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Abstract 

Recursive Path Following in Log Polar Space for Autonomous Leaf Contour Extraction 

by 

Anna Snarski 

University of New Hampshire, September 2020 

 

 Use of image segmentation has caused agriculture advancement in species identification, 

chlorophyll measurements, plant growth and disease detection. Most methods require some level 

of manual segmentation as autonomous image segmentation is a difficult task. Methods with the 

highest segmentation precision use a priori knowledge obtained from user input which is time 

consuming and subjective. This research focuses on providing current segmentation methods a 

pre-processing model that autonomously extracts an internal and external contour of the leaf.  The 

model converts the uniform Cartesian images to non-uniformly sampled images in log polar space. 

A recursive path following algorithm was designed to map out the leaf’s edge boundary. This 

boundary is shifted inward and outward to create two contours; one that lies within the foreground 

and one within the background. The image database consists of 918 leaves from multiple plants 

and different background mediums. The model successfully created contours for 714 of the leaves. 

Results of the autonomously created contours being used in lieu of user-input contours for a current 

segmentation algorithm are presented.   



1 

 

 

 

Introduction 

 Image processing has become a popular technique in agriculture advancement. Pérez-

Patricio et al. [1] designed a vision-base model that uses reflectance and transmittance to estimate 

chlorophyll. Itakura et al. [2] estimated leaf area and inclination angle from 3D constructed images. 

Weizheng et al. [3] created a grading method that extracted discolored pixels in the image and 

ranked the disease level from the lesion to leaf area ratio. Species identification, chlorophyll 

measurements, plant growth, and disease detection have all benefited from some technique of 

image segmentation.  Most methods require some level of manual segmentation as autonomous 

image segmentation is a difficult task. Image segmentation methods with the highest precision use 

a priori knowledge of leaf features, limit the bounds of captured image, or use user interactive 

input. This research focuses on providing current segmentation methods a pre-processing model 

that autonomously provides an initial contour of the foreground and background. The method 

proposed will help in the creation of leaf contour extraction algorithms that do not require initial 

human interaction. 

 Grand-Brochier et al. [4] compares segmentation methods from early thresholding 

techniques to Guided Active Contour (GAC)  [5], [6] on tree leaves in natural images. Of the six 

methods that accept a priori knowledge, five had improved results from using color distance maps 

and user-input strokes. A stroke is defined as a hand-drawn marking the user adds to the image. 

The color distance maps are based on two assumptions; the leaf is at the center of the image and 

the background is at the corners. The input stroke allows the user to locate the leaf and draw the 
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general shape. For GAC and simple linear iterative clustering (SLIC) [7] the stroke is used as a 

priori knowledge on the leaf color, while the other methods use the stroke for contour initialization.  

 Wang et al. [8] combines the Chan-Vese model and the Sobel operator to create a multistep 

algorithm to segment overlapping cucumber leaves. Background removal consists of thresholding 

in RGB (red, green, blue) color space; if green is the prominent color the pixel is considered part 

of the leaf region. The Chan-Vese model is an active contour region-based method that deals with 

energy minimization and needs an initialization contour to start [9]. The traditional two Sobel 

operators are 3 x 3 matrices that identify edges in the horizontal (0°) and vertical (90°) direction. 

To reduce the impact of noise and discontinuity, 5 x 5 gradient operators in eight directions were 

used. The algorithm had a mean error rate of 4.3% when compared to the ground truth images. To 

remain autonomous, Wang et al. uses the center point of the image for the Chan-Vese model 

contour initialization instead of user-input strokes. This research will allow Wang et al.’s algorithm 

to remain autonomous and begin with an initial contour for the Chan-Vese model.  

 User interactive input strokes are not restricted to leaf segmentation. Grady’s [10] Random 

Walk (RW) algorithm uses user-defined labeled areas to calculate the probability that an unlabeled 

pixel belongs to a labeled area and was tested on medical and landscape images. Yang et al. [11] 

constrain the RW model to two labeled areas, foreground and background. Their model allows for 

soft constraint inputs where the boundary region should pass through and hard constraint inputs 

that must align with the boundary. Their image dataset contained wildlife, people and foliage.  

Rother et al. [12] extends the graph-cut [13] approach to require less interactive input through 

iterative estimation and incomplete labeling. Their algorithm, GrabCut, requires only a user-

defined rectangle encompassing the main object to begin and was tested on similar types of images 

as contained in [11]. Ning et al. [14] created a maximal similarity-based region merging (MSRM) 
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algorithm. It uses mean shift [15] as the initial low-level segmentation method and user-input 

markings to label the main object and background areas.  

 User interactive input is subjective and time consuming. To date, such interactive input is 

necessary in order to obtain accurate segmentation results. Many of these algorithms mentioned 

are autonomous after the user-based input. The goal of this research is to create a pre-processing 

algorithm that can autonomously create a contour around the main object, a leaf. The database will 

consist of multiple plants and different background mediums.  The hypothesis is the simpler leaves 

and background mediums will have a higher success rate.  

 The model converts the Cartesian images to log polar space (LPS) to find the contours. 

Although the goal is to be truly autonomous and avoid any user input, images used must have the 

center point inside the leaf which does require some level of user input for the acquired image to 

begin with. However, once this a priori knowledge is met, the algorithm is autonomous. The results 

of this thesis will allow other segmentation methods to be more fully autonomous and less 

subjective. 

The hopes of creating fully autonomous segmentation algorithms will allow for real-time 

segmentation results. These results can then be combined with chlorophyll measurement 

algorithms, plant identification databases, or disease grading methods. All the end user will need 

to do is take a photo of the leaf and within seconds they would be given educated guesses of the 

type of leaf, if the plant is lacking chlorophyll, or what type of disease is killing the plant.  

 The remainder of the thesis is organized as follows. Chapter 1 presents background 

material. Chapter 2 discusses the image databases, algorithm breakdown, and how results are 

categorized. Chapter 3 presents the contour results, MSRM results, and LPS sizes. Chapter 4 

concludes the thesis and Chapter 5 discusses future improvements to the model. 
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Chapter 1 Background 

1.1 LOG POLAR TRANSFORM 

 The log polar transform (LPT) is a conformal mapping which maps the Cartesian 

coordinates (x,y) to the logarithmic coordinates (u,ν), representing the natural-log of the radius (r) 

and the angle of radius vector (θ). Mathematically we have the following:  

𝑟 =  √𝑥2 + 𝑦2 (1.1) 

θ = arctan (
𝑦

𝑥
) (1.2) 

𝑢 = ln (
𝑟

𝑅𝑚𝑖𝑛
) (1.3) 

𝑣 =  θ (1.4) 

To produce this transform from a Cartesian space digital image Young’s [16] method was 

implemented which overlays concentric circles onto the input image. The radial distances, or rings, 

constitute the number of circles used from Rmin to Rmax. The angle widths, or wedges, constitute 

the number of circles used from θ = 0° to θ = 360°. All pixels within a circle are averaged together 

and map to a single pixel in log polar space.  An example is shown in Figure 1.1. In this case, the 

number of rings is five and wedges is sixteen, resulting in a mapped dimension (u,v) of 5 x 16 

pixels. 
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Figure 1.1: Cartesian Space to Log Polar Space 

 The log polar coordinate system is rotational and scale tolerant. Figure 1.2 depicts the 

rotation and scale tolerance. A scale in Cartesian space translates to a horizontal shift in LPS. A 

rotation in Cartesian space translates to a vertical shift in LPS. If Rmin is inside the leaf, the edge 

of the leaf will become a complete path from 0 ≤ v ≤ # of wedges in LPS. The start of the edge 

boundary can always be defined within the first row of the LPS image and the end of the edge 

boundary within the final row of the LPS image.  

 

 
Figure 1.2: Scale and Rotation Tolerant 
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 As the concentric circles get farther away from the center, the more pixels in Cartesian 

space will be averaged together to become one pixel in log polar space, causing non-uniform 

sampling. Information at the center of the Cartesian image will be preserved in log polar space 

while high frequency information is lost via the averaging of pixels the closer it is to Rmax. For the 

purpose of this research, this loss of information is an advantage. The foreground (leaf) will always 

be at the center of the image and the unimportant background (dirt, branches, other leaves) is 

always near the outermost rings in the transform space. Data loss and averaging of the background 

will blur edges and remove high frequencies allowing the edge of the leaf to become more 

prominent.  

 Research of log polar image representation dates to the 1970’s starting with Schwartz [17] 

who showed that mammals’ visual system can be represented by log polar mapping. Weiman and 

Chaikin [18] mathematically derived a logarithmic spiral grid to produce conformal mapping of 

Cartesian coordinates for image processing use. Schenker et al. [19]  uses a similar method of 

polar exponential grid (PEG) for image representation and blob boundary detection. It has become 

a common transform to use for object recognition with a wide variety of computer vision and 

machine learning techniques. Incorporating Schwartz’s and Schenker’s research, Messner and Szu 

[20] designed in hardware the logarithmic coordinate mapping without calculation. The 

architecture successfully converts scale and rotations of the input image into translations in real 

time. Bishay et al. [21] used log polar mapping to transform the unknown edges that defined 

boundaries of a room into horizontal edges. Template-matching was then performed to identify 

the objects in each portion of the room. The system was computationally efficient as only one 

template per object was needed due to LPT being rotational and scale tolerant. Traver and Pla [22] 

investigate the problem of translation estimation in log polar images using two methods, gradient-
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descent and projections into 1D arrays. Ellahyani and Ansari [23] combines the log polar mapping 

with mean shift clustering and random forests to detect the road sign by color and shape. Similarly, 

Koester [24] and Radhi [25] compared LPS images to Cartesian space images using a 

convolutional neural network to identify road images. The processing speed was significantly 

higher for log polar space images with relatively similar validation accuracy.  
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1.2 COLOR SPACE 
 

 Computer vision is comparable to human vision. The eyes are the receptors for human 

vision and a digital camera are the receptors for computer vision. The brain and computer would 

then be the interpretation system. To acquire colored images, most cameras are configured with a 

Bayer [26] color filter array. A square grid of photosensors are overlaid with red (R), green (G), 

and blue (B) color filters. When a digital RGB image is captured, each pixel is represented by three 

values, one for each RGB color value, ranging from 0 to 1 or 0 to 255 if 8-bit quantized as shown 

in Figure 1.3. Figure 1.4 displays these three primary colors are enough to produce any perceived 

color. The value of each RGB color needed to create a specific color is known at the tristimulus 

values [27].  

 
Figure 1.3: Schematic of RGB Color Cube [28] 

 
Figure 1.4: RGB Color Cube [28] 

 

 RGB is just one of many color spaces to represent an image. Humans observe color relating 

to hue, chroma, and brightness rather than tristimulus values. Brightness corresponds to the 

perceived lightness stimulated by the rods and cones in the retina. Hue quantifies a perceived color 

by how similar or different it is to the primary colors. Neutral colors (black, white and grey) do 

not have any hue. Chroma defines the level of colorfulness in relation to the amount of brightness. 
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Color spaces that quantify color like the human visual system are known as perceptual spaces.  In 

image processing, it is common to convert images into a perceptual color space to make it easier 

for the human to describe color. Brightness is not numerically quantifiable; therefore, luminance, 

a measurement of light intensity, is used. Perceptual spaces are also categorized as luminance-

chrominance based where one component represents the luminance and two represent the 

chrominance [27]. 

 For this research, images were converted into L*a*b* color space. As shown in Figure 1.5, 

luminance (L*) ranges from 0 (black) to 100 (white), a* ranges from -128 (green) to 128 (red), 

and b* ranges from -128 (blue) to 128 (yellow).  L*a*b* can be converted to LCH (luminance, 

chroma, hue) where chroma and hue are the polar coordinates of a* and b*. Chroma ranges from 

0 at the center, unsaturated, to 100 at the edge of the circle, fully saturated. Hue is defined in 

angular degrees with red being 0°, green at 120°, and blue at 240°. Asmare et al. [29] compares 

numerous color spaces for conversion accuracy and image enhancement. L*a*b* has a high 

accuracy conversion from RGB and was deemed an acceptable color space to use. The conversion 

between RGB and L*a*b* can be found in [27] and [29]. 

 

Figure 1.5: L*a*b* Color Space 
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1.3 CHAIN CODE 
 

 For this research, chain code was used to perform a cost analysis to determine the best edge 

boundary path if more than one was found. Chain code is an algorithm that represents a pixel 

location of a boundary by its slope direction compared to the previous pixel [30]. It allows for a 

lossless compression, only the chain code and start location is needed to recreate the boundary of 

an object. The algorithm uses an 8-neighborhood connectivity map shown in Figure 1.6. Figure 

1.7 is an example of the chain directions starting at the location (4,4). The chain code would then 

be 100775565433221. Chain code is typically used for a closed edge boundary. In this research 

every boundary is open. Luengo’s [31] MATLAB code was modified to accept an open boundary 

and always given a start location at the top row of the image.  

 
Figure 1.6: 8-Neighborhood Connectivity 

 
Figure 1.7: Chain Code Example 
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1.4 MAXIMAL SIMILARITY-BASED REGION MERGING 
 

 The outputs of this research are meant to replace user-input markings for current 

segmentation algorithms. The maximal similarity-based region merging (MSRM) algorithm by 

Ning et al. [14] will be used to test if this research’s contours are successful. MSRM accepts user-

input background and foreground strokes. To create homogeneous regions, an initial low-level 

segmentation algorithm is needed. Regions are categorized as containing background strokes (GB), 

foreground strokes (GF) and unlabeled (GU). For each region, the color channels are quantized into 

N bins and the normalized color histogram (Hist) is found. The histograms are used to calculate 

the Bhattacharyya coefficient [32] of adjacent regions, shown in Figure 1.8. 

𝜌(𝐴, 𝐵) =  ∑ √𝐻𝑖𝑠𝑡𝐴
𝑖 ∙ 𝐻𝑖𝑠𝑡𝐵

𝑖

𝑁

𝑖=1

(1.5) 

 
Figure 1.8: Bhattacharyya Coefficient Example 
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The Bhattacharyya coefficient is a statistical measure of similarity between two samples. 

The higher the coefficient the higher the similarity. The coefficient is calculated for all regions 

adjacent to A, then the region with the highest coefficient is merged with A. The algorithm is split 

into two stages, merging GB and GU regions then merging GF and GU regions.  

Ning et al. have a website [33] that contained MATLAB code for their algorithm. 

Modification of this code was necessary in order to be compatible with MATLAB R2019b. The 

code also had to be updated to handle images larger than 600 x 600 pixels. The code contains a 

graphical user interface (GUI) where the user draws the foreground and background markers or 

uploads predefined markers. Figure 1.9 shows the layout of the GUI with user-drawn markers.  

 
Figure 1.9: MSRM GUI 
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Chapter 2 Methods 

2.1 IMAGE DATABASES 
 

To accurately test the program, an image database of different plant leaves and 

backgrounds was required.  These images will be referred to as the validation image database. 

Images were captured in shade to limit reflection and shadows. The full leaf had to be included in 

the image and the center of the image must be part of the leaf. Three plants were used, peperomia, 

Swedish ivy and Algerian ivy. 

 
Figure 2.1: Peperomia Leaf 

 
Figure 2.2: Swedish Ivy 

 
Figure 2.3: Algerian Ivy 

 

Images were split into three groups by background medium. Group 1 is a simple 

background where leaves are placed on large stones. Group 2 consists of pebbles and sand while 

Group 3 was a mixture of dead and alive grass. The background in Group 1 lacks high frequency 

and shades of green. Group 2 has high frequency from the different colored pebbles and sand. 

Group 3 has high frequency and shades of green making it the most complicated background.  
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Peperomia leaves (Figure 2.4, Figure 2.5, Figure 2.6) are elliptic or obtuse shaped and have 

entire (smooth) edges.  

 
Figure 2.4: Peperomia Group 1 (P1) 

 
Figure 2.5: Peperomia Group 2 (P2) 

 
Figure 2.6: Peperomia Group 3 (P3) 

 

Swedish ivy leaves (Figure 2.7, Figure 2.8, Figure 2.9) have crenate (scallop) edges and 

are broadly ovate shaped with some leaves having an oblique base.  

 
Figure 2.7: Swedish Ivy Group 1 (S1) 

 
Figure 2.8: Swedish Ivy Group 2 (S2) 

 
Figure 2.9: Swedish Ivy Group 3 (S3) 
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Algerian ivy leaves (Figure 2.10, Figure 2.11, Figure 2.12) are palmately lobed with entire 

edges.  

 
Figure 2.10: Algerian Ivy Group 1 (A1) 

 
Figure 2.11: Algerian Ivy Group 2 (A2) 

 
Figure 2.12: Algerian Ivy Group 3 (A3) 

 

The database contains 918 images and is shown broken down by group and plant in Table 

2.1. Most of the images are 3024 x 4032 pixels, though some were cropped to move the leaf to the 

center of the image or rotated to create more variety between images. Leaves in Figure 2.4 through 

Figure 2.12 will be used throughout Chapter 2 to show results at each stage of the model. They 

will be referenced as the first letter of their plant name and what group they are in (i.e. P1, A2). 

 
 Peperomia Swedish Ivy Algerian Ivy Total 

Group 1 130 82 49 261 

Group 2 141 159 108 408 

Group 3 83 99 67 249 

Total 354 340 224 918 
Table 2.1: Image Distribution by Plant and Group 

 

Eighty additional images from ImageCLEF’s [34] 2014 plant database are used to test the 

model. They will be referred to as the test image database. These leaves were not used while 

writing and debugging the algorithms developed. The aim of the test images is to demonstrate and 
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determine the level of robustness with respect to leaf shape and background noise in general. The 

images are split into two groups, white background and natural background. The images ranged in 

size from 340 x 350 pixels to 960 x 900 pixels. Images were chosen using the same restraints as 

the validation dataset. Leaves had to be simple (not compound), completely in the image, green, 

non-overlapping with another leaf, and with minimal reflection. These restrictions had to be 

relaxed to obtain forty background images. Some leaves in the database have dead spots, overlap 

other leaves, or are yellow.  

The database contains elliptic, deltoid, acicular, reniform, ovate, orbicular, cuneate, cordate 

and palmately lobed shaped leaves. The edges are entire, dentate, spiny, serrate, and undulate. 

Please refer to pages 18-25 of [35] for an in-depth description of leaf architecture. The natural 

backgrounds contained dirt, leaves, pebbles, sticks, grass, and stone slabs.   
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2.2 ALGORITHM DESCRIPTION 
 

2.2.1 Log Polar Space 
  

 Young’s [16] MATLAB code was used for all log polar and inverse log polar transforms. 

For Rmax to be half the length of the longest image dimension, either the length or width of the 

image was padded to create a square image. 150 rings and 250 wedges were chosen creating 150 

x 250 resolution images. Rmin was calculated using Equation 2.1 which is equivalent to Equation 

2.2 given the constant ring and wedge values for all images. Figure 2.13 through Figure 2.30 show 

the leaves in Cartesian space (CS) and the results from the LPT.  

𝑅𝑚𝑖𝑛 = 𝑅𝑚𝑎𝑥𝑒
−2𝜋(𝑟𝑖𝑛𝑔𝑠−1)

𝑤𝑒𝑑𝑔𝑒𝑠 (2.1) 

𝑅𝑚𝑖𝑛 = 0.0236𝑅𝑚𝑎𝑥 (2.2) 
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Figure 2.13: P1 in CS 

 
Figure 2.14: P1 in LPS 

 
Figure 2.15: P2 in CS 

 
Figure 2.16: P2 in LPS 

 
Figure 2.17: P3 in CS 

 
Figure 2.18: P3 in LPS 

 
Figure 2.19: S1 in CS 

 
Figure 2.20: S1 in LPS 

 
Figure 2.21: S2 in CS 

 
Figure 2.22: S2 in LPS 

 
Figure 2.23: S3 in CS 

 
Figure 2.24: S3 in LPS 
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Figure 2.25: A1 in CS 

 
Figure 2.26: A1 in LPS 

 
Figure 2.27: A2 in CS 

 
Figure 2.28: A2 in LPS 

 
Figure 2.29: A3 in CS 

 
Figure 2.30: A3 in LPS 
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2.2.2 Extracted Edges Algorithm 
 

 Next, the edges of the leaf need to be extracted from the image. Figure 2.31 breaks down 

the Extracted Edges algorithm which also includes converting to LPS. The input is the original 

Cartesian space image and the output is a LPS binary image of the edges found.  

 
Figure 2.31: Extracted Edges Algorithm Block Diagram 



21 

 

Leaves P1 and A3 are used to show outputs at each stage of the algorithm. Figure 2.32 and 

Figure 2.33 reshow the leaves in LPS and will be referenced as LP-P1 and LP-A3. Once the LPS 

image is converted to L*a*b* color space, k-means clustering is performed using a* and b* to 

partition the pixels into two clusters, foreground and background, as seen in Figure 2.34 and Figure 

2.35. 

 
Figure 2.32: LP-P1 

 
Figure 2.33: LP-A3 

 

 
Figure 2.34: K-means Clustering of LP-P1 

 
Figure 2.35: K-means Clustering of LP-A3 
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Only the edges of the largest grouping of ones is kept. Figure 2.36 and Figure 2.37 show 

the edge mask made by creating a boundary of two pixels to the left and right of each edge pixel.  

 
Figure 2.36: Edge Boundary Mask of LP-P1 

 
Figure 2.37: Edge Boundary Mask of LP-A3 

 

Figure 2.38 and Figure 2.39 are the results of the horizontal value difference between 

adjacent pixels in chroma, the magnitude of a* and b*.  

 
Figure 2.38: Horizontal Derivative (HD) of LP-P1 

 
Figure 2.39: Horizontal Derivative (HD) of LP-A3 
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Next, the absolute value is taken and all pixels below the input threshold are changed to 

zero as shown in Figure 2.40 and Figure 2.41. 

 
Figure 2.40: Absolute Value and Threshold of LP-P1 

 
Figure 2.41: Absolute Value and Threshold of LP-A3 

 

The boundary mask is overlaid on the threshold image to extract the real edge of the leaf. 

Lastly, to improve the path following algorithm only the left most pixel in horizontal groupings 

are kept. The result of the Extracted Edges algorithm is shown in Figure 2.42 and Figure 2.43. 

 
Figure 2.42: Extracted Edges of LP-P1 

 
Figure 2.43: Extracted Edges of LP-A3 

 

  



24 

 

To extract only the prominent edges, the Extracted Edges algorithm is first given a high 

threshold. If the Path Finder algorithm (section 2.2.4) cannot find a complete path, the threshold 

is lowered and both algorithms are rerun. If the threshold is at four, the lowest threshold allowed, 

and a path still cannot be found, the leaf is considered a failure. Figure 2.44 through Figure 2.52 

show the identified edges from the Extracted Edges algorithm and the respective threshold value. 

 

 
Figure 2.44: Identified Edges of LP-P1, 

Threshold = 12 

 
Figure 2.45: Identified Edges of LP-P2, 

Threshold = 12 

 
Figure 2.46: Identified Edges of LP-P3, 

Threshold = 7 

 
Figure 2.47: Identified Edges of LP-S1, 

Threshold = 12 

 
Figure 2.48: Identified Edges of LP-S2, 

Threshold = 12 

 
Figure 2.49: Identified Edges of LP-S3, 

Threshold = 12 
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Figure 2.50: Identified Edges of LP-A1, 

Threshold = 4 

 
Figure 2.51: Identified Edges of LP-A2, 

Threshold = 11 

 
Figure 2.52: Identified Edges of LP-A3, 

Threshold = 11 
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2.2.3 Start Location Algorithm and Node Finder Algorithm  
 

To begin following the edge path, a start location is needed. Figure 2.53 is a block diagram 

showing how the start location is chosen. The Start Location algorithm uses the Node Finder 

algorithm in Figure 2.54.  

 
Figure 2.53: Start Location Algorithm Block Diagram 

 
Figure 2.54: Node Finder Algorithm Block Diagram 

The term node is used to describe a pixel with value one (white).  The input window length 

and width define how large of a window the nodes will be searched in. When used to find the start 

location, window length is set to ten and window width is the entire row. The algorithm extracts 

objects larger than two pixels from the first ten rows and chooses the top left most pixel of each 

grouping as the output.  
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To demonstrate both algorithms, a synthetic input image of 10 x 40 pixels is shown in  

Figure 2.55.  The Start Location algorithm will call the Node Finder algorithm to extract the top 

ten rows (highlighted in red). Figure 2.56 shows the window size (10 x 10) and the extracted 

objects. The two pixels identified as possible starting locations are shown in red.  

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

Figure 2.55: Synthetic Image 

          

          

          

          

          

          

          

          

          

          

Figure 2.56: Extracted Objects from Top Rows of Synthetic 
Image 
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The Start Location algorithm identifies the possible start locations and checks to see if 

nodes exist within the same few columns at the bottom of the image. A benefit of the LPT is the 

edge leaf will be at the same radius (u) at v = 0° (bottom of image) and v = 360° (top of image). 

Therefore, the true start location of the edge will have a matching end location. The Node Finder 

algorithm is also used to search the image for potential paths when a large enough break occurs. 

An example of this is shown in the next section.  
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2.2.4 Path Finder Algorithm 
 

 The Path Finder algorithm is the main part of the autonomous model. The paths can be 

thought of as tree roots as seen in Figure 2.57. The algorithm is designed to search for the deepest 

root.  When a root splits into multiple paths, the algorithm stores the split location, then recursively 

follows each root to its end. Figure 2.58 shows the block diagram for the algorithm.  

 
Figure 2.57: Root Path Example 
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Figure 2.58: Path Finder Algorithm Block Diagram 
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The inputs to the algorithm are the start location(s), the LPS binary edge image from 

Extracted Edges, the window size, and the gap length. The start location index becomes the current 

node and is stored in the temporary array called ‘path’. The window size defines how many pixels 

to extract from the row below the current node. A window size of two means extract two pixels to 

the left and right making the window length five. Typically, the window size is either three or five. 

If there are one or more nodes in the window, the left most node is chosen by default and becomes 

the new current node. If there is not a node in the window, the window moves down a row and 

continues the search. If the number of consecutive rows with zero nodes reaches the gap length 

value, the Node Finder algorithm is called.  

Given a synthetic image as shown in Figure 2.59, it is clearly seen that there is a break in 

the path starting at row twenty-one. If the window size is two (window length is then five) and the 

gap length is five, then no node would be found. The Node Finder algorithm will extract a large 

window, Figure 2.60,  with the top centered at the current node (red) and identify path continuation 

nodes (blue). The Path Finder algorithm will make the left blue node the new current node and 

store the right one in the cell array called ‘branches’.  
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Figure 2.59: Synthetic Image 

       

       

       

       

       

       

       

       

Figure 2.60: Node Finder on Synthetic Image 

 

 An edge path is considered complete if it makes it to the bottom ten rows of the image and 

is saved permanently. The algorithm recursively prunes as it finds paths that are incomplete. Once 

a path is done, the algorithm checks if ‘branches’ has any split nodes not followed and if there 

were any more starting locations. Only after this does the algorithm output the possible edge path 

indices.  

←Row 21 
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2.2.5 Contour Finder Algorithm  
 

 The Contour Finder algorithm is the complete autonomous system that takes in a Cartesian 

space image and outputs two contours, one inside the leaf and one outside. The contours are one 

pixel thick and cannot be seen without zooming in. Figure 2.61 shows the outer (blue) and inner 

(red) contours with a ten-pixel thickness for visualization.  

 
Figure 2.61: Inner and Outer Contour 

Figure 2.62 is the block diagram describing how the contours are created. As mentioned in 

section 2.2.2, T, the threshold, starts high to only extract prominent edges.  If a path cannot be 

found the threshold is lowered, edges are redefined, and the Path Finder algorithm is rerun.  
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Figure 2.62: Contour Finder Algorithm Block Diagram 
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Once possible edge paths are found, linear interpolation is used for breaks in the path. 

Typically, with images in Group 2 and 3, multiple paths are found. Chain codes are generated for 

each path with the start location in the top row. Each number of the code is weighted differently. 

Codes 1, 2, 3 are weighted heavier than 5, 6, 7, because the true edge boundary typically has a 

downward slope. The path with the smallest cost is the chosen path to create the contours from. 

 
Figure 2.63: 8-Neighborhood Connectivity 

To create a contour inside the leaf, the edge path is shifted left, to a smaller radius. The 

outer contour is created from a shift to the right. A scale translation in Cartesian space is a shift in 

LPS as shown in Figure 1.2. At this stage, the images are converted back into Cartesian space 

through Young’s [16] inverse LPT code. A low-pass Gaussian filter is applied to smooth the edges 

of the contour. Figure 2.64 and Figure 2.65 show the original contours while Figure 2.66 and 

Figure 2.67 are the resulting images following the application of the Gaussian filter. Figure 2.68 

through Figure 2.76 are the final contours overlaid on the original images. 
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Figure 2.64: Outer Contour of P1 

 
Figure 2.65: Inner Contour of P1 

 
Figure 2.66: Smoothed Outer Contour of P1 

 
Figure 2.67: Smoothed Inner Contour of P1 
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Figure 2.68: Contours of P1 

 
Figure 2.69: Contours of P2 

 
Figure 2.70: Contours of P3 

 
Figure 2.71: Contours of S1 

 
Figure 2.72: Contours of S2 

 
Figure 2.73: Contours of S3 

 
Figure 2.74: Contours of A1 

 
Figure 2.75: Contours of A2 

 
Figure 2.76: Contours of A3 
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2.3 CATEGORIZING RESULTS 

A common method to validate image segmentation results is to test against the manually 

segmented ground truth image. Pixels that are part of the foreground are given a value of one and 

background pixels are given a value of zero. By calculating the precision (positive predicted value), 

sensitivity (true positive rate), and accuracy one can determine how successful the segmentation 

algorithm is. Unfortunately, this type of validation would produce inaccurate results for what was 

done in this research. Between the LPT and gaussian filter, the contours found give only a rough 

outline of the leaf. The goal of this algorithm is to produce contours inside and outside the leaf, 

not to extract the true leaf boundary.  

Each image can be categorized into three groups; success, failure, and incomplete. A 

successful image will have no part of the inner or outer contour crossing the leaf boundary. Even 

if a small portion of the contour touches the leaf edge, it is a failure. Figure 2.77 and Figure 2.78 

show examples of this. An incomplete is defined as when the algorithm failures to find an edge 

path and thus no contour is created.  
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Figure 2.77: Swedish Ivy Contour Failure 

 
Figure 2.78: Swedish Ivy Contour Failure Close-up 
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Chapter 3 Results 

3.1 ALGORITHM CONTOUR RESULTS 

Results are summarized in the tables below. Table 3.1 displays the validation image 

database distribution by group and plant type. Table 3.2 displays the number of successful contours 

found by group and plant type. Table 3.3 shows the same data but given in percentage. The 

hypothesis was the simpler the leaf and background were, the higher the success rate. Therefore, 

peperomia in Group 1 should have the highest success rate while Algerian ivy in Group 3 should 

have the lowest success rate. The results in Table 3.3 validate the hypothesis. Each plant had its 

highest success rate in Group 1 and lowest in Group 3.  

 Group 1 Group 2 Group 3 Total 

Peperomia 130 141 83 354 

Swedish Ivy 82 159 99 340 

Algerian Ivy 49 108 67 224 

Total 261 408 249 918 

Table 3.1: Validation Image Database by Plant and Group 

 Group 1 Group 2 Group 3 Total 

Peperomia 126 134 75 335 

Swedish Ivy 72 135 70 277 

Algerian Ivy 35 51 16 102 

Total 233 320 161 714 

Table 3.2: Contour Successes by Group and Plant Type 

 Group 1 Group 2 Group 3 Average 

Peperomia 96.9 95.0 90.4 94.6 

Swedish Ivy 87.8 84.9 70.7 81.5 

Algerian Ivy 71.4 47.2 23.9 45.5 

Average 89.3 78.4 64.7 77.8 

Table 3.3: Contour Success Percentage 
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Figure 3.1(a-i) show examples of contours that were classified successful. A contour does 

not need to be perfect to be successful as the goal is to find a rough outline. Figure 3.1(b) and 

Figure 3.1(i) both have mistakes in the contour where the contour does not follow exactly the leaf 

edge outline. This is acceptable if the error does not force the contour to touch the true leaf edge.    

 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 
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Figure 3.1: Contour Success Examples 

Table 3.4 and Table 3.5 give the failed contour distribution. Including the incomplete group 

in the calculation, peperomia has a 2.3% failure rate, Swedish ivy has 16.8% and Algerian ivy with 

32.6%. Of the 918 images, 138 or 15% were considered a failure. 

 Group 1 Group 2 Group 3 Total 

Peperomia 0 1 7 8 

Swedish Ivy 9 22 26 57 

Algerian Ivy 9 28 36 73 

Total 18 51 69 138 
Table 3.4: Contour Failures by Group and Plant Type 

 Group 1 Group 2 Group 3 Average 

Peperomia 0.0 0.7 8.4 2.3 

Swedish Ivy 11.0 13.8 26.3 16.8 

Algerian Ivy 18.4 25.9 53.7 32.6 

Average 6.9 12.5 27.7 15.0 
Table 3.5: Contour Failure Percentage 

Figure 3.2(a-i) are examples of failed contours. Some contours, Figure 3.2(a-c), are 

relatively accurate contours but contain one or two areas that touch the leaf boundary. Many of the 

images in the failure group would be considered successful if the inner and outer contour were 

shifted one more pixel while still in LPS.  
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Figure 3.2: Contour Failure Examples 
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Failures are caused by either following the wrong path or the Gaussian filter.  The Gaussian 

filter can over smooth the edges in the contour. For Swedish ivy it is typically leaves that have 

larger crenate edges that the inner contour touches the leaf edge after the Gaussian filter.  Figure 

3.3 and Figure 3.4 show an example of how the Gaussian filter causes an image to be a failure. 

The inner contour only crosses the leaf edge boundary after the smoothing filter. 

 
Figure 3.3: Contours Before Gaussian Filter 

 
Figure 3.4: Contours After Gaussian Filter 

 

Incompletes are the true failures of the algorithm. For these images, the algorithm was not 

able to find a complete path to follow and therefore a contour could not be found. Swedish ivy is 

the only plant that follows the trend of having results becoming worse as the background becomes 

more cluttered. Table 3.6 and Table 3.7 give the incomplete image distribution. Overall, the model 

could not find paths for 66, or 7.2%, of the images.  

 Group 1 Group 2 Group 3 Total 

Peperomia 4 6 1 11 

Swedish Ivy 1 2 3 6 

Algerian Ivy 5 29 15 49 

Total 10 37 19 66 

Table 3.6: Incompletes by Group and Plant Type 
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 Group 1 Group 2 Group 3 Average 

Peperomia 3.1 4.3 1.2 3.1 

Swedish Ivy 1.2 1.3 3.0 1.8 

Algerian Ivy 10.2 26.9 22.4 21.9 

Average 3.8 9.1 7.6 7.2 
Table 3.7: Percentages of Incompletes 

Figure 3.5(a-f) show LPS edge images where paths could not be found. Either breaks in 

the path were too large, the path curved up, or a starting position was not found. 

 

 
a 

 
b 

 
c 

 
d 

 
e 

 
f 

Figure 3.5: Incomplete Examples 
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Table 3.8 and Table 3.9 give a better distribution of contour success and failures when 

excluding the incomplete group. Peperomia plants in Group 1 now have a 100% success rate. 

Overall the success rate goes from 77.8% to 83.8% and the failure rate increases 1.2%. 

 
 Group 1 Group 2 Group 3 Average 

Peperomia 100.0 99.3 91.5 97.7 

Swedish Ivy 88.9 86.0 72.9 82.9 

Algerian Ivy 79.5 64.6 30.8 58.3 

Average 92.8 86.3 70.0 83.8 

Table 3.8: Contour Success Percentage Excluding Incompletes 

 
 Group 1 Group 2 Group 3 Average 

Peperomia 0.0 0.7 8.5 2.3 

Swedish Ivy 11.1 14.0 27.1 17.1 

Algerian Ivy 20.5 35.4 69.2 41.7 

Average 7.2 13.7 30.0 16.2 
Table 3.9: Contour Failure Percentage Excluding Incompletes 
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3.2 THRESHOLD VALUES 
 

The threshold value used to define the LPS edges is a key part of the algorithm. If the 

threshold is set too high, then Path Finder will not be able to find a path. If set too low the algorithm 

is slow and there is a higher chance of choosing an incorrect path. The threshold value is dependent 

on the leaf type and background clutter. Figure 3.6, Figure 3.7, and Figure 3.8 show the threshold 

distribution of each background group to give insight on leaf type and threshold value. Success 

and failed images are included in the plots. Images grouped as incomplete did not have a viable 

path at the lowest threshold (four) and therefore were not included in the distribution. 

 
Figure 3.6: Threshold Distribution of Group 1 
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Figure 3.7: Threshold Distribution of Group 2 

 
Figure 3.8: Threshold Distribution of Group 3 

For all three groups, Swedish Ivy has the highest percentage of images at threshold 12. 

This could be for two reasons. Visually they are brighter green than Algerian Ivy and Peperomia, 

giving the leaf edges more contrast against the background. Though more likely it is due to the 

crenate edges. Swedish ivy will have a larger perimeter than a peperomia leaf of the same area. 

Since there are more edge pixels, the chance of enough edges being chosen at a higher threshold 

is better.  
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Similar to the contour results, Algerian ivy did significantly worse for threshold values 

compared to peperomia and Swedish ivy. However, in each graph Algerian ivy has a substantial 

percentage increase at a threshold of four compared to five.  Since this is across all groups, it is 

not the level of noise in the background, but the lower chroma contrast between background and 

Algerian ivy leaf edges that cause a lower threshold to be needed. Table 3.10 displays the average 

threshold for each group and plant. Figure 3.9, Figure 3.10, and Figure 3.11 display the same 

information but show the threshold distribution of each plant across the groups. 

 
 Group 1 Group 2 Group 3 

Peperomia 11.37 10.86 10.72 

Swedish Ivy 11.41 11.81 11.01 

Algerian Ivy 7.93 6.78 6.88 
Table 3.10: Average Thresholds 

 

 
Figure 3.9: Threshold Distribution of Peperomia Plant  
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Figure 3.10: Threshold Distribution of Swedish Ivy Plant 

 
Figure 3.11: Threshold Distribution of Algerian Ivy 

 

Peperomia (Figure 3.9) and Swedish ivy (Figure 3.10) have similar distributions over all 

groups. With most images having a threshold of 12 regardless of the background, the algorithm 

should be started at a higher threshold. This may help with false edge paths from background 

edges. In Figure 3.11 Algerian ivy has its highest percentage, 41%, of images at a threshold of 12 
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compared to Group 2 and 3.  This illustrates the level of background clutter influences the 

minimum threshold needed to obtain an edge path in LPS. 
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3.3 MSRM RESULTS 

MSRM is used to demonstrate that the model is a successful option in lieu of user-input 

strokes. To produce low-level segmentation regions, simple linear iterative clustering (SLIC) was 

used. Figure 3.12 shows the result of SLIC on S3.  

 
Figure 3.12: SLIC of S3 
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The outer contour is used as the background marker and inner contour as the foreground 

marker for MSRM. Please refer to section 1.3 for a description of MSRM. Figure 3.13 through 

Figure 3.21 are results of MSRM. 

 
Figure 3.13: MSRM of P1 

 
Figure 3.14: MSRM of P2 

 
Figure 3.15: MSRM of P3 

 
Figure 3.16: MSRM of S1 

 
Figure 3.17: MSRM of S2 

 
Figure 3.18: MSRM of S3 
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The success of MSRM heavily relies on the input SLIC image. Figure 3.22 is a closeup of 

A2 after SLIC and MSRM. The red circle on the SLIC image shows clusters that lie on the leaf 

edge. Anytime this occurs the MSRM algorithm either counts this cluster as background or 

foreground, either way it will not create a clean extraction. With that in mind, the outer and inner 

contours used as input strokes were enough to guide MSRM into correctly segmenting the leaves.  

 

Figure 3.22: SLIC and MSRM Closeup of A2 

 

 

 
Figure 3.19: MSRM of A1 

 
Figure 3.20: MSRM of A2 

 
Figure 3.21: MSRM of A3 
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3.4 TEST IMAGE DATABASE RESULTS 

Of the eighty test images, the model was able to produce successful contours for sixty, or 

75% of them. The results are shown in Table 3.11. However, to say the algorithm is 75% successful 

would be not a reliable metric for overall performance. The goal of the test image database is to 

determine the robustness only against leaf shape, background clutter and what scenarios cause the 

algorithm to fail.  Figure 3.23(1-31), Figure 3.24(1-5), and Figure 3.25(1-4) display all 40 white 

background images by success, failure, and incomplete groups respectively. Figure 3.26(1-29), 

Figure 3.27(1-7), and Figure 3.28(1-4) display the natural background images by group.  

 
 Success Failure Incomplete 

White Background 31 5 4 

Natural Background 29 7 4 

Total 60 12 8 
Table 3.11: Test Image Results 
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Figure 3.23: White Background Test Images in Success Group 
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Figure 3.24: White Background Test Images in Failure Group 
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3 4 
Figure 3.25: White Background Test Images in Incomplete Group 
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Within the failure group, Figure 3.24(1,3-5) are similar to leaves in the success group. This 

gives no conclusion as to what causes the model to fail. The center of leaf 1 in Figure 3.24 is 

marked by a red cross. When performing the LPT, the edge of the leaf is aligned radially at the red 

arrow. This can cause portions of the leaf to be misrepresented in LPS. Leaf 2 has a dead spot at 

the edge of the leaf that was most likely categorized as background during k-mean clustering. Leaf 

3 has a cordate base shape that the algorithm ignored. Leaves 4 and 5 have acute apex’s that were 

cut off. Leaves in Figure 3.25 all had definitive start locations in their binary LPS edge image 

though each contained large gaps. Leaves with an acute apex, acute base, or large serrate edges are 

more difficult to find a contour over obtuse apex shaped leaves.  
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Figure 3.26: Natural Background Test Images in Success Group 
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7   
Figure 3.27: Natural Background Test Images in Failure Group 

The algorithm was able to successfully extract contours from twenty-nine of the forty 

natural background images. Of the seven leaves in the failure group, five had outer contours that 

cut off the tip of the leaf. Although the contours of leaf 1 of Figure 3.27 look successful, it crossed 

through a leaf spike. The overlapping leaves in leaf 4 was too much of a noisy background for the 

model.  

 

 

   
1 2 
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3 4 

Figure 3.28: Natural Background Test Images in Incomplete Group 

For the leaves in Figure 3.28, three had simple natural backgrounds that were expected to 

produce successful contours. Leaf 1 has a discolored portion that was most likely grouped as 

background during k-means clustering, causing a gap in the binary LPS edge image. Leaf 2 is like 

many images that were successful, but with some reflection and shadowing. Leaf 3’s stem is green 

and is cropped out of the image, causing there to not be any start or stop location. Leaf 4 has 

discolored parts and reflection producing an inaccurate binary LPS edge image.  

  



69 

 

3.5 LOG POLAR SPACE SIZE 

Deciding on 150 rings and 250 wedges (150 x 250 pixels) for the LPT was done by trial 

and error before the algorithm was developed. The goal was to decimate the original image as 

much as possible and visually retain a clear edge boundary. Once the algorithm was constructed, 

different LPT sizes were tested and evaluated. Figure 3.29 through Figure 3.64 show the binary 

LPS edges at 25 x 50, 50 x 100, 150 x 250, and 200 x 350 pixels. The contours shown were not 

shifted to create an outer or inner contour but to show how accurate the algorithm segments the 

leaf at each LPT size.   

 

      
Figure 3.29: 25 x 50 LPS Edges and Contour Result (P1) 

      
Figure 3.30: 50 x 100 LPS Edges and Contour Result (P1) 

      
Figure 3.31: 150 x 250 LPS Edges and Contour Result (P1) 

      
Figure 3.32: 200 x 350 LPS Edges and Contour Result (P1) 
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Figure 3.33: 25 x 50 LPS Edges and Contour Result (P2) 

      
Figure 3.34: 50 x 100 LPS Edges and Contour Result (P2) 

      
Figure 3.35: 150 x 250 LPS Edges and Contour Result (P2) 

      
Figure 3.36: 200 x 350 LPS Edges and Contour Result (P2) 

 

      
Figure 3.37: 25 x 50 LPS Edges and Contour Result (P3) 

      
Figure 3.38: 50 x 100 LPS Edges and Contour Result (P3) 

      
Figure 3.39: 150 x 250 LPS Edges and Contour Result (P3) 

      
Figure 3.40: 200 x 350 LPS Edges and Contour Result (P3) 

 



71 

 

      
Figure 3.41: 25 x 50 LPS Edges and Contour Result (S1) 

      
Figure 3.42: 50x 100 LPS Edges and Contour Result (S1) 

      
Figure 3.43: 150 x 250 LPS Edges and Contour Result (S1) 

      
Figure 3.44: 200 x 350 LPS Edges and Contour Result (S1) 

 

      
Figure 3.45: 25 x 50 LPS Edges and Contour Result (S2) 

      
Figure 3.46: 50 x 100 LPS Edges and Contour Result (S2) 

      
Figure 3.47: 150 x 250 LPS Edges and Contour Result (S2) 

      
Figure 3.48: 200 x 350 LPS Edges and Contour Result (S2) 

 



72 

 

      
Figure 3.49: 25 x 50 LPS Edges and Contour Result (S3) 

      
Figure 3.50: 50 x 100 LPS Edges and Contour Result (S3) 

      
Figure 3.51: 150 x 250 LPS Edges and Contour Result (S3) 

      
Figure 3.52: 200 x 350 LPS Edges and Contour Result (S3) 

 

      
Figure 3.53: 25 x 50 LPS Edges and Contour Result (A1) 

      
Figure 3.54: 50 x 100 LPS Edges and Contour Result (A1) 

      
Figure 3.55: 150 x 250 LPS Edges and Contour Result (A1) 

      
Figure 3.56: 200 x 350 LPS Edges and Contour Result (A1) 
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Figure 3.57: 25 x 50 LPS Edges and Contour Result (A2) 

      
Figure 3.58: 50 x 100 LPS Edges and Contour Result (A2) 

      
Figure 3.59: 150 x 250 LPS Edges and Contour Result (A2) 

      
Figure 3.60: 200 x 350 LPS Edges and Contour Result (A2) 

 

      
Figure 3.61: 25 x 50 LPS Edges and Contour Result (A3) 

      
Figure 3.62: 50 x 100 LPS Edges and Contour Result (A3) 

      
Figure 3.63: 150 x 250 LPS Edges and Contour Result (A3) 

 
Figure 3.64: 200 x 350 LPS Edges, Failed Path 
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At 25 x 50 and 50 x 100 LPS sizes, Swedish ivy leaves visually had the most accurate 

contour. As expected, Group 1 (stone background) has better results for all three leaves. The results 

of 50 x100 and 150 x 250 LPS sizes are drastically different. In Figure 3.50 the LPS edge image 

does not show the crenate edges, while Figure 3.51 does. The contours are not any better with 200 

x 350 LPS edges than 150 x 250. These results demonstrate that using 150 rings and 250 wedges 

is of sufficient resolution from the original 3024 x 4032 Cartesian images. 
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3.6 CARTESIAN SPACE IMAGE SIZE 

To test the algorithm against image size, the validation images were decimated by one-half 

and one-tenth, becoming roughly 2000 x 1500 pixels and 400 x 300 pixels respectively. Table 3.12 

through Table 3.17 display the distribution of contour successes, failures, and incompletes over 

each group and image size. Figure 3.65 through Figure 3.91 are the nine leaves (P1 through A3) 

at each image size. 

Image Size Group 1 Group 2 Group 3 Total 

Original 233 320 161 714 

One-half 230 317 161 708 

One-tenth 214 317 157 688 
Table 3.12: Contour Successes by Group and Image Size 

Image Size Group 1 Group 2 Group 3 Average 

Original 89.3 78.4 64.7 77.8 

One-half 88.1 77.7 64.7 77.1 

One-tenth 82.0 77.7 63.1 74.9 
Table 3.13: Contour Success Percentages by Group and Image Size 

Image Size Group 1 Group 2 Group 3 Total 

Original 18 51 69 138 

One-half 19 55 65 139 

One-tenth 29 54 63 146 
Table 3.14: Contour Failures by Group and Image Size 

Image Size Group 1 Group 2  Group 3  Average 

Original 6.9 12.5 27.7 15.0 

One-half 7.3 13.5 26.1 15.1 

One-tenth 11.1 13.2 25.3 15.9 
Table 3.15: Contour Failure Percentage by Group and Plant Size 

Image Size Group 1 Group 2 Group 3 Total 

Original 10 37 19 66 

One-half 12 36 23 71 

One-tenth 18 37 29 84 
Table 3.16: Incompletes by Group and Image Size 
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Image Size Group 1 Group 2 Group 3 Average 

Original 3.8 9.1 7.6 7.2 

One-half 4.6 8.8 9.2 7.7 

One-tenth 6.9 9.1 11.6 9.2 
Table 3.17: Percentages of Incompletes by Group and Image Size 

Table 3.13 shows as the image size gets smaller the average success rate goes down. This 

is expected due to down sampling the image significantly. For each group the success rate either 

stays the same or goes down as the image gets smaller. Interestingly, in Table 3.14 the number of 

failed contours increase in Group 1 but decrease in Group 3. For Algerian ivy leaves in Group 3, 

36 leaves have failed contours at original size. Of those 36 leaves, at one-tenth image size nine 

became successes, four become incompletes and the rest remained failed contours. Group 3 has 

the hardest background to segment the leaf from. Presumably the decrease of failed contours at 

one-tenth image size is from the background being decimated enough to become blurred and obtain 

a higher chroma contrast compared to the leaf.  
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Figure 3.65: Contour for P1 at 

Original Size 

 
Figure 3.66: Contour for P1 at One-

half Size 

 
Figure 3.67: Contour for P1 at One-

tenth Size 

 
Figure 3.68: Contour for P2 at 

Original Size 

 
Figure 3.69: Contour for P2 at One-

half Size 

 
Figure 3.70: Contour for P2 at One-

tenth Size 

 
Figure 3.71: Contour for P3 at 

Original Size 

 
Figure 3.72: Contour for P3 at One-

half Size 

 
Figure 3.73: Contour for P3 at One-

tenth Size 
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Figure 3.74: Contour for S1 at Original 

Size 

 
Figure 3.75: Contour for S1 at One-

half Size 

 
Figure 3.76: Contour for S1 at One-

tenth Size 

 
Figure 3.77: Contour for S2 at Original 

Size 

 
Figure 3.78: Contour for S2 at One-

half Size 

 
Figure 3.79: Contour for S2 at One-

tenth Size 

 
Figure 3.80: Contour for S3 at Original 

Size 

 
Figure 3.81: Contour for S3 at One-

half Size 

 
Figure 3.82: Contour for S3 at One-

tenth Size 
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Figure 3.83: Contour for A1 at 

Original Size 

 
Figure 3.84: Contour for A1 at One-

half Size 

 
Figure 3.85: Contour for A1 at One-

tenth Size 

 
Figure 3.86: Contour for A2 at 

Original Size 

 
Figure 3.87: Contour for A2 at One-

half Size 

 
Figure 3.88: Contour for A2 at One-

tenth Size 

 
Figure 3.89: Contour for A3 at 

Original Size 

 
Figure 3.90: Contour for A3 at One-

half Size 

 
Figure 3.91: Contour for A3 at One-

tenth Size 
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Contours at original size are almost identical to the contours at one-half size.  25 of the 27 

contours are successful. A1 (Figure 3.85) and A3 (Figure 3.91) have inner contours that touch the 

leaf edge. While contours are cleaner with large Cartesian space images, the algorithm can handle 

low-resolution images. 
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Chapter 4 Conclusion 

Designing a recursive path following algorithm in LPS is an innovative approach to 

reducing user input for segmentation algorithms. The objective was to create a pre-processing 

algorithm that can autonomously create contours around the main object of an image. This will 

allow other segmentation methods to be more fully autonomous and less subjective. The 

hypothesis, which was proved true, was the simpler leaves and simpler background mediums 

would have a higher success rate. While this research focused on extracting contours of leaves, the 

algorithm could be updated and improved to use on other images. 

The model outputs two bounded contours; one inside and one outside the main object. Of 

the 918 images in the validation database, 714 had successfully extracted contours. The failures 

occurred either from the algorithm not finding a complete edge path in LPS or the wrong path was 

followed and created a bad contour. While the successful results are promising, the failed and 

incomplete contours give insight of how to improve the model. As a pilot study in LPS recursive 

path following the model is only at the beginning stages. Chapter 5 will discuss portions of the 

algorithm than can be improved and future objectives. 

To demonstrate that the model is a successful option in lieu of user-input interaction, the 

MSRM algorithm was used which needs user-input foreground and background markers to begin. 

The inner contour was used as the foreground marker and the outer contour as the background 

marker. MSRM successfully segmented the leaves from the background as was demonstrated in 

section 3.3.  
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Chapter 5 Future Improvements 

 

As a preliminary study in LPT recursive path following, this research shows excellent 

results for creating autonomous contours in lieu of user-input a priori knowledge. To improve upon 

this pre-processing system, the Extracted Edges algorithm should calculate the horizontal and 

vertical pixel value difference. Leaves that are narrow or have acute apex’s do not perform well 

with only horizontal edges identified. Leaf 3 depicted in Figure 3.25 is extremely narrow. This 

causes gaps between the edge nodes in the LPS representation which are problematic. Including 

the vertical pixel value difference before taking the absolute value and thresholding could improve 

the model’s robustness of certain leaf types.  

 While analyzing failed and incomplete leaves, images were cropped and rotated, then 

tested again. Unfortunately, the algorithm implemented does not know the difference of a failed 

versus successful contour. Either the algorithm finds a complete path (contour found) or no path 

is found (incomplete). When a path is not found, autonomously rotating the image then running 

the model again would reduce the number of incomplete images. Rotating the image will not 

change the center point or cause loss of information. A method of autonomous cropping of the 

image would be beneficial, however, there runs a chance of cutting off the leaf edge which would 

not be desirable. This idea should be researched further. If all leaves were required to be in the 

inner two-thirds of the image this problem would be mitigated. There will always be a tradeoff 

between how robust the model is versus how many restraints are given.  

It is extremely unlikely to create one algorithm that can extract leaves from every 

background medium without using a priori knowledge of the background. If the background 
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medium was known, the Extracted Edges algorithm could be tuned for different mediums. A 

neural network could be trained to determine the type of background (grass, leaves, stone, dirt, 

etc.) This would reduce background restrictions and allow the algorithm to remain autonomous 

for the end user.  

Once the algorithm is robust enough that it can handle extracting leaves from all levels of 

background clutter, the next step is to reduce leaf restrictions. Damaged and discolored leaves 

should be included.  It is expected that new challenges will arise when the leaf is not green. 

Currently the Extracted Edges algorithm uses only chroma when calculating adjacent pixel 

difference. A multi-colored leaf will likely have false edges in chroma color space. Although it 

will add many challenges, it is believed that defining the LPS leaf edges using luminance, chroma 

and hue color space would significantly improve the performance. 

The need for a contour extractor model is not limited to image segmentation for leaf 

extraction. Within the medical field, having a system that extracts tumor boundaries could improve 

the timing and accuracy of reading an x-ray or MRI scan. It could be used to identify cavities 

within dental x-rays. Satellite images could use contour extraction to locate bodies of water. For 

farming, diseased or discolored fruit could be identified and removed from the harvest. While this 

model is tailored toward leaf extraction, the idea of log polar space recursive path following for 

contour extraction can be used in many areas of application.  
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