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Ry = The motor back EMF constant

Kbs = The motor back EMF constant reduced by magnetic
saturation

Ky = The motor torqgue constant

Kts = The motor torque constant reduced by magnetic
saturation

Ree = The torque transducer spring constant

L = Inductance

Lm = The stator winding inductance

Los = The stator winding inductance reduced by
magnetic saturation

M = The stator winding mutual inductance due to the

mk : . PR
magnetic coupling to stator winding k

P = The number of stator phases

PHO = The number of phases on at the start of a
simulation ( 1 or 2 )

R = Resistance

xviii
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Re = The current drive feedback resistor

Ry = The stator winding resistance
Rs = The L/R drive series resistor
Sf = The magnetic saturatic factor
Ss = The derivative of the magnetic saturation

factor ( dsf/dI )
s = The total stiction of the motor and load

STPR = The number of steps per revolution of the motor

STS = The step size ( .5 = half and 1 = full )

t = Time

T = The input torque to a linear system

Te = The total friction of the motor and load

Tfe = The position dependent magnetic hysteresis
losses

Teu = The mechanical friction of the motor and load

T(9) = The torque produced by the motor at some

angle (©)
Ty = The DC torque component of a forced oscillation
T1 = The AC torque component of a forced oscillation
Vt = The rated voltage of the motor
VS = The drive supply voltage
wl = The frequency of a limit cycle oscillation
wn = The natural frequency of the system
W° = The frequency of a forced oscillation
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WRW = Simulation control flag, controls the location
of the resistor in the flyback diode circuit

5 = The
e = The
é = The
éd = The
91 = The
éo = The
n

) = The
eE = The
Qe = The
Qs = The
6y = The
et = The
]

i) = The
ﬁ = The
Y = The
vac = The
*n = The
?o = The

damping ratio of a second order linear system

rotor angle
rotor velocity

rotor velocity DC component
rotor limit cycle velocity ripple
rotor forced oscillation velocity ripple

rotor acceleration

stepping rotor angle error
stepping rotor velocity error
AC synchronous drive frequency
torque transducer input position

torque transducer input velocity

= Magnetic flux

synchronous motor angle error
synchronous motor velocity error
synchronous motor steady state power angle

phase shift in the AC drive term
phase shift in modulation term n

forced oscillation phase margin

b33
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ABSTRACT

THE ANALYSIS AND SIMULATION OF
HYBRID STEPPING MOTORS USING THE
PHASE PLANE APPROACH

by

TIMOTHY JAMES HARNED

University of New Hampshire, September, 1985

Stepping motors have become very popular
electromechanical interface devices because they are easy to
interface to digital control logic. The most popular
stepping motor currently used is the hybrid design stepping
motor. It incorporates an efficient magnetic structure to
obtain a high output torque, while maintaining a position

resolution of fifty parts per million.

All stepping motors are nonlinear devices and,
therefore, control strategies have been difficult to develop
and implement. A second order, nonlinear model was developed
by Gauthier to describe the permanent magnet stepping motor.
The results of this model are displayed using the phase
plane and considerable insight into the motor’s performance

and operating characteristics are obtained. In this work the
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model is modified to describe the hybrid stepping motor by
including inductance, magnetic saturation, hysteresis and
eddy current losses. This yields a sixth order, nonlinear
model, the solution of which requires a six dimension space

to display the results.

The six dimension solution can be projected back
into the two dimension phase plane. a strong understanding
of the implications of this projection is necessary to
properly interpret the results. Once this understanding is
obtained, many of the operating and dynamic characteristics
of the hybrid stepping motor can be understood and
explained. In addition, the techniques that were developed
for designing sequences or control strategies for the
permanent magnet stepping motor can now be applied to the

hybrid stepping motor.

The hybrid motor can also be cperated as a
synchronous device. The model that was developed to describe
its performance when being stepped can be used to predict
the operating modes when the motor is driven by a
synchronous AC source. The solution of the equations is
again projected back into a two dimension space where many

of the dynamic characteristics are easily seen.

Both the stepping and synchronously driven models
are then used to investigate the characteristics and cause

of mid-frequency resonance in the hybrid motor. This

xxii
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instability phenomenon is shown to be caused by amplitude

and frequency modulation effects in the stepping motor.

xxiii
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CEAPTER I

INTRODUCTION

During the past ten years there has been an
explosive growth in semiconducter technology. This has put
tremendous pressure on related fields to make similar
advancements. In particular, the area of mechanical
actuators has felt a substantial push, both by those trying
to make "smaller and better" computer peripherals and by
those who are using the micro/mini processor as a controller
for some other process. At the same time these mechanical
devices have been asked to surpass yesterday’s performance,

they have also been asked to do it more economically.

One device that has seen extensive use is the
stepping motor. The stepping motor is an ideal actuator for
digital logic because the only information it needs is the
on or off status of its windings. The trick is when to turn
on and when to turn off these phases. As discussed by
Gauthierll], a stepping motor will usually, easily and
accurately perform the simple tasks. Unfortunately, it is
not difficult to devise step sequences that will cause the
motor to fail to execute correctly. These failures seem to
occur either at random or when previous experience indicates

that the motor should perform satisfactorily.

4
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Gauthier performed extensive work in developing a
mathematical model to describe the performance of stepping
motors using the phase plane. The major emphasis was in
developing a second order model to describe the 90
permanent magnet stepping motor. As the stepping motor
industry has progressed, the motor most widely used is the
hybrid stepping motor. The most popular hybrid- stepping
motor is the 1.8’ design. Because of its more efficient
magnetic structure, the 1.8’ stepper produces significantly
higher torques than the 90’ motor for the same frame size
and power consumption. Its small step size is also better
suited for applications that require small incremental

motions and high position resolution.

As its name implies, the hybrid motor is a
combination of two motor designs, the permanent magnet motor
(PM) and the variable reluctance motor (VR). The simplest PM
motor consists of a permanent magnet rotor which is
magnetized radially and a stator field structure which
establishes a radial flux density distribution in the air
gap of the motor. See Figure I-1. The stator has a series of
poles. For the motor shown in Figure I-1, each pole has a
winding around it. The four windings become the four stator
phases. Energizing a phase establishes a magnetic field in
the motor. The rotor, like a compass, tries to align itself
with the magnetic field. When the two are lined up, the

motor is said to be at its desired step location. When a
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A FOUR PHASE PERMANENT MAGNET MOTOR

FIGURE 1I-1
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different stator phase is energized, the orientation of the

magnetic field is changed and the rotor moves to the new
maximum flux density direction. In this way the motor
executes a step. The configuration used to accomplish this
can be rather simple. Shown in Figure I-1 is a four phase
90’ stepping motor, which would make four steps per
revolution. One of the major advantages of the PM motor
design is that evea after the motor is deenergized it still
produces a holding torque. This torque is due to the flux
produced by the permanent magnet rotor. The rotor attempts
to minimize the reluctance of its magnetic flux path by

aligning with the nearest stator pole.

The VR motor has no magnetic material in the rotor.
instead, its rotor is made of a material with low magnetic
reluctance and is shaped like a gear. In principle it
operates like a solenoid. The stator is similar to the PM
motor’s stator, consisting of a series of poles and winding
phases. When a stator phase is energized, the rotor moves to
minimize the reluctance of the flux path for the energized
winding. Figure I-2 shows the configuration of a four phase,
24 step per revolution motor. Each phase consists of two
windings around opposite poles connected in series. As
different phases are energized, the motor will step to each

new point of minimum reluctance.

The VR motor can be manufactured to have smaller

step sizes than the PM motor for applications requiring
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A FOUR PHASE VARIABLE RELUCTANCE MOTOR

FIGURE 1I-2
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higher resolution. However, when the windings are
deenergized the VR has no residual magnetism and, therefore,

no holding torque.

The hybrid motor incorporates some of the benefits
of both the PM and VR designs. It produces high torque, has
a small step angle and generates a residual torque when

deenergized. This motor is shown in Figure I-3.

A permanent magnet is used in the rotor which is now
magnetized axially with respect to the rotor axis. At each
end of the magnet is a pole piece much like a gear with
several teeth on it. The teeth of the pole pieces on either
end are staggered one-half tooth so that, looking down the
axis of the rotor, the tooth on one pole piece falls in the
valley of the teeth on the other pole piece. As before, the
stator phases are now excited to produce a flux density
direction. One of the rotor north pole pieces tries to line
up with the direction of maximum flux density, while the
south pole piece does the same. See Figure I-3. With this
structure it is possible to obtain permanent magnet stepping
motors with as many as 100 steps per revolution using a
hundred-tooth rotor and four stator phases. Figure I-4 shows
the actual stator and rotor pieces that are used in Eastern

Air Devices 1.8, size 34, hybrid stepping motor.

In attempting to apply the work of Gauthier to the

hybtid motor, it was necessary to include in the hybrid
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A FOUR PHASE HYBRID MOTOR

FIGURE 1I-3
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AN EAD 1.8’ FOUR PHASE HYBRID MOTOR

FIGURE 1I-4
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model some of the phenomena that had a negligible effect on
the permanent magnet stepping motor. In particular, the L/R
current rise time must be included in all applications, not
just the high speed ones, as is the case with the permanent
magnet stepper. Also, magnetic saturation of the stator
iron, magnetic hysteresis and eddy current losses in the

stator iron must be considered.

The main purpose of this work is to extend the model
developed by Gauthier to describe the hybrid stepping motor.
Once that is accomplished it will be seen that many of the
failure modes and dynamic characteristics discussed by
Gauthier also occur in the hybrid motor. In addition, the
model will then be used to investigate other dynamic

characteristics of the motor.

When the hybrid stepper motor was first developed by
General Electric Company, it was intended to be a low speed
AC synchronous device. It was only later that the hybrid
motor was used as a stepper. The model that will be
developed to describe the stepping behavior of the hybrid
motor, can also be used to describe the behavior of the
motor when it is being driven synchronously. By plotting the
trajectories of the synchronous model in the phase plane, it
is also possible to describe many of the start/stop and
failure mechanisms that pertain to permanent magnet
synchronous motors. Synchronous startup and reversal, as

well as stable and unstable operating regions, maximum speed
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and the system’s response to external disturbances will be

discussed.

The final topics to be discussed will be angle
accuracy and mid-frequency resonance. Angle accuracy is a
motor’s ability to make uniform, repeatable, constant angle
steps. Mid-frequency resonance is an instability that
affects most stepping motors when operating at speeds
between 40% and 70% of their maximum speed. Both problems
are of considerable interest to the users of stepping
motors. Confusion and misconceptions still exist concerning
these topics and it is hoped that light will be shed on
both.

Finally, two comments that will aid the reader of
this manuscript: First, this work is intended to be a
continuation of the work performed by Gauthier. To
understand many of the concepts used or developed here, a
strong understanding of his work will be necessary. And,
second the stepping motor system consists of three basic
parts. The stepping motor itself, the load the stepping
motor must move in an application, and the drive amplifier
or power amplifier which is used to apply the voltages to
the stator phases. In this research, the stepping motor and
drive amplifier are the components of interest. It is
assumed that the load is rigidly coupled to the motor.
Therefore, when mechanical terms like inertia are used it

implies the inertia is the total inertia of the motor and
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the load inertia reflected to the motor. In general the term
"motor" will imply motor and load where applicable unless

otherwise stated.
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CHAPTER II

THE HIGHER ORDER MODEL

Introduction

Early in his work, Gauthier developed Equation II-1

"l Sin(ae) (I1-1)

Where: © = Angular position

Angular velocity

Stator winding current
Back EMF constant

Stator winding resistance

Stator winding inductance
= Drive supply voltage

w w B 8 O

= Drive series resistance
Number of north poles on the rotor

[

P W og W R H O

which describes the current in a stator phase. In most
applications involving the 90’ permanent magnet stepping
motor, the inductive rise time is small compared to the
phase on time. This makes it possible to neglect the
Lm/(Rs+Rm) dI/dt term. Equation II-1 is then reduced to an
algebraic expression, Equation II-2, that can be solved for
I, the stator phase current. Equation II-2, when used in

conjunction with the second order differential equation

12
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v, K, ©

b .
I= -2 4 c==2-—2 Sin(Ae) (11-2)
(R5+Rm) (RS+Rm)

describing the rotor’s motion, Equation II—3[1], results in a

6--20. ;5 Tg] - fgf Sin(ae) - ;E sin(b_ae)  (I1-3)
Where: © = Angular position
é = Angular velocity
5 = Angular acceleration
I = Stator phase current
J = Rotor and load inertia
B = Rotor and load damping

3
L}

£ Rotor and load friction

kel
"

£ Torque constant
Detent torque

o
L
"

D_ = Number of cycles of the detent torque
m
per cycle of stator torque
A = Number of north poles on the rotor
second order, nonlinear differential equation that

represents the stepping motor and electronic drive. In a

more generalized form they can be rewritten as Equation

I1-4.
- T . K _E-
" BO £ 6 t . 27
@ =-3 - 3% -2 - % ) I _sin(Ae-(n-1)%-)
J J 18] J /. a P
n=1 (II-4a)
D¢
-5 Sln(DmAQ)
and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



. 2”
I = co—=2o [ - I sin(ae-(n-1)2-) (I1I-4b)
n (Rs+Rm) (R5+Rm) P

Where: p = Number of electrical phases

The solution of Equation II-4 can be obtained by
using one of several numerical integration techniques. The
solution can be plotted in the phase plane. The phase plane
is the particular case of a nonlinear second order state

space having position and velocity as the state variables.

As stated earlier, Equation II-4 is valid as long as
the L/R rise time remains small compared to the total stator
on time. Experience has shown that a ratio of 1:10, rise
time to on time, is the upper limit for the second order

model to yield accurate results.

For a typical 90’ permanent magnet stepping motor
with a stator resistance of 12 ohms, a stator inductance of
15 millihenries and a L/R drive with a 20 ohm series
resistor, the current rise time equals 4.69 x 10_4 seconds.
Assuming of rise time of ten percent of the phase on time
yields a step rate of 213 steps/second. This corresponds to
3195 revolutions/minute. Below this speed the inductive
effects are neglible, above this speed the model will no
longer describe the motor and drive system accurately enough
for analysis and design purposes. The start-stop rate for
this 90’ stepping motor is approximately 200 steps per

second. Therefore, the second order model is valid up to the
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start-stop rate for the 90’ stepper. However, for a 1.8’
hybrid stepping motor with a stator resistance of 3.5 ohms,
an inductance of 12 millihenries and the same 20 ohms series
resistor, the step rate equals 196 steps/second or 58
revolutions/minute. The start-stop rate of the 1.8’ step

motor is approximately 450 steps/second.

This comparison demonstrates that while the second
order model was adequate for the 90’ stepper at speeds up to
and beyond the start-stop rate, it is necessary to include
inductance in the model of the hybrid motor for speeds well
below the start-stop rate. Because the majority of hybrid
motor applications concern systems operating at or above the
start-stop rate, a model that does not include inductance
has little value in investigating the performance of the

hybrid motor.

(21 conducted a substantial research effort in

Dietz
modeling the various types of stepping motor drives. In his
work he did include the inductive current rise time.
However, the resulting equations were used to investigate
the drive’s zffect on the single step response and steady
state, constant velocity modes of operation. The effects of

the inductive rise time and of using a higher order model in

the phase plane were not discussed in detail.
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The Effects of Including Inductance
In the Stator Winding Model

Referring to the circuit diagram for one phase of a
stator (Figure II-1), the following equation can be
developed:

ar, dr, - .
Vs = Ian + Lm dt- + Mmk aE - KbeSln(AG (n—l)ﬁ-) (I1I-5)

Where: Mmk = Mutual inductive terms (k=1 to p, k#n)

Ly dIn/dt is the self-inductive term which accounts for the

rate of change of current within the winding. Moy dIk/dt is

the mutual inductive term which will account for the rate of
change of the current within any other magnetically coupled

stator winding. It should be noted that there may not be any
or there may be several mutual inductive terms depending

upon the magnetic configuration of the motor.

A generalized differential equation describing the

current in a phase can be found by solving for dIn/dt:

B
Vs L U N
dt L n Lm 4_- Ly dt
R=1, (tm)
(I1-6)
K,

: 2"
+ I_.;_ Sln(AQ—(n—l)l—)—)

Where n can equal from 1 to p for a p-phase motor. k

can also equal 1 to p for a p-phase motor. However, k cannot
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equal n as that would be the self-inductive term. This
expression, along with the second order mechanical model,

Equation II-7, now more accurately describes the stepping

B_
X 2"
) InSJ.n(AQ-(n-l)ﬁ—)

BN M

(11-7)

D¢
-3 Sln(DmAQ)

motor and drive system. Because of the dynamics incorporated
into the current model, the system model is no longer second
order. The order of the new model is two more than the
number of phases. For a four phase motor, the model is sixth
order. Obviously this model can no longer be represented in
the velocity-error phase plane; a six dimensional state

space is now required.

The differential equations are coupled through
position, velocity and current. In order to find the system
response using the model, initial conditions are selected
for the position, velocity and currents. Equation II-6 is
then evaluated with those initial conditions and the stator
phase currents can be calculated using any of the numerical
integration techniques. Equation II-7 is now evaluated with
the original position, velocity and current values.
Numerical integration is again used to calculate new values
for position and velocity. The new values of position,

velocity and current are returned to Equation II-6, time is
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increased by the integration interval and the process is

repeated.

The addition of the L/R current rise time has made
the system model more complex. In addition to numerically
solving the differential equation describing mechanical
motion, the differential equation representing the currents
must also be solved. However, the current equation is solved
by exactly the same method used with the mechanical
equations. Therefore, no new techniques are required by the

higher order model, merely an increase in computation time.

The current waveform is now dependent upon both the
back EMF and the L/R rise time. To better understand the
effect of these two parameters, it would be helpful to look
at each one individually. In Figure II-2 the L/R current
rise time equals zero. The oscillation is entirely due to
the back EMF as the rotor oscillates around the stable
equilibrium point. The back EMF constant has been set equal
to zero in Figure II-3 and the L/R current rise time is
clearly shown. The effect on the current waveform of both
the back EMF and the L/R rise time is shown in Figure II-4.
It is obvious that the back EMF and the inductance both have

a significant effect on the current.
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The Higher Order Model in the Phase Plane

It was stated earlier that, because of the inductive
dyamics added to the model, the system response can no
longer be completely described in the two dimensional phase
plane. Rather the system response is now represented by a
trajectory that travels through the state space of

coordinates o, é, Il’ Iz....Ip.

Trying to visualize a trajectory traveling through a
four or greater dimension state space is difficult at best.
However, for the case where the motor operates with only one
phase energized at a time, the response can be shown in a
three dimensional space. In this mode of operation,
position, velocity and the current in the on phase are the
only non-zero state variables. Figure II-5 shows the single
step response where the non-zero state variables have been
plotted in a three dimensional state space. The blue curve
is the actual system response and shows both current
inductive rise and the effect of the back EMF on the
oscillations. The red curve is the projection of the systen
response back into the position-velocity plane. The
projection results in a response in the position-velocity
plane that is very similar to the second order, single step

response shown by Gauthier.

In Figure II-6 the concept of displaying the

response of a stepping motor with one phase on in three
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A THREE DIMENSION SINGLE STEP RESPONSE

FIGURE 1II-5
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A THREE DIMENSION TWO STEP RESPONSE

FIGURE 1II-6
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dimensions is extended to show a two step sequence. Again
the position, velocity and on phase current are displayed in
three dimensions. The blue curve is the three dimensional
trajectory and the red curve is the projection back into the
position-velocity plane. In Figure II-6 the motor starts
from rest, and after .0022 seconds it is stepped. Stepping
is shown as first an instantaneous shift in position equal
to minus one step, and then as shift to zero current. This
occurs because the current in the first phase has just been
turned off, and because the initial condition of the current

in the second phase is zero.

_ It should be noted that the currents in phase one
and phase two are different state variables and plotting
them on the same axis is not technically correct. However it
is very useful in showing the response of the higher order

system.

A four step sequence that fails at the natural
frequency is shown in the three dimensional state space in
Figure II-7. Figure II-7 shows that a sequence that contains
more than one or two steps quickly becomes confusing to
understand. However, the projection of the trajectory back
into the position-velocity plane, the red curve, is very
similar to sequences predicted by Gauthier using the second
order model to show failure at step rates near the natural
frequency. This indicates that, even though a higher order

model is now being used, it should be possible to display
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A THREE DIMENSION FOUR STEP RESPONSE

FIGURE II-7
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the results as a projection back into the position-velocity

plane.

Also, if the motor is being operated with more than
one phase energized, the total system response cannot be
shown in the three dimensional space. At least a four
dimensional space would be needed. In this case projecting
the response into the position-velocity plane will yield the

best overall results.

Because of the problems associated with displaying
the results of the higher order model in a higher order
space, a projection of the higher order results will be

displayed in the position-velocity plane.

Stepping is still represented by an instantaneous
shift in the position equivalent to the step size. Zero
velocity and zero position still represent the desired
equilibrium position. This enables many of the same insights
that were realized in the second order phase plane to be
gained from the state space. There are however, several
subtle differences between the second order velocity-error
plane and the projection of the trajectory in the higher

order state space into the velocity-error plane.

Because of the higher order nature of the system,
the projection of the trajectory into the velocity-error
plane may cause a trajectory to cross itself. The reason

this crossing occurs is that the velocity and error
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coordinates are the same but the stator currents are
different each time the trajectory passes through that point

in the projection. See Figure II-8.

Another effect is a hooking or unusual curve in the
trajectory just after a step has been made. This is seen
only during multiphase operation. It occurs because the
location of the magnetic flux vector does not change
instantaneously with the step command during multiphase
operation. Rather it shifts from the old equilibrium
position to the new equilibrium position at the same rate
at which the current rises in the winding that has just been
energized. See Figure II-9. The rotor attempts to settle on
the flux vector as the vector continues to move to the new
position. This results in the unusual shape of the

trajectory in Figure II-9.

Figure II-7 demonstrats another point that has
considerable impact on understanding the higher order state
space concepts. The three dimensional trajectory crosses a
separatrix during the third step. In the higher order state
space, a separatrix is no longer a unigue trajectory that
leads to a unstable equilibrium point. Rather the
separatrices are a whole family of higher order trajectories
that lead to the unstable equilibrium point. This family of

separatrices make up a surface in the state space.

This separatrix surface separates the higher order
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space into regions around each stable equilibrium point.
Even though the separatrix is a surface, a single curve on
that surface is projected and plotted in the velocity-error
plane. Separatrices are calculated by using the unstable
equilibrium point as the initial condition and running time
backward. Because of the problem of deciding which portion
of the separatrix to project into the velocity-error plane,
the second order model is used for calculating the

separatrix.

Because the separatrix is approximated using the
second order model and the trajectories are being projected
back into the position-velocity plane, it is possible for a
projected trajectory to cross a projected separatrix during
stepping in the velocity-error plane without losing or
gaining steps. Again the position and velocity coordinates
appear to cross in the two-dimension plot, however, when all
six coordinates are considered, the trajectory does not

cross a separatrix surface.

Conclusion

At this point it is important to recognize that even
though the higher order model is more complex, it can still
be easily used to obtain insights into the low speed
behavior of the stepping motor/drive system. The additional

differential equations are solved using the same numerical
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techniques that were used to solve the original second order
equation. Therefore, no new methods are required, just an
increase in computation time. All the low speed failure
modes can still be described by projecting the trajectory
into the phase plane. In addition, by including the
inductive rise time in the model, the model can be used to

describe systems operating over a wider range of speeds.

Figures II-10 and 11 show two high performance,
constant velocity sequences for the 90’ permanent magnet
stepping motor. Both sequences were designed using
analytical models and the results were tested on an
experimental system. Figure II-10 was designed using the
second order model with the inductance neglected. In Figure
II-11 the inductance was included. It is clear that by
including the inductance in the model, the simulation

produced obtains more satisfactory results.

As long as it is kept in mind that there are some
subtle effects due to projecting the trajectory into the
phase plane, all of the methods that were developed by
Gauthier for analyzing a stepping motor’s performance are
still valid. For the higher order model the phase plane is
still a very insightful and powerful method for
understanding the dynamic characteristics of a stepping

motor.
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CHAPTER III

SATURATION, HYSTERESIS, AND EDDY CURRENTS

IN THE HYBRID STEPPING MOTOR

Introduction

As stated earlier, Gauthier achieved considerable

success in describing and predicting the low speed behavior

of the permanent magnet stepping motor using the second

order model. The velocity transient of a PM motor
single stepped is shown in Figure III-1. Both the
response as predicted by the model and the actual
experimental response are shown. The figure shows

excellent correlation between the two.

In Chapter II, it was shown that when the
winding inductance is added to the PM motor model

higher order model, the model can also be used to

being

analytical

the

stator
creating a

predict

the high speed performance of the motor. Figure III-2a is a

plot of the velocity transient of a point to point,

no-over-shoot step sequence that was designed using the PM

motor model. The corresponding experimental response is

shown in Figure III-2b. Again, there is an excellent

correlation between the analytical and experimental results.

There is further documentation of high speed applications in

the work conducted by DietzEzI

If the higher order PM motor model is used to

36
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predict the dynamic response of the hybrid stepping motor,
the results are not nearly as accurate. The single step
velocity response of a 1.8’ hybrid motor according to the
higher order PM model is shown in Figure III-3a. The actual
response of an experimental system is shown in Figure
III-3b. The analytical and experimental current profiles are
shown in Figures III-3b and III-3c. It can be seen from
these four figures that the PM motor model does not provide
an accurate description of the hybrid motor. The same result
can be seen in Figures III-4a and III-4b where the PM motor
model was used to design a twenty-four step, point to point
sequence for the hybrid motor. Figure III-4c is a compressed

view of III-4b which demonstrates the extent of the ringout.

In attempting to determine the differences between
the PM motor and the hybrid motor, it is their similarities
which stand out. Even though the motors have two different
magnetic designs, they have similar characteristics.
Mechanically, the inertia, bearing friction and damping are
similar. Both motors have sinusoidal stator torque and
detent torque angle curves. Electrically, the resistances
and inductances of the windings are similar and they have
sinusoidal back EMF voltages induced in the windings. From
these similarities, it follows that the more complex
magnetic structure of the hybrid motor does not necessarily
mean that there is a whole new phenomenon to be modeled.

Rather, the different magnetic structure must have some
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effect on these parameters that was not seen in the PM

stepping motor.

Magnetic Saturation

In stepping motors the maximum rated current of the
motor is usually determined by the motor’s ability to
dissipate heat. This heat comes from the IZR losses in the
stator phase winding. When compared to a comparable size PM
motor, the hybrid motor will have a similar heat dissipation
capability. However, it will produce larger torques at the
same current level and it will magnetically saturate at a
lower current level. The torque versus angle curve for a
size 23, 1.8’, four phase hybrid stepping motor with one
phase energized at various current levels, is shown in
Figure III-5a. The motor is rated at 1.5 amperes maximum
current. The peaks of the torque angle curve versus current
are plotted in figure III-5b. The solid curve is the actual
torque produced by the stepping motor. The dashed curve is
the theoretical torque that would be produced by the
stepping motor if there were no magnetic saturation. This is
based on the torque constant (Kt)’ calculated from the
initial slope of the torque current curve. From this plot it
can be seen that at rated current, 1.5 amperes, the torque
produced is 90 oz-in, compared to a theoretical value of 105

oz-in, or 85.7% of the theoretical value.

The reason for this degradation in torque is that as
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the current is increased there are fewer and fewer magnetic
domains remaining in the stator iron that can rotate and
align with the induced magnetic field. This results in a
decrease in the incremental change in flux produced by an
incremerntal change in current. At any given position the
torque is proportional to flux, therefore the change in
torque with current is proportional to the change in flux
with current. If the stator current were increased further,
it would reach a point where there would be no further
increase in torque with the increased current. This would be
the point where the stator iron would be completely
saturated. All the magnetic domains in the stator would be

aligned with the magnetic field.

In the PM motor, saturation is not as severe and it
is unnecessary to model the effect. In the hybrid motor,
however, it is necessary to account for the magnetic
saturation under normal operating conditions. Returning to
Figure III-5b, it is possible to model the torque current
curve with a second order polynomial. In general, the

resulting polynomial would have the form shown in Equation

III-1.
T(8) =a12+aI+a (III-1)
2 1 0
Where: T(8) = Torque at some angle (8)
I = Stator current

az,al,a0 Polynomial coefficients

The detent torque is modeled by a separate term in
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Equation II-7. Therefore the torque, T(€), in Equation III-1
is solely dependent upon the current in the stator winding.

When I equals zero, T(®) equals zero, so that 2 also equals
zero and can be neglected. In the PM motor model a; would be

the torque constant Kt'

In the absence of saturation, the magnetic torque

term in the mechanical model is shown in Equation III-2. In

—B-
\

27, Dt
) Ipsin(ae-(n-1)Z) - 3E sin(oae) (111-2)

ol ="
Iet

=1

BIN

order to keep the equations consistent in form and
increase the complexity as easily as possible, it would be
beneficial to develop a saturation term. Then Equation III-2

would only have an added term and not a new form. The

—B-

Re N 2= Pt
b S /) S¢ Ipsin(ae-(n-1)Z-) - 3E sin(p ae) (111-3)
£ .

Where: sf = Saturation coefficient

saturation coefficient is defined as the torque produced at
the current operating point divided by the theoretical

torque produced at the same operating point in the absence
of saturation. The theoretical torque is the initial slope
of the torque current curve times the operating current or

KtIn'
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2
a,I” + a,I
S¢ = %L?l - _Z_g_f__l-a (111-4)
t'n t™n
Which reduces to:
a,I_ + a
S = 2n 1 (111-5)
e

It should be noted that as long as ay equals zero
(as it should), a; equals the torque constant K- This
results in the generalized saturation function shown in

Equation III-6.
=-2041 (111-6)
Ry

In addition to the torque production being dependent
upon saturation, the stator winding inductance, detent torque
and back EMF constants are affected by saturation of the

stator winding.

Ignoring saturation again for a moment, it was shown
that for a constant incremental change in current, there is
a corresponding proportional incremental change in the flux.
See the dashed curve in Figure III-5b. When saturation
occurs, the solid curve, constant increments of current no
longer result in proportional increments of flux. Rather,

the flux increases according to the local slope of the
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saturation cﬁrve. Inductance is a measure of the change in
flux generated by a change in current in the stator winding.
As saturation occurs, the decreasing incremental changes in
flux indicate that inductance decreases with saturation. To
be specific, the change in inductance will be proportional
to the change in slope of the saturation curve. At 1.5
amperes in Figure III-5 the local slope of the saturation
curve is 47 oz-in/amp compared to an initial slope of 72
oz-in/amp at 0.0 amperes, or 66% of the expected value. This
indicates that at rated currert the winding inductance will

be only 66% of its value at zero current.

Like the inductance, the change in the detent torque
constant due to saturation is proportional to the change in
the local slope of the torque current curve. The permanent
magnet in the rotor has a magnetic motive force potential
(MMF). This potential causes a small amount of flux to be
established in the stator iron. In a typical hybrid motor
the MMF of the magnet is 5% of the MMF of the stator winding
at rated current and the MMF potential is usually assumed to
be sinusoidal with position. The detent torque is
proportional to the flux produced by the permanent magnet.
As the stator iron saturates, the flux produced by the
permanent magnet decreases, just as it would if the
additional flux were being produced by additional current in
the stator winding. Therefore, the change in the detent

torque due to saturation will also be proportional to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

change in the slope of the saturation curve.

The back EMF voltage induced in the stator winding
is due to the rate of change of flux within the winding. It
is the rotating permanent magnet in the motor rotor that
causes this change in flux. As the rotor rotates, the flux
varies with angle, (d¢/de). At any given velocity, (de/dt),
the rate of change of the flux equals d¢/de * de/dt or
d¢/dt. As was reasoned with the detent torque, when the
stator iron saturates, the additional flux generated by the
permanent magnet decreases, just as it would if the
additional flux were being generated by the stator winding.
If ¢ decreases then d¢/dt must also decrease and again, it
becomes obvious that the back EMF constant will also be
proportional to the change in the slope of the torque

current saturation curve.

Even though they are three different parameters, the
inductance, detent torque and back EMF are affected in the
same way by saturation. In order to model the saturation
effects on these parameters properly, it is necessary to
know the extent of saturation when the parameters are
measured and and to what degree the level of saturation has

changed for the current operating point.

Inductance is usually measured with a 1 Khz
impedance bridge or a voltage square wave where the initial

current rise time is measured. The detent torque is measured
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with the windings unenergized. The back EMF constant is
calculcted by rotating the motor with its windings open
circuited and measuring the induced voltage. In all the
tests the stator iron is unsaturated. By returning to Figure
III-5b, the effect of saturation on the back EMF, inductance
and detent torque can be determined. The slope of the torque
current curve at any current value can be developed from
Equation III-5. See Equation III-7.

dsg
i = ZaZI +ay (I11-7)

As with the saturation factor, Equation III-7 is
normalized with respect to the torque constant.
- P — (I111-8)

Where: Sg = Saturation slope coefficient

From before, 2 equaled Kt' therefore:

(111-9)

Following this approach, a saturation slope
coefficient is developed. The inductance, detent torque and
back EMF at a particular operating current can now be

calculated.
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Lms = Lm(_iz__ + 1) (I11-10)
2a In

Kbs = Kb('i;" + 1) (III-11)
2a,1I
2°n

Dy = Dt('R;" + 1) (III-12)

Where: Lps= The saturated self inductance
Kps= The saturated back EMF
D .= The saturated detent torque

ts

Lys Ky and D, are the unsaturated values of
inductance and back EMF. Lpst Kpg and Dy are the actual
values due to saturation. To simplify discussion, the
mutual inductance term has been ignored until this point.
However, the same rationale that holds for the
self-inductive term holds for the mutual inductive term.
Only ay, Ik and Kt are the parameters for the other

magnetically coupled stator winding.
=M (-=2-2 + 1) (ITI-13)
t

Where: Mms= The saturated mutual inductance

Equation III-14 now describes the stator phase
currents of the hybrid motor with magnetic saturation

included.
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dt Lms n LIIIS /. “ms dt
k=1, (K#n)

(III-14)
Fbs 2 2~
+ §== © sin(Ae-(n-1)z-)
P
ms
The addition of saturation in the hybrid motor model
only increases the algebraic complexity of the model. It
does not affect the dynamic order of the model. Therefore,
there are no new concepts or techniques required in order to
use the model, simply another increase in the computer time

required to solve the equations.

Hysteresis and Eddy Currents

In Figure III-3b it was seen that the oscillations
of the hybrid motor decay much more slowly than the PM
model indicates that they should. This suggests that the
friction and damping values used in the simulation are too
large. The most common method used for measuring the
friction and damping of a motor is to use a dynamometer or a
DC servo/tachometer with a rotary torque transducer. The
measurements are made with the stator winding leads
unenergized and open. The motor being tested is driven by a
servo/tach and the speed versus the torque required to drive
the motor at that speed is plotted. This test is conducted
at a series of different steady state speeds and results in

2 curve similar to that in Figure III-6.
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The friction (Tf) is the torque required to maintain
the motor’s rotation at the lowest possible speed. The
damping (B) is the change in torque due to a change in the
steady state speed. The initial peak torque is a result of
overcoming the friction, stiction and detent torque to set
the system in motion. If the friction and damping are
measured for a typical hybrid motor, curve A in Figure III-6
is obtained. If the test is repeated with a motor identical
except that the rotor is unmagnetized, curve B in Figure
III-6 is obtained. There is a drastic difference between the
two curves. The magnetized motor had the following values of

friction and damping:

Te = 1.40 oz-in (111-15)

B = .0118 oz-in/rad/sec

From the unmagnetized motor the following values

were measured:

T, = .40 oz-in

£ (III-16)

B = .0062 oz-in/rad/sec

If the friction and damping measured in test A were
strictly mechanical, one would not expect to see different
values of friction and damping when the measurement was

repeated with an unmagnetized motor.

There are two possible explanations for the

difference between the two measurements. The first assumes
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that both measurements are the mechanical friction and
damping of the bearings. The increase seen in curve A is a
result of an increase of the sideload on the bearings when
the rotor is magnetized. When magnetized, if the rotor is
not aligned exactly with the center line of the inside of
the stator, radial forces will occur due to the rotor’s
attraction to the closest portion of the stator. These

radial forces may result in increased friction and damping.

A simple experiment was devised to test this
concept. One endcap of the magnetized motor was removed and
the maximum radial forces possible were measured by pulling
the rotor from one side of the stator to the other. The
radial forces were approximately 1.5 lbs. for a size 23,
3.25 inch stack motor (the motor being tested). A third
bearing was placed on the rotor shaft and the sideload on
that bearing was manually applied while the friction and
damping were measured. Sideloads of twenty times the
magnetic radial forces were applied to the third bearing and
the increases in friction and damping were less than ten
percent of the original unmagnetized, curve B values. This
virtually eliminates magnetic sideloads as an explanation of

the differences between the two curves in Figure III-6.

The second explanation concerns magnetic hysteresis
and eddy currents in the stator iron due to the rotating
permanent magnet. It was stated previously that the magnetic

motive force potential in the rotor’s permanent magnet
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causes a magnetic field to be established in the stator
iron. As the rotor rotates, it causes the magnitude and
direction of the magnetic field to vary, hence the flux
induced depends upon the rotor’s position. The effect of
this is to drive the stator iron around a minor hysteresis
loop. See Figure III-7. The energy losses incurred in
driving the stator iron around the hysteresis loop appear as
the additional "friction" in Figure III-6. These losses
depend upon the area of the hysteresis loop and not on the
frequency at which the loop is traversed. This is the reason

it appears as a "friction" and not a damping force.

As the rotor is turned at increasing speeds, the
rate of change of flux in the stator iron with time (d¢sdt)
increases. In addition to causing back EMF voltages in the
stator windings, d¢/dt causes eddy currents to circulate in
the surface of the stator iron. The eddy currents absorb
energy, causing losses as did the hysteresis loop. However,
the eddy current losses are velocity dependent and appear as

the additional "damping" in Figure III-6.

This approach coincides with the work performed by
Dahllz] in developing a model for friction. Developing an
analytical method for the determining the hysteresis and
eddy currents would not be a trivial exercise so here they
will be treated as "friction like" and "damping like"

phenomena.

Because the hysteresis and eddy current losses
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depend upon the magnitude of the flux generated in the
stator iron by the permanent magnet, they are also dependent
upon the effect of saturation in the stator iron. As the
stator iron saturates, the magnitude of the hysteresis loop
and the eddy currents decrease. See Figure III-7. This
requires that the saturation slope coefficient must be
included in the magnetic portions of the friction and
damping terms just as it was for the inductances, detent

torque and back EMF.

Therefore:

Te=Tp + Ty S (111-17)
m Bhss

Where: Tf = Tetal friction term

Tm = Mechanical friction
Th = Hysteresis losses
B = Total damping term
Bm = Mechanical damping
B, = Eddy current losses

The unmagnetized friction (Tm) and damping (Bm)
will remain constant because they depend upon the design of

the bearings and the preload.

During normal stepping motor operating conditions
the motor rotor continues to travel in the same direction.
The flux that is generated in the stator iron due to the

permanent magnet will continue to oscillate and the
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hysteresis and eddy current losses will be equal to those

predicted by Equation III-17.

When the motor is being single stepped or is ringing
out after a step sequence, a different phenomenon occurs. As
the motor rings out, the rotor oscillates about the stable
equilibrium position. The flux established in the stator
iron by the permanent magnet now varies by a much smaller
amount than it did when_ the rotor was rotating in a constant
direction. This results in a small hysteresis loop. see
Figure III-8. In this mode of operation it is difficult to
determine the exact magnitude of the losses during the

oscillations.

A small amount of trial and error experience with
the single step response indicated that a sine function
dependent upon the position error could be used. See

Equation III-18.

s 4
Tf = Tm + ThSSSJ.n(Qe)

(I11-18)

_ . 4
B = B+ Bh5551n(9e)

Where: ee = The error between the rotor position
and the stable equilibrium position

It should be restated that Equation III-18 is
necessary only when the rotor is oscillating about a stable

equilibrium point. As long as the motor is making a point to
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point or constant velocity move and the direction of motion
does not change, Equation III-17 should be used. During the
simulation process Equation III-18 was not used unless the

velocity changed sign.

Including the saturation, hysteresis and eddy
current effects into the PM motor model has resulted in
Equations III-19 and III-20 which will now accurately model

the hybrid stepping motor.

_B_
o Vs g BeRa) N Mg 9%
aT I LI /. L dTf
k=1, (R#n)
(I1I-19)
. ths g sin(ae-(n-1)20)
LmS P
and:
a% Ba ¥ BpSs . Tp v TS g
S50 = ~(Bmgef) 6 - (B -
a°r o1
(111-20)
K (2' D
- 5 /) SfInSin(AQ—(n—l)g—) - -t sin(p ae)
n=1

Like saturation, the hysteresis and eddy currents
have added a degree of complexity to the model. But again,
they have not added to the dynamic order of the system. The
same numerical techniques can be used and the results can

still be projected into the phase error plane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

The next section contains experimental comparisons
with the model to demonstrate that the model accurately

predicts the response of a hybrid stepping motor system.

Experimental Verification of the Hybrid Model

In any model building process, there comes a time
when it is necessary to face reality. The system parameters
are measured, the model that has been developed based on
physical reasoning is used to simulate the real system’s
response and then the simulation results are compared to the
real system. Often the model or the measurement techniques
must be refined to obtain a more accurate correlation. Then
the model can be used to investigate a range of system

variations easily and quickly.

In order to verify the hybrid motor model, an
experimental system was assembled. It consisted of an EAD
LA23BCK-11R stepping motor driven with a zener diode clamped
L/R drive. An experimental position error measurement system
using a high resolution optical encoder was developed and
used in conjunction with an analog tachometer. This made it
possible to experimentally generate velocity-error planes
for comparison with the analytical simulations. The encoder
and tach became the system load. No additional load was used
because the most difficult system to model is the one with a

minimum of friction and damping. In a system with high
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friction and damping, the more subtle effects of some of the
other parameters are lost. The experimental phase plane

measurement system is described in detail in Appendix B.

If the readetr is unfamiliar with the measurement
system it would be beneficial to read Appendix B at this
time. Torsional resonance and filtering effects are
discussed that make the comparison of the analytical and

experimental results easier to understand.

The individual motor parameters were measured using
the techniques described by Gauthier and the Stepping Motor
Workshop notes[4] The only exception is the system inertia
which was calculated from the period of oscillation of
torsional spring mass system. Table III-1 contains a summary
of the experimental system parameters. The magnetic
saturation coefficients used are the average values of the
one and two phase on measurements. When measuring the torque
angle curves of a hybrid motor, the torsional stiffness of
the motor must not exceed the torsional stiffness of the
measurement system. Otherwise the measurement system will
become unstable in a region about the motor’s unstable
equilibrium point. Appendix A contains detailed information

about the measurement of torque angle curves.

Experimental verification was conducted by comparing
the analytical and experimental system responses for both

one and two phase on operation. The results are presented
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here in three categories: single step response, fixed period

stepping and optimum step sequences.
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Parameter Symbol Value Units

oz-in—sec2

Inertia 3 } 00325 |

Friction Tn .61 oz-in
Th 1.0 0z-in

Damping Bm .00628 oz-in/rad/sec
Bh .00560 oz-in/rad/sec

Torque l Ky ‘ 78.0 ‘ oz-in/ampere

Constant

Detent D 5.5 oz-in

Torque I € ‘ ‘

Detent Dm 4

Multiplier

Back EMF { Kb ‘ .4488 ‘ volts/rad/sec

Constant

Stator } Ry 3.6 ohms

Resistance

Stator Ly .013 (1) henries

Inductance .020 (2) henries

Saturation a, -.122

Coefficient a1 1.0

Supply ‘ v s { 35.4 ‘ volts

Voltage

Series Ry 20.0 ohms

Resistance

TABLE III-1 SYSTEM PARAMETERS
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Single Step Response

The simplest comparison for a stepping motor system
is the single step response. Figures III-9a and III-9b show
the analytical and experimental velocity profiles for the
one phase on single step response. Comparisons can be made
between the period of oscillation, the ratio of amplitudes
of successive oscillations and the envelope of the response.
Any of these comparisons will show that there is a very good
correlation between the model and the experimental results.
This correlation indicates that the mechanical portion of
the model, inciuding inertia, friction, damping, hysteresis
and eddy current losses, magnetic saturation, and torque

production is quite accurate.

Figures III-10a and 10b are plots of the current
profile for the same single step response. Comparing the
current rise times, magnitudes and periods of oscillation
also yields an excellent correlation. This verifies that the
electrical portion of the model, specifically the back EMF
and inductance during magnetic saturation, also yields

accurate results.

If the process is continued with two phases
energized, the experimental results again verify the model.
See Figures III-lla and 11b and III-12a and 12b. Thus from
the single step response, the initial conclusion is that the

model for the hybrid motor yields excellent results.
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Fixed Period Stepping

For further verification of the model, several of
the low speed failure modes were investigated and compared.
All sequences consist of four steps at a fixed frequency.
Various step frequencies were selected and simulated using
the model. These step frequencies were then used to drive
the experimental system. They were varied slightly until the
simulated and experimental trajectories were as identical as
possible. The difference between the two rates is a measure
of the error in the model. Error is defined as the
experimental value minus the simulated value divided by the
experimental value.

Experimental (x) - Predicted (x)

ERROR(x) = (I11-21)
Experimental (x)

The first sequence to be verified is a four step
sequence that does not fail. This sequence remains below the
separatrix the entire time, thus the step frequency is below
the no-failure rate. Figures III-13a and III-13b show that a
good correlation between the the analytical and experimental

trajectories was obtained.

The initial "hook" in the experimental phase plane
at each step in Figure III-13b is due to the second order
filter used to minimize the torsional resonance in the
tachometer signal. This distortion is in the measurement

system; it will occur in several of the experimental phase
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Analytical step period : .00145 sec
Experimental step period : .00150 sec

Error : 3.3 %
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planes. The full effect of the filtering is shown in

Appendix B.

The step period in the analytical simulation was
1.45 msec and the step period in the experimental system was

1.5 msec. This yields an error of 3.3 percent.

The analytical and experimental current profiles for
this sequence are shown in Figures III-14a and III-14b. Like
the phase planes, the currents exhibit an excellent

correlation between the model and the real system.

Figures III-15a and III-15b show a four step
sequence that is above the no-failure rate and does not
execute properly. The sequence gains four steps for a total
move of eight steps. Again, a good correlation between
analytical and experimental trajectories was obtained. The
step periods used were the same for the experimental and
analytical sequences so that the error as defined is zero

percent.

Note the apparent crossing and recrossing of the
separatrix by the trajectory in Figure III-15a. This is
another example of the effects of projecting a higher order

trajectory back into a two dimensional space.

Figures III-16a and III-16b show a sequence
attempting to step at a rate above the start/stop rate.

Failure occurred because the motor was unable to accelerate
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Analytical step period : .00110 sec
Experimental step period : .00110 sec

Error : 0.0 %
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Analytical step period : .00080 sec
Experimental step period : .00080 sec

Error : 0.0 %
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fast enough to keep in synch with the flux vector. Again
there was excellent correlation between the analytical and
experimental sequences. The error between the two step rates

for this sequence was also zero.

When a stepping motor system has low friction and
damping, it fails at frequencies close to its natural
frequency. Figures III-17a and III-17b are an example of
this type of stepping failure. The error between the

analytical and experimental sequences is -1.5 percent.

Investigating the low speed failure modes of the
stepping motor with one phase energized, it can be seen that
a very high correlation between the hybrid model and the
experimental system was obtained. If the verification
process using the four step sequences is repeated with two
phases energized, it can be seen that the model yields
excellent results for two-phase-on operation also. See

Figures III-18a through III-22b.

Table III-2 is a summary of the errors for each of
the step sequences with one and two phase on operation.
Table III-2 shows that the hybrid model yields excellent

results over a wide range of low speed operating conditions.
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Analytical step period : .00105 sec

Experimental step period : .00110 sec

Error : 4.5 %
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Analytical step period : .00079 sec
Experimental step period : .00080 sec

Brror : 1.25 %
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Analytical step period : .00059 sec
Experimental step period : .00060 sec

Error : 1.7 %
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Analytical step period : .00485 sec
Experimental step period : .00500 sec

Error : 3.0 %
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Optimum Step Sequences

The model verification process can be continued by
comparing the model to high performance point to point and
constant velocity sequences£4] Point to point sequences are
ones where the user is interested in moving from one
position to another as fast as possible. The sequence
consists of an acceleration ramp and a deceleration ramp
that minimizes the ringout after the last step. The constant
velocity sequence is similar to the point to point sequence.
However, once the motor is accelerated, it then runs at a
constant velocity for some number of steps until being
decelerated. An example of a point to point application is
the head actuator on a disk drive. The printhead actuator on
a "print on the fly" dot matrix printer is an ideal example

of a constant velocity application.

Figure III-23a is the velocity profile of a typical
point to point move. It consists of six acceleration and two
deceleration steps. The phase error plane corresponding to
this sequence is shown in Figure III-23b. When this sequence
was implemented on the experimental system, the phase error
plane in Figure III-23c was obtained. Because fixed period
stepping is not being used, it is difficult to vary the
times by a constant amount to determine the error. However,
the supply voltage can be used to "tune" the sequence in. By
varying the supply voltage, the current and hence the

torque, vary slightly. Increasing or decreasing the supply
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Analytical current level : 1.50 amperes
Experimental current level : 1.55 amperes

Error : 3.2 %
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voltage will cause the experimental sequence to match the

analytical one.

In Figure III-23c the supply voltage was increased
from 35.40 volts to 36.58 volts. If these values are used in
Equation III-21, an error of 3.2 percent results. Figure
III-23d is the experimental velocity profile for this

sequence.

Figure III-24a is the velocity profile for a
constant velocity sequence. As with the point to point
sequence, the motor is accelerated for six steps. Once
accelerated it is then stepped in to a constant velocity
limit cyéle for forty more steps until it is decelerated
down to zero velocity. The phase error plane for the
sequence is shown in Figure III-24b. The corresponding
experimental phase error plane had an error of 1.6 percent.

See Figure III-24c.

Like the single step and fixed period sequences, the
optimum sequences can also be verified for two phase on
operation. Figures III-25a and III-25b are the velocity
profile and phase error plane for an eight step move with
two phases on. When this sequence was implemented on the
experimental system, Figure III-25c was obtained. With the
exception of the ringout at the end of the move, a good
correlation was found. The ringout is not due to an error in

the model but rather an error in the computer algorithm that
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Analytical current level : 1.50 amperes
Experimental current level : 1.55 amperes

Error : 1.6 %
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Analytical current level : 1.50 amperes
Experimental current level : 1.50 amperes

Error : 0.0 %
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calculates the period of the last step. It is due to the

inductive rise time during the last step.

When stepping with one phase energized, the location
of the magnetic flux vector shifts to its new position
instantaneously. The magnitude at its new location depends
upon the current and inductive rise time. When designing
sequences that minimize ringout, it is the location of the
flux vector that is important, not its magnitude. Stepping
with two phases on causes a problem. Because the location of
the flux vector depends upon the current in both phases, a
change in current will cause a change in the vector’s
location. Consider three adjacent phases A, B and C. Prior
to the last step, phases A and B are on. The equilibrium
point is the mﬁdpoint between the two phases. At the moment
the motor is stepped, phase A goes off, B remains on, and C
begins to turn on. At this instant the flux vector and
equilibrium point is aligned with phase B. As the current in
phase C comes on according to the inductive time constant,
the flux vector begins to slide from phase B to the midpoint

between phases B and C.

This effect means that designing the last step of a
two phase on optimum sequence requires that the motor be
stepped so that it will be on a trajectory that will arrive
at the final equilibrium point at the same moment the sliding
flux vector does. While this is difficult to implement on

the computer, it turns out that experimentally the last step
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Analytical current level : 1.50 amperes
Experimental current level : 1.50 amperes

Error : 0.0 %
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of the sequence can be shortened until a no-overshoot
response is obtained. This is shown in Figure III-25d. For
this sequence it was not necessary to modify the supply
voltage. The experimental velocity profile of the sequence

is shown in Figure III-25e.

Figures III-26 a, b and c repeat the process for the
constant velocity sequence. As with the two phase on point
to point sequence, it was unnecessary to modify the supply

voltage for the sequence in Figure II-26c.

Table III-2 contains the summary of the errors
obtained during point to point and constant velocity

verification.
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Analytical current level : 1.50 amperes
Experimental current level : 1.50 amperes

Error : 0.0 %
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Conclusion

Having verified the hybrid model using single step,
fixed period and optimum sequences, it was seen that a good
correlation was obtained in each case. Table III-2 contains
a summary of the errors found during each of the tests.
Having found all errors to be 4.5% or less, it follows that
this model can be used to accurately describe the hybrid
motor and it can be used to investigate various systems and

configurations that the motor might be used in.

The hybrid model is more complex than the model
Gauthier developed for the PM motor. The dynamic order of
the model is increased because of the inductive nature of
the windings. Several of the other physical parameters are
also more complex. However, they add to the algebraic
complexity, not the dynamic complexity. Even with these
additions to the model, the techniques developed by Gauthier
for both solving the equations and understanding the results
remain basically the same. It just requires that the user
have a strong understanding of the significance of

projecting a higher order model into the phase plane.
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Type of Analytical Period Analytical Period
Stepping Experimental Period Experimental Period
Percent Error Percent Error
| 1 Phase on | 2 Phases on
Fixed Period .00145 sec .00105 sec
with .00150 sec .00110 sec
No Failure 3.3 % 4.5 %
Fixed Period .00110 sec .00079 sec
that .00110 sec .00080 sec
Gains Steps 0.0 % 1.25 %
Fixed Period .00080 sec .00059 sec
that .00080 sec .00060 sec
Loses steps 0.0 % 1.7 %
Fixed Period .00650 sec .00485 sec
at the Local .00640 sec .00500 sec
Natural Freq. -1.5 % 3.0 %
Variable period 1.50 amps 1.50 amps
8 step 1.55 amps 1.50 amps
Point to point 3.2 % 0.0 %
Variable Period 1.50 amps 1.50 amps
40 step 1.53 amps 1.50 amps
Constant 1.6 % 0.0 %
Velocity

TABLE III-2 SUMMARY OF THE EXPERIMENTAL VERIFICATION
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CHAPTER IV

ANGLE ACCURACY AND REPEATABILITY
IN STEPPING MOTORS

Introduction

Having developed a model that will accurately
describe the hybrid stepping motor, this is an opportune
time to digress from the development of the model and use
the model to gain insight into the behavior of the stepping
motor. As stepping motor technology has developed, the
stepping motor has had to accelerate harder, run faster and
position more accurately. Nowhere are these demands more
apparent than in the area of disk storage technology,
particularly in the positioning of the head. To people
working with these applications, the position or angle

accuracy of the motor has become more and more critical.

Angle accuracy is often broken down into two
categories. The first is the ability of a motor to make
uniform, constant steps that vary by no more than a certain
percentage. For example, a five percent 1.8’ stepper is a
motor that steps in 1.8’ increments with a variation of no
more than plus or minus five percent of 1.8’. The second
aspect of stepping motor accuracy is repeatability, often

called angle hysteresis. This is a measure of the ability of
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a stepping motor to move a given number of steps in one
direction, then reverse and move back the same number of
steps to the original position. The hysteresis is defined as
the difference between the starting position and the final
position after the motor has moved out and back without

losing steps, expressed as a percentage of one step.

Hystereéis, as it is used in this chapter, describes
the position error that occurs when a stepping motor
approaches the same stable equilibrium point from two
different directions. It is not the magnetic hysteresis of

the iron in the flux paths, as described in Chapter III.

Causes of Angle Inaccuracy

In a stepping motor the angle accuracy and
hysteresis are determined by two phenomena. The first is the
dead zone, a region around each equilibrium position where
the coulomb friction and stiction exceed the torque
developed by the motor. Once the rotor falls into this
region, it will not move until the torque is increased so
that the rotor’s position is no longer in the dead zone. The
dead zone has an effect on both angle accuracy and
hysteresis. The second phenomenon is the mechanical and
electrical variations due to the stepping motor’s
construction that are found between phases over one

mechanical revolution. This causes the angle between the
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equilibrium positions to vary from phase to phase. The angle

also varies as the motor moves through one revolution.

The Dead Zone

The mathematical model for the stepping motor

developed in Chapter III is based on the following form.

" : . . _ é _
Jo + BO + R S¢I Sin(ae) + D Sin{D A0) = T, T;T (Iv-1)
And
v.=1_ % 4 (R+r.)I - R & Sin(a0) (1v-2)
s ms dt m s bs

The dead zone can be calculated at the equilibrium

position because at equilibrium:

n
o
=3

[<21e0
H tlH O ©®3
"

Therefore, Equations IV-1 and IV-2 result in:

KtSfI Sin(ae) + DtSSin(DmAQ) </= Tf (1v-3)

Where: I = Vs / (Rm+Rs)

The lefthand side of Equation IV-3 is the torque angle curve
for the motor. As long as Ktsfl Sin(aAe) + Dtssin(nmﬂe) remains

less than the friction, the system remains at rest. For a
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given supply voltage Vs' the static torque versus angle
about the equilibrium position can be plotted. See Figure
IV-1. The equilibrium position is defined as the point where

the torque equals zero.

The friction for the system is plotted on the y-axis
(torque). See Point A. A horizontal line is drawn to the
left until the torque angle curve is intercepted at Point B.
Point C on the x-axis is the corresponding angle where the
positive torque developed by the stepping motor equals the
friction in the system. Because friction always opposes
motion, and hence torque, the process can be repeated for
negative torques. A second point where the negative torque

equals the friction can be found. See Point D.

The angle between Points C and D is the dead zone
for this particular motor energized with a given supply
voltage. 1If the rotor lands anywhere within this region, it
will remain at that location because the motor does not
develop significant torque to overcome and move the rotor

closer to the equilibrium position.

It should be noted that the dead zone can be
calculated from Equation IV-3 by solving for © where the

torque angle curve equals the friction.
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TORQUE
Dead zone for Tf
A
B Tf
C [6&—T——| D
ANGLE

THE DEAD ZONE ABOUT THE EQUILIBRIUM POINT

FIGURE 1IV-1
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-1 Tf
Ktst Sin(Ae) + D

) (Iv-4)
tsSln(DmAe)

Because © is measured from the equilibrium position, the

dead zone equals two ©.

Once the dead zone about an equilibrium position is
known, the maximum error in the angle accuracy of the motor
due to the dead zone can be calculated. First assume the
motor is being stepped one step at a time. Each phase has a
dead zone about its equilibrium position. The dead zone for
two adjacent phases is shown in Figure IV-2. If the motor
did not have a dead zone it would step from the phase 1
equilibrium to the phase 2 equilibrium position and the
error would be zero. However, because the motor does have a
dead zone, there is a good chance there will be an error. The
largest positive error occurs under the following
conditions: phase 1 of the motor is energized and the motor
is at rest at the extreme left edge of the dead zone. The
motor is then stepped, turning phase 1 off and phase 2 on.
The motor goes through a transient and comes to rest at the
extreme right edge of the dead zone around the phase 2
equilibrium position. Therefore, the motor actually makes a
move equal to its step size plus one-half of each dead zone.
See Figure IV-2 and Equation IV-4.

A =T _+ l (D

'md sst 2 (Pz1 *+ Dpp) (1v-5)
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TORQUE TORQUE

PHASE 1 PHASE 2

THE ANGLE ERROR DUE TO THE DEAD ZONE

FIGURE IV-2
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= Actual motor displacement
= Theoretical step size
= Dead zone for phase 1

D_, = Dead zone for phase 2

Likewise, the largest negative error will occur when the
motor steps from the right side of dead zone 1 to the left
side of dead zone 2. Tﬁese two worst case examples show that
the motor is capable of making steps of any size between
these two values.

1 ~ 1
Tss = 3(Pg1 * Dpp) </= Ay </= T+ 3(Dyy + Dyp) (IV-6)

If the motor is making a move of more than one step,
the move will equal the number of steps times the
‘theoretical step size plus or minus half the dead zone.

See Equation IV-7.

1 _ _ 1
NT - E(Dzl + DzZ) </= Amd </= NTSS + 5(D

ss 3 + Dzz) (IV=-7)

z1

Where: N = The number of steps

So far the discussion has been with respect to the
dead zone's effect on the accuracy of the step size. The
dead zone will also affect the repeatability or hysteresis
of the motor. If the motor is stepped from phase 1 to phase
2 and back to phase 1, there will usually be some error
between the starting and final positions. This is because
these positions can lie anywhere within the dead zone. The

maximum hysteresis will occur when the motor is initially at
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one edge of the dead zone and, after its move, it is at the
other edge of the dead zone. It follows, therefore, that the
maximum hysteresis at any equilibrium position equals the

dead zone at that equilibrium position.

Up to this point a motor with one phase energized
has been considered. If the motor is being used with several
phases energized, the concepts are still valid. The torgque
angle curve is the sum of the torques produced by the
energized stator phases. The equilibrium point will be where
the torque equals zero. If the phases of the motor are
unbalanced, this point may not be the midpoint between the

two phases.

Construction Variations

Earlier it was mentioned that, in addition to the
dead zone, variation in the construction of the stepping
motor causes a reduction in the position accuracy of the
stepping motor. Depending on the design and construction
techniques used in manufacturing a stepping motor, the
locations of the equilibrium points may vary from stator
phase to stator phase around one mechanical revolution. In
the hybrid motor, this occurs if the stator poles are not
spaced properly. This type of error is usually very small in
the hybrid motor because the stator laminations are stamped

from a die. However, certain designs of the canstack
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stepping motors provide an excellent example of this
problem. Many canstack stepping motors are made such that
each set of teeth are stamped from a separate piece of iron.
During assembly if the teeth are not aligned properly, the
equilibrium positions will not be the proper distance apart.
See Figure IV-3, If there is a variation in the angle
between the equilibrium points, these will be an additional
error in the position accuracy. Figure IV-4 shows the
position error as the sum of the dead zone and the alignment
error. The total position error is shown in Equation IV-8.

1
NTgg = Bp = 3(Dyy + Dyl </= Ang

(1V-8)

- i
</= NTSs + E_ + 3(D + D

r ¥ 3(Py1 * Dyp)

Where: E = Alignment error

The alignment or construction error does not have an
effect on the hysteresis error because the hysteresis is

always measured with respect to the same equilibrium point.

The alignment error can be determined by measuring
the torque angle curves of each of the phases of the motor.
The zero crossing points on the torque angle curve indicate

the equilibrium points.
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ALIGNMENT ERROR

THE ALIGNMENT ERROR IN A CANSTACK MOTOR

FIGURE 1IV-3
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TORQUE TORQUE

PHASE 1 PHASE 2

TOTAL ANGLE ERROR DUE TO THE DEAD ZONE AND
THE ALIGNMENT ERROR

FIGURE 1IV-4
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Measurement Techniques

The angle accuracy can be determined from Equations
IV-4, IV-5, and IV-7. It is necessary to measure the torque
angle curve, and the unmagnetized and magnetized frictions.
When using the equations that determine the errors, it is
necessary to consider the effects of saturation, hysteresis
and eddy currents. Saturation will reduce tke torque angle

curve of the motor and therefore increase the dead zone.

The actual friction can be very difficult to
determine. As mentioned in Chapter III, when the motor is
oscillating in very small amplitudes about the equilibrium
point, the actual friction becomes quite small. This occurs
because the bearings are now riding back and forth on the
lubrication film inside the bearing housing and the balls
are not turning as they would if the motor were continuing

to turn in the same direction.

The hysteresis losses also effect the dead zone
because torque must be developed to move the rotor, which
in turn causes the magnetic hysteresis loop to be traversed.
The size of the hysteresis loop is difficult to determine
while the motor is oscillating about the equilibrium point.
The sine function used with the position error in Equation

III-17 must also be used.

The method currently used most often in the

industry is that of attaching a high resolution optical
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encoder to the stepping motor. The motor is stepped out one
revolution and then back to the starting point. The output
of the encoder is monitored and each step size and location
is recorded. At the conclusion of the test, the largest step

error and hysteresis are obtained.

The fault of this test is that it is a statistical
one. There is no guarantee that the absolute maximum error
will be found. In fact, the phase plane shows that the

maximum errors usually will not be found.

While the mctor is single stepped out and back it
converges on a single step limit cycle. Once the limit cycle
is found, each subsequent step is identical to the one
before it. This is the exact opposite of what is desired by

someone who is looking for the limits of the dead zone.

The limit cycle converges in one of two ways. When
looking at the dead zone about an equilibrium point, the
motor’s trajectory can approach it from four directions, one
in each quadrant. Trajectories that approach from quadrants
I and II can converge to some limit cycle anywhere within

the dead zone. See Figures IV-5 and 6.

The first step always starts at the origin for
simplicity. Subsequent steps alternate on each side of the
limit cycle until the trajectory converges on the single
step limit cycle. Figures IV-5 and IV-6 show that this test

is not going to find the extremes of the dead zone. Rather,
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after the first few steps no new information will be

obtained.

When the trajectory approaches the dead zone from
quadrants III and IV a different phenomencn occurs. This
time the limit cycle converges on one edge of the dead
zone. See Figures IV-7 and 8. Again the first step starts at
the origin. However, each subsequent step moves to the edge

of the dead zone that was closest to the first step.

Under these conditions, the test yields better
results. Still, in both cases the final errors depend upon
where the motor is when the test is started, compared to the
location of the limit cycle. If the motor is already very
close to the limit cycle position, very small errors will
occur. Often when this test is conducted, the motor is
stepped several times to get the motor traveling in the
correct direction before the test is actually started. In
this case, an even smaller error will be detected because
the motor has already begun to converge upon the limit

cycle.

Conclusion

The stepping motor model can be used to determine
the angle accuracy of a stepping motor. It is necessary to
carefully consider the measurement of the model parameters

to be used.
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The model can also show that the test methods
currently used by many yield a statistical result at best,
and in no way measure the actual position error in the

motor under test.
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CHAPTER V

THE HYBRID MOTOR AS A SYNCHRONOUS DEVICE

Introduction

When the hybrid motor was first developed by
General Electric Company, it was designed to be operated as
a synchronous device. It can be run as a two phase motor
energized by two AC voltages ninety degrees out of phase.
When the hybrid motor is operated in this fashion it becomes
a smooth running, low speed device. If a 1.8’ hybrid is run
with 60 Hz AC, the motor will have a shaft speed of
seventy-two revolutions per minute. This makes the motor a

very attractive low speed actuator.

The model just developed, with one modification, can
also be used to describe the behavior of the hybrid motor
when it is being run synchronously. The phase supply voltage
Vs, is replaced with a VSCos Aést and a Vssin Aést term to
represent the AC phase voltages. When displaying the
simulation solution, a new set of state variables will be
defined in the phase plane. Instead of using position error
and velocity, the position error and velocity error between
the rotor and the rotating voltage vector will be used. This
allows the synchronous behavior of the motor to be displayed

in a compact and insightful manner similar to the step
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response of the stepping motor.

Synchronous Model Development

Equation III-18 can be modified to represent the

stator phase circuit with AC excitaticn.

dr v, (R
n s 2 2"
5~ = 7-- Cos(RA6_t -(n-1)3-) - I
dt Lms s P n
(v-1)
2% 8 sin(ae-(n-1)27)
ns p
Where: és= Synchronous velocity
t = Time

This equation, along with the mechanical system
equation, III-19, now represents the hybrid motor when it is
being operated synchronously. The solution to these
equations is obtained by the same numerical simulation

techniques that were used with Equations III-18 and III-19.

Because the input synchronous velocity (AC
frequency és) is known, it is easy to calculate the
position error and velocity error of the synchronous motor.
The position error is the difference between the actual
rotor position and the synchronous velocity times time.
Likewise the velocity error is the error between the rotor

velocity and the synchronous velocity.
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U= a0 - Aést (v-2a)

¥ = ad - Aés (V-2b)
Where: § = Synchronous position error
@ = Synchronous velocity error

The position error and velocity error can be plotted
as X and Y respectively in the phase or error plane. Figure
V-la shows a typical startup transient of the motor. Notice
the initial condition is ¥ = 0 and ﬁ = —és. This assumes
that at t = 0+e, the rotor is aligned with the voltage
vector. The velocity initial condition assumes the rotor is
still stationary. However, the voltage vector has just begun
to rotate at synchronous speed. It will be shown later what
occurs when other initial conditions are used. Starting at

¥ =0 and ﬁ = —és, the motor goes through a transient and

comes to a point, ¥ = y and ﬁ = 0 in the plane. This
corresponds to the motor having reached steady state
velocity or synchronous speed. The rotor is trailing

the voltage vector at some angle. This angle is often called
the power angle. It is at this angle that the motor load
equals the torque produced by the motor. The point

U=y, ¥ =0 is a stable equilibrium point in this plane.

In addition to plotting the position and velocity
errors in the error plane, it is also possible to plot the

currents in a current plane. By plotting the current in one
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phase versus the current in the other phase, it is possible
to investigate the current transients. See Figure V-1b. In
Figure V-1b the response has an initial condition of I
equal to 1.5 amperes and I, equal to 0.0 amperes. The
currents go through a dynamic transient and converge on a

forced oscillation due to the excitation voltages.

Returning to Figure V-la and considering that the
motor has a sinusoidal torque angle curve, it follows that
there is an uastable equilibrium point as well as the stable
equilibrium point in the error plane. In addition, there are
separatrices that travel through the state space and
terminate at the unstable equilibrium point, and there is a
zero slope isocline that separates regions of positive

acceleration from regions of negative acceleration.

To simplify the calculation of the equilibrium
points, separatrices and zero slope isocline, it would be
advantageous to develop a second order model that describes
the synchronous motor error plane. Because the majority of
hybrid motors are four phase unipolar or two phase bipolar
designs, the second order model will be developed for that
motor design. It is then possible to follow the same

approach for motors with a different number of phases.

For this motor the stator winding equations are:
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ar; v . R, + R
FE 7 g oSOt - I (—Fgm—-) - g2 gt

(v-3a)

(V-3b)

- =22 & cosae

For the two phase hybrid motor design and many synchronous
motors, the mutual inductive term approximately equals zero.
Therefore, the following equations describe the phase

currents for the synchronous motor.

drl vs R R, + Ry .
3E- = - CosA8 t - I,(-3---T) + K, c© Sin ae (v-4a)
ms ms
dr \ R, + R
2 _ 7S a:aa s m &
3" = g Sinab t - I (-%---T) - Ry Cos ae (V-4b)

ms

When the motor is traveling at or near synchronous
speed, both the back EMF voltage and the AC excitation
voltage are sinusoids at the same frequency but at different
phase angles. Consequently the phase currents can be assumed
to be nearly sinusoidal in this region. While this seems
like a gross assumption, several simulations will be shown

later where this assumption has not been made and the
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results agree quite closely. Based on this assumption, it is
possible to consider the currents as phasors. The currents
will be related to the drive voltages by some amplitude

ratio and phase angle.

Let: Rt = Rs + Rm

From Equation V-2a: W:E A6 - 2O t

————————————— L__aé
. A s _ /o2 2 ,2:2 -1 "ms”"s -
And: Ry + LmsAesj BV Ry + Los? es /Tan N (V-5a)
L A8,
Tan y_ = -25-_8 (V-5b)
e Rt

Using these identities and placing Equations V-4a

and V-4b in a phasor format yields Equation V-6.

_ Vg Cos(adie-y.) + xbs(§+es) Sin(ad_t+g-v,)

13 = =Se-mmmm—=Seezioooooiooe- (v-6a)
/32 27,232
vV Rt + LmsA )
. A 4o _ g . . .
. Vs Sin(A® t-y ) - K (3+6 ) Cos(A t+y-y ) o
27 /23T (v-6b)
IV Rt + LmsA QS

For this two phase motor, the stator torque portion

of Equation III-19 can be rewritten in the following form.

T(8) = Ktsf(Ilsin A6 - IZCOS A0) (v=7)

Substituting for I and I, yields:
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(v-8)

I sin(a8_t+y-v,) SinA® + Cos(a6_t+y-y,) Cosae |

Which reduces to:

(v-9)

- Cos(AQ-AQSt-¢+ve)

(v-10)
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The torque equation shown in V-10 has two
components. The first term is due to the power angle or the
angular difference between the location of the rotor and the
synchronous magnetic field. The second term is a back EMF
term which results because the voltages induced in the
stator phases cause currents to flow which reduce the torque

in proportion to motor speed.

Equation V-10, in conjunction with the remaining terms
in Equation III-19, forms a second order differential equation

that describes the synchronous hybrid motor.

a% Bp + By . n " Th §
S5 = =(Pog-t) 8- (BB L8
dt 18]

(v-11)

bs'A""s S o
- -s-s 2222 - -<2 sin(D_a®)
J 2 2,2 J m
A(Rp+ Lo A o)

Equation V-11 can be completely rewritten in terms
of P, the synchronous position error as shown in Equation

v-12.
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2 B+ B . ro+r (%d)
av_ m'3"§) A(§+gs) - (_E_s__E) a2 80
at B,

1x+6g!

- sin(m+ve) (v-12)

The effects of saturation, hysteresis and eddy
currents have been included in this derivation for the sake
of consistency with the hybrid model. This AC model can be
used to study the performance of other designs of
synchronous devices. In those cases it is necessary to
determine the magnitude of the saturation, hysteresis and
eddy currents. If they are to be included, Equations V-6a
and V-6b must be evaluated to determine the current in each
of the windings. The saturation and saturation slope factors

(Sf and ss) can then be determined.

Equation V-12 has equilibrium points or
singularities which can be found by assuming that the motor
has reached steady state and the rate of change of error is

zero. This results in Equation V-13.

0= - (Bm+ Bh)AQs - (Tm+ Th)A
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(v-13)

Where: ¥ = ¥y and ﬁ = 0 defines the equilibrium point.

In Equation V-13 the detent torque is temporarily
ignored. The detent torque can be considered as a sinusoidal
disturbance to the system at some multiple of the drive
frequency. This multiple is Dln and depends upon the magnetic
design of the motor. The effect of the detent torque will be

considered in a later section.

The singularities can be found by solving for U in

Equation Vv-13.

=1 ] - :
¥ = sin f I(By+ BAS, + (To+ T,)A
K, A8 R
+ K.S, __595_25_575-1 (v-14)
res 12 2%2

These equilibrium points exist in pairs +/- 2~
electrical radians apart. They are the steady state

operating points of the system. They can be stable or

—-
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unstable, as was the case with phase plane for the stepping
motor. Stable and unstable singularities also alternate in

this phase plane as they did for the stepping motor.

Having developed the second order model, it is now
possible to easily calculate the equilibrium points, the
separatrices and the zero slope isocline. The fourth order
model in Equations V-1 and III-19 can still be used to
calculate the dynamic response of the synchronous motor. The
resulting trajectory is projected back into the error plane
just és it was for the motor when it was being stepped. As
with the stepping motor, the separatrices are used to

demonstrate the failure modes of the synchronous motor.

Results of the Synchronous Model

Figure V-2 is the phase plane plot for a 1.8’ hybrid
motor running as a synchronous motor with a drive frequency
of 100 Hz. Position error in radians is plotted versus
velocity error in radians per second. The zero slope
isocline is the sinusoidal curve. This function is periodic
and repeats every 2~ radians. In the region below the zero
slope isocline, the trajectories have a positive slope and
the motor accelerates. Above the zero slope isocline, the
slope is negative and the motor decelerates. Notice that
unlike the zero slope isocline for a stepping motor, this
zero slope isocline is shifted downward. This occurs because

of the damping loads present at synchronous speed.
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Also shown on this plot are four separatrices. The
separatrices divide the plane up into regions about a stable
singularity as they did for a stepping motor. In Figure V-2,
the two separatrices nearest to the middle of the plot bound
2 region where trajectories travel to the stable singularity
at (-.64, 0.0). Outside of that region the trajectories go
to another stable singularity. As time increases, in the top
half plane the trajectories travel to the right and in the

bottom half plane they travel to the left.

The trajectories represent the solutions to the
synchronous motor equations for an initial position and
velocity error. The four trajectories shown start with an
error of +/-4 radians and an initial velocity error of
+/-2000 and +/-3000 radians per second. The upper portion of
the plane represents a region in which the motor is running
faster than the drive frequency, and the bottom half of the
plane is the region in which it is running slower. The
equilibrium point shown at approximately -0.64 radians is
the steady state operating point for the motor. After all
the transients die out, the motor operates with a position

error of 0.64 radians at 100 Hz excitation frequency.

If the drive frequency is increased, it is possible
to obtain an entirely different phase plane. See Figure Vv-3.
In this phase plane the drive frequency is increased to 250

Hz. The separatrices in the lower half plane now wrap around
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below the stable singularity and come back up into the top
half of the phase plane. This creates regions in the phase
plane that do not contain a stable singularity. Therefore,
it is possible to have an initial condition for a trajectory
that nevers lead to a stable singularity. This is the
condition where the load is large enough or the drive
frequency is high enough so that the motor is unable to gain
synchronous speed. Instead the motor goes through a
transient and eventually comes to rest at some position

while the voltage vector continues to rotate.

Figures V-2 and 3 were developed using the second
order model to calculate the trajectories, separatrices and
zero slope isocline. While this model doesnot always
accurately describe a synchronous motor because of the
restriction that the velocity must vary slowly compared to
the drive frequency, it still provides good insight and
understanding about the different characteristics that the

synchronous motors have.

In order to obtain results that are a bit more
exact, the trajectories will be calculated using Equation
V-4. Because this is the actual winding equation there is no
restriction on how the velocity may vary. The second order
model will still be used to calculate the separatrices and

the zero slope isolcine.

The remainder of this chapter will consist of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162

Ji= 3,25 TF= 1.81 ST= 0.00 B= 11.80m KT= 78,00
DTR=  0.00 DTRM= 4.00 KB= 448.80m VR= 5.40 IR:= 1.50
Ri=  3.60 LNz 20.00mPHZE= 4.00 STPR= 200.00

VS= 35.40 RS= 20.00 RF= 0.00 STs= 1.00 PHO= 2.00
EQTQ=N FD=n FDL=n WRU=N DRTP=1
DVF@= 250.00

~‘hQ..--—-—--
v
ce S —
o
¢ 1
1
rh N
v " LT,

s / \\\

’ ..
E s / y
R
" /

o 1 \
R \

-4 -2 0 2 4

POSITION ERROR RADIANS

A SYNCHRONOUS PHASE PLANE AT 250 Hz

FIGURE V-3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



163

investigation of several different phenomena that occur
during the various modes of synchronous motor operation.
Startup, reversal and detent torque, as well as the AC zero
work curve and parameter variations will be discussed. The
same motor, load and drive that was used in the verification
of the hybrid model in Chapter III will be used in the

discussion in this chapter.

Start-up

Figure V-4 shows the phase plane for the same motor
and drive frequency that was used in Figure V-2, only now
the motor is starting from rest. The initial position error
is zero gnd, since it is at rest, there is a negative
velocity error equal to 2~ times 100 Hz or 628 radians per
second. The motor goes through a transient of over- and
under-shooting the stable equilibrium point before it pulls
into synchronous speed. At synchronous speed the motor lags
the voltage vector at a power angle of -0.64 radians while
rotating at a constant velocity equal to the drive

frequency.

Figure V-5 displays the same motor starting from
rest at an excitation frequency of 200 Hz. This increase in
frequency causes the separatrices in the lower half plane to
move much closer together and to move closer to the origin,

while the separatrices in the top half plane move only
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slightly closer together. As the drive frequencey of the
motor increases, the start-up transient has larger velocity
and position error overshoot. The trajectories during
start-up fall entirely within the separatrices so that no
failure can occur. Thus in Figures V-4 and V-5 the motor
will start and come up to speed without a problem. Figure
V-6 shows that only a slight increase in the drive frequency
to 225 Hz causes the the separatrices to pinch off in the
bottom half of the plane. Figure V-7 shows a further
increase in the drive frequency causes the pinching off to
grow. Note, however, that the trajectories still lie within
the separatrices so that the motor still obtain synchronous

speed without incident.

In Figures V-4 through V-7 the start-up transients
for various speeds are shown. It was assumed that the rotor
was aligned with the voltage vector at t = O+e. This is not
always true and the error plane can be used to investigate
the start-up transient from various initial conditions. In
Figure V-8 at a motor excitation frequency of 100 Hz, the
start-up transient is shown for several initial errors.
These represent different rotor positions relative to the
drive voltage vector and can all occur for a given drive
frequency. The initial error can be any value from -2~ to
+27. The initial position of the voltage vector is always
¥ = 0. At a drive frequencey of 100 Hz the motor pulls

into synchronous speed from any of the initial conditions.
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In Figure V-9 the drive frequency is increased to 200 Hz.
Notice that two Bf these initial positions lead to the
stable equilibrium point. The other trajectory is across a
separatrice and travels to a different stable equilibrium
point causing a negative position error. This indicates that
the motor is able to come to synchronous speed for all
initial conditions. However, for some initial conditions the
rotor will "slip" one cycle of the torque angle curve before

it gains synchronous speed.

The trajectory that "slips" has an initial condition
outside of one of the separatrices. This indicates that
before the motor even starts, it can be determined that it
will fail to start. The trajectory then crosses and
recrosses the second trajectory before pulling into the
singularity at -8.0 radians. The cause of this crossing and
recrossing is the assumption made about the rate of change
of the velocity of the motor when developing the second
order model. In this case the variation in the velocity
leads to an inaccuracy in the results when the second order
model is used to calculate the separatrices. Because of this
inaccuracy the separatrix can not always predict the exact
point of failure. However, any time the trajectory is in a
region close to the separatrix, it becomes a point of
serious concern because a minor variation in a system

paramater could greatly affect the response of the system.

In Figure V-10 the start-up transients for the same
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initial conditions are shown again except the drive
frequency has been increased from 200 Hz to 250 Hz. In
Figure V-10 the motor does not always pick up because the
trajectories which now fall outside the separatrix never
lead to a stable singularity. Consequently, the motor is not
able to come up to synchronous speed from all initial
position errors. While it appears that the motor should be
able to pick up easily if the position error is equal to
zero, at other initial positions the response lies totally
outside the separatrices. When this condition occurs the
motor follows a trajectory that has an average velocity
error equal to minus synchronous speed, i.e., zero velocity.
It oscillates slightly about this point due to its reaction

to the flux vector that continues to rotate.

If the rotor is aligned with the flux vector, it is
also possible to determine the maximum drive frequency at
which the rotor will pull into synchronous speed. This is
shown in Figure V-11. It is the speed where the initial

condition and the separatrix just coincide at ¢ = 0.

Reversal

Figure V-12 shows a reversal sequence for excitation
frequency of 160 Hz. During start-up the motor starts from
rest and goes to some initial equilibrium point shown at a

location of -§ radians in the phase plane. On reversal,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



173

Ji= 3,258 TF=  1.61 ST= 0.00 8= 11.80m KT= 78.00
DTR=  0.00 DTRM= 4.00 KB= 448.80m VR= 5.40 IR= 1,50
R=  3.680 LN= 20.00mPHZE= 4,00 STPR= 200.00

V§= 35,40 RS= 20,00 RF= 0.00 STS= 1,00 PHO= 2.00
EQT@=N FD=N FDL=N WRU=N DRTP=1
DVF@= 250,00

e e g S ——
0N BNy
b TR S
gy e
4000 Sl \~-¢3:“~:‘\ st
v \‘\:\:\ _J_l \ *::}\
I e e R s o R
P ~~h 1 [N
e? N
1 . N, I
la \ N
LI VY
A S \\\ lll \\\
o I\ /, “\ 'y
R S -2000 N RISLIpR
E N1 i
R
5o ~L_
R |
4000 ) ;
4 \\ |
~0000 T T T T T T L
-10 -8 -5 -4 -2 [ 2 4

POSITION ERROR RADIANS

SYNCHRONOUS START-UP AT 250 Hz FOR
VARIOUS INITIAL CONDITIONS

FIGURE V-10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



174

Ji=  3.25m TF= 1.81 ST= 0.00 8= 11.80m KT= 78.00
DTR=  0.00 DTRM= 4.00 KB= 448.80m VR= 5.40 1IR= 1.50
RM= 3.60 LM= 20.00mPHZE= 4.00 STPR= 200.00

VS= 35.40 RS= 20.00 RF= 0,00 STS= 1.00 PHO= 2.00
EQTa=N FD=N FDL=N URU=N DRTP=1
DVFa= 275.00

8000
| SE—
AN\
i B | = *S—— S ——
v \ e
fe ed S S
L el W [ (O
D
c
1
! A
T N
Y
s
/7
£
S
R E
R
c
g
R
\ /
b T 1 T I

-4 -2 0 2 4

POSITION ERROR RADIANS

MAXIMUM SYNCHRONOUS START-UP FREQUENCY

FIGURE V-11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Jiis  3.25a TFe 1,01 S§T=  0.00 8= 11.60m KT= 78.00
DTR=  0.00 DTRM= 4,00 Kiw 448.60m VRs S.40 1R 1.S0
Rii=  3.60 Lhs 20.00mPH2E=  4.00 STPR= 200.00

Vé= 35.40 RS= 20.00 RFs 0.00 $TS= 1.00 PHOw 2.00
EQTa=n FD= FOLepy URU=sf DRTP=1
DVFG= 160.00

T -
1 ~——
4 / \ \\.
\ “~
v ,/ \ RN
€ R 2000 7 '\ >
L / /\’—\ \\\
] \,
c® 4/ N
1 ! l \\\
T : o \[\ kN
M s ‘\‘ ll\\‘
7 N\ \,
€ . Y \
RS N / \
N € N J A\,
c _— AN\ \ B
0 ~-2000 < N > f <<
R N Oy =" / S
ST
J e i
\.__L_’__,—"‘ ) el
\ / ™
Ratad i T I I

-4 -2

Q
~N
>

POS1TION ERROR RADIANS

MAXIMUM NO-SLIP REVERSAL FREQUENCY

FIGURE V-12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



176

the position error initial condition now occurs at plus ¥
and the rate of change of error (@) is minus 2 times the
synchronous speed, or -28s. This puts the system just inside
the separatrix so that after the reversal transient, it
comes back to the equilibrium point at -J. However, now it

is operating in the opposite direction.

Notice that the trajectories cross in this phase
plane. This is the same condition that occurs in the higher
order stepping motor phase plane. During the startup
transient the position and velocity coordinates are

identical while the currents have different values.

In Figure V-13, a reversal is shown for a higher
synchronous speed in which the motor fails to pick up at the
original equilibrium point but does pick up at some later
equilibrium point after having slipped one cycle of the
torque angle curve. In Figure V-14 the system is being
operated at a still greater speed during a power reversal
which causes it to fall outside the separatrices. The
separatrices pinch off and consequently the motor fails to
execute this power reversal. This occurs at a drive

frequency of 220 Hz.
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The Zero Work and Torque Speed Curves

In addition to using the synchronous phase plane to
investigate the dynamic performance of a synchronous
permanent magnet motor, it is also possible to gain other
insights into the performance of these motors from the model

developed.

In Figures V-15, 16, and 17 several phase planes are
shown for various synchronous speeds. These are freguencies
above which the motor can pull in and it is necessary to
ramp the motor up to these speeds. The shaded area shows
regions in the phase plane where trajectories will never
come to an equilibrium point. At these higher drive
frequencies, the regions of synchronous operation of the
.motor become smaller and smaller. In Figure V-17 the region
of operation is quite small compared to the entire plane.
Most of the plane is occupied by trajectories for which the

motor will not run at synchronous speed.

It is possible to combine a series of error plane
plots at various speeds as in Figures V-15 through v-17,
into one more compact plot. By calculating the stable and
unstable equilibrium points at many synchronous speeds for
the same system, a zero work curve (ZWC) for the motor can
be developed. See Figure V-18. At any speed on the vertical
axis, the position error coordinates for the stable (right

curve) and unstable (left curve) equilibrium points can be
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calculated and plotted. The name zero work curve was taken
from stepping motor terminology and signifies that while at
a steady state velocity, the net work done on the rotor by

external forces equals zero.

The peak of the curve is the point where the load,
friction and damping equal the torque generated by the
motor, above which the motor is unable to travel any faster.
Thinking back to the phase error planes that the ZWC curves
came from, the distance between the stable and unstable
curves can be used as an approximate measure of the size of
the region surrounding the stable equilibrium point. The
larger the area of the stable region about the stable
equilibrium point, the larger a disturbance must be to push
the motor outside this region. Therefore, the distance
between the two curves at a specific speed in Figure V-18

yields an insight to the relative sensitivity of the system.

While this curve is not identical to the ZWC curve
for the stepping motor, it is quite similar. The ZWC for the
stepping motor is the midpoint of the step for a single step
limit cycle at a particular step rate. At low speeds the
stepping motor is fundamentally being driven by a voltage
square wave while, the synchronous motor is being driven by a
sine wave. This, combined with the nonlinearities of the
system, causes the stepping motor’s ZWC to differ slightly
from the ZWC of the synchronous motor. However, as the speed

is increased, the back EMF and inductance cause the currents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



185

in the stepper and synchronous motor to become similar and

the differences between the two curves is minimized.

Even with the low speed differences, the ZWC in both
cases still defines the stable equilibrium or lag angle at
any speed. The peaks of the curves represent the maximum
speed of the system; and the horizontal distance between the
stable and unstable curves yields a general idea of the
system’s sensitivity to external disturbances. Because of
these characteristics, the ZWC can be used as an aid to
understanding the effects of variations in the system

parameters.

The ZWC curve was developed from Equation V-12 in
the steady state. If Equation V-12 is rearranged slightly it
is also possible to calculate the frequency and damping
ratio for small oscillations about the stable equilibrium

point. See Equation V-15.
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(V-15)

Taes+ %I

DtSA .
+ -37- Sin(D (A6 t + 7))

In Equation V-15 the U terms and the ésterms have
been grouped. The first two lines of V-15 are the dynamic
portion of the equation. The second two lines represent a
load torque that remains constant for a particular
synchronous speed. The last term, the detent torque, takes
the form of an external disturbance.

Simplified, Equation V-15 has the form of:

T+

-7+ sin(Q+y) (V-16)

al sl
aliw|

K
3

Where: T = External torques

J = Inertia
B = Effective damping coefficient
K = Effective spring constant

Equation V-16 can be linearized for small
disturbances about ¥ and a second order linear transfer
function can be developed. This transfer function is of the

form:
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S S (v-17)
T

Where : W, = Natural frequency

= Damping ratio

T o=v-y

Returning to Equation V-15 and equating the terms in
V-15 to the terms in V-17, expressions for the natural
frequency and damping ratio can be obtained. See Equations
V-18 and V-19. Note that the Cos(U+y) is used in Equation
V-18. This is the slope or stiffness of the torque angle

curve about the stable equilibrium point, ¥ = y.

/ Ktsf
W=/ -5E —-= Cos(P+v,) (V-18)
/ 2
A\ s
Gat P, Refe Fasfr
R+ LmsAzéz
s = T (v-19)
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) - -
|Aes+ 7

Dy A ;
+ -5 Sln(Dm(AeSt + 7))

From Equations V-18 and V-19 it is possible to plot
the natural frequency and damping ratio as a function of
speed. See Figure V-19. It must be remembered that these
values are exact only at the equilibrium point about which
the system was linearized. As the position error moves from

the equilibrium point the values will become inaccurate.

As seen in Equations V-18 and V-19 and Figure V-19,
the natural frequency and damping ratio also depend upon the
synchronous drive frequency. Once calculated they will only
be valid for a small, local variation in the drive

frequency.

Reeping in mind that the local natural frequency and
local damping ratio are dependent upon the drive frequency
and equilibrium point, considerable insight into the
response of the system at higher synchronous speeds can be
obtained. In particular, the frequency, amplitude and rate
of decay of any oscillations that are a result of external

disturbances can be determined. From Figure V-19 it can be
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seen that as the drive frequency, increases both the natural

frequency and the damping ratio decrease.

Having developed expressions for the local natural
frequency and local damping ratio for any point on the 2zWC,
it is also possible to determine the maximum torque the
motor can develop at any speed from the ZWC. Returning to
Figure V-18, it was noted earlier that the peak of the ZWC
is the point at which the load torques equals the torgue the
motor is able to develop at that speed. If the friction
torque is increased in discrete increments and the peak of
the 2WC is recalculated for each increment of friction
torque, it is possible to plot the torque versus the peak

speed of the 2WC for each torque. See Figure V-20.

This curve is referred to as the slew torque speed
curve for a synchronous permanent magnet motor. It
represents the maximum friction load the motor can move in
the steady state. However, it does not include the inertial
torques developed during a dynamic transient. Even with this
limitation the torque speed curve is widely used in industry

as an evaluation and design tool.

In addition to plotting the torque versus speed, it
is also possible to plot the position error coordinate of
the peak of the ZWC for each of the points on the torque
speed curve. This resulting curve is shown in Figure Vv-21

along with the ZWC. This new curve could be called the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



191

dh=  3.25m TF= 1.61 ST= 0.00 8= 11.80s KT= 78.00
DTR=  0.00 DTRM= 4,00 KB= 448.80m VR= S.40 1Rs 1,50
Ri= 3,00 LN= 20.00mPHZE= 4.00 STPR= 200.00

V§= 3S5.40 RS= 20.00 RF= 0.00 §TS= 1,00 PHO= 2.00
EQTG=N FD=ny FDL=p URV=py DRTP=1
DVFa=  2.7Sk

125
4 -
] -
L 100—+
o -
u ]
T 4
T B
o -l
R 4
Q =n. §
u s¢
E -
[ -
z 235 \
1 .
n ] — |
S rrTrrirrrrrfrrrrprroa
] 5000 10000 15000 20000

VELOCITY RADIANS/SEC

THE TORQUE SPEED CURVE FOR THE SYNCHRONOUS
PHASE PLANE

FIGURE V-20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



192

Ji= 3.2Sm TF=  1.61 S§Te 0.00 8= 11.80m KT= 78.00
DTR®= 0.00 DTRM® 4,00 KB= 448.80m VR= S.40 1R= 1,50
"Rfi=  3.60 LM= 20.00sPHZE= 4,00 STPR® 200.00

V= SS.AO RS= 20.00 RF= 0.00 S$TS®= 1,00 PHO= 2,00
£QTa=n FD=n FDL=f VRU=N DRTP=1
DVFa= 2.75k

20000
v J
€ -
L 4
: i / \
C 15000
1 -
T o
Y -
R 10000
L}
) .
: 4
a 4
" 4
s S000
/ 4
£ -
£ ..
[4 o

~ I~~~ \
he TTTT CTTT TUTT Tt Lt

-s -4 -3 -2 -1 o

POSITION ERROR RADIANS

THE ZERO AND MAXIMUM WORK CURVES FOR THE
SYNCHRONQUS PHASE PLANE

FIGURE V-21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



193

maximum work curve (MWC) because it represents the
equilibrium point at which the motor is moving the maximum

possible load torque for a given drive frequency.

Parameter Variations

Once a motor and drive for a system have been
selected, their parameters usually vary only a slight
amount. It is friction, damping, and inertia of the load
that may vary widely. In order to gain insight into these
effects, it would be beneficial to vary those parameters and
look at the resulting phase error planes, ZWC and MWC,

torque speed, natural frequency and damping ratio curves.

Figures V-22 through V-24 show the effects on the
phase plane of increasing friction. The equilibrium points
move closer together and the zero slope isocline moves down
in the phase plane. As one might expect, the increase in the
friction reduces the torque available to accelerate the
motor. This results in a smaller region of positive
acceleration. Except for the inner most separatrix in the
quadrant III, the separatrices move further away from the
stable equilibrium point and each other, causing the regions
around the singularities to grow. This increase makes the
system less sensitive to external disturbances. In quadrant
III the trajectory and the inner most separatrix move closer

together as the friction is increased. This decreases the
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maximum frequency the system can start at without failure.

Figure V-25 through V-27 show the work curves,
torque speed, natural frequency and damping ratio for the
various values of friction. The increase in friction causes
a reduction in the maximum speed of the system because there
is less torque available to accelerate and maintain high
velocities. The torque speed curve shows a constant change
between the curves equal to the increase in the friction, as
expected. The local natural frequency and damping ratio have
the same general shape, just a different velocity scale.
This is also expected because the natural frequency and

damping ratio are not functions of the friction.

Figures V-28 through V-33 show the effects of
increasing damping. As with the friction, the equilibrium
points move closer together and the zero slope isocline is
shifted downward. The separatrices also move further away
from the stable singularity. The zero work curves show the
same decrease in maximum speeds. The torque speed curves
separate as the speed increases due to the increase in the
damping torques with speed. As was true for the friction,
the damping has a very small effect on the natural frequency
and the damping ratio. This is because the first portion of
Equation V-19, which contains B, is small compared to the
second term which is the electrical damping due to the back
EMF. In general the response of the motor to increases in

damping is just about the same as it is for the increases
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in friction.

Figures V-34 through V-39 show the effects of
increasing the inertia. Inertia has the most pronounced
effect on the response of the system. The separatrices move
closer to the zero velocity error axis and pinch off.
However, the equilibrium points remain stationary and the
zero slope isocline does not change. The trajectories show
much more oscillation due to the increased inertia. The
system has a much harder time coming up to synchronous
speed, but once obtained, the motor is less sensitive to
external disturbances. The work curves and torque speed
curves show no difference between the different inertias.
This is expected because the work curves and torque speed
curves are steady state concepts and the inertia, while
greatly affecting dynamic response, has no effect on the
steady state response. The natural frequency and damping
ratio show significant changes. This would also be expected
because Equations V-18 and V-19 are highly dependent upon the

system inertia.
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Detent Torque

When the model for the synchronous motor was
developed, the detent torque was neglected. Because the
detent torque is produced by a magnetic interaction with the
stator and is dependent upon the mechanical structure of the
motor, it looks like a periodic disturbance to the rotating
mechanical system. The frequency of the detent torque
depends upon the motor speed and the structure of the motor.
The actual frequency is the product of the motor velocity
and the number of cycles of the detent torque angle curve

during one cycle of the stator torque angle curve.

The effect of the detent torque, or any similar
periodic disturbance, is easily seen in the phase plane.
Figure V-40 is the start-up transient at 50 Hz with the
detent torque equal to zero. Figure V-41 shows the same
start-up transient with a detent torque of 5.5 oz-in. The
figure shows that, instead of the system settling in at the
stable equilibrium point, it settles into a limit cycle
about the stable equilibrium point. The size of the limit

cycle is +/-0.2 radians and +/-200 radians per second.

This limit cycle occurs because, to the system, the
detent torque appears to be a torque oscillation that causes
the stable eqﬁilibrium point to vary slightly about the
original stable equilibrium point. The motor tries to track
to the varying equilibrium point and as a result, settles

into the limit cycle.
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If the detent torque is removed and the drive
frequency is increased to 200 Hz, the phase error plane in
Figure V-42 is obtained. If the detent torque is returned to
the simulation, the response shown in Figure V-43 obtained.
Again a limit cycle is formed; however, the amplitude is
reduced to +/-0.05 radians and +/-50 radians per second,

about one-quarter of the size of the 50 Hz limit cycle.

A second way to look at and explain this limit
cycle, as well as the change in the limit cycle amplitude,
comes from linear system theory. As was stated earlier, the
synchronous model can be linearized for small regions about
the equilibrium point. In this small region which contains
the limit cycle, the motor can be thought of as a linear,
second order system. The detent torque is a periodic input
of some amplitude and frequency. The motor responds to the
detent torque just as any second order system would respond
to the periodic input. It oscillates at an amplitude and
phase determined by the system’s Bode plot. There is some
break frequency where the maximum oscillation amplitude

occurs and then the amplitude falls off at 20 db per decade.

Using this approach it is possible to calculate the
amplitude of the limit cycle due to the detent torque at any
drive frequency. Figure V-44 shows an expanded view of the
lower portion of the natural frequency and damping ratio

curves. At a drive frequency of 50 Hz the natural frequency
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equals 1316 radians per second and the damping ratio equals
.1625. If Equation V-17 is evaluated with these values and a
detent torque of 5.5 oz-in, the amplitude of the error and

error velocity response can be obtained.

At a 50 Hz drive frequency:

wn = 1316 radians/sec
S = .1625

Therefore:

¥ = .2185 radians
o4 = 287.5 radians/sec

Likewise at a 200 Hz drive frequency:

wn = 1093 radians/sec
5 = .098

Therefore:

¥ = .05 radians
ﬁ = 65.8 radians/sec

These values correspond well with the amplitudes obtained

from the limit cycles in Figures V-41 and V-43.

In addition to the detent torque, other inputs like
impulses and steps behave according to linear system theory
as long as they cause only "small" disturbances about the

stable equilibrium point.
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Multiple Drive Frequencies

All the dynamic characteristics discussed up to this
point have involved a motor that is being driven at a single
drive frequency. In many applications it may be necessary to
operate a motor at more than one drive frequency. This
method of operation can also be shown in the error plane.
Figure V-45 shows the error plane of a motor that starts
from rest with a drive frequency of 100 Hz. The motor’s
initial condition is ¥ = 0.0 rad and @ = -628.3 rad/sec.

The motor goes through a transient and settles in on the
stable equilibrium point located at ¥ =.64 rad and ﬁ = 0.
rad/sec. This response is similar to several that were

shown earlier.

After .05 seconds the drive frequency is increased
to 150 Hz. This appears as an instantaneous shift in the
velocity error equal to minus the change in the drive
frequency. See Figure V-45. The motor goes through a second
transient and converges on the stable equilibrium point at a
new location. The location of the stable equilibrium point
changes because an entirely new error plane is obtained when

the drive frequency is increased.

The drive frequency is increased to 200 Hz after an
additional .05 seconds and the motor goes through a third
dynamic transient converging toward a third equilibrium

point. In this manner it is possible to use the error plane

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



223

Jis 3.25m TF= 1.61 S§T=  0.00 8= 11.80s KT= 78.00
DTR= 0.00 DTRM= 4.00 KB= 448.80m VR= S.40 IR= 1.50
RM=  3.60 Lh= 20.00mPHZE= 4.00 STPR= 200.00

VS= 35.40 RS= 20.00 RF= 0.00 §TS= 1.00 PHO= 2.00
€ara=n FD=n FDL=N URU=N DRTP=1
DVF@= 200.00

NN

200 /; N
g ! >\\
HAN
:j 1 \

s N
: AN

800

At I 1 1 I I 1 I
-1.4 -1.2 -1.0 -0.8 -0.6 ~0.4 -0.2 0.0

POSITION ERROR RADIANS

A MULTIPLE DRIVE FREQUENCY ERROR PLANE

FIGURE V-45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



224

to demonstrate the dynamic characteristics of a motor being

driven at several different frequencies.

Conclusion

The phase error plane can be used to represent the
dynamic behavior of the synchronous motor in much the same
manner as it was used with the stepping motor. While an
understanding of the stepping motor phase error plane helps,
it is by no means necessary to the understanding of the
synchronous phase error plane. The synchronous phase error
plane can be used to investigate many of the problems
encountered by the user of the synchronous motor, as well as

aid greatly in design applications.

In general the phase plane’s strength lies in it
ability to display a great deal of information in a compact

yet informative manner.
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CHAPTER VI

MID-FREQUENCY RESONANCE

Introduction

As the requirements of stepping motor applications
have become more demanding, the application engineer has had
to continually increase the level of performance of stepping
motor and drive. One of the limitations often encountered is
the phenomenon in which a motor behaves as though it is
dynamically unstable. This is characterized by position and
velocity oscillations that grow rather than decay, usually
growing until they are large enough to cause the motor to
lose synchronism with the drive commands. This phenomenon
usually occurs at a drive frequency of about half the
motor’s maximum speed and is called mid-frequency resonance

(MFR) .

The drive frequency at which MFR occurs strongly
depends upon the entire motor load and drive configuration.
Changes in any of the system parameters, including inertia,
damping, supply voltage and the drive configuration
(constant voltage, constant current, number of phases
energized, step size) will affect the frequency at which MFR
occurs. It is possible to vary some of these parameters to

"move" MFR to a different frequency so that it does not
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interfere with a particular applications operation.
Traditionally, it has been the drive that is most easily

modified to vary the location of the MFR.

Mid-Frequency Resonance

Figure VI-1 shows the velocity profile of a stepping
motor being ramped in quantized increments. The motor is
started at 1000 steps/sec, and every 50 msec the drive
frequency is increased by 400 steps/sec. Each time the drive
frequency is incremented, the motor goes through an
oscillatory transient. The oscillations damp out and the
motor eventually settles in and runs at the drive
frequency. As the drive frequency is increased, the period
of the oscillation increases, arnd the rate at which the
oscillation decays decreases. These effects are entirely
consistent with the results shown in Chapter V, in which the
small signal natural frequency and damping ratio were shown

to be dependent upon the drive frequency.

The most interesting portion of Figure VI-1 is the
point at which the drive frequency is increased past 3000
steps/sec. At this drive frequency the motor still goes
through a transient when the drive frequency is changed.
However, the oscillations no longer decay toward a steady
state velocity. Instead, the velocity oscillations grow in
amplitude. Even though the oscillations grow, the motor is

still able to follow the step commands. And when the drive
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fregquency is increased further, the motor runs at the
increased speed. When the drive frequency exceeds 4000
steps/sec, the step commands are halted and the motor coasts

to rest.

In Figure VI-2 the drive frequency is not increased
once 3200 steps/sec is reached. Instead the motor is
allowed to continue to run at that frequency. This plot
shows that the oscillations increase until the amplitude
reaches +/- 650 steps/sec. At this point the motor appears
to have fallen out of synchronism with the input commands.
This means that the rotor, because of the large
oscillations, can no longer follow the flux vector as it
moves from one step position to the next. Once the motor
loses synchronism it coasts to zero velocity as the flux
vector continues to rotate. The rotor has a small velocity
oscillation about zero as it tries to respond to the flux
vector that is still rotating. The final oscillation at the
end of the sequence is- the rotor moving to the final
position of the flux vector after the step commands have

stopped.

Figure VI-2 demonstrates the failure mode of MFR.
The drive frequency is increased to some speed and the motor
is expected to operate at that constant velocity for some
period of time. Instead the oscillations grow and the motor
eventually falls out of synch with the input commands,

causing failure of the mechanism.
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It should be noted that this simulation was run
several times to determine that MFR just begins to develop
at 3100 steps/sec. The experimental system used to verify
the model in Chapter III begins to exhibit MFR
characteristics at 3150 steps/sec. The difference between
the onset of MFR in the model and this experimental system
is less than two percent, indicating that the model can be

used for accurate prediction of MFR in most applications.

An important point to recognize is that MFR failure
occurs when the drive fregency remains constant for a period
of time, thus allowing the amplitude of the oscillations to
grow. It is possible to operate in regions of MFR for short
periods of time, as well as to accelerate into and out of
the MFR regions during sequences, without failure. This
allows applications to be designed in which the motor can
run into and through regions of instability without
significant problems, as long as the drive frequency does
not remain constant long enough to allow the oscillation

amplitude to grow sufficiently to cause failure.

Comparison of Unipolar and Bipolar Drive Methods

It was mentioned earlier that the type of drive
affects the drive frequency at which the MFR occurs. Figure
VI-2 shows that with a unipolar, full step, two phase on L/R

drive, MFR was a definite problem at 3200 step/sec. If all
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the system parameters remain the same except the drive is
changed to a bipolar drive, the velocity profile shown in
Figure VI-3 is obtained. MFR now occurs at a drive frequency
of 1200 steps/sec, significantly lower than the unipolar

drive’s frequency of 3200 step/sec.

This bipolar drive is not the most efficient one.
With two phases energized the unipolar drive uses only half
the stator winding copper at any one time. For consistency,
the bipolar drive was configured so that it would use only
half the copper also. It is possible to rewind the motor
winding so that the voltage, resistance, current and power
ratings remain the same. However, the bipolar drive then
utilizes all the motor copper. This results in the bipolar
drive-motor developing 1.414 times the ampere turns that the
unipolar motor develops. The actual increase in torque
developed by the motor will be less than 1.414 times greater

due to magnetic saturation.

If this new bipolar drive-motor configuration is
ramped up to the point at which MFR begins, Figure VI-4 is
obtained. This figure shows that the MFR region starts at
less than 1000 step/sec. This is an even lower drive
frequency than predicted by the bipolar drive, using only
half the copper. Initially, the results are opposite to what
would be expected. The bipolar drive is usually considered
to be the more efficient and higher performance drive of the

two types. However, when MFR is considered, it appears that
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the unipolar drive operates in a stable mode over a much

larger range of drive frequencies.

The reason for this vast difference in performance
between the two drives can be explained when the current
profiles for the drives are investigated. Figure VI-5 shows
the current in each of the phases versus time for the
ugipalar drive. The corresponding plot for the bipolar drive
is shown in Figure VI-6. Each time the bipolar drive is
stepped, the current in the winding switches and it has an
initial condition which is the negative of its final value.
This means that a portion of the winding "on" time is spent
trying to reverse the direction of the current flow before
it can flow in the desired direction. This results in an
overall decrease in the average current available to

accelerate the motor over one step period.

The second bipolar configuration, because all its
copper is utilized, has an inductive time constant twice
that of the first, in which only half the copper is used.
This increase causes it to take longer to reverse the
direction of the current flow and, as a result, the average

value of the current is even smaller.

The unipolar drive in Figure VI-5, does not have
this problem because when a phase is energized, its initial
condition is zero current. Therefore, the current is flowing

in the proper direction for the entire phase on time and
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results in a higher average current. This assumes that the
current in the phase just deenergized decays rapidly when
compared to the inductive current rise time of the winding

just energized.

The actual rate of current decay in the deenergized
phase depends greatly on the type of diode suppression used
in the drives. Different types of suppression cause the
current decay time to vary. As the current decay time of the
unipolar drive becomes larger, the differences between the
unipolar and bipolar drive MFR characteristics become less

noticeable.

The Synchronous Drive and Mid-Frequency Resorance

In Chapter V, the concept of, and the dynamic
characteristics associated with, driving the hybrid motor as
a synchronous device were discussed. While MFR is usually
discussed in stepping motor applications where the motor is

being stepped, MFR also occurs in synchronous applications.

In Figure VI-7, the velocity transient of a hybrid
motor being driven synchronously is shown. The motor is
started at a drive frequency of 150 Hz and every 200 msec
the frequency is increased by 75 Hz. As with the velocity
transients of the motor being stepped, each time the drive
frequency is incremented, the motor goes through an

oscillatory transient. The oscillations damp out and the
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motor runs at the drive frequency.

Once the drive frequency is increased to 300 Hz, the
oscillations no longer decay; rather they begin to grow in
amplitude. Once the amplitude exceeds +/-1250 rad/sec, this
motor also falls out of synchronism with the rotating flux
vector. It should be noted that the motor loses synchronism
at a drive frequency of 300 Hz. This equals a drive
frequency of 1200 steps/sec, the same frequency at which the
bipolar stepping drive becomes unstable. This is expected
because driving a hybrid motor synchronously and a two phase
on bipolar drive are very similar. This is because the
synchronous drive wave form has the same waveform as the

fundamental of the two phase on, bipolar square wave drive.

If the error plane of the synchronously driven motor
is shown, the first of several interesting phenomena can
been seen. See Figure VI-8. The motor starts at rest with a
drive frequency of 150 Hz. It goes through a transient and
pulls into synchronism with the rotating flux vector at a
power angle of P=-.85. This is identical to the response
shown in Figure V-la. When the drive frequency is increased
75 Hz, from 150 to 225 Hz, the motor goes through a second
transient. The change in the drive frequency is seen as an
instantaneous shift in the velocity error equal to the
increase in the drive frequency. The motor then goes through
a second transient and eventually pulls into synchronism at

a new power angle of ¥=-1.15.
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Each drive frequency that the motor operates at has
a different error plane. This means that the trajectories,
separatrix and zero slope isocline will be different for
each drive frequency. The trajectories for the different
drive frequencies are shown. However, the separatrix and
zero slope isocline shown are for the final drive frequency

at which the system is operated.

When the drive frequency is increased a second time,
to 300 Hz, the motor goes through a third transient.
However, this transient does not decay, hence the motor does
not pull into synchronism with the flux vector. Instead the
transient oscillations grow. The motor is still following
the flux vector but oscillating about it as it does. This
mode continues until the oscillations grow large enough to
cause the trajectory to cross a separatrix. The moment that
the trajectory crosses the separatrix, the motor has failed.
It no longer is following the flux vector and it will coast

to rest while the flux vector continues to rotate.

This_is_the mechanism of MFR failure. The

oscillations grow until they become large enough to cross a
separatrix. At that point the motor no longer operates
within the stable region about the zero position error, zero

velocity error equilibrium point.

Synchronous Limit Cycles
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It has just been shown that the oscillations of a
motor going through a dynamic transient will decay or grow
depending upon the drive frequency. This might lead to the
conclusion that at a particular drive frequency, the
oscillations will not decay or grow. Rather, a stable limit
cycle exists in the error plane where the motor will
continue to follow the flux vector but have position and
velocity error oscillations of constant amplitude. This
rationale can be extended to the concept that there may be
several drive frequencies that each cause a limit cycle in
the error plane. Each different drive frequency will have a

limit cycle of a different amplitude.

Figure VI-9a shows the existence of just such a
limit cycle in the synchronous error plane. Three different
trajectories are shown, each having a different initial
condition. The motor is being driven at 260 Hz in each case.
The inner trajectory is started at an initial condition of
P=-1.235 and @:o. This trajectory goes through a transient
where the oscillations slowly grow with time. An expanded
view of this trajectory is shown in Figure VI-9b. The outer
trajectory is started at an initial condition of P=-3.0 and
wio. This trajectory goes through a transient where the

oscillations decay with time.

These two trajectories indicate that somewhere

between them there exists a trajectory that will neither
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grow nor decay. This trajectory continues to repeat over
itself in the error plane, forming a limit cycle. A trial
and error process of testing initial conditions between the
initial conditions of the first two trajectories determined
that a limit cycle does exist in the error plane. If a
trajectory is started with the initial conditions ¥=-1.975
and ﬂ-o, the amplitude of its oscillations neither grows
nor decays. See Figure VI-9a. This limit cycle is stable
because if the trajectory is disturbed a "small" distance
off the limit cycle, either to the inside or the outside,

the trajectory will return to the limit cycle.

If the phase currents are plotted one versus the
other in the current plane while the motor is in the stable
limit cycle, the currents no longer form the forced
oscillation limit cycle that they did in Figure V-1lb. See
Figure VI-10. Rather the current trajectory appears to

consist of sinusoidal terms.

In addition to finding the stable limit cycle, there
are two other points of interest illustrated by Figure
Vi-9a. First, the second order model for the synchronous
motor that was developed in Chapter V indicates that for
every drive frequency there is a pair of equilibrium points.
These points repeat every 2~ in the error plane. One of the
points is on the separatrix and therefore is a saddle point.
The other point is the steady state operating point that the

synchronous motor comes to after all dynamic transients have
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died out. Because all the trajectories within a pair of
separatrices converge upon this equilibrium point, it is
considered stable. Obviously in Figure VI-9a, this stable
equilibrium point does not exist if the trajectories are
converging upon the limit cycle. Rather, the equilibrium
points still exist, and the point on the separatrix is still
a saddle point. However, the other point is no longer a
stable equilibrium point. If it were possible to place a
trajectory exactly on the equilibrium point it would remain
there. If the slightest disturbance moved the trajectory off
the equilibrium point it would then oscillate with
increasing amplitude. Thus, by definition, the equilibrium

point is unstable.

The second point of interest is the frequency of
the oscillations. In Chapter V the second order synchronous
model was linearized about the stable equilibrium point and
it was possible to calculate a local damping ratio and local
natural frequency. At a drive frequency of 260 Hz the
local natural frequency is 1000 rad/sec. By looking at the
velocity transients of each of the trajectories in Figure
VI-9a, it is possible to measure their frequency of

oscillation.
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For: The linearized equilibrium point
the local Wn = 1000.0 rad/sec

The ¢ = 0.3 rad oscillation
the frequency of oscillation = 966.6 rad/sec

The ¢ = 0.8 rad oscillation
the frequency of oscillation = 942.5 rad/sec

The ¥ = 1.3 rad oscillation
the frequency of oscillation = 837.8 rad/sec
In a nonlinear system it is not unexpected that the
frequency of the oscillations could depend upon the
amplitude of the oscillation. And in this case the frequency
of oscillation decreases as the amplitude of the oscillation
increases. This must be kept in mind when trying to develop

an analytical explanation for the limit cycle.

It was previously suggested that there may be more
than one limit cycle. There may be several limit cycles,
each one associated with a different drive frequency. Again
using a trial and error process at different drive
frequencies, it was determined that starting at a drive
frequency of 247 Hz there exists a "family" of limit cycles.
At 247 Hz a limit cycle is found with a position amplitude
of .01 radians. As the drive frequency is increased, the
amplitude of the limit cycle increases. This continues until
a drive frequency of 294 Hz is reached. At this point the
limit cycle just fits within the separatrix surface. A limit
cycle of any larger amplitude can not fit within the

separatrix and therefore can not exist.

Figure VI-11 shows the low frequency portion of the
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synchronous motor zero work curve (2WC). Plotted on the
curve is the position error and velocity error amplitudes

of three limit cycles. The horizontal line is the magnitude
of the position error and the vertical line is the magnitude

of the velocity error.

An Analytical Limit Cycle Model

In all the above analysis, higher order models were
used to demonstrate the existence of MFR, whether the hybrid
motor was being stepped or driven synchronously. If the
inductance is ignored, resulting in a second order stepping
motor model, the model does not predict the existence of
MFR. In Chapter V a second order model was developed for the
synchronously driven motor. In this model inductance was not
ignored. However, it was assumed that the phase currents
were sinusoidal and cosinusoidal. This model also does not
predict the existence of MFR. Figure VI-12 shows an error
plane trajectory for the second order synchronous model with
an initial condition of Y=-1.975 and ¢=0.0. This is
the initial condition of the limit cycle shown in Figure
VI-9a. In Figure VI-12 there is no indication that a limit
cycle exists. Rather, the trajectory converges to a stable
equilibrium point. If other initial conditions are tried at
other drive frequencies, there is still no indication of

stable limit cycles.

The inability to find a stable limit cycle using the

—
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second order synchronous model is not entirely unexpected.

When the model was developed and the currents were assumed

to be sinusoidal and cosinusoidal, it was also assumed that
the current plane trajectory would always be similar to the
one shown in Figure V-1b. Therefore no attempt was made to

account for the additional current components shown in

Figure VI-10.

In an attempt to simulate the limit cycle phenomenon
in the second order synchronous model, an external
disturbance was input to the system. This external
disturbance took the form of a cosinuscidal torque input at
a frequency of 942.5 rad/sec. This frequency corresponds to
the frequency of the limit cycle in Figure VI-9a. The system
is driven at the same 260 Hz drive frequency. Now the
second order system no longer converges upon the stable
equilibrium point. Rather it settles into a forced
oscillation in the error plane. The amplitude of the forced
oscillation depends upon the amplitude of the disturbance
torque. If the disturbance torque amplitude is increased to
7.75 oz-in, the forced oscillation is almost identical to

the limit cycle shown in Figure VI-9a. See Figure VI-13.

It should be noted that the initial condition
selected for the forced oscillation case is critical. Unlike
the limit cycle where any trajectory with an initial
condition on the limit cycle will remain on the limit cycle,

there is a critical phase angle between the input
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disturbance torque and the position or velocity error
oscillations. Because the input disturbance is at the
natural frequency of the system, there is a “/2 radian phase
shift between the input torque and the position error
oscillation. Therefore, any other initial condition for

the trajectory, besides the one selected, would have to go
through a transient before settling in on the force

oscillation.

The similarity between the true limit cycle in the
higher order models and the forced oscillation in the second
order synchronous model indicates that there might be some
mechanism in the higher order model that generates a
disturbance torque very similar to the external disturbance
that was input to the second order model. In order to
investigate this possibility, return to the synchronous
motor electrical equations and the torque portion of the

mechanical equation. See Equations VI-la and 1b and VI-2.

dI}

VsCosAest = Il(RS+ Rm) + Lms 3t - K Se Sinae (vi-la)

b

da1 :
s oAk _ 2 o
V551nAest = IZ(RS+ Rm) + Lms at + Kbse CosA® (VI-la)

T(0) = KtSf(Ilsin A6 - I,Cos A®) (VI-2)

2

When the system is in a limit cycle, it is possible

to make the following substitutions for rotor angle © and
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<]
= & 1 .. 3
e = Qst + ﬁ; Sin wlt + ¥ (VI-3)
e = es + GICos Wlt (VI-4)

Where: él = Limit cycle velocity ripple

W1 = Limit cycle oscillation frequency

This assumes that the limit cycle is sinusoidal.

Substituting for 6 and é in Equations VI-la and 1lb yields:

[2)
A 2 2 s H 1 ..
vscos Aest + Kbs(es+ 91Cos wlt) Sin A(Gst + ﬁ; Sin wlt + ¥)
(VI-5a)

= I (Rg* Rp) + Lpg gg~

[}
R A 2 2 s 2 1 ..
V551n Aest - Kbs(es+ elsln Wlt) Cos A(Qst + WI Sin wlt + v)

(VI-5b)

= IZ(RS+ Rm) + Lms T

Along with the torque equation:
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2]
: 2 1
T(8) = Ktsf(Ilsln A ( Qst + ﬁI Sin Wlt + v)

(VI-6)

2]
2 1 o
- IZCos A ( est + ﬁ; Sin Wlt +v) )

Inspection of Equations VI-5a and 5b and VI-6 yields
a very interesting insight to possible causes of MFR. The
first term of Equations VI-5a and VI-5b, the supply voltage,
results in a sinusoidal voltage at the drive frequency. This
is the normal excitation voltage that has always been
assumed to exist. Table VI-1 lists the amplitude and
frequency of the two phase drive voltages. Knowing the phase
resistance and inductance, it is possible to calculate the
phase current and phase shift between the voltage and the
current. The letters ’s’ and ’c’ preceeding the frequency
term in the table are used to indicate whether the frequency
terms are sinusoidal (s) or cosinusoidal (c). The first

character applies to phase one and the second to phase two.

In Equation VI-5a the second term, the back EMF
voltage, is more complex. The first portion of the back EMF
term, the velocity term, consists of a constant velocity and
a velocity ripple. The second portion of the back EMF term,
the position term, consists of a sine of a sinusoid. In
order to simplify understanding the significance of the
different components of the back EMF terms, it is beneficial

to look at the velocity ripple and position ripple effects
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The Limit Cycle Parameters

Drive Frequency = 1634. rad/sec

Local (nl & 1) Natural Frequency = 943. , 943.

Local Damping Ratio = 0.0750

Limit Cycle Position Amplitude = 0.77 rad
Limit Cycle Velocity Amplitude = 730. rad/sec
Limit Cycle Equilibrium Point = -1.22 radians

The AC Drive Terms

Voltage Frequency Current Phase

35.400 (c/s) 1633.600 0.878 -0.945

TABLE VI-1 SYNCHRONOUS DRIVE TERMS

rad/sec
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separately before combining them. In Equation VI-7a the
position ripple portion of Equation VI-5a has temporarily

been set equal to zero.
K bs(95+ 8,Cos Wlt)(sin A( est )) (VI-T7a)

This leaves the constant velocity and the velocity
ripple multiplied by the sinusoid of the position. Equation
VI-7a is in the standard form of amplitude modulation (AM).

See Equation VI-7b.

( A+ BCos Ct ) * sin Dt (VI-7b)

Amplitude modulation results in a spectrum that
contains a carrier and one upper and lower sideband[sl’[sl
Equation VI-8a shows the general form of the expression that

describes amplitude modulation.

1 B
AM term Sin Dt + - [ - (-Sin(C-D)t + Sin (C+D)t )] (VI-8a)
2 A

Where: g = Amplitude modulation index

If Equation VI-7a is written in a similar format,
Equation VI-8b is obtained. Equation VI-8b describes the
amplitude modulation that is occurring in the back EMF

portion of Equation VI-5a.
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[}
s & 171 s A s 1A
Sin Qst + 5 5— (—an(es— wl)t + 51n(es+ Wl)t) (Vi-8b)

s

The actual amplitudes and frequencies of the
modulation terms that occur due to the amplitude modulation
can be calculated. Using the drive frequency, limit cycle
amplitude and frequency of oscillation of the limit cycle
shown in Figure VI-13 and listed in Table VI-1, it is
possible to determine the actual AM spectrum that occurs in
Equation VI-5a due to the limit cycle. Table VI-2a shows the
magnitude and frequency term of the different components

that make up the AM spectrum.

If the position ripple is returned to Equation VI-5a
and the velocity ripple is temporarily set to zero, Equation

VI-9a is obtained.

-}
R . A 1 ..
Kbs( es) Sin A(Gst + ﬁi Sin Wit o+ \ ] (VI-9a)

Equation VI-9a contains the sine of a sinusoid. The
sine of a sinusoid is one of the standard forms of frequency

modulation (FM). See Equation VI-9b.
A Sin ( B + C Sin Dt ) (VI-9b)

Frequency modulation results in a spectrum that

contains a term at the fundamental plus a whole series of

upper and lower sidebands[sl’lsl Equation VI-10a describes
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The Velocity Ripple (AM) spectrum is:
Modulation Index =0.447
Amplitude Frequency
Fundamental: ( 0) 1.0000 (c/c) 1633.6

Sidebands: (-1) 0.2236 (c/c) 691.1
Sidebands: ( 1) 0.2236 (c/c) 2576.1

TABLE VI-2a AMPLITUDE MODULATION TERMS

The Position Ripple (FM) spectrum is:
Modulation Index =0.775

Amplitude Frequency (+V)
Fundamental: ( 0) 0.8554 (s/c) 1633.6

Sidebands: (-1)-0.3591 (s/c) 691.1
Sidebands: ( 1) 0.3591 (s/c) 2576.1

Sidebands: (-2) 0.0714 (s/c) -251.4
Sidebands: ( 2) 0.0714 (s/c) 3518.6

Sidebands: (-3)-0.0093 (s/c)-1193.9
Sidebands: ( 3) 0.0093 (s/c) 4461.1

TABLE VI-2b FREQUENCY MODULATION TERMS
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the general form of frequency modulation spectra.

00

FM Term A ) Jn C Sin ( B - nD )t (Vi-10a)

n=-co

Where: Jn = Bessel function, term n

C = Frequency modulation index

If Equation VI-9a is written in a similar format,
Equation VI-10b is obtained. Equation VI-10b describes the

frequency modulation that occurs in Equation VI-5a.

1 . .
n ﬁ; Ssin (( es + nWl)t + v ) (Vi-10b)

8
ﬁl = Frequency modulation index
1

The amplitudes of the different terms in the
spectrum are calculated using the Bessel function. The
actual amplitude depends upon the FM modulation index used

in the Bessel function calculation.

Table VI-2b shows the resulting spectrum due to the
frequency modulation calculation of the limit cycle shown in

Figure VI-13.

Because the back EMF term in the winding equations
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contains both amplitude and frequency modulation, the result
is the product of the two modulations. The result of the
combined modulation can be thought of as each term of the FM
spectrum being amplitude modulated. The general form of

the combined modulation is shown in Equation VI—ll[sl'[sl

91 .
WI Sin (( 65 + nWy)t + ¥ )

900
+ 1 ) 3 oL s (C 8+ (m)W)t + ¥ )
2 n ﬁ; in s 1
n=-00
. oo . (VI-11)
8, < .
+3 2 g A é + (0-1)W))E + ¥ )
8 Vi n Wl s
S 1=Z%0

The total spectrum due to the limit cycle is shown
in Table VI-3a. If the amplitudes in Table VI-3a are
multiplied by Kb és’ the actual back EMF generated voltages
are obtained. Knowing the back EMF voltage, frequency, phase
inductance and resistance, it is also possible to calculate
the back EMF generated currents and their respective phase

angles. See Table VI-3b.

It can be seen that, rather than each phase
generating a back EMF voltage at the drive frequency, back

EMF voltages are generated at the drive frequency and at
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The combined Back EMF (AM-FM) spectrum :
Amplitude Frequency (+¥)
Fundamental: ( 0) 0.8554 (s/c) 1633.6

Sidebands: (
Sidebands: (

)-0.1519 (s/c) 691.1
) 0.5663 (s/c) 2576.1

Sidebands:

( -0.0110 (s/c) -251.4
Sidebands: (

1
1
2)
2) 0.1538 (s/c) 3518.6
3
3

Sidebands:

( 0.0068 (s/c)-1193.9
Sidebands: (

)
) 0.0255 (s/c) 4461.1

Sidebands: (-4)-0.0012 (s/c)-2136.4
Sidebands: ( 4) 0.0030 (s/c) 5403.6

TABLE 3a THE COMBINED AM AND FM MODULATION TERMS

The combined Back EMF spectrum voltages and currents:
Frequency Voltage Current Phase (+y)
Fundamental: ( 0) (s/c) 1633.6 12.54 (+/-) 0.31 -0.945

Sidebands:

( (s/e) 691.1  -2.23 (+/-)-0.08 -0.530
Sidebands: (

)
1) (s/c) 2576.1 8.30 (+/-) 0.15 -1.141

Sidebands:

( (s/c) -251.4 -0.16 (+/-)~0.01 -0.210
Sidebands: ( 2

0

(s/c) 3518.6 2.25 (+/-) 0.03 -1.247
0
0

Sidebands: (-3) (s/c)-1193.9
Sidebands: ( 3) (s/c) 4461.1

.10 (+/-) 0.00 -0.791
.37 (+/-) 0.00 -1.312

Sidebands: (-4) (s/c)-2136.4 -0.02 (+/-) 0.00 -1.066
Sidebands: ( 4) (s/c) 5403.6 0.04 (+/-) 0.00 -1.356

TABLE VI-3b THE COMBINED AM AND FM MODULATION VOLTAGES
AND CURRENTS
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each of the upper and lower sidebands. This results in each
of the phase currents being made up of the sum of all the
terms in Tables VI-1 and 3. Equation VI-12a shows the
general form of the current in phase 1.

1= Iiac Cos(ést +¥,0) + ) I sin (( és + Ot 4 ¥ )

n=-oo ‘(VI-12a)

And Equation VI-12b describes the current in phase 2.

00
I,= I Sin(ést + ¥, +/) 1,, Cos (( és + IRt 4 ¥+ Y)
="%0 (VI-12b)

Where: I

lac Phase 1 component due to the AC drive

IZac = Phase 2 component due to the AC drive
vac = The phase angle between the AC drive
voltage and the current

= Phase 1, sideband n component due to
the back EMF

Ion = Phase 2, sideband n component due to
the back EMF

The phase angle between the back EMF
voltage and the current

in

<
n

From Equations VI-12a and 12b it is seen that while
the synchronous motor is operating in the stable limit
cycle, the current in each of the phases consists of a
sinusoidal term due to the AC drive and a series of
sinusoidal terms at each of the modulation sideband
frequencies. It should be noted that the AC drive term and

the fundamental of the modulation terms occur at the same
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frequency but at different phase angles. The sideband terms

all occur at different frequencies and phase angles.

It is possible to verify the absolute magnitudes of
these different terms. In Figure VI-10 the simulation phase
currents corresponding to the stable limit cycle were
plotted in the current plane. It was shown that they no
longer form a forced oscillation limit cycle but rather a

"donut" shaped envelope was obtained.

If each of the current and phase angle terms in
Table VI-3b is summed for phases 1 and 2, it is possible to
plot the resulting modulation analysis currents against one
another in a format similar to that of Figure VI-10. See
Figure VI-14. A comparison of Figures VI-14 and VI-10
indicates that there is an excellent correlation between the
actual currents obtained from the simulation of the higher
order model limit cycle, Figure VI-10, and the analytical

sideband analysis, Figure VI-14.

It has just been shown that when the syrchronously
driven motor is in a stable limit cycle, the current in the
stator phases is made up of a whole series of terms. In
order to determine the torques that are generated by these
different terms, it is necessary to return to Equation VI-6
and substitute Il and I2 as defined by Equations VI-12a and

12b. see Equations VI-13, VI-l4a and VI-14b.
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ANALYTICAL LINIT CYCLE CURRENTS
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2 é1 .
T(6) = Ktsf(1151n A ( Qst + ﬁz Sin wlt + v)

(Vvi-13)

e
2 1 ..
I,Cos A ( est + ﬁi Sin Wyt + ¥) )

Where:

I,= I,,. Cos(é.t + Yao) + ) Iy, Sin (( 8 + aW)t + ¥ + V)

n=-00 (Vi-14a)

I,= 1

2

2ac Sin(ést + ¥ue) +/) 1,, Cos (( és + O e+ ¥+ )

n=-c0 (VI-14b)

Equation VI-13 contains the same form of frequency
modulation in the position term as was present in Equations
VI-5a and S5b. This results in both position terms in
Equation VI-10 having spectra identical to the one in

Table VI-2b.

When Il and I2 are substituted into Equation VI-13
and all the current terms are multiplied by the position FM
spectrum, the result is a whole series of sinusoids or
cosinusoids multiplied by sinusoids or cosinusoids. Using
trigometric identities, it is possible to reduce this to
sinusoids or cosinusoids of the sums and differences of the

angles.

These calculations can also be tabulated as the
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modulation terms were. Table VI-4 shows the results of
evaluating Equations VI-13, 1la and 11lb. Table VI-4a
contains the AC drive portions of Equations VI-l4a and 14b
multiplied by the FM position spectrum of Equation VI-13.
The lefthand two columns contain the amplitude and frequency
of the sum terms, while the middle two columns contain the
amplitude and frequency of the difference terms. The
righthand columns contain the phase angle associated with
each difference term. This phase angle is due to the
impedance of the windings and the location of the stable
equilibrium point. Table VI-4b shows the corresponding back
EMF current terms multiplied by the FM position spectrum,

displayed in the same manner.

The result of evaluating Equations VI-13, VI-l4a and
VI-14b, Table VI-4, is a spectrum of torques that are
generated in the motor due to the limit cycle oscillation.
If the amplitude terms are multiplied by the torque

constant, Kt’ the torques will be in units of oz-in.

Investigation of the terms in Table VI-4 yields the
cause of mid-frequency resonance. In both the AC drive and
the back EMF terms, there are several components that occur
at the limit cycle frequency, 942.5 radians/second. This
limit cycle modulation analysis indicates that as a result
of the modulation process in the torque equation, there are
several torque terms that are generated at exactly the same

frequency as the initial limit cycle that caused the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



269

The AC Drive/Position Ripple Spectrum is:
Amplitude Frequency Amplitude Frequency Phase (-¥)
( AC Drv + Pos FM ) ( AC Drv - Pos FM )

0.3757 (s/-s) 3267.2 0.3757 (-s/-s) 0.0 -0.9452
-0.1577 (s/-s) 2324.7 -0.1577 (-s/-s) 942.5 -0.9452
0.1577 (s/-s) 4209.7 0.1577 (-s/-s) -942.5 -0.9452
0.0314 (s/-s) 1382.2 0.0314 (-s/-s) 1885.0 -0.9452
0.0314 (s/-s) 5152.2 0.0314 (-s/-s)-1885.0 -0.9452
-0.0041 (s/-s) 439.7 -0.0041 (-s/-s) 2827.5 -0.9452
0.0041 (s/-s) 6094.7 0.0041 (-s/-s)-2827.5 -0.9452

The Back EMF Current/Position Ripple Spectrum is:

Amplitude Frequency Amplitude Frequency Phase
( Back EMF + Pos FM ) ( Back EMF - Pos FM )
0.1331 (-c/c) 3267.2 0.1331 (c/c) 0.0 -0.9452
-0.0559 (-c/c) 2324.7 ~0.0559 (c/c) 942.5 -0.9452
0.0559 (-c/c) 4209.7 0.0559 (c/c) -942.5 -0.9452
0.0111 (-c/c) 1382.2 0.0111 (c/c) 1885.0 -0.9452
0.0111 (-c/c) 5152.2 0.0111 (c/c)-1885.0 -0.9452
-0.0015 (-c/c) 439.7 -0.0015 (c/c) 2827.5 -0.9452
0.0015 (-c/c) 6094.7 0.0015 (c/c)-2827.5 -0.9452
-0.0348 (-c/c) 2324.7 -0.0348 (c/c) -942.5 -0.5298
0.0627 (-c/c) 4209.7 0.0627 (c/c) 942.5 -1.1413
0.0146 (-c/c) 1382.2 0.0146 (c/c) 0.0 -0.5298
-0.0146 (-c/c) 3267.2 -0.0146 (c/c)-1885.0 -0.5298
-0.0263 (-c/c) 3267.2 -0.0263 (c/c) 1885.0 -1.1413
0.0263 (-c/c) 5152.2 0.0263 (c/c) 0.0 -1.1413
-0.0029 (-c/c) 439.7 -0.0029 (c/c) 942.5 -0.5298
-0.0029 (-c/c) 4209.7 -0.0029 (c/c)-2827.5 -0.5298
0.0052 (-c/c) 2324.7 0.0052 (c/c) 2827.5 -1.1413
0.0052 (-c/c) 6094.7 0.0052 (c/c) -942.5 -1.1413
-0.0029 (-c/c) 1382.2 -0.0029 (c/c)-1885.0 -0.2099
0.0130 (-c/c) 5152.2 0.0130 (c/c) 1885.0 -1.2472
0.0012 (-c/c) 439.7 0.0012 (c/c) -942.5 -0.2099
-0.0012 (-c/c) 2324.7 -0.0012 (c/c)-2827.5 -0.2099
-0.0055 (-c/c) 4209.7 -0.0055 (c/c) 2827.5 -1.2472
0.0055 (-c/c) 6094.7 0.0055 (c/c) 942.5 -1.2472
0.0011 (-c/c) 3267.2 0.0011 (c/c) 3770.0 -1.2472
0.0011 (-c/c) 7037.2 0.0011 (c/c) 0.0 -1.2472
0.0013 (-c/c) 439.7 0.0013 (c/c)-2827.5 -0.7913
0.0017 (-c/c) 6094.7 6.0017 (c/c) 2827.5 -1.3122

TABLE VI-4 AC DRIVE AND BACK EMF MODULATED
TORQUE SPECTRUM
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modulaticn process.

If all the terms that occur at the limit cycle
frequency are summed, a resulting amplitude and phase can be

calculated. See Equation VI-15.

The Limit Cycle Torque Equals : 42.834 oz-in
(VI-15)

The Limit Cycle Phase Angle Equals : 0.053 radians

This indicates that if the motor is in a limit cycle
it will produce a torque at the limit cycle frequency due to
the sinusoidal modulation processes. If this generated
torque is of the correct amplitude and phase it will

maintain the limit cycle as a forced oscillation.

In order to determine if the limit cycle generated
torque is of the proper magnitude, a simple forced
oscillation analysis can be performed. By assuming that a
torque consisting of a DC and an AC component at the limit
cycle frequency is driving the mechanical portion of the

system, Equation VI-16 is derived.

; . ; 8
To + Tl an(wot + ?o)= Jme + B O + TfTaT (VI-16)

Assuming the system is in a forced oscillation:
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e = Gd + eoCos Wot (VI-17)

©=
[

- GOWOSin Wot (VI-18)

Where: éd = DC velocity

o = Forced oscillation velocity ripple

wo = Forced oscillation frequency

Substituting Equations VI-17 and 18 into Equation

VIi-16 yields:

Ty + Ty Sin( Wt + y,)=

- Jm (Gowosin Wot ) + B ( ed + GOCcs wot )

A (VI-20)
+ Tf -?-
1ol
The constant terms of Equation VI-20 must be equal.
7 =88, +1, o (vI-21)
0 d £z
18]
And the time dependent terms must also be equal.
Tl Sin( Wot + v°)=
(VI-22)

- Jm(QOW051n Wot ) + B ( QOCos wot )

The constant torque terms contribute the DC
component of the motor velocity and are not of interest at

this point. The time dependent or AC torque terms in
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Equation VI-22 are the torques that genrerate the forced

oscillation. The torque T, causes the system to have a
forced velocity oscillation of amplitude éo and a phase Yo.
By rearranging Equation VI-22, it is possible to

solve for Ty and *o assuming a known forced oscillation

velocity amplitude and frequency. See Equation VI-23.

/ : 3 Y _
Ty =) (Fg 8 W) (B ) (Vi-23)

(B (VI-24)
m

The torque and phase angle that can be determined
from Equations VI-23 and VI-24 are the actual torque and
phase margin necessary for the assumed known limit cycle to
exist. If the actual system is driven by a torque larger than
Tl' then the actual system will have a forced oscillation
amplitude larger than the one assumed in the evaluation of
Equation VI-23 and VI-24. Likewise, if the actual system is

driven by a torque smaller than T,, then the actual system

17
will have a forced oscillation smaller than the one assumed.
Returning to Figure VI-9a and the sideband limit
cycle analysis, it is possible to calculate a torque
generated due to the modulation process. See Equation VI-15.

If the same limit cycle amplitude and frequency are used in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



273

Equations VI-23 and 24, it is possible to solve for the
torque required to maintain a forced oscillation of the same

amplitude. See Table VI-1 and Equation VI-25.

The Forced Oscillation Torque Equals : 44.762 oz-in
(VI-25)

The Forced Oscillation Phase Angle Equals : -0.024 radians

Comparing Equations VI-15 and VI-25 indicates that
the torque produced as a result of the limit cycle
modulation process in the electrical and mechanical
equations closely matches the torque required to maintain
the limit cycle as a forced oscillation. The amplitudes
compare within 4.3 percent and the phase angles compare

within 1.2 percent.

To further verify the process two other points can
be considered. Assume that instead of the limit cycle shown
in Figure VI-9a, a much smaller limit cycle exists at the
same drive frequency. The sideband modulation analysis can
be performed on this smaller limit cycle and the resulting
torques can be determined. From Equations VI-23 and VI-24 it
is possible to determine the torque and phase margin

necessary for the smaller limit cycle to exist.

The process can be repeated for an assumed limit
cycle larger than the actual limit. Table VI-5 contains a

list of the torques that were calculated for the actual
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The Assumed Limit Cycle Parameters

The drive frequency is 1634. rad/sec
The local damping ratio is 0.0750
The limit cycle equilibrium point is -1.22 radianms

Assumed Actual Assumed
limit cycle limit cycle limit cycle
0.07 0.78 1.78 Oscillation
amplitude
(radians)
$66.6 942.5 837.0 Oscillation
frequency
(rad/sec)
4.198 42.57 65.31  sideband torque
analysis (oz-in)
4.252 44.76 81.09 Forced oscillation
analysis (oz-in)
98.7% 95.1% 80.5% Ratio of torques
5.15% 5.15% 5.15% Additional torque %
due to other terms
103.6% 100.0% 84.9% Final ratio of

togues

TABLE VI-5 SIDEBAND AND FORCED OSCILLATION ANALYSIS
TORQUE ANALYSIS
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limit cycles and the two assumed limit cycles. Because none
of the sideband generated torques in Table VI-5 exceeds the
torque necessary to maintain a corresponding limit cycle, it
can assumed that the modulation process does not cause

sufficient torque to be generated to explain the limit cycle

phenomenon.

However, in the initial development of the sideband
analysis it was assumed that the limit cycle was sinusoidal.
This assumption was not strictly correct, as the limit cycle is
not a pure sinusoid. The actuwal limit cycle varies from a
pure sinusoid in amplitude by approximately five percent. To
more accurately model the limit cycle it would be necessary
to use a Fourier series. It can be shown that including the
additional terms in the series results in additional torque
components at the oscillation frequency. If it is assumed
that the additional terms in the series would contribute
approximataly 5.15 percent more torque to the sideband
analysis, then there would be»the torque necessary to

maintain the known limit cycle. See Table VI-5.

In addition, the assumed limit cycle that is smaller
than the actual limit cycle is now shown to generate more
torque than necessary to maintain itself and therefore is
not stable and will grow in amplitude. Likewise, the assumed
limit cycle that was larger than the known limit cycle still
does not generate sufficient torque to maintain itself and

will still decay in amplitude.
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Conclusion

This analysis indicates that MFR is due to the
sideband modulation process that occurs within the stepping
motor. As the motor undergoes a sinusoidal oscillation

about the equilibrium point several phenomena occur.

First, amplitude and frequency modulation occur in
the stator phases. The currents in the phases therefore
consist of a series of terms. This series consists of a
fundamental at the drive frequency and an infinite number of

upper and lower sidebands.

And second, when this series of currents is
evaluated in the torque equation, a second modulation
process occurs and an infinite series of torque terms is
obtained. One of the torque terms will always occur at the

frequency of the initial oscillation.

This torque that is generated at the frequency of
oscillation will cause one of three affects to occur in the

system.

1) If the torque generated equals the torque required to
maintain the forced oscillation at that amplitude and
frequency, the oscillation will form a stable limit
cycle.

2) If the torque generated due to the oscillation
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exceeds the torque necessary to maintain a forced
oscillation of that amplitude and frequency, the
oscillation will be unstable. This oscillation will grow
in amplitude until the conditions for a stable limit
cycle are met or until the oscillations no longer fit
within the separatrix and the motor loses synchronism.

3

Likewise, if the torque generated due to the
oscillation is less than the torque necessary to
maintain a forced oscillation of that amplitude and
frequency, the oscillation will also be unstable7 Now
however, the oscillation will decay in amplitude until
the conditions for a stable limit cycle are met or the

oscillations converge upon the stable equilibrium point.

This is the basic phenomena of mid-freguency
resonance. When the motor undergoes an oscillation, a torque
is generated at the oscillation frequency. The magnitude of
the generated torque determines whether the oscillation

amplitude decays, remains the same or grows.
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CHAPTER VII

SUMMARY AND FUTURE WORK

In Chapter II the effects of inductance in the
stepping motor model were discussed. It was shown that these
effects could be included in the model without altering the
techniques for solving the equations or displaying the
results. Motor performance was still discusseé in terms of
the phase plane or velocity-position error plane. However,
the results of the simulation are a projection back into the
phase plane from a higher order state space, rather than
being totally contained within the phase plane. While the
vast majority of the phenomona observed using the second
order model remained basically the same, there were some new
concepts and ideas that that one must keep in mind when

interpreting the results of a higher order simulation.

Including the inductance and understanding its
effect in the phase plane opens the stepping motor model up
to being used in a much wider range of applications. In
addition to including the inductance in the model, it was
necessary to include other magnetic effects when the model
was used to describe stepping motors such as the hybrid
motor with its more efficient magnetic structures. In

particular the magnetic saturation of the stator iron, as
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well as hysteresis and eddy current losses in the stator,
had to be included in the model. These additions to the
model does not increase the dynamic complexity of the model
as did the inductance. Rather they increase the algebraic
complexity of the model. These additions to the model also
made the representatin of the experimental measurement
results more precise. It was not necessary to design new
measurement systems to make the measurements, though
additional characteristics had to be considered when

conducting the test.

Having included inductance in the model as well as
magnetic saturation, hysteresis and eddy current losses, it
would now be beneficial to extend the model to describe the
variable reluctance and canstack stepping motors. Models for
both of these designs will be affected by these properties.
The inductance and saturation will be of particular
importance to the VR motor. Eddy currents will strongly

influence the behavior of the canstack motor.

The dynamic performance of the hybrid motor was also
investigated when it was being driven as a synchronous
device. The same model was used, yet the results were
displayed in a rather different format. In addition to
displaying the results in terms of the position error, a
velocity error was also developed. Like the stepping phase
plane, the synchronous phase plane has the advantage of

being a compact and extremely insightful way to look at the
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motor’s performance. The startup and failure mechanisms were
only two of several dynamic characteristics that were
investigated; however, they demonstrated that considerable
insight into the performance of an AC synchronous device

that can be gained from this form of representation.

The synchronous error plane investigation can be
extended in several directions. The same basic model and
techniques can be used with any permanent magnet AC device.
The error plane should yield a method to determine how a
synchronous motor might be ramped to frequencies above which
it can start from a dead start. In addition it might be
possible to devise a technique that would ramp the motor
directly into the desired frequency and eliminate the
oscillations normally associated with accelerating a
synchronous device. It would also be possible to modify the
AC drive model to include the resistor-capacitor network
that is usually added to one of the phases so the motor can
be run off a single AC source. This would not be necessary
for a system that would be run off normal two and three

phase electrical circuits.

In addition, because the synchronous drive is
sim:lar to the stepping drive at high step rates, the
synchronous concepts could be used to investigate the high

speed performance of stepping motors.

The concept of an error plane could also be extended
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to a range of other nonlinear dynamic systems where the

system is tracking some input.

Using the higher order model concepts and the
synchronous error plane, the phenomenon of mid-frequency
resonance was investigated. Mid-frequency resonance was
shown to be caused by amplitude and frequency modulation in
the stepping motor. The results developed could also be used
to test the stability of the equilibrium point. If a small
oscillation is assumed to exist about each equilibrium
point, that oscillation could be tested for its stability.
The stability of the small limit cycle would indicate the

stability of the equilibrium point.

In addition, it should be possible to make a
significant contribution to the design of stepping motor
drives that attempt to eliminate or change the resonance
characteristics. For the first time the cause and effect of

mid-frequency resonance has been clearly explained.
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APPENDIX A
TORQUE ANGLE CURVE MEASUREMENTS

Introduction

Measuring the torque angle curves of a small angle
stepping motor is often a complex problem. All torque
measurement systems are designed around a spring that
deflects under an applied load. The amount the spring
deflects depends on its spring constant. By measuring the
amount of deflection and knowing the spring constant, the

load or the torque can be calculated.

The measurement system must be designed so that the
spring constant of the torque transducer is greater than the
effective spring constant or stiffness of the stepping motor
under test. However, the torque transducer can not be so
stiff that resolution is lost and it becomes difficult to

obtain an accurate measurement.

Oon first consideration this might not seem a
difficult problem, as most stepping motors produce 200
ounce-inches of torque or less. There are several torque
transducers available in this range. However, as stated
earlier, it is necessary to also consider the stiffness of
the device. Around the equilibrium points, a stepping motor
can be thought of as a linear spring. A 1.8’ stepping motor

that produces 200 oz-in of torque has a stiffness of almost
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10,000 oz-in per radian. A typical 90’ permanent magnet

motor has a spring constant of only 0.50 oz-in per radian.

In addition to the torque transducer, the high
torque output of the stepping motor may cause measurement
errors in the motor itself. These errors are due to the

torsional deflection of the rotor.

Torque Angle Measurement Systems

To gain further insight into the effect of the
torque transducer on the measurement system, a simple model

can be constructed based on the system in Figure A-1.

Ke (6 = ©) = K. I Sin(a6) + D

" sin(Dp A0)

t
(a-1)

] A a
+ Te—rm 4 BO +J6
1ol

Where: © = Motor position

8 = Motor velocity

"

© = Motor acceleration

©, = Torque transducer position
= Inertia

B = Damping

Tf = Friction

Kt = Torque constant

rp = Torgue transducer spring

constant
I = Stator current

Because the gearhead turns at a slow, constant rate and the
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damping and friction are usually small, the following

assumptions can be made:

n
e =0
B =0
Tf =0

Equation A-1 then reduces to:

Ktt(gtv_ ©) = K I Sin(A6) + Dtsin(DmAQ) (A-2)

t

The gearhead (et) rotates at a constant velocity, thus:
e =6t (A=3)
Substitution yields Equation A-4.

K, 8.t =K_0+K

ttTt tt

I Sin(a6) + D Sin(D A0) (A-4)

There are two curves of interest that can be
developed from Equation A-4. The first is time versus the
position of the motor under test. The second is the torque
versus position or torque angle curve as measured by the

torque transducer.

Figures A-2 and A-3 show two typical curves for a
1.8’ motor with two phases energized and a torque constant
of 78.0 oz-in per ampere. The stator current level is 1.0
ampere. The torque transducer is rated at 200 oz-in and has

a stiffness of 6500 oz-in per radian.
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Figure A-2 illustrates that even though the gearhead
turns at a constant velocity, the motor under test does not
move at a constant rate due to the winding and unwinding of
the torque transducer. However, the torque measurement is
still valid as long the motor position can be measured.
Figure A-3 is a plot of the torque versus motor position for

this system.

If the current is raised to 1.5 amperes, which is
rated current for this mo;or, Figures A-4 and A-5 are
obtained. Figure A-4 shows that the motor under test is
rotated to 2.6 electrical radians and then "jumps" to 5.4
electrical radians. The corresponding torque angle curve in
Figure A-5 shows that the torque is measured from the stable
equilibrium point, up over the peak onto the back side of
the torque angle curve. On the back side of this curve the
slope has changed sign. When the slcpe of the torque angle
curve becomes equal but opposite in sign to the stiffness of
the torque transducer, the system becomes unstable and jumps
to the next point where the slope of the torque angle curve

is again less than the stiffness of the torque transducer.

While the above discussion concerns only the torque
transducer, it applies to all the components of the torque
angle measurement system. Each part of the torque angle
system must have torsional spring constants greater than the

stepping motor. This includes any shafts, couplings and the
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pesition encoder.

Stepping Motor Windup

In addition to being concerned about the stiffness
of the torque angle measurement system, it is also necessary
to account for the torsional stiffness in the motor itself.
Figure A-6 is a plot of the torque angle curve for the
stepping motor used to verify the model in Chapter 3. The
data was measured with two phases energized. The detent
torque contribution to the measured curves was subtracted
out so the torque in Figure A-6 is due solely to the stator
winding. Looking at Figure A-6, the peak of the torque angle
curves should be at approximately 90’ electrical or 1.87
mechanical degrees. This is Line AB in Figure A-6 and it is
measured relative to the first zero crossing of the torque

angle curve.

However, Figure A-6 indicates that the peaks of the
curves are to the right of 90 electrical degrees. First it
could be assumed that the torque curve is not as sinusoidal
as expected and that Figure A-6 is the true shape of the
torque angle curves. However, looking at the back EMF
waveform proves this assumption incorrect. The actual cause
of this shift is the windup in the shaft of the motor.
Calculating the torsional stiffness of the motor shaft, it

can be determined that a 0.25 inch diameter shaft will
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deflect 0.225 mechanical degrees per inch per one hundred

oz-in of torque applied.

In order to determine the effect of the windup in
the measurements it is necessary to determine the length of
the shaft affected. This can be a problem because is not
easy to establish what portion of the shaft inside the
laminations is affected by the toique. For a size 23, 2.5"
hybrid motor, experience indicates that one inch of the

shaft will deflect.

Having determined the length of shaft that will be
affected, it is possible to calculate a correction factor.
Line AC in Figure A-6 shows the true 90 electrical degree
point as the current is varied. Further verification of this
correction can be obtained by looking at the 90 +/- 45
degree points on the torque angle curve. At these two points
the torque should be equal if the torque angle curve is

sinusoidal.
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APPENDIX B

EXPERIMENTAL PHASE PLANE GENERATION

Introduction

In order to verify the model developed in Chapter
III, a measurement device must be developed so that the
actual motor reponse can be compared to those predicted by
the model. It is also desired that the measurement device
produce the velocity versus position error plots. There are
several approaches to obtaining a velocity signal. However,
because of the discontinuous process used to represent
stepping in the velocity-error plane, experimental
verification using velocity-error methods has always been

difficult.

Gauthier used a one turn, continuous analog
potentiometer and developed a position signal that recycled
every 360 degrees. The disadvantages of this system include
the inability to look at experimental error-velocity planes

and poor resolution for small angle steppers.

In order to solve these problems, an alternative
method was developed using an optical incremental encoder.
The encoder allows much greater resolution for measuring
small angle steppers. In addition, because the encoder is a
digital device, it is possible to develop the position error

signal using digital logic.
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Position

The encoder chosen for this application was a Disc
Series 990 incremental encoder. The disk was mounted on the
motor shaft and the sensor was mounted on the motor case.
There is no contact between the encoder disk and the
sensors. The benefit of this type of encoder is that it
reduces the added inertia to the system and does not
introduce any friction or damping. This minimizes the change
in the stepper system due to the measurement system. An
incremental encoder of this type has two square wave
ocutputs, A and B, which are usually +/-90’ out of phase with
respect to one another. The direction of rotation determines
whether B leads or lags A. This has two advantages. First it
allows one to quadruple the number of output pulses per
revolution of the encoder. And, second, it allows one to
decode the direction of rotation from the phase angle

between channels A and B.

Figure B-1 shows the two output signals from the
encoder, channels A and B, as the encoder is rotated at a
constant speed. By conventional logic means, one can invert
channels A and B of the encoder output to create A and B
output signals. One shots are used to detect the rising
edges of A, X, B and B. By decoding these eight output

signals, one may decode the direction of rotation of the
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motor and encoder. Equation B-1 shows the logical output
states for positive, clockwise rotation. Equation B-2 shows
the logical output states required for counterclockwise
rotation:

Clockwise Rotation =

(A1%B)+(a*B] )+ (K| *B)+(A#E]) (B-1)

Counterclockwise Rotation =

(A[*B)+(a%B ] )+(R|*B)+ (B*B])  (B-2)

Where: * = a Logical AND

+ = a Logical OR

A = Output of channel a

E = Inverse of channel a

AI = Rising edge of channel a

Sf = Falling edge of channel A

B = Output of channel B

B = Inverse of channel B

Bi = Rising edge of channel B

EI = Falling edge of channel B

Once these two directions are established and the
number of pulses coming out of the encoder are detected, one
can count them using an up-down counter. This count is the
relative output position. The clockwise pulses are fed into
one count up input of the counter, the counterclockwise
pulses are fed into the count down input. At this point in

the measurement system, one may take the position given by
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the up-down counter and use a digital-to-analog converter

to obtain an analog voltage proportional to the position.

Typically this type of encoder yields a resolution
of one part in 10,000 per mechanical revolution or a
resolution of .0036’, more than adequate for even the

smallest angle stepping motor, 0.75’.

For this application, it is desirable to be able to
"instantaneously" shift the output of the position system to
represent the stepping process in the velocity-error plane.
In order to do this, one must devise a method to subtract
the number of encoder pulses equal to one step, each time an
input step command to the motor is received by the
controlling driver logic. This was implemented in the

position system by an arithmetic logic unit (ALU).

The ALU was configured to operate in the subtraction
mode. One input of the ALU was connected to the output of
the counter which was the current motor position. The other
input to the ALU was the number of pulses equal to one step,
based on the encoder’s resolution. The output of the ALU,
therefore, contains the current position of the motor minus
one step. At the instant the stepping motor’s drive circuit
is pulsed to make another step, the position circuit is also
pulsed. The output of the ALU is loaded into the counter.
This in effect causes the counter’s contents, representing

position, to be shifted backward an amount equal to one
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step. The output of the counter is used with a DAC to
generate an analog voltage that is now proportional to the
position error. Figure B-2 is a block diagram of the encoder
circuit. The ability to preset the counter before the first

step was also implemented.

There are two potential problems that must be dealt
with in this system. First, the up-down counters that
contain the position signal can not be incremented or
decremented by the encoder and be preset from the ALU at the
same time. Therefore, upon receiving a step command, the
system must wait until after the next encoder pulse to
reload the counters. Knowing the top speed of the stepping
motor system and the encoder resolution, it is possible to
calculate the minimum period between two successive pulses
from the encoder. It is during this window that the encoder

must be reset.

The second problem is that a buffer must be placed
between the output of the counter and the input of the ALU.
This buffer will pass information except when the counter is
being reloaded. This prohibits a subtraction race condition

from existing around the counter and ALU loop.

Selection of the optical encoder is also critical.
To ensure adequate resolution, a sufficient number of pulses
should be generated for each step of the motor. The step

size must also be equal to an integer number of pulses, or
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the binary subtraction cannot be performed in the ALU.

If a switch were placed in the counter load line, it
would be possible to prohibit the stepping back. Then the
encoder circuit could also be used to generate a continuous

position signal when desired.

Velocity

The simplest method to obtain a velocity signal is
to use a DC tachometer. A tachometer works well at low
speeds where brush noise and bounce are not a problem. For
the experimental verification of the model in Chapter III, a
tachometer was used in conjunction with the encoder position

device.

During stepping there can be significant torsional
resonance between the motor and tach even when a solid
coupling is used. This appears as a high frequency
oscillation about the signal of interest. See Figure B-3. As
long as there is at least one decade between the natural
frequency of the motor and the resonant frequency, it is

possible to filter out most of the resonant oscillation.

A second order active filter was used to filter the
tach output. This resulted in a velocity signal of much
higher quality. See Figure B-4. The filter introduces

a phase shift in the output signal. This is seen as a slight
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skew of the spiral portion of the trajectory. In addition,
there may be a slight distortion of the tach output just as
the motor is stepped. This results from the discontinuous
nature of the velocity signal at the moment the motor is

stepped.

In high speed applications, the tachometer brush
bounce and wear become a problem. In this case the following
concept can be used to develop the velocity signal. It
utilizes the same optical encoder used for generating the

position and position-error signals.

To develop a velocity signal, two aspects must be
considered. First the magnitude of the signal must be
developed, then the sign, indicating positive or negative

velocity, must be determined.

The magnitude of the velocity signal can be
generated using a lookup table in a PROM. A fixed frequency
clock is input to a counter causing the counter to count up.
The count-up and count-down pulses from the encoder logic
are OR’ed together. Whenever a pulse is generated, either up
or down, the contents of the counter is latched into a
buffer. The counter is also reset to zero and allowed to
count up again. The output of the buffer that the counter
was latched into serves as the address of the PROM. Because
each pulse from the encoder represents a fixed change in

displacement, the contents of the counter is also inversely
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proportional to the velocity. It is this inverse function

that is programmed into the PROM. The address word of the

PROM is the time between ch s in displ t and the
output of the PROM is the velocity that corresponds to that

time interval.

The output of the PROM feeds into a digital-to-
analog converter. This provides an analog signal
proportional to the magnitude of the stepper velocity. This
analog signal is then fed into the circuit that determines
the velocity sign. See Figure B-5 for the block diagram of

the velocity magnitude circuit.

Considerable care must be taken in selecting the
contents of the PROM lookup table. For low speed motcr
operation, the counters may overflow between the pulses from
the encoder. However, the frequency of the clock can not be
reduced too far because resolution at higher motor speeds
would be lost. It should be noted that at maximum stepper
speed, velocity resolution will be very coarse unless a
sufficient number of counts are allowed to accumulate

between encoder pulses.

There are two ways to solve this problem. First, the
PROM's dimensions (Address x Output) can be increased to a
sufficient dimension so that both low speed and high speed
can be monitored. Second, the decision can be made that

there will never be a need to look at high and low speeds at
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the same time. If this assumption is made then a PROM of
smaller dimensions can be used and the frequency of the
clock can be changed depending upon the velocity range of
interest. For this application, two 2716 PROMs were used in
parallel. This generated an eleven bit address with a

sixteen bit output.

A hybrid circuit is used to determine the sign of
the velocity signal. A J-X flip-flop "remembers" whether the
last pulse from the encoder circuit indicated clockwise or
counterclockwise rotation. Depending upon the output of the
flip-flop, the velocity signal is fed through either one or
two inverting op-amps. In this manner the sign of the
velocity signal can be determined. Figure B-6 is a schematic

of this circuit.

The major drawback of this method of velocity
detection is that the encoder will have some jitter between
outputs A and B, Normally an encoder is specified at
A =B + 90’ +/- 45’. This jitter causes the displacement
between successive pulses to vary. While this is not a
significant problem for the position, it will cause error in
the velocity. For this reason the analog tachometer remains
the best overall velocity transducer for a wide range of

applications.
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