure was to first determine if a drop 

created a vortex ring, if not it was so noted. When a ring was produced it 

was catagorized as either well-formed (a tight well-defined inner core with a 

high translational velocity) or marginal (a diffuse inner core moving slowly 

through the water column). The observations were then used in Chi Square 

analyses to determine significance in the observed ratio between ring 

formation and no ring.

Experiment 2. This experiment studied the effect of drop height on the 

formation of vortex rings. The rings were tallied as described above. The 

impact velocity from each drop height was calculated using the results of 

Laws (1941).

Experiment 3. This experiment studied the effect of drop energy on the 

splash central jet formation. Data collection was with a video system. Data 

on the splash characteristics were collected using a Panasonic color video 

camera (WV-3150) with recorder (NV-8420) and color display (CT-160).

The recorded field of view was scaled to maximize the dimensions of the 

splash features. A metric scale was included in the video record at 

approximately the same depth of field as the splash. A status card, which 

included tip number, drop height and run data, was also included to 

document the splash sequence (Figure 2-1).

One hundred splashes from each of four heights 150 to 125 cm in 25 

cm increments) were enumerated into three catagories: (1) jet; (2)
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jet/bubble complex (this was where the bubble did not completely close, but 

there was distortion of the central jet); and (3) bubble. Detailed 

measurements of jet height, cross-sectional area and impulse time were 

made on five jets, or those jets available. The measurement procedure is 

provided in Appendix 2D.

Experiment 4. This experiment investigated the relationship between the 

splash characteristics and the resultant vortex ring. The splash data were 

collected and reduced as described above. A second video camera and 

recorder system (Canon) was used to collect the vortex ring dynamics data.

A digital stopwatch was positioned in the field of view of both cameras, 

allowing cross-referencing between splash and resultant vortex ring 

features.

Data reduction varied depending upon the parameter of interest. The 

time of impact, if a vortex ring formed and the depth of ring penetration 

were noted for all drops. Ten central jets (five jets that formed vortex rings 

and five which did not) were selected from each 50 drop set and analyzed in 

detail (Appendix 2D).

The vortex ring translational velocity distribution was computed for 

three well-defined rings for each temperature, drop size and height 

combination. The velocity was determined by noting the time of maximum 

cavity formation, after the collapse of the central jet. This was considered 

the ring start time. The video record was advanced frame-by-frame, and 

the time and depth of the rings was recorded. Velocity between the 

observations was computed from the change in depth versus the change in 

time. The accuracy of the velocity determination was limited by the speed 

of the video recorder, clarity of the ring and the readability of the digital
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watch. Where visibility allowed, the horizontal and the vertical dimensions 

of the vortex ring inner core were measured.

Experimental Error Analysis

Drop Size Variability. Eleven tests were conducted to determine 

temperaure and dye concentration effects on drop size variability 

(Appendix 2A). Three drop temperatures were tested. 9-10°C. 20-25°C and 

41-42°C. Dye concentration was varied from 290 to 1820 ppm. An analysis 

of variance indicated significant variability between runs at the 95% 

confidence interval (Cl). Grouping the tests by temperature and dye 

concentration to eliminate variability within a group resulted in no 

significant relationship between drop size and either temperature or dye 

concentration. The drop size range when all data (3225 drops) are pooled 

was 0.449 to 0.479 cm with a mean of 0.464 cm and a standard deviation of 

0.01cm. Based upon this error analysis, effects of dye and temperature on 

drop size were considered minimal. The reason for different drop sizes from 

the same tip may have been due to aging of the tips with time (McCool and 

Robinette. 1984). Therefore, drop size was measured for each experiment 

and each tip used (Appendix 2A). but was considered constant during each 

experiment.

Sample Size Analysis. The sample size for the number of raindrops 

needed to reach a desired level of precision required a previous knowledge 

of the population percentage (e.&lhe ratio between the number of raindrops 

to the number of vortex rings), which one would expect to observe. Knowing 

this percentage, setting an acceptable level of significance, and defining a
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range within which the data should fall, a better estimate of the requisite 

number of observations was made (Richmond. 1964).

A pilot study was conducted using six sample sizes (25, 50,75.100, 150 

and 200 drops) for seven drop heights to estimate the optimum sample size. 

This was required because we lacked prior knowledge on the expected 

percentage of vortex rings produced by the drops. This study provided a set 

of observed frequencies which could be tested against theoretical 

distribution models, using a single classification technique for Chi Square.

The results of this study are presented in Appendix 2B.

Three hypothetical Groups were tested against the observations. Group 

A where one out of three drops produced a ring. Group B where one out of 

two drops formed a ring, and Group C was where four out of five drops 

formed rings. The analytical results suggest that a sample size of 25 drops 

can distinguish between the two extremes. e.g. Group A and Group C (see 

Appendix 2B for details). A sample size of 150 drops or more was needed to 

distinguish between the three observed populations at the 95% Cl. Based 

upon this analysis and the experimental limitation that about 50 drops 

obscurred the visibility of the dyed ring in the receiving water, a sample size 

of 25 drops was used for subsequent experiments.

Results 

Controls on Vortex Ring Formation

The formation of the drop-formed vortex ring is due to an impulse 

created by the collapse of the splash central jet (Blanchard and Woodcock. 

1957). There are two effects that impacting drops may have on controlling 

the nature and frequency of the vortex rings. The work of Engel (1967). and
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Macklin and Metaxas (1976) show that the formation of the central jet is 

directly related to the impact energy. Macklin and Metaxas (1976) observed 

from Engel’s work that the splash crown edge collapses to form a spherical 

bubble over the cavity, when the drop impact energy exceeds a critical 

threshold. If drop impact energy is greater than this threshold, no vortex 

rings will form because no central jets form. Chapman and Critchlow (1967) 

observed that drop-shape oscillation was important in creating energetic 

vortex rings. They observed that the best rings were formed when the drop 

shape at impact was spherical changing in shape from an oblate to prolate 

spheroid.

Two experiments were conducted to evaluate these two effects on the 

vortex ring formation. The first experiment was to identify the impact 

energy threshold at which no central jets were formed. The second 

experiment was to determine if the change in drop shape could influence the 

probability of vortex ring formation.

Central Jet Formation. The physical properties of the splash central jet 

were evaluated over a range of impact energies. A range of drop sizes 

(0.255 to 0.545 cm) and drop heights 150 to 600 cm) were used to develop 

the impact energy range of 35.8 to 31.200 dyne/cm. When considering just 

impact energy of the drop, as proposed by Macklin and Metaxas (1976), a 

step function in the percent jets versus impact energy distribution was 

observed. The energy level at which splash bubbles began forming was 

different for the smaller drops than the larger drops. Considerable 

improvement in defining the step function for both drop sizes was obtained 

by normalizing the impact energy (Ej)by the cross-sectional area (As)of the

drops (Figure 2-2). The percent jet distribution was also tested against drop
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FIGURE 2-2. Scatter plots of percent bubbles (A) and percent jets (B) versus 
impact kinetic energy divided by the spherical drop area. The energy 
distribution is divided into three zones based upon the distribution of 
bubbles and jets. Zone I represents all jet formation, Zone II 
represents a transition zone to very low percetages of jets,and Zone III 
represents primarily bubble formation with few jets.
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momentum and an elliptical drop impact area (Spilhaus. 1948), but neither 

improved the resolution in the percent jet distribution.

Three impact energy zones were identified by the distribution of 

percent jets and bubbles (Figure 2- 2). The limit of no jet formation was not 

reached in this experiment. However, the experiments extended through a 

transition from all drops forming jets to very few drops forming jets. Below 

an energy level of 42.500 dynes/cm. all drops formed central jets (Zone I).

A transition zone (Zone II) was observed between 42.500 and 75.000 

dynes/cm, where the percent jets linearly decreased as impact energy per 

unit area (Ej/As) increased. This transition can be described by the linear

regression (R-squared * 0.841):

% Jets-231 - 0.00154(Ej/As) (2-1)

At energy levels above 75.000 dynes/cm. less than 15% jets were 

formed. The asymptotic nature of the percent jet scatter, and the highly 

variable scatter in the percent bubble versus impact energy per unit area 

(Figure 2-2B), make it impossible to estimate from these data an upper limit 

of impact energy for jet formation.

The energy range of this experiment covered 65% of the expected 

energy range of drops 0.125 to 0.6 cm diameter falling at terminal velocity 

(Laws. 1941). Zone II or the transition zone would correspond to 0.25 to 

0.325 cm drops falling at terminal velocity. Thus for a 1.27 cm/hr storm, 

which could occur for a three-hour period and have a return period of two 

years in the New England area (Bubenzer, 1979). 72.8% of the drops by 

volume would have an impact energy per unit area in Zone I; 20.4% in Zone 

II; and 6.8% in Zone III.
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Drop Shape Oscillation. A detailed study of vortex ring production as a 

function of drop height from 1 to 184 cm was conducted using a 0.464 cm 

diameter drop. There was not a simple relationship between drop height 

and resulting vortex ring production (Figure 2-3). Using the same statistical 

approach as in the sample size analysis, drop height zones were identified, 

where there were statistically significant (95% CD differences in vortex ring 

production. Three out of four drops (Group C) formed vortex rings at heights 

of 1-2 cm. 15-23 cm and 100-134 cm. At heights of 5-9 cm, 38-61 cm and 

165-184 cm only one out of three drops (Group A) formed vortex rings 

(Figure 2-3).

Changes in drop shape at impact may influence the ability of the drops 

to produce vortex rings. The drop oscillation time (*r) is defined by Chapman 

and Critchlow (1967) as

Sf = JfTPV (2-2)
0 l cr

where/^- drop water density 
V- drop volume 
CT- surface tension.

The oscillation time was 0.029 sec. for the drop used in the fall height 

experiment. That is the time for the drop to change shape from a sphere to 

an oblate spheroid back to a sphere then to a prolate spheroid and finally 

back to a sphere.

An estimate can be made for the drop shape at impact by knowing the 

impact velocity and the fall distance. Assuming that at v-0 the drop shape is 

spherical, and the fall time, is defined as
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FIGURE 2-3. The number of vortex rings produced by 25 drops, as a function 
of drop height from 1 to 184 cm in 1 cm increments. The 
horizontal lines differentiate Group A ring probabilities from Group C 
probabilities. The triangles indicate the heights with good 
potential for vortex ring formation (open triangles at top of figure), 
and those heights with a poor potential for vortex ring formation 
(dark triangles at bottom of figure).
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t = 2h/Vi (2-3)

where h - fall distance
Vj- impact velocity,

then the number of drop oscillations is determined by dividing the fall time 

by the drop oscillation time. Assuming that at a half and full oscillation the 

drop is spherical and the half oscillation represents the drop shape changing 

from an oblate to prolate spheroid, then the oscillation number can give an 

indication of drop shape at impact. According to Chapman and Critchlow 

(1967) the drop shape at the half oscillation number is best for producing 

vortex rings (Figure 2-3).

Two tests were made on the vortex ring production data. The drop 

heights, which correspond to the full and half-oscillation number, are shown 

on Figure 2-4. The hypothesis that the half-oscillation numbers correspond 

with relatively high probabilities of ring formation, and the full oscillation 

numbers coincide with low probabilities of ring formation was accepted at 

the 95% Cl using a Chi Square test. The theoretical frequency predictions 

used to test against the observed frequency were that drops impacting at 

full oscillation produced a ring 1 in 3 times, and that drops impacting at half 

oscillation produced a ring 3 in 4 times.

The importance of drop shape oscillation on vortex ring production was 

also tested by comparing the oscillation number with the heights where 

more than 28 of 50 drops formed vortex rings (Group C). The oscillation 

number was normalized by rounding to the nearest whole number and 

subtracting this integer from the oscillation number. Values falling near zero 

represent full oscillations and values falling near +0.5 and -0.5 represent half
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FIGURE 2-4. Diagram showing how an idealized drop oscillates in shape from 
a sphere (t-0) to a oblate spheroid (t-0.25) back to a sphere (t-0.5), 
then to an oblate spheriod (t-0.75) and finially back to a sphere 
(t-1.0). Chapman and Critchlow (1967) hypothesize that if a drop hit 
the fluid surface at t-0.5 it will form an energetic ring, and if it hits at 
t-1.0, then a poor or no ring will form.

t = 0 

t = 0.25

HALF OSCILLATION t = 0.5 GOOD RING

€ig>t=0'75
FULL OSCILLATION i l l  t = 1.0 POOR RING

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 9

oscillations. Again it is at the half oscillations where maximum vortex ring 

production should occur. The scatter diagram, shown in Figure 2-5, supports 

this conclusion. However, the scatter also suggests that there are other 

factors resulting in less than the optimum number of vortex rings being 

produced. One factor may be that drop oscillation is due not only to the 

release of the drop from the needle, but also due to wake shedding as the 

drop falls.

These experiments demonstrate that vortex ring formation is controlled 

by both impact energy and drop shape oscillation. Above a specific impact 

energy per unit area threshold, bubble formation limits the production of 

vortex rings. Below this threshold all drops form a central jet which is a 

prerequisite to form vortex rings. Because of the drop shape oscillation, not 

all drops in this energy range w ill form energetic vortex rings.

These results can be applied to the other experiments and to natural 

rainfall. In the multidrop experiments all drops are falling the same 

distance (if the receiving water is held relatively constant) and are the same 

size. Therefore, efficiency of vortex ring production will depend upon the 

oscillation frequency and the drop height. The drop shape at impact in these 

experiments may not be randomly distributed, as they would be in a natural 

rainfall. Conversely, the time and fall distance history is not known in 

natural rainfall events; consequently, the changes in drop shape at impact 

are unknown. One would suspect a random distribution of drop shape 

oscillations. This would lead to the conclusion that the probability to form 

vortex rings by natural rain drops would be much less than experimental 

drops falling from drop heights designed to maximize vortex ring formation.
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FIGURE 2-5. The probability of vortex ring production, as a function of the 
normalized drop-shape oscillation number. Only the drop heights 
which formed vortex rings in Group C (Figure 2-3) were plotted. A 
full oscillation (poor ring formation potental) at impact corresponds to 
0.0, and a half oscillation (energetic ring formation potential) 
corresponds to +/- 0.5.
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Vortex Ring Generation

Hydrodynamic studies of vortex rings commonly use an initial impulse 

slug of fluid to create the vortex ring. In these studies a known volume of 

fluid is passed through a fixed diameter orifice, over a known impulse time 

(Baird etal. 1977; Maxworthy, 1977). The dynamic characteristics of the 

resulting rings are then related to the properties of this initial slug. The 

important ring parameters used in this comparison are the ring dimensions, 

the translational velocity of the ring and the circulation within the ring. 

These properties are not constant, but vary as the ring proceeds away from 

the generating source (Maxworthy, 1977). The size and the translational and 

rotational velocities of the ring at impact with the bottom are important in 

defining the energy available for initiation of sediment movement.

Central Jet Characteristics. Drop-formed vortex rings may differ from 

the theoretical and laboratory studies in that the splash central jet is an 

"imperfect" slug generator. The slug volume varies with drop impact energy 

and water temperature. In energy Zone I the jets are uniform and 

cylindrically shaped. In energy Zones II and III the jets become irregular 

and deformed (Figure 2-6). This deformation may influence vortex ring 

formation. The orifice for the drop-formed impulse is not fixed, but depends 

upon how the central jet collapses through the water surface. How the drop 

energy is transferred through the central jet to the vortex ring may be 

controlled by the flow-field on the small-scale turbulent levels and the 

ambient water temperature.

The important factors describing the impulse jet are (1) the jet cross- 

sectional area and diameter (y>. volume); (2) the jet height at maximum 

extent Ue. the potential energy contained in the je t); and (3) the time for
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FIGURE 2-6. Shadow diagrams of central jets produced by 0.545 cm drops 
falling from heights, ranging from 50 (top) to 600 cm (bottom) in 50 
cm intervals. The energy Zones I, II, and III, as defined by the 
percent central jets, are noted. The dimensions of the jets are correct 
relative to each other.
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the jet to collapse. These parameters define the impulse generating slug and 

the initial energy, but do not describe the orifice through which the impulse 

jet passes. This is important because it is the size of the orifice relative to 

the volume of the impulse slug which determines whether or not a vortex 

ring will form (Chen and Chang, 1972). The maximum orifice diameter 

would possibly be the jet diameter, but the actual orifice may be much 

smaller. It was not possible in this study to establish a better estimate for 

the orifice diameter. Variations in the jet shape and how the jet collapses 

through the water surface are factors, which may control the development 

and the characteristics of the vortex rings.

Effect of Drop Impact Energy. The jet dimensions from Experiment 3, 

are best described as a function of impact energy per unit area at a single 

receiving water temperature.

Jet cross-sectional area increased linearly with impact energy per unit 

area (Figure 2-7A). The increase in area was due primarily to the increase 

in jet diameter rather than jet height. Jet height, as measured at maximum 

extent, increased in energy Zone I. decreased in energy Zone II. and finally 

increased in Zone III (Figure 2-7B). Like cross-sectional area, jet diameter 

increased linearly with impact energy (Figure 2-7C).

The impulse time was measured from the point of maximum jet extension 

to the point where the jet had completely passed through the water surface. 

The average measured impulse time was 0.07 sec (std. dev. = 0.015: n *

220). However, this time was difficult to measure accurately since the video 

equipment recorded at 25 frames per second.
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FIGURE 2-7. Scatter plots of cross-sectional area (A), jet height (B) and 
average jet diameter (C) as a function of impact kinetic energy per 
spherical drop area. The energy Zones I, II, and III as determined 
from the percent jet distribution are shown for reference.
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Effects of Receiving Water Temperature. The temperature effects on 

the central jet dimensions is expected, because of its influence on the 

physical nature of water. As temperature increases water becomes less 

viscous, has a lower surface tension and becomes less dense. All these 

factors would promote changes in the dimensions of the jet. The central jet 

formed by the same drop impact energy would increase in volume with an 

increase in water temperature, because the fluid would be less dense and 

less viscous. This effect w ill be enhanced because the surface tensional 

forces, which are opposing the upward growth of the central jet, w ill 

decrease with increased temperature.

Central jets produced in Experiment 4 were created by either small 

drops (0.351cm) or large drops (0.523 to 0.53 cm) falling 50 to 125 cm. The 

impact energy per unit area ranged from 10,770 to 39,250 dyne/cm, which 

corresponds to energy Zone I. where all drops formed central jets (Figure 2- 

7). The drop water was maintained at about 20° C. while the receiving water 

was varied from 9-10°C to 20-22°C and 45-55°C. By varying the receiving 

water it was possible to assess the temperature effects on the jet dimensions.

A two-way analysis of variance was conducted to determine if the 

change in receiving water temperature affected the central jet dimensions, 

and to determine if the thermal effects were comparable to changes in drop 

height (e.g impact energy). The jets formed by the small drops showed an 

increase in jet cross-sectional area, height, diameter and volume with 

increased drop height (Figure 2-8). All the jet characteristics increased 

significantly (at 95% Cl) between 9-10°C and 45-55°C receiving water 

temperatures. The jet diameter and volume for jets produced in 9-10°C to 

20-22°C water were not significantly different.
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FIGURE 2-8. Jet dimensions from Experiment 3 as a function of fall height. 
All impact energy per unit areas were confined to energy Zone I. The 
data are divided by receiving water temperature (10°C, 20°C and 
50°C), and by drop size. The "large" drops were about 0.53 cm and the 
"small" drops were 0.35 cm in diameter. Panel A is jet area as a 
function of fall height; Panel B is jet height versus fall height; Panel C 
is jet volume; and Panel D is jet diameter as a function of drop height.
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The jets formed by the large drops increased their cross-sectional area, 

diameter and volume with increased drop height (Figure 2-8). There was no 

significant difference in jet heights. Changes in receiving water temperature 

from 20-22 to 45-55° C resulted in significantly increased jet characteristics 

(except jet height).

The results for the 9-10°C water appear to be anomolous in that the 

dimensions are intermediate between those for 20-22°C and 45-55°C water 

(Figure -2-8). A possible rationale for this observation was inadequate 

temperature measurements. The near-surface water may have actually 

been warmer than that measured, due to exposure to the warmer air and to 

lighting for the video recording. It is possible that this surface warming, 

thermally stratified the water column, resulting in temperatures 

intermediate between 20 and 45° C. This surface warming may also have 

been enhanced by the relatively large volume of 20° C water added by each 

drop. The results of the smaller drops are probably also influenced by this 

experimental artifact, but is not as noticable.

Vortex Ring Characteristics

Measurements of the ring properties were made from the video 

recording, and include: (1) ring dimensions: (2) translational velocity; and 

(3) an estimate of rotational velocities in the inner core of the ring. The 

depth of ring penetration was also measured to estimate the depth of ring 

influence.

Vortex Ring Size. The size of the vortex ring is dependent upon the size of 

the impluse slug creating the ring. When dyed water drops are used to 

generate vortex rings, only a portion of the ring is visible. An example of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

this torroidally-shaped inner core as it impacts the tank botom is shown in 

Figure 2-9. Fluid in the inner core is rotating very rapidly within the core, 

with little exchange between this fluid and the surrounding water. The 

vortex ring also has an outer core which circulates very slowly and readily 

exchanges fluid with the ambient water Figure 1-1. This portion of the ring 

cannot be seen using just dyed drops. Consequently the descriptive 

properties of the vortex ring will be those of the inner core. Fortunately it is 

this inner core which contains the bulk of the ring energy.

Horizontal and vertical dimensions of the inner core of nine vortex rings 

from the Experiment 4 data set were measured from the video record. The 

drop diameter which generated these rings was 0.523 to 0.53 cm. The 

average horizontal length was 1.36 cm (+/- 0.157 cm std. deviation), and the 

average vertical length was 0.398 cm (+/- 0.93 cm). The volume of the inner 

core of these vortex rings was 0.384 cm3 (+/- 0.152 cm3), assuming a 

torroidal shape (Figure 2-10).

The small drops generated vortex rings with much smaller ring 

dimensions. The average horizontal length was 0.905 cm (n»8; Std. Dev. - 

0.15). The vertical length was 0.244 cm (Std. Dev. - 0.04). The average 

volume of the inner core of the ring was 0.0971 cm3, or about 4 X smaller 

than the inner core produced by the larger drops. The length to width ratio 

of the measured rings was about 3.5. this is smaller than the ring dimension 

ratio (approximately 10) observed by Johnson (1970).

Vortex Ring Velocity. There are two velocities to be considered when 

describing the ring energy. The translational velocity of the ring is the speed 

at which the ring moves downward through the water column. The
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URE 2-9. Photograph of the inner core of a vortex ring impacting a clay 
covered tank bottom after passing through 40 cm of water. The inner 
has been dyed, therefore it is visible. The outer core associated with 
this ring is not observed because there is very little exchange of dyed 
fluid between the inner core and the outer core.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 0

FIGURE 2-10. A diagram of the dimensions of the inner core of the vortex 
ring. Notice the difference between the horizontal and vertical 
lengths, and the horizontal and vertical radii of the core.
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rotational velocity is the speed the fluid in the inner core circulates about 

the torroidal axis of the ring (Figure 1-1).

The rotational velocity of the core fluid is important in sedimentological 

processes because this velocity w ill result in shear stress at the sediment 

surface if a ring impacts the bottom. Unfortunately this parameter is very 

difficult to measure, and requires instrumentation not available for this 

project. An estimate of rotational speed was made using photography and 

measuring the streak lengths of entrained estuarine mud particles. 

Approximate speeds of 50 to 75 cm/sec were computed by dividing the 

streak lengths by the camera shutter speed.

The translational velocity is at a maximum just after ring formation 

(near the water surface). Ring speed decreases as the ring moves down the 

water column. Maxworthy (1977) observed that ring velocity decreased 

with distance along the ring path in a relationship, where time was 

proportional to the depth squared. Deviations from this relationship 

occurred when the impulse energy was lost from the ring through the wake 

that trails off from the ring (Maxworthy. 1977).

The translational velocities of vortex rings produced in Experiment 4 

were reduced from the video tape records. Maximum velocities were 

observed just after ring roll-up and formation. The velocities at 3 cm for the 

large rings ranged up to 98 cm/sec (Figure 2-11), averaging 31.5 cm/sec 

(Figure 2-12). Translational velocity decreased rapidly after formation. At 

5cm depths the velocities averaged 19.4 cm/sec. Below a depth of 13 cm the 

translational velocity was relatively constant, averaging less than 7.8 cm/sec.

The translational velocities of the rings produced by the small drops 

were substantially less than the large rings (Figure 2-11). The maximum 

measured velocity averaged 11.1 cm/sec at 1 cm below the surface (Figure
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FIGURE 2-11. Plots of vortex ring translational velocities with depth for the 
24 runs in Experiment 4. Panels A, B and C show the translational 
velocities of the large rings in 10°C, 20°C and 50°C receiving water. 
Panels D, E and F show the translational velocities of the small ring in 
10°C, 20°C and 50°C receiving water.
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FIGURE 2-12. The average translational velocities of vortex rings
produced by both both small and large drops, as measured from 
selected rings from Experiment 4. The low velocities of the larger 
rings at a water depth of about 1 cm is because at this depth the ring 
is still being formed as is not moving downward through the water 
column.

Vortex Ring Translational Velocities

SHALL UORTEX 
RINGS

LARGE UORTEX 
RINGS

D 10.0

(CM)

15.0

10 20 30 10
TRAHSLATIOIAL VELOCITY (cm/xec)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

2-12). Translational velocities then decreased with depth. Below 6 cm the 

velocity average about 3.5 cm/sec.

The effect of receiving water temperature and drop height was not 

tested because of the problems in obtaining a representative sample of 

velocity profiles. The rings which could be measured were biased toward the 

better defined rings, and rings which had a moderate velocity. Other rings 

could not be detected on the video stop action. This limitation should be 

kept in mind when the velocity profiles are used in subsequent discussions.

Vortex Ring Penetration. Vortex ring penetration is important because 

it gives the depth range for dissipation of the ring energy. Ring penetration 

was determined in Experiment 4. by noting the depth at which the ring 

stopped moving downward for each drop size, drop height and receiving 

water combination. Up to 50 rings were analyzed for each combination.

Ring penetration varied depending upon initial drop size. The vortex 

rings produced by the large drops, when the whole data set is considered, 

showed no effect of receiving water temperature. In general, the probability 

(P) of ring penetration was proportional to water depth (Figure 2-13). The 

penetration depth distribution of the rings formed by the large drops is 

expressed with the following linear regression equation (R-squared value of 

58.9% with 367 degrees of freedom, df):

P -1.03 -0.0454 (z) (2-4)

In contrast, the vortex rings formed by the small drops were influenced 

by temperature. These rings penetrated the water column as a hyperbolic 

function of water depth and linear function of temperature. As the receiving
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FIGURE 2-13. The penetration of vortex rings is shown as a cumulative 
probability function of depth. The figures group penetration data by 
drop size and receiving water temperature. For a given drop size- 
temperature combination, each profile represents a specific drop 
height.
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water temperature increased the penetration of the rings increased. The 

depth of penetration by the small rings is best explained by a multiple linear 

regression equation combining water depth and temeperature. The 

observed probability distribution (P) as a function of depth (z), below z - 

lcm, took the form:

P -cosir1 z -ln (z + /z M ) (2-5)

Combining the depth and temperature in the regression equation, the 

probability of ring penetration was

P - 1.42 - 0.461 Iln(z + v ^ T ) l + 0.0068 tr (2-6)

This relation was significant with an R-squared value of 79.6% with 324 df.

Discussion

The purpose of the single drop studies were to develop a picture of the 

important factors controlling the transfer of rain drop energy through a 

shallow water column to a sediment covered bottom. This transfer process 

was believed to be vortex rings because of the ability of the splash central 

jet to create an organized vorticity of fluid which subsequently moved 

through the water column. By virtue of its transported mass the vortex ring 

contains momentum. This momentum is proportional to the size of the ring 

and the translational velocity.

The ring dimensions varied with initial drop size, as did the translational 

velocity of the ring. In general the velocity of the ring was greatest just
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after a development period. The velocity then decreased with depth of 

penetration. Using the ring volume and the velocity, a momentum profile for 

single large and small rings can be constructed (Figure 2-14). The large 

rings contain one order of magnitude more momentum than the small rings. 

The greater momentum contained in the large rings suggests that these will 

be more important than the smaller rings for resuspending bottom sediment.

The greater energy within the ring w ill also allow the ring to survive 

turbulence in the ambient fluid surrounding the ring. Using the ring 

Reynolds number, the importance of inertial forces over viscous forces can 

be estimated. The Reynolds numbers of the large rings ranged from 1517 

near surface to 259 at depth (17 cm). The Reynolds numbers of the small 

rings were much less, 366 near surface and 65 near bottom (15 cm). These 

Reynolds numbers are substantially less than the Reynolds numbers for 

vortei rings studied by Maxworthy (1977).

Lower than expected Reynolds numbers may have two important effects 

on the survivability of the vortex rings in the natural environment. The first 

is that wind waves in even 5 cm of water, have wave Reynolds number 

which are an order of magnetude greater than the largest drop formed 

vortex ring. The second is that viscous effects may have more importance in 

modifying the vortex ring. This is seen in the temperature dependence of 

the smaller rings to penetrate the water column. The smaller rings were 

better able to move through a water column, which was warmer than the 

raindrop.

Salinity effects were observed only by qualitative observations. When 

the receiving water column was well-mixed and contained saltwater with a 

salinity of approximately 25°/00, there appeared to be little density effects

on the size and translational velocity of rings produced by freshwater drops.
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FIGURE 2-14. Profiles of vortex ring momentum as a function of depth for 
rings formed by the large and small drops used in Experiment 4. 
Momentum is defined as the inner core volume times the 
translational velocity.
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This may be expected since the inner core volume of the ring is substantially 

larger than the original drop, and the inner core is produced by the central 

jet, which includes both drop water and surface receiving water. Thus the 

ring core is a mixture of fresh and salt water. A salinity effect was noted, 

when the receiving water was stratified with a low salinity surface layer of 2 

to 5 cm thick and a high salinity bottom layer. In this case, the ring was 

formed with low salinity, near-surface water. As the ring moved through 

the density gradient, bouyancy became more and more important.

Eventually, as the downward translational velocity decreased, bouyancy 

caused upward transport of the ring fluid to a depth intermediate between 

the surface and bottom layers (Figure 2-15).

The previous discussion of the physical properties of the vortex rings has 

not considered the effects of the rotational velocity within the ring. This 

velocity has the capacity to impart significant shear on bottom sediment at 

ring impact even though the translational momentum is small. The 

rotational velocity of the largest rings was estimated to be 50 to 75 cm/sec, 

subtantially higher than the translational velocities. It may be this rotational 

fluid flow which has the greatest ability in resuspending bottom sediment.

The momentum available at any depth to be transferred to the water 

column is a function of both the momentum within the ring at the particular 

depth and the probability that a ring will penetrate to that particular depth. 

Combining Equations 2-7 and 2-9 with the ring momentum profile (Figure 

2-16) gives an estimate of the momentum available to be 

imparted upon the bottom over a range of water depths (Figure 2-16). The 

large rings provide substantially more momentum at any given depth than 

the smaller rings. The vertical distribution of available momentum
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FIGURE 2-15. Diagram illustrating effects of salinity stratification on vortex 
ring penetration.
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FIGURE 2-16. Profiles of available momentum from drop-formed vortex 
rings at water depths from 1 to 19 cm. The profile combines the 
vertical momentum distribution for single rings with the probability 
of penetration for large and small rings.
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decreases rapidly with an inflection point at 9 cm water depth for the large 

rings and at 6 cm for the small rings.

The physical properties of drop formed vortex rings are controlled by the 

drop size, thus the impact energy. The rings produced by the larger drops 

have a larger mass and move through the water column faster than the rings 

produced by the smaller drops. The larger rings penetrate deeper in the 

water column than the smaller rings, and are less affected by the ambient 

water temperature. If rings initiate motion of bottom sediment, then the 

amount of resuspension or motion should be proportional to the physical 

properties of the ring. In the next chapter initiation of motion of non- 

cohesive, sand sized sediment by individual vortex rings will be documented.
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CHAPTER 3

RAIN-INDUCED INCIPIENT MOTION 
OF NONCOHESIVE SEDIMENT 

Introduction

The physical properties of drop-formed vortex rings suggest that 

they may be an important mechanism in initiating motion of bottom 

sediment. The translational momentum of the ring and the rotational 

velocity within the inner core of the ring, both appear to have sufficient 

energy to move sediment when the ring impacts the bottom. This chapter 

presents the results of a laboratory study designed: (1) to determine the 

probability of vortex rings initiating sediment motion for a range of water 

depths and substrate textures; and (2) to define the maximum depth for 

drop-induced incipient motion.

Methodology

Vortex rings were formed by drops of a fixed size falling into a 

receiving water tank with a maximum depth of 22.5 cm (Figure 3-1 )• Drops 

with a 0.535-cm diameter and a 120-cm fall distance were selected to 

represent an impact energy equivalent of a 0.36-cm drop-size falling at 

terminal velocity. The 0.36 cm drop size corresponds to one of the drops 

used by Green and Houk (1979). The dyed drops were generated as 

described in Chapter 2. Drop size was determined by weighing 25 drops, 

assuming a density of 1.0 gm/cm , and calculating the equivalent spherical 

diameter.

64
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Water depths and substrate textures were varied for a specific drop size 

and height. Quartz- and feldspar-rich sediment was sieved to restrict the 

size range to 0.5 phi (0) intervals. The sand substrates tested were very-fine 

(3.0 to 3.5 0; 0.125 to 0.088 mm), fine (2.0 to 2.5 0; 0.25 to 0.177 mm ). 

medium (1.0 to 1.5 0; 0.5 to 0.35 mm), coarse (0.0 to 0.5 0:1.0 to 0.71 mm), 

and very coarse (-0.5 to -1.0 0; 1.41 to 2.0 mm). To provide a 

hydrodynamically simiiiar substrate, organic material was removed by 

treating the bulk sample with hydrogen peroxide, and mica was removed by 

agitating, then decanting the sample. The sediment was spread evenly over 

the bottom of the tank to form a smooth substrate approximately 0.5-cm 

thick. The receiving water depth was varied from 2.5 to 22.5 cm in 2.5-cm 

increments.

Triplicate sets of observations of 100 drops each were taken for each 

water depth-substrate texture combination. The results of this study are 

based on 12,900 observations (summarized in Appendix 3A). Data collection 

consisted of two sequential observations: (1) If a vortex ring was formed, did 

it penetrate to the substrate (tested on first 25 drops)? (2) Did the drop 

initiate sediment motion (tested on all 100 drops)?

Initiation of sediment motion occured when the circulation within the 

inner core was sufficiently intense and when the vortex ring touched the 

sediment-covered bottom of the receiving water tank. The types of 

sediment motion was not differentiated in the analysis; however, it ranged 

from a few grains rolling radially away from the center of the vortex ring to 

numerous grains being lifted about 1 to 2-cm off the bottom. In the latter 

case, the grains were either ejected outside the influence of the ring and 

allowed to settle unhindered, or entrained within the flow pattern of the 

inner core and "deposited" at the center of the ring, where flow was directed
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toward the bed (Figure 1-1). The dynamic nature of vortex-ring impact is 

shown in Figure 3-2, where the substrate was estuarine mud.

Results

If raindrops strike a water surface and create organized vortex rings, 

which travel to the sediment/water interface, then sediment motion may be 

initiated. The vortex ring structure consists of a rapidly spinning toroidally- 

shaped inner core and a slowly circulating outer core (Figure 1-1). The ring 

moves through the water column at translational velocities observed to 

exceed 50 cm/sec. The rotational velocities within the inner core were not 

measured, but were observed to be 50-75 cm/sec. The inner-core diameter 

of these rings (normal to the direction of translation) was about 1.36 cm 

and did not change with depth.

Not all rings that touched bottom moved sediment. In general, these 

rings were moving too slowly downward and the rotational velocities within 

the inner core were too weak to entrain sediment. The percentage of vortex 

rings that touched bottom varied inversely with increasing water depth 

(solid line in Figure 3-3). In 22.5-cm of water, approximately one-third of 

all drops produced vortex rings that touched bottom.

Similiarly, the probability of drops initiating sediment motion decreased 

with increasing depth for all sediment sizes (Figure 3-3). Most drops (94%) 

initiated motion in very shallow water (2.5 cm), but as the water depth 

increased, the percentage of drops that moved sediment decreased.

However, even at the maximum depth tested (22.5 cm). 1 of every 10 drops 

caused sediment motion. An inflection point in the relationship was 

observed between the 7.5 and 10.0-cm depths (Figure 3-3).
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-2. Photograph showing a vortex ring impacting estuarine mud.
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FIGURE 3-3. Percentage of vortex rings that initiated sediment motion for 
each water depth including all substrate textures. Symbol 
represents maximum, minimum, mean, and +/- one standard 
deviation. The heavy solid line is the average percent frequency of 
vortex rings that touch bottom for each for each water depth.
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The relationship between the number of drops initiating sediment 

motion and substrate texture was also tested. The percentage of rings 

causing movement of the very-coarse sand (27%) was significantly less (at 

the 95% CD than the percentage of rings causing movement of the coarse to 

very-fine sand substrates (38%) at any specific water depth (Figure 3-4). 

There was no significant difference in the ability of drop-formed vortex 

rings to initiate motion within the coarse to very fine sand substrates. This 

experiment tested only sediment motion; that is, whether sediment did or 

did not.move. A better relationship may exist between ring energy and a 

volumetric entrapment rate.

Since vortex rings produced by 0.535-cm drops initiated motion in all 

sediment sizes and water depths tested, an estimate of the minimum shear 

stress imparted to the sediment by the rings can be determined using the 

Modified Shields Diagram (Madsen and Grant. 1976). The use of this 

diagram requires the calculation of S*. determining the Shields parameter 

(fy  from the diagram and computing the bottom shear stress(r0) as follows:

(3-1)

and

(3-2)

where ds - diameter of the sediment (0.168 cm) 
V  - kinematic viscosity (0.01 cm2/sec) 
s - specific gravity of the sediment (2.65)
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FIGURE 3-4. The difference in the percent of vortex rings (the number of 
drops which formed vortex rings divided by the total number of drops 
in the set or 25) which moved very-coarse sand, and which moved 
coarse to fine sand. Both show similar changes in percentages with 
depth.
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Incipient motion of very-coarse sand (1.68 mm) occurs at a critical shear 

stress of 11 dynes/cm2. This represents an approximate velocity of 36 

cm/sec. using Shields bottom velocity curve as a function of quartz-sand size 

(Vanoni. 1977). Qualitative observations indicate that cohesive estuarine 

muds can also be resuspended by vortex ring impact. The material which 

appeared to be resuspended was the disaggregated surficial material.

Discussion

This initial experiment has focused on the most simplistic end-member 

of the rain-induced sediment transport process, namely single vortex rings 

in a still-water laboratory environment. In this experiment drop-formed 

vortex rings were able to move non-cohesive sediments at all the depths 

tested. This included depths of 22.5 cm which was the limit imposed by the 

receiving water tank. A significant break in slope in the relationship 

between percent rings moving sediment and water depth was observed 

between depths shallower than 7.5 cm and depths greater than 10 cm. The 

results of this study were consistent with preliminary work by Anderson 

(personal communication) in which clay-sized material was resuspended by 

impacting vortex rings in water depths to 40 cm.

Water depths of 20 to 40 cm are significant, when studying the muddy 

intertidal. Rain falling on the exposed tidal flats can cause sediment 

transport by the same processes active in terrestrial environments. The 

methodology and techniques to assess the importance of these processes can 

be approached from essentially this soil erosion perspective (Moss and 

Green. 1983).

Rain-related sedimentation processes are also significant in the shallow 

(<50 cm) lens of water flooding over and ebbing from the tidal flat. In this
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area, the shallow water depths limit wind-wave turbulence, and the broad 

expanse minimizes tidal current velocities. In a study by Anderson and 

Mayer (1984) of an intertidal flood front (15-cm deep), they determined 

that rainfall accounted for 46% of the observed variability in suspended 

sediments and the combination of wind and rain accounted for 72% of the 

variation.

Rain-formed vortex rings can influence estuarine sedimentation in 

several ways: (1) Ring impact with the bottom can initiate motion of 

sediment and inject sediment into the water column where it can be 

transported by currents. (2) When the vortex ring forms, low salinity water 

is incorporated with the rain into the inner core. Initially, surface water is 

transported downward: however, when buoyancy exceeds ring momentum, 

there w ill be subsequent upward mass transport of water and suspended 

material. (3) Rain action can also cause secondary effects on other physical 

processes; for example, dampening wave action, decreasing currents by 

creating a surface shear (Glass and Smerdon. 1967), increasing density 

stratification (Houk, 1975), and transferring momentum to settling particles 

(Bhuiyan et al, 1971).

Thus, the experiments in still water appear to be reasonable first 

approximations for understanding how rain causes resuspension in a shallow 

water column. However, interaction terms, such as multiple vortex-rings 

and turbulence due to currents and wind-waves. are probably significant 

when applying this process to natural intertidal environment. The 

determination of the importance of these interactions is the subject of 

Chapters 4 and 5.
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CHAPTER 4

MULTIDROP EXPERIMENTS ON RESUSPENSION 
OF MUDDY INTERTIDAL SEDIMENTS

Introduction

Single-drop laboratory studies suggest that drop-lormed vortex rings 

are an important mechanism in the rain-induced incipient motion of non- 

cohesive sediments iShevenell and Anderson, 1985). These studies did not 

consider interaction effects, when numerous drops are concurrently striking 

a water surface. Rain induced surface waves may decrease the effectiveness 

of the splash central jet to form vortex rings. If formed, the ring penetration 

may be inhibited by water column density stratification in salt water, and/or 

by increased turbulence near the water surface (Houk, 1975). In addition, 

fine-grained cohesive sediment responds differently than non-cohesive 

sand-sized material. A portion of the sediment moved by the impacting 

rings w ill go into suspension, and the remainder will rapidly settle out, 

acting as saltation load. The suspended material with a very slow settling 

velocity may be entrained by subsequent ring motion, thus remaining in 

suspension.

Erosion of fine-grained cohesive sediments occurs when the 

entrapment forces, imparted by the overlying fluid, exceeds the ability of 

the sediment to resist motion, or from Ariathurai and Krone 119671

(4-1 •

74
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where dM/dt - mass of sediment eroded per unit time 
R - erosion rate constant 

'fe e - critical shear stress for erosion 
/Ya. - applied shear stress.

The evaluation of a critical shear stress required to initiate erosion is very

complicated because of (1) the problems in measuring instantaneous

hydraulic shear (Sutherland, 1967); and (2) the many factors which

influence.the cohesive nature of the muddy intertidal sediments (Amos and

Mosher, 1985). For example, it is known that there are many complicating

factors in predicting the response of a specific sediment to an applied stress,

including: compaction (bulk density), shear strength and antecedent stress;

variations in grain-size and organic content; effects of desiccation (eg

exposure time to the atmosphere, solar heating, and ground water influence);

and effects of bioturbation and vegetative cover.

Extention of the cohesive sediment erosion process to rain-induced

resuspension of muddy estuarine sediment requires an understanding of

how rain energy is transferred to the bottom as an applied shear stress. The

applied shear stress due to vortex ring impact is difficult to measure, but

should be a property of the initial impulse mechanism forming the vortex

(Sutherland, 1967), less the amount of momentum lost as the ring moves

through the water column (Maxworthy, 1977). Therefore, the rain induced

shear stress on the sediment should be related to the rate of energy

transferred to the rings, the translational and rotational velocities in the ring

at impact, and the ring impact frequency.

The purpose of the multi-drop experiments was to determine if rain

could resuspend muddy intertidal sediments covered with a shallow water

column; and if so at what water depth did this mechanism resuspend
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significant sediment. The approach to the problem was to first conduct a 

series of laboratory experiments, in which the rate of rainfall energy and the 

receiving water depth could be controlled. The sediment erosion rate was 

determined by measuring the excess mass resuspended with time. This 

mass was determined by sampling the suspended sediment load in the 

overlying water then subtracting the baselevel concentrations.

It was felt that the tank side walls may affect the turbulent structure 

within the receiving water tank and consequently affect the amount of 

sediment resuspended by the artificial rainfall. Therefore, controlled field 

experiments where there were no side walls followed the laboratory work to 

confirm the water depth at which rainfall caused significant resuspension. 

The final phase of the study was observation during two storm events.

These experiments were to put into perspective the effectiveness of rainfall 

as an erosion mechanism, when compared to other natural and man-made 

processes (e.g. wind and boat waves).

Methodology

Field. Methods

Tower. A 7-m rain tower was constructed using metal construction staging 

to position the rain module at specific levels of up to 6 m above the receiving 

water tanks (Figure 4-1). The tower was encased in plastic sheeting to 

minimize drafting and to localize rainfall to directly below the module. The 

distances between the rain module and the receiving water tanks was varied 

by either lowering the module or raising the receiving water tanks. The 

tower was located adjacent to the Jackson Estuarine Laboratory (JEL) for the 

“laboratory" studies.

The same tower was used for both the laboratory experiments and the
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FIGURE 4-1. Schematic diagram of the experimental set up for the multidrop 
experiment. The relative positions of the rain module and reservoir, 
and the receiving water tanks and rain gage are also shown.

Rain Module

Rain Water Reservoir

Receiving Water Tanks 
Rain Gage
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insitu studies on the mudflat. Before the tower was moved to the mudfiat. a 

wooden frame 1.5 by 2.5 m was constructed and mounted above the 

intertidal mud surface on 25 cm diameter concrete pilings (Figure 4-2). The 

pilings were pinned to and rested on a basal gravel beneath about 75 cm of 

estuarine mud. This provided a level and stable base for the 7-m tower, 

with minimal disturbance to the estuarine mud and water (Figure 4-2). A 

platform, cantilevered from the frame, provided a work area for sample 

collection and data monitoring. Plastic curtains were used to minimize wind 

effects on the falling drops. These were designed to be removed between 

experiments to minimize wind drag on the tower.

Rain Module. The rain module was designed to conform with the 

apparatus used by Houk (1976). It consisted of a 70 x 70 x 10 cm plexiglas 

box with the base perforated with 680 holes spaced on a 2.5 x 3.75 cm 

diagonal grid (Figure 4-3). Hypodermic needles (21 gage) were glued in the 

perforations to act as flow constrictors and to control drop size. Drops 

forming at the end of the needles were 0.375 cm in diameter. Plastic tubing 

0.32 cm ID, placed over the needles created 0.545 cm drops.

"Rainwater" was pumped from a reservoir of freshwater into the rain 

module through a particulate filter (Ametek Model PS-S1). A constant head 

was maintained in the module by an adjustable drain, which returned the 

excess "rainwater" to the reservoir. The intensity of the rain was controlled 

by the water head in the module and by plugging alternate needles (Figure 

4-3 ). Intensity was monitored using a Weathermeasure Model 6011-B rain 

guage mounted between the two receiving water tanks. The analog output 

was recorded on a Bausch and Lomb VOM 5 stripchart recorder.
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FIGURE 4-2. Photograph of the insitu experimental set up. The rain gage is 
located just under the rain module. The control sampler is set up to 
the left of the tower and the impact sampler is located in the center of 
the tower frame. Two wind curtains are set to isolate the rain from 
the local winds.
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FIGURE 4-3. Schematic of the rain module and the rainwater reservoir 
system. The rain module consisted of 685 hypodermic needles on a 
diagonal grid with a 2.5 x 3.75 cm spacing. An in line sediment filter 
removed most of the suspended load in the rain water. The reservoir 
contained enough water for a complete run. The reservoir was filled 
and allowed to come to equilibrium with the ambient temperature 
before the start of the run. Temperature of the rain water was 
monitored with thermistor probe.

THERMISTOR

B / v V v v v v ' / v v ' / V v v v V  * / * / * •i m rim hrrm 'f
TUBING AND/OR NEEDLES J
FOR DROP FORMERS I

FILTER

RAWYATER RESERVOR
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Multidrop Experiment: Receiving Water. Receiving water tanks 

consisted of two 20.5 cm diameter by 28 cm high transiuscent plastic tanks 

with removeabie bottoms (Figure 4-4). The tank sidewalls flared slightly to 

minimize rain drop impact within 1.5 cm of the sidewalls. Water was added 

and sampled through 0.5 cm ID samplers fixed relative to the bottom (Figure 

4-4). Water was taken from the JEL.seawater system and allowed to settle 

one hour before being siphoned into the receiving water tanks. The water 

depth in the tanks was controlled approximately by the height of the upper 

sampler (Figure 4-4). Filling the tanks prior to a run consisted of allowing 

settled seawater to flow into the tank through the near-bottom sampler, 

then when full, to flow out the near surface sampler. Typically surface 

tension lifted a layer of "sediment" off the bottom. Water was cycled until 

this material was removed.

Water depth and bottom topography in the tanks was measured at 32 

locations on a systemmatic grid (Figure 4-5). These data provided the basis 

for computing the actual average water depth and water volume. Water 

depth at the start of the run was standardized by siphoning til dry from the 

upper sampler. Water depth was monitored at the beginning and end of 

each sample using a scale fixed to the outside of the tank. Receiving water 

temperature was monitored using a thermistor from a YSI Model 47 

Scanning Tele-Thermometer mounted near the sediment surface.

Water samples were collected throughout the run by siphoning water 

from the near bottom and near top samplers into 300 ml sample bottles.

The rate of sample collection was fixed to the rainfall intensity. The 

objective was to maintain a constant volume in the receiving water tank. All 

water, except incidental spillage and purging of the lines prior to each 

sample collection (about 25 ml), was retained for suspended load analyses.
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FIGURE 4-4. Schematic of the receiving water tanks and water samplers.
The water level at the start and end of each sample was read from the 
scale. Water was sampled from the two intakes, one near surface and 
one near bottom, by siphoning. Water temperature was monitored 
near bottom with a thermistor probe.
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FIGURE 4-5. Diagram showing the methodology used to measure the 
sediment microtopography in the receiving water tanks. Each 
measuring probe was removed, length to sediment measured and the 
data averaged for the 32 points.
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Multidrop Experiment: Substrate. Bottom substrate for each run was 

collected from the tidal flat in Adam's Cove near JEL. The receiving tank 

bottoms were carefully slipped horizontally beneath the sediment surface, 

the area around the cover was cleaned away and the cover with the 

undisturbed sediment surface was removed from the tidal flat (Figure 4-6). 

The sidewall of the tank was clamped into place making a water tight seal. 

Since the thickness of sediment and the microtopography varied with each 

collection, the surface was carefully measured relative to the tank top.

Surface samples for textural analysis were collected from most 

sediment surfaces. This sample was collected after the runs to minimize the 

disturbance of the surface. The sampling consisted of careful scraping the 

upper few millimeters of sediment from several random locations to obtain 

as representative sample as possible. The results from the analysis of these 

samples are presented in Chapter 6.

Insitu Experiment. The insitu experiment duplicated some of the rainfall 

characteristics used in the multidrop laboratory experiment. The receiving 

water was the ebbing estuarine water and the bottom sediment was the 

insitu estuarine sediment. The difference between the two experiments was 

that there were no confining sidewalls to concentrate turbulence. The effect 

of the rainfall was monitored by a pair of near-bottom (<1 cm) samplers, 

one in the rain impact area and one in a control area. The samplers in the 

study area and the control site consisted of two sections of 0.5 cm ID tubing 

mounted horizontally and connected to a peristaltic pump (Figure 4-7). 

Water was pumped continuously during each experiment, and collected in 

300ml sample bottles. The experiment was initiated when the falling water 

depth was about 30 cm. and continued until the tidalflat was exposed. The
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FIGURE 4-6. Diagram showing the sediment collection technique, which 
minimized the disturbance of the sediment surface. The recieving 
tank bottom was carefully pushed under the sediment surface, 
keeping the bottom parallel with the sediment surface. The excess 
sediment was cleaned from the circumference so that the tank wall 
could fit into place.
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tank bottom below sediment surface.
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FIGURE 4-7. Schematic diagram showing the sample collection set up for the 
insitu experiment. The control pair of samplers was located outside of 
the tower platform. The impact pair of samplers were located inside 
the tower platform. The frame for the tower was high enough off the 
sediment surface so that it did not interfere with water movement 
during the sampling period. A peristaltic pump was used to draw 
water for the suspended load samples.
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water depth and time was monitored for each sample. Field notes were 

made when an unusual disturbance occured. such as boat wakes, wind waves 

or epibenthic animals passing through the study area.

Storm Observations. Two rainstorms were sampled using the same 

sampling and analytical procedures as in the insitu experiment. The location 

of the storm sampling was near the insitu rain tower at the head of JEL Cove. 

Water samples were collected in pairs about 1.1 cm above the sediment 

surface. Sampling was started when the water depth was about 20 cm and 

continued until the water was too shallow for sampling. Rain drop size 

distribution was sampled using the flour method (Robinette and McCool, 

1985). Rainfall intensity was determined volumetrically, knowing the 

collection area and the time interval. A sediment sample was collected for 

textural analysis at the end of the second storm.

Laboratory Methods

Artificial Rainfall Characteristics. The drop size from the rain module 

and during natural rainfall events was measured using the flour-pellet 

method (Robinette and McCool. 1985). In this method a pan of flour was 

held under the rain module for a several seconds to obtain at least 50 rain 

drops. The water from the drop was absorbed by the flour. Baking 

produced dough pellets which were proportional in weight to the original 

volume of water in the drop (Laws and Parsons. 1943). The pellets were 

sieved and weighed on a Cahn TA 450 balance, and converted to drop size 

using a calibration curve developed with known drop sizes (using the 

technique described in Chapter 2). The modal (by weight) pellet size was 

used as the characteristic rain-drop size.
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Impact velocity of the drop was determined by measuring the 

distance from the tip of the drop formers to the water surface in the 

receiving water tanks. The results of Laws (1941) were then used to 

calculate the impact velocity for the specific drop size and fall distance.

Physical Characteristics of Receiving Water. The salinity of each 

sample was measured using an American Optics refractometer with an 

accuracy of +/- 0.5 o/oo. Water density was computed from the measured 

temperature and salinity with a computer program based upon Knudsen's 

Tables.

Suspended Sediment. Suspended sediment was measured using the 

filtration method based upon Banse etal.. 1963). Glass fiber filters were 

used because of the ease of use. high number of samples per run and 

because it was consistant with the numerous studies conducted in the same 

study area by Anderson {e.g. 1983). Approximately 300 mis were filtered 

through pre-weighed filters, carefully washed with a solution of sodium 

sulfate and distilled water to remove the sea salts, and dried for about 12 

hrs at 50° C. The dried filters were reweighed, along with control filters to 

determine the total dry weight of suspended sediment. The filters were 

then ashed at 500° C for 2 hrs and reweighed to determine the percentage of 

combustibles. Changes in filter weights, as determined by the controls, were 

accounted for in the data reduction.
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Results 

Multidrop Experiment

The purpose of the multidrop experiment was to determine, in a 

controlled, quiescent environment, the maximum water depth in which rain- 

induced resuspension is a significant mechanism. The single-drop studies 

suggested that drop-formed vortex rings could initiate motion of non- 

cohesive sand-sized sediment in quiescent water depths of at least 22.5 cm 

(Shevenell and Anderson, 1985), and motion of clay-sized material in water 

depth of 42 cm (Anderson, personal communication, using a similar 

experimental set-up and drop size). This study expanded the hypothesis to 

cohesive estuarine sediment and multiple drops.

There were both benefits and limitations in the laboratory study. The 

single-drop experiments illustrated the relatively complex physical 

processes involved in a rain drop causing sediment motion. The laboratory 

study could control some of the more important independent variables. 

However, the drop-formed vortex rings, the hypothesized mechanism for 

sediment resuspension, were quite sensitive to ambient turbulence in the 

receiving water. Experimental rain-induced turbulent motion is probably 

not similar to the turbulent scales in the natural environment, because of the 

presence of the tank side walls. One would suspect that the turbulent action 

in the tanks is more intense than in the natural environment because of 

reflection of surface waves by the tank sidewalls. This turbulent action may 

disrupt the formation of vortex rings, thus leading to an under-estimation by 

the laboratory studies of the importance of rainfall resuspension in shallow 

water.

The changes in suspended sediment concentrations in the receiving 

water were due to both conservative mixing between rain water and the
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initial volume of seawater in the receiving water tanks, and nonconservative 

mixing with resuspended bottom sediment. The initial concentrations in the 

rain water and in the receiving water tended to be low ( 0.7 to 47 mg/1 in 

the receiving water and 0 to 14 mg/1 in the rain water). The suspended 

sediment data from the multidrop experiments were used to calculate the 

mass of sediment in suspension in the receiving water during the 

experiment. This mass (Me) was determined by first accounting for changes

in suspended sediment concentration due to conservative mixing between 

the rain (Cr) and the initial receiving water(Cb). The difference between the 

conservative and the observed concentration (C0) was termed the excess 

concentration (Ce), or

QV,- C0Vf - (Crf ♦ Cb(l-f))Vf « Me (4-2)

where f * (Ss - S0)/Ss - fraction of freshwater 
Vr* receiving water volume 
S0 - observed salinity 
S8 » the base salinity ( at start of run).

Differences between the observed concentration and the computed 

conservative concentration which exceeded the accuracy of the suspended 

sediment method (about 1 mg/ll, were assumed to be due to either settling 

of sediment out of the water column or due to erosion of sediment from the 

bottom.

A sample correction to the excess mass calculation was required, 

because the samples represented a relatively large volume of water 

compared to the receiving water volume. The amount of water removed was 

determined by taking the volumetric difference between the start and end
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of sampling, and accounting for the rain volume. The receiving water 

volumes ranged from 0.71 to 2.65 1, while the sample volumes represented 

about 1.5 to 2.5 1 per run. Thus the samples were a major suspended 

sediment removal mechanism.

The change in excess mass with time (dM/dt) curve of each run 

was simplified by taking the first observation in the run (mean of 11.5 min) 

after the initiation of rain, the last observation in the run (mean of 50 min). 

and the difference between the two observations. The pupose was to use the 

observed data, rather than averaged data as the dependent variables in the 

statistical analyses.

Multiple regression analysis was conducted by first developing a 

linear correlation coefficient matrix between the independent variables and 

the resultant excess mass dependent variables. The number of independent 

variables was reduced by selecting only significant (at the 95% Cl) linear 

correlations. This sub-matrix was further reduced by removing those 

independent variables which had a significant correlation with other 

independent variables. Selection at this point was based upon physical 

reasoning. Multiple regression analysis Ryan etaJ.1 (1976) was then 

performed on the remaining independent variables. Each variable was then 

evaluated based upon its contribution to the regression sum of squares in 

the analysis of variance. An F-test (at 95% Cl) was conducted on the analysis 

of variance to determine the significance of the regression equation. R- 

squared valued (corrected for the degrees of freedom) were then used to 

make relative comparisons between subsets.

The 60 runs in the multidrop experiments were first divided into two 

groups. Those runs in which the excess mass exceeded the accuracy of the 

methodology (5 mg), and those in which only conservative mixing was taking
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TABLE 4-1. Summary of multidrop runs identified as conservative mixing 
or nonconservative cases. The nonconservative cases are sub
divided by the four cases illustrated in Figure 4-8.

RUN
CONSERVATIVE

MIXING
NON-CONSERVATIVE 

MIXING 
IA 2A 2B 3

I0A X
I0B X
11A X
I IB X
12A X
12B X
I3A X
13B X
15A X
15B X
I6A I
I6B X
17A X
17B X
ISA X
18B X
I9A X
I9B X
20A I
20B X
21A X
2 IB X
22A I
22B X
23A X
23B X
24A X
24B X
25A X
25B X
26A X
26B I
27A X
27B X
26A X
29B X
29A X
29B I
30A X
30B I
3IA X
3 IB X
32A X
32B X
33A I
33B I
34A X
34B X
35A X
35B X
36A X
36B X
37A X
37B I
38A X
30B X
39A X
39B X
40A X
40B X
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place during the experiment (Table 4-1). Conservative mixing occurred 

when the observed suspended load was explained (within the accuracy of 

the method) by mixing between only the rainfall and initial receiving water 

baseload. Those runs which exhibited non-conservative processes were 

thensorted into three different cases based upon physical reasoning to 

describe

the dM/dt curve (Table 4-1). Examples of runs for each case are shown in 

Figure 4-8.

Erosion of sediment occurs when the applied shear stress exceeds the 

critical stress for erosion of the sediment (Equation 4-1). When the applied 

shear stress is large, compared to the critical stress, sediment w ill be eroded 

at a continuous rate. As the applied shear stress decreases and approaches 

the critical stress, the slope of the excess mass versus time curve changes in 

an asymptotic fashion. When the applied shear stress equals the critical 

shear stress, then the slope of the excess mass versus time (dM/dt) is zero, 

or in equilibrium. Figure 4-8C illustrates this concept.

Case 1A is where the applied stress is much greater than the critical 

stress, thus the dM/dt curve is linear and increasing with time. Case IB is 

similar to case 1A in that the applied stress is greater than the critical stress. 

However, if the critical shear stress for erosion of the sediment is gradually 

increasing with time, then the slope of the dM/dt curve w ill decrease and 

approach equilibrium. Equilibrium is where the applied stress and the 

critical stress for erosion are balanced.

Case 2 represents runs where a step increase in excess mass occurred 

immediately upon initiation of rainfall. After the initial increase dM/dt - 0. 

in Case 2A. suggesting equilibrium conditions. After the initial increase 

dM/dt is negative in Case 2B. suggesting no erosion and particle settling. In
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FIGURE 4-8. Examples from the multidrop experiments which illustrate the 
four basic cases in which the excess mass suspended in the receiving 
water column varies with time. Panel A shows examples of Case 1 A, 
where Me increases linearly with time. Panel B is where an 
equilibrium is gradually reached (Case IB). Panel C shows examples 
w'here equlibrium is reached right after initial resuspension (Case 2A). 
Panel D is similar except material settles out over time (Case 2B).
Panel E shows examples where no material is eroded but suspended 
m atter settles out with time (Case 3).
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these cases the material initially resuspended would have a low critical 

stress required for erosion, relative to the applied stress. However, the 

sediment surface, once this material was resuspended, required a relatively 

high shear stress for erosion. This suggests two distinct layers. The top 

layer would have had a relatively low antecedent stress history, thus 

requiring a low critical stress for erosion. The second layer would have had 

a relatively high antecedent stress history, thus requiring a high critical 

stress for erosion.

Case 3 represents no erosion of bottom sediment, thus the applied 

shear stress is less than the critical shear stress, resulting in a negative slope 

in the dM/dt curve. This case is different from the conservative mixing 

runs, in that significant amounts of material are settling out of the water 

column.

The above arguments for the three different cases have been made 

from the point of view of the sediment surface. A similar argument can be 

made using the energy input by the rain and the water depth through which 

the energy is transmitted. The applied shear stress may vary due to rainfall 

intensity, water depth and the penetration of vortex rings to the bottom. 

Resolution between the two points of view requires specific measurements 

stress applied to bottom and the critical shear stress for erosion of bottom 

material. Shear stress measurements at the appropriate scales were not 

made in this initial investigation, but the end products were observed.

The data set consisted of several independent variables which were 

measured during the course of the run. These variables have been divided 

into (1) rain. (2) water column and (3) bottom characteristics (Table 4-2). 

Multiple regression analysis was conducted on the matrix of independent
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TABLE 4-2. Independent variables divided into rain, bottom sediment and 
water column characteristics. These groups of variables are 
further subdivided into groups which are similar from a 
physical point of view. Significant (at 95% Cl) correlation 
coefficients for excess mass at 11.5 and 50 min into run.

INDEPENDENT CORRELATION COEFFICIENTS
VARIABLES 11.5 Min 50 Min.

1 2A 2B 3 1 2A 2B 3

RAIN CHARACTERISTICS
Impact Frequency:

Intensity
No. Drops/min. -.834 -.796
No. Jets/min. -.835 -.808

Energy-:
Drop Size .651 .804
Drop Height .539 .643 -.728 .473 .690 -.704
DropEj .661 .828 .722 •795
Drop Vj .620 .827 .683 .836 .780
Drop E j/A , .542 .659 .505 .694 .762

Dynamic:
Rain Temperature
Delta-t (Rain and Receiving} .669

BOTTOM CHARACTERISTICS
Resuspendables:

Percent Mud
Percent Organics in Mud
Percent Total Organics -.874

Lag Formers:
Percent Sand
Percent Org. in Sand -.636 -.728
Percent Aggregates -.808 -.848
Percent Total Organics -.747

WATER COLUMN CHARACTERISTICS
Density:

Temperature
Base Salinity- .711
Base Sigma-t
Observed Salinity

Stability:
Delta-t (Rain and Receiving)
Salinity Startification

Depth:
Water Depth .697 .675
Topography .421 .780 .808 -.735
Ratio Depth/Topo.
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and dependent variables to determine the important factors controlling 

resuspension.

Multiple regression analysis was conducted by first developing a 

linear correlation coefficient matrix between the independent variables and 

the resultant excess mass dependent variables. The number of independent 

variables was reduced by selecting only significant (at the 95% Cl) linear 

correlations. This sub-matrix was further reduced by removing those 

independent variables which had a significant correlation with other 

independent variables. Selection at this point was based upon physical 

reasoning. Multiple regression analysis Ryan etal. (1976) was then 

performed on the remaining independent variables. Each variable was then 

evaluated based upon its contribution to the regression sum of squares in 

the analysis of variance. An F-test (at 95% Cl) was conducted on the analysis 

of variance to determine the significance of the regression equation. R- 

squared values (corrected for the degrees of freedom) were then used to 

make relative comparisons between subsets.

A linear correlation matrix was developed by subdividing the data by 

the four excess mass cases (Case 1. 2 A. 2B and 5) then by correlating the 

excess mass at 11.5 min and 50 min after the start of a run with the range of 

independent variables listed in Table 4-2. The purpose of this analysis was 

identify the important groups of variables which may significantly affect the 

excess mass in the receiving water. Table 4-2 identifies those variables 

which exhibited significant correlation (at 95% Cl) with changes in excess 

mass amounts.

The independent variables can be reduced, where there is a significant 

correlation between variables, by selecting the one which makes most sense 

from physical reasoning. Two approaches were used to identify the
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important independent variables controlling changes in excess mass from 

run to run. The first approach was to take the individual independent 

variables and conduct a multiple linear regression analysis to determine the 

amount of variability in excess mass that was explainable by each 

independent variable, in a step-wise fashion. This was conducted for each 

case where excess mass exhibited non-conservative behavior.

The second approach was to identify interaction effects that might be 

important. This can be done by combining variables that make physical 

sense. The rainfall energy group of variables are most significant in 

controlling excess mass concentration. Therefore, an energy flux term (p) 

which combined the intensity, the drop impact energy and drop size was 

considered, where

p-/t>fd(Iv,2/2) (4-3)

where I - rainfall intensity
f(j - drop size efficiency factor (defined below).

This is in agreement with Houk (1975) who found that the depth of 

mixing due to rain is proportional to power. In addition Houk (1975) 

observed that drop size was important when P>75 gm/sec3. The physical 

reasoning for a drop dependence given by Houk (1975) was that larger 

drops created larger turbulent eddies, which are more efficient in mixing. In 

our experiments, power ranged from 139 to 1292 gm/sec3.

The efficiency factor (fd) used to test this conclusion was 1 for the

0.274 cm drops and 4 for the 0.513 cm drops. These coefficients were based 

upon the ratio between the ring volumes produced by the large and small 

drops. The small drops (0.01077 cc/drop) produced a ring with an inner

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

core volume of 0.0971 cc. The larger drops (0.07069 cc/drop) produced 

vortex rings with core volumes of 0.384 cc. Thus if turbulent mixing is 

proportional to ring volume, then larger drops would create about 4X more 

mixing than the smaller drops.

The depth dependence of bottom sediment resuspension was tested 

by ranking the data by depth then regressing the excess mass at 11.5 min 

into the run against the power term (no efficiency factor was used). 

Sequential subsets were generated by including data from increasing depths 

at 0.25 cm intervals starting at 2.1 cm depth. The R-squared. adjusted for 

the degrees of freedom, was plotted with depth to identify major changes in 

the relationship between power at the water surface and resuspension of 

bottom sediment (Figure 4-9). This depth dependent analysis, when using 

all data, suggests that as the water depth increases, the importance of rain- 

induced power at the surface decreases as a resuspension factor. If all data 

are considered, there is a significant (at 95% Cl) correlation between power 

and excess mass. There appear to be three important zones: (1) less than 3 

cm: (2) 3 to 6 cm depths: and (3) greater than 7 cm depths (Figure 4-9).

When only Case 1 is considered the R-squared values indicate a 

stronger relationship at each depth (Figure 4-9). When only the runs with 

the larger drops are considered, the R-squared values are similar to Case 1. 

except in the deepest water (7.5 to 8 cm). The R-squared values of the large 

drop runs remain relatively strong throughout the depths tested. When only 

runs with the small drops are used, kinetic energy flux at the surface shows 

no significant relationship with the observed excess mass. For the small 

drops the significant independent variable was the inverse of rainfall 

intensity. In addition this relationship was significant only when the 

receiving water depth was greater than 5 cm deep.
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FIGURE 4-9. Vertical distribution of R-squared for linear regression between 
excess mass at 11.5 minutes into the run and rain power. The three 
plots consider all data, only Case 1 data, and only the large drop data. 
All R-squared values are significant at the 95% Cl.
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The response by the small rings makes sense, if ring momentum is the 

critical factor in maintaining the ring integrity as it moves through the water 

column. The smaller drops produce relatively weak vortex rings. These 

rings do not penetrate if there is substantial turbulent mixing due to the 

rainfall intensity. If the rainfall intensity is relatively light, thus the 

turbulence is low and rings can penetrate to the bottom and resuspend 

sediment. This would explain the inverse relationship with intensity and 

why resuspension occurs only when the water is relatively deep.

The larger drops produce larger rings with much greater momentum 

than the smaller drops. The larger rings are able to move through the 

turbulent water column and strike the bottom, resuspending sediment by 

both translational impact and shear created by the rotating fluid in the inner 

core. As the rainfall intensity increases the number of rings formed also 

increases, thus resuspending more sediment. As water depth is increased 

the ring momentum at impact with the sediment is less because of the lower 

translational velocities. The resuits of this experiment suggest that there is a 

transition zone at water depths between 6 and 7 cm. where either less rings 

are touching the bottom or the rings have less rotational velocity to 

resuspend sediment. It is important to note that even at the greatest depths 

studied, there is significant bottom material resuspended by the rings.

As power to the water surface is increased, a response should be seen 

in the excess mass of suspended sediment observed in the water column.

The slope of the linear regression equation defines the amount of change in 

excess mass per amount of change in power; therefore changes in slope 

would occur if more (or less) power is needed to resuspend the same mass of 

excess sediment. When the slope is plotted with respect to the depth of the 

overlying water column, it decreases as water depth increases (Figure 4-10).
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FIGURE 4-10. The vertical distribution of the slope from the linear
regression between excess mass at 11.5 minutes into the run and 
power. The three curves represent all data, only Case 1 data, and only 
data from the large drop runs. The water depth is in cm.
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A transition zone is observed at water depths of 6 to 7.5 cm when all data 

and Case 1 data are considered.

Insitu Experiment

The insitu experiments were conducted to test the observation that 

artificial rainfall could resuspend significant amounts of estuarine sediment 

in a shallow water column. The limitations of the laboratory experiments 

included potential problems with boundary effects due to the receiving 

water tank walls. A second potential problem was modification of the 

sediment surface during collection, transport to tanks and filling the tanks 

with receiving water. A second purpose of the insitu experiments was to 

compare the amount of sediment resuspended by the artificial rain with 

other resuspension events including wind and boat waves, and epibenthic 

organisms tracking across the sediment surface.

The insitu experiments were conducted when the ebbing tide occurred 

early in the morning so as to minimize the probability of wind and boat 

waves encroaching upon the experimental site. The purpose was to isolate 

the artificial rain effects from the other resuspension mechanisms. Since 

ideal conditions were not always present during the experimental run. it was 

possible to make comparisons between the resuspension signature for the 

artificial rain and the other mechanisms. The objectives of this study were 

(1) determine the water depth at which significant amounts of sediment 

were resuspended by artificial rain; and (2) compare the magnitude of 

resuspended material by rainfall with the other observed resuspending 

mechanisms.

Several assumptions were made when analyzing the results of this 

experiment. The paired samplers in the rain impact site were located in the
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center of the rain, about 1 cm off the bottom. The rain impact area was 

about 75 by 75 cm. Although there was a slight current due to wind and the 

ebbing tide («2 cm/sec), it was assumed that the water samples were 

representative of the impact area. The control site was always located away 

from (about 1.5 m) and up current from the tower platform and the rain 

impact area. It was assumed that the control area represented natural 

conditions at the site and was not influenced by the artificial rain. On 

occasional runs, epibenthic organisms (horeshoe crab and green crab) 

tracked through either or both sampling sites. These occurances were noted. 

No measurements of wave characteristics were made, eicept to differentiate 

between wind waves, boat waves, and calm conditions.

The effects of waves versus rain resuspension on the suspended 

sediment signature of the trailing edge as water ebbs off the tidal flat was 

differentiated in this eiperiment. Wave action affected suspended load at 

both the control and impact sites (e.g. Figure 4-11). A broad and gradual 

increase in suspended load was observed as water level decreased, when 

either wind waves or wind generated swell was present in the study area 

throughout the sampling period.

Goat waves and faunal tracking tended to cause short term spikes in 

the suspended sediment signature le g  Figure 4-11). Boat wakes differed 

from wind waves in that they were relatively short term pulses of increased 

energy. It was interesting to note, that concentrations decreased after the 

effects of boat wakes decayed (Figure 4-11). This suggests that much of the 

material resuspended settles out rapidly. This observation is consistent with 

work by Anderson (1971) on boat wave resuspension at the same site.

Elevated concentrations were observed only in the impact area and 

not in the control area, when artificial rain was the important resuspension
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FIGURE 4-11. Insitu suspended sediment concentrations within the rain 
impact area and in the control site. Each panel shows how the 
suspended sediment concentrations (PM) vary with different 
resuspension mechanisms. The mechanisms are labeled w'hen 
observed. Water depths are in cm.
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mechanism (e.g. Figure 4-11). Rain enrichment of suspended sediment 

concentrations was determined by taking the ratio of concentrations 

between the impact and control areas. The impact area concentrations were 

significantly elevated over the control site when the enrichment ratio 

exceeded two standard deviations of the average (after those outliers were 

removed). The runs in which significant rain resuspension was observed, 

and where no organisms were observed in either site are listed in Table 4-3. 

The rain enriched concentrations were observed during these runs, when the 

average (over the sample collection time) water depth was 3.25 to 5.1 cm. 

Therefore the ability of artificial rain to significantly increase the suspended 

load was limited water depths to 5 cm. Rain effects may have occurred in 

deeper water, but this conclusion is limited due to sampling methodology. 

The range of average water depths for the samples prior to the rain- 

enriched samples was 4.6 to 7.1 cm. If one optimistically assumes 

resuspension started at the beginning sampling, the maximum water depths 

in which an observed rain influence may have occurred was about7 cm. 

Rain-formed vortex rings may be resuspending bottom sediment in deeper 

water, but the rain effect could not be isolated from the natural variability in 

suspended sediment concentrations observed on the muddy tidalflat. 

However, this depth compares favorably with the results of the multidrop 

laboratory studies where resuspension due to rain was observed at the 

maximum depth tested (8 cm).

Each resuspending mechanism affects the suspended sediment 

signature of the trailing edge of intertidal water water as it ebbs off the 

mudflat. Wind waves, if continuous during the ebb period, tend to increase 

concentrations as the water depths get shallower (Figure 4-11). This effect 

continues until a critical depth (about 7 cm), at which time the
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TABLE 4-3- Resuspension mechanisms observed in the suspended sediment 
concentration.

RUN RAIN BOAT WIND ANIMAL

1 X
2 X X
3 X X
4
5 X
6 X
7 X
8 X X
9 X X
10 X
11 X X
12 X
14 X X
15 X
16 X
17 X
18 X X
19 X X
20 X
21 X X
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concentrations decrease with decreasing water depth. The reason for this 

decrease may be due to the "larger" waves being filtered out by the shallow 

depth. Bottom material resuspended by wave action appears to rapidly 

settle out of the water column as previously observed (Anderson. 1971).

Storm Observations

On August 29,1985 rainfall occurred throughout the day. Rainfall 

intensity varied from intense thundershowers to light drizzle. During the 

study period (5:00 to 6:00 pm) the intensity averaged 0.5 cm/hr. Drop-size 

distribution was measured several times during the storm. Figure 4-12 

presents the drop-size distribution, as a function of volume, at five times 

prior to sampling, and once during sampling. At this time the modal drop 

size by volume was 0.262 cm.

The suspended sediment concentrations, in general, increased as the 

water depth decreased during the ebbing tide, from 25 to 7 cm (Figure 4- 

13). the concentrations ranged from 93 to 301 mg/1 in water depths of 25 to 

15 cm. In water depths between 7 and 15 cm. concentrations jumped to 

529-711 mg/1 due to wind wave action. As the water depth decreased 

below 7 cm the concentrations decreased slightly to 465 mg/1 at 1.1 cm 

depth.

The suspended sediment concentration, as a function of ebbing water 

depth, varied in a manner similar to that observed during the insitu 

experiments, when wind waves were present. The high concentrations 

observed in water depth less than 7 cm made it impossible to identify a rain 

induced component.

On September 2.1985, observations were made as the water ebbed 

frrom the tidal flat during a less severe, early morning, rainfall event. The
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FIGURE 4-12. Histograms of the measured drop size distribution during the 
two storm observations. One sample was collected during Storm 1 and 
three samples were collected during Storm 2. Measurements were 
based upon the flour technique. The drop diameters are in cm.
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FIGURE 4-13. The observed suspended sediment distribution with time 
during the storm period when the water level at the sampling site 
decreased from about 30 cm to about 1 cm water depth.
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rain intensity during the study period (7:15-7:45 am) was 0.05 cm/hr. The 

drop size distribution was measured at three times during the study. The 

modal drop size (by volume) was 0.13 cm. when the water depth was less 

than 7 cm. Drop sizes, as large as 0.34 and 0.26 cm were observed in the 

rain samples when water depths ranged from 22 to 7 cm.

In water depths from 22 to 10 cm. the suspended sediment 

concentration was low. 21 to 38 mg/1. When the water depth was about 7 

cm, boat wakes encroached on the study area, resuspending significant 

sediment. 357 to 534 mg/l. The bulk of this material settled out rapidly 

after the wave train passed. Within 4 minutes the concentrations decreased 

to 127 to 136 mg/l. The suspended load remained above 116 mg/l. until the 

water was too shallow for sampling.

The distribution of suspended sediment with time and depth during 

the rainfall event, varied in a manner similar to that observed during the 

insitu experiments. With no wind waves the observed suspended sediment 

load remained at low concentrations. Boat wake resuspension can cause 

significant resuspension: however, the bulk of the material rapidly falls out 

of the water column. Again it was not possible to determine if rainfall 

maintained elevated concentrations, in depths less than 7 cm. as the water 

ebbed from the study area.

Discussion

The insitu studies point out the importance of rain induced 

resuspension in the shallow intertidal water column. The results of the 

insitu and multidrop experiments indicate a resuspension depth (5 to 8 cm), 

much less than the single-drop studies (20 to 40 cm). This may be due to 

salinity or density stratification, or due to the increased ambient turbulence
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in the water column, when many drops are impacting the water surface 

concurrently. However, rain caused enrichment of 3 to 34 times the 

background suspended load. This represented excess concentrations due to 

rain of 40 to 318 mg/l (Table 4-4). Rain resuspension was important in 

water depths less than 7 cm. and increased in importance as the water depth 

decreased. Therefore the rain is acting in a complimentary fashion to the 

wind waves. As the influence of waves is diminished in water depths less 

than 7 cm. the effect of rain resuspension is enhanced.

The observations during the insitu experiment lead to an interesting 

conclusion, which previously has only been qualitatively observed 

(Anderson. 1983). It has been noted that there appears to be higher 

suspended sediment concentrations during storms in which there is both 

wind and rainfall than windy days in which there is no rainfall. An 

explaination for this observation can now be presented. As water ebbs from 

the tidal flat, a portion of the suspended sediment due to wind wave action 

at the trailing edge settles back out onto the tidal flat. If it is raining then 

material which would normally settle out in the shallow trailing edge is 

resuspended, and rain induced mixing maintains the material in suspension 

as it ebbs off the tidal flat into the channels of the estuary.
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TABLE 4-4. Summary of data from insitu experiments where rain showed 
an effect on the excess mass concentration (as determined between 
the impact area and control area). The physical characteristics of the 
artificial rain are given, as well as the water depth in which the rain 
effect was first observed.

RUN DEPTH
(cm)

R̂atio PM), PM)C 
(mg/l)

Excess
Mass

Drop
Size

Intensity 
I cm/hr)

Power
igm/sA'

6 3.25 18.6 335.6 18.0 317.6 3.08 6.21 495.5
10 4.20 3.2 57.6 18.0 39.6 5.46 1.61 175.1
12 3.65 jo.7 138.3 4.1 134.2 5.38 2.47 267.5
14 5.10 15.3 81.2 5.3 75.9 5.70 5.32 582.3
16 3.45 13.8 136.6 9.9 126.7 5.33 2.45 203.3
17 4.40 15.4 167.6 10.9 157.7 5.60 5.34 478.1
18 4.55 10.2 47.8 4.7 43.1 5.25 5.32 426.0
21 3.60 2.9 93.3 32.0 63.3 5.43 3.22 89.8
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CHAPTER 5

MULTIDROP EXPERIMENT ON BEDLOAD 

TRANSPORT OF MUDDY INTERTIDAL SEDIMENTS 

Introduction

The multidrop experiments in Chapter 4 focused on the suspended 

sediment component of transport of muddy intertidal sediment due to rain 

action. However, a significant portion of the muddy intertidal is relatively 

coarse grained (Rust, 1980). This material includes fecal pellets, organic 

detritus and sand-sized mineral grains and rock fragments. Fecal pellets 

represent an important component of the surface sediment, since by weight 

they comprise over 20% of the sediment in the study area (Rust, 1980).

Chapter 3 illustrated that coarse grained sediment can also be moved 

by the impact of drop-formed vortex rings. A simple experiment was 

conducted to estimate the amount of estuarine sediment which may be 

moved as bedload (in this study movement by saltation was considered as 

bedload), due to impacting vortex rings. The purpose of this experiment was 

to identify the magnitude of the bedload component relative to the 

suspended load. Since fecal pellets represented a major portion of the coarse 

fraction, and are some of the largest particles on the sediment surface, these 

pellets were tested for density, composition and settling velocity. A detailed 

discussion of pellet sedimentological properties is presented in Appendix 5.
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Methodology

A 110 by 15 cm plexiglass flume was used to allow a slow (o  cm/sec) 

and shallow (3 to 4 cm) flow of seawater to move over an estuarine mud 

surface (Figure 5-1). The seawater was drawn from a stilling basin, where 

the coarsest suspended matter had been allowed to settle out for one-hour 

before the run. This was pumped into one end of the flume and the rate was 

controlled by an in-line valve. The water passed through a baffle to allow 

development of a uniform flow. Water exited the flume and was discarded. 

The fow rate was measured by dye injection, and was less than 3 cm/sec at 

the water surface in the center of the flume channel. The change in 

reservoir volume during the run was used to calculate an average flow rate 

through the flume.

The sediment pad was located near the center of the flume just 

upstream from a baffled bedload sampler (Figure 5-1). Suspended sediment 

samplers were located along the flume centerline, upstream and downstream 

of the sediment pad. Water was siphoned from these intake points, with the 

draw off rate controlled to collect a single integrated sample during the 20 

minute run.

The sediment pad consisted of a 9.5 x 10 cm box with 2-cm wide 

flanges to minimize turbulence at the pad edges (Figure 5-1). Estuarine mud 

was collected by randomly placing a frame on the mud surface. The sample 

was collected with care not to disturb the sediment surface and placed in the 

sediment pad. The pad was then placed in the flume in a frame which held 

the bedload sampler. A false bottom was placed upstream and downstream 

of this frame to allow a the flow to pass over the sediment without a depth 

change. The bedload sampler consisted of a pardoned tray positioned
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underneath a 10 x 10 cm baffle with 1.2 cm square holes (Figure 5-1). The 

thickness of the baffle was about 0.9 cm. Dye injection into the bedload 

sampler indicated that the baffle was adequate to keep turbulence in the 

flow from impinging upon the collection tray.

Rain drops were generated by 16 drop formers placed in a 4 x 4 grid 

and covered a 9 x 9 cm area. The drop size was 0.54 cm and the drop height 

was fixed at 75 cm above the water surface. Rainfall intensity was 

controlled by changing the head of the rainwater reservoir. Intensity was 

measured voiumetrically at the start and end of each run: an average 

intensity was used for data analysis.

Each experiment consisted of two 20-minute runs. The first run was 

with water flow only. The bedload sampler tray was removed and the 

collected material removed. The second run was with rain and flow. The 

material caught in the tray was removed with pipette. The tray was 

partitioned so that the amount of sediment caught as a function of distance 

from the sediment pad could be measured. The sediment amounts in the 

flow-only runs were so low only a total sediment load could be determined.

Total sediment by weight and percent organics were determined using 

the procedures described in the previous chapters. Sediment samples were 

collected from the pad after being subjected to rainfall and the slow current. 

A control pad. collected at the same time as the run pad. was also sampled 

for textural analysis.

Results

The bedload transport due to rain was estimated in the flume studies. 

The results of this study can then be used to compare with the suspended 

load as determined in the multidrop experiments discussed in Chapter 4.
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The rate of bedload transport was computed by taking the difference 

between the sediment mass in the trap, observed with unidirectional flow 

and the mass observed with combined rain and flow. The erosion rate of 

estuarine mud ranged from 4.0 to 9.0 gm/m2/hr with an average rate of 

5.83 gm/m2/hr (Table 5-1).

The range in rainfall intensity causing this level of erosion was 14.2 to

91.1 cm/hr. The water in the flume was 3.6 cm deep and flowing at an 

average of 2.1 cm/sec (Table 5-1).

The material collected in the bedload sampler was viewed under the 

microscope. The largest particles were fecal pellets of H. fM a r mis organic 

detritus and sand were also common. This material was typically observed 

at the sediment interface. The transport rate of bedload material can be 

compared with the excess mass of sediment resuspended by rainfall. The 

excess mass results from the multidrop experiments were converted to 

erosion rates by dividing the observed mass by the unit time and the area of 

the sediment surface. The excess mass at 11.5 minutes after the start of 

rainfall was selected for comparison with the flume study, which ran about 

20 minutes. Excess mass erosion rates ranged to 14.2 gm/m2/hr and 

averaged 2.8 gm/m2/hr (std. dev. of 3.63; n - 33) for the cases in which an 

increase in excess mass was observed in the first 11.5 minutes. Thus the 

amounts moved by resuspension and bedload are on the same order of 

magnitude with the average resuspension rate about half the average 

bedload rate of 5.8 gm/m2/hr.

The important point is that vortex ring impact not only resuspends the 

finer-sized material on the estuarine sediment surface, but also initiates 

motion of the coarsest fraction. The predominant component of this coarse
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TABLE 5-1. Summary of the flume study results, including the amount
of bedload sediment (mg) caught in the trap, the rainfall intensity and 
power, the flow velocity through the flume, and the erosion rate.

RUN TIME
(Min) Rain

BEDLOAD 
Flow Net

RAIN 
Intensity Power

FLOW
icm/s)

EROSION
RATE

4 20 15.8 (4.5) 11.3 69.9 872 2.1 4.19
5 20 15.8 (4.5) 11.3 91.1 1136 2.5 4.19
7 17.3 14.6 1.4 13.2 59.5 742 2.3 5.64
9 20 29.7 7.2 22.5 23.0 287 1.9 8.33

11 20 20.8 5.0 15.8 29.2 370 1.7 5.85
13 20 15.4 4.6 10.8 22.8 285 1.8 4.00
15 20 28.5 4.1 24.4 252 314 1.8 9.04
16 20 19.1 4.6 14.5 18.5 243 2.4 5.37

MEAN 
STD. DEV.

15.5
5.2

42.4
25.3

531
339

2.1
0.31

5.83
1.93

NOTES: Bedload in grams.
Intensity in cm/hr.
Power per unit area in gm/sec3. 
Erosion rate in gm/m2/hr.
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fraction was fecal pellets, which could be analyzed for their sedimentoiogical 

characteristics (Appendix 5).

Discussion

Impact of drop-formed vortex rings initiated motion of bottom 

sediment, as observed in the results presented in Chapters 3 and 4. Based 

upon these results, the shear stress, which can be imparted by the rings, 

probably exceeds 11 dynes/cm2. Material moved by this force may remain 

in suspension if the settling velocity is relatively low or immediately return 

to the bottom, after it is thrown from the region influenced by the ring. This 

would happen to the larger and denser particles. Consequently rain-induced 

vortex rings may cause both suspended load and bedload transport if it is 

accompanied by advection due to other processes, such as tidal currents..

The flume study investigated the bedload component of sediment 

transport. The average near-surface currents of 2.1 cm/sec would impart a 

shear stress of 0.046 dynes/cm2 on the bottom (see Appendix 3 for 

calculation). This is too low to initiate motion of the H. fiJiform is or M. 

balthica pellets, which require a calculated critical shear stress of 1.14 

dynes/cm2 (Appendix 3). However, rain-induced vortex rings contain 

sufficient shear energy to move the pellets and the entire coarse fraction on 

the sediment surface.

Thus motion of a substantial amount of material may be initiated by 

vortex rings. The flume experiments, when compared to the results of 

Chapter 4. suggest that bedload transport due to rain action in a slow current 

may be twice the rain-induced sediment resuspension in quiecent water.

A conceptual picture of this process is illustrated in Figure 5-2. The 

muddy intertidal sediment surface is composed of a mixture of "coarse"
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FIGURE 5-2. Conceptual diagram of how an impacting vortex ring initiates 
motion of coarse material on the sediment surface, and resuspends the 
fines into the water column.
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detrital organic particles and fecal pellets interspersed with silt and clay

sized particles. The finer particles may be in the form of a light dusting on 

the coarser material. As a vortex ring impacts the bottom, there is sufficient 

shear velocities to (1) roll the coarsest particles away from the impact area, 

and (2) eject other material into the water column within 1 to 2 cm of the 

bottom. This ejected material may either quickly settle out in close 

proximity to the ring impact area, acting as bedload, or may stay in 

suspension long enough to be incorporated by subsequent turbulent action, 

and move upward into the water column. The dusting of finer silt and clay 

residing on the larger particles would be shaken off in the process and go 

into suspension. If this dusting were the only fine sediment activated by the 

ring impact, then subsequent rings will cause bedload movement, but no 

further resuspension.

The sediment involved in rain-induced sedimentation appears to be 

only the layers closest to the surface. The conclusion is consistent with the 

work of Green and Houk (1980). In order to determine if there is a 

significant change in the sediment texture do to rain action in a shallow 

water column required sampling of the very surface of the sediment. 

Sediment samples were collected from the upper 3 mm of the sediment 

surface in the multidrop and insitu experiments, and the flume study. The 

results from these samples will be the topic of Chapter 6.
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CHAPTER 6

CHARACTERISTICS OF THE MUDDY 

INTERTIDAL SEDIMENTS USED IN EXPERIMENTS 

Introduction

The texture and composition of the muddy intertidal sediment reflect 

seasonal and spatial processes, which control erosion and deposition on the 

mudflat (Rust, 1980). The effects of rain resuspension may or may not be 

noticable in the measured texture of sediment subjected to this process. The 

purpose of this chapter is to evaluate the textural data collected from several 

experiments. The first objective is to describe the textural composition and 

natural variability. The second objective is to test if rain-erosion 

significantly alters the surface texture.

All the sediments used in the experiments came from JEL Cove. 

Subsamples of bottom sediment were collected as part of the insitu rainfall 

experiment, and flume study. These samples were analyzed to define the 

typical composition and to identify any significant differences between 

experiments.

Methodology

Sediment texture was determined using the rapid sediment texture 

analysis technique described by Anderson etalX 1981). The methodology 

determined the percent gravel (typically organic detrital material), sand,
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mud and aggregates (fecal pellets'). Each component was ashed at 500°C to 

determine the combustible fraction. The sample collection techniques have 

been described in the previous chapters.

Results and Discussion 

Description of Sediment Texture

The surface sediment used in the three experiments was 

predominately mud (59.5 to 67.1% by weight). Sand represented 3.4 to 11.9 

% of the total sediment. Fecal pellets, or sand-sized aggregates, make up

18.2 to 23-5%, while very coarse material, commonly organic detritus, is only 

a small fraction (0.4%) of the total sediment (Figure 6-1). The general 

sediment textural composition was similar to that observed by Rust (1980) 

in a study of the same tidalflat.

The compositional data from the sediment used in each experiment 

was analyzed to determine if there were significant differences between 

sediments (Table 6-1). in general the multidrop experiment sediments had 

more sand-sized and total organic material and less inorganic mud than 

sediments used in the insitu experiments and the flume study (Table 6-1).

The sediments used in the flume study and the insitu expertiments were 

generally similar. Minor differences were observed in the organic mud 

fraction and total aggregates, which were slightly lower in the flume study 

(Figure 6-1).

Rain Effect on Sediment Texture

The sediment data collected in the insitu experiment and the flume 

study were paired samples, one a control and one influenced by rain.
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FIGURE 6-1. Histogram showing the percent composition of the sediments 
used in the multidrop and insitu experiments and the flume study.
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TABLE 6-1. Results of analysis of variance testing on the paired samples 
from the insitu experiment and the flume study. Comparision among 
the three experiments using estuarine sediment is also included.

TEXTURAL
COMPONENT

INSITU EXPERIMENT 
Significance Impact Area 
of F-Ratio Higher/Lower

FLUMESTUDY EXPERIMENT 
Significance Rain 1 2 3* 
of F-Ratio High/Low

GRAVEL:
Inorganic 70% Higher . . .

Organic 90 Higher 70 Lower
Total 70 Higher —

SAND
Inorganic — — X Z X
Organic 70 Lower — Z X X
Total — — X I X

MUD
Inorganic 70 Higher - - - Z X X
Organic 70 Lower — X  X z
Total — - - - Z Y X

AGGREGATE
Total — 70 Lower X Y Z

* X,Y,Z represent statistically different populations.
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Therefore, it was possible to use these data to determine if rain had an effect 

of rain on the texture.

Analysis of variance using a F-ratio test indicated that the flume 

sediment subjected to low flow in conjunction with rain was significantly 

lower (at the 70% Cl) in percent organic gravel-sized material, and in percent 

total aggregates (Table 6-1). This is reasonable in that the typical 

composition of the bedload samples, which represented scouring from the 

surface, was predominately organic detritus and fecal pellets. The fecal 

pellets were primarily from H. filifo rm ls. a few M. balthica pellets were 

observed. The organic detritus included eel grass fragments. Loosely bound 

aggregates of silt and sand-sized organic debris was also observed, as was 

inorganic sand grains.

The paired samples from the insitu experiment represented one from 

a control site, which was not influenced by the artificial rainfall, and one 

from the rain impact area. The sediment texture observed in the rain impact 

area represented the effects of both rain failing on a shallow column of 

water and rain impacting the exposed sediment surface. Although the 

experiment was designed to examine underwater resuspension effects on the 

ebbing tide, by the time the experiment terminated the trailing edge of the 

tidal wedge had left the impact area. This exposed the sediment surface to 

direct impact by the rain drops.

Analysis of variance testing of these data sets indicated that the 

sediment in the impact area was higher than the control area in gravel-sized 

material and inorganic mud, and lower in total organics. This difference in 

sediment texture suggests winnowing of the finer and lighter particles 

leaving a "coarse lag" deposit at the surface.
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The two data sets suggest that different processes are influencing the 

sediment texture. For the flume experiment the coarse fraction was being 

removed in bedload, while in the impact study it was being left behind as a 

lag deposit. This was probably due to different experimental constraints. In 

the flume study a small isolated sediment surface was used. The sediment 

surface was subjected to rain indirectly through a water column. Therefore, 

as material was mobilized and moved downstream, there was no source of 

sediment upstream to move onto the sediment surface. Consequently a loss 

of the particles susceptable to bedload transport was observed. In contrast, 

the insitu experiment, direct impact of rain and subsequent rill and 

sheetwash movement of rainwater from the impact site caused erosion of 

the finer particles on the sediment surface, leaving a coarsened lag deposit.

One might speculate that the sediment surface under a shallow water 

column subjected to rain action, would respond as did the sediment in the 

insitu experiment. Vortex ring impacts would jar the larger particles and 

resuspend the fines, which either coated the aggregates and detritus, or 

resided in the pore spaces between the larger particles. This process would 

strip the fines, leaving a lag deposit of the larger particles. As the effects of 

rain resuspension diminished due to increasing water depth or decreasing 

rain intensity, the fines already in suspension would settle, recoating the 

larger particles and filling the pore spaces. In the estuarine environment, 

the system as just discussed would not be closed, because lateral advection 

would move some of the rain resuspended fines from the shallow edge of the 

tidal wedge into deeper water over the tidalflat and/or into the channel. 

Likewise, water from the channel, not containing rain resuspended fines 

could move onto the tidal flat. Therefore, the net result is that it may be
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very difficult to identify changes in texture because of the dynamic nature of 

the surface.

The ability to detect rain effects on sediment texture can be 

investigated from a different point of view. Present sampling technology 

allows for sampling of approximately the upper 3 mm of sediment. Average 

net erosion rates due to rain action was about 8.6 gm/m2/hr (2.8 gm/m2/hr 

suspended load and 5.8 gm/m2/hr bedload). Using a bulk density of 1.7 

gm/cm3, layer 5xl0*3 mm removed each hour, or 0.17% of the minimum 

thickness, which was sampled. This is probably why no significant change 

was observed in the finer material in the flume sediments, and why. given 

existing sampling technology, it is difficult to determine rain effects by 

looking for changes in sediment texture.
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CHAPTER 7

A TECHNIQUE TO OXYGENATE 

AQUACULTURE TANKS 

Introduction

Entrapment and subesquent downward transport of air by drop- 

formed vortex rings is a mechanism to oxygenate subsurface water. The 

ability of vortex rings to incorporate air-bubbles during formation was noted 

as early as Rodgers (1858). Blanchard and Woodcock (1957) observed air 

bubbles in drop-formed vortex rings. The larger drops (0.22 cm) carried 

bubbles to 2 to A cm depth. The point of air-entrapment to form the bubbles 

is in dispute. Blanchard and Woodcock (1957) felt entrapment occurred with 

initial impact of the drop. Carroll and Mesler (1981) observed air 

entrapment when the pinched off jet drop impacted with the collapsing 

central jet.

Rohatji et al. (1979) studied the mixing effects of vortex rings 

produced by an impulse generator. They concluded that vortex rings mixed 

with energy efficiencies of 9 to 30%. The efficiency is the ratio of energy 

required to operate a mixing mechanism and the theoretical amount of 

energy required to mechanically mix the system. This is substantially higher 

than energy efficiencies of impellor mixing. They also expanded this concept 

and tried to mix an oxygen depleted layer in Hamilton Harbor, Ontario, using 

2-m diameter vortex rings.

The purpose of this pilot study was to apply the ring mixing concept to 

drop-formed vortex rings. The specific application identified to test was 

with oxygenation of aquaria used in biological toxicity testing. Typically in
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this type of test a 45 1 aquarium, fitted with drain, is used (Figure 7-1). 

Sediment with the suspected toxic elements is placed in the bottom of the 

tank and covered with water. Water, relatively rich in dissolved oxygen, is 

added to the tank at the surface in a single stream, and the tank water from 

near the bottom is drawn from the tank by the drain to maintain a constant 

volume. Air is also bubbled into the tank to balance the oxygen demand of 

the sediment and maintain an oxygenated water column. Unfortunately this 

air if bubbled too vigorously also turbulently mixes the tank and may 

resuspend bottom sediment.

The objective of this study was to test if the same volume of new 

water, if introduced at numerous drop points, could oxygenate the tanks as 

efficiently as bubbling air. The hypothesis was that drop-formed vortex 

rings would entrain air bubbles and oxygen-rich surface water, then 

transport this water to depth in the inner core of the ring and release the 

oxygen rich water and bubbles. This would cause mixing with water near 

the sediment surface, which is depleted in oxygen, thus maintaining an 

oxygen saturated water column.

The benefits to a vortex ring oxygenation process are (1) costs could 

be saved by not requiring air bubbling, and (2) test procedures could be 

improved by gently mixing the water column. This pilot study represents a 

feasibility study, and is therefore a first step in determining the practical 

applicability of the process.

Methodology

The experiment consisted of four aquaria with a 3 cm layer of fine

grained sediment (from JEL Cove) on the bottom (Figure 7-1). Tank 1 was 

the standard, where seawater and air were added at rates consistent with
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FIGURE 7-1. Experimental set up for the vortex ring oxygenation 
experiments.
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the toxicity testing. Tank 2 was the vortex ring model where the same 

amount of new seawater was dispersed over 20 drop points. No additional 

air was added to this tank. The water formed 0.54 cm drops at each point, 

and fell about 50 cm to the tank water surface. The drops were formed as 

described in Chapters 1 and 2. Tank 3 was a second control tank in which 

only water was added. No bubbled air was added to the tank. Tank 4 was 

considered as the static control where no bubbled air or water was added.

Water samplers were located in the center of each tank and set at 

approximately 0.5,5,10 and 15 cm off the bottom (Figure 7-1; Table 7-1). 

Seawater was added to the tanks several days prior to the run to allow a 

natural oxygen depletion by the sediment. The water volume in Tanks 1 to 

3 was about 33 1 (Table 7-1). Tank 4 was filled with 48 1 to allow for draw

down, when dissolved oxygen (DO) samples were collected. New seawater 

was gravity fed from a common cistern to each tank. The DO. temperature 

and salinity of this water was monitored throughout the run. The new water 

flow rate into Tanks 1 and 3 was measured volumetrically at the start of the 

experiment. The volume of water from the drop-formers of Tank 2 was 

measured volu metrically at the end of the experiment.

Each tank was monitored for six hours. A baselevel sampling was 

conducted for each tank prior to the start of the experiment. Once baselevel 

sampling was completed in a tank, the new water addition and air bubbling 

was started. Each sampling consisted of sequentially siphoning water from 

each of the four samplers in the tank starting with a near-surface and 

ending with a near-bottom sample. The samples were immediately 

processed for DO. temperature, and salinity. Sampling in this step-wise 

fashion, resulted in nine sets of data for each tank over the six hour period.
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TABLE 7-1. The water characteristics and sampling depths for each tank 
used in the oxygenation experiment.

Water Tank Dimensions and Sampling Points:

TANK START
LEVEL

VOLUME SEDIMENT
THICKNESS

SAMPLING LOCATIONS 
1 2  3 4

1 18.8 cm 34.91 3.6 cm 0.5cm 5.6 10.4 14.9
2 17.1 31.8 3.5 0.4 4.7 9.6 14.3
0 18.0 33.4 n  aJO 0.6 5.6 10.4 15.2
4 25.8 47.9 3.2 0.5 5.4 10.7 153

Baselevel Water Conditions:

TANK TEMPERATURE
(°Ci

SALINITY
( 0 /  1 ' ' 00 -

DISSOLVED OXYGEN 
(ml/U

1 20.8 20.5 4.02
2 20.8 20.5 3.20
•n

J 20.2 20.5 J . j S

4 20.4 24.0 3.01
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Dissolved oxygen was measured using a YSI Dissolved Oxygen and 

Temperature Meter. The DO probe was calibrated with saturated air at the 

start of the experiment. Probe drift was measured by comparing the probe 

reading at the start of the experiment in saturated air (6.47 ml/1 or 100.8% 

saturation) and at the end of the experiment (6.74 ml/1 or 103.4% 

saturation). No drift correction was made to the data set. Temperature was 

measured using the DO meter thermistor, where an accuracy of +/-0.5°C was 

assumed. Salinity was measured with an American Optics refractometer (+/- 

0.5 o /J. Percent saturation was calculated by comparing the observed DO

with the predicted DO for 100 % saturation at the measured temperature and 

salinity.

Results

The water in the tanks when the baselevel measurements were made 

had water temperatures of 20 to 21°C, salinity of 21.5 #/oo« and gradients of

dissolved oxygen ranging from 2.53 ml/1 near bottom to 4.36 ml/1 near 

surface (Table 7-1). The make-up water, which was added to the tanks after 

the baselevel sampling, had salinities of 22 to 23 °/0o. temperatures of 18.5

to 16°C. and DO concentrations of 5.0 to 5.3 ml/l.

All four tanks showed an increase, on average, in the dissolved oxygen 

content in the volume of water overlying the fine-grained sediment bottom. 

However, there were significant differences in the amount of oxygen added 

to each tank (Figure 7-2). Tank 4. in which no water or bubbled air was 

added to the system, showed only a 0.4 ml/1 increase in dissolved oxygen 

over the 5.9 hr period. This increase in oxygen may be artificial due to drift 

in the DO probe, or it may be due to a balance between oxygen uptake by the
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FIGURE 7-2. Relative changes in the dissolved oxygen content of the four 
tanks during the study period. The baselevel dissolved oxygen 
content was subtracted from each of the DO values to illustrate how 
the added oxygen varied within each tank. The vortex ring mixed 
tank shows the greatest addition of dissolved oxygen. Bubbled air 
does not appear to be a significant contributor to the dissolved oxygen 
content in Tank 2 (air plus water curve). Addition of new water 
( water only curve) increases the oxygen content significantly over 
static conditions, where no water nor bubbled air was added. The 
dissolved oiygen concentrations are in ml/1.
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sediment and diffusion of oxygen into the water across the air-water 

interface. If the increase is real then there was only a minor change in DO 

due to these processes.

Addition of new water, which is relatively enriched in oxygen, and 

bubbled air increases the dissolved oxygen content of the tanks (Figure 7-2). 

It is interesting to note that bubbling air at the rate typically used in the 

toxicity experiments does not add a significant contribution to the dissolved 

oxygen in the tank. The rate of diffusion of air from the bubbles as they rise 

through the water column must not have been significant compared to the 

amount of oxygen brought to the tank by the new water. Where either 

water only or water and bubbled air was added to the tank (Tanks I and 3). 

1.6 ml/1 increase in DO was observed over the 6 hour period. This is a 400% 

increase over the static water condition in Tank 4. This increase must be 

due to the addition of new water to the tank.

Tank 2. where water was added as falling drops, was the most 

oxygenated after the experimental period (Figure 7-2). The oxygen in this 

tank increased rapidly during the first 1.5 hours of the experiment. A rate 

of oxygen addition of about 1.5 ml/1 per hour was observed. The rate of 

oxygenation decreased once the water reached 100% saturation (Figure 7-3). 

Over the 6 hour period 3.1 ml/1 of oxygen was added to this tank. This 

increase in oxygen is 775% greater than the static condition and 194% 

greater than the increases due to bubbling air and addition of make-up 

water at a single point. Only Tank 2 reached saturation in the lime period of 

the experiment (Figure 7-3). The rate of oxygen saturation increase in the 

two tanks receiving oxygenated make-up water was similar. The static tank 

showed only a minor increase in percent saturation (Figure 7-3).
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FIGURE 7-3. Oxygen percent saturation with time into the experiment is 
plotted for each tank. Only the vortex ring mixed tank shows 
supersaturation of dissolved oxygen. Addition of just water or water 
and air significantly increases the percent satuartion over the static 
conditon, but did not supersaturate the water during the time period 
of the experiment.
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Discussion

The purpose of this experiment was to evaluate the efficiency of drop- 

formed vortex rings in oxygenating a water column in an aquaculture 

application. The results of this initial experiment are quite encouraging. The 

vortex-ring-mixed tank rapidly (< 2hrs.) achieved 100% saturation, and 

mainatained a supersaturated state over the course of the experiment.

In this experiment the oxygen demand from the sediment was not 

great, as determined from the oxygen content of the static tank (Tank 4). 

However, vortex ring mixing seems to be more efficient in oxygenating the 

tanks than bubbling air. This is probably because the rings not only 

transport air bubbles downward, but also entrain oxygen saturated surface 

water within the inner core and carry this fluid to depth. This mechanism 

probably increases the circulation within the tank. A much greater volume 

of water is transported to depth than just the volume of new water. This 

may explain why the vortex ring mixed tank achieves saturated level quite 

rapidly compared to the other tanks where water was added as a single 

stream. Increasing the air bubbling rate to improve the dissolved oxygen 

content was not tested. However, this may cause stirring up of the fine

grained bottom sediments.

The conclusions reached in this preliminary experiment can be 

expanded to other applications. Water drops falling on a shallow water 

column can significantly increase the oxygen content of that water column. 

This has implications for aeration techniques in which water is pumped 

through a nozzie and sprayed into the air to increase oxygen content. If the 

spray is controlled to produce drops of relatively large size, the these drops 

may produce vortex rings, which can efficiently mix the water column. By 

generating vortex rings a much larger volume of surface water participates
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in the downward mixing. Oxygenation of the surface waters due to rain 

storms may occur by the same basic principals. Drop-formed vortex rings 

entrain oxygen saturated surface water, as well as air bubbles, and transport 

this fluid to depth.
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CHAPTER 8

RAINFALL AND ESTUARINE SEDIMENTATION 

A DISUSSION

Introduction

The effect of rain on intertidal estuarine sediment transport has been 

investigated through single- and multi-drop laboratory studies, controlled 

field experiments, and storm observations. The literature has been 

extensively reviewed to identify parallel research in other scientific 

disciplines, which can be used to understand how rain drops may be acting 

as a sediment transport mechanism. The results of these investigations lead 

to the conclusion that rainfall is an important component of storm related 

sedimentation processes on the estuarine intertidal.

In this concluding chapter, the results of the research are used in a 

discussion to speculate on the importance of rainfall in resuspending 

intertidal sediments. Areas of future research are deliniated to focus on 

questions not answered by this research. A summary of the findings of this 

thesis research follows this chapter.

Discussion

Erosion by Rain

The ability of rainfall to initiate sediment motion, which lies beneath a 

shallow column of water, can be summarized by using the conceptual 

framework of the "Universal Soil Loss" equation (Wischmeier and Smith,
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1960). Soil erosion (E) by direct impact of rainfall has been empirically 

defined as

E»RKLSCPc (8-1)

where R - erosion potential of rainfall in area 
fC - soil erodibility factor 
L - length of flow in the supply area 
S - land slope 
C - cropping factor 
Pc - type of concervation practice.

This equation is typically applied to regions by developing regression 

equations, which define the variability in the parameters, for specific 

watershed areas (Vanoni, 1977). The equation can be modified for our 

application by grouping parameters to make physical sense in the intertidal 

area, which is covered by a shallow column of water,

E-[(R)(LS)][(O.CPci] (8-21

where (R) - erosion potential of rainfall in the area
t'LS)- tidal flat slope, width and depth of overlying water, as 

a function of the tide 
(K) - erodibility of the intertidal sediment surface 

(CPc>  biological, chemical and physical modifications of the 
surface, which modulate erodibility.

The erosion potential of rainfall (R) is the same on the estuarine water 

surface as it is on the land surface. The ability of the rainfall energy to 

penetrate the shallow column of water over the intertidal is controlled by 

rainfall intensity and drop size (i.e. kinetic energy flux or power) as shown in 

Chapter 4 and by Green and Houk (1980). Studies of rainfall erosion by 

impacting rainfall directly on soil surfaces is also controlled by kinetic
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energy flux (Ekern 1950 and 1953; Wischmeier and Smith. 1960: and 

Bubenzer and Jones. 1971). or by momentum flux (Rose. 1960). The physical 

properties of the tidalflat surface (LS). such as dimensions, slope, and depth 

of overlying water during the rainfall event, have an effect in controlling the 

amount of rainfall energy which reaches the sediment surface. The 

properties of the sediment surface (K and CPc) affect how the sediment w ill

respond to the rainfall energy or momentum which does reach the sediment 

surface. Thus it is possible to use the general form of this equation to show 

how the various aspects of the research interrelate in the erosion process 

and to estimate the importance of rain resuspension of intertidal sediments 

for an estuary, such as the Great Bay.

Erosion Potential of Rainfall

The erosion potential of rainfall is related to drop size and rainfall 

intensity. In Chapter 2 we showed that the central jet characteristics 

changed systemmatically with drop impact energy. This energy is directly 

related to drop size because larger drops have greater mass and higher 

impact velocities than the smaller drops. The collapse of this central jet 

produces the vortex rings. Research by Maxworthy (1977) and others 

summarized in Chapter 1 show that the properties of vortex rings are 

proportional to the properties of the "impulse slug" used in ring generation. 

The splash central jet is the impulse slug analog in drop-formed vortex rings. 

In our vortex ring studies we saw a direct relationship between drop size 

and the ring properties. The larger drops produced rings with larger 

dimensions, and with greater translational velocities, than rings produced by 

smaller drops. These larger rings have substantially more momentum and 

penetrate deeper into the water column than the smaller rings.
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The ability of the larger drops to transfer more energy to greater 

depths is reduced by two factors. The first is bubble formation. If a drop 

strikes a water surface with too much impact energy, the splash crown is 

thrown high off the water surface and forms a bubble due to surface tension. 

By interfering with the formation of the central jet (and consequently the 

vortex ring) the bubble confines the rainfall energy to very near the water 

surface.

The second factor is that in natural rainfall events, a broad spectrum 

of drop sizes are created. The maximum observed drop size is about 0.6 cm 

in diameter (Laws, 1941). Drop size distribution varies with geographical 

area, storm type and rainfall intensity (Bubenzer. 1979). For example, in 

storms reported by Bubenzer (1979), which had intensities less than 2.5 

cm/hr. the percentage of total rainfall volume represented by drops larger 

than 0.4 cm ranged to 6.3%. It should be noted that there is relatively little 

information on drop size distributions, especially during short high intensity 

rainfalls (Quimpo and Brohi. 1984).

Rainfall intensity controls the impact frequency of the raindrops. The 

higher the intensity, the greater number of drop impacts occur per unit area. 

In addition, the drop size spectrum shifts towards the larger drops with 

higher intensities. Therefore, erosion potential is a function of not only the 

number of rainfall events in a geographical location, but also the maximum 

intensity of these events.

Erosion potential of rainfall on the shallow intertidal water column is 

controlled not only by the intensity and drop size distribution, but also the 

timing and the horizontal extent of the rainfall event. High intensity storms, 

such as thundershowers, occur over short time periods. To be effective these 

storms must occur as the leading (or trailing) edge of the tidal prism is
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crossing the mudflat. The spatial extent of the high intensity rainfall is also 

important because rain resuspension is only one component of storm- 

induced resuspension. For example, if the rainfall is confined to small 

isolated squal lines, then the total amount of rain-resuspended sediment in a 

broad estuary may be quite small compared to wind wave action.

Physical Properties of the Tidalfiat

The duration of rainfall induced erosion will be controlled bv the 

physical dimensions of the tidalfiat environment. Rain falling on a shallow 

water column may initiate sediment motion in depths as great as 40 cm 

(Anderson, personal communication). In Chapter 3 drop-formed vortex rings 

moved non-cohesive sediment in all depths tested, including 22.5 cm. In 

Chapter 4 multidrop experiments showed resuspension of estuarine mud in 

all depths tested, including 8 cm. The insitu experiments indicated that 

rainfall could cause observable resuspension in water depths less than 7 cm. 

Therefore, the tidalfiat slope and microtopography will control the area 

which can be affected by rain resuspension.

Figure 8-1 illustrates the complex nature of the muddy intertidal 

sediment surface (Jaramillo. personal communication). The microtopographic 

relief can be several centimeters from the bottom of pits produced by the 

hoseshoe crab to the interpit highs (Figure 8-2). The general slope of the 

tidal flat varies with tide range. In the Great Bay measured slope range 

from 0.2 to 1.0° (Anderson. 1980). A wedge of intertidal water 40 cm deep 

on the channel side, would be 10 to 115 m wide given the above range in 

slopes. Thus as the water floods and ebbs across the intertidal area, a
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FIGURE 8-1. Diagrammatic representation of the sediment surface showing 
the interrelationships between the organisms in the sediment and the 
microtopography of the sediment surface as interpreted by Jaramiilo 
(personal communication).
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FIGURE 8-2. Photograph showing the microtopography of the sediment 
surface. The complexity of this surface needs to be considered 
in interpreting erosion rate predictions for the muddy 
intertidal.
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relatively wide swath is exposed for rain induced resuspension. Seaward of 

this swath, the water is too deep for drop-formed vortex rings to impact the 

bottom. Landward of this zone rain is impacting the mudflat surface 

directly. Significant amounts of sediment can be eroded by the direct impact 

of rain and transported to the estuarine water’s edge by subsequent 

sheetflow. This is a very important component of storm-induced sediment 

erosion: but was not addressed by this study. The effects of direct rain 

impact on the mudflat surface is the topic of future research efforts.

The amount of time a unit area of mudflat surface is exposed to rain 

induced resuspension is a function of the tide range and the location. For a 

2-m tide, typical for the Great Bay Estuary, the geometric mean rate for 

water to fall 40 cm (during mid-tide to low tide) is one hour. Thus for any 

given square centimeter, the mudflat surface can be exposed to rain action 

for a one-hour period, while the water column decreases from 40 to 0 cm (on 

the ebb tide), or increases from 0 to 40 cm (on the flood tide).

Erodibility of the Sediment Surface

In Chapters 4 through 6 the resultant erosion by rainfall was 

hypothesized to vary depending upon the antecedent stress history and the 

nature of the sediment surface. A sediment surface subjected to high 

antecedent stress is resistent to additional erosion by rain-induced vortex 

rings. This can result in very little resuspension of fines into the water 

column. In contrast, if the sediment surface was dominated by depositional 

processes just prior to the rainfall event, relatively little shear stress is 

needed to resuspend the freshly deposited fine sediment. In this case rain- 

induced vortex rings could resuspend significant amounts of fine sediment.
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In either extreme, the vortex rings penetrate only the upper few grain 

layers (Chapter 6. and Green and Houk, 1980). The sediment surface at this 

scale is highly variable in texture and composition (Figure 8-3). The fines on 

the sediment surface are commonly bound into fecal pellets and pseudofeces 

(Figure 8-3). Sand and gravel-sized organic particles are present and may 

be covered with a dusting of fine clay and silt particles. Fines are also 

observed in the interparticle spaces. How these particles respond to 

turbulent busts, such as vortex ring impacts, is very difficult to measure or 

predict for quantification of the erodibility of the sediment surface.

The following hypothesis may conceptually describe the sediment 

surface’s response to impacting vortex rings. As a ring impacts the bottom, 

the translational momentum and the rotational shear velocities within the 

inner core eject some of the coarse fecal pellets and organic debris a short 

distance (<lcm) into the water column. These coarse particles rapidly settle 

to the bottom in close proximity to the ring impact area, but downstream in 

the direction of any advective flow. Other coarse particles, too heavy to be 

lifted off the bottom are rolled radially away from from the impact area. In 

the course of this movement, clay and silt-sized particles are shaken from 

the coarse material and resuspended by the turbulent action of the 

impacting rings. Because of the slow settling velocities of the particles, the 

fines remain in suspension and may also be mixed upward by the turbulent 

velocity gradient in the water column. The amount of fines readily 

available for resuspension will control the amount of material resuspended 

by the vortex rings. Subsequent rings may move the coarser particles as 

bedload but not resuspend any fines, because the dusting had been removed
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FIGURE 8-3. Photograph showing the sediment surface under the
microscope. The predominance of fecal pellets and pseudofeces is 
quite evident at this scale. The M. balthica pellets in the picture are 
about 0.05 cm in length.
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at the onset of ring impacts. The coarse particles cleaned of fines will 

essentially armour the bottom precluding additional resuspension.

Modification of Surface Erodibility

Numerous factors can control the erodibility of the sediment surface. 

These factors are summarized in Chapter 1. but were not part of this study.

One of the more important factors, wave action, was investigated in the 

insitu experiment (Chapter 4). Waves due to wind or boats can cause 

substantial sediment resuspension. Suspended load due to wave action was 

observed to increase as the water depth decreased to a depth of about 7 cm. 

then concentrations decreased. The decrease in concentration may be due to 

the decrease of wave energy available for resuspension. Most of the wave 

energy may have been frictionally dissipated as the water moved acoss the 

shallow tidal flat (causing sediment resuspension) in the deeper water.

When the water column was shallower than 7 cm, this filtering allows only 

the smallest waves to resuspend sediment.

Rain effects were just the opposite; rain resuspension increased as the 

water depth decreased below 7 cm. Thus rain may be a mechanism, which 

indirectly enhances wind wave erosion. Rain mixing may cause sediment, 

which had been resuspended by the wind waves and would normally settle 

out of the water column, to remain suspended in the water column for a 

longer period of time. In addition, rain-induced vortex rings may be 

resuspending bottom sediment, which had just settled to the bottom (Figure 

8-4).

This process can be summarized as follows. Sediment is initially 

resuspended by wave action, a portion settles out in the shallow tidal wedge, 

rain action resuspends this recently deposited material, and maintains that
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FIGURE 8-4. Cartoon on how waves and rain interact in the shallow
intertidal wedge. The waves exert significant shear stress mobilizing 
the bottom sediment surface. Much of this material rapidly settles out 
and provides surfaces upon which the fines subsequently settle. Rain- 
induced vortex rings impact this recently deposited material, 
resuspending the fines and causing the coarse particles to be moved 
about.
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material already resuspened by the waves. The two processes, by acting in 

complimentary manner, perhaps extend the residence time of the 

resuspended load in the intertidal water column. If this occurs on the ebb 

tide then the sediment will be transported off the mudflat and into the 

channel. If it occurs on the flood tide, then the material will be moved 

higher onto the tidal flat for deposition, assuming lateral advection doesn't 

carry the material into the channel. There may be differences in the nature 

of the sediment surface between the flood and the eeb tide. As water floods 

the tidal flat, the surface has been exposed to subaerial processes, such as 

desiccation. In addition, rain effects may be felt through the shallow wedge 

of overlying water, before relatively large wind waves can act on the 

sediment surface. In contrast, on the ebb tide these larger waves will be 

acting on the surface before the rain action.

The ability of rain to compliment wind wave action in the shallow 

tidal prism may explain why storm events combining wind and rain seem to 

put more material into the estuarine channels, than that observed during 

wind events.

Importance of Rainfall
Rust (1980) calculated sediment concentrations within the estuary 

based upon erosion rates of the intertidal area and concluded that all of the 

sediment in suspension in the estuary could be due to tidalflat erosion. The 

importance of rainfall as a tidalflat sediment resuspension mechanism can be 

estimated by a simple model. This model represents the concentrations of 

suspended sediment in the low tide volume of the Great Bay portion of the 

estuary (Figure 8-5). Three cases are considered. Case 1 is where all the 

rain resuspended sediment is completely mixed with the low tide volume of
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FIGURE 8-5. Diagram illustrating the three cases in the simple model which 
describes the distribution of the rain-induced suspended sediment 
concentration in the Great Bay estuary at low tide.
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the Great Bay. This case is the most conservative and probably the least 

realistic: however, the calculated concentration can be compared with 

observations by Loder etalX 1983).

In this case the area of Great Bay is 12.08 km2 and 52.3% of the area 

is intertidal mudflat. If we have a rainstorm, which erodes 2.8 gm/m2/hr 

(Chapter 4) by rain-induced resuspension, then 17.7 xlO6 gm would be 

washed into the low tide volume of the Bay. This assumes that the rain acts 

uniformly over the entire tidalflat area, that the bottom sediments are 

exposed to a water column falling from 40 to 0 cm in one hour, and that 

there is complete mixing in the low tide volume. The average concentration 

due to rainfall resuspension would be 1.2 mg/1 where the low tide volume is 

14.6 x 106 m3. Typical low tide concentrations in the Great Bay channel, as 

measured by Loder e ta l (1983) over a three year period from 1976 to 

1978 range to 70.2 mg/1 and average 12.2 mg/1 with a standard deviation of 

14.0 mg/1. Consequently rain-induced underwater erosion can account for 1 

to 10% of the total suspended load in the Great Bay at low tide just after a 

rainstorm with characteristics similar to those used in the multidrop 

experiments.

However, this case does not realistically model what is observed as 

intertidal water ebbs off the tidalflats. Typically the distribution of 

suspended sediment concentrations observed at the channel edge of the 

intertidal water has relatively high concentrations near surface (<0.5 m). 

which slowly mixes in the vertical and in the horizontal with the channel 

water. These turbid "plumes" are commonly seen close to the channel edge 

and in the surface layer. This is probably because the intertidal water is less 

saline and warmer (in the summer) than the channel water. Case 2 of the 

simple model can be considered where the rain-induced suspended sediment
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is dispersed in only the upper 1 m of the low tide volume in the channel.

This assumes that there is complete horizontal mixing across the channel. In 

this case the concentration due to rain would be 3.1 mg/1. Case 3 would be 

where the intertidal water plume is confined to the edge of the channel with 

minimal horizontal and vertical mixing. In this case the plume is confined to 

the upper 1 m and to 5% of the low tide surface area. Concentrations due to 

the rainstorm in this case would be 61.5 mg/l.

The concentrations calculated for Cases 2 and 3 are relatively high for 

concentrations in the channel, even at low tide. However, the plumes of 

turbid water are commonly seen in the estuary during storm events. There 

is no question that wind wave action is the most important erosive factor in 

intertidal sedimentation. However, this study has shown that rain-induced 

underwater resuspension of sediment is a significant component in storm- 

related erosion of intertidal sediments that acts in a complimentary manner 

with wind wave action.

Areas for Future Research

This research has identified several areas for future examination. The 

more important areas are as follows:

1. How rain influences the settling rates of particles in the water 

column needs to be investigated to improve our sedimentological knowledge 

of rainstorm effects.

2. The ability of rain-induced vortex rings to entrain the surface 

microlayer and transport this fluid to depth needs to be studied. In 

experiments presented in Chapters 2 and 7 we observed drop fluid and 

oxygen bubbles entrained in the inner core of the ring. Whether or not the 

microlayer fluid is also incorporated was not possible to determine. This
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may be an important pathway for organic pollutents to be removed from the 

microlayer and linked to settling particles.

5. How rain induced vortex rings act as a vehicle to transport 

nutrients and oxygen away from the surface layer to depth where they can 

be utilized by planktonic organisms in an environment much less harsh than 

the microlayer. These two areas would be important to the chemical 

oceanographers and microbiologists.

4. The ability of vortex rings to act as efficient mixers was 

investigated in a preliminary fashion. Further work in using this knowledge 

in spraying applications may identify areas to improve operation efficiencies.

5. More work needs to be done on quantifying the effects of rain as a 

sediment resuspending mechanism in the natural environment. This study 

has identified the processes, and developed spatial and energy limits, which 

will allow subsequent studies to focus on rain effects in storms.

6. This study focused on the effects of rain on a shallow intertidal 

water column. It was observed that substantial erosion can occur if the 

tidalflat is exposed to direct rain impact. Research has been intiated 

(Anderson, personal communication) and should be expanded to quantify 

this compontent of storm activity in the estuary.
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SUMMARY AND CONCLUSIONS

1. The existing literature has shown that rain drops can form vortex 

rings, which are not only a mechanism for downward mixing of surface 

water, but also a potential mechanism for resuspending bottom sediment.

2. The areas in the estuary where rainfall will be an important 

mechanism is the shallow wedge of water (depths <7 cm), which ebbs and 

floods across the intertidal sediment. In this zone, wind waves are 

moderated by the shallow water depths.

3. Vortex ring formation is controlled by both the impact energy and 

drop-shape oscillation. Below a specific impact energy per unit threshold, all 

drops form a central jet. which is a prerequisite to form vortex rings.

Because of the drop shape oscillation, not all drops in this energy range will 

form energetic vortex rings.

4. The dimensions of the central jet are primarily related to impact 

energy. Jet cross-sectional area and average jet diameter increase with 

increased impact energy per unit area. Temperature has more effect on the 

jets produced by the smaller drops than on the jets produced by the larger 

drops.

5. The size of the vortex rings ranged from 0.9 to 1.36 cm in 

horizontal length of the dyed inner core. The larger rings were produced by 

the larger drops. Translational velocities of the rings ranged to 98 cm/sec 

for the larger rings and 11 cm/sec for the smaller rings.

6. Penetration of the vortex rings was affected by the size of the ring 

and the receiving water temperature. The probability of ring penetration
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was inversely proportional to water depth. Viscous effects were observed in 

the penetration of smaller rings.

7. Salinity was observed to affect ring penetration, only when a 

surface layer of low salinity water thicker than 2 cm was present. If the 

receiving water was well-mixed, then vortex rings appeared to move as 

easily through salt water as fresh water.

8. The vertical distribution of available momentum (due to inner core 

mass and translational velocity) decreases rapidly with depth with an 

inflection point at 9 cm of water depth for the larger rings and 6 cm for the 

smaller rings.

9. Vortex rings intiated motion of non-cohesive sediments in all water 

depths tested to 22.5 cm (limit due to tank depth). An inflection point in the 

relationship was observed between the 7.5 and 10 cm depths.

10. Multidrop experiments showed that muddy estuarine sediments 

could be resuspended by artificial rainfall in water depths up to 8 cm. The 

amount of material resuspended was related to the energy flux due to rain 

at the water surface. The strength of this relationship decreased with 

increasing water depth to the sediment surface. A transition zone was 

observed from 6 to 7.5 cm. Excess mass ranged to 14.2 gm/m2/hr and 

averaged 2.8 gm/m2/hr.

11. Similar multidrop experiments conducted on the mudflat showed 

that rain effects could be observed when the ebb water reached depths of 7 

cm. The magnitude of rain resuspension was comparible to resuspension by 

wind waves, boat wakes and epibenthic faunal disturbances.

12. Storm observations illustrate the problem of isolating rain effects 

from wind wave effects. In general, the water depths in which rain was
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observed to be increasingly important are the same water depths in which 

wind wave effects were modulated by the shallow water column.

13. Vortex ring impacts can cause bedload transport if there is a slow 

current over the sediment surface. The coarser particles, such as fecal 

pellets and organic debris, were moved by the ring impacts. The erosion 

rate averaged 5.8 gm/m2/hr.

14. The sedimentological properties of the fecal pellets, the dominant 

coarse particle on the sediment surface, required a critical shear stress of 

1.14 dnes/cm2. The shear stress of 11 dynes/cm2, calculated for impacting 

vortex rings is sufficient to move the pellets.

15. Textural characteristics of the estuarine sediment did not 

significantly change due to rain resuspension. This is because the existing 

sampling technology is not refined to isolate the upper few grain layers 

which are affected by impacting vortex rings.

16. Vortex rings are also efficient water column mixers. Results of an 

intercomparison in aquaculture tanks used for toxicity testing suggest that 

vortex rings are more efficient than air bubbling to oxygenate the aquaria.

17. Rain may contribute 1 to 10% of the observed suspended load in 

the low tide volume of Great Bay after a rainstorm.
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APPENDIX 1A.

Calculation of Wave Reynolds number at the bottom of the water column

(Madsen and Grant. 1975).

Rev = um(um/w) C A1 -1)
■v''

where um = maximum horizontal velocity associated with wave 
induced to- and fro- motion at the bottom.

* Tfd0/Tw -ttH/fr,, sinh(2rz/Lj (A 1 -2) 
um/w=» am * 0.5do - displacement amplitude of the near

bottom water particle motion relative to the bed. 
d0 * H/[sinh( 2trz/L)] (Xomar and Miller. 1973) (A1 -3)
L = wave length.

- TwSgz for shallow (A1 -4a)
• (gTw2/2tr itanhli 2^i2z/gTj] for transitional < A1 -4b >
- gTw2/2trfor deep water. (A 1 -4c)

H - wave height
z - water depth 

Tw - wave period

Procedure was to calculate for each depth (2.5 to 40 cm > the wave height 
and period:

1. Compute L (using 4a, 4b or 4c i.
2. Compute d0
3. Compute wave Reynolds number.
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APPENDIX IB

Calculation of Energy Dissipation Rates

Wave energy dissipation

Pd ub coswt i A1-5i

where ub =[trH/T]/sinh(2ffz/Lil 
9V-0. 5̂> fw ub2|coswt Icoswt

Example I:
Re - 20000 
I *  -  0.01 

H * 20 cm 
T„- 1.5 sec 
L * 215.7 cm 
z - 40 cm

Example 2:
Re - 200 
f„-0 .1  
H -1 cm 
Tw« 0.5 sec 
L - 14.9 cm 
z - 2.5 cm

Rainstorm energy dissipation <Hudson. 19811:

E i- 30 -(125/1).or (A 1-6)
E„T- 11.9 *8.71081 *Al-7»

Example:
1 - 4.3 cm/hr storm (once in 10 years)
E,j- 27 joules/m2/hr
Ed*-26 joules/m2/hr = 7.2 ergs/cm2/sec.

Pd - 2030.9 ergs/cm2/sec.

Pd - 6.19 ergs/cm2/sec.
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APPENDIX 2

Summary of Analytical Data for the Single Drop Studies

2k. Test Conditions for Drop-Size Variability Experiment 

2B. Analytical Procedure to Determine Sample Size 

2C. Summary of Database for Each Single-Drop Experiment 

2D. Measurement Procedure for Central Jet Dimensions

The original data for the results in Chapter 2 are 
available in the following data reports archived 

at the Jackson Estuarine Laboratory

DR84-1. Effect of Drop Height (1 to 184 cm) on production 
of vortex rings.

DR85-1. Relationship between the splash central jet and 
resultant vortex rings.
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APPENDIX 2A. Summary of analytical results for drop-size variability 
experiment.

TABLE 2A-1. Summary of test conditions for drop-size variability 

experiment.

Test No.
Sets

Drops 
per Set

Temp.
1C)

Dye
(ppm)

Mean 
Diameter (cm)

Standard
Deviation

1 12 10 20-25 — 0.472 0.012
2 12 25 20-25 — 0.471 0.007
•>0 12 25 20-25 — 0.472 0.006
4 11 25 48-50 2426 0.450 0.011
5 12 25 11-12 2426 0.479 0005
6 12 25 24-25 608 0.451 0.006
7 12 25 20-25 1823 0.462 0.003
8 12 25 9-10 1823 0.465 0.006
9 10 25 41-42 1823 0.462 0.010

10 12 25 20-25 1215 0.449 0.007
11 12 25 20-25 292 0.474 0.005
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TABLE 2A-2. Matrix relating drop variability tests with groups which 
show no significant variation in drop size at the 95* Cl.

DYE TEMPERATURE 
Low Moderate High

No specs. III 1
III 2
III 3

292ppm 111 11
608 1 6

1215 1 10
1823 II 8 11 7 It 9
2426 III 5 I 4

Note: I, II, III are the groups which have significantly different drop sizes 
at the 95" Cl. One to 11 are the indivual tests.
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TABLE 2A-3. Summary of drop-size measurements for each tip used 
in the single drop experiments.

Experiment Tip
No.

Mean
(cm)

Standard
Deviation

Number of 
Observations

1.2 15 0.464 0.0100 . 129
20V 0.242 0.0032 4
1IV 0.304 0.0005 4
10V 0.330 0.0013 4
10 0.399 0.0043 10
11 0.367 0.0100 4
15 0.469 0.0014 8
16 0.545 0.0029 4

4 11 0.351 0.0021 2
16 0.524 0.0044 4

5 16 0.535 0.0006 3
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APPENDIX 2B. S am p le  Size A n a ly sis .

The sample size needed to reach a desired level of precision requires a 
previous knowledge of the population percentage, which one would expect to 
observe. Knowing this percentage, setting an acceptable level of significance, 
and defining a range within which the data should fall, one can better 
estimate the requisite number of observations (Richmond, 1964). A pilot 
study was conducted using six sample sizes for seven drop heights, because 
we lacked prior knowlegde on the expected percentage of vortex rings 
produced. This study provided a set of observed frequencies which could be 
tested against theoretical distribution models, using a single classification 
technique for Chi Square  ̂ t

-y* _ Y   ̂~Fi  ̂ 1

where k - number of catagories 
fj = observed ilh frequency 
Fj - theoretical frequency.

Two theoretical models were tested on the data set. The first 
hypothesis was the chance of observing a vortex ring was 50% at the 95% Cl. 
This hypothesis was rejected for the data set as a whole (Table 2B-1: Model 
I). When the data were subdivided by sample size the hypothesis was also 
rejected. However, when the data were subdivided by height, the 
hypothesis was accepted at 43 and 160 cm fall heights. The second model 
divided the data set into three groups based upon the frequency of vortex 
ring formation. Group A hypothesis was that one drop out of three will form 
a vortex ring. Group B hypothesis was that one drop out of two will form a 
ring. Group C hypothesis was that three drops out of four will form a ring. 
Each hypothesis was tested against drop height. The Group A hypothesis 
was accepted (95% Cl) at drop heights of 5 and 17 cm, Group B at 43 and 160 
cm, and Group C at 80,92 and 125 cm. When the data set was subdivided 
by sample set size, the hypotheses were rejected at only the 200 drop set 
(Table 2B-1).

The second model provides a basis for estimating the expected 
percentages of vortex rings produced by drop impact. The sample size 
computational technique by Richmond (1964) can be used to determine the 
range of observations about the expected mean percentage (P), since the 
sample sizes were predetermined:

2 « S P lA 2‘ 2j
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TABLE 2B-1 Hypothesis testing for Chi Square analysis on sample size 
data sets.

No.
Drops

Df Chi
Square

Hypothesis

MODEL 1

Total 41 304.2 156.93)’ Reject.
25 6 25.58 (12.59)** Reject
50 6 39.44 Reject
75 6 4374 Reject
100 6 45.70 Reject
150 6 73.84 Reject
200 6 83.88 Reject

MODEL 2

Total 41 51.85 Accept
25 6 8.45 Accept
50 6 10.08 Accept
75 6 7.09 Accept

100 6 7.13 Accept
150 6 4.98 Accept
200 6 14.02 Reject
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where z<* = standard normal deviation at a significant level 
(at 95s Cl, z is 

sp - the standard error of a sample percentage or

where n - sample size.

The predicted range of observations was computed for each sample 
size (n= 25,50,75,100,150 and 200 drops) and for each group which would 
have it's characteristic population mean (Group A = 33*; Group B - 50%: and 
Group C = 75*). The analytical results suggest that a sample size of 25 
drops can distinguish Group A population from Group C population (Table 
2B-21. A sample size of 150 drops or more was needed to differentiate the 
three groups at the 95% Cl. Based upon this analysis and the experimental 
limitation that about 50 drops obscurred the visibility of the dyed ring in the 
receiving water, a sample size of 25 drops was used for subsequent 
experiments.

TABLE 2B-2. Summary of expected ranges for each Group by sample 
size at the 95% Cl.

GROUP
25 50

SAMPLE SIZE
75 100 150 200

Min 14.9 20.3 ■>1 7 24.1 25.8 26.8
A Mean 33.3 33.3 33.3 33.3 33.3 33.3

Max 51.7 46.3 43.9 42.5 40.8 39 8

Min 30.4 36.1 38.7 40.2 42.0 43.1
B Mean 50.0 50.0 50.0 50.0 50 0 50 0

Max 69.6 63.9 61.3 59.8 58.0 56.9

Min 58.0 63.0 652 66.5 68.1 69.0
C Mean 75.0 75.0 75.0 75.0 75.0 75.0

Max 92.0 87.0 84.8 83.5 81.9 81.0
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APPENDIX 2C. S u m m a ry  of d a ta  b a s e  fo r e a c h  e x p e r im e n t.

EXPER.
Drop No. 
Size Drop 

Hgts.

Water
Depths

RUNS
Substr.

Tex.
Rec.
Water
Temp.

No.
Runs

SETS 
Drops No. 

per Set Sets
Total
Drops

la r  I I 0 0 12 25 4* 300
lb I 7 1 0 I t * I
2 1 184 1 0 1 184 25 2 9200
3 2 12 1 0 1 24 100 1 2400
4 2 4 1 0 •»

J 24 50 1 1200
5 1 1 9 5 1 45 100 •>0 12900

* Number of runs or sets.
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APPENDIX 2D. M e a s u re m e n t p ro c e d u re  fo r  c e n tr a l  je t  d im e n s io n s .

Detailed measurements of jet height, cross-sectional area and impulse 
time were made from the video recording as follows:

1. Identify splash as jet type (jet. jet/bubble. or bubblei.
2. Run video frame-by-frame to maximize jet height above the water 

surface.
3. Align baseline of tracing overlay on monitor screen along water 

surface, accounting for meniscus.
4. Trace central jet and jet drops, if present.
5. Record the 1 -cm length from scale in video field of view ( located at 

same focal length as jet.
6. Check next frame to assure that the recorded jet was at maximum 

extent.
7. Measure the 1-cm length scale on tracing to nearest fraction of 

inch, and use as the scaling factor.
8. Measure the height of the jet above the baseline and convert using 

the scaling factor.
9. Planimeter the cross-sectional area of the jet using a compensated 

polar planimeter (K&E 62-0005). Average triplicate area 
measurements and convert using the scaling factor.

The following calculations were made using the reduced data from the 
video tape:

1. Jet diameter was determined by dividing the cross sectional area 
by the jet height. The irregular shape of the jet precluded direct 
measurement of diameter.

2. Drop impact energy was calculated using the measured drop 
diameter, drop height, and the predicted impact velocity using the 
results of Laws (1941). Kinetic energy (E}) at impact is then

Ei -11^/12)0^2 iA2-4i

where LIj - velocity of drop at impact.
D - drop diameter 
p ■= drop density.

3. Impact energy per unit spherical area was calculated by dividing 
the energy by the cross-sectional area of the drop.
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APPENDIX 3

3A. Summary of vortex ring observations in which 
sediment moved when rings touched bottom.

3B. Shear stress calculation for critical shear of very 
coarse quartz grains.
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APPENDIX 3A. Summary of observations in which sediment moved when 
vortex rings touched the bottom. For each depth and sediment size 
combination there were triplicate runs of 100 drops each.

DEPTH
(cm)

SEDIMENT 
SIZE (0) 1

RUN
2 3

MEAN STD. DEV.

2.5 -0.75 89* 94 97
0.25 100 99 99
1.25 — — —

2.25 96 85 84
3.25 95 96 95 94.0 5.3

5.0 -0.75 72 67 65
0.25 96 86 89
1.25 93 74 84
2.25 81 75 73
3.25 86 45 78 77.6 12.8

7.5 -0.75 20 22 18
0.25 67 43 57
1.25 72 30 42
2.25 62 53 46
3.25 57 44 61 46.3 17.3

10.0 -0.75 33 19 20
0.25 41 9 30
1.25 42 18 21
2.25 40 37 26
3.25 46 29 25 29.1 10.7

12.5 -0.75 15 7 10
0.25 27 21 27
1.25 34 17 16
2.25 25 22 21
3 2 5 33 23 20 21.2 7.6

150 -0.75 12 11 16
0.25 27 21 27
1.25 24 27 23
2.25 20 22 14
3.25 15 27 18 20.3 5.7

17.5 -0.75 12 7 6
0.25 7 16 17
1.25 23 24 12
2.25 11 13 15
3.25 25 22 16 151 6.3

20.0 -0.75 4 3 6
0.25 9 8 9
1.25 16 7 5
2.25 12 14 16
3.25 21 21 12 10.9 5.8

22.5 -0.75 — — —
0.25 3 2 7
1.25 25 12 8
2.25 10 21 17
3.25 15 21 17 11.1 7.1

* Number of vortex rings which moved sediment out of 100 drops.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



188

APPENDIX 3B. Shear stress calculation 
(Madsen and Grant, 1976)

S’ - U1s/4vV i,s-l >gds'
-%/ts-1 Jpgds

Procedure is to calculate S* go into Modified Shields Diagram (Madson and 
Grant. 19761 to determine i|>, then compute

Example:
ds -sediment diameter-0.168 cm
V = kinematic viscosity = 0.01 cm2/sec 
s - specific gravity of sediment - 2.65 
p  - density of water - 1.0 gm/cm* 
g - acceleration due to gravity - 980.66 cm/sec2

S* - 69.2
at 69.2 thenip=0.04 
% -  10.87 dynes/cm2
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APPENDIX 4

The original data for the results in Chapter 4 are 
available in the following data reports archived 

at the Jackson Estuarine Laboratory

DR85-13. Multidrop Experiment: Rain induced resuspension of 
tidalflat sediment.

DR85-14. Flume Experiment: Rain induced bedload from tidalflat 
sediments.

DR85-1!). Insitu Multidrop Experiment.

DR85-16. Natural Storm Event Sampling.
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APPENDIX 5

5A. Sedimentological Characteristics of Fecal Pellets from 
M . baJthica and H. filifo rm is

SB. Critical Shear Stress Calculation for H. filifo rm is  pellets
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APPENDIX SA

SEDIMENTOLOGICAL CHARACTERISTICS OP FECAL 
PELLETS FROM M  BALTHICA  and H. F IL IFO R M IS

Introduction

The muddy intertidal surface is commonly dominated by biogenic 
reworking (Anderson and Mayer, 1984; Black, 1980; and Rhoads, 1966; 
1974). Organisms may influence, not only the microtopography, but also 
the sedimentological characteristics of the surface material (Anderson e ta l  
1981; and McCall, 1979). A predominant textural component on the 
intertidal surface is the fecel pellet produced by benthic organisms 
(Anderson, 1980; and Anderson and Mayer. 1984). Organisms repackage 
clay and silt sized particles into sand-sized pellets (Pryor, 1975; Risk and 
Moffat, 1977; and Tevesz e l a l, 1980). One would suspect that these pellets 
are more easily eroded than the original cohesive mud; however, mucus 
binding may inhibit erosion (Rhoads and Boyer, 1982; Frankel and Meade, 
1973). Once suspended however, the pellets will settle faster than the 
component particles (Hawley, 1982). Thus the pellatization of the muddy 
intertidal sediment modifies the erosion/deposition characteristics of this 
sediment (McCall and Tevesz, 1982; Nowell el a l 1981; Rhoads and Boyer,
1982; Tagon e t a l, 1984; Wanless e t a l, 1981).

The purpose of the study was to investigate the sedimentological 
properties of fecal pellets to better understand how the pellet responds to 
shear stress applied by tidal currents, waves, and rainfall. The approach 
was to isolate the fecal pellets from the indiginous sediment; analyze in bulk 
for pellet density, texture and combustibles; and measure individual pellet 
dimensions and settling velocity. These data provided the comparison 
between the observed settling velocity and predictive equations presented 
in the literature. In addition, it was possible to estimate the effects of pellet 
density variability and pellet shape on the hydrodynamic behavior of the 
fecal pellets.

The fecal pellets of Macoma balthica (Linnaeus, 1758; Bivalvia, 
Tellinidae). and Helrom astus filifo rm is  (Claparede. 1864. Polychaeta. 
Capitellidae) were selected because of their predominance on the sediment
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surface, difference in formation, and resistence to destruction (Black and 
Anderson, 1978). M. balthica feeds on surface organic-rich material through 
an incurrent siphon. Ingested material is compacted in the gut into 
cylindrical pellets and voided through the excurrent siphon onto the 
sediment surface. H filiform is are deep deposit feeders and eject spheroidal 
shaped fecal pellets onto the sediment surface. The mean breakdown time 
of M. balithica fecal pellets is 10 to 17 days (Black. I98(J(. thus they are able 
to survive several tidal cycle events. Although there is no data on the 
breakdown of H fiiiform is pellets, it is believed they are at least as rugged 
as the M. balthica pellets.

Theory

The settling velocities of fecal pellets have been measured or 
estimated by several researchers (Chase, 1979; Fowler and Small, 1972: 
Honjo, 1978; Honjo and Romain. 1978: komar eta l. 1981: and k'omar and 
Taghon. 1985: McCall. 1979: Robinson and Bailey. 1981: Small etal. 1979: 
Smayda,1969; Taghon etaJ, 1984; and Wanless etaJ' 1981). Pellet size 
ranges from relatively small pelagic pellets which settle according to Stokes 
law, to large benthic pellets which settle according to the impact law. komar 
et a/(1981) and komar and Taghon (1985) have presented equations 
which relate the nominal diameter, shape and density of the pellets to their 
settling velocity. These studies cover the Stokes range and the coarser 
portion of the impact range. However, there is an intermediate range 
between these two extreme cases which has not been investigated to date 
(komar and Taghorn, 1985). The fecal pellets investigated in this study fall 
into this intermediate size range.

It is instructive to review settling theory briefly to put this study into 
perspective. Settling of spherical particles attain a terminal velocity when 
the hydrodynamic or resistive forces of the fluid are balanced by 
gravitational forces of the sphere (Graf, 1971) or

.(A M )

where Cd = drag coeficient
D - diameter of the sphere 
f> - fluid density 

- denisty of sphere 
W * velocity of sphere 
v - velocity of fluid
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g = gravitational constant = 980.66 cm/sec

Rearranging and assuming V = 0, the settling velocity of a spherical 
particle is

The settling of very small particles is dominated by the viscous effects 
of the surrounding fluid. The inertial effects of the particle are negligible: 
therefore Stokes-type settling occurs and the drag on the particle is reduced 
to an inverse function of the Reynolds number. The Reynolds number, the 
ratio of inertial to viscous forces, is defined as

/oDv
t e -  r —  'A5-3<

whereabsolute  viscosity.
When Re W).l). the Stokes range, the drag coefficient is as follows

C i ^  (A5-4)

Combining Equations A5-2, -3, and -4 gives the familiar Stokes 
settling velocity !WS) equation or

^5=  * A5-51

When the Re > 2. the impact range, the drag coeficient varies in a 
complex fashion relative to the Reynolds number. Several empirical 
equations have been developed to relate Re to Q for spheres (Graf, 1971)
For example

C j ’ l i l O  + O-iS-lfc.*'*®*) (A3-61

by Schiller and Naumann 11933).

The effects of shape on a particle settling m the impact law range have 
been studied empirically (McNown et al, 1951). Their studies extended the 
work of Corev beyond the Stokes settling range by using a corection factor. 
This factor was the ratio between the drag coefficient of an equivalent 
sphere, calculated with Eq. A5-4. In general, shape tends to decrease the 
settling velocity relative to the settling of a sphere by increasing the drag. 
Similiar results have been reported for non-spherical fecal pellets (Komar 
and Taghon, 1985).
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Methodology

Sampling Technique

Fecal pellets were collected by two methods H liiifo raus  pellets, the 
most abundant of the two pellets, were obtained directly from the intertidal 
area. Sampling was conducted toward the end of the tidal flat exposure 
period to allow build-up of the distinctive H. filifo rm is  fecal pellet mounds. 
Pellets were collected with a spatula from these mounds to minimize 
contamination by the indigenous sediment. Collection from about twenty 
mounds was required for each of the six samples analyzed. The fecal pellets 
were split and a subsample was placed in distilled water to remove sea salts. 
Removal of sea salts was necessary to obtain an accurate measurment ol 
bulk density. A separate subsample was retained in seawater for the 
seawater settling measurements. Separation of fecal pellets from broken 
and non-pellet debris was repeated by gently mixing and decanting.

The M. balthica pellets were collected in a different manner, because 
these pellets are typically intermixed with H. l'ilil'o rm is  pellets in the field. 
About 50 bivalues were harvested from the intertidal, cleaned and brought 
into the laboratory. These bjvalues were placed m clean seawater and 
allowed to egest their fecal pellets. The pellets were then transferred to 
distilled water (except those used for seawater settling) and cleaned in a 
manner si miliar to the H. filifo rm is  pellets. Enough pellets for three 50-100 
mg samples were collected.

Individual Pellet Measurements

Individual pellets were anavzed tor settling velocity i 120 pellets) m 
both distilled and sea water, and for dimensions (270 pellets). The general 
procedure was to measure the length and diameter of each pellet under the 
microscope at 25X using a calibrated occular, pick-up pellet with an 
eyedropper, and place into the settling tube. The H. filifo rm is  fecal pellet is 
ellipsoid in shape. It was assumed that the pellet was circular in cross- 
section. The length was always longer than the width or diameter, thus the 
pellets are prolate spheriods. The M. balthica pellet is cylindrical in shape 
Care was taken to reorient the pellet so that both the diameter and length 
could be measured.
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Pellet settling velocity was measured in an Emery Tube (Emery. 1938) 
with a 2.54 cm diameter. The time for individual pellets to fall 100 cm was 
recorded. The pellet was allowed to fall about 40 cm before start of timing 
to assure terminal velocity and stable orientation. Pellets were tested in 
both distilled water and salt water (ca. 26 °/00). The temperature at the top 
and bottom of the 100 cm settling distance was measured using a laboratory 
grade thermometer (+/- 0.2° C). The salinity was measured with an 
American Optics refractometer (+/- 0.5 V*,).

Bulk Pellet Measurements

Subsamples were analyzed for bulk properties of density, water 
content, textural composition and combustibles. interpelJet water was 
removed by vaccum at 0.18 cm of Hg on Millipore HA type fillers. The 
pellets were carefully removed in bulk from the filter with a razor blade, 
and immediately weighed to V. 0.1 mg for net weight on a Cahn TA 450 
balance. The pellets were then transferred to a 25 ml pycnometer bottle.
The bulk density (ps) of the pellets were measured directly by weight 
difference using

o .  ___  = P i (A5-7)
a-b«< e

where s - specif ic gravity
X - wet weight of pellets 

p -  Density of distilled water (D.W.)
A- Pycnometer weight with D.W. only 
B= Pycnomter weight with both D.W. and pellets

The contents of the pycnometer bottle were then sonicated and wet 
sieved to separate the sand and mud fractions {M. balthica. The H. JM'ormis 
samples were separated into silt and clay. Each fraction was dried, weighed, 
combusted at 500° 0 for two hours and reweighed. The wet and pre-ignition 
dry weights were used to determine the water content of the pellets.

Results

The observed settling velocity of the fecal pellets ranged from 1.8 to 
3.0 cm/sec 1 Figure A5-1 •• The pellet Reynolds numbers suggest that settling
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is according to Newton's impact law (Eq. A5-2). The wide scatter, when 
settling velocity is compared to the nominal diameter, suggests that 
variability in pellet shape or density, affecting the drag coefficient, may be 
important.

Pellet density, based upon bulk samples, was 1.64 g/cc )n»3; standard 
deviation of 0.2 g/cc) for M  baJthica pellets, and 1.47 g/cc in=6: standard 
deviation of 0.02 g/cc) for H. filifo rm is  pellets (Table A5-1). The H. 
filifo rm is  pellet densities are. perhaps, more relaible because of the larger 
sample sizes, which tended to reduce analytical error. However, the bulk 
densities of Af balthica are consistent with those observed (1.68 g/cc) by 
Risk and Moffat (1977). For comparison, the bulk density of fecal pellets 
described in the literature are presented in Table A5-2.

The pellet dimensions vary between H. Jihform/s which are spheroid 
in shape, and M  baJthica which are cylindrical in shape. H. filifo rm is  pellets 
average 0.72 mm in length and 0.35 mm in diamter with a mean calculated 
volume of 0.047. mm3. The M. baJthica pellets averaged 0.50 mm in 
diamter and 0.32 mm in length with a mean pellet volume of 0.063 mm3.

Electron scaning microscope pictures of H. 1'iJil'ormis and M  balthica 
at 150X, 500X, 1000X and 5000X to identify the general composition and 
surface features of the pellet (Figure 5-2). The predominate differences 
between the pellets was their shape and surface roughness. The Af. baJthica 
was more cylindrical in shape, while the H, fihl'orm is pellets were 
ellipsoidal. The surface of the M. balthica pellets appeared to be much 
smoother than the H. filifo rm is  This may have been due to differences in 
how the material in the pellet are bound together. The Af baJthica pellets 
appear to have a smooth sheath; in contrast the H. filifo rm is pellets tend to 
have a network of filaments holding the pellet material together (Figures 
A5-2G and A5-2L).

The pellet sedimentation texture and combustible composition appear 
to reflea the sediment upon which the organisms are feeding. This is 
consistent with observations by Taghon et a l (1984). In general. H. 
I'ililb rm is  pellets had a lower water content and Jess sand, and a higher mud 
content and combustible fraaion than M  baJthica pellets. Af baJthica 
pellets had a composition that was quite similiar to the surface sediment.
The water content and mud fraction in the h. liliformis pellets were similiar 
to the indigenous sediment at 12 cm below the surface) Table A5-1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



>
W

_
J

O
O

l-<S—
>-

196

FIGURE A5-1. Observed settling velocities of M. balthica and H. filiformis 
pellets versus the nominal diameter (diameter of a volumetrically 
equivalent sphere). The scatter is due to shape effects and bulk 
density differences.
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TABLE A5-1. Composition of fecal pellet samples analyzed for bulk density, 
and indigenous sediment.

SAMPLE BULK WET COMPOSITION (% of Wet Weight)
NO. DENSITY WGT. Water Inorganic Total

(gm/cc) (gm) Content Sand Mud Combustibles
Silt Clay

H filifo rm is  Pellets:
1H 1.471 1.2422 38.4 1.1 32.9 20.1 7 5
2H 1.483 0.2748 31.3 0.9 26.8 35.1 5.9
3H 1.451 1.4710 49.4 0.5 25.6 20.3 4.2
4H 1.489 0.7268 44.6 1.0 27.9 20.2 6.3
5H 1.446 0.4192 36.9 0.5 27.2 24.7 10.7
6H 1.495 0.9913 44.9 1.0 29.5 19.2 5.4

MEAN 1.473 0.8542 40.9 0.8 28.3 23.3 6.7

M. baJthica Pellets:
1M 1.837 0.0657 51.9 3.3 40.3 4.4
2M 1.432 0.0990 46.8 6.2 -  43.3 4.0
3M 1.636 0.0513 46.0 4.7 44.8 4.5

MEAN 1.635 0.0720 48.2 4.7 42.8 4.3

Sediment:
Surface (0-3 cm) 51.3 3-7 45.2 7.2
Deep (12-15 cm) 42.7 6.1 51.2 —
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TABLE 5A-2. Compilation of fecal pellet densities from the literature.

ORGANISM MEAN 
BULK DENSITY

REFERENCE

? 1.19 Rm/cm3 Dillon (1964)
Euphausiids 1.29 Fowler and Small (1972)
Mixed Copepods 1.22* Small etal( 1979)
A. patersonii 1.15 Small etaJ.m i1))

? 1.22 Weibe e /a /(19761
Euphausiid
< Meganyctiphanes norvegicd 1.19-1 27 komar et aJA 19811
Polychaexe
(A. scaphobranchiatd 1.19 Taghon eta/MWA)
Macowa balthica 1.68 Risk and Moffat (1977)

Polychaete
(ffeteromastus l'ililb rm id 1.47 This study
Macoma baJthica 1.67 This study

* Modal value.
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FIGURE 5-2. Electron microscopic pictures of M. balthica pellets (A-H) and H. 
filiformis pellets (I-L). The first row of pictures shows the shape of the 
two types of pellets (note the scale in the lower right hand corner of 
the picture). The subsequent rows show the pellet surface at 
increasing magnification. The differences in surface roughness is quite 
evident in pictures G and L.
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Discussion

Fecal pellets dominate the muddy intertidal sediment surface of 
Adams Cove in the Great Bay Estuary of New Hampshire. The pellets of H 
filtiorm is and M. balthlca are rugged enough to be transported about the 
tidal flat without being immediately destroyed. Therefore understanding 
the hydrodynamic characteristics of these pellets will provide insight into 
the type of forces acting on the mudflat surface by the flooding and ebbing 
estuarine water. If the pellets are in dynamic equilibrium with the energy 
of the environment, then it may be possible in subsequent research to 
estimate the level of shear forces necessary to cause erosion of the sediment 
surface.

The settling velocity of fecal pellets is less than the settling of spher.es 
of equivalent volume. The decrease in velocity is most likely due to 
increased drag associated with the non-sphencal shape of the pellets i Figure 
5A-3). This consistent with the observations of k'omar and Taghon 11985» 
for larger fecal pellets. The scatter in the data may be due to differences in 
the individual pellet density, since the density term used in calculating the 
drag coefficient was the average bulk density (Figure 5A-4).

Calculation of individual pellet densities is possible by power 
regression to determine the relationship between drag and Reynolds 
number, and by assuming the scatter about this relationship is due solely to 
pellet density variability. Rearranging Equation A5-2 yields

A narrow’ range of individual pellet densities are required to account for the 
scatter about the regression relationship (Figure 5A-4). The standard 
deviations of the individual pellet densities are 0.0411 g/ccfor M. balthica 
and 0.0749 g/ccfor H. JjJri'ornm

Pellet shape effects on settling can be evaluated using the correction 
factor (K) technique of McNown etaJ{ 1951). K is computed by taking the 
ratio between the drag coefficient determined for the pellet (i.e. Q =■ 30.2 
Re), and the Stokes drag coefficient, determined by Equation A5-2 (Figure 
5A-5). The different shapes of H.fM orm is (spheroidal) and M. baJthica 
(cylindrical) have a significant effect of settling, ff. fiJiform is, w’hich has a 
L/W ratio >1, has a greater K value than M. baJtbjcawiih a L/W ratio -1 
(Figure 5A-6). Both pellets have a K value which is greater than an

where C„ = 30.2 Re
-0.7H
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FIGURE 5A-3. Comparison of the observed drag coefficient (Eq. 5A-2) and 
the predicted drag coefficient (Eq. 5A-6) versus Reynolds number.
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FIGURE 5A-4. Histograms of calculated H / WotmisKk) and M  bathicaSb\ 
pellet densities.
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FIGURE 5A-5. Correction factor K for H .filiform is and M. balthica pellets, 
and equivalent spheres versus Reynolds number.
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equivalent sphere (Figure 5A-6). but similiar values to the non-spherical 
particle shapes used by McNown «?/*./(1951).

Since the correction factor is based upon Stokes settling lav, an 
equation to predict the settling velocity (\VP), knowing the correction factor 
(K), takes the form

where k = 2.15 for H. filil'o rm is 
= 3.85 for M. balthica 
= 1.79 for an equivalent sphere.

This predicted settling velocity equation (Wp on y axis) is a reasonable 
approximation (r = 0.785) for the observed settling velocity (W0 on x axis) 
(Figure 5A-7).

Within the range of Reynolds numbers studied in this investigation (7 
to 18), an empirical equation solved from the pellet settling velocity (Wp'J, 
can be obtained by rearranging Eq. A5-8 to obtain a form similiar to the 
equation propsed by Komar and Taghon (1985), but with a higher slope 
(Figure 5A-8):

where K‘ is function of different pellet shapes 
K' - 0.118 for H. filifo rm is  

« 0.079 for M.balthica 
Y - kinematic viscosity

These equations indicate that the observed pellet settling is m the 
impact range, and is slower than equivalent spheres with the same density. 
The shape of the pellets is very important in controlling the settling velocity.

Fecal pellets from H filifo rm is  and M.balthica are derived from 
sediment at different levels below the sediment-water interface. The pellet 
composition is, in general, similiar to the sediment ingested by the organism. 
The bulk density of the M. balthica pellets is greater than the H. filiform is

Conclusions
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FIGURE A 5 -7 . P re d ic te d  se ttlin g  v e lo c ity  u sin g  Eq. 5 A -9  v e rs u s  o b s e rv e d
s e ttl in g  v e lo c ity .
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pellets (1.64 versus 1.47 g/cc). This difference may be due to the higher 
amounts of sand in the M balthica pellets (Table A5-1).

Estimating individual pellet density using Eq. A5-7 illustrates the 
narrow range in densities which create significant variability in the 
calculation of drag coefficient.

Pellet shape retards the settling velocity relative to an equivalent 
sphere of equal density. In addition, each pellet type has a different shape 
effect. Therefore, it is essential that the hydrodynamic behavior of each 
pellet type be precisely evaluated before using an empirical relationship. 
Two empirical equations are presented, which predict the settling velocity. 
These equations describe pellet settling in a region of Reynolds numbers 
between the work of Komar et a l (1981) and Komar and Taghon < 1983 k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX 5B 

Shear Stress Calculation for H. filifo rm is

S’ - (V 4 ^ ( l- l)S d „

V - rt/i(s-iy>g<i0i

Example: •
s = 1.473 gm/cm3 
d0= 0.072 cm
*vf » 0.01 cm2/sec 
f> - 1.0 gm/cm3 
g * 980.66 cm/sec2

S*= 10.4, then ^0 .034

fc -1.14 dynes/cm2
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APPENDIX 6

Summary listing of the data collected 
during the oxygenation experiment
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AIR PLUS WATER VORTEX RINGS

Level Time D.O. Temp. Sal.

Baselevel
3 838 7.20 20.0 16.0
2 843 7.00 20.0
1 847 1.65 20.0

Start @ 8:50 WL-17.7
3 927 5.80 20.0
2 929 5.60 20.0
1 931 5.60 20.0

Start @9:50 WL=19.3
3 951 5.90 19.9
2 953 5.95 19.8
1 955 6.00 19.9

Start @ 10:16 WL-21.1
4 1017 6.15 19.8
3 1020 6.20 19.7
2 1022 6.15 19.5
1 1024 6.25 19.5

Start@ 10:50 WL-22.4
4 1051 6.70 19.2
3 1053 6.40 19.4
2 1056 6.60 19.4
I 1058 6.50 19.2

Start @ 11:30 WL-22.4
4 1131 6.80 18.9 18.0
3 1133 6.60 19.0 18.0
2 1136 6.75 19.0 18.0
I 1139 7.00 19.0 18.0

Level Time D.O. Temp. Sal.

Baselevel
2 853 7,60 19.8 16 6
3 856 7.30 19.8
1 859 1.55 19.9

Start @9:05 WL=14.7 
3 935 6.65 20.0
2 937 6.65 20.0
1 940 5.50 20.0

Start @ 9:57 WL=18.5
3 959 6.55 19.9
2 1000 6 60 20 0
1 1003 6.30 20.0

Start @ 10:26 WL-21.6
4
3 1027 6.90 19.4
2 1030 6.90 19.5
1 1032 6.95 19.3

Start @11:00 WL-19.0
4 1102 7.40 19.3 16.5
•*>j 1106 7.25 19.3 18.0
2 1109 7.40 19.2 18.0
I l l l l 735 19.2 17.5

Start @ 11:44 WL-20.8
4 1145 7.50 19.2 18.0
3 1148 7.40 19.2 18.0
2 1150 7.45 19.1 18.0
1 1153 7.35 19.1 18.0
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AIR PLUS WATER VORTEX RINGS

Level Time D.O. Temp. Sal. Level Time D.O. Temp. Sal.

Start 121:18 WL-22.4 Start @> IJ>:29 WL-21. 0

4 1219 7.05 18,6 18.0 4 1230 7.25 19.0 18.0
7D 1222 6.75 18.7 18.0 3 1233 7.40 19.0 18.0
2 1225 6.90 18.5 18.0 2 1236 7.40 18.9 18.5
1 1228 6.85 18.4 18.0 1 1239 7.30 19 0 18 5

Start @>13:05 WL=22.<4 Start @> 13:13 WL=21.
4 1306 6.95 18.2 19.0 4 1314 7.40 18.9 18.5 '
3 1308 6.95 18.2 19.0 3 1318 7.45 18.9 18.5
2 1310 7.00 18.1 18.5 2 1321 750 18.9 18 5
I 1313 7.00 18.0 18.5 I 1324 7.35 18.8 18.5

Start @> 1;1:44 WL=22,,4 Start @> 1 ■5 55 WL-21 .2
4 1345 7.10 18.0 18.5 4 1356 7.55 18.8 19.0
0 1348 7.10 18.0 19.0 0 1359 7.50 18.9 18.5
2 1351 7.10 18.0 19.0 ? 1402 7.50 18.8 19.0
1 1353 7.15 18.0 19.0 1 1405 7.35 19.0 18.5

Start 14:24 WL=22.4 Start @> 14:33 WL*21 .2
4 1424 7.30 17.9 19.0 4 1434 7.60 18.8 19.0
0 1427 7.20 18.0 19.0 ■1 1437 7.45 18.9 19 0
2 1429 7.15 17.9 19.5 2 1440 7.65 18.8 19.0
1 1432 7.15 17.7 19.5 1 1443 7.65 1S.8 18.5

Start volume rate in 80 ml/min
End volume rate in 97 ml/mm End volume rate m 40 ml/mm
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2 1 3

WATER ONLY

Level Time D.O. Temp. Sal.

Baselevel
3 914 7.50 20.1
2 916 7.40 20.0
1 919 1.80 20.0

NO WATER/NO AIR (Tank D! 
NEW WATER (NW)

Level Time D.O. Temp. Sal.

Start (p> 9:42 WL-16.2 
3 944 6.15 19.8
2 945 6.15 19.7
I 948 2.06 19.8

Start & 10:06 WL=19.7
3 1007 6.20 19.8
2 1009 6.15 19.7
1 1011 5.95 19.8 Tank D 1 1015 1.95 20.0

NW
Starts 10:35 WL-21.6
4 1036 6.15 19.2
3 1038 6.10 19.2
2 1040 6.10 19.2
1 1043 6.20 19.2 1 1046 2.10 20.0

NW 1048 6 60 163 19 5
Start & 11:14 WL-21.7
4 1115 6.25 19.0 18.0
3 1117 6.20 19.0 18.0
2 1120 6.25 18.9 18.0
1 1122 6.15 18.8 18.0 1 1125 2.10 19.7 18 0

NW 1129 6.80 15.9 19.5
Start» 11:55 WL-21.7
4 1156 6.15 18.7 18.0
3 1159 6.20 18.5 18.0
2 1201 6.15 18.5 18.0
1 1203 6.25 18.3 18.0 1 1208 2.35 19.5 17.5

NW 1211 6.75 15.5 19.5
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WATER ONLY
NO WATER/NO AIR (Tank D) 
NEW WATER (NW)

Level Time D.O. Temp. Sal. Level Time D.O. Temp. Sal.

Start <a 12:42 WL=2l,7 
4 1143 6.00 18.3 19.0
3 1145 6.10 18.2 18.0
2 1147 6.05 18.1 18.0
1 1150 6.15 18.1 18.0

Start <» 13:26 WL=21.7 
4 1327 6.10 18.0 18.5
3 1329 6.05 17.9 18.5
2 1331 6.10 17.9 18.5
1 1336 6.15 17.9 18.5

Start c* 14:07 WL=21.7
4 1408 6.15 18.0 18.5
3 1410 6.15 17.8 18.5
2 1412 6.15 17.8 19.0
1 1415 6.25 17.8 18.0

Start & 14:44 WL-21.7
4 1445 6.10 17.8 19.0
3 1447 6.20 17.5 19.0
2 1450 6.15 17.5 19.5
1 1452 6.25 17.5 19.5

1 1300 2.50 19.5 17.5
NW 1303 6.60 15.6 20.0

1 1339 2.85 19.6 18.0 
NW 1342 675 157 20 0

1 1419 3-10 19.5 18.0 
NW 1421 6.70 15.8 20.0

1 1455 3.25 19.3 18.0 
NW 1458 6.55 15.6 19.5

Start volume rate in 94 ml/min 
End volume rate in 88 ml/min
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