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ABSTRACT 

DIELS-ALDER FUNCTIONALIZED PARTICLES FOR MECHANICAL IMPROVEMENTS IN 

ADDITIVE MANUFACTURING 

By 

Hailey Sylvester 

University of New Hampshire, May 2020 

This thesis explores the use of Diels-Alder functionalized particles to aide in the mechanical 

enhancement of additively manufactured objects. To date, materials generated via additive 

manufacturing lack isotropic properties due to the nature in which they are created – in a layer 

by layer fashion. This methodology often leads to poor interfacial adhesion at the junction 

between printed layers, lowering the stability of the part and thereby limiting its use in many 

applications. Dynamic covalent chemistry, such as the reversible Diels-Alder reaction, has the 

ability to alleviate this anisotropy to print stronger, more uniform objects. To do so, this work 

investigates crosslinked, Diels-Alder functionalized particles generated by two separate 

methods: polymerization via reversible addition fragmentation chain transfer (RAFT) followed 

by atom transfer radical coupling (ATRC) and free radical emulsion polymerization. These 

particles can be blended with a polymeric filament for 3D printing, where upon heating during 

the extrusion process of additive manufacturing, the retro-Diels-Alder reaction is initiated and 

releases the crosslinked particles exposing reactive diene and dienophile pairs. In subsequent 



 xvii 

cooling after the printing process, these moieties undergo the forward Diels-Alder reaction and 

form chemical linkages between printed layers of the substrate to improve the mechanical 

integrity and uniformity of objects produced by means of additive manufacturing. 
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Chapter 1: Introduction 

Additive Manufacturing 

 Additive manufacturing, or more commonly known as 3D printing, has been a rapidly 

growing field for its promise to achieve the production of previously unachievable complex 

architectures generated from seemingly limitless material sources. Its foundation began in 1986 

when Charles Hull developed stereolithography,1 a category of additive manufacturing for 

polymeric materials, which sparked interest in other researchers to explore this novel area of 

technology. This exploration generated many new techniques that are still in use today such as 

deposition modeling,2 selective laser sintering, selective laser melting,3 inkjet printing,4 direct 

energy deposition,5 and many more. Over the years, processes have been developed for 

printing metallic, ceramic, polymeric and composite substrates as a result of the exciting ability 

to enhance the precision with which products can be generated, reduce the amount of waste 

produced during that process, and simplify the production of customized items. Research in this 

field continues to be driven by refinement of the resolution and mechanical properties of 

Figure 1: Process overview for the implementation of thermally responsive particles into the additive manufacturing process 
for the improvement of mechanical properties. 
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printed materials as the degree of their structural complexity continues to increase while this 

technique becomes more popular across both industry and research.6 

 Of the methods for additive manufacturing that 

have been developed, the majority have been for the 

production of polymeric materials. This is due to their 

already well-known ease of processability as well as 

facile tuning of chemical composition and mechanical 

properties. The most popular of these methods fall in 

the category of material extrusion, powder bed fusion 

or vat photopolymerization. Material extrusion is the 

most recognized technique and is accomplished by extruding filament(s) through a nozzle to 

generate 3D objects in a layer by layer fashion as seen in Figure 2.  Depending on composition 

and physical properties, these materials can be heated or melted prior to deposition or 

alternatively, they can be extruded at room temperature. Powder bed fusion entails the binding 

of polymeric powders in targeted arrangements. These powders are spread in a thin layer 

across a flat surface and exposed to a targeted heat source, such as a laser, to generate a single 

layer. This process is repeated by covering the sintered material in another layer of powder and 

exposing to heat to generate successive layers and form the desired object. Finally, vat 

photopolymerization, which includes stereolithography, is a process that involves the 

polymerization of a monomer solution/resin layer using photolithography (light) and 

successively building on those layers to generate a solid object. This process often involves the 

Figure 2: Representation of the Fused Deposition 
Modeling process. 
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incorporation of photo-initiators and catalysts to allow these polymerizations to take place at a 

rate fast enough for printing.7  

 This work focuses on the production of polymeric particles to aid in the stability of 

articles generated by the material extrusion process. To date, a major challenge of this method 

is achieving isotropic material properties across the printed object stemming from poor inter-

layer adhesion caused by the layer by layer fashion in which these objects are created.8 The 

anisotropic nature of these printed items limits their ability to be used on the large-scale and 

warrants investigation of new materials to enhance their mechanical properties6. Efforts have 

been made to alleviate these behaviors and include the investigation of dynamic covalent 

chemistry,9,10,11 adhesion in 3D printed nanocomposites,12 and process parameters such as 

layer thickness, printing speed, and build orientation.2 However, these approaches are not 

applicable across a variety of materials or printing methods, thereby limiting their ability to be 

used on the industrial scale. Therefore, development of processes for the improvement of 

interfacial adhesion between 3D printed layers is still needed. 

 

Diels-Alder 

 The Diels-Alder reaction is a 

thermoreversible, self-contained [4+2] 

cycloaddition reaction that has recently 

been investigated for its use in dynamic 

covalent chemistry applications such as 

self-healing and shape memory 
Figure 3: Representation of the transition state and resulting endo and 
exo diastereomers of the Diels-Alder reaction. 
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materials.13,14,15,16 This chemistry was first explored by Otto Diels and Kurt Alder in 1928 

between cyclopentadiene and quinone and its impact earned them the Nobel Prize in 1950 for 

their discovery and development of the synthetic process.17,18 This reaction proceeds by the 

addition of a diene and dienophile to generate two new sigma bonds and one pi bond in the 

form of a six membered ring (Figure 3).  Until recently, the Diels-Alder reaction had not yet 

been explored for its dynamic covalent capabilities even though it was shown over 50 years 

prior that this reaction was reversible. The dynamic covalent character of this chemistry stems 

from systems with low activation barriers of ring formation producing slightly exergonic 

products. In most cases, this allows for the reverse reaction to easily occur and an equilibrium 

to be formed between products and reactants. The position of this equilibrium can be 

controlled through external stimuli such as temperature, solvent and concentration. The 

reversibility, however, is tailored by altering the substituents of both the diene and dienophile 

to control their electron density and therefore their propensity to undergo both the forward 

and reverse reactions.19,20  

The most common example of this which has been exploited in the field of dynamic 

covalent chemistry is the reaction between furan and maleimide derivatives which, like other 

Diels-Alder systems, produces both a kinetic endo product and a thermodynamic exo product 

(Figure 3). The formation of this Diels-Alder adduct can occur at or near room temperature 

while the retro-cyclization requires elevated temperatures dependent on the stability of the 

synthesized cycloaddition adduct (~100°C).21 According to the Diels-Alder endo rule, the kinetic 

endo adduct is favored by the reaction and will be produced in excess to the exo adduct due to 

pi orbital overlap in its transition state configuration, lowering the transition state energy 
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barrier, which is not present in the transition state for the exo adduct.22 However, as 

temperature or reaction time of the system increases, the ratio of the thermodynamic exo 

adduct is increased. Additionally, in terms of the retro-Diels-Alder reaction, the endo adduct is 

the first to undergo the unblocking reaction (at a lower temperature) as compared to the more 

stable exo adduct. This again is due to the lower transition state energy for the retro-cyclization 

reaction in addition to the higher energy state of the endo product resulting in a smaller energy 

barrier.  

Froidevaux, et al. utilized the information above to target the endo adduct and 

investigate the retro-Diels-Alder reaction of furan – maleimide systems as a function of Diels-

Alder partner substituents and reaction condition effects. It is well known that the nature of the 

substituents of the furan/maleimide pairs influence the ratio of endo to exo isomers as well as 

the stability of the cycloaddition adduct and therefore its propensity to undergo the retro-Diels-

Alder reaction. It was observed that more electron donating substituents of the diene and 

electron withdrawing substituents of the dienophile increase the rate of formation of the Diels-

Alder adduct. However, in terms of the retro-cyclization reaction, electron withdrawing groups 

were found to facilitate the reformation of diene and dienophile pairs and decreased the 

temperature required to do so. Additionally, substituents favoring the formation of a more 

stable endo adduct and thereby increasing its ratio as compared to the exo adduct, 

corresponded to slower kinetics in the unblocking reaction. Therefore, in order to obtain a 

system for efficient retro-Diels-Alder reactions, a balance needs to be achieved in terms of the 

stability of the endo adduct to be stable enough to favor its formation over the exo 

conformation while not being too stable hindering the retro-cyclization.21 
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The reversibility of this system was also investigated by Boutelle and Northrop as a 

function of diene and dienophile substitution both computationally and experimentally. They 

discovered that the furan-maleimide Diels-Alder reaction could be tailored as a function of the 

electronic properties of chosen substituents to form reactions ranging from significantly 

exergonic to endergonic. In the extreme cases of the former or latter, irreversible or inability to 

undergo the cycloadditon reaction respectively occurred. Firstly, it was seen that substitution of 

the furan had greater influence over Diels-Alder reactivity than substitution of the maleimide 

dienophile. Additionally, the position of the substituent and the electronic effects it imposed 

upon the furan was significant: more electron donating substituents resulted in reactions of 

greater exergonicity as well as lower transition state free energy barriers. Although promising 

for adduct formation, high exergonicity decreases the favorability of these compounds in 

dynamic covalent chemistry because it creates high energy barriers for the retro-Diels-Alder 

reaction. Slightly donating substituents such as alkyl groups, results in lower exergonicity in a 

range suitable for the desired reversibility. Alternatively, electron withdrawing moieties were 

observed to produce both exergonic as well as endergonic products depending on the 

regiochemistry of their substituents and whether the endo or exo adduct was being formed. 

Substitution of the 2nd position on the furan ring produced an endergonic reaction for both 

isomers while substitution of the 3rd position resulted in an endergonic reaction for reactions 

favoring the endo adduct and exergonic for ones favoring the exo adduct. This coincided with 

the evidence that reactions involving furan substituted in the 3rd position were more exergonic 

and had lower transition state barriers in the Diels-Alder reaction.19   
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The information provided above in addition to fundamental literature is invaluable in 

the synthesis of Diels-Alder adducts for dynamic covalent chemistry. These adducts must be 

tailored to attain both the forward and reverse cycloaddition reactions under temperature 

conditions determined by intended applications of the system. Knowledge of the variables 

influencing the stability of the Diels-Alder adduct allows one to produce and examine such 

adducts and was utilized in this study in the preparation of thermally responsive particles for 3D 

printing applications. 

 

RDRP 

Reversible deactivation radical 

polymerization (RDRP) is a technique that 

expanded the realm of radical polymerization 

by allowing the formation of functional polymers with defined molecular weights, narrow 

polydispersities and complex/controlled molecular architectures. This form of polymerization 

includes three major categories of techniques: nitroxide mediated polymerization (NMP), atom 

transfer radical polymerization (ATRP) and reversible addition fragmentation chain transfer 

polymerization (RAFT) and functions by partitioning the propagating radicals between active 

propagating and dormant polymer chains in an equilibrium reaction. To do so, both NMP and 

ATRP function through reversible termination using either a nitroxide species or metal halides, 

respectively. The dormant species is favored throughout the process in order to maintain a low 

concentration of radicals and mitigate undesired side reactions (Figure 4). RAFT on the other 

hand, forms an equilibrium between the propagating and dormant species in order to keep 

Figure 4: General mechanism of the RDRP process. 
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radical concentration low which is controlled by the introduction of an external radical 

initiator23 (Figure 5). RAFT and ATRC (a coupling process founded upon ATRP) will be evaluated 

in this research. 

Reversible Addition Fragmentation Chain Transfer 

Reversible addition 

fragmentation chain transfer 

(RAFT) is a form of 

polymerization that was 

discovered in 1998 by Chiefari 

et al. and has developed into 

one of the most useful and versatile techniques for the polymerization and generation of 

complex polymeric architectures.24 This form of polymerization follows a reversible 

deactivation radical polymerization (RDRP) process which allows for the attainment of targeted 

polymer molecular weights with low polydispersity indices while maintaining high chain end 

fidelity and therefore the ability to carry on chain growth. The RAFT process is founded upon an 

equilibrium between active propagating and dormant chains attainable via degenerative chain 

transfer. This is achieved by utilizing a chain transfer agent that can reversibly attach to 

polymeric chain ends, temporarily halting propagation until it is removed through reaction with 

an active radical. The mechanism of this process is shown in Figure 5 and follows: after 

initiation of the radical source, the generated high energy center reacts with a monomer unit to 

generate an active propagating chain. That species can then enter into a pre-equilibrium stage 

between an active and dormant chain by adding to a chain transfer agent (CTA). The 

Figure 5: General mechanism for the RAFT polymerization process.  
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intermediate formed in this process can fragment into a macro-CTA (dormant chain) and a new 

radical source that can then move on to activate another monomer unit and generate a new 

active chain. Preferably, this pre-equilibrium stage is completed relatively quickly to attain an 

efficient RAFT process with minimal molecular weight dispersion. The active chain then enters 

the main RAFT equilibrium where polymer chains alternate between active and dormant states 

via reversible transfer of the functional component of the chain transfer agent. Throughout, the 

active species can undergo termination via disproportionation or coupling reactions to stop 

growth.23 

In this form of polymerization, the overall number of radicals throughout is unchanging 

and are therefore required from an external source such as a radical initiator as seen in the 

above mechanism. The ability to incorporate a known amount of external radical source allows 

the user to have control over both the rate of polymerization as well as the fraction of active, 

propagating chains throughout the process. However, the number of radicals generated from 

this source also directly affects the extent of bimolecular termination events that occur 

throughout the polymerization (which can be calculated from the amount of initiator 

decomposition) although this termination process does not affect the number of living chain 

ends present in the system. Because of the direct relationship between radical concentration 

and termination, it is pertinent to minimize the amount of initiator required in order to obtain 

an efficient RAFT polymerization system with optimal living character.25 RAFT accomplishes this 

through the formation of many shorter chains as compared to conventional radical 

polymerization.23 
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Most commonly, the initiator utilized in RAFT polymerization as a radical source is one 

that is degraded thermally. Commonly, these initiators are either diazo or peroxide compounds 

and there are a variety of these compounds available across a range of degradation 

temperatures allowing modulation of polymerization temperature conditions. For example, one 

of the most commonly used initiators, 2,2’azobisisobutyronitrile (AIBN), has a half life of 10h at 

65°C while 2,2’-azobiz(4-methoxy-2,4-dimethylvaleronitrile) (V-70) has a half life of 10h at 30°C. 

Although most commonly conducted using thermal initiation, radical sources for RAFT 

polymerization can extend to any radical source similar to conventional radical polymerization. 

It has been seen that initiation through redox reactions and light initiation have also produced 

successful polymers with control over molecular weight and polydispersity.25  

 Although different, the rate of a RAFT polymerization is similar to that of a conventional 

free radical polymerization and follows equation 1 below. 

!! =	$![&]("#![%"]'#$!%
#%

                                                       (1) 

The polymerization rate (Rp) is therefore dependent on the propagation rate coefficient (kp), 

monomer concentration [M], the initiator efficiency (f), the initiator decomposition rate 

coefficient (kd), the initial initiator concentration ([I]0), the termination rate coefficient (kt) and 

time (t). However, unlike a conventional free radical polymerization, the livingness of a RAFT 

system can also be quantified as seen by equation 2 where [CTA]0 is the initial chain transfer 

agent concentration and fc is the coupling factor for radical-radical bimolecular termination 

events.  

) = [()*]"
[()*]"+,"[%]"-./'#$!%0(./"& ,2 )

                                                    (2)  
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Additionally, due to the fact that the livingness of these polymerizations depends on the 

number of generated radicals from the selected initiator (which controls the number of dead 

polymer chains as seen above), the conversion of these chains does not need to be stopped 

before reaching 100% like other RDRP systems, if chain extension is desired to form block 

copolymers or the like.  

 As previously stated, RAFT has become an attractive method of polymerization for its 

control over molecular weight while maintaining end group fidelity and a low polydispersity. 

The ability to attain targeted molecular weights results from the use of chain transfer agent 

which regulates the number of chains generated during the polymerization. This, in conjunction 

with the initial concentration of monomer, allows a user to determine the number average 

molecular weight (Mn,th) that will be achieved by the propagating polymeric chains which can 

be calculated following equation 3 where [M]0, [CTA]0, and [I]0 are the initial monomer, chain 

transfer agent and initiator concentrations, and p, MM, and MCTA are the conversion, monomer 

molar mass and chain transfer agent molar mass, respectively. 

&4,67 = [8]"!8'
[()*]"+,"[%]"(./'$!%)9./"& ,2 :

+&()*                                         (3) 

Because an efficient RAFT polymerization is achieved by using minimal amounts of initiator to 

decrease the number of radicals during the polymerization, the second term in the 

denominator is typically removed which simplifies the calculation to equation 4.25 

&4,67 = [8]"!8'
[()*]"

+&()*                                                         (4) 

 The control over polydispersity of these systems stems from the rapid equilibrium 

between active and dormant chains generated by the exchange of the chain transfer agent. 
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Because the rate at which this occurs is faster than the propagation rate of the growing chains, 

each chain is essentially growing at the same time resulting in chains of approximately the same 

number of repeating units.23   

ATRC 

 Atom transfer radical polymerization (ATRP) 

was first published by Wang and Matyjaszewski in 

1995 and has since grown into one of the most 

popular forms of controlled radical polymerization to 

date. This form of polymerization was developed based on transition metal catalyzed atom 

transfer radical addition (ATRA) (Figure 6) for carbon-carbon bond formation and was found to 

behave as a living system, producing polymers of small molecular weight dispersities with 

negligible termination events. Figure 7 represents their initial proposed mechanism for the 

polymerization process based upon ATRA where the CuI and CuII species exist in a redox 

equilibrium and a halogen atom is abstracted by CuI to generate an active radical species and a 

CuII species in both the initiation and propagation processes.  

Like other controlled radical polymerizations, this system operates based upon an 

equilibrium between an acitve and dormant 

species, which in this case is mediated by the 

two forms of the copper catalyst. To achieve 

control over the polymerization, a low 

concentration of radicals needs to be 

maintained throughout the reaction. These 

Figure 6: Mechanism for the ATRA process. 

Figure 7: First proposed mechanism for ATRP by 
Matyjaszewski et al. 
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moieties do so by creating an equilibrium where the dormant polymer chain and CuI species is 

favored and the redox reaction is fast relative to bimolecular termination events.26,27,28,29  

 While one of the main goals of 

an ATRP system is to minimize radical 

concentration to achieve optimal 

control over polymerization and 

minimize termination, aleviating this 

minimization of radical concentration 

can afford an efficient atom transfer radical coupling (ATRC) reaction. In 1997, Matyjaszewski et 

al. investigated the optimization of the ATRP process by decreasing the amount of deactivator 

(CuII species), which was present in excess in the system, slowing the polymerization. 

Anadvertently, this developed a method for increasing radical concentration and thereby 

influencing the formation of ATRC. They observed that by using a zerovalent metal (Cu0) along 

with a suitable ligand, the CuII species was reduced to generate the activating species, CuI while 

at the same time reducing the 

amount metal catalyst required for a 

controlled ATRP process and 

increasing polymerization rate30 

(Figure 8).  

Building upon this discovery, 

Debuigne et al. found that by 

introducing the optimal ratios of CuI, Cu0, 

Figure 8: Resulting mechanism for the introduction of Cu0 to the ATRP 
reaction system resulting in the reduction of CuII to the activator, CuI. 

Figure 9: Figure shows the termination reactions competing with 
the desired ATRC process (ktc) including disproportionation (ktd) and 
chain transfer (ktr) . 
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and amino ligands to an ATRP system, Cu0 can act to supress the formation of CuII enough to 

cause termination rate to increase and thereby induce a greater amount of coupling reactions. 

However, it was observed that this process competes with other forms of termination as seen 

in Figure 9 such as disproportionation and chain transfer, the extent of which is dependent on 

chain functionality31.  

Fukuda et al. were the first to report the use of ATRC to couple polymer chains while 

investigating termination and chain transfer events in living radical polymerization by looking at 

monomer free systems. Both w-bromopolystyrene and a,w-dibromopolystyrene were 

evaluated, attaining a coupling efficiencty of up to 0.91 and at minimum, doubling the 

molecular weight of the polymer chains with each reaction. The extent of coupling was 

enhanced by increasing the concentration of active polymer chains which could be controlled 

by both concentration of bromo-functionalized species as well as ligand selection. Additionally, 

they observed that the extent of the various termination mechanisms followed literature 

reported termination constants where combination was the predominant pathway lending 

ATRC to be a viable tool for coupling reactions.32 Since then, ATRC has been used to synthesize 

a plethora of functional materials including but not limited to telechelic polymers,33,34 block 

copolymers,35 and macrocycles.36,37 

This work hopes to take advantage of the efficient ATRC reaction to generate Diels-Alder 

functionalized particles for additive manufacturing applications. It is the intention to utilize this 

coupling strategy in the crosslinking of polymer chains generated via RAFT polymerization, 

containing Diels-Alder moieties to enable the formation of nano- to micro-scale particles for 

evaluation of their thermally responsive properties. 
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Chapter 2: Results and Discussion 

 

Figure 10: Synthetic Scheme for the production of Diels-Alder functionalized monomers to be utilized in the synthesis of 
thermally responsive particles for improvements in the mechanical properties of objects generated by 3D printing. 

An overview of the synthetic scheme for the preparation of Diels-Alder functionalized 

monomers can be seen in Figure 10. In brief, the diene was either commercially obtained 

(furfuryl methacrylate) or prepared via a Steglich esterification between furfuryl alcohol and a-

bromophenyl acetic acid employing dicyclohexylcarbodiimide and 4-dimethylaminopyradine in 

dichloromethane at room temperature (Figure A1 and A2). The preparation of the dienophile 

was evaluated using several different methods reported in literature. In the first attempt, an 

amic acid precursor was prepared via an amination reaction between 4-aminophenol and 
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maleic anhydride in acetone at 

room temperature (Figures A3 

and A4). To drive the cyclization 

reaction for the formation of 

the maleimide, the resulting 

compound was treated with 

dicyclohexylcarbodiimide and 

refluxed in 

dichloromethane,38,39 the 

mechanism for which can be 

seen in Scheme 1. Although success was reported in the literature, the desired material was not 

achieved in this case as evidenced by 1H NMR as seen in Figure A5 in the Appendix. It is 

proposed that a macrocyclic dimer was formed instead, due to an intermolecular reaction 

between two amic acid precursors.  

An alternative method reported in 

the literature is the implementation of 

anhydrous sodium acetate and acetic 

anhydride to obtain the desired product as 

can be seen in Scheme 2.40 This again, did 

not yield successful formation of the 

desired maleimide, but resulted in the 

Scheme 1: Mechanism for the synthesis of the desired phenolic maleimide 
dienophile employing dicyclohexylcarbodiimide. 

Scheme 2: Mechanism for the synthesis of the phenolic maleimide 
dienophile employing anhydrous sodium acetate and acetic 
anhydride. 
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esterification of the phenol in addition to the ring closure evidenced by 1H NMR (Figures A6 and 

A7).  

The selected method for the successful production of the maleimide was conducted 

utilizing the prepared amic acid precursor in a ring closure reaction promoted by an acidic 

environment formed by the addition of p-toluenesulfonic acid in a mixture of toluene and N,N-

dimethylformamide (DMF).41,42 Isolation of resulting product however, proved to  

be challenging due to the 

formation of a biphasic system 

where a high viscosity oil was 

suspended in the resulting 

toluene/DMF solution. Isolation of 

the product became more 

challenging with increasing scale 

due to inability to obtain efficient precipitation. To alleviate this issue, a study was conducted 

on the amount of DMF (utilized to aid in solubility of the oil) necessary for optimal reaction 

conditions as theoretical yields were increased. As can be seen in Table 1, an increase in the 

amount of incorporated DMF did not aid or hinder yields of product obtained; however, it did 

significantly impact the precipitation process and resulted in a more straightforward 

purification route. Any remaining impurities after the cyclization reaction were then removed 

via hot filtration in dichloromethane to afford the phenolic maleimide as a yellow-orange 

powder verified by 1H NMR (Figures A8 and A9) 

Theoretical 
Yield (g) 

DMF/Toluene 
(v/v) 

Amic Acid/DMF 
(v/v) 

Percent Yield 
(%) 

1 0.11 2.14 37 
1 0.14 1.64 30 

1.5 0.11 2.14 47 
1.5 0.14 1.64 48 

2 0.11 2.14 54 
2 0.16 1.46 51 

2.5 0.11 2.14 33 
2.5 0.17 1.37 39 

Table 1: Volumetric ratios and resulting prevent yields in the study of DMF 
incorporation for efficient synthesis of the phenolic maleimide dienophile. 
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 Functionalization of the 

phenolic maleimide was then 

attempted to introduce the ATRC 

capable moiety, a-bromophenylacetic 

acid. To do so, a Steglich esterification 

was employed utilizing reaction 

conditions as seen in the synthesis of 

the diene, stated above. However, the 

resulting 1H NMR spectra 

unfortunately revealed the reaction 

was unsuccessful as seen in Figure 

A10. This was attributed to base 

induced coupling reactions between 

maleimide functionalities producing 

oligomeric compounds rather than the desired esterification proposed in Scheme 3. To alleviate 

reaction at the maleimide, the synthesis was conducted utilizing a furan protecting group, 

which could then be removed post-functionalization via heating to induce a retro-Diels-Alder 

reaction. To do so, 4-aminophenol was treated with 7-oxabicyclo[2.2.1.]-hept-5-ene-2,3-

dicarboxylic anhydride by refluxing in glacial acetic acid at 118°C.43 Unfortunately, this resulted 

in little product and a significant amount of the unprotected amic acid precursor due to the 

high reaction temperatures initiating the retro-Diels-Alder reaction observed by 1H NMR in 

Figure A11 in the Appendix. To remedy this issue, the reaction was conducted in methanol at 

Scheme 3: Mechanism for the proposed side reaction resulting from the 
utilization of DMAP in the functionalization of N-(4-hydroxyphenyl) 
maleimide. 
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70°C to afford the protected maleimide as seen in Figure A12. The desired Steglich 

esterification could then be performed on the protected phenolic maleimide to yield the 

desired ester purified by column chromatography and characterized by 1H NMR (Figure A13). 

Although successful, a more efficient synthetic route was identified by conducting the Diels-

Alder cycloaddition with the desired diene previous to functionalization of the phenol to 

eliminate the deprotection step. Therefore, this was the route taken moving forward (Figures 

A14-A15). 

To then generate Diels-Alder functionalized monomers, several studies were conducted 

to evaluate optimal reaction conditions for the cycloaddition reaction. The first monomer 

evaluated was the ATRC capable Diels-Alder adduct. The synthesis of this functionalized adduct 

was first attempted naively via reaction of the phenolic maleimide with an excess of a-bromo-

2-furanylmethylester benzeneacetic acid (BP) in dichloromethane at 60°C for 24h. The elevated 

temperature utilized was in an effort to drive the equilibrium towards the products in hopes for 

higher yields.3,21,44,11,14 However, this resulted in loss of solvent before adequate formation of 

the Diels-Alder adduct could be obtained for further modification due to the relatively low 

boiling point of dichloromethane. Therefore, in subsequent experiments, temperature was 

reduced to 40°C and reaction time 

was extended. Additionally, after 

later variable temperature 1H NMR 

experiments of the synthesized 

adduct, it was also revealed that the 

retro-Diels-Alder reaction of this 
Figure 11: Endo and exo diastereomers of the ATRC-functionalized Diels-
Alder Adduct. 
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system initiates at temperatures below 60°C providing further reason to avoid the 

cycloaddition reaction under these reaction conditions.  

Reaction at 40°C gave successful formation of the desired product in sufficient yields 

(approximately 60% yield) where upon purification via column chromatography, it was found 

that endo and exo isomers could conveniently be isolated after evaluation by 1H and 13C NMR 

(Figures A16-A19). It is hypothesized that this is the case due to the large moieties bonded to 

the diene and dienophile counterparts as seen in Figure 11, resulting in a significant difference 

in polarity of the two diastereomers allowing them to be separated by this method.  

Due to this observation, studies were conducted on the diastereomeric ratio produced 

over various reaction time intervals at 40°C in dichloromethane, the results of which can be 

Figure 12: Example of COSY 1H NMR data showing the interaction (or lack thereof) of protons o, O, g, and G for the ATRC-
capable Diels-Alder adduct where the endo diastereomer displays such an interaction and the exo does not. (Endo is 
represented by the uppercase alphabet; exo is represented by the lowercase alphabet.) 
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seen in Table 2. Each trial was conducted using an excess of diene and were purified by column 

chromatography, combining the exo and endo diastereomer fractions for accurate ratio 

evaluation by NMR. To identify the respective isomers 1H-1H correlation spectroscopy (COSY) 

experiments were utilized to detect the interaction (or lack thereof) between relevant protons 

of the adduct (identified in bold in Figure 11). In analysis of COSY data, the endo diastereomer 

would be expected to show an interaction between the highlighted protons due to their 

proximity resulting from their location on the top face of the Diels-Alder adduct, while the same 

protons of the exo diastereomer would lie on opposite faces of the adduct, as seen in Figure 11, 

and therefore would not be expected to show an interaction. This behavior was observed in the 

current system as can be seen in Figure 12; where protons O and G display an interaction while 

o and g do not, thus identifying these peaks as belonging to the endo and exo diastereomers, 

respectively. This process was conducted for each of the trials of different reaction times to  

 identify the peaks corresponding to the diastereomers present (Figures A20-A31).    

Once identified, ratios were taken of the benzylic proton integrations belonging to each 

respective adduct to determine the diastereomeric ratio resulting from the progressing 

reaction times. The increasing trend in 

diastereomeric ratio observed in Table 2 and 

Figure 13 shows that with increasing time, 

the ratio of the thermodynamic exo adduct to 

kinetic endo adduct increases, as expected.22 

Because this is a system in equilibrium, the 

forward and reverse reactions are constantly 

Isomer Study of Diels-Alder Adduct 
Formation 

Theoretical Yield: 0.5g 
Reaction 
Time (days) 

% Endo % Exo 

1 70 30 
3 55 45 
4 54 46 
5 56 44 
6 52 48 

Table 2: Investigation of the diastereomeric ratio of the ATRC-
capable Diels-Alder adduct over time. 
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occurring at any point in time, 

enabling reconfigurations of the 

Diels-Alder adduct isomers and 

therefore shifts in the 

diastereomeric ratio. As 

previously mentioned in the 

Introduction, the endo 

conformation requires less 

energy to undergo the retro-

Diels-Alder reaction due to its lower transition state energy and less stable adduct 

conformation.19 Over time, the endo adduct reverts back to its diene and dienophile 

counterparts more readily than the exo adduct and does so to a greater extent. These 

regenerated starting materials can then undergo the forward Diels-Alder reaction to generate 

the more stable exo isomer, increasing its concentration relative to the endo isomer. Intuitively, 

this also means the exo isomer can undergo cyclo-reversion to its starting materials; however, 

due to the higher transition state energy of the retro-cyclization and stability of the product, 

this occurs to a lesser extent than reversion of the endo adduct. This process enables the ratio 

between exo and endo diastereomers to increase with reaction time.  
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Figure 13: Trend in the (exo/endo) diastereomeric ratio with time of the ATRC-
capable Diels-Alder adduct. 
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To then generate the desired 

ATRC-capable monomer, it was 

attempted to functionalize the 

successfully synthesized Diels-Alder 

adduct with a methacrylate moiety at 

the phenolic position via an 

esterification reaction following 

several different synthetic routes. The 

first attempt was a modified 

procedure from Wilborn et al. where 

the separate diastereomers were treated with triethylamine, 4-dimethylaminopyradine, and 

methacryloyl chloride in tetrahydrofuran.45 DMAP was utilized to act as both a catalyst and 

base in the esterification of methacryloyl chloride as can be seen in Scheme 4. The resulting 

reaction mixture was washed with 1M hydrochloric acid, saturated sodium bicarbonate and 

brine and the organic layer was isolated and characterized. Unfortunately, 1H NMR (Figure A32) 

revealed the targeted product was not obtained which was attributed to undesired side 

reactions hypothesized to be instigated by attack of dimethylaminopyradine on the carbonyl 

moieties of the Diels-Alder functionalized compound rather than aiding in the esterification of 

the phenolic functional group as it is a good nucleophile and leaving group. To alleviate this 

issue, DMAP was removed from the system and the reaction was run utilizing simply 

methacryloyl chloride (2eq.), triethylamine (1.1eq.) and the Diels-Alder functionalized 

compound (1eq.). 1H NMR revealed the desired esterification product was obtained; although, 

Scheme 4: Mechanism for the steglich esterification of the ATRC-capable 
Diels-Alder adduct with methacryloyl chloride. 
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along with a significant production of impurities initially thought to be due to the excess of 

methacryloyl chloride used in the reaction (Figure A33). However, when the incorporation of 

methacryloyl chloride was decreased to one equivalent, the impurities continued to persist 

(Figure A34) and therefore alternate functionalization routes were explored. 

To avoid these issues moving forward, a new approach was taken to produce the 

desired ATRC-capable monomer by conducting the esterification of the phenolic moiety of the 

dienophile before the Diels-Alder cycloaddition reaction. This was done by exposing the 

phenolic maleimide to triethylamine and methacryloyl chloride that had been purified by 

vacuum distillation. This resulted in a pure product verified by 1H NMR (Figure A14-A15) after 

purification by washing three times with dilute hydrochloric acid (0.1M) to avoid reaction at the 

Figure 14: 1H NMR of the isolated and purified ATRC-capable Diels-Alder Adduct (exo diastereomer). 
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maleimide, saturated sodium bicarobonate and brine and isolating the product from the 

organic layer after drying with anhydrous magnesium sulfate. This reaction proved to be easily 

scalable for further use in Diels-Alder cycloaddition reactions to synthesize a pure, ATRC-

capable monomer.  

Initially, the solvent utilized for the synthesis of this adduct was re-evaluated in an 

attempt to achieve precipitation of the cycloaddition product from the reaction solution to 

drive the Diels-Alder equilibrium towards the left while simplifying the purification process as 

has been reported in literature.45,46,47 Both tetrahydrofuran and acetonitrile were assessed and 

were introduced to the reaction system at 45°C in minimal amounts to form a saturated 

solution and aid in precipitation of the product with time. Unfortunately, precipitation was not 

observed over the course of 48h for either solvent therefore purification was conducted via 

column chromatography to isolate the Diels-Alder adduct seen in Figure 14.  

 The diastereomeric ratio behavior previously described for this Diels-Alder adduct pre-

esterification over an 

increasing reaction time 

should also hold true 

under increasing 

temperature conditions. 

This was observed under 

variable temperature NMR 

for the successfully 

synthesized ATRC-capable 
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Figure 15: Plot represents trends in exo and endo diastereomers of the ATRC-capable 
Diels-Alder adduct with increasing temperature. (Lines are included as a representation 
of trends in diastereomeric amount) 
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monomer utilizing a Varian 400MHz mercury solution state NMR. Experiments were conducted 

in 10°C intervals starting from room temperature and increasing to 85°C where solutions were 

allowed to equilibrate for 10 minutes after each temperature was reached and stabilized by the 

instrument before the spectra was taken. To track the relative quantities of endo and exo 

diastereomers, the relative diastereomeric amount as seen Figure 15 was determined. Its value 

was found by calculating the ratio between the respective integrations for exo or endo peaks 

corresponding to the tertiary protons of the adduct (f and F, respectively) and the deuterated 

dimethylsulfoxide peak used as the NMR solvent which maintained a constant concentration 

throughout the study. Results, which can be seen in Figure 15 and Figures A36-A41, verify that 

with increasing temperature, the diastereomeric ratio between exo and endo configurations 

increases, consistent with reported literature19,21. Similar to the explanation above, because the 

transition energy barrier for the retro-Diels-Alder reaction of the endo diastereomer is lower 

than that of the exo analogue, this isomer will undergo cyclo-reversion at a lower temperature. 

Once reverted to its diene and dienophile precursors, it can reform the cyclo-addition adduct 

but now in the more thermodynamically favorable exo-conformation. The conversion from the 

less thermodynamically stable endo diastereomer to the exo diastereomer therefore does not 

occur as a normal isomerization but must undergo the retro-Diels-Alder reaction first as has 

been previously reported in the literature21 and is observed here.  

Furthermore, it is observed that with increasing temperature the diastereomeric ratio 

becomes inverted at 75°C where the concentration of the exo diastereomer surpasses that of 

the endo diastereomer. Although both the endo and exo configurations are undergoing the 
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retro-cyclization reaction at this relatively high temperature, the endo diastereomer does so to 

a greater extent as previously explained resulting in the inversion and the observed trend.  

Additionally, this data is informative to the temperature at which the retro-Diels-Alder 

reaction begins for this system and the extent to which it occurs which is valuable for its 

application in additive manufacturing. Figure 15 shows a slight decrease in the endo adduct 

beginning at approximately 45°C where the retro-Diels-Alder reaction begins and after which, 

the slope significantly decreases with temperature as the rate of this retro-cyclization increases 

with increasing temperature21. The exo adduct shows a small increase in concentration at this 

temperature (45°C) then begins to decline on a more gradual slope as enough energy is applied 

to the system to initiate its cyclo-reversion. Several proton peaks can be followed to determine 

this trend in diastereomeric ratio; in this case, peaks “f/F” were selected from each 

diastereomer corresponding to the proton attached to the tertiary carbon formed by the Diels-

Alder adduct as it is easily and consistently isolated from other peaks to avoid peak overlap and 

inaccurate data. It can also be seen that both adducts have completely undergone the retro-

Diels-Alder reaction at 85°C as the 1H NMR peaks at 3.17, 3.23, 3.57 and 3.81ppm 

corresponding to the tertiary protons of the cycloaddition adduct for the endo and exo isomers 

respectively, have disappeared.  

It can be seen in Figure 16 and Figures A38-A41 that new peaks begin to appear at 65°C 

that do not correspond to either the endo or exo diastereomers and therefore it is believed that 

a new Diels-Alder product is formed as a result of side reactions occurring throughout the 

variable temperature 1H NMR experiment. It is possible that such reactions can occur before or 



 28 

after the retro-Diels-Alder reaction has ensued giving rise to several different products. For 

example, water, present in the reaction vessel from the d-DMSO (proton peak at 3.33ppm seen 

in Figure 16) used to prepare the NMR sample, is capable of acting as a nucleophile in an SN1 

reaction at the alpha position of the ester carbonyl to substitute the bromine for a hydroxy 

group. Alternatively, once the maleimide functionality has been exposed after a cyclo-reversion 

reaction at elevated temperatures, it can be hydrolyzed by the water present, making it 

incapable of undergoing the forward-Diels-Alder reaction. Therefore, in future steps it is 

pertinent to thoroughly remove water from the system to avoid these side reactions and obtain 

our desired polymeric product. Additionally, further investigation should be conducted to 

Figure 16: Variable temperature 1H NMR experiment of the ATRC-capable monomer - tertiary protons generated by the Diels-
Alder reaction are emphasized (Uppercase alphabet represents the exo diastereomer, lowercase alphabet represents the endo 
diastereomer) 
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evaluate and confirm the reactions occurring and identity of the byproducts produced under 

these conditions. 

 

The second adduct 

evaluated was that of furfuryl 

methacrylate and N-(4-

hydroxyphenyl maleimide), 

further identified as the Diels-

Alder functionalized 

crosslinker, synthesized using a 

modified procedure from 

Wilborn et al45. An initial 

solvent study was conducted between two commonly utilized solvents reported in literature for 

the Diels-Alder reaction, dichloromethane and acetonitrile, to determine optimal reaction 

conditions for the greatest yield21. For each trial, the dienophile was added to an excess of 

furfuryl methacrylate and allowed to run for 4 days at 40°C or 45°C in dichloromethane or 

acetonitrile, respectively. While yields of the Diels-Alder adduct were not significantly different 

after purification by column chromatography (57% yield for acetonitrile vs. 50% yield in 

dichloromethane), the enhanced solubility of both the reactants and products in acetonitrile 

facilitated the reaction procedure and was therefore used moving forward. Additionally, it was 

observed by 1H NMR that the endo and exo Diels-Alder adducts could also be separated via 

column chromatography (Figure 17).  It is hypothesized this is due to their significant difference 

Figure 17: Stacked 1H NMR of the isolated and purified diastereomers of the Diels-
Alder functionalized crosslinker. (Exo diastereomer = top; endo diastereomer = 
bottom) 



 30 

in polarity owing to the large moieties bonded to both the diene and dienophile similar to that 

of the previous Diels-Alder adduct examined.  

 The same process utilized in the evaluation of the diastereomeric ratio with 

temperature for the ATRC-capable monomer was employed here.  Several proton peaks from 

the variable temperature NMR experiment shown in Figure 18 can be followed to determine 

this trend in diastereomeric ratio; in this case, peaks “g/G” were selected from each 

diastereomer corresponding to the proton attached to the tertiary carbon included in the Diels-

Figure 18: Variable temperature NMR experiment of Diels-Alder functionalized crosslinker – Uppercase alphabet = endo 
diastereomer, lower case alphabet = exo diastereomer 
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Alder adduct as it is easily and 

consistently isolated from other 

peaks to avoid peak overlap 

and inaccurate data. The same 

calculation utilized for the 

ATRC-capable monomer was 

employed here to determine 

the relative diastereomeric 

amount and observe trends in 

endo and exo diastereomers with increasing temperature. Figure 19 shows that with increasing 

temperature, both the endo and exo diastereomers show a decreasing trend at approximately 

55°C revealing initiation of the retro-Diels-Alder reaction at this temperature. However, 

although both decrease, there is a significant difference in the extent and rate at which the two 

diastereomers do so. The steeper slope of the endo diastereomer shows its greater propensity 

to undergo retro-cyclization which is attributed to its smaller transition state energy barrier and 

therefore lower amount of heat required to initiate the reaction. Additionally, this 

diastereomer reaches a relative diastereomeric amount of 0.03 at 85°C where the more 

thermodynamically stable exo diastereomer only decreases to a value of 0.29 showing the 

greater extent to which the endo isomer undergoes the retro-Diels-Alder reaction at elevated 

temperatures.  

The difference in behavior under elevated temperatures between the Diels-Alder 

crosslinker and ATRC-capable monomer should be noted. It can be seen that the latter 

Figure 19: Plot represents trends in the endo and exo diastereomers of the Diels-
Alder functionalized crosslinker with increasing temperature. (Lines are included 
as a representation of trends in diastereomeric amount) 
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undergoes retro-cyclization to a greater extent than that of the crosslinker as both the endo 

and exo diastereomers underwent full conversion to their diene and dienophile starting 

materials. Additionally, the ratio of endo to exo configurations of the ATRC-capable monomer 

experienced an inversion resulting in an excess of exo isomer at 75°C where no such inversion 

was evident for the crosslinker examined. These behaviors can be attributed to the difference 

in stability of the two adducts leading to discrepancies in retro-Diels-Alder temperatures/extent 

of the retro-Diels-Alder reaction. There has been little literature precedent for exact substituent 

effects on the rate of the retro-Diels-Alder reaction for various systems; however, it can be 

concluded that a less stable adduct requires less energy to undergo the retro-cyclization 

reaction and will therefore revert to its starting materials at a lower temperature. Both adducts 

examined have identical dienophile components and differ in their diene. However, both dienes 

investigated are substituted with an alkyl substituent in the 2-position of the furan ring leading 

to similar amounts of electron density being donated to the diene. Therefore, it is hypothesized 

the difference in retro-Diels-Alder reactivity is attributed to steric effects. The retro-cyclization 

is favored for the ATRC capable monomer containing the relatively bulky bromophenyl 

functionality to relieve strain on the system. However, further investigation of this behavior is 

necessary to confirm this effect. 

Finally, copolymerization of the ATRC-capable monomer with methyl methacrylate was 

attempted under reduced temperatures to avoid cyclo-reversion of the Diels-Alder adduct. To 

do so, 2,2ʹ-azobis(2,4-dimethylvaleronitrile) (V-70) was employed as an initiator which has a 

half-life of 10h at 30°C. Number average molecular weights of 20 and 25kDa were targeted with 

ATRC-capable monomer incorporations of 5, 10, and 15mol%. Polymerizations were conducted 
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under inert atmosphere at 35°C and were run for either 24 or 48h. Unfortunately, each of these 

systems failed to produce the desired Diels-Alder functionalized copolymer. This was first 

evident by difficulties in the precipitation process which was conducted in methanol in a dry 

ice/isopropanol bath (-78°C) where it was found the reaction mixture would only precipitate in 

small quantities of solvent (~5mL) and remain in solution on the larger scale. Isolation of a 

precipitate was achieved for characterization via addition of approximately 5 mL of cold 

methanol to the condensed reaction mixture, allowing the generated solid to settle followed by 

extraction of the resulting solution with a pipette. Analysis of the resulting material revealed 

Figure 20: Resulting 1H NMR of the attempted copolymerization of methyl methacrylate and ATRC-capable monomer via 
RAFT (25kDa, 15mol% incorporation ATRC-capable monomer) after purification by precipitation in small amounts of cold 
methanol. 
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oligomeric materials of pure ATRC-capable monomer with no incorporation of methyl 

methacrylate (Figure 20).  

Therefore, investigation into the reactivity of methyl methacrylate versus the ATRC-

capable monomer under these conditions was conducted via homopolymerizations of each at 

35°C (25kDa). Analysis by 1H NMR revealed failure of methyl methacrylate to polymerize under 

these reaction conditions (Figure A57) as only monomer was observed in the spectra. The 

ATRC-capable monomer formed an insoluble solid and therefore, analysis by solution state 

NMR could not be conducted. However, it was shown under the initial copolymerization 

conditions that this monomer is reactive and propagates through the vinyl group of the 

methacrylate unit. To increase the rate of radical production and aid in the initiation of the 

homopolymerization of methyl methacrylate, the reaction was run again at the maximum 

temperature to avoid initiation of the retro-Diels-Alder reaction, 50°C. Although minimal, this 

did result in polymerization observed by peaks corresponding to the backbone of poly(methyl 

methacrylate) in 1H NMR (Figure A58). Unfortunately, increasing temperature conditions 

further to induce methyl methacrylate polymerization is not an option if the retro-Diels-Alder 

reaction is to be avoided. Therefore, further investigation of alternate monomers of greater 

reactivity under low-temperature conditions for the copolymerization of the ATRC-capable 

monomer is necessary in addition to more thorough characterization of the given 

polymerization system. 
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Chapter 3: Conclusions 

 In conclusion, to aid in the enhancement of the mechanical stability of 3D printed 

objects, the synthesis of two systems of Diels-Alder functionalized monomers to implement in 

thermally responsive particles was investigated. Both systems took advantage of the dynamic 

covalent character of the cycloaddition reaction between furan and maleimide diene and 

dienophile counterparts, respectively and were decorated with moieties dependent upon the 

method in which their intended adduct was to be used for particle formation. The first 

monomer considered was formulated for particle crosslinking via ATRC chemistry and therefore 

a bromophenyl functionality was incorporated into the diene via a simple Steglich 

esterification. The synthesized dienophile was intended for use in both monomers explored and 

therefore incorporated a versatile phenolic moiety allowing for functionalization with a 

plethora of chemistries. To generate the maleimide, a variety of synthetic routes were 

evaluated to determine the most facile process resulting in an optimized approach. The second 

monomer investigated implements bifunctionality to achieve particle formation by 

incorporation of methacrylate functionalities in both the diene and dienophile. 

 The synthesis of these monomers was evaluated in terms of reaction conditions and 

resulting diastereomeric ratios as a result. Consistent with reported literature, it was found that 

increasing reaction time or temperature favored the formation of the more thermodynamically 

stable exo adduct. Additionally, when exposed to increasing temperature conditions, the kinetic 

endo configuration was observed to be the first to undergo the retro-Diels-Alder reaction and 

does so at a greater rate than the more stable exo configuration. This data is directly applicable 

to the intended use of these adducts in 3D printing purposes. The objective of this work is to 
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investigate the production of thermally responsive particles to be blended with filaments for 

additive manufacturing. The retro-Diels-Alder reaction is instigated during the heated extrusion 

process which, along with an expected reduction in viscosity of the filament, is an integral 

mechanism for mechanical property enhancement of the resulting 3D printed objects. 

Therefore, the difference in temperature for the initiation of the retro-Diels-Alder reaction and 

the rate at which it occurs influences the materials and conditions that can be utilized. 

Additionally, in many cases it is desirable to target lower processing temperatures to avoid 

degradation of materials utilized in the additive manufacturing process as well as energy 

consumption and therefore, knowledge of the systems that present the lowest retro-Diels-

Alder temperatures is desirable.   

 Finally, copolymerization of the ATRC capable monomer with methyl methacrylate via 

RAFT was investigated. Although successful copolymerization was not observed, valuable 

information pertaining to the reactivity of the monomers was gathered under the reaction 

conditions employed to avoid the retro-cyclization reaction of the Diels-Alder moieties 

incorporated.  
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Chapter 4: Future Work 

 To progress the research discussed here, several steps should be taken for the 

formation of thermally responsive particles to aide in the enhancement of additively 

manufactured objects. Firstly, investigation into the polymerization of these systems should be 

conducted utilizing both RAFT as well as heterogeneous polymerization systems for the ATRC-

capable monomer and Diels-Alder functionalized crosslinker, respectively; covering various 

molecular weights and Diels-Alder functionalized monomer incorporations. These reactions 

should be investigated under relatively mild conditions so as to not reverse the Diels-Alder 

linkages present in the synthesized functional monomers. Proper characterization via NMR and 

gel permeation chromatography should be utilized to verify production of these polymers and 

their functional incorporations. Subsequently, ATRC chemistry should be employed to induce 

particle formation of the polymers generated via RAFT polymerization. 

 After formation of the desired particles, characterization of their thermally responsive 

behavior should be conducted utilizing methods such as differential scanning calorimetry, 

variable temperature NMR, and gel permeation chromatography. Once successful formation 

and characterization of these systems is obtained, implementation into filaments for additive 

manufacturing can be realized and evaluation of their impact on 3D printed objects can be 

performed.  
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Chapter 5: Experimental 

I. Reagents and Solutions 

All reagents and solvents utilized were purchased from Sigma-Aldrich, Acros Organics, Alfa 

Aesar, FUJIFILM Wako Chemicals, TCI America, Oakwood Products, Inc., Fluka or Fisher 

Scientific unless otherwise noted. All chemicals were used as received unless specifically stated. 

The removal of solvent under reduced pressure refers to utilizing a rotary evaporator. Solutions 

of saturated sodium bicarbonate and hydrochloric acid refer to aqueous solutions and brine is 

used to reference a saturated aqueous solution of sodium chloride. 

II. Instrumentation 

Nuclear magnetic resonance (NMR) spectra were obtained utilizing Varian Mercury 400 and 

500 MHz spectrometers. Chemical shifts are reported in parts per million (ppm) relative to an 

internal standard of tetramethylsilane and are reported using an s for singlet, d for doublet, t 

for triplet or m for multiplet. Deuterated solvents used were dependent on the compound 

being investigated and are referenced in each case. Additional NMR investigations were made 

utilizing homonuclear correlation spectroscopy (g-COSY) and hereonuclear single quantum 

coherence spectroscopy (gHSQC). 

III. Experimental Procedures and Data 

a-Bromo-2-furanylmethylester-benzeneacetic acid

 

A 250mL round bottom flask was placed in an ice bath and charged with a-bromophenylacetic 

acid (2.905g, 13.51mmol), 4-dimethylaminopyridine (0.0825g, 0.675mmol), N,N’-
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dicyclohexylcarbodiimide (3.064g, 14.85mmol), dichloromethane (60mL), and furfuryl alcohol 

(3.973g, 40.50mmol). The resulting solution was brought to 25°C and stirred for 24h. After the 

reaction, the product was isolated by rotary evaporation and purified by column 

chromatography (SiO2, dichloromethane) to yield the compound as a white solid. (2.82g, 71% 

yield): 1H NMR (500MHz, (CD3)2SO) d 5.18 (m, 2H), 5.98(s, 1H), 5.46 (s, 1H), 6.55 (s, 1H), 7.37 

(m, 3H), 7.52-7.53 (m, 2H), 7.69 (s, 1H); 13C NMR (500MHz, (CD3)2SO) d 47.03 (s), 59.91 (s), 

111.26 (s), 112.02 (s), 129.11 (s), 129.24 (s), 129.66 (s), 136.60 (s), 144.54 (s), 148.92 (s), 168.12 

(s). 

 

Amic Acid  

 

In a 250mL round bottom flask, 4-aminophenol (6.42g, 58.83mmol) was dispersed in acetone 

(60mL) at room temperature. Maleic anhydride pellets (5.64g, 57.52mmol) were added in 

portions to the stirring solution to form a yellow precipitate and the reaction mixture was 

stirred overnight. The product was isolated by vacuum filtration and purified by washing with 

cold acetone. (11.42g, 96% yield): 1H NMR (500MHz, (CD3)2SO) d 6.30 (d, 1H), 6.45 (d, 1H), 6.74 

(d, 2H), 7.43 (d, 2H), 9.34 (s, 1H), 10.40 (s, 1H) 13.66 (s, 1H); 13C NMR (500MHz, (CD3)2SO) d 

115.70 (s), 121.96 (s), 130.25 (s), 131.76 (s), 132.22 (s), 154.53 (s), 163.20 (s), 166.95 (s). 
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N-(4-hydroxyphenyl maleimide): Dicyclohexylcarbodiimide Method 

 

A 25mL round bottom flask was charged with the previously synthesized amic acid (0.5g, 

2.41mmol), dicarbocyclohexyldiimide (0.45g, 2.18mmol) and 5mL dichloromethane. The 

reaction mixture was refluxed at 40°C overnight then vacuum filtered and washed with cold 

dichloromethane. The precipitate was dissolved in acetonitrile and vacuum filtered again to 

yield a yellow-brown material. (0.46g, 81.1% yield): 1H NMR (500MHz, (CD3)2SO) d 6.83 (d, 4H), 

7.02 (d, 2H), 7.35 (d, 4H), 7.74 (d, 2H), 4.85 (s, 2H). 

 

N-(4-hydroxyphenyl maleimide): Steglich Esterification Method 

A 25mL round bottom flask was charged with dicarbocyclohexyldiimide (0.45g, 2.18mmol), 4-

dimethylaminopyradine (29.5mg, 0.241mmol) and 8mL dichloromethane. The previously 

synthesized amic acid (0.5g, 2.41mmol) was then added and the reaction mixture was allowed 

to stir overnight at 22°C. The resulting solution was vacuum filtered, concentrated by rotary 

evaporation and purified via column chromatography (75:25 ethyl acetate:hexanes) to yield a 

yellow-brown material (0.429g, 93.2% yield). 

 

N-(4-hydroxyphenyl maleimide): Anhydrous Sodium Acetate-Acetic Anhydride Method 

The previously synthesized amic acid (3.78g, 18.2mmol) was added to a 25mL round bottom 

flask containing anhydrous sodium acetate (0.65g, 7.92mmol) and acetic anhydrous (6.7mL, 

70.9mmol). The reaction mixture was stirred at 100°C for 30min then cooled to room 



 41 

temperature in a cold-water bath. This solution was then precipitated into an ice/water mixture 

and vacuum filtered. The resulting yellow solid was rinsed with ice water and dried under 

reduced pressure. (3.61g, 105% yield): 1H NMR (500MHz, (CD3)2SO) d 2.28  

(s, 3H), 7.19 (s, 2H), 7.25 (d, 2H), 7.35 (d, 2H); 13C NMR (500MHz, (CD3)2SO) d 21.30 (s), 122.84 

(s), 128.44 (s), 129.46 (s), 135.17 (s), 150.04 (s), 169.68 (s), 170.36 (s). 

 

N-(4-hydroxyphenyl maleimide)  

 

Amic acid (3.0g, 14.5mmol) was dispersed in toluene (12.8mL) in a 50mL round bottom flask. 

The reaction vessel was then charged with p-toluene sulfonic acid (0.197g, 1.14mmol) and N,N-

dimethylformamide (2.25mL) and the mixture was refluxed at 110°C for 24h. The resulting dark 

brown solution was precipitated into an ice/water mixture to produce a yellow-brown solid that 

was isolated by vacuum filtration and washed with ice cold water. The product was dried under 

vacuum followed by purification via hot filtration in dichloromethane to obtain a yellow-orange 

powder. (1.42g, 51.8% yield): 1H NMR (500MHz, (CD3)2SO) d 6.84 (d, 2H), 7.07 (d, 2H), 7.13 (s, 

2H), 9.68 (s, 1H); 13C NMR (500MHz, (CD3)2SO) d 115.89 (s), 123.00 (s), 128.86 (s), 135.00 (s), 

157.50 (s), 170.77 (s). 
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DMF Study 

To study the effect of DMF incorporation the same procedure as seen above for the production 

of phenolic maleimide utilizing p-toluene sulfonic acid was conducted for several different 

trials. The ratios of DMF, toluene and amic acid utilized for each trial can be seen in Table 1. 

 

Steglich Esterification of N-(4-hydroxyphenyl maleimide) 

 

Dicyclohexylcarbodiimide (0.29g, ), 4-dimethylaminopyradine (7.91mg, ), a-bromophenylacetic 

acid(0.28g, ) and dichloromethane (7.5mL) were added to a 25mL round bottom flask at 0°C in 

an ice bath. N-(4-hydroxyphenyl maleimide) (0.49g, ) was then added and the reaction mixture 

was brought to room temperature and allowed to stir for 24h. The precipitate was removed via 

vacuum filtration and the resulting solution was condensed via rotary evaporation. 1H NMR 

(500MHz, (CD3)2SO) d 1.05-1.23 (m, 8H), 1.49-1.71 (m, 8H), 5.56 (d, 1H), 6.84 (d, 2H), 7.07 (d, 

2H), 7.13 (s, 2H), 7.23 (s, 2H), 7.31 (d, 2H), 7.41 (d, 2H). 

 

Exo-N-(p-hydroxyphenyl)-3,6-epoxy-4-cyclohexene-1,2-dicarboximide 

 

P-aminophenol (1.31g, 12.0mmol), 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride 

(2.0g, 10.86mmol) and 3mL glacial acetic acid were added to a 50mL round bottom flask and 
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refluxed at 118°C for 1 hour to generate a precipitate. The reaction mixture was then cooled to 

room temperature and the solid was isolated via vacuum filtration and rinsed with water 

followed by drying under reduced pressure. 1H NMR (500MHz, (CD3)2SO) d 3.03 (s, 2H), 5.22 (s, 

2H), 6.31 (d, 1H), 6.44 (d, 1H), 6.60 (s, 2H), 6.74 (d, 2H), 6.83 (d, 2H), 6.96 (d, 2H), 7.41 (d, 2H), 

9.35 (s, 1H), 9.75 (s, 1H), 10.38 (s, 1H), 13.70 (s, 1H). 

 

Exo-N-(p-hydroxyphenyl)-3,6-epoxy-4-cyclohexene-1,2-dicarboximide 

P-aminophenol (1.31g, 12.0mmol), 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride 

(2.0g, 10.86mmol) and 3mL methanol were added to a 50mL round bottom flask and refluxed 

at 70°C for 1 hour to generate a precipitate. The reaction mixture was then cooled to room 

temperature and the solid was isolated via vacuum filtration and rinsed with water followed by 

drying under reduced pressure. (2.02g, 72% yield): 1H NMR (500MHz, (CD3)2SO) d 5.22 (s, 2H), 

6.60 (s, 2H), 6.83 (d, 2H), 6.95 (d, 2H), 9.76 (s, 1H). 

 
Steglich Esterification of Exo-N-(p-hydroxyphenyl)-3,6-epoxy-4-cyclohexene-1,2-dicarboximide

 

Dicyclohexylcarbodiimide (0.25g, 1.21mmol), 4-dimethylaminopyridine (6.72mg, .055mmol), a-

bromophenylacetic acid(0.237g, 1.10mmol) were dissolved in 9mL of dichloromethane in a 

25mL round bottom flask. Exo-N-(p-hydroxyphenyl)-3,6-epoxy-4-cyclohexene-1,2-

dicarboximide (0.57g, 2.20mmol) was then added and the reaction mixture was allowed to stir 

for 24h followed by vacuum filtration to remove the precipitate. The resulting solution was 
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condensed via rotary evaporation and the product was isolated by column chromatography 

(SiO2, 70:30 ethyl acetate: hexanes). (0.048g, 9.65% yield):  1H NMR (500MHz, (CD3)2SO) d 3.01 

(s, 1H), 3.06 (s, 2H), 5.20 (s, 1H), 5.22 (s, 2H), 5.43 (s, 1H), 6.58 (s, 3H), 6.81 (d, 2H), 6.93 (d, 2H), 

7.12 (d, 2H), 7.21 (d, 2H), 7.41 (m, 4H), 7.51 (d, 2H). 

 

Esterification of N-(4-hydroxyphenyl maleimide) 

 

N-(4-hydroxyphenyl maleimide) (1g, 5.29mmol) was dissolved in 41.13mL dichloromethane in a 

100mL round bottom flask and brought to 0°C by placing in an ice bath. Triethylamine (0.81mL, 

5.81mmol) was then added dropwise to the stirring solution which was subsequently sparged 

with argon gas for 15min. Methacryloyl chloride (0.61g, 5.84mmol), previously purified by 

vacuum filtration, was then added dropwise via syringe to the solution at 0°C. The reaction was 

allowed to stir for 24h was then washed with 0.1M HCl (3x30mL), saturated sodium 

bicarbonate (2x30mL) and brine (1x35mL). The organic layer was dried with anhydrous 

magnesium sulfate which was removed by vacuum filtration and the resulting solution was 

concentrated via rotary evaporation and dried in a vacuum oven to obtain a yellow powder. 

(1.31g, 96% yield): 1H NMR (500MHz, (CD3)2SO) d 2.02 (s, 3H), 5.93 (s, 1H), 6.31 (s, 1H), 7.20 (s, 

2H), 7.31 (d, 2H), 7.39 (d, 2H); 13C NMR (500MHz, (CD3)2SO) d 18.50 (s), 122.82 (s), 128.44 (s), 

128.48 (s), 129.58 (s), 135.19 (s), 135.63 (s), 150.14 (s), 165.73 (s), 170.16 (s). 
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ATRC-Capable Diels-Alder Adduct 

 

A 25mL round bottom flask was charged with N-(4-hydroxyphenyl maleimide) (0.53g, 

2.80mmol) and a-bromo-2-furanylmethylester-benzeneacetic acid (0.90g, 3.06mmol). 

Dichloromethane (7mL) was then added and the reaction mixture was stirred at 40°C with a 

condenser attachment for six days. The resulting product was isolated via rotary evaporation 

and purified by column chromatography (SiO2, 60:40 Ethyl Acetate:Hexanes). The resulting 

solution was condensed by rotary evaporation to generate a tan solid. (0.62g, 46%yield): (Endo) 

1H NMR (500MHz, (CD3)2SO) d 3.54 (d, 1H), 3.78 (m, 1H), 4.75 (m, 1H), 4.88 (m, 1H), 5.37 (m, 

1H), 6.01 (d, 1H), 6.46-6.50 (m, 1H), 6.64 (m, 0.98), 6.81 (d, 2H), 6.90 (d, 2H), 7.38 (m, 3H), 7.57 

(d, 2H), 9.73 (s, 1H); 13C NMR (500MHz, (CD3)2SO) d 21.19 (s), 46.48-47.69 (q), 63.91 (s), 79.65 

(s), 89.78 (s), 115.84 (s), 123.37 (s), 128.56 (s), 129.26 (d), 129.68 (d), 134.57 (s), 136.38-136.55 

(q), 157.93 (s), 168.22 (d), 174.60 (d). (Exo) 1H NMR (500MHz, (CD3)2SO) d 3.11 (d, 1H), 3.19 (d, 

1H), 4.51 (t, 1H), 4.99 (t, 1H), 5.22 (s, 1H), 5.92 (d, 1H), 6.38-6.44 (m, 1H), 6.62 (m, 1H), 6.84 (d, 

2H), 6.98 (d, 2H), 7.37 (m, 3H), 7.54 (d, 2H), 9.75 (s, 1H); 13C NMR (500MHz, (CD3)2SO) d 21.24 

(s), 46.80-47.08 (d) 48.88 (s), 50.19 (s), 63.89 (s), 81.37 (s), 89.32 (s), 115.90 (s), 123.56 (s), 

128.55 (s), 129.16-129.21 (t), 129.29 (s), 136.50 (d), 157.86 (s), 168.19 (s), 174.72 (s), 176.02 (s). 
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Reaction Time Investigation 

A 25mL round bottom flask was charged with N-(4-hydroxyphenyl maleimide) (0.195g, 

1.03mmol) and a-bromo-2-furanylmethylester-benzeneacetic acid (0.34g, 1.15mmol). 

Dichloromethane (2mL) was then added and the reaction mixture was stirred at 40°C with a 

condenser attachment for a specified amount of time. The resulting product was isolated via 

rotary evaporation and purified by column chromatography (60:40 Ethyl Acetate:Hexanes) to 

generate a tan solid.  

 

ATRC-Capable Diels-Alder Esterification 

 

Attempt 1: 

In an oven dried 100mL round bottom flask, the Diels-Alder adduct (0.18g, 0.37mmol) was 

dissolved in tetrahydrofuran (5.44mL) and the reaction vessel was brought to 0°C in an ice bath. 

4-Dimethylaminopyridine (1.0mg, 0.0082mmol) and triethylamine (0.055mL, 0.40mmol) were 

added and the solution was bubbled with Argon gas for 15 minutes. Methacryloyl chloride 

(0.08mL, 0.82mmol) was then added in 1mL tetrahydrofuran dropwise while stirring. The 

reaction was allowed to stir for 24h before quenching with air and removing the 

tetrahydrofuran via rotary evaporation. The resulting brown material was dissolved in 

dichloromethane and washed with 1M hydrochloric acid (2x20mL), saturated sodium 

bicarbonate (2x20mL), and brine (1x25mL). The organic layer was dried with anhydrous 
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magnesium sulfate which was removed by vacuum filtration then concentrated via rotary 

evaporation to produce a light brown liquid that was further purified by column 

chromatography. (0.25, 125% yield): 1H NMR (500MHz, (CD3)2SO) d 3.15 (m, 1H), 3.24 (d, 1H), 

3.76 (m, 8H), 4.26 (m, 1H), 4.55 (m, 1H), 5.02 (m, 1H), 5.23 (s, 1H), 5.38 (d, 3H), 5.56-5.61 (m, 

1H), 5.93 (s, 1H), 5.94 (s, 1H), 6.31 (s, 1H), 6.58-6.62 (m, 1H), 7.30 (s, 4H), 7.40 (s, 3H), 7.48 (s, 

2H), 11.69 (s, 3H). 

 

Attempt 2 (without DMAP): 

In an oven dried 100mL round bottom flask, the Diels-Alder adduct (0.5g, 1.03mmol) was 

dissolved in tetrahydrofuran (14.26mL) and the reaction vessel was brought to 0°C in an ice 

bath. Triethylamine (0.12mL, 1.19mmol) were added and the solution was bubbled with Argon 

gas for 15 minutes. Methacryloyl chloride (0.216mL, 2.06mmol) was added in a solution of 

tetrahydrofuran (1mL) while stirring using an addition funnel. The reaction was allowed to run 

for 24h before quenching with air and removing the acetonitrile via rotary evaporation. The 

resulting brown material was dissolved in dichloromethane and washed with 1M hydrochloric 

acid (2x20mL), saturated sodium bicarbonate (2x20mL), and brine (1x25mL). The organic layer 

was dried with anhydrous magnesium sulfate which was removed by vacuum filtration then 

concentrated via rotary evaporation to produce a light brown liquid. 1H NMR (500MHz, 

(CD3)2SO) d 1.66 (t, 3H), 1.94 (s, 2H), 2.02 (s, 3H), 3.18 (m, 1H), 3.25 (m, 1H), 4.54 (m, 1H), 5.03 

(m, 1H), 5.26 (d, 1H), 5.93 (s, 1H), 5.95 (s, 1H), 6.02 (s, 1H), 6.31 (s, 1H), 6.39-6.46 (m, 1H), 6.64 

(m, 1H), 7.20-7.27 (m, 2H), 7.31 (s, 2H), 7.38-7.39 (m, 3H), 7.48 (m, 1H), 7.55 (m, 2H). 
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Attempt 3 (Reduction of methacryloyl chloride): 

In an oven dried 100mL round bottom flask, the Diels-Alder adduct (0.5g, 1.03mmol) was 

dissolved in tetrahydrofuran (14.26mL) and the reaction vessel was brought to 0°C in an ice 

bath. Triethylamine (0.12g, 1.19mmol) was added dropwise and the solution was bubbled with 

Argon gas for 15 minutes. Methacryloyl chloride (0.108g, 1.03mmol) was added in a solution of 

tetrahydrofuran (1mL) while stirring using an addition funnel. The reaction was allowed to run 

for 24h before quenching with air and removing the acetonitrile via rotary evaporation. The 

resulting brown material was dissolved in dichloromethane and washed with 1M hydrochloric 

acid (2x20mL), saturated sodium bicarbonate (2x20mL), and brine (1x25mL). The organic layer 

was dried with anhydrous magnesium sulfate which was removed by vacuum filtration then 

concentrated via rotary evaporation to produce a light brown liquid. 1H NMR (500MHz, 

(CD3)2SO) d 1.66 (s, 1H), 1.69 (s, 1H), 1.94 (s, 2H), 2.02 (s, 3H), 3.18 (m, 1H), 3.25 (m, 1H), 4.54 (t, 

1H), 5.02 (t, 1H), 5.25 (s, 1H), 5.93 (s, 1H), 5.94 (s, 1H), 6.30 (s, 1H), 6.38-6.45 (m, 1H), 6.44 (m, 

1H), 7.25 (m, 2H), 7.31 (s, 2H), 7.38 (m, 3H), 7.55 (m, 2H). 

 

Diels-Alder Solvent Study for ATRC-Capable Monomer 

 

Acetonitrile 

A 50mL round bottom flask was charged with N-(4-hydroxyphenyl maleimide) (1g, 3.88mmol) 

which was dissolved in minimal amounts of tetrahydrofuran (4mL) at 45°C. a-Bromo-2-
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furanylmethylester-benzeneacetic acid (1.38g, 4.68mmol) was then added and the reaction was 

allowed to stir at 45°C for 48h. Targeted precipitation of the adduct over this time was not 

achieved. However, the product was obtained by concentration via rotary evaporation followed 

by purification by column chromatography (SiO2, 50:50 Hex: EtOAc) to yield a tan oil. 1H NMR 

(500MHz, (CD3)2SO) d 2.01 (d, 6H), 3.18 (t, 1H), 3.26 (t, 1H), 3.60 (t, 1H), 3.83 (m, 1H), 4.55 (3, 

1H), 4.73 (q, 1H), 4.92 (q, 1H), 5.02 (t, 1H), 5.26 (s, 1H), 5.40 (t, 1H), 5.92 (d, 2H), 6.03 (d, 2H), 

6.31 (d, 2H), 6.40-6.55 (m, 2H), 6.66 (m, 2H), 7.20 (d, 4H), 7.31 (t, 4H), 7.39 (m, 6H), 7.57 (m, 

4H). 

Tetrahydrofuran 

A 50mL round bottom flask was charged with N-(4-hydroxyphenyl maleimide) (1g, 3.88mmol) 

which was dissolved in minimal amounts of acetonitrile (3.7mL) at 45°C. a-Bromo-2-

furanylmethylester-benzeneacetic acid (1.38g, 4.68mmol) was then added and the reaction was 

allowed to stir at 45°C for 48h. Targeted precipitation of the adduct over this time was not 

achieved. However, the product was obtained by concentration via rotary evaporation followed 

by purification by column chromatography (50:50 Hex: EtOAc) to yield a tan oil (1.82g, 62% 

yield). 

 

Diels-Alder Crosslinker 

 

A 25mL round bottom flask was charged with N-(4-hydroxyphenyl maleimide) (1.06g, 

5.60mmol) and furfuryl methacrylate (1.03g, 6.20mmol). Acetonitrile (8mL) was then added 
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and the reaction mixture was stirred at 45°C with a condenser attachment for six days. The 

resulting product was isolated via column chromatography (60:40 Ethyl Acetate:Hexanes) 

followed by rotary evaporation to generate a tan solid. (1.40g, 69.8% yield): (Endo) 1H NMR 

(500MHz, (CD3)2SO) d 1.90 (s, 3H), 3.61 (d, 1H), 3.81 (t, 1H), 4.67 (d, 1H), 4.81 (d, 1H), 5.37 (d, 

1H), 5.72 (s, 1H), 6.08 (s, 1H), 6.56 (d, 1H), 6.64 (d, 1H), 6.81 (d, 2H), 6.89 (d, 2H), 9.73 (s, 1H). 

(Exo) 1H NMR (500MHz, (CD3)2SO) d 1.86 (s, 3H), 3.14 (d, 1H), 3.21 (d, 1H), 4.51 (d, 1H), 4.85 (d, 

1H), 5.23 (s, 1H), 5.69 (s, 1H), 6.01 (s, 1H), 6.55 (s, 1H), 6.64 (s, 1H), 6.84 (d, 2H0, 6.98 (d, 2H), 

9.75 (s, 1H); (Endo) 13C NMR (500MHz, (CD3)2SO) d 14.56 (s), 18.41 (s), 21.24 (s), 46.80 (s), 47.78 

(s), 60.23 (s), 62.56 (s), 79.58 (s), 89.56 (s), 115.86 (s), 123.40 (s), 126.40 (s), 128.58 (s), 134.98 

(s), 135.92 (s), 136.33 (s), 157.90 (s), 166.59 (s), 170.81 (s), 174.63 (d). (Exo) 13C NMR (500MHz, 

(CD3)2SO) d 18.36 (s), 48.79 (s), 50.26 (s), 62.25 (s), 81.31 (s), 89.60 (s), 115.90 (s), 126.75 (s), 

128.54 (s), 157.85 (s). 

 

Esterification of Diels-Alder Adducts 

 

In an oven dried 100mL round bottom flask, the Diels-Alder adduct (1.44g, 4.05mmol) was 

dissolved in acetonitrile (41.16mL) and the reaction vessel was brought to 0°C in an ice bath. 4-

dimethylaminopyridine (9.92mg, 0.081mmol) and triethylamine (0.636mL, 4.56mmol) were 

added and the solution was bubbled with Argon gas for 15 minutes. Methacryloyl chloride 

(0.87mL, 8.90mmol) was added in a solution of acetonitrile (2mL) while stirring using an 
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addition funnel. The reaction was allowed to run for 24h before quenching with air and 

removing the acetonitrile via rotary evaporation. The resulting brown material was dissolved in 

dichloromethane and washed with 1M hydrochloric acid (2x20mL), saturated sodium 

bicarbonate (2x20mL), and brine (1x25mL). The organic layer was dried with anhydrous 

magnesium sulfate which was removed by vacuum filtration then concentrated via rotary 

evaporation to produce a light brown liquid. (1.8079g, 105.4% yield): (Endo) 1H NMR (500MHz, 

(CD3)2SO) d  1.91 (s, 3H), 2.01 (s, 2H), 3.67 (d, 1H), 3.87 (t, 1H), 4.69 (d, 1H), 4.82 (d, 1H), 5.41 (d, 

1H), 5.73 (s, 1H), 5.92 (s, 1H), 6.09 (s, 1H), 6.25-6.29 (d, 1H), 6.62 (1H), 6.69 (d, 1H), 7.21 (t, 2H), 

7.28 (d, 2H). (Exo) 1.87 (s, 3H), 2.02 (s, 3H), 3.21 (d, 1H), 3.27 (d, 1H), 4.55 (d, 1H), 4.89 (d, 1H), 

5.28 (s, 1H), 5.68 (s, 1H), 5.92 (s, 1H), 6.02 (s, 1H), 6.31 (s, 1H), 5.65 (d, 1H), 6.66 (d, 1H), 7.21 (s, 

4H); (Endo) 13C NMR (500MHz, (CD3)2SO) d 17.93 (s), 18.40 (s), 18.47 (s), 47.03 (s), 47.99 (s), 

55.37 (s), 62.54 (s), 79.64 (s), 90.04 (s), 122.92 (s), 126.96 (s), 128.57 (d), 129.77 (s), 130.80 (s), 

133.35 (m), 136.42 (s), 150.74 (s), 165.65 (s), 166.58 (s), 174.24 (d). (Exo) 13C NMR (500MHz, 

(CD3)2SO) d 17.93 (s), 18.48 (m), 24.49 (d), 25.49 (s), 30.45 (s), 30.61 (s), 49.01 (s), 50.51 (s), 

55.36 (s), 62.21 (s), 81.39 (t), 89.71 (s), 103.26 (s), 122.64 (s), 122.93 (s), 126.72 (s), 128.50 (s), 

129.33 (s), 130.78 (s), 135.60 (m), 137.46 (s), 137.94 (s), 150.68 (s), 163.55 (s), 165.65 (s), 

166.58 (s), 173.74 (s), 174.41 (s), 175.78 (s). 
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Copolymerization of Methyl Methacrylate and ATRC-Capable Monomer via RAFT 

 

A stock solution of initiator and chain transfer agent was created by dissolving 2,2ʹ-azobis(2,4-

dimethylvaleronitrile) (V-70)(7.6mg, 0.0248mmol) and 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (0.1g, 0.248mmol) in 1mL 

tetrahydrofuran in a 15mL round bottom flask. An oven dried, 25mL round bottom flask was 

then charged with bpDA, deinhibited methyl methacrylate, stock solution and tetrahydrofuran 

in amounts according to Table 3 dependent on targeted molecular weight and incorporation 

and was bubbled with argon for 50 minutes at 0°C in an ice bath. The reaction mixture was then 

transferred to a 35°C oil bath and stirred for 24h.  The resulting solution was precipitated by 

addition of cold methanol, allowing precipitate to settle, then extracting the resulting solution 

and drying remaining precipitate under reduced pressure which was repeated three times. 1H 

NMR (500MHz, (CD3)2SO) d 0.88 (s, 3H), 1.25 (s, 24H), 1.55 (s, 16H), 3.04 (d, 1H), 3.13 (t, 1H), 

4.62 (q, 1H), 5.10 (q, 1H), 5.39 (t, 2H), 5.77 (s, 1H), 6.35 (s, 1H), 6.36-6.44 (q, 1H), 6.56-6.60 (q, 

1H), 7.24 (t, 4H), 7.30-7.34 (m, 3H). 7.53 (d, 2H). 
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Table 3: Reaction conditions for the copolymerization of ATRC capable monomer and methyl methacrylate via RAFT 

 

25 kDa Homopolymerization of Methyl Methacrylate or Homopolymerization of ATRC-Capable 

Monomer 

 

                           

A stock solution of initiator and chain transfer agent was created by dissolving 2,2ʹ-azobis(2,4-

dimethylvaleronitrile) (V-70)(7.6mg, 0.0248mmol) and 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (0.1g, 0.248mmol) in 1mL 

tetrahydrofuran in a 15mL round bottom flask. An oven dried, 25mL round bottom flask was 

then charged with deinhibited methyl methacrylate or ATRC-capable monomer (0.25g, 

2.50mmol or 0.453mmol respectively), stock solution (0.04mL) and tetrahydrofuran (0.46mL) 

and was bubbled with argon for 50 minutes at 0°C in an ice bath. The reaction mixture was then 

Targeted 
MW (kDa) 

Diels-Alder 
Monomer 
Incorporation 

ATRC Capable 
Diels-Alder 
Monomer (g) 

Methyl 
Methacrylate 
(g) 

Additional 
THF (mL) 

Stock 
Solution (mL) 

25 5 mol% 0.11 0.38 0.92 0.08 
25 10 mol% 0.19 0.30 0.92 0.08 
25 15 mol% 0.24 0.25 0.92 0.08 
20 5 mol% 0.11 0.38 0.79 0.20 
20 10 mol% 0.18 0.30 0.79 0.20 
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transferred to a 35°C oil bath and stirred for 24h. An aliquot was taken for 1H NMR evaluation. 

(Methyl Methacrylate) 1H NMR (500MHz, (CD3)2SO) d 1.95 (s, 3H), 3.75 (s, 3H), 5.56 (s, 1H), 6.10 

(s, 1H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
A 1: a-Bromo-2-furanylmethylester-benzeneacetic acid 1HH NMR 

AP
PE

ND
IX

 



 

 
A 2: a-Bromo-2-furanylmethylester-benzeneacetic acid 13C NMR 



 

 
 A 3: Amic Acid 1H NMR 



 

 
A 4: Amic Acid 13C NMR 



 

 
A 5: Synthesis of N-(4-hydroxyphenyl) maleimide from amic acid precursor employing dicyclohexylcarbodiimide 1H NMR 



 

 
A 6: Synthesis of N-(4-hydroxyphenyl) maleimide from amic acid precursor employing anhydrous sodium acetate and acetic anhydride 1H NMR 



 

 
A 7: Synthesis of N-(4-hydroxyphenyl) maleimide from amic acid precursor employing anhydrous sodium acetate and acetic anhydride 13C NMR 



 

 
A 8: N-(4-hydroxyphenyl) maleimide 1H NMR 



 

 
A 9: N-(4-hydroxyphenyl) Maleimide 13C NMR 



 

 
A 10: ATRC-functionalization of N-(4-hydroxyphenyl) maleimide via a steglich esterification 1H NMR 



 

 
A 11: Protected N-(4-hydroxyphenyl) maleimide synthesis (118°C) 1H NMR 

 



 

 
A 12: Protected N-(4-hydroxyphenyl) maleimide synthesis (70°C) 1H NMR 

 



 

 
A 13: ATRC-functionalized protected N-(4-hydroxyphenyl) maleimide 1H NMR: Uppercase alphabet = exo, lowercase alphabet = endo 

 



 

 
A 14: Esterification of N-(4-hydroxyphenyl) maleimide with methacryloyl chloride 1H NMR 

 



 

 
A 15: Esterification of N-(4-hydroxyphenyl) maleimide with methacryloyl chloride 13C NMR 

 



 

 
A 16: ATRC-capable Diels-Alder adduct synthesized in acetonitrile 1H NMR 

 



 

 
A 17: ATRC-capable Diels-Alder adduct synthesized in acetonitrile 13C NMR 



 

 
A 18: ATRC-capable Diels-Alder adduct synthesized in dichloromethane 1H NMR 

 



 

 
A 19: ATRC-capable Diels-Alder adduct synthesized in dichloromethane 13C NMR 

 



 

 
A 20: One day reaction time of the ATRC-capable monomer resulting in 70mol% endo, 30mol% exo (uppercase alphabet = endo, lowercase alphabet = exo) 1H NMR 

 



 

 
A 21: Three day reaction time of the ATRC-capable monomer resulting in 55mol% endo, 45mol% exo (uppercase alphabet = endo, lowercase alphabet = exo) 1H NMR 

 



 

 
A 22: Three day reaction time ATRC-capable Diels-Alder gCOSY 

 



 

 
A 23: Three day reaction time ATRC-capable Diels-Alder HSQC 

 



 

 
A 24: Four day reaction time of the  ATRC-capable Diels-Alder resulting in 54mol% endo, 46mol% exo (uppercase alphabet = endo, lowercase alphabet = exo) 1H NMR 

 



 

 
A 25: Four day reaction time ATRC-capable Diels-Alder gCOSY 

 



 

 
A 26: Five day reaction time of the ATRC-capable Diels-Alder resulting in 56mol% endo, 44mol% exo (uppercase alphabet = endo, lowercase alphabet = exo) 1H NMR 

 



 

 
A 27: Five day reaction time ATRC-capable Diels-Alder gCOSY 

 



 

 
A 28: Five day reaction time ATRC-capable Diels-Alder HSQC 

 



 

 
A 29: Six day reaction time of the  ATRC-capable Diels-Alder resulting in 52mol% endo, 48mol% exo (uppercase alphabet = endo, lowercase alphabet = exo) 1H NMR 

 



 

 
A 30: Six day reaction time ATRC-capable Diels-Alder gCOSY 

 



 

 
A 31: Six day reaction time ATRC-capable Diels-Alder HSQC 

 



 

 
A 32: ATRC-Capable Diels-Alder adduct esterification employing triethylamine and DMAP 1H NMR 



 

 
A 33: ATRC-capable Diels-Alder adduct esterification (utilizing 2eq methacryloyl chloride) 1H NMR 



 

  
A 34: ATRC-capable Diels-Alder adduct esterification (utilizing 1eq methacryloyl chloride) 1H NMR 



 

 
A 35: Diels-Alder synthesis utilizing methacrylate functionalized N-(4-hydroxyphenyl) maleimide 1H NMR 



 

 
A 36: ATRC-capable monomer variable temperature 1H NMR - Room Temperature (21.8°C) 

 



 

 
A 37:  ATRC-capable monomer variable Temperature 1H NMR - 45°C 

 



 

 
A 38: ATRC-capable monomer variable Temperature 1H NMR - 55°C 



 

 
A 39: ATRC-capable monomer variable Temperature 1H NMR - 65°C 

 



 

 
A 40: ATRC-capable monomer variable Temperature 1H NMR - 75°C 



 

 
A 41: ATRC-capable monomer variable Temperature 1H NMR - 85°C 



 

 
A 42: Endo-Diels-Alder functionalized crosslinker precursor 1H NMR 

 



 

 
A 43: Endo-Diels-Alder functionalized crosslinker precursor 13C NMR 
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A 44: Exo-Diels-Alder functionalized crosslinker precursor 1H NMR 

 



 

 
A 45: Exo-Diels-Alder functionalized crosslinker precursor 13C NMR 
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A 46: Exo-Diels-Alder Functionalized Monomer 1H NMR 

 



 

 
A 47: Exo-Diels-Alder Functionalized Monomer 13C NMR 



 

 
A 48: Endo-Diels-Alder Functionalized Monomer 1H NMR 

 



 

 
A 49: Endo-Diels-Alder Functionalized Monomer 13C NMR 



 

 
A 50 – Diels-Alder functionalized crosslinker variable Temperature NMR – Room Temperature (21.8°C) 

 



 

 
A 51: Diels-Alder functionalized crosslinker variable Temperature 1H NMR - 45°C 

 



 

 
A 52: Diels-Alder functionalized crosslinker variable Temperature 1H NMR - 55°C 

 



 

 
A 53: Diels-Alder functionalized crosslinker variable Temperature 1H NMR - 65°C 

 



 

 
A 54: Diels-Alder functionalized crosslinker variable Temperature 1H NMR - 75°C 

 



 

 
A 55: Diels-Alder functionalized crosslinker variable Temperature 1H NMR - 85°C 

 



 

 
A 56: Diels-Alder functionalized crosslinker variable Temperature 1H NMR - Room Temperature After Cooling 

 



 

 
A 57:RAFT - homopolymerization of methyl methacrylate employing initiator V-70 (35°C) 



 

 
A 58: RAFT - homopolymerization of methyl methacrylate employing initiator V-70 (50°C)
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