MEDIA ADVISORY UNH Research Institute To Celebrate, Detail New Multimillion Dollar Space Mission

David Sims

Follow this and additional works at: https://scholars.unh.edu/news

Recommended Citation

This News Article is brought to you for free and open access by the UNH Publications and Documents at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Media Relations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu.
MEDIA ADVISORY
UNH Research Institute To Celebrate, Detail New Multimillion Dollar Space Mission

Contact: David Sims
603-862-5369
Science Writer
Institute for the Study of Earth, Oceans, and Space

Sept. 26, 2005

WHAT: The Institute for the Study of Earth, Oceans, and Space (EOS) at the University of New Hampshire will celebrate and give details of a new $8-plus million “operational” satellite project that will involve scientists, engineers, and students at the university for years to come.

WHEN: 1:30 p.m., Thursday, September 29, 2005.

WHERE: EOS, Morse Hall, Durham campus. Parking will be available behind Morse Hall, 39 College Road.

BACKGROUND: Astrophysicist James Connell’s Angle Detecting Inclined Sensor or ADIS is the heart of an instrument being designed at UNH for a new generation of weather satellites. ADIS will be central to the High Energy Particle Sensor (HEPS) that will fly on upcoming National Polar-orbiting Operational Environmental Satellite System or NPOESS missions.

The HEPS-ADIS instrument will identify high-energy, heavy ions (charged particles) in space that can bombard, damage, and disable spacecraft electronics, and can be a danger to humans in space or on polar-route aircraft. UNH has a long, rich history of building hardware for space missions doing pure investigative science. HEPS-ADIS will be the first so-called operational mission, meaning that the instrument will be collecting data to be used in real-time. In addition, an operational mission implies that more instruments will be built (and possibly improved upon) for future missions as spacecraft age and are replaced.

NPOESS is a multi-agency, multibillion-dollar program that consolidates existing polar-orbiting, Earth-observing satellite systems under a single, ongoing national program. These next-generation satellites will collect and disseminate data on Earth's weather, atmosphere, oceans, land, and near-space environment. The polar orbiters are able to monitor the entire planet and provide data for long-range weather and climate forecasts. In addition, they are able to monitor the forces that control “space weather” – coronal mass ejections from the sun and disturbances in the Earth’s magnetic field.

The UNH team will build two identical HEPS instruments for delivery sometime in the 2010-11 timeframe.
Editors: After a brief presentation on the mission details, UNH scientists involved in the mission, EOS director Berrien Moore, and others will be available to answer reporters’ questions.