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ABSTRACT 

 

EVALUATING RECIRCULATING AQUACULTURE SYSTEM NUTRIENT 

PRODUCTION 

By 

Alexander J. Sitek 

University of New Hampshire 

 

 While aquaculture production accounts for half of the world fish production, a growing 

problem emerges with the amount of effluent being produced. Waste treatment of aquaculture 

effluent is expensive and energy- intensive as conventional approaches to waste remediation 

have remained mostly unchanged. To improve the economic sustainability, the aquaculture 

industry needs to integrate with other production systems similarly as terrestrial animal 

agriculture has done with soil-based crop production. Integrating waste production in a wastes-

to-resources approach as fertilizer for hydroponic cropping systems will allow aquaculture 

producers to monetize waste treatment. However, a full accounting of aquaculture nutrient 

production is necessary to develop a strategy to monetize costly effluent treatment.  Capturing 

fish waste from aquaculture facilities provide an opportunity to offset operational costs by 

producing a naturally derived nutrient source as fertilizer. 

Three replicate recirculating aquaculture systems (RAS) were designed and operated under 

pilot-scale production conditions to evaluate plant-available nutrient production from two 

commonly grown aquaculture species, tilapia (Oreochromis niloticus) and rainbow trout 

(Oncorhynchus mykiss). A nutrient mass balance was conducted while the research systems 

operated under “pseudo-steady state” conditions. Pseudo-steady state was defined as consistent 



viii 

 

feeding and waste production activity during periods of fish growth and increasing feed demands 

while still accounting for fish growth and increasing feed demands. The macro-nutrients Ca, K, 

Mg, N, and P and micro-nutrients B, Cl, Cu, Fe, Mn, Mo, S, and Zn were analyzed over an 81-

day period. Both the tilapia and trout nutrient production experiments revealed that all nutrients 

required for hydroponic crop production were present and available in the system culture water 

and effluent streams.  

Macro-nutrients Ca, K, Mg, P, and N, and micro-nutrients, Cl, Mo, and S were observed 

primarily in the liquid portion of the wastewater and micro-nutrients B, Cu, Fe, Mn, and Zn were 

primarily observed in the particulate waste. The results of the first experiment indicated that 

tilapia excreted 3.39 ± 0.55 g Cu, 10.78 ± 1.90 g Fe, 5.61 ± 1.78 g Mn, 0.23 ± 0.08 g Mo, and 

7.26 ± 0.89 Zn, per 100kg feed daily. Many of the tilapia nutrient production rates were 

determined to be statistically different between systems due to dilution and limits of 

measurement, notably -4.36 ± 4.78 g B, -76.71 ± 350.20 g Cl, -19.97 ± 163.60 g S, 1172.44 ± 

706.72 g Ca, 405.27 ± 740.68 g K, 181.72 ± 196.13 g Mg, 704.34 ± 582.05 g P, and 2896.13 ± 

4133.70 g Total Nitrogen (TN), per 100kg feed. The difficulties surrounding the accurate 

characterization of nutrient production from tilapia RAS were resolved and strict sampling 

procedures applied to the second nutrient mass balance experiment measuring nutrient 

production from rainbow trout in RAS.  

Rainbow trout excreted nutrient production was 706.29 ± 49.58 g Cl, 1.01 ± 0.04 g Cu, 

13.41 ± 0.51 g Fe, 7.08 ± 0.71 g Mn, 3.11 ± 0.57 g Mo, 312.95 ± 45.59 g S, 11.95 ± 0.58 g Zn. 

2043.37 ± 29.18 g Ca, 659.48 ± 51.15 g K, 445.58 ± 7.61 g Mg, 690.11 ± 42.57 g P, and 5729.49 

± 540.33 g TN, per 100kg feed. It is important to distinguish if the nutrients would be directly 

available as a fertilizer. This study found that Cl, Mo, S, Ca, K, Mg, P, and N are nutrients 
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solubilized in liquid portion of rainbow trout waste rendering them immediately available for 

plant uptake. Alternately, B, Cu, Fe, Mn, and Zn, were retained in the solid particulate portion of 

the rainbow trout waste stream. Nutrients retained in the solid particulates require mineralization 

to make these nutrients plant available. Differences in nutrient production between the two 

species are due to variation in the feed composition and physiological distinctions such as gut 

length and muscle tissue composition.  

The results from these experiments were inconsistent with the previous literature and 

differences are likely due to experimental design, system design, feed, fish species, and dilution 

effects. Experimental design is the key factor that limited the determination of nutrient 

production in this research because no tracer was used in the diet which would have allowed for 

a full accounting of nutrients assimilated and expelled by the fish. 

This research supports the need to establish a predictive model for aquaculture-derived 

nutrient production for integration with other crop production systems. The results from this 

study demonstrate that nutrient reuse from RAS is possible for hydroponic crop production, but 

treatment of RAS effluent will be required to fully develop a valuable nutrient source as many of 

the nutrients are trapped in the solid particulate form.  
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ENABLING RECIRCULATING AQUACULTURE EFFLUENT REMEDIATION AND 

UTILIZATION: A REVIEW OF THE LITERATURE 

Alexander J. Sitek 

Department of Biological Sciences, University of New Hampshire 

Durham, NH 03824, USA 

Alexander.Sitek@unh.edu 

INTRODUCTION 

Recirculating Aquaculture Systems (RAS), a form of land-based fish farming, maximizes 

fish production while efficiently reusing up to 99% of system water daily (Summerfelt et al., 

1999; Rakocy et al., 2006). RAS shows potential to simultaneously decrease pressure on wild 

fisheries and improve the sustainability of farmed fish production (Somerville et al., 2014). In 

RAS fish are cultured in tanks and the water is treated and purified so that it can be reused with 

little discharge. The components required for water purification include mechanical filters that 

remove particulates, biological filters that treat dissolved wastes, and ozone or UV sterilization 

to disinfect water. These filtration processes to maintain water use efficiency, which increases 

production costs and therefore consumer market prices (Miller, 2002; Turcios and Papenbrock, 

2014; Tsani and Koundouri, 2018). RAS effluent is a combination of solid and liquid (dissolved) 

waste products that both require treatment before discharge. Post-production effluent treatment is 

also required for waste remediation before effluent can be released into the environment (Black 

and Veatch, 1995; Chen et al., 1997; Mugg et al., 2007; Guerdat et al., 2013; Turcios and 

Papenbrock, 2014). In the United States, RAS requires expensive and energy-intensive 

treatments to remove excess nutrients and meet Environmental Protection Agency (EPA) 

wastewater discharge regulations (Yeo et al., 2004; EPA, 2006; Somerville et al., 2014). 
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Effectively, these same wastewater treatment processes could be used to capture and transform 

effluent into a fertilizer solution. Aquaculture waste management costs must be reduced or offset 

to improve the economic sustainability of RAS (Turcios and Papenbrock, 2014). Reusing waste 

as a fertilizer improves environmental and economic sustainability of RAS. It is important to 

understand the specific elements excreted, however, to determine the most efficient treatment 

process for collecting them. 

RAS Water Treatment Processes 

RAS uses physical, chemical, and biological filtration processes like those used in 

municipal waste treatment to remove solid and dissolved wastes. Physical filtration in RAS 

targets solids particulate matter greater than 40-100 µm in diameter (Summerfelt and Vinci, 

2008; Timmons et al., 2018). These solid wastes contain high concentrations of total nitrogen 

(TN), total phosphorus (TP) and carbon (C) (Chen et al., 1993; Guerdat et al., 2013). RAS waste 

also includes high concentrations of dissolved nitrogen and phosphorus which are the primary 

nutrients regulated in wastewater discharge (Chen et al., 1993; Guerdat et al., 2013). Chemical 

and biological filtration convert nitrogenous wastes that are toxic to the fish (i.e. ammonia and 

nitrites) into non-toxic forms (nitrates). Specific combinations of physical, chemical and 

biological filtration are unique to individual systems and must be managed accordingly; 

however, a generalized understanding of nutrient production for individual species could offer 

foresight for future RAS waste treatment designs. 

Physical filtration methods include sedimentation and capture techniques to remove 

solids (Summerfelt and Vinci, 2008; Turcios and Papenbrock, 2014; Timmons et al., 2018). 

Low-head swirl-separators alongside aerobic microbial digestion were the most common 

methods used to treat RAS culture water until the introduction of fluidized sand bed filters, 
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settling ponds, geotextile bags, belt feeders, micro-screen, and membrane filtration (Mugg et al., 

2007; van Rijn, 2013; Turcios and Papenbrock, 2014). When these new technologies remove 

solids from the system water, a more concentrated waste stream is formed. However, more than 

99% of this waste stream is water (Summerfelt, 2006; Sharrer et al., 2009). After removal from 

the system, further physical filters like a settling basin are used to dewater the waste stream. In 

turn, producers employ thickening, or the separation of solids from water portions, to treat the 

two waste streams independently (Mugg et al., 2007). Waste solids are better suited for land 

application whereas wastewater is easily remediated by any of the post-production treatment 

processes (Mugg et al., 2007; Turcios and Papenbrock, 2014).Chemical filtration has been shown 

to improve solids removal when used in conjunction with physical filters (Sharrer et al., 2009).  

 Chemical filtration techniques such as coagulants, flocculants, and oxidizers are widely 

used in municipal and aquaculture water and wastewater treatment. Coagulants and flocculants 

aid in solids and dissolved phosphorus removal but also have effects on alkalinity and pH 

(Sharrer et al., 2009). Ozone is an oxidizing agent used for disinfection and sterilization. It can 

be used to remove solids, nitrite, organic molecules, and inactivate microorganisms (Summerfelt 

and Hochheimer, 1997). Utilizing chemical filtration in RAS is expensive and is typically only 

used in large scale facilities. While chemicals can assist in solids removal and oxidation of 

organic matter, biological filters can also oxidize organic matter. 

In RAS, biological filters are used in nitrification, denitrification, and oxidation of 

organic matter and their but require high energy costs (Turcios and Papenbrock, 2014). Filter 

types include moving bed bioreactors (MBBR), bubble bead filters (BBF), fluidized sand beds 

(FSB), trickling filter (TF), and rotating biological contactors (RBC) (Summerfelt and Vinci, 

2008; Sharrer et al., 2009; Turcios and Papenbrock, 2014). In RAS biofilters, high concentrations 
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of nitrification bacteria, (Nitrosomonas and Nitrobacter,) responsible for nitrogen conversion 

(ammonia to nitrates) produce biofilm which sloughs off biofilter media and becomes a new 

source of sludge material (Timmons et al., 2018).The presence of solids in a biological filter can 

inhibit nitrification, therefore hybrid filters that pair physical and biological filtration have been 

developed to perform nitrification and capture solids simultaneously (Sastry et al., 1999). 

Hybrid filters include bubble bead filters, fluidized sand beds, and trickling filters. While 

primarily classified as biological filters, the physical filtration performed by these units reduces 

solids injection into the culture system by capturing them. The solids captured by hybrid filters 

must be removed from the system requiring varied amounts of energy and effort. When hybrid 

filters are backwashed, water and air are injected into the filters to resuspend the captured solids 

followed by a flushing or skimming process to physically remove the solids from the unit. 

Hybrid filter efficiency is driven by system feed rates and requires regular backwashing to 

maintain adequate water quality within systems (Sastry et al., 1999). Regardless of type, water 

treatment and waste removal are the most important factor in the success of RAS. 

Targeted water and waste treatment in RAS are necessary to maintain fish health and 

maximize growth. Specific filtration combinations are unique to each aquaculture facility and 

individual systems due to the variation of source water, species, feed, management practices, 

required level of filtration, and production goals (Mugg et al., 2007). Whether physical, 

chemical, biological or hybridized, all filter units require regular cleaning and maintenance. 

When any of the various types of filters are cleaned, backwashed, or purged, the resultant waste 

stream must also be treated before the effluent can be discharged to the environment. This is 

referred to as post-production treatment and can use the same filtration techniques used in RAS. 

The goal of post-production treatment is dewatering solids and mitigating any environmental 
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risks. After meeting EPA regulations, RAS effluent can be discharged to natural waterways, 

municipal treatment plants, constructed wetlands, or applied to fields (Reed, 1995; Mugg et al., 

2007).  

RAS Effluent Remediation 

In the United States, RAS discharge is regulated by Environmental Protection Agency 

(EPA) to minimize the negative effects of effluent on receiving waters (Black and Veatch, 1995; 

Summerfelt et al., 1999; Mugg et al., 2007). Traditionally, RAS effluent is applied to fields or 

discharged directly into natural waters (Mugg et al., 2007). Recently, new strategies applied to 

RAS effluent remediation include municipal treatment and reusing nutrients to grow food plants.  

RAS effluent is a combination of solid and dissolved waste products that both require 

treatment before discharge. Although RAS has a high level of water conservation, the effluent 

stream contains excess nutrients including nitrogen (N) and phosphorus (P), that contribute to 

eutrophication (Seawright et al., 1998; Summerfelt, 1998; Summerfelt, 1999). 

Land application of raw RAS effluent is not a suitable choice due to a water content 

leading to excess runoff (Summerfelt et al., 1999; Rakocy et al., 2006). Land application of RAS 

effluent utilizes established protocols of terrestrial animal agriculture which directly injects 

waste into fields to generate crops (Nielson et al., 1999). However, through thickening, 

dewatering, and stabilization waste treatment processes, solids separated from the effluent stream 

can be effectively applied to fields. The high levels of sodium in commercial RAS waste solids 

make it nearly unusable as a field crop manure (Mugg et al., 2007; Turcios and Papenbrock, 

2014). However, alternative sodium-free carbonate sources can be used to reduce the sodium 

load of waste solids. Land application remains a common method for RAS effluent discharge 
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even if it is not dewatered; however, dumping raw wastewater directly released to natural waters 

is illegal.  

Discharging to natural waters and wetlands are also common methods for RAS effluent 

disposal. When land-based aquaculture facilities discharge to rivers or other natural waters 

effluent is regulated by costly discharge permits and subject to frequent testing (Black and 

Veatch, 1995; Summerfelt et al., 1999, Guerdat et al., 2013). Discharging to natural waterways 

including oceans, lakes, and rivers requires transportation and treatment to minimize negative 

environmental effects (Yeo et al., 2004; Mugg et al., 2007; Turcios and Papenbrock, 2014). 

Constructed wetlands have become a more popular on-site wastewater treatment for many RAS 

facilities due to environmental and economic advantages (Turcios and Papenbrock, 2014). 

Offering low maintenance inputs, wetlands act as natural filters for both solid and liquid wastes. 

The main drawback to constructed wetlands is the land area required to treat the high volumes of 

waste generated from a commercial scale RAS facility (Mugg et al., 2007; Turcios and 

Papenbrock, 2014). Discharging to natural waters and constructed wetlands is a cost-effective 

treatment strategy for RAS effluent, but location independence draws RAS producers into urban 

areas where there are few fields to accept discharge and little space to construct wetlands. RAS 

facilities in dense urban areas therefore have few options other than to outsource effluent 

treatment to their local municipalities. 

When RAS facilities are located near target markets in urban areas, municipal treatment 

may be the best option for treatment but can quickly become costly due to the volume of 

wastewater requiring treatment (Mugg et al., 2007). RAS are generally lauded for their water 

conservation on a percent water reuse of the system volume; however, discharge is a function of 

farm scale and intensity of recirculation. Intensive RAS operations generates 1% of the waste 
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volume than a traditional flow through raceway system. At a scale of 500 metric tons (MT) of 

fish production, this discharge would exceed 1 million gallons per day (Bregnballe, 2010). This 

type of effluent remediation plan must be well executed because municipalities have their own 

maximum flow limitations and regulations. While the treatment process becomes simple for 

producers, they must negotiate contract costs for municipal services. For most urban RAS 

producers who elect to discharge directly to municipalities, the costs of paying someone to treat 

their effluent is more affordable than transporting such large volumes of water-based effluent 

(Mugg et al., 2007; Guerdat et al., 2013). Other urban fish farms take an alternative approach 

which converts the costly waste into a revenue stream. 

Recirculating Aquaponics Systems 

Some challenges regarding RAS waste can be addressed effectively and economically 

using a new type of system that combines fish farming with soil-free plant production. Such 

systems are termed recirculating aquaponic systems (RAqS). Instead of treating the waste for 

discharge, recirculating aquaponics captures, stores, and reuses waste nutrients to produce food 

plants. There are several advantages to aquaponic production including shared start-up, 

operating, and infrastructure costs, as well as high water efficiency, nutrient reuse by plants, and 

low volume discharge (Rakocy et al., 2006). RAqS also increase profit potential by simultaneous 

producing marketable fish and plants (Timmons & Ebeling, 2010). Using this strategy, plants 

rely on nutrients produced by the fish though some nutrients may be supplemented (Seawright et 

al., 1998; Summerfelt, 1998, Summerfelt, 1999). Previous RAS waste-solids research indicates 

that nutrients in the solid waste meet and exceed the levels of nutrients required for plant growth 

(Guerdat et al., 2013). The challenge then becomes liberating nutrients from solid waste into an 

available form for plant uptake. Examining nutrient production for various fish species in a 
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controlled setting allows farmers to better understand their effluent stream and how it can be 

effectively remediated or even monetized. The challenges facing the remediation of RAS 

effluent can be resolved through a better understanding of what is being produced. The 

implications of studying RAS effluent range from the development of more efficient treatment 

methods before discharge to monetizing the high cost of waste mitigation. Water quality is the 

driving force that determines the quantity and availability of nutrients from an aquaculture 

system (Seawright et al., 1998; Roosta, 2011; Timmons et al., 2018).                                                      

CONCLUSIONS  

Understanding what elements and compounds are present in recirculating aquaculture 

systems provides an opportunity for producers to more effectively treat effluent streams and even 

profit from them. RAS are positioned to meet demands to improve environmental sustainability 

and the need for better food security (Gormaz et al., 2014; Summerfelt and Christianson, 2014). 

RAS minimizes water usage through physical, chemical, and biological filtration unit processes 

to remove solid and dissolved wastes. (Losordo et al., 2000; Guerdat et al., 2013; Timmons et al., 

2018). Once discharged from the system, nutrient rich effluent with >99% water content 

typically goes through further waste management filtration before discharge to fields and natural 

waters (van Rijn, 1996; Summerfelt, 1999; Yeo et al., 2004; van Rijn, 2013). Municipal 

treatment is a costly option best suited for urban farms. Alternative strategies have been 

developed to capture, treat, and reuse nutrients to grow food crops using aquaponics. Regardless 

of the final treatment plan, nutrient mass balance studies provide RAS producers with insight on 

nutrient flows throughout their systems.  

Nutrient mass balances are used to track all inputs, sinks, and outputs of a system. In the 

following studies, a nutrient mass balance will track nutrients added to RAS, assimilated by fish, 
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accrued in system water, and discharged from the system. Published studies on RAS nutrient 

production are often limited to individual nutrient production or interactions between water 

quality and individual nutrients within a system. The following studies show how RAS facilities 

can utilize nutrient mass balances to characterize their waste streams. Characterizing aquaculture 

nutrient production is necessary to produce a model for predicting effluent fractionation of liquid 

versus solid nutrient contents. This model may vary by facility due to differences in species, 

filtration, source water, and feed quality. Predicting culture-water treatment and wastewater 

treatment could simplify the wastewater discharge permit application by informing the EPA of 

exact nutrient profiles of the waste coming out of the systems and the final post-waste-treatment 

discharge to a river.  
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CHARACTERIZATION AND QUANTIFICATION OF OREOCHROMIS NILOTICUS 

NUTRIENT PRODUCTION IN RECIRCULATING AQUACULUTRE SYSTEMS 

by 

Alexander J. Sitek 
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INTRODUCTION 

Recirculating Aquaculture Systems 

Recirculating Aquaculture Systems (RAS) are a popular land-based fish farming method 

that recycle up to 99% of system water volume each day (Summerfelt et al., 1999; Rakocy et al., 

2006).  However, as fish farming intensifies, it requires innovative solutions for waste 

remediation to improve economic success and environmental sustainability (Hochman et al., 

2018). RAS are becoming more popular because they offer improved food security with a highly 

consistent product than terrestrial farming. They also show potential to simultaneously decrease 

pressure on wild fisheries and improve the economic and environmental sustainability of farmed 

fish production (Somerville et al., 2014). The challenge of waste remediation stems from RAS 

water treatment processes which increase production costs and therefore market prices for 

consumers. Studying the composition of the RAS waste effluent would give producers valuable 

insight to more efficiently treat effluent. One popular RAS species, tilapia, is often used as a 

model organism to determine the effectiveness of new RAS technology and strategies. 
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Tilapia 

Tilapia (Oreochromis sp.) are a popular food fish used in aquaculture. While often grown in 

pond aquaculture, they have recently served as an important model organism in the development 

of RAS technology. Producers choose tilapia for their fast production cycles and overall 

hardiness. As a warmwater fish species, they can produce marketable fillets within six months of 

hatching. Tilapia are omnivores and tend to produce a well-formed fecal pellet that is ideal for 

physical filtration.  

Tilapia Effluent 

Tilapia produce a formed fecal pellet that is encased in a mucus membrane which makes 

it easy to remove from the system water via physical filtration. Most of the soluble waste 

produced from tilapia is unionized ammonia (NH3) excreted from the gills. Exact nutrient 

contents for all waste products is not known, but several reports have focused on macronutrient 

production attributed to eutrophication (Seawright et al., 1998; Yeo et al., 2004; Timmons et al., 

2018). Solid waste is removed within fifteen minutes of production while the gradual 

accumulation of nutrients within the system create a tea-colored tint to the water. Tilapia produce 

both a solid and liquid waste stream that is not completely understood, therefore producers only 

view waste treatment as a necessary expense to meet the wastewater discharge regulations. 

RAS Effluent Remediation 

In the United States, Environmental Protection Agency (EPA) regulations for wastewater 

discharge to natural waters require expensive and energy-intensive treatment to remove excess 

nutrients from RAS effluent (Yeo et al., 2004; EPA, 2006; Somerville et al., 2014). Currently, 

aquaculture effluent is disposed either by municipal treatment, discharge to natural waterways, or 

application to fields. RAS facilities are typically located close to their markets, leaving few 
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options for waste management (e.g. land application) other than discharge to municipal treatment 

systems and/or surface water systems (Yeo et al., 2004). Discharge to natural waterways may 

include lakes, rivers, and even constructed wetlands. It may also require transportation, and 

increases the potential for eutrophication (Yeo et al., 2004). Terrestrial application of aquaculture 

effluent is often inefficient, and results in runoff (Yeo et al., 2004). RAS waste treatment has 

traditionally been viewed as a cost but could become a secondary source of income through 

reintegration as a fertilizer for plants. 

RAS Effluent Utilization 

RAS waste can be utilized through waste treatment processing and reintegration with 

hydroponic plant production. Traditional, land-based animal agriculture utilizes existing models 

which are designed to capture, treat, and reuse nutrients to offset operational costs and generate 

revenue (USDA NRCS, 2009). However, RAS do not have effluent utilization strategies as used 

in other terrestrial agriculture systems. Research is needed to develop similar strategies for 

improving the economic viability of RAS (Yeo et al., 2004). The object of this research is to 

identify key factors, ranges, and system dynamics affecting nutrient production in RAS. Previous 

waste-solids research suggests that the macro- and micro-nutrients in the captured solids from 

RAS meet or exceed nutrient profiles required for crop production (Guerdat et al., 2013). 

Another study focused on how fish biomass affects nutrient production in a coupled aquaponic 

system found that nutrient ratios fluctuated dramatically (Seawright et al., 1998). Biotic 

differences between species are expected to influence quantity and availability of nutrients. 

Effects on Nutrient Production 

Fish species used for aquaculture are carnivorous or omnivorous. Therefore, they require 

diets with different protein, carbohydrate, and lipid contents (Cho and Bureau, 2001, Sarker et 
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al., 2018, 2020). They metabolize these diets differently and produce waste with varied nutrient 

compositions (Sarker et al., 2020). The waste composition and quantity will also be influenced 

by the amount of feed consumed, which is dependent on fish size, density, and behavioral 

factors. The combined effects of fish physiology on RAS nutrient production presents a unique 

opportunity to produce hydroponic fertilizer solutions with different nutrient profiles (Seawright 

et al., 1998; Yeo et al., 2004; Timmons et al., 2018). Environmental factors work in conjunction 

with the physiological effects factors to affect RAS nutrient production including day length, 

light intensity, and water quality. Beyond physically stressing the fish, chemical properties of 

water, pH, Electrical Conductivity (EC), and temperature cause feces breakdown (Seawright et 

al., 1998).  

This study was conducted to characterize and quantify tilapia RAS nutrient production. It 

will focus on characterizing the liquid and solid effluent fractions to determine the viability of 

reusing tilapia effluent as a fertilizer.  

MATERIALS AND METHODS 

Facility Design 

This study was conducted at the Anadromous Fish and Aquatic Invertebrate Research 

facility at the University of New Hampshire in Durham, New Hampshire, United States. The 

experimental design and fish protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of New Hampshire. Three replicate RAS were designed, 

constructed, and operated per intensive commercial aquaculture standards to maintain pseudo-

steady-state system conditions (defined below). 

 

 



14 

 

Pseudo-Steady State 

Pseudo-steady state was defined for this research as stable operating conditions in a 

dynamic production environment. Fish production operations are dynamic since they 

consistently increase feed rates as fish continue growing. Water treatment also remains 

consistent yet dynamic as a function of changing feed rates and waste production. Pseudo-steady 

state conditions in the three replicate systems were confirmed statistically based on system inputs 

and operation including feed rates, water usage, pH, dissolved oxygen (DO), temperature, EC, 

and alkalinity. During the pseudo-steady state study period, a mass balance was used to 

characterize nutrient production. 

Nutrients were quantified using a mass balance analysis, characterizing and accounting 

for all nutrient inputs, sinks, and outputs. Nutrient inputs were defined as any nutrients entering 

the system, nutrient sinks as any unit process accruing nutrients, and nutrient outputs as nutrient 

exports from the system (Schneider, 2005). Inputs include all system additions in this experiment 

including incoming well water, chemical additions for pH adjustment, and feed. Sinks consume 

or accrue nutrients in a system; in this case, culture water and fish both sequester nutrients. 

Outputs include any nutrients that otherwise left the systems, which, in this study included 

wastewater and waste-solids. Inputs, sinks, and outputs terms in the mass balance were 

simplified for this study into system nutrient gain or loss terms to generate an understanding of a 

system wide nutrient flow. The dynamic nature of RAS contributes to the overall accumulation 

or release of nutrients. Under ideal conditions, RAS will have a maximum nutrient carrying 

capacity that can be maintained without compromising fish heath and growth. Nutrient 

production in any RAS is ultimately limited by system design and specifications.  
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System Specifications 

Three laboratory-scale RAS were built to a harvest capacity of 75 kg/production tank 

(150 kg/system) at a maximum stocking density at harvest of 72 kg m-3. Each 4,800 L system is 

comprised of two fish culture tanks (1.5 m3), one standpipe well, one drum screen filter 

(Hydrotech 501, Veiolia North America, Boston, MA), one Moving Bed Bio Reactor (MBBR), 

and one pumping sump tank ( 

Figure 1. Research recirculating aquaculture system schematic and water flow. 

). Air was injected into the culture tanks using a regenerative air blower and medium-

pore stone diffusers (Sweetwater, S45, Pentair AES, Apopka, FL). Biological filtration was 

achieved using an MBBR containing 0.7 m3 of Kaldness K1 media. During the study, 93% of 

system water was retained and reused daily. This high recirculation rate facilitated nutrient 

retention in the system while producing a low volume and of concentrated effluent stream. Solid 

waste was removed from the system water using an inline rotary drum screen filter fitted with 

40-micron screens (Hydrotech 501, Veiolia North America, Boston, MA). System water was 

used to remove solid wastes from the drum screen filter, creating a solid waste stream that was 

channeled out of the system for sampling and discharge.  
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Figure 1. Research recirculating aquaculture system schematic and water flow. 

System water volume was maintained using an auto-refill float valve supplied by well 

water and located in the pumping sump. Well water was filtered through a 5 µm floss filter as 

well as a carbon block filter to remove any nutrients and impurities. Water usage was monitored 

and recorded daily using an inline water meter (Flexible Axis Water Meter, Master Meter North 

America, Mansfield, TX) located immediately before each system’s water refill valve. Flow rates 

to culture tanks were controlled using vertical injection manifolds with clear manometers used 

for visual verification of equal flow distribution between tanks. Culture tank flow rates were set 

at 94.6 L min-1 to maximize solids removal from the culture tanks. Besides refill water, the only 

additions to the system were sodium bicarbonate and feed.  

Chemical Additions 

Sodium bicarbonate was added to each system daily to buffer pH and alkalinity. Sodium 

bicarbonate is a common RAS reagent chosen for its affordability and high buffering capacity. 

Sodium, the constituent which would accumulate in the system and effluent, can also support 

fish health by bolstering slime coat production and mitigating harmful effects of unionized 
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ammonia (NH3) (Soderberg and Meade, 1993). Sodium bicarbonate only contributes to the 

accumulation of sodium in RAS. Aquaculture feeds are the main source of nutrients that fish 

utilize, and RAS accumulate. 

Aquafeed 

Aquafeeds are the main sources contributing to RAS nutrient accumulation and 

discharge. Fish received 3.0 mm Zeigler Bros. Finfish Silver (40% protein, 10% lipid) floating 

feed. Feeding rates were determined using a percent body weight of the total fish biomass 

commensurate with predicted growth rates (DeLong et al. 2009).  Lighting was applied 24 hrs 

day-1 to allow hourly feeding and therefore maximum fish production. Feed Conversion Ratios 

(FCR) are commonly used in aquaculture to determine the efficiency of feed inputs versus fish 

growth. Low FCRs indicate high efficiency of fish production. Preferred FCRs for tilapia are 1.5 

or less (Soderberg 1994). (FCR) were determined using the following equation: 

𝐹𝑖𝑛 ÷ 𝑀𝑔𝑎𝑖𝑛 = 𝐹𝐶𝑅 (1) 

where Fin is the total amount of feed added over the course of the experiment (kg), Mgain is the 

mass gained by the fish during the same time period (kg), and FCR is the Food Conversion 

Ratio, a unit-less factor used to measure the efficiency of aquaculture production. 

Water Quality Analysis  

Water quality was monitored and adjusted daily according to conventional aquaculture 

standards ( 
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Table 1). Daily analyses included dissolved oxygen, electrical conductivity, salinity, 

temperature, total ammoniacal nitrogen, and nitrite-nitrogen. Dissolved oxygen (DO), electrical 

conductivity (EC), and temperature were measured using a portable handheld meter (YSI Pro 

2030, Yellow Springs Instruments, Ohio). Total ammoniacal nitrogen (TAN; sum of NH3-N and 

NH4
+-N), nitrite-nitrogen (NO2-N) and nitrate-nitrogen (NO3-N) were analyzed using a HACH 

DR3900 spectrophotometer (HACH Methods: 8038 TAN, 8507 NO2-N, 8507 NO3-N, HACH 

Company, CO, USA) four times per week off-site at the UNH Agricultural Engineering 

Research and Analytical Lab. Alkalinity and pH were measured using a bench-top meter (Fisher 

Scientific Accumet AB250, MA, USA). Total alkalinity was determined via sulfuric acid 

titration to a pH 4.80 end point (APHA, 2012). 

 

 

 

 

Table 1. Conventional aquaculture water quality standards for optimal tilapia culture. 
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Fish Stocking 

Nile tilapia (Oreochromis niloticus) were obtained from Aquasafra, FL, USA. Fish 

received at 28 days post-hatch were held in quarantine for 6 weeks before the start of the 

experiment, and then transferred into the RAS when they weighed 30 g each. Juvenile tilapia 

were stocked into each culture tank at a rate of 100 fish/tank with an expected harvest density of 

42 kg/m3. The average biomass for this study was 120 kg per system. Feed rates were determined 

Parameter Tilapia Sources 

Dissolved Oxygen (DO) mg/L >5.0 
Barton (1996) 

 

pH 7-8 
Wedemeyer (1996) 

 

Electrical Conductivity (EC) µS/cm >1.8 
Barton (1996) 

 

Alkalinity as CaCO3 mg/L 80-100 
Barton (1996) 

 

Temperature (°C) 28-30 
Barton (1996) 

 

Ammonia Nitrogen (NH3-N) mg/L <1.0 
Soderberg et al., (1983) 

 

Nitrite Nitrogen (NO2-N) mg/L <0.1 
Westin (1974) 

 

Nitrate Nitrogen (NO3-N) mg/L <500 
Westin (1974) 
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using a percent body weight of the total fish biomass commensurate with predicted growth rates 

(DeLong et al. 2009). After an initial biofilter startup, all systems ran for a three-month period to 

establish a baseline for fish growth, TAN and NO2 conversion, as well as system water usage. 

An initial study determined the optimal protein content feed for RAS nutrient production. 

Subsequent experiments established a nutrient mass balance for tilapia in RAS.  

Feed Protein Content Study  

A preliminary study was used to test the effect of feed protein content on tilapia nutrient 

production. Three Zeigler Bros. 3.0 mm Finfish feeds with different protein content were used: 

Bronze (35% protein, 5% fat), Silver (40% protein, 10% fat), and Gold (42% protein, 16% fat). 

This study is considered preliminary due to only one replicate for each of the feeds. The Zeigler 

Silver diet represents the industry standard for commercial RAS tilapia aquafeeds. By bracketing 

the industry standard, growth and nutrient production were hypothesized to be significantly 

different between the three systems. This study was ended early due to lack to replication; 

however, the Silver diet was chosen for use in the next nutrient mass balance study because it led 

to the best water quality without sacrificing growth rates. 

Nutrient Mass Balance Sampling 

A new cohort of tilapia was then evaluated using a nutrient mass balance approach to 

quantify nutrient inputs, sources, sinks, and outputs. Samples were collected bi-weekly over the 

course of a 176-day period. Well water was collected directly from the building water supply and 

feed was sampled via grab sample from each feed bag in according with sampling dates. Whole 

fish were sampled once at the beginning and again at the end of the experiment to quantify 

nutrient assimilation. Culture water grab-samples were obtained from each system pumping 

sump reservoir after triple rinsing the bottles with the water to be sampled. Composite effluent 
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samples (approximately 20 L of wastewater and waste solids combined) were collected from the 

drum screen filter effluent pipe for a period of one hour. All samples were preserved at 4 °C for 

24 hours prior to analysis per APHA (2012) sample storage protocols for nitrogen analysis 

(Method 4500). 

Sample Preparation 

Measured volumes of wastewater samples were filtered using binder-free, glass 

microfiber filters (Whatman 934-AH) to separate the liquid and solid portions for independent 

analyses. Well water, culture water, and filtered wastewater liquid were sent directly for analysis 

by a partnering laboratory (JR Peters, Allentown, PA, USA), while solid waste and tissue 

samples were first dried, ground, and mixed prior to analysis. Total Suspended Solids (TSS) of 

wastewater samples were determined by filtering and drying at 105°C. Complete dryness was 

achieved when dry mass changes over a 24-hour period were less than 5% of the total sample 

mass (Method 2540D, APHA, 2012). The same drying methodology was applied to feed and 

whole fish samples before nutrient analysis. 

Initial analyses were carried out at the University of New Hampshire Environmental 

Research Group laboratory using a Varian Vista AX Inductively Coupled Plasma Atomic 

Emission Spectrophotometer (ICP-AES); however, this approach was unable to measure 

micronutrients Mo and B. Resh (2016) identifies essential nutrients that plants require with Mo 

and B both listed for their importance in redox reactions and energy storage reactions, 

respectively.  

Samples were analyzed for 13 plant macro- and micro-nutrients, Table 2.. Samples were 

analyzed via inductively coupled plasma – optical emission spectrometry (ICP-OES) by a 

partnering laboratory (J.R. Peters, Inc. Laboratory, Allentown, PA, USA). ICP analysis of water, 
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waste, and fish was conducted per EPA method 200.7 using a Prodigy XP ICP-OES (Teledyne 

Leeman Labs, Hudson, NH, USA) (EPA, 1994).  

Table 2. Nutrient List 
Macronutrients Micronutrients 

Calcium (Ca) Boron (B) 

Potassium (K) Chlorine (Cl) 

Magnesium (Mg) Copper (Cu) 

Nitrogen (N) Iron (Fe) 

Phosphorus (P) Manganese (Mn) 

Sulfur (S) Molybdenum (Mo) 

 Zinc (Zn) 

  

Nutrient Mass Estimation 

The following nutrient mass balance equation was adapted from a general mass balance 

equation as described by Timmons et al. (2018): 

Accumulation = Input −  Output + Production − Consumption  (2) 

where Accumulation was defined as the nutrients accumulated in the culture water/system (mg), 

Input was the sum of all nutrient masses introduced into the culture system (e.g. incoming well 

water and feed) (mg), Output was the sum of all nutrient masses exiting the system (e.g. effluent 

stream, fish) (mg), Production was the sum of all nutrient masses produced within the culture 

system (e.g. biofilm sloughing) (mg), and Consumption was the sum of all nutrient masses 

consumed within the culture system (e.g. nutrient assimilation into fish tissue) (mg). 

All nutrient masses were calculated to reflect the total mass of each nutrient present for 

each sampling date then extrapolated between samples to calculate nutrient accrual over time. 
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Daily nutrient production was estimated using the sample data and operational data collected 

between sampling dates (e.g. water consumption, feed rates, etc.).  

Culture water, well water, and wastewater nutrient masses were calculated using the 

following equation: 

C × V = MNL  (3) 

where C was the nutrient concentration in the liquid samples (mg L-1), V was the volume of 

water added or system volume (L), and MNL was the mass of nutrients in liquid (mg).  

 Whole fish, feed, and waste nutrient masses were calculated using the following 

equation: 

C × M = MNS  (4) 

where C was the concentration of nutrient in the dry matter samples (mg kg-1), M was the mass 

of the dry matter sample (mg), and MNS was the mass of nutrients in the dry matter solid sample 

(mg).  

Daily Nutrient Production Rates were determined by comparing the nutrient loads over 

the duration of the experiment as: 

∆𝑁𝐿 ÷  ∆𝑡 = 𝑁𝑃𝐷 (5) 

where ΔNL was the change in nutrient load between sample at two separate sampling periods 

(mg), Δt was the number of days between the two sampling periods, and NPD was the nutrient 

production per day (mg day-1). 

 

 

Statistical Analysis 
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All analyses were carried out using JMP Pro 14 software package (JMP Pro 14, 2018). 

MANOVA tests were used to compare independent variables (feed rates, water usage, alkalinity, 

and pH) then the dependent nutrient production variables between systems. Significance was 

indicated when p-value ≤ 0.05. 

RESULTS 

Feed Protein Content 

In the preliminary study on feed protein content, low protein feed (Bronze, 35%) resulted 

in very good water quality, but failed to meet the nutrient requirements for fish growth resulting 

in the highest FCR of 1.52 and smaller fish. High protein feed (Gold, 42% protein) resulted in 

poor water quality as a result of diarrhea-like feces from the fish and provided no significant 

benefit to fish growth or nutrient production with a 1.23 FCR. Feed protein content as well as 

stressful environmental conditions are known to induce enteritis leading to diarrhea (Penn et al., 

2011; Sarker et al., 2018, 2020).) Medium protein content feed (Silver, 40% protein) provided 

the optimal amount of protein required for tilapia growth, yielding an FCR of 1.32 without 

reducing water quality. The results of this study identified the effects of dietary protein on RAS 

water quality and tilapia growth, 40% protein content feed was chosen for the nutrient mass 

balance study.  

Feed Characterization  

Tilapia aquafeed nutrient profiles were determined over the course of the experiment to 

provide a secondary confirmation of nutrient tracking within each system. The average nutrient 

profile on a dry mass basis for this experiment is shown in 

Table 3. Tilapia aquafeed total nitrogen was 64.74±2.81 g kg-1 dry mass which is within 

the industry standard protein contents (Craig et al., 2017). 
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Table 3. Summary statistics for aquafeed nutrient characterization for basic nutrient 

inputs into a recirculating aquaculture system. Statistics based on the average nutrient 

concentrations of aquafeeds throughout the experiment.  

 Tilapia Feed                          
Zeigler Finfish Silver               

(40% PC, 10%F) 

Micronutrients (mg/kg)  
B 5.63 ± 1.38 

Cu 13.83 ± 4.35 
Fe 62.35 ± 3.37 
Mn 3.04 ± 0.81 
Mo 0.33 ± 0.47 
Zn 46.12 ± 10.25 

Macronutrients (g/kg)  
Ca 17.06 ± 1.08 
K 8.66 ± 0.62 

Mg 1.86 ± 0.30 
P 13.54 ± 0.51 
S 514.00 ± 726.91 

TN 64.74 ± 2.81 

 

Nutrient Production 

Data were collected over a period of 176 days with 81 consecutive days qualifying as 

pseudo-steady state conditions. The summary water quality conditions are presented in  

 

Table 4 for each replicate system. Average dissolved oxygen concentrations during the 

length of the experiment were 6.35 ± 0.60 mg L-1. Temperatures for all three systems averaged 

25.47 ± 1.52°C.  Average electrical conductivity among systems was 1.59 ± 0.30 mS cm-1. The 

average pH during the experiment was 7.54 ± 0.21. Alkalinity among the three RAS averaged 

67.85 ± 22.78 mg L-1 as CaCO3. Tilapia received an average daily feed rate of 1.06 ± 0.48 kg d-1 

of 3.0 mm Zeigler Bros. Finfish Silver (40% protein, 10% lipid) floating feed throughout the 

experiment. Average water usage rates for the tilapia experiment were 331 ± 591 L day-1. The 

average Feed Conversion Ratio (FCR) during the tilapia experiment was 1.33 ± 0.05.  
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Table 4. Summary statistics of tilapia water quality for each of the recirculating aquaculture 

experimental systems. Statistics based on the pseudo-steady state experimental period of 81 days. 
 Mean ± Standard Deviation; (Minimum, Maximum) 

Parameter RAS 1 RAS 2 RAS 3 

Dissolved Oxygen 
(mg/L) 

6.38 ± 0.67 
(4.23,7.67) 

6.26±0.57 
(4.76, 7.39) 

6.47±0.65 
(4.70,7.75) 

    

pH 
7.55 ± 0.21 
(6.76, 7.98) 

7.54±0.19 
(7.01, 7.97) 

7.54±0.23 
(6.73, 7.95) 

    

Temperature (°C) 
25.53 ± 1.44 

(18.80, 28.20) 
25.74±1.35 

(22.00, 28.90) 
25.17±1.67 

(18.60, 28.40) 
    

Feed Rate (kg/day) 
1.05 ± 0.46 
(0.00, 1.48) 

1.08±0.47 
(0.00, 1.67) 

1.07±0.49 
(0.00, 1.51) 

    
Electrical Conductivity 

(mS/cm) 
1.79 ± 0.11 
(1.47, 2.04) 

1.68±0.21 
(1.30, 2.14) 

1.28±0.28 
(0.39, 1.84) 

    
Alkalinity                

(mg/L as CaCO3) 
70.21 ± 23.14 

(20.00, 196.00) 
67.38±21.53 

(24.00, 180.00) 
66.01±23.74 

(21.00, 170.00) 
    

Water Usage (LPD) 
211.05 ± 139.94 
(27.93, 1008.06) 

346.55±180.40 
(0.00, 751.44) 

327.83±227.67 
(44.89, 1676.11) 

 

Daily nutrient production from the tilapia production period of research are shown in  

Table 5. Nutrient production rates averaged Cu 3.39 ± 0.55 g per 100 kg feed, Fe 10.78 ± 

1.90 g per 100 kg feed, Mn 5.61 ± 1.78 g per 100 kg feed, Mo 0.23 ± 0.08 g per 100 kg feed, and 

Zn 7.26 ± 0.89 g per 100 kg feed across all three systems and were not statistically different from 

one another (p > 0.05). The average production rates among the three systems for B -4.36 ± 4.78 

g per 100kg feed, Cl -76.71 ± 350.20 g per 100 kg feed, S -19.97 ± 163.60 g per 100 kg feed, Ca 

1172.44 ± 706.72 g per 100 kg feed, K 405.27 ± 740.68 g per 100 kg feed, Mg 181.72 ± 196.13 

g per 100 kg feed, P 704.34 ± 582.05 g per 100 kg feed, and TN 2896.13 ± 4133.70 g per 100 kg 

feed, were highly variable and significantly different between all three systems.  

Table 5. Summary statistics of tilapia average daily nutrient production rate in grams per 100 kg 

feed fed. Statistics based on the pseudo-steady state period of 81 days. 



27 

 

Micronutrients (g/100kg feed) Mean ± Standard Deviation; (minimum, maximum) 

 RAS 1 RAS 2 RAS 3 

B 
2.15±14.09 

(-6.56, 23.17) 
-6.00±4.83 

(-13.00, -1.99) 
-9.21±6.92 

(-17.99, -3.20) 
    

Cl 
-571.82±159.92 

(-728.49, -392.06) 
160.35±683.04 

(-587.01, 1065.22) 
181.32±388.62 

(-244.79, 694.03) 
    

Cu 
2.87±1.09 

(1.35, 3.88) 
4.16±1.84 

(1.45, 5.55) 
3.15±2.06 

(1.01, 5.58) 
    

Fe 
11.63±1.98 

(9.45, 14.16) 
12.56±7.21 

(2.39, 18.94) 
8.14±11.33 

(-2.74, 17.99) 
    

Mn 
6.21±2.44 

(3.18, 8.33) 
7.43±2.80 

(3.77, 10.00) 
3.20±7.77 

(-6.35, 10.41) 
    

Mo 
0.13±0.12 

(-0.03, 0.23) 
0.32±0.16 

(0.18, 0.55) 
0.23±0.07 

(0.19, 0.33) 
    

Zn 
6.99±1.35 

(5.19, 8.37) 
8.47±3.46 

(4.29, 12.62) 
6.33±5.32 

(1.64, 11.41) 

Macronutrients (g/ 100kg 
feed) 

   

Ca 
235.33±111.51 

(159.17, 398.52) 
1941.91±564.21 

(1219.28, 2497.92) 
1340.08±1111.72 
(259.12, 2523.06) 

    

K 
-635.99±205.56 

(-871.59, .432.22) 
1024.57±918.94 

(273.80, 2347.71) 
287.23±248.02 

(487.37, 1058.21) 
    

Mg 
-94.55±35.29 

(-141.33, -55.98) 
341.17±208.58 

(142.02, 620.23) 
298.55±113.72 

(151.81, 411.55) 
    

P 
-97.64±32.86 

(-142.35, -63.19) 
1265.91±257.78 

(945.64, 1503.57) 
944.74±498.53 

(386.27, 1548.75) 
    

S 
-244.51±86.63 

(-323.98, -138.35) 
140.66±408.34 

(-162.89, 735.74) 
43.94±133.27 

(-115.24, 181.87) 
    

Total Nitrogen (*constituents) 
-2913.84±939.23 

(-3886.16, -1750.37) 
6361.82±4770.46 

(2605.11, 13348.52) 
5240.39±1424.42 

(3176.63, 6323.99) 

*NH4-N 
5.29±20.52 

(-19.46, 29.80) 
48.39±207.27 

(-155.45, 337.66) 
-23.50±92.95 

(-160.83, 44.99) 

*NO3-N 
-2963.57±978.66 

(-3955.56, -1734.02) 
79.03±4435.62 

(-2775.44, 6571.43) 
-732.98±1024.11 

(-1628.35, 342.51) 

*Urea 
-5.91±3.18 

(-9.43, -2.94) 
-4.71±3.88 

(-10.47, -2.32) 
-6.02±5.67 

(-12.15, -0.66) 

 

Nutrient Fate 



28 

 

A key objective of this research was to examine nutrient allocation to liquid and solids 

phases of the waste stream. Table 6 details the effluent nutrient fate by species for each solid and 

liquid portion. Interestingly, 98% of macro-nutrients, Ca, K, Mg, P, S, and N and a micro-

nutrient, Cl, were dissolved in the culture water. Conversely, a majority of B, Cu, Fe, Mn, and 

Zn were observed in the particulate fraction of the effluent stream.  

Table 6. Summary of effluent nutrient mass fate for tilapia. Wastewater was filtered to 1.5-

microns while waste solids were defined as anything captured on the 1.5-micron glass fiber 

filters.  

 % of total wasted nutrients 

 Tilapia 
 Wastewater Waste-solid 

Micronutrients   
B 3% 97% 
Cl 100% 0% 
Cu 46% 54% 
Fe 8% 92% 
Mn 9% 91% 
Mo - - 
Zn 8% 92% 

Macronutrients   
Ca 99% 1% 
K 100% 0% 

Mg 100% 0% 
P 99% 1% 
S 98% 2% 
N 100% 0% 

 

DISCUSSION 

Aquafeed Protein Content 

The preliminary study on the effects of protein content on nutrient production showed 

importance of tailoring aquafeed diets to the fish species. It was hypothesized that high protein 

feed would result in higher nutrient production than the commercial standard. While this was 

observed, it was also shown that the additional nutrient production was accompanied by poor 
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water quality. Low protein feeds performed as expected with reduced fish growth and nutrient 

production. The water quality in the low protein feed system was optimal with nearly 

undetectable levels of ammonia, nitrite, and nitrate. The drawback of this preliminary study was 

the lack of replication. Conducting nutrient production research under actual production 

conditions requires significant infrastructure. Initial plans to test three aquafeeds would require a 

3x3 randomized complete block design to adequately compare nutrient production for three 

feeds. Experimental designs were limited to testing a single variable with three replications 

because the research facility can only hold three small commercial scale systems. In this regard, 

future research should use a minimum 3x3 randomized complete block experimental design to 

improve testing of multiple variables. Overall, the best option was to accept the nutrient 

production from the 40% protein commercial standard tilapia feed and begin a new study with 

one feed in replicated systems. 

Pseudo-Steady State 

Water quality measures including dissolved oxygen, pH, temperature, electrical 

conductivity, alkalinity, water usage, and feed rates were statistically similar between the three 

systems indicating that they were operating under pseudo-steady state conditions. High water 

recirculation, 93% reuse per day, in this experiment was attributed to strict feeding schedules and 

maintenance consistency during the 81-day study period. Feed rates and FCRs were comparable 

to commercial aquaculture production standards. 

Feed Characterization 

Feed nutrient characterization was consistent with the nutritional claims listed for the 

product. Zeigler Finfish Silver diets performed as expected with industry comparable FCRs. 
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During the 81-day study period, FCR averaged 1.3 meaning that it takes 1.3kg of feed for a fish 

to gain 1kg of mass.  

Dietary protein influences the formation of feces. For example, high protein can lead to 

loosely formed feces (Moccia and Bevan, 2010). During this study, tilapia produced well-formed 

feces that were easily removed by the drum screen filter. These RAS were designed for tilapia 

production and therefore the water filtration, diet, and all other system specifications were 

tailored to their needs. 

Nutrient Production  

RAS nutrient production is a function of control exerted on an individual system. In this 

type of RAS during pseudo-steady state operation, nutrients are slowly and consistently released 

through drum filter backwash cycles. In this study, 93% daily water recirculation rates 

contributed to the observed accumulation of all measured nutrients. Throughout this study, 

tilapia assimilated most of the nutrients provided by the aquafeed. In this study, all nutrient 

production rates are representative only for systems of a similar design with comparable 

operating and maintenance routines. Negative nutrient production rates indicate a net loss of 

nutrients from the system. These negative values combined with large standard deviations 

indicate that ICP-OES may not be adequate for characterizing RAS nutrient production. Overall, 

the nutrient production observed in this study was consistent for two of the three systems. The 

nutrient production outlier saw a consistent release of nutrients throughout the 81-day study 

period. This indicated that the system either reached critical nutrient carrying capacity or that 

error is present from operational errors. 
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Nutrient Fate 

Nutrient fate in this study revealed the system inputs and species effects on the physical 

state of RAS waste nutrients. Nearly all the macronutrients were dissolved in the wastewater and 

chlorine was the only micronutrient found mostly in the liquid portion. The remaining 

micronutrients, boron, copper, iron, manganese, and zinc were all sequestered in the solid 

wastes. Molybdenum was not presented because high sample variation and undetectable limits 

prevented further analysis. Nutrient fate is the direct result of combined effects of the water 

quality, chosen filters, operational procedures, feed, and fish species. Water quality parameters 

such as pH and temperature can affect the speciation of chemicals in the culture water therefore 

influencing the fate of nutrient solubility (Seawright et al., 1998; Schneider et al., 2005; Rakocy 

et al., 2006).  

Challenges 

Failure to maintain pseudo-steady state conditions throughout this experiment arose from 

multiple causes. Daily changes such as system water use, fish feed intake, fish stress, and 

equipment malfunction created problematic situations that negatively affected pseudo-steady-

state conditions. Despite a replicated design, equipment malfunctions resulted in failure to meet 

pseudo-steady state conditions limiting the validity of the data. An equipment malfunction was 

realized during the experiment where the drum screen filter activation float switch was held in 

the “ON” position. This malfunction forced the drum screen to backwash the filter continuously 

overnight releasing more than 3,000 gallons of water from the system. This volume of makeup 

water diluted the nutrients and stressed the fish with the concurrent cool-water refilling the 

system. 
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Another problem with this study was the omission of nutrient data associated with the 

fishes’ physiological processes during the experimental period. System wide calculations 

including whole fish starting and ending nutrient compositions were used to assess a general 

accounting of nutrients; however, fish nutrient uptake accounted for more nutrients than were 

supplied to the system. Whole fish samples, only taken at the start and end of the entire 176-day 

study period were later omitted because both samples were not representative of the 81-day 

pseudo-steady state period. After speaking with RAS researchers at Cornell University, the over-

accounting of nutrients in fish was attributed to a phenomenon called the concentration effect.  

The concentration effect is a phenomenon described as a disproportionate amount of 

nutrients that are expelled as waste versus the amount of nutrients in a fish’s gut (Timmons et al., 

2018). Measurements of expulsed nutrients in this study may also be skewed. The measured 

nutrients in the fish excrement exist in artificially higher percentages than in the gut leading to a 

misrepresentative sample (Timmons et al., 2018). The concentration effect is influenced by water 

quality and fish stress resulting in a variable effect in fish nutrient assimilation and release 

(Wendelaar, 1997; Sommerville et al., 2014). Aquafeed research often adds an indigestible 

marker to their feeds to calculate a concentration factor in the gut (Sarker et al., 2020). Under 

commercial production settings, specialized feed is manufactured by companies for each species 

and age class and can even be tailored to various types of systems (Sarker et al., 2016, 2018, 

2020).  

Conducting nutrient production research under actual production conditions requires 

significant infrastructure. This experimental design was ultimately limited because of the space 

and resource requirements. The limitation of replicate systems reduced the scope of the 

experiment. Initial plans to test three aquafeeds would require a 3x3 randomized complete block 
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design to adequately compare nutrient production for three feeds. Experimental designs were 

limited to testing a single variable with three replications because the research facility can only 

hold three small commercial scale systems. In this regard, future research should use a minimum 

3x3 randomized complete block experimental design to improve testing of multiple variables. 

CONCLUSIONS 

Evaluating nutrient production in RAS at small-scale commercial production conditions 

reveals how RAS producers can analyze nutrient production to inform effluent treatment, system 

modification, and even profit from their waste stream. Complex biological systems that make up 

aquaculture systems are in a state of constant flux. The combination of each system can directly 

and indirectly affect the resultant effluent stream to make nutrient remediation easier. The 

inherent value of the nutrient rich aquaculture effluent has been overlooked and continues to 

cause problems with nutrient loading in the environment and costly treatment for aquaculture 

producers (Seawright et al., 1996; Mugg et al., 2007). In this study, lab- scale analyses of 

nutrient production were not representative of commercial RAS facilities and may not reflect 

true nutrient production levels.  

This research supports the development of a nutrient mass balance strategy for the 

remediation and reuse of effluent by examining nutrient production at the small farm scale. By 

understanding what nutrients are produced and at what capacity, the larger implications of this 

research include the improvement of effluent treatment standards, potential cost savings, and the 

potential to convert a costly waste stream into revenue. This research supports the assumption 

that nutrient production and availability are dependent on operational standards and specific 

water quality conditions. Characterizing and quantifying aquaculture effluent as a potential 

nutrient source is most useful in the development of a nutrient mass balance method that 
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integrated-aquaculture farmers can apply to their own facilities. RAS are constantly changing 

and, to retain nutrients for optimal integration with hydroponics, systems must exert a high level 

of system control to minimize daily water usage to avoid dilution and loss of nutrients.  

The nutrient fate discovered in this study indicates that further research on liberating 

nutrients from solid waste is needed. From this research, macro-nutrients, Ca, K, Mg, P, S, and 

N, and micro-nutrient, Cl were found to be sequestered the liquid portion of the waste with an 

immediate bioavailability. Alternatively, micro-nutrients, B, Cu, Fe, Mn, and Zn were retained in 

the solid portion of the waste and require liberation before they may be utilized. This reveals an 

opportunity for applying further waste treatment practices, to liberate and reintroduce reclaimed 

nutrients to a nutrient solution before reintegration in a hydroponic system. RAS already captures 

and treats nutrients, simply adapting waste treatment processes would allow for the storage and 

reuse of waste nutrients and therefore create an economically and environmentally friendly 

model of agricultural RAS production.  

This study identifies a nutrient mass balance strategy for RAS producers by identifying 

key variables that influence nutrient production and retention in a system. Future research should 

include a feed tracer for better nutrient assimilation accounting. Solid nutrient reclamation 

should also be addressed to better assess the value of reusing these nutrients. Finally, studying 

the nutrient production of multiple commercial scale farms would contribute a better 

understanding of general RAS nutrient production.   
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INTRODUCTION 

Recirculating Aquaculture Systems 

While previous research suggests that Recirculating Aquaculture System (RAS) effluent 

nutrients are available as a fertilizer, physiological differences among aquaculture species are 

likely to influence the quantity and availability of those nutrients (Cho and Bureau, 2001).  RAS 

can reuse 99% of its system water volume each day due to water treatment processes paired with 

fish production. Any combination of water treatment processes can be used to better suit an 

individual facility. The flexibility of RAS makes them an ideal choice for many intensive fish 

production operations. RAS are becoming more popular because they offer unprecedented levels 

of control and product consistency. However, the amount of waste requiring post-production 

treatment continues to increase. Aquaculture is the only animal agriculture sector which pay for 

on-site waste treatment, effectively increasing the costs of production and therefore market 

prices for consumers (Hochman et al., 2018; Tsani et al., 2018). Consumer demands for salmon 

require expensive protein rich feeds and produce nutrient rich effluent (Cho and Bureau, 2001). 
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The resultant waste stream from these water-efficient systems is a concentrated nutrient stream, 

which requires further treatment to mitigate environmental effects. In the United States, 

Environmental Protection Agency (EPA) wastewater discharge regulations require expensive 

and energy-intensive treatment to remove excess nutrients from aquaculture waste (Yeo et al., 

2004; EPA, 2006; Somerville et al., 2014). 

Rainbow Trout 

Rainbow trout (Oncorhynchus mykiss) have become a major aquaculture species (FAO 

2018). Rainbow trout were used in this study because of their value as a popular food fish, cold 

water requirements, and quick production cycles. Marketable rainbow trout can be grown in 

RAS within nine months. As a carnivorous species, rainbow trout require feed protein higher 

than 42%. Being a carnivore results in a shorter digestive tract and therefore inefficient 

carbohydrate usage. Diet and fish physiology greatly impact how feces are formed. Trout tend to 

produce pelleted feces. However, the protein rich feeds used in RAS can cause a diarrhea-like 

waste product.  

Rainbow Trout Effluent 

Under consistent operations, trout produce formed feces which are easily removed 

through physical filtration. Most of the ammonia (NH3) produced by trout is directly released 

from the gills. Nutrient production rates for trout waste are not well established, however 

previous studies focused on nitrogen (N) and phosphorus (P) production have been modeled with 

variable results (Aubin et al., 2011). 

RAS Effluent Utilization 

RAS effluent is commonly applied to fields in terrestrial agriculture but remains a costly 

and inefficient practice due to the runoff potential (Yeo et al. 2004). RAS enables a waste 
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capture-and-utilization model by design, with many facilities utilizing on-site post-production 

treatment systems. Treated post-production RAS effluent has potential for reuse as a fertilizer in 

hydroponic systems. Previous waste-solids research suggests that the macro- and micro-nutrients 

in the captured solids from RAS meet or exceed nutrient profiles required for crop production 

(Guerdat et al., 2013). Terrestrial animal agriculture use practices which are designed to capture, 

treat, and reuse waste nutrients to offset operational costs and generate revenue (USDA NRCS, 

2009). However, aquaculture does not have effluent utilization models as used in terrestrial 

agriculture. Research is needed to develop similar models for improving the economic viability 

of aquaculture (Yeo et al., 2004). This research supports a new model that utilizes a watery 

effluent in a water-based cropping system where the production medium, water, is the same. 

Effects on Nutrients 

 Fish physiology and behavior are two major biotic drivers in RAS nutrient production. 

Differences in feeding strategies, diets, fish size, density, and behavioral factors drive RAS 

nutrient production (Cho and Bureau, 2001; Aubin et al., 2011). Rainbow trout, a carnivorous 

species, has shorter digestive tracts compared to an omnivore like tilapia (Sarker et al., 2018, 

2020). Overall, physiological adaptations of fish differ between species and likely contribute to 

nutrient production. They also offer an opportunity to produce varied nutrient fertilizers simply 

by changing fish species (Seawright et al., 1998). Environmental factors affecting RAS nutrient 

production including, day length, light intensity, and water quality are directly linked to physical 

and chemical interactions that limit RAS nutrient production. Beyond physically stressing the 

fish, chemical properties of water, pH, Electrical Conductivity (EC), and temperature causes 

feces breakdown (Seawright et al., 1998).  
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This study was conducted to characterize and quantify rainbow trout RAS nutrient 

production. Both liquid and solid effluent fractions were characterized in terms of plant-required 

nutrients for the development of nutrient profiles relative to plant-availability. 

MATERIALS AND METHODS 

 Facility Design 

This study was conducted at the Anadromous Fish and Aquatic Invertebrate Research 

facility at the University of New Hampshire in Durham, New Hampshire, United States. The 

experimental design and fish protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of New Hampshire. Three replicate RAS were operated 

per intensive commercial aquaculture standards to investigate rainbow trout nutrient production 

under pseudo-steady-state system conditions.  

Pseudo-Steady State 

Pseudo-steady state was defined for this research as stable on-going operating conditions 

in a dynamic production environment. Fish production operations are dynamic since they 

consistently increase feed rates as fish continue growing. Water treatment also remains 

consistent yet dynamic as a function of changing feed rates and waste production. Pseudo-steady 

state determinations were supported using water quality data indicative of statistically similar 

system inputs and operation including feed rates, water usage, pH, dissolved oxygen (DO), 

temperature, EC, and alkalinity. During the pseudo-steady state study period, a mass balance was 

used to characterize nutrient production. 

Nutrient Mass Balance 

Nutrients were quantified using a mass balance analysis, characterizing and accounting 

for all nutrient inputs, sinks, and outputs. Nutrient inputs were defined as any nutrients entering 
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the system, nutrient sinks as any unit process accruing nutrients, and nutrient outputs as nutrient 

exports from the system (Schneider, 2005). Inputs included all system additions in this 

experiment including incoming well water, chemical additions for pH adjustment, and feed. 

Sinks consume or accrue nutrients in a system; in this case, culture water and fish both sequester 

nutrients. Outputs include any nutrients that otherwise left the systems, which, in this study 

included wastewater and waste-solids. For this study, inputs, sinks, and outputs terms in the mass 

balance were simplified into system nutrient gain or loss terms to generate an understanding of a 

system wide nutrient flow. The dynamic nature of RAS contributes to the overall accumulation 

or release of nutrients. Under ideal conditions, RAS will have a maximum nutrient carrying 

capacity that can be maintained without compromising fish heath and growth. Nutrient 

production in any RAS is ultimately limited by system design and specifications.  

System Specifications: 

Three RAS were built per industry production standards to a harvest capacity of 75 

kg/production tank (150 kg/system) at a maximum stocking density at harvest of 72 kg m-3. Each 

4,800 L system is comprised of two fish culture tanks (1.5 m3), one standpipe well, one drum 

screen filter (Hydrotech 501, Veiolia North America, Boston, MA), one Moving Bed Bio 

Reactor (MBBR), and one pumping sump tank (Figure 2). Forced air injection from a 

regenerative air blower (Sweetwater, S45, Pentair AES, Apopka, FL) injected air into the culture 

tanks through medium-pore stone diffusers. Biological filtration was achieved using an MBBR 

containing 0.7 m3 of Kaldness K1 media. During the study, 98% of system water was retained 

and reused daily. This high recirculation rate facilitated nutrient retention in the system while 

producing a low volume and of concentrated effluent stream. Solid waste was removed from the 

system water using an inline rotary drum screen filter fitted with 40-micron screens (Hydrotech 
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501, Veiolia North America, Boston, MA). System water was used to remove solid wastes from 

the drum screen filter, creating a solid waste stream that was channeled out of the system for 

sampling and discharge. Systems were previously set up for warmwater tilapia production and 

were converted to cold water RAS production through purging with well water for one month 

while maintaining the biofilter with daily ammonium hydroxide additions. Chillers were added 

to maintain temperatures at 16 °C. 

 

Figure 2. Research recirculating aquaculture system schematic and water flow. 

System Water 

System water volume was maintained using an auto-refill float valve supplied by well 

water and located in the pumping sump. Well water was filtered through a 5 µm floss filter as 

well as a carbon block filter to remove any nutrients and impurities. Water usage was monitored 

and recorded daily using an inline water meter (Flexible Axis Water Meter, Master Meter North 

America, Mansfield, TX) located immediately before each system’s water refill valve. Flow rates 

to culture tanks were controlled using vertical injection manifolds with clear manometers used 

for visual verification of equal flow distribution between tanks. Culture tank flow rates were set 
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at 94.6 L min-1 to maximize solids removal from the culture tanks. The only additions to the 

system were well water, sodium bicarbonate and feed.  

Chemical Additions 

Sodium bicarbonate was added to each system daily to buffer pH and alkalinity. Sodium 

bicarbonate is a common RAS addition chosen for its affordability and high buffering capacity. 

Sodium, the constituent which would accumulate in the system and effluent, can also support 

fish health by bolstering slime coat production and mitigating harmful effects of unionized 

ammonia (NH3) (Soderberg and Meade, 1993). Sodium bicarbonate only contributes to the 

accumulation of sodium in RAS; however, aquaculture feeds are the main source of nutrients 

that fish utilize, and RAS accumulate. 

Aquafeed and Food Conversion Ratio 

Aquafeeds are the main sources contributing to RAS nutrient accumulation and 

discharge. Fish received 5 mm Bio-Oregon Bio Trout feed (45% Protein, 24% Fat) throughout 

the study. Feed rates based on biomass were determined using a standard aquaculture feed rate 

guide provided by Bio-Oregon, OR, USA. Fish biomass was sampled biweekly using 10% of a 

tank population. Feed rates were adjusted for individual tanks based on the sampling.  Lighting 

was applied 24 hrs day-1 to allow hourly feeding and therefore maximum fish production. Food 

Conversion Ratios (FCR) are commonly used in aquaculture to determine the efficiency of feed 

inputs versus fish growth. Low FCRs indicate high efficiency of fish production. Preferred FCRs 

for tilapia are 1.5 or less (Soderberg 1994). (FCR) were determined using the following equation: 

𝐹𝑖𝑛 ÷ 𝑀𝑔𝑎𝑖𝑛 = 𝐹𝐶𝑅 (1) 
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where Fin is the total amount of feed added over the course of the experiment (kg), Mgain is the 

mass gained by the fish during the same time period (kg), and FCR is the Food Conversion 

Ratio, a unit-less factor used to measure the efficiency of aquaculture production. 

Water Quality 

Conventional aquaculture standards,  

 

 

 

 

 

 

 

Table 7. Conventional aquaculture water quality standards for rainbow trout culture 

according to literature. 

 

 

 

 

 

 

 

Table 7, were applied for the management of water quality parameters. Water quality was 

monitored and adjusted daily. Daily water quality analyses included dissolved oxygen, electrical 

conductivity, salinity, temperature, total ammoniacal nitrogen, and nitrite-nitrogen. Dissolved 

oxygen (DO), electrical conductivity (EC), and temperature were obtained using a portable 
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handheld meter (YSI Pro 2030, Yellow Springs Instruments, Ohio). Total ammoniacal nitrogen 

(TAN; sum of NH3-N and NH4
+-N), nitrite-nitrogen (NO2-N) and nitrate-nitrogen (NO3-N) were 

analyzed using a HACH DR3900 spectrophotometer (HACH Methods: 8038 TAN, 8507 NO2-N, 

8507 NO3-N, HACH Company, CO, USA) four times per week off-site at the UNH Agricultural 

Engineering Research and Analytical Lab (AERAL) to ensure fish health and proper system 

operation. Alkalinity and pH were measured using a bench-top meter (Fisher Scientific Accumet 

AB250, MA, USA). Total alkalinity was determined via sulfuric acid titration to a pH 4.80 end 

point (APHA, 2012). 

 

 

 

 

 

 

 

 

Table 7. Conventional aquaculture water quality standards for rainbow trout culture according to 

literature. 
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 Fish Stocking 

Rainbow trout were obtained from Danaher Fishery (Shrewsbury, Vermont). Fish were 

received at an average mass of 100 g, quarantined for 6 weeks before transfer into the study 

systems. Ninety-one fish were initially stocked into each culture tank for a total of 182 fish in 

each study system. In the two weeks following the initial stocking, water quality declined and 

was identified as the cause of multiple mortalities in each system. Upon seeing a visible change 

in water clarity, turbidity was added to daily water quality monitoring procedures. During this 

two-week period, the three RAS maintained a 99% water recirculation rate leading to high total 

suspended solids (TSS) and potential nutrient toxicity. Previous rainbow trout RAS experiments 

found that exchanging water at a minimum of 0.26% of the total culture tank flow rate reduced 

accumulated nutrients and suspended solids, improving fish health (Good et al., 2009; Davidson 

et al. 2011). Implementing the low flow-through element to the experimental system design 

alleviated mortality events and stabilized water quality. Surviving fish stocks were reduced to 75 

Parameter Rainbow Trout  Sources 

Dissolved Oxygen (DO) mg/L >6.0 Good et al., (2011) 
 

pH 7-8 Good et al., (2011) 
 

Electrical Conductivity (EC) µS/cm >1.8 Good et al., (2011) 
 

Alkalinity as CaCO3 mg/L 5 
Good et al., (2011) 

 
 

Temperature (°C) 10-20 Good et al., (2011) 
 

Ammonia Nitrogen (NH3-N) mg/L <1.0 Soderberg et al., (1983) 
 

Nitrite Nitrogen (NO2-N) mg/L <0.23 Good et al., (2011) 
 

Nitrate Nitrogen (NO3-N) mg/L 150 Good et al., (2011) 
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fish per tank and held for one month before the start of the study to stabilize pseudo-steady-state 

system operation.  

Nutrient Mass Balance Sampling 

Samples were collected biweekly over 183 days. Well water was collected directly from 

the building water line and feed was sampled via grab sample from each feed bag biweekly. 

Whole fish were sampled once at the beginning and again at the end of the experiment to 

quantify nutrient assimilation. Culture water samples were obtained from each system pumping 

sump reservoir after triple rinsing the bottles with the water to be sampled. Composite effluent 

samples (approximately 20 L of wastewater and waste solids combined) were collected from the 

drum screen filter effluent pipe for a period of one hour. All samples were preserved at 4 °C for 

24 hours prior to analysis per APHA (2012) sample storage protocols for nitrogen analysis 

(Method 4500).  

Sample Preparation 

Measured volumes of wastewater samples were filtered using binder-free, glass 

microfiber filters (Whatman 934-AH) to separate the liquid and solid portions for independent 

analyses. Well water, culture water, and filtered wastewater liquid were sent directly for analysis, 

while solid waste and tissue samples were first dried, ground, and mixed prior to analysis. Total 

Suspended Solids (TSS) of wastewater samples were determined by APHA (2012) Method 

2540D. Complete dryness was achieved when dry mass changes over a 24-hour period were less 

than 5% of the total sample mass (Method 2540D, APHA, 2012). The same drying methodology 

was applied to feed and whole fish samples before nutrient analysis. The system flow-through 

element was account through calculations of culture water nutrients as a consistent culture water 

stream leaving the system. 
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Nutrient Sample Analysis  

Samples were analyzed for 13 plant macro- and micro-nutrients  

Table 8. Samples were analyzed via inductively coupled plasma – optical emission 

spectrometry (ICP-OES) by a partnering laboratory (J.R. Peters, Inc. Laboratory, Allentown, PA, 

USA). ICP analysis of water, waste, and fish was conducted per EPA method 200.7 using a 

Prodigy XP ICP-OES (Teledyne Leeman Labs, Hudson, NH, USA) (EPA, 1994).  

Table 8. Nutrient List 

Macronutrients Micronutrients 

Calcium (Ca) Boron (B) 

Potassium (K) Chlorine (Cl) 

Magnesium (Mg) Copper (Cu) 

Nitrogen (N) Iron (Fe) 

Phosphorus (P) Manganese (Mn) 

Sulfur (S) Molybdenum (Mo) 

 Zinc (Zn) 

 

Nutrient Mass Estimation 

The following nutrient mass balance equation was adapted from a general mass balance 

equation as described by Timmons et al. (2018): 

Accumulation = Input −  Output + Production − Consumption  (2) 

where Accumulation was defined as the nutrients accumulated in the culture water/system (mg), 

Input was the sum of all nutrient masses introduced into the culture system (e.g. incoming well 

water and feed) (mg), Output was the sum of all nutrient masses exiting the system (e.g. effluent 

stream, fish) (mg), Production was the sum of all nutrient masses produced within the culture 
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system (e.g. biofilm sloughing) (mg), and Consumption was the sum of all nutrient masses 

consumed within the culture system (e.g. nutrient assimilation into fish tissue) (mg). 

All nutrient masses were calculated to reflect the total mass of each nutrient present for 

each sampling date then extrapolated between samples to calculate nutrient accrual over time. 

Daily nutrient production was estimated using the sample data and operational data collected 

between sampling dates (e.g. water consumption, feed rates, etc.).  

Culture water, well water, and wastewater nutrient masses were calculated using the 

following equation: 

C × V = MNL  (3) 

where C was the nutrient concentration in the liquid samples (mg L-1), V was the volume of 

water added or system volume (L), and MNL was the mass of nutrients in liquid (mg).  

 Whole fish, feed, and waste nutrient masses were calculated using the following 

equation: 

C × M = MNS  (4) 

where C was the concentration of nutrient in the dry matter samples (mg kg-1), M was the mass 

of the dry matter sample (mg), and MNS was the mass of nutrients in the dry matter solid sample 

(mg).  

Daily Nutrient Production Rates were determined by comparing the nutrient loads over 

the duration of the experiment as: 

∆𝑁𝐿 ÷  ∆𝑡 = 𝑁𝑃𝐷 (5) 

where ΔNL was the change in nutrient load between sample at two separate sampling periods 

(mg), Δt was the number of days between the two sampling periods, and NPD was the nutrient 

production per day (mg day-1). 
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Statistical Analysis 

All analyses were carried out using JMP Pro 14 software package (JMP Pro 14, 2018). 

MANOVA tests were used to compare independent variables (feed rates, water usage, alkalinity, 

and pH) then the dependent nutrient production variables between systems. Significance was 

indicated when p-value ≤ 0.05. 

RESULTS 

Pseudo-Steady State  

Data were collected over 183 days. Pseudo-steady state operating conditions were achieved 

during the final 26 consecutive days of the study. Data from this 26-day period were used in the 

reporting of water quality, water usage, nutrient production rates and nutrient fate throughout this 

study. Daily water quality for all three systems is summarized in Table 9. The average 

concentration of dissolved oxygen between all three systems was 7.02 ± 0.56 mg L-1. The 

average temperature was 15.90 ± 1.59 °C. Electrical conductivity (EC) averaged 0.47 ± 0.07 mS 

cm-1. Salinity remained stable at 0.57 ± 0.08 mg L-1 during the experiment. Average pH was 7.67 

± 0.17 and alkalinity averaged 83.96 ± 10.83 mg L-1.  

The average water usage rate between all three systems during the RBT experiment was 

981 ± 445 L day-1. The recirculating aquaculture systems were operated with a 0.26% culture 

tank flow-through design to maintain adequate fish health during the study. While daily water 

usages were higher in systems 1 and 2 as compared to system 3, 1023.86 ± 295.83 L day-1, 

1152.36 ± 561.73 L day-1, 767.34 ± 365.83 L day-1 respectively, pseudo-steady-state was 

achieved and nutrient production results were more conclusive than the previous experiment 

using tilapia.  
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Table 9. Summary statistics of rainbow trout water quality for each experimental recirculating 

aquaculture system. Statistics based on the pseudo-steady state period of 26-days. 

 Mean ± standard deviation; (minimum, maximum) 

Parameter RAS 1 RAS 2 RAS 3 

Dissolved Oxygen (mg/L) 
6.99±0.56 
(5.92,7.94) 

7.19±0.49 
(6.20, 8.16) 

6.89±0.60 
(5.25, 7.89) 

    

pH 
7.68±0.19 

(7.33, 8.02) 
7.67±0.18 

(7.37, 7.90) 
7.67±0.16 

(7.38, 8.00) 
    

Temperature (°C) 
17.17±1.86 

(14.10,21.90) 
15.32±1.01 

(14.30, 18.80) 
15.21±0.95 

(14.30, 18.60) 
    

Feed Rate (kg/day) 
0.99±0.45 

(0.00, 1.59) 
1.12±0.56 

(0.00, 1.95) 
1.11±0.51 

(0.00, 1.82) 
    

Electrical Conductivity 
(mS/cm) 

0.44±0.05 
(0.35, 0.53) 

0.48±0.08 
(0.33, 0.59) 

0.49±0.06 
(0.40, 0.58) 

    

Salinity (ppt) 
0.52±0.06 

(0.43, 0.602) 
0.58±0.10 

(0.41, 0.69) 
0.60±0.07 

(0.50, 0.60) 
    

Alkalinity (mg/L as 
CaCO3) 

80.04±10.82 
(56.00, 100.00) 

87.20±9.67 
(73.00, 103.00) 

84.64±11.35 
(63.00, 100.00) 

    

Water Usage (LPD) 
1023.86±295.83 

(741.75, 1666.80) 
1152.36±561.73 

(603.86, 2219.15) 
767.34±365.83 

(371.69, 1440.08) 

 

Feed Nutrient Characterization  

 During the 26-day pseudo-steady state period, the trout received an average daily feed 

rate of 1.07 ± 0.50 kg system-1 day-1 of Bio-Oregon Bio Trout feed (47% Protein, 24% Fat). 

Trout averaged 450.0 ± 32.2 g at the beginning of the pseudo-steady state period and grew to an 

average of 681.7 ± 66.2 g by the end of the study. FCRs during the 26-day period averaged 0.92 

± 0.07. Rainbow trout aquafeed nutrient profiles were determined during the 26-day study period 

to confirm nutrient inputs for each system. Average nutrient profiles on a dry mass basis for the 

experiment are shown in Table 10. Trout aquafeed total nitrogen was 73.50±3.51 g kg-1 dry 

mass.  
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Table 10. Summary for aquafeed nutrient characterization based on average nutrient 

concentrations of aquafeed throughout the experiment. 

 Rainbow Trout Feed               
Bio-Oregon Bio-Trout            

(45% PC, 24%F) 

Micronutrients (mg/kg)  
B 3.51 ± 1.56 

Cu 13.09 ± 1.71 
Fe 169.90 ± 18.78 
Mn 34.19 ± 6.13 
Mo 0.89 ± 0.11 
Zn 151.55 ± 15.81 

Macronutrients (g/kg)  
Ca 13.92 ± 3.33 
K 5.23 ± 0.28 

Mg 1.30 ± 0.07 
P 9.55 ± 1.69 
S 624.09 ± 95.27 

TN 73.50 ± 3.51 

 

Nutrient Production 

Rainbow trout daily nutrient production rates are shown in Table 11. Daily micronutrient 

production was measured as follows, 706.29 ± 49.58 g per 100 kg feed Cl, 1.01 ± 0.04 g per 100 

kg feed Cu, 13.41 ± 0.51 g per 100 kg feed Fe, 7.08 ± 0.71 g per 100 kg feed Mn, 3.11 ± 0.57 g 

per 100kg feed Mo, 11.95 ± 0.58 g per 100 kg feed Zn. Macronutrient production during this 

experiment averages were 2043.37 ± 29.18 g per 100 kg feed Ca, 659.48 ± 51.15 g per 100 kg 

feed K, 445.58 ± 7.61 g per 100 kg feed Mg, 690.11 ± 42.57 g per 100 kg feed P, 312.95 ± 45.59 

g per 100 kg feed S, and 5729.49 ± 540.33 g per 100 kg feed TN.  

 

 

Table 11. Summary statistics of rainbow trout average daily nutrient production rate for each 

system. Statistics based on the pseudo-steady state conditions during a 26-day period. 

Micronutrients (g/100kg 
feed) 

Mean ± Standard Deviation; (minimum, maximum) 
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 RAS 1 RAS 2 RAS 3 

B 
-0.70±0.69 

(-1.44, -0.07) 
-0.64±0.29 

(-0.86, -0.30) 
-0.46±0.98 

(-1.59, 0.21) 

    

Cl 
838.33±113.88 

(717.76, 944.06) 
824.14±123.22 

(712.57, 956.39) 
960.88±110.82 

(855.49, 1076.43) 
    

Cu 
1.19±0.44 

(0.89, 1.70) 
1.30±0.44 

(1.00, 1.81) 
1.28±0.47 

(0.99, 1.82) 

    

Fe 
15.82±4.47 

(10.91, 19.65) 
17.37±3.51 

(13.73, 20.74) 
16.62±4.00 

(12.62, 20.62) 

    

Mn 
8.68±4.40 

(3.70, 12.05) 
9.87±6.18 

(3.18, 15.36) 
7.74±4.26 

(2.99, 11.23) 
    

Mo 
2.96±3.68 

(-0.34, 6.94) 
4.67±4.12 

(2.13, 9.43) 
3.92±2.93 

(2.11, 7.30) 

    

Zn 
13.83±4.25 

(10.95, 18.71) 
15.54±3.85 

(12.87, 19.95) 
15.02±4.39 

(12.28, 20.08) 

Micronutrients (g/100kg 
feed) 

   

Ca 
2490.33±351.82 

(2144.23, 2847.61) 
2577.68±319.07 

(2377.30, 2945.62) 
2521.66±338.50 

(2294.70, 2910.73) 

    

K 
749.26±165.00 

(617.52, 934.33) 
798.87±252.89 

(526.71, 1026.60) 
901.34±252.06 

(647.68, 1151.77) 

    

Mg 
541.01±49.95 

(486.26, 584.10) 
550.09±60.86 

(484.05, 603.92) 
563.92±63.77 

(495.54, 621.78) 
    

P 
781.38±345.07 

(504.60, 1168.00) 
877.99±358.23 

(561.87, 1267.09) 
903.87±377.37 

(580.12, 1318.32) 

    

S 
336.15±73.82 

(261.56, 409.18) 
360.15± 128.69 
(215.16, 460.83) 

466.08±135.08 
(315.42, 576.40) 

    

Total Nitrogen 
(*constituents) 

6211.95±1867.30 
(4507.92, 8208.08) 

7237.43±2174.78 
(4891.65, 9186.62) 

7831.57±2699.31 
(5008.74, 10387.52) 

*NH4-N 
50.42±35.94 
(9.03, 73.63) 

44.65±30.76 
(10.14, 69.16) 

47.06±28.12 
(17.80, 73.89) 

*NO3-N 
-700.14±390.50 

(-1143.52, -407.38) 
-434.21±614.82 

(-1140.82, -21.50) 
427.63±901.57 

(-610.16, 1017.70) 

*Urea 
0.17±5.27 

(-5.38, 5.09) 
-0.36±2.56 

(-2.33, 2.54) 
1.53±5.39 

(-3.83, 6.94) 

Nutrient Fate 



52 

 

Table 12 details the effluent nutrient fate for the solid and liquid portions of the waste. 

Macronutrients Ca, K, Mg, P, S, and N as well as micro-nutrients Cl and Mo were nearly fully 

solubilized in the liquid waste. The majority of micronutrients B, Cu, Fe, Mn, and Zn were 

observed in the particulate fraction of the effluent. 

Table 12. Summary of effluent nutrient mass fate for rainbow trout. Wastewater was filtered to 

1.5 µm while waste solids were defined as anything captured on the 1.5-micron glass fiber 

filters. 

 

 Rainbow Trout 
 Wastewater Waste-solid 

Micronutrients   
B 8% 92% 
Cl 100% 0% 
Cu 18% 82% 
Fe 22% 78% 
Mn 7% 93% 
Mo 100% 0% 
Zn 4% 96% 
Macronutrients   
Ca 98% 2% 
K 100% 0% 
Mg 100% 0% 
P 95% 5% 
S 100% 0% 
N 99% 1% 

 

DISCUSSION  

Pseudo-Steady State 

Daily water quality values, dissolved oxygen, temperature, electrical conductivity, 

salinity, pH, alkalinity, and water usage were non-significant from one another indicating that 

pseudo-steady-state conditions were achieved during the experiment. Feed rates and FCRs were 

comparable to commercial aquaculture production standards. Water usage in this experiment was 

higher than the previous experiment with tilapia likely because trout require a flow-through 
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system element. Rainbow trout have a low tolerance to the buildup of nutrients which is resolved 

through a water exchange at 0.26% of the culture tank flow rate (Davidson et al., 2011).  

 

Feed Nutrient Characterization  

Feed nutrient characterization was consistent with the nutritional claims listed for the 

product. The Bio Oregon Trout feed was an excellent performing feed regarding fish growth. 

The FCRs achieved during the final 26-day pseudo-steady state period were <1.0 indicating that 

less than 1kg of feed was required for 1.0 kg of fish growth. Rainbow trout are carnivorous, 

requiring higher protein content feed than omnivorous species like tilapia (Wilson and Halver, 

1986).  

High protein diets can lead to loosely formed feces (Moccia and Bevan, 2010). In this 

experiment, rainbow trout were found to have feces that were visibly more particulate than 

formed strands as normally seen in an aquaculture setting. Factors likely contributing to the high 

solubility of nutrients expelled by the trout include dietary and physiological traits. Feed 

constituent makeup can affect the nutrient dissipation and fecal pellet consistency. Physiological 

characteristics like stress responses can also negatively affect fecal pellet formation. 

Nutrient Production 

 RAS nutrient production is a function of control exerted on an individual system. In this 

type of RAS during pseudo-steady state operation, nutrients are slowly and consistently released 

through drum filter backwash cycles. In this study, 98% daily water recirculation rates 

contributed to the observed accumulation of all measured nutrients. Trout tend to assimilate 

many of the nutrients provided in their diet. Individual nutrient production reported in this study 

are only representative for systems of similar setup, operational, maintenance routines. All 

nutrients, excluding boron, were accumulated over the course of the 26-day study period. Daily 
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boron production was not accurately quantified because many samples contained less boron than 

the detectable limit of the ICP-OES resulting in a zero or negative value. Negative nutrient 

production rates indicate a net loss of nutrients from the system. These negative values combined 

with large standard deviations indicate that ICP-OES may not be adequate for characterizing 

RAS nutrient production.  This observation is consistent with early RAS nutrient production 

research  

Nutrient Fate 

This study observed nutrient fate through quantifying solid versus dissolved nutrients. 

Nearly all the macronutrients were dissolved in the wastewater, however, only two 

micronutrients, chlorine and molybdenum, were mostly solubilized. The remaining 

micronutrients, boron, copper, iron, manganese, and zinc were all sequestered in the solid 

wastes. This nutrient fate is the direct result of combined effects of the water quality, chosen 

filters, operational procedures, feed, and fish species. Water quality parameters like temperature, 

pH, and electrical conductivity affect chemical speciation which influences the availability or 

lack thereof for nutrients to plants (Seawright et al., 1998; Schneider et al., 2005; Rakocy et al., 

2006). Previous research indicates that fish species and aquafeed also play a factor in the amount 

and solubility of nutrients through interactions with digestive enzymes, acids, and digestive tract 

length (Sarker et al. 2018; Sarker et al. 2020). Rainbow trout produced soft formed feces during 

this study which could be a major contributor to the high solubility of macronutrients. Additional 

binding agents could be added to the aquafeed to encourage better formed feces. This type of 

study gives producers a better idea of the effluent nutrients loads and their solubility. This 

information gives RAS producers the necessary information to better control their effluent 

stream through improved filtration and adapting aquafeeds.  
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Study Limitations 

Failures to maintain pseudo-steady state conditions throughout this experiment arose 

from multiple causes. Daily changes such as system water use, fish feed intake, fish stress, and 

equipment malfunction all lead to problematic situations that negatively affected pseudo-steady-

state conditions. In this experiment, all the previously mentioned factors existed throughout the 

entire 183-day data collection. These factors led to the omission of many of the early study data 

which lacked pseudo-steady-state conditions. At the beginning of the experiment, stressed fish 

refused feed and produced less feces. This was also problematic because the feed became 

waterlogged and stuck to the bottom of the standpipe well resulting in a slow dissolution of 

nutrients into the water. Equipment malfunctions also occurred during the experiment when the 

drum filter screens developed tears in the screen allowing solids to pass through the filter and 

remain in the system. Another mechanical problem experienced during the experiment was the 

sticking of the drum screen activation float valve which was stuck in the ‘ON’ position allowing 

the system to use more than 3,000 gal of water in one night severely diluting the system 

nutrients.  

Another shortcoming of this study was the lack of an indigestible tracer in the feed. 

Through the inclusion of a tracer, this research would be able to confirm the full accounting of 

nutrient production based on the differential nutrient production and fish assimilation due to 

species specific effects. Individual effects of species on nutrient production are not well known, 

however a concentration effect has been described in previous aquafeed studies which 

contributes to proportion of fish nutrient assimilation versus excretion (Timmons et al., 2018). 

Measurements of expulsed nutrients in this study could be skewed. The measured nutrients in the 
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fish excrement exist in artificially higher percentages than in the gut leading to a 

misrepresentative sample (Timmons et al., 2018). The concentration effect is influenced by water 

quality and fish stress resulting in a variation of fish nutrient assimilation and release 

(Wendelaar, 1997; Sommerville et al., 2014). Aquafeed researchers often adds an indigestible 

marker to their feeds to calculate a concentration factor in the gut (Sarker et al., 2020). Under 

commercial production settings, specialized feed is manufactured by companies for each species 

and age class (Sarker et al., 2016, 2018, 2020).  

Conducting nutrient production research under actual production conditions requires 

significant infrastructure. This experimental design was ultimately limited because of the space 

and resource requirements. The limitation of replicate systems reduced the scope of the 

experiment. Initial plans to test three aquafeeds would require a 3x3 randomized complete block 

design to adequately compare nutrient production for three feeds. Experimental designs were 

limited to testing a single variable with three replications because the research facility can only 

hold three small commercial scale systems. In this regard, future research should use a minimum 

3x3 randomized complete block experimental design to improve testing of multiple variables. 

CONCLUSIONS 

Evaluating rainbow trout RAS nutrient production reveals how commercial farms can 

analyze their effluent streams and tailor water treatment for more effective remediation. In some 

instances, effluent can be treated for reintegration as a fertilizer for plants in a hydroponic 

system. The value of RAS effluent has not been realized or effectively utilized (Seawright et al., 

1996; Mugg et al., 2007).  The methods developed in this study to characterize nutrient 

production can offer RAS operations valuable insight on their own effluent streams. This would 

allow RAS producers an opportunity to exert more control on their systems and potentially profit 
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from their waste stream. Due to the dynamic nature of these systems, water reuse in the system is 

the single most important critical control point in nutrient retention.  

From this research, macro-nutrients, Ca, K, Mg, P, S, and N, and micro-nutrients, Cl and 

Mo are soluble in the liquid waste. Alternately, micro-nutrients, B, Cu, Fe, Mn, and Zn retained 

in the solid portion of the waste require liberation before they may be utilized. This reveals an 

opportunity for applying further waste treatment practices, to liberate and reintroduce reclaimed 

nutrients to a nutrient solution before reintegration in a hydroponic system. RAS already captures 

and treats nutrients, simply adapting waste treatment processes would allow for the storage and 

reuse of waste nutrients and therefore an economically and environmentally friendly model of 

agricultural RAS production.  

 Overall, RAS shows the capacity to capture, treat, store, and reuse nutrients 

simultaneously replacing expensive economic and environmental costs with more profitable and 

environmentally sustainable options. Understanding the distribution of wasted nutrients between 

wastewater versus waste-solids allows treatment processes to become targeted for efficient 

treatment. This study lays the foundation of a nutrient mass balance strategy for RAS producers 

by identifying key variables that influence nutrient production and retention in a system. Future 

research should include a feed tracer for better nutrient assimilation accounting. Solid nutrient 

reclamation should also be addressed to better assess the value of reusing these nutrients. Finally, 

studying the nutrient production of multiple commercial scale farms would contribute a better 

understanding of general RAS nutrient production.   
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INTRODUCTION 

Recirculating Aquaculture Systems (RAS) technology can reduce environmental impacts 

by capturing and reusing nutrients from aquaculture wastewater. Nutrients produced in RAS can 

be integrated with hydroponics, water-based plant production. This integration would offset 

environmental impacts of wastewater discharge with a potentially profitable fertilizer asset. 

Reclaimed RAS nutrients could also be applied to terrestrial agriculture if new strategies are 

developed to dewater the nutrients before injection into soil. Understanding how nutrients are 

produced and move in RAS is necessary for determining the best treatment processes for nutrient 

reuse. 

Aquafeed Nutrient Characterization 

 Aquafeed nutrient profiles act as inputs into the mass balance study and contribute to the 

differences in nutrient production between species. Average tilapia and trout feed nutrient 

concentrations are reported in Table 13 ; nutrient profiles were very similar for the feed used in 

the tilapia and rainbow trout studies. Boron, molybdenum, sulfur, calcium, potassium, 

magnesium, phosphorus, and total nitrogen concentrations were similar, while iron, sulfur, and 

manganese differed significantly between the two feeds. While the trout feed had higher protein 

content based on percent weight, total nitrogen was only slightly higher than the tilapia feed on a 
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dry weight basis (73.50±3.51 g kg-1 versus 64.74±2.81 g kg-1 respectively). Because trout don’t 

use carbohydrates efficiently, their feeds are typically formulated with higher levels of protein 

and fat. One drawback of high protein diets is that up to 65% of the protein can be lost to the 

environment, with most of the nitrogen being excreted as ammonia (Craig et al., 2017).  

Table 13. Summary statistics for aquafeed nutrient characterization for each the tilapia and 

rainbow trout feeds for a side-by-side comparison of basic nutrient inputs into a recirculating 

aquaculture system. Statistics based on the average nutrient concentrations of aquafeeds 

throughout each experiment.  

 Tilapia Feed                          
Zeigler Finfish Silver              

(40% PC, 10%F) 

Rainbow Trout Feed               
Bio-Oregon Bio-Trout            

(45% PC, 24%F) 

Micronutrients (mg/kg)   
B 5.63 ± 1.38 3.51 ± 1.56 

Cu 13.83 ± 4.35 13.09 ± 1.71 
Fe 62.35 ± 3.37 169.90 ± 18.78 
Mn 3.04 ± 0.81 34.19 ± 6.13 
Mo 0.33 ± 0.47 0.89 ± 0.11 
Zn 46.12 ± 10.25 151.55 ± 15.81 

Macronutrients (g/kg)   
Ca 17.06 ± 1.08 13.92 ± 3.33 
K 8.66 ± 0.62 5.23 ± 0.28 

Mg 1.86 ± 0.30 1.30 ± 0.07 
P 13.54 ± 0.51 9.55 ± 1.69 
S 514.00 ± 726.91 624.09 ± 95.27 

TN 64.74 ± 2.81 73.50  3.51 

 

Tilapia vs. Rainbow Trout Nutrient Production 

  Species effects can be observed when comparing daily nutrient production for tilapia and 

rainbow trout. Average daily nutrient production for each species is presented in Table 14. 

Rainbow trout and tilapia nutrient production were similar in mass for micro-nutrients and 

similar in proportion for macro-nutrients. Rainbow trout produced more nutrients on average 

even though higher system water usage likely diluted nutrients in that study. The maximum 

recorded total nitrogen (TN)production for tilapia, 6361.82 g per 100kg feed, was similar to the 

max TN production rate for rainbow trout, 6325.50 g per 100kg feed. This is an interesting 
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finding because the trout feed contained 45% protein while the tilapia feed contained only 40% 

protein. Aquafeed nutritional labels list protein contents as a minimum percent indicating that the 

40% protein tilapia feed could at times contain a higher protein percentage than listed. The feed 

constituent analysis indicated that the trout feed was higher in nitrogen on a dry mass basis. 

However, the nutrient mass balance comparison indicates double the production of nitrogen for 

trout, 5729.49±540.33g per 100kg feed, as for tilapia, 2896.13 ± 4133.70 g per 100kg feed. The 

high variability seen in the tilapia nitrogen production data is due to excess water removal from 

equipment malfunctions during the study. Negative nutrient production rates indicate a net loss 

of nutrients from the system. These negative values combined with large standard deviations 

indicate that ICP-OES may not be adequate for characterizing RAS nutrient production.  
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Table 14. Summary statistics of average daily nutrient production by species. Statistics based on 

the pseudo-study state periods for each experiment, 81 days and 26 days for tilapia and rainbow 

trout respectively. 
 Mean ± Standard Deviation; (minimum, maximum) 

Micronutrients (g per 100kg feed) Tilapia Rainbow Trout 

B 
-4.36±4.78 

(-9.21, 2.15) 
-0.48±0.08 

(-0.56, -0.37) 
   

Cl 
-76.72±350.20 

(-571.82, 181.32) 
706.29±49.58 

(665.65, 776.09) 
   

Cu 
3.39±0.55 

(2.87, 4.16) 
1.01±0.51 

(12.77, 14.03) 
   

Fe 
10.78±1.90 

(8.14, 12.56) 
13.41±0.51 

(12.77, 14.03) 
   

Mn 
5.61±1.78 

(3.20, 7.43) 
7.08±0.71 

(6.25, 7.97) 
   

Mo 
0.23±0.08 

(0.13, 0.32) 
3.11±0.57 

(2.39, 3.77) 
   

Zn 
7.26±0.89 

(6.33, 8.47) 
11.95±0.58 

(11.17, 12.55) 

Macronutrients (g per 100kg feed)   

Ca 
1172.44±706.72 

(235.33, 1941.91) 
2043.37±29.18 

(2011.42, 2081.97) 

   

K 
405.27±740.68 

(-635.99, 1024.57) 
659.48±51.15 

(605.17, 728.01) 

   

Mg 
181.72±196.13 
(-94.55, 341.17) 

445.58±7.61 
(436.97, 455.48) 

   

P 
704.34±582.04 

(-97.64, 1265.91) 
690.10±42.57 

(631.12, 730.05) 

   

S 
-19.97±163.61 

(-24.51, 140.66) 
312.95±45.59 

(271.50, 376.45) 

   

Total Nitrogen 
(* Constituents) 

2896.13±4133.70 
(-2913.84, 6361.82) 

5729.49±540.33 
(5017.34, 6325.50) 

*NH4-N 
10.06±29.54 

(-23.50, 48.39) 
38.27±1.91 

(36.06, 40.73) 

*NO3-N 
-1205.84±1286.35 
(-2963.57, 79.03) 

-190.27±388.79 
(-565.50, 345.39) 

*Urea 
-5.55±0.59 

(-6.02, -4.71) 
0.36±0.64 

(-0.29, 1.23) 

 



62 

 

Aquaculture Effluent Nutrient Fate  

Nutrient production rates only resolve part of the problem; understanding where nutrients 

are concentrated informs whether they are directly available for reuse. Nutrient fate is important 

because treating water is easier and cheaper than treating solids (Mugg et al., 2007). Nutrients 

can be in either liquid or solid form. Table 15 details RAS effluent nutrient fate by species for 

solid and liquid portions. For both species, a minimum of 95% of macro-nutrients, (Ca, K, Mg, 

P, S, and N) and the micro-nutrient, Cl, were dissolved in the water. Most micro-nutrients (B, 

Cu, Fe, Mn, and Zn) were observed in the solid fraction of the effluent stream.  

Table 15. Summary of effluent nutrient mass fate for both tilapia and trout. Wastewater was 

filtered to 1.5-microns; solids were defined as anything captured on the 1.5-micron glass fiber 

filters.  

 Mean ± Standard Deviation; (minimum, maximum) 

 Tilapia Trout 
 Wastewater Waste-solid Wastewater Waste-solid 

Micronutrients     
B 3% 97% 8% 92% 
Cl 100% 0% 100% 0% 
Cu 46% 54% 18% 82% 
Fe 8% 92% 22% 78% 
Mn 9% 91% 7% 93% 
Mo - - 100% 0% 
Zn 8% 92% 4% 96% 
Macronutrients     
Ca 99% 1% 98% 2% 
K 100% 0% 100% 0% 
Mg 100% 0% 100% 0% 
P 99% 1% 95% 5% 
S 98% 2% 100% 0% 
N 100% 0% 99% 1% 

Water quality parameters such as pH and temperature can affect the speciation of 

chemicals in the culture water therefore influencing nutrient solubility (Seawright et al., 1998; 

Schneider et al., 2005; Rakocy et al., 2006). Sarker et al., (2018) found that fish also influence 

the quantity and physical state of a chemical through their digestive processes. Nutrients that are 
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most effectively utilized from diets are expected to become limiting nutrients in a naturally 

derived fertilizer solution. This shows how feeds can be adapted to fit not only the nutritional 

requirement for fish, but also any limited nutrients which would otherwise make aquaculture 

effluent an incomplete fertilizer for hydroponics.  

Supplementing extra nutrients in aquafeeds are one viable option to improve the usability 

of effluent, but simply liberating the nutrients from the solid waste could be enough to produce a 

nutritionally complete plant fertilizer. Liberating nutrients from RAS solid waste could be 

achieved through the addition of further waste treatment processes like digestion. Every RAS 

facility and individual system can add or modify water treatment processes to improve nutrient 

reclamation. Simply adding the digestion process to the effluent stream produces a nutrient rich 

fertilizer that can be utilized in hydroponics rather than dispersed to natural bodies of water. The 

inherent value of the nutrient rich aquaculture effluent has been overlooked and continues to 

cause problems with nutrient loading in the environment and costly treatment for aquaculture 

producers (Seawright et al., 1996; Mugg et al., 2007).  

CONCLUSIONS 

This thesis demonstrates how to characterize RAS nutrient production, species effects on 

it, and critical points of control for RAS nutrient retention. The research supports the 

development of a new strategy for the remediation and reuse of RAS effluent by examining 

nutrient production at a small farm scale. Evaluating RAS nutrient production under small-scale 

farm conditions informs strategies to reduce environmental impacts and increase revenue 

simultaneously. These small farm-scale analyses of nutrient production reveal the impacts of 

fluctuations on small systems. This work can contribute to understanding what nutrients are 

produced and at what capacity while the larger implications of this research include the 
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improvement of effluent treatment standards and the potential to convert a costly waste stream 

into revenue. This research supports the assumption that nutrient production and availability are 

dependent on operational standards and specific water quality conditions. Characterizing and 

quantifying aquaculture effluent as a potential nutrient source is critical to the development of a 

nutrient reuse strategy.  

From this research, macro-nutrients (Ca, K, Mg, P, S, and N), and micro-nutrients (Cl 

and Mo) were found in the liquid waste with an immediate availability to plants. Micro-nutrients 

(B, Cu, Fe, Mn, and Zn) were retained in the solid portion of the waste and would require 

liberation before they may be utilized. This reveals an opportunity for applying further waste 

treatment practices to liberate and reintroduce reclaimed nutrients to a nutrient solution before 

reintegration in a hydroponic system. RAS already captures and treats nutrients, simply adapting 

waste treatment processes would allow for the storage and reuse of waste nutrients and therefore 

an economically and environmentally friendly model of agricultural RAS production. 

 Overall, RAS shows the capacity to capture, treat, store, and reuse nutrients 

simultaneously replacing expensive economic and environmental costs with more profitable and 

environmentally sustainable options. Understanding the distribution of wasted nutrients between 

wastewater versus waste-solids allows treatment processes to become targeted for efficient 

remediation. This study lays the foundation of a nutrient mass balance strategy for RAS 

producers by identifying key variables that influence nutrient production and retention in a 

system. Future research should include a feed tracer for better nutrient assimilation accounting. 

Solid nutrient reclamation should be addressed to better assess the value of reusing these 

nutrients. Finally, studying the nutrient production of multiple commercial scale farms would 

contribute a better understanding of general RAS nutrient production.   
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Appendix 2. Tilapia and Rainbow Trout IACUC Approval Letter 
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