
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Spring 2020

THE APPLICATION OF COMPUTER VISION, MACHINE AND DEEP THE APPLICATION OF COMPUTER VISION, MACHINE AND DEEP

LEARNING ALGORITHMS UTILIZING MATLAB LEARNING ALGORITHMS UTILIZING MATLAB

Andrea Linda Murphy
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation Recommended Citation
Murphy, Andrea Linda, "THE APPLICATION OF COMPUTER VISION, MACHINE AND DEEP LEARNING
ALGORITHMS UTILIZING MATLAB" (2020). Master's Theses and Capstones. 1346.
https://scholars.unh.edu/thesis/1346

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized
administrator of University of New Hampshire Scholars' Repository. For more information, please contact
Scholarly.Communication@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/1346?utm_source=scholars.unh.edu%2Fthesis%2F1346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu

THE APPLICATION OF COMPUTER VISION, MACHINE AND DEEP LEARNING
ALGORITHMS UTILIZING MATLABÒ

BY

ANDREA LINDA MURPHY

Bachelor of Science, Marketing, Virginia Commonwealth University, 2014

THESIS

Submitted to the University of New Hampshire

 in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Information Technology

May 2020

 ii

This thesis was examined and approved in partial fulfillment of the requirements for the degree
of Master of Science in Information Technology by:

Thesis Director, Dr. Mihaela Sabin, PROFESSOR,
Applied Engineering & Sciences

Karen Jin, ASSISTANT PROFESSOR,
Applied Engineering & Sciences

Jeremiah Johnson, ASSISTANT PROFESSOR,
Applied Engineering & Sciences

On April 29, 2020

Original approval signatures are on file with the University of New Hampshire Graduate School.

 iii

TABLE OF CONTENTS

COMMITTEE PAGE…………………………………………………………………………. ii

LIST OF TABLES…………………………………………………………………………….. v

LIST OF FIGURES……………………………………………………………………………. vi

LIST OF ABBREVIATIONS…………………………………………………………………. vii

ABSTRACT………………………………………………………………………………........ viii

CHAPTER PAGE

I. CHAPTER: INTRODUCTION………………………………………………………….. 1

I.I Object Detection…………………………………………………………………… 2

I.II Machine Learning…………………………………………………………………. 3

I.II.I Machine Learning Classification Workflow…………………………….. 4

I.III Deep Learning……………………………………………………………………. 9

II. CHAPTER: OBJECTIVES………………………………………………………………. 12

III. CHAPTER: CURRENT SYSTEMS …………………………………………………… 13

IV. CHAPTER: HISTORY………………………………………………………………...... 14

IV.I Machine Learning, Computer Vision, and Deep Learning……………………...... 14

 IV.II MATLABÒ…………………………………………………………….…………. 17

 IV.II.I MATLABÒ Data Science Toolbox Release Dates ……….………….... 17

V. CHAPTER: DESIGN OF ASLtranslate…………………………………………………. 18

 iv

V.I Methodology and Approach……………………………………………………… 19

 V.I.I ASLtranslate (1) ………………………………………………………… 20

 V.I.II ASLtranslate (II) ………………………………………………………... 26

VI. CHAPTER: RESULTS………………………………………………………………….. 30

VI.I Obstacles…………………………………………………………………………. 30

VI.I.II ASLtranslate (I) Results………………………………………………… 32

 VI.I.II ASLtranslate (II) Results………………………………………………. 34

VII. EVALUATION AND DISCUSSION………………………………………………….. 37

VII.I Future Development of ASLtranslate ………………………………………………….. 37

APPENDIX A: ASLtranslate Source Code…………………………………………………. 38

APPENDIX B: ASLtranslate II Source Code………………………………………………. 41

ENDNOTES…………………………………………………………………………………. 44

LIST OF REFERENCES……………………………………………………………………. 45

 v

LIST OF TABLES
TABLE
 PAGE
1 Evaluating the Model ………………………………………………………………. 9

2 MATLABÒ Data Science Toolbox Release Dates………………………………….. 18

3 Results to applying the imgSets method to image datasets…………………………. 21

4 Single call to the bagOfFeatures method in MATLAB_R2019……………….. 25

 vi

LIST OF FIGURES
FIGURE PAGE

1 Machine learning and deep learning techniques used for object recognition………… 1

2 Example of an image tag…….…………………………………………………….... 3

3 Overview of the ML Classification Workflow [1] ………………….………………. 5

4 Dataset Split Ratio 80:20 [2] ………………….………………….…………………. 6

5 K-means clustering equation [9] ………………….………………….………………. 7

6 Activation functions used in neural networks [10] …………….………………….… 10

7 A Feedforward Neural Network [14] …………….………………….………………. 10

8 Single-layer Perceptron [11] …………….………………….……………………….... 11

9 Multi-layer Perceptron [11] ………….………………….…………………………..... 11

10 Convolutional Neural Network (CNN) [12] .…………….………………….………... 12

11 A Pre-Trained CNN that can be used for Classification [13] ………….………........... 12

12 Designing an object recognition algorithm to identify ASL hand gesture ……………. 18

13 ASLtranslate image datasets architecture………………….………………….………. 20

14 One randomly selected image from each labeled image set………………….………… 21

15 Montage of all 3000 A’s within the ASLtranslate database………………….………… 22

16 A Histogram of visual words [8] ………………….………………….………………. 23

17 Extracting visual words from training images………………….……………………… 24

18 Histogram of the occurrences of visual words in image “A” ………………….………. 25

19 Transfer Learning Workflow [13] ……………………………………………………. 28

20 Three components you need to perform transfer learning………………….…………. 30

21 Input image ASL gesture “A” Output alphabet character A………………….……….. 33

ASL gesture “B” Output alphabet character B

ASL gesture “C” Output alphabet character C

ASL gesture “D” Output alphabet character D

22 ASLtranslate (II) Workspace after completion of Transfer learning………………….. 34

23 Four sample validation images with their predicted labels………………….…………. 35

 vii

24 Training Progress………………….………………….………………….……………. 36

 viii

LIST OF ABBREVIATIONS

ABBREVIATION NAME
AI Artificial Intelligence

ANN Artificial Neural Network

ASL American Sign Language

BOVW Bag-of-visual-words

BOW Bag-of-Words

CAD Computer-aided design

ConvNet/ CNN Convolutional Neural Network

CV Computer Vision

DL Deep Learning

IDE Integrated Development Environment

NN Neural Network

ML Machine Learning

SURF Speeded Up Robust Features

SVM Support-vector-machines

TL Transfer learning

 ix

ABSTRACT

THE APPLICATION OF COMPUTER VISION, MACHINE AND DEEP LEARNING
ALGORITHMS UTILIZING MATLABÒ

by

Andrea L. Murphy

University of New Hampshire, Spring 2020

 MATLABÒ is a multi-paradigm proprietary programming language and numerical

computing environment developed by MathWorks. Within MATLABÒ Integrated Development

Environment (IDE) you can perform Computer-aided design (CAD), different matrix

manipulations, plotting of functions and data, implementation algorithms, creation of user

interfaces, and has the ability to interface with programs written in other languages1. Since, its

launch in 1984 MATLABÒ software has not particularly been associated within the field of data

science. In 2013, that changed with the launch of their new data science concentrated toolboxes

that included Deep LearningÔ, Image ProcessingÔ, Computer VisionÔ, and then a year later

Statistics and Machine LearningÔ.

The main objective of my thesis was to research and explore the field of data science.

More specifically pertaining to the development of an object recognition application that could

be built entirely using MATLABÒ IDE and have a positive social impact on the deaf community.

And in doing so, answering the question, could MATLABÒ be utilized for development of this

type of application? To simultaneously answer this question while addressing my main

 x

objectives, I constructed two different object recognition protocols utilizing MATLAB_R2019

with the add-on data science tool packages. I named the protocols ASLtranslate (I) and (II). This

allowed me to experiment with all of MATLABÒ data science toolboxes while learning the

differences, benefits, and disadvantages of using multiple approaches to the same problem.

The methods and approaches for the design of both versions was very similar.

ASLtranslate takes in 2D image of American Sign Language (ASL) hand gestures as an input,

classifies the image and then outputs its corresponding alphabet character. ASLtranslate (I) was

an implementation of image category classification using machine learning methods.

ASLtranslate (II) was implemented by using a deep learning method called transfer learning,

done by fine-tuning a pre-trained convolutional neural network (CNN), AlexNet, to perform

classification on a new collection of images.

 1

I. CHAPTER: INTRODUCTION

Computer vision, machine learning and deep learning are closely related disciplines in

the field in data science, especially when considering the application of object recognition.

Computer vision is an interdisciplinary field that trains computers to interpret and understand the

visual world. It seeks to automate tasks that a human visual system can do. Object recognition is

a computer vision technique for identifying objects in images or videos and is the key output of

deep learning and machine learning algorithms. Both techniques can be successful in solving

object recognition problems, with similar approaches but differ in their execution. Machine

learning algorithms require the features to be defined or extracted first before being classified.

While using deep learning methods you do not need to specifically define the features in order to

recognize objects, instead you rely on the use of convolutional neural networks (CNN).

Figure 1: Machine learning and deep learning techniques used for object recognition

 2

I.I Object Recognition

Object recognition is the process of identifying an object as a specific entity within an

image or video. Object recognition is a crucial output of computer vision, machine learning, and

deep learning algorithms. The technology that is behind many of the applications that we use

within our everyday life. The basic goal of object recognition is being able to teach a computer to

do what comes naturally to humans, to gain an understanding of what the image or video

contains. Here are a few applications that utilize object recognition technology in their core

functionality:

> Self-driving cars:

o Tesla’s Autopilot, Google’s Waymo

> Medical image processing and diagnostic tools:

o Google AI for early breast cancer detection

> Robot-assisted surgery:

> Face recognition:

o Blippar

> Biometric identification:

o FaceSDK

> Google object detection applications:

o Google lens and translate

> Surveillance and Security:

o Activity recognition

 3

 Object recognition involves identifying, recognizing, and locating objects within images

with a degree of confidence or accuracy. To ensure the successfully identification the process

can be broken down into the following tasks:

1. Image Classification: What is contained in the image? Image classification takes in an

image as the input and outputs the classification of that image with some pre-defined

metrics (confidence, accuracy, loss, probability, etc.).

2. Object Localization: Where is the object in the image? Object localization is the process

of locating the main (or most prominent) object within an image.

3. Image Tagging: A visual tag on the image that identify what the object is.

Figure 2: Example of an image tag

4. Object Detection: What is the object in the image, and where is the object in the image?

Object detection algorithms act as a combination of both image classification and an

object localization algorithm.

I.II Machine Learning

 4

Machine Learning is the science (and art) of programming computers so they can learn from data

Here is a slightly more general definition:

[Machine Learning is the] field of study that gives computers the ability to learn without being

explicitly programmed. —Arthur Samuel, 1959

And a more engineering-oriented one:

A computer program is said to learn from experience E with respect to some task T and some

performance measure P, if its performance on T, as measured by P, improves with experience E.

—Tom Mitchell, 1997

[Geron Aurélien 2017]

Machine learning (ML) refers to a systems ability to acquire and integrate knowledge

through observation and improve on tasks learned from patterns and inference instead of having

to be given explicit instructions. ML is a scientific study of algorithms and statistical models that

computer systems use to perform a variety of tasks and solve a range of problems, including

techniques used for object recognition.

I.II.I Machine Learning Classification Workflow

 There are several machine learning best practices for solving classification problems.

Along with server different overviews of the ML classifications workflows. I based my ML

classification workflow overview on the methods that I acquired from MATLABÒ Machine

Learning Onramp course [1]. Which will be further discussed over the next few pages.

 5

 Figure 3: Overview of the ML Classification Workflow [1]

Import Data, organize, pre-process data

Regardless of what type of model, machine learning system, simple or complex the first step

in the classification workflow process will be to import data. This data is usually allocated into

three different sets or datasets:

1. Training Dataset: A sample of data that is used to fit and train the model. This is the

actual data that is used to train our model, this is what the model “learns from”.

2. Validation Dataset: A sample of data used to provide an unbiased evaluation of a model

that is fit on the training dataset while tuning model hyperparameters. The model will use

this data indirectly to adjust the hyperparameters, but never directly to “learn from”.

3. Test Dataset: A sample of data used to provide an unbiased evaluation of a final model

fit on the training dataset. Test data is the untouched dataset that is used to evaluate the

model.

 6

The dataset split ratio is the amount of data that is designated to each training, validation, and

test datasets. The ratio depends on a few determining factors (total number of samples in your

data, model you are using, etc.). A very commonly used ratio is an 80:20 split, where 80% is

allocated for training/validation and 20% for testing.

Figure 4: Dataset Split Ratio 80:20 [2]

The Model

Machine learning systems are generally split into four main categories: supervised, semi-

supervised, unsupervised, and reinforcement learning. These categories are classified based on

the amount of human interaction that the systems receive during training. Classification and

regression are typical supervised learning tasks. Supervised learning provides a powerful tool to

classify and process data.

Classification vs Regression models:

1. Classification model: Is image a dog? A classification model predicts discrete values. It

partitions the space of predictor variables into regions. Each region is assigned one of the

output classes.

2. Regression model: What is the probability a user will click on this add? A regression

model predicts continuous values.

Training data that is fed into classification models that includes the desired solutions, are

called labels. A label is the what we’re predicting or the y-variable, and a feature is the input or

 7

the x-variable. The model is what defines the relationship between these features and labels.

Having built a model from the data, you can use it to classify new observations. This just

requires calculating the features of the new observations and determining which region of the

predictor space they are in.

Building the Model:

There are serval types of supervised learning algorithms used in building classification

models. Listed below are a few of the more popular supervised learning algorithms:

1. K-Means Clustering: Is a method of vector quantization, where its goal is to partition n

observations into k clusters in which each observation belongs to the cluster with the

nearest mean. The goal to minimize the distance between each point in the scatter cloud

and the assigned centroids. For each cluster centroid, there exists a group of points

around it, known as the center.

Figure 5: K-means clustering equation [9]

2. Linear Regression: A supervised machine learning algorithm where the predicted output

is continuous and has a constant slope.

Linear Regression equation: y1 = b + w1x1

where:

y1 is the predicted label (the desired output)

 8

 b is the bias (the y-intercept), sometimes referred to as w0.

w1 is the weight of feature 1

*Weight is the same concept as the "slope" m in the traditional equation of a line.

x1 is a feature (a known input)

3. Logistic Regression: A classification algorithm used to assign observations to a discrete

set of classes. It transforms its output using the logistic sigmoid function to return a

probability value which can then be mapped to two or more discrete classes.

4. Support Vector Machines (SVMs)

a. Binary support vector machine (SVM)

Evaluating the Model:

To quantify the process on any model a performance measures needs to be defined and

calculated. The model's predictions tell us how well the model performs on new data. Accuracy

is one metric for evaluating classification models, this is achieved by calculating the proportion

of correct predictions by dividing the number of correct predictions by the total number of

predictions.

Another commonly used metric to evaluate a model is misclassification rate. The

misclassification rate is a calculation of the proportion of incorrect predictions. Since classes are

not always equally distributed in either the training or test data. Loss has been determined as less

bias measure of misclassification because it incorporates the probability of each class in the

calculation that is based on the distribution in the data.

Accuracy and misclassification metrics only give a single value for the overall

performance of the model. To see a more detailed breakdown a confusion matrix can be used as

 9

well. A confusion matrix will show the number of observations for each combination of true and

predicted class. All four MATLABÒ functions can be visualized in the table below:

Accuracy

Function

accuracy = sum(iscorrect)/numel(predictions)

Misclassification

Rate function

notcorrrect = (predictions ~=

testdata.Character);

misclassrate =

sum(notcorrrect)/numel(predictions);

Confusion

Matrix

confusionchart(testdata.Character,predictions);

Test Loss loss(model,testdata)

 Table 1: Evaluating the Model

I.III Deep Learning

Deep learning (DL) at its very basic level is a machine learning technique that teaches a

computer to filter inputs through layers in order to learn by example in order to predict and

classify information. Deep learning is inspired by the way that the human brain works and filters

information. For a system to learn from or process data similar to a human, it needs to

understand the data at an abstract level. A human mind can use abstract features of variation and

other external factors such as viewing angle, smells etc. in order to classify the given

information.

 10

 DL is a sub-branch of ML, meaning that it also has a set of learning algorithms that can

train and learn on. More specifically DL is powered by neural networks. A neural network is

computing system inspired by a mathematical model of a biological neuron. These networks

"learn" to perform tasks by considering examples, generally without being programmed with

task-specific rules.

Activation functions are mathematical equations that determine the output of a neural

networks.

Figure 6: Activation functions used in neural networks [10]

 There are many different types of neural networks implement today. Below there are

some visual representation of important types of neural networks.

Figure 7: A Feedforward Neural Network [14]

 11

Figure 8: Single-layer Perceptron [11]

Figure 9: Multi-layer Perceptron [11]

1. Inputs are fed into the perceptron

2. Weights are multiplied to each input

3. Summation and then add bias

4. Activation function is applied

5. Output is either triggered

 12

Figure 10: Convolutional Neural Network (CNN) [12]

Figure 11: A Pre-Trained CNN that can be used for Classification [13]

II. CHAPTER: OBJECTIVES

American Sign Language (ASL) fundamentally facilitates communication in the deaf

community. Over 5% of the world's population – or 466 million people – has disabling hearing

loss. It is estimated that by 2050 over 900 million people – or one in every ten people – will have

disabling hearing loss [2].

 13

The main objective of my thesis was to research and discuss the field of data science,

peculiarly pertaining to development of an object recognition application using MATLABÒ IDE.

Based on personal motivation to create an application that could have a positive social impact on

the deaf community. Aiding in the ability of communication with the help of a simple portable

application makes the research and development of ASLtranslate not only significant but also

essential.

III. CHAPTER: CURRENT SYSTEMS

 When I first started the development of ASLtranslate there were no other applications

like ASLtranslate it on the market. Over the past few months more developers that have begun to

emerge with similar applications. One being “deeplens-asl”, an American Sign Language

alphabet classifier. It was trained using transfer learning from squeezeNet with 18 layers. The

data used for this training was collected using Amazon SageMaker. SageMaker took images one

user at a time, using their input to capture and label the image. The data collected from this tool

consisted of all alphabets but had to use special signs for letters ‘j’ and ‘z’ as the classifier could

not train the model using their special characters. Due to this, the final model can also only

detect these two letters if the user uses these special signs for these letters.

Deeplens-als’s final model could classifies ASL alphabet gestures, but with only with

40% accuracy. The application uses amazon’s device stream to get input. The input videos for

this application needs to account for a couple of caveats. This includes having to go slower if

there are words with repeating letters like “letter” for it to detect the two “tt” apart and also

having to wait between words for the classifier to complete detecting the previous letter. If the

pictures have an almost white background, with only the signs visible in the images, it can

classify the gestures with higher level of accuracy.

 14

IV. CHAPTER: HISTORY

IV.I Machine Learning, Computer Vision, Deep Learning

Major breakthroughs during the in the nineteenth century include the work of Thomas

Bayes, which led Pierre-Simon Laplace to define Bayes’ Theorem in 1812. Adrien-Marie

Legendre also developed the Least Squares method for data fitting in 1805. Andrey Markov

described analysis techniques later called Markov Chains in 1913. These techniques and many

more are all fundamental to modern day machine learning.

In the late 1940s the development of stored-program computers began to advance. On

June 21st, 1948, at Manchester University, shortly after 11 o'clock in the morning, the world's

first stored-program electronic digital computer successfully executed its first program [3].

Stored-program computers hold their instructions or programs in the same memory used for data.

Instructions could now be stored in memory and executed in sequence referencing the data

values it needs on which to operate.

Alan Turing, was a British mathematician, widely known for the contribution he made to

code-breaking efforts during the 2nd World War in 1947. Published a paper in 1950 entitled

“Computing Machinery and Intelligence”, in which he asks the still relevant question ‘Can

machines think?’ [4]. The paper is based on a growing understanding of the overall power of

computers. The paper represents one of the first attempts to describe how artificial intelligence

(AI) could be developed. It famously discussed a test called the “Turing Test”, an imitation game

that could determine whether a computer was intelligent or not.

 In 1951 Marvin Minsky and Dean Edmonds built a computer-based simulation based on

the way organic brains works, and what would soon become known as the first artificial neural

network SNARC. The Stochastic Neural Analog Reinforcement Computer (SNARC) learned

 15

from experience and was used to search a maze, like a rat in a psychology experiment. It was

built along connectionist principles, representing a mind as a network of simple units within

which intelligence may emerge.

Arthur Lee Samuel came up with the term Machine learning in 1952, and later

popularized it. He developed a computer program for playing checkers in the 1950’s. The

program used a minimax strategy to compute the next move, which is the basis of minimax

algorithm. To optimize the program by using ML techniques involving reward functions and

move history, allowing the program to learn and become better.

In 1957, Dr. Frank Rosenblatt of Cornell Aeronautical Laboratory combined Hebbian

theory of brain cell interactions and Arthur Samuel’s Machine Learning research to create the

first perceptron. The perceptron that was originally designed for the IMB 704, was installed in a

custom-built machine that was called the “Mark 1 Perceptron” designed to process images. The

perceptron seemed promising as the first successful neurocomputer, unfortunately it fell short

and couldn’t recognize many kinds of visual patterns. This caused a lot of frustration and many

say stalling neural network and machine learning research.

In the 1960s, the breakthrough of multilayers networks that provided a new path for

neural network research. It was discovered that providing and using two or more layers in a

perceptron would significantly increase the processing power of the perceptron then just using

one single layer. In 1965, Alexey Grigoryevich Ivakhnenko and Valentin Grigorʹevich Lapa,

were amongst the earliest to start developing these types of Deep Learning algorithms. They

used models with polynomial activation functions, that were analyzed statistically. From each

layer, the best statistically chosen feature could be selected then provided as input to the next

layer, all done manually.

 16

 During the 1970’s the first AI winter kicked in, the result of promises that couldn’t be

kept. During the 1950’s and 1960s there were enormous enthusiasm for AI research, but people

became disillusioned when enormous breakthroughs didn't happen. By the 1970 the failure of

machine translation and overselling AI's capabilities led to reduced funding. Along with the

publishing of the 1973 Lighthill report, which stated that AI’s most prominent algorithms of the

time would not work against real world problems.

Even with the lack of funding, some researchers continued the work, which resulted in

the development of CNN. In, 1979 Kunihiko Fukushima first developed Neocognitron, an

artificial neural network (ANN) that inspired the development of CNN’s. He designed the

network using multiple pooling layers and convolutional layers. This design allowed the system

to “learn” and recognize visual patterns. Neocognitron was the first NN that was specifically

built for solving CV problems. Many of its concepts are still in use to this day, such as its

selective attention model, which simulates what humans do while multitasking.

In 1995, Corinna Cortes and Vladimir Vapnik published a paper entitled “Support-Vector

Networks”, in which they introduced a type of learning machine named the support-vector-

network or support-vector-machines (SVMs). SVMs quickly became a widely used algorithm

because it could be used with simple models with features specific to a task, making it both cost

effective and easier to understand comparatively.

In 2012, Alex Krizhevsky released AlexNet which was a version of a LeNet5 with a

deeper and much wider architecture. AlexNet, a deep Convolutional Neural Network designed to

use of rectified linear units (ReLU) as non-linearities, and a dropout technique to selectively

ignore single neurons during training as a way to avoid overfitting of the model, and overlapping

max pooling, avoiding the averaging effects of average pooling.

 17

IV.II MATLABÒ

The first version of MATLABÒ was developed by Cleve Moler as a hobby project. This

version of MATLABÒ was a simple interactive matrix calculator based on research papers

published between 1965 and 1970 by J.H. Wilkinson and his colleagues. Between 1979 and

1980, he was teaching a graduate course on Numerical Analysis at Stanford. In this course, he

introduced his students to MATLABÒ, which became an instant hit. One of his student’s friends,

Jack Little, adopted MATLABÒ for his work and realized that MATLABÒ could have

commercial value.

In 1983, Jack Little proposed the creation of a commercial MATLABÒ. Then, Jack Little

and Steve Bangert worked on MATLABÒ and added many things including functions, graphics

and toolboxes. First named, PC-MATLAB, a commercial version of MATLABÒ was debuted in

December 1984 at an IEEE conference. Then a year later, Pro-MATLAB was debuted for Unix

systems. They were also the core component of SimulinkÒ, a MATLABÒ companion for

simulation and model-based design. MATLABÒ introduced sparse matrices and cell arrays in

1992 and 1996. Then 2000, MATLABÒ desktop was released.

Since then, MATLABÒ started evolving steadily. MATLABÒ originally had only one

datatype, which was the IEEE Standard 754 double-precision floating point. In the early 2000s,

MATLABÒ started introducing more datatypes. By 2007, they had introduced single precision,

three unsigned datatypes, three signed datatypes, and a logical datatype.

IV.II.I MATLABÒ Data Science Toolbox Release Dates

 18

As of 2020, MATLABÒ has 63 different add-on toolboxes, that includes the data science

focused packages, object-oriented programming capabilities, and parallel computing toolboxes.

For the research and development of this thesis I used the following MATHLABÒ toolboxes,

Image Processing ToolboxÔ, Statistics and Machine Learning ToolboxÔ, Computer Vision

ToolboxÔ, Deep Learning ToolboxÔ, and Parallel Computing ToolboxÔ. The first year

MathWorks released those Toolboxes for MATLABÒ can be viewed in the table below.

Toolbox Release Date

Parallel Computing ToolboxÔ 2011

Image Processing ToolboxÔ 2013

Computer Vision ToolboxÔ 2013

Deep Learning ToolboxÔ 2013

Statistics and Machine Learning ToolboxÔ 2014

Table 2: MATLABÒ Data Science Toolbox Release Dates

V. CHAPTER: DESIGN OF ASLtranslate

Figure 11: Designing an object recognition algorithm to identify ASL hand gesture

 19

V.I Methodology and Approach

 In computer science, there is a phrase that is frequently used “garbage in, garbage out”.

This phrase describes a simple yet an important concept you must consider during the

constructing of any ML model. If your input data is flawed, or garbage, chances are your output

is going to be garbage too [5]. The quality of the data used plays a significant part on the

accuracy of your model. For this reason, I spent a considerable amount of time selecting the right

input image data to use. I based this decision on two key factors, quantity and quality.

After much consideration, the image dataset I used for the implementation of

ASLtranslate was found on Kaggle. Originally, the dataset contained a collection of images of

the ASL alphabets, that had been separated in 29 folders which represent various classes. The

training dataset contained 87,000 8-bit digital 2D color images that are 200x200 pixels, with 29

classes, of which 26 are for the letters A-Z, and 3 classes for SPACE, DELETE and NOTHING.

The test dataset contained only 29 images, to encourage the use of real-world test images. [6]

 After downloading the dataset and going through the images, I determined that in order

to successfully train my model I needed to modify some of the data first. I applied an essential

ML tool called data cleaning. In the context of machine learning, data cleaning means filtering

and modifying your data such that it is easier to explore, understand, and model. Filtering out the

parts you don’t want or need so that you don’t need to look at or process them. Modifying the

parts, you do need but aren’t in the format you need them to be in so that you can properly use

them [7]. A visualization of the ASLtranslate dataset architecture I used for both versions can be

view below.

 20

Figure 13: ASLtranslate image datasets architecture

V.I.I ASLtranslate (I)

The newly cleaned datasets were then uploaded into a MATLAB_R2019 project I named

ASLtranslate (I). These images were used to create an ALS alphabet database or what is referred

to as a gallery of images, and the data that will be used for classification. The first thing I needed

to accomplish was to have the ability to easily view and manage the images contained within

each file folder. In order to do this, I defined each imported folder as “collections of images” by

applying MATLABÒ imageSet method. This method not only returns an object for storing

collections of images it also constructs the images into arrays. Additionally, this method

automatically creates labels derived from the names of directory. These labels become a crucial

part of what is needed for feature extraction and also the classification the images.

 21

>> { imgSets.Description }

ans =

 1×26 cell array

 Columns 1 through 16

{'A'} {'B'} {'C'} {'D'} {'E'} {'F'} {'G'}

{'H'} {'I'} {'J'} {'K'} {'L'} {'M'} {'N'}

{'O'} {'P'}

Columns 17 through 26

{'Q'} {'R'} {'S'} {'T'} {'U'} {'V'} {'W'}

{'X'} {'Y'} {'Z'}

Table 3: Results after applying the imgSets method to the dataset

Figure 14: One randomly selected image from each labeled image set

 22

Figure 15: Montage of all 3000 A’s within the ASLtranslate database

The next step was to partition the data into training and validation sets. I separated the

sets using 30% of the images for training and the remanding 70% for validation. Then to further

avoid biasing the results I also randomized the data split.

To be able to detect the input images and translate them from 2D images of hand gestures

into character letters, I first transformed the images into a visual vocabulary. Then used the

 23

newly created visual words to train my image classifier to predict what each input images

contained. This was accomplished by using a technique called bag-of-words (BOW) or rather

bag-of-visual-words (BOVW). The BOW technique was adapted to computer vision from the

world of natural language processing. During the process of BOW a count is made of how many

times each word appears within a document, then the frequency of each word is used to create

keywords of the document. To visualize the frequency distribution of these occurrences a bar-

type graphical display is often used called a histogram. This same concept can be applied for

image classification and object recognition problems and is referred to as BOVW. The same

general methods are applied but instead of “words” being extracted from documents “features”

are extracted from images. The BOVW process is commonly used for image classification and

detection.

Figure 16: A Histogram of visual words [8]

 24

Since images of hand do not actually contain any discrete words, you first have to

construct a “vocabulary” of visual words. This is done by extracting feature descriptors from all

representative images in each category. Feature extraction is a type of dimensionality reduction,

a process of reducing the number of random variables under consideration by obtaining a set of

only the principal variables, that efficiently represents the interesting parts of an image as a

compact feature vector. To extract the features, I applied the feature detector method called

Speeded Up Robust Features (SURF). In order to find principal points or keypoints within the

defined images and then encode the information around these points as feature vectors. Then the

visual vocabulary is constructed by reducing the number of feature vectors through quantization

of feature space by utilizing K-means clustering.

Figure 17: Extracting visual words from training images [9]

This process was accomplished with a single call to the bagOfFeatures function in

MATLAB_R2019a.

1. Extract SURF features from all the images in the training sets

2. Construct a visual vocabulary by reducing the number of features through

quantization of feature space using K-means clustering.

3. Provide an encoding method for counting visual words occurrences in images that can

be visualized as a histogram

 25

11 % Bag-of-Features

12 bagOfFeatures(trainingSets);

Table 4: Single call to the bagOfFeatures method in MATLAB_R2019a

The bagOfFeatures function also provides an encoded method for counting the

visual word occurrences in the images, that is shown below. The histogram it produces becomes

the new and reduced representation of the images. Encoded training images from each of the

alphabet categories are then fed into a classifier training model that is invoked by a built-in

image category classifier function, called trainImageCategoryClassifier.

Figure 9: Histogram of the occurrences of visual words in image “A”

The ImageCategoryClassifier function returns an image classifier. The function

trains a multiclass classifier using the error-correcting output codes (ECOC) framework with

binary support vector machine (SVM) classifiers. The function utilizes the encoded method of

 26

the bag object to formulate feature vectors representing each image category. This formulate

feature vectors representing each image category extracted from the trainingSets array of

imageSet objects. The function is a built-in function from MATLABÒ Statistics and Machine

Learning ToolboxÔ.

 Once the classifier finished training, I invoked the ImageCategoryClassifier

again, this time to evaluate the performance of the classifier. Using a confusion matrix as a way

to visualization of the performance the algorithm, and to obtain the average accuracy scores.

* Finished evaluating all the test sets.

* The confusion matrix for this test set is:

PREDICTED
KNOWN | A B C D

A | 0.94 0.06 0.00 0.00
B | 0.01 0.99 0.00 0.01
C | 0.00 0.00 1.00 0.00
D | 0.00 0.00 0.00 1.00

* Average Accuracy is 0.98.

V.I.II ASLtranslate (II)

 The initial methods and approaches to ASLtranslate (II) were the same as the original

implementation. I used and uploaded the same cleaned datasets into a MATLAB_R2019 project

that I named ASLtranslate_II. To manage and access the image datasets I created an image

datastore object. The datastore, is repository for collections of the image files that are too large to

fit in memory. This allows you to read and process data stored in multiple files as a single entity,

the data isn’t imported until it is needed. The function also creates the label names derived from

the folder names. This method saved considerable about of time and effort in running the new

application.

 27

 Transfer learning (TL) is a commonly used technique in deep learning applications. It is

the method where a model or a network is developed for a task, then is reused as the starting

point for a different model on a second task. Taking a pretrained network and use it as a starting

point, fine-tuning the network with transfer learning is usually much faster and easier than

training a network with randomly initialized weights from scratch.

Pre-trained learning models that you can use directly with MATLABÒ:

> NASNet-Large

> ShuffleNet

> Places365GoogLeNet

> MobileNet-v2

> Xception

> DenseNet-201

> SqueezeNet

> ResNet-18

> ResNet-50

> ResNet-101

> Inception-v3

> Inception-ResNet-v2

> VGG-16

> VGG-19

> GoogLeNet

> AlexNet

AlexNet has been trained on over a million images and can classify images into 1000 object

categories. The network has learned rich feature representations for a wide range of images. The

network takes an image as input and outputs a label for the object in the image together with the

probabilities for each of the object categories. AlexNet is one of the leading architectures for

object-detection tasks, it has a comparatively simple architecture that makes it easy to modify

and re-train, overall it was perfect choice for ASLtranslate.

TL with AlexNet was the main approach in constructing ASLtranslate (II). A depiction of

the typical workflow I used while applying the transfer learning process in MATLABÒ can be

viewed below.

 28

Figure 19: Transfer Learning Workflow [13]

 After the datastore had been created I split the data into the training and validation sets.

Use 70% of the images for training and 30% for validation. I used the split Each Label function

that splits the images datastore into two new datastores. Then to further avoid biasing the results

I also randomized the datastore split.

Next, I loaded the pre-trained network AlexNet to start the process of fine-tuning the

network for classification. I used a analyze Network call in the command window to display an

interactive visualization of the network architecture that shows detailed information about the

network and layers called in order and in real-time. Then I opened the interactive drag-and-drop

network designer by calling deep Network designer from the command line.

The last three layers of the pretrained network AlexNet are configured for 1000 classes,

and ASLtranslate has 26 classes. To start classifying the new images I need to edit the pretrained

network by replacing the final layers with new layers adapted to your new dataset. First, extract

all layers except the last three, from the pretrained network. You want the number of classes to

match your data, and the output size to match the number of class in your data.

 29

Then, I transferred the layers to the new classification task by replacing the last three

layers with a fully connected layer, a SoftMax Layer, and a classification output layer.

Specifying, the options of the new fully connected layer according to the new data. Set the fully

connected layer to have the same size as the number of classes in the new data. I also increased

both the weights and bias values to help the model learn faster.

AlexNet requires input image sizes to be 227-by-227-by-3, and the images in the ASL

datastore are 200-by-200-by-3. So, before you can train the network you need to augment the

image datastore first with an image augmenter function. This will automatically resize the

images in the datastores, randomly flip the images along the vertical axis, and then randomly

translates them up to 30 pixels horizontally and vertically. The image augmenter function also

helps prevent the network from overfitting and memorizing the exact details of the training

images.

To perform transfer learning in MATLABÒ, you need to create three components:

1. An array of layers representing the network architecture. For transfer learning, this is

created by modifying a pre-existing network.

2. Images with known labels to be used as training data. This is typically provided as a

datastore.

3. A variable containing the options that control the behavior of the training algorithm.

These three components are provided as the inputs to the trainNetwork function which
returns the trained network as output.

 30

Figure 20: Three components you need to perform transfer learning

VI. CHAPTER: RESULTS

VI.I Obstacles

During the different stages of development, I repeatedly tried and failed to process all the

data simultaneously on my local computer. One of the biggest problems that continually emerged

was memory limitations and allocation. When initiating the bag-Of-Feature function on all of the

78,000 images in the data, the system attempts to extract 1,500,000 features from the images,

then cluster 80% of those strongest features, to create a 500-word visual vocabulary.

Causing the following results:

1. Program runtime extending the span between 12- 15 hours before timing out and crashing

MATLABÒ then restarting my local computer

2. Program would time out and crash at initial runtime, closing out MATLABÒ and

restarting local computer

 31

To try to rectify this problem I uploaded my entire ASL image dataset into MATLABÒ

cloud-based storage location MATLABÒ Drive. In theory the cloud-based drive allows you to

securely store and then access your files from anywhere. The drive runs outside of MATLABÒ

and is accessed from the notification area on your computer. With a current software license

MATLABÒ offers up to 5GB of free storage. This was not the solution to the memory allocation

problems the application was experiencing.

MATLABÒ Drive had the following results:

1. Maximum upload file-size allowed is only 256MB. Since, the ASL data went over the

max at 1.27GB, data couldn’t be directly uploaded into cloud storage.

2. To be able to download file sizes larger than 256MB into the cloud I had to install more

software, called MATLABÒ connector.

3. After downloading 2 new software packages I was still unable to access the images

within MATLAB script or from a command line prompt.

In an attempt to improve the overall performance and runtimes while running my

application I downloaded MATLABÒ Parallel Computing ToolboxÔ. The parallel computing has

the potential processing power of multicore desktops by executing applications on workers that

run locally.

MATLABÒ Parallel Computing ToolboxÔ results:

1. Parallel pools can only be started if pools were available. Which are often not.

2. Once a pool was activated, you are given 30-minute increments of time, and have to keep

re-activate the session. If a session expires during compiling the parallel feature becomes

inaccessible.

 32

The MATLABÒ toolboxes and features I was attempting to use during development were so

new I found it challenging to find information to help with troubleshooting. The machine learning

and deep learning features that I wanted to use had only been released in 2019. Many programing

languages and methods of doing things have been around for much longer, making community

and collaborative learning more accessible. To overcome this obstacle, I enrolled in two of

MATLABÒ online certificate courses, “Deep Learning Onramp” and “Machine Learning

Onramp”.

VI.I.II ASLtranslate (1) results

Since the process to iterate through all of the data did not seem obtainable at the time, I

decided to scale the data and streamline the process. I reduced the data down to contain only the

ASL images of [A, B, C, D], each letter class containing 3000 images, 12,000 images in total.

The results below have been obtained using the scaled data only.

 33

Figure 21: Input image ASL gesture “A” Output alphabet character A
ASL gesture “B” Output alphabet character B
ASL gesture “C” Output alphabet character C
ASL gesture “D” Output alphabet character D

 34

VI.I.II ASLtranslate (II) Results

 After discovering how to properly manage and allocate large amounts of data on my local

computer through the use of a datastore. Finishing the second version of ASLtranslate was

relatively simple by comparison to my fist attempt.

Figure 22: ASLtranslate (II) Workspace after completion of Transfer learning

 35

Figure 23: Four sample validation images with their predicted labels

 36

Figure 24: Training Progress

Training accuracy: Classification accuracy on each individual mini batch

Smoothed training accuracy: Smoothed training accuracy, obtained by applying a smoothing

algorithm to the training accuracy

Validation accuracy: Classification accuracy on the entire validation set

Training loss, smoothed training loss, and validation loss: The loss on each mini batch, its

smoothed version, and the loss on the validation set

 37

VII. EVALUATION AND DISCUSSION

In 2017, MathWorks started releasing MATLABÒ new data science toolboxes included

Statistics and Machine LearningÔ, Deep LearningÔ, Image ProcessingÔ, and

Computer VisionÔ. Over the past few years and with the release of its newest updated version

R2020a, I feel that MATLABÒ is a viable option for data science and computer science

engineers. MATLABÒ can definitely be utilized for development of computer vision, machine

learning, deep learning, and object recognition applications. More specifically, for the future and

further development of the object recognition application ASLtranslate, I believe it would have a

positive social impact on the deaf community.

VII.I Future Development of ASLtranslate

Currently ASLtranslate (I) and ASLtranslate (II) are both considered to be in the

functional prototype phase of development. I constructed both versions as a proof of concept for

the research and development of this thesis. In the future I am planning on further development

of ASLtranslate and bringing the application to completion.

 38

APPENDIX A: ASLtranslate Source Code
../handDB.m
% ASLtranslate
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: American Sign Language translator
% Main function

% Store the output in a temporary folder
outputFolder = fullfile(tempdir, 'aslOutput');

% Load Images into a database
handDatabase = fullfile(outputFolder ,'asl_alphabet_train', 'recursive');

% All the “A” images in the gallery A
%figure;
%montage(handDatabase(1).ImageLocation);
%title('Motage of all the A within our database')

rootFolder = fullfile(outputFolder, 'ALS_ObjectCategories');

%Construct arrays of image sets
imgSets = [imageSet('asl_alphabet_train/A'), ...
 imageSet('asl_alphabet_train/B'), ...
 imageSet('asl_alphabet_train/C'), ...
 imageSet('asl_alphabet_train/D'),...
 imageSet('asl_alphabet_train/E'), ...
 imageSet('asl_alphabet_train/F'), ...
 imageSet('asl_alphabet_train/G'), ...
 imageSet('asl_alphabet_train/H'), ...
 imageSet('asl_alphabet_train/I'), ...
 imageSet('asl_alphabet_train/J'), ...
 imageSet('asl_alphabet_train/K'), ...
 imageSet('asl_alphabet_train/L'), ...
 imageSet('asl_alphabet_train/M'), ...
 imageSet('asl_alphabet_train/N'), ...
 imageSet('asl_alphabet_train/O'), ...
 imageSet('asl_alphabet_train/P'), ...
 imageSet('asl_alphabet_train/Q'), ...
 imageSet('asl_alphabet_train/R'), ...
 imageSet('asl_alphabet_train/S'), ...
 imageSet('asl_alphabet_train/T'), ...
 imageSet('asl_alphabet_train/U'), ...
 imageSet('asl_alphabet_train/V'), ...
 imageSet('asl_alphabet_train/W'), ...
 imageSet('asl_alphabet_train/X'), ...
 imageSet('asl_alphabet_train/Y'), ...
 imageSet('asl_alphabet_train/Z')];

% Split the database into validation and training sets

 39

% 30% for training and 70% for validation
[trainingSets, validationSets] = partition(imgSets, 0.3, 'randomize');

% Training set Validation
A = read(trainingSets(1),1);
B = read(trainingSets(2),1);
C = read(trainingSets(3),1);
D = read(trainingSets(4),1);
%E = read(trainingSets(5),1);
%F = read(trainingSets(6),1);
%G = read(trainingSets(7),1);
%H = read(trainingSets(8),1);

%figure
subplot(3,4,1);
imshow(A)
subplot(3,4,2);
imshow(B)
subplot(3,4,3);
imshow(C)
subplot(3,4,4);

../features.m
% ASLtranslate
% Author: Andrea Murphy
% Date: Spring 2020
%%% Using Bag-of-features to
%%% Extract SURF features from all images
%%% Constructs the visual vocabulary by reducing
%%% the number of features through quantization of feature
%%% space using K-means clustering

% Bag-of-Features
bag = bagOfFeatures(trainingSets);

../histVect.m
% ASLtranslate
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Histogram of the occurrences of visual words in an image

img = read(trainingSets(1),1);
featureVector = encode(bag, img);

% Plot the histogram of visual word occurrences
figure
bar(featureVector)
title('Visual Word Occurrences or Features')
xlabel('Visual Word Index')
ylabel('Frequency of occurrence')

../trainCLF.m
% ASLtranslate
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Training process invoked by the trainImageCategory function
 % That relies on a Support Vector Machine(SVM)

 40

categoryClassifier = trainImageCategoryClassifier(trainingSets, bag);

% Evaluates the classifier performance
confMatrix = evaluate(categoryClassifier, trainingSets);

../valCLF.m
% ASLtranslate
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Evaluate the classifier on the validationSet

confMatrix = evaluate(categoryClassifier, validationSets);

% Compute average accuracy
mean(diag(confMatrix));

../predict.m
% ASLtranslate
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Using the trained classifier to categorize and predict
 % new images

% img = imread('asl_alphabet_test/a1_test.jpg');
% img = imread('asl_alphabet_test/B_test.jpg');
% img = imread('asl_alphabet_test/C_test.jpg');
 img = imread('asl_alphabet_test/D_test.jpg');

[labelIdx, scores] = predict(categoryClassifier, img);

% Display the string label
categoryClassifier.Labels(labelIdx)

figure;
imshow(img); hold on
xlabel((ans),'FontSize',20,'FontWeight','bold','Color','r');
title('Test Image', 'FontSize',20,'FontWeight','bold')
hold off;

 41

APPENDIX B: ASLtranslate II Source Code
../aslData.m
% ASLtranslate II
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: American Sign Language translator
% DESC: Creating a Datastore

% Importing the training images by creating a datastore
aslDS = imageDatastore('asl_alphabet_train',...
'IncludeSubfolders',true,...
'LabelSource','foldernames');

% Split Data in the datastore for training and validation
[aslTrain,aslValidation] = splitEachLabel(aslDS,0.7,"randomized");

../AlexNet.m
% ASLtranslate II
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Modifying AlexNet a pre-trained CNN to use a classification model
 % for ASLtranslate

net = alexnet;
inputSize = net.Layers(1).InputSize;

% Replace the final layers of the pretrained network
% fine-tuned last 3 layers for the new classification problem
layersTransfer = net.Layers(1:end-3);

% change the number of classes to match your data
numClasses = numel(categories(aslTrain.Labels));

% Transfer the layers to the new classification task
% by replacing the last three layers with a fully connected layer
% a softmax layer, and a classification output layer
layers = [
 layersTransfer

fullyConnectedLayer(numClasses,'WeightLearnRateFactor',20,'BiasLearnRateFacto
r',20)
 softmaxLayer
 classificationLayer];

../trainCNN.m
% ASLtranslate II
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Training the Network

 42

% set training parameters
options = trainingOptions('sgdm', ...
 'MiniBatchSize',10, ...
 'MaxEpochs',6, ...
 'InitialLearnRate',1e-4, ...
 'Shuffle','every-epoch', ...
 'ValidationData',augValidation, ...
 'ValidationFrequency',3, ...
 'Verbose',false, ...
 'Plots','training-progress');

% Perform training
netTransfer = trainNetwork(augTrain,layers,options);

../resize.m
% ASLtranslate II
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: preprocessing all images to fit AlexNet input requirements of:
 % [227 227 3]

% Data augmentation helps prevent the network from overfitting
% Along with ensuring the input images match the requirements
pixelRange = [-30 30];
imageAugmenter = imageDataAugmenter(...
 'RandXReflection',true, ...
 'RandXTranslation',pixelRange, ...
 'RandYTranslation',pixelRange);
augTrain = augmentedImageDatastore(inputSize(1:2),aslTrain, ...
 'DataAugmentation',imageAugmenter);

% Resize the validation images
augValidation = augmentedImageDatastore(inputSize(1:2),aslValidation);

../classCNN.m
% ASLtranslate II Using AlexNet
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Classify the test images using the fine-tuned network

[YPred,scores] = classify(netTransfer,augTest);

% Displays four random sample images with their predicted labels
idx = randperm(numel(aslTest.Files),4);
figure
for i = 1:4
 subplot(2,2,i)
 I = readimage(aslTest,idx(i));
 imshow(I)
 label = YPred(idx(i));
 title(string(label));
end

../evCNN.m
% ASLtranslate II

 43

% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Evaluate and test performance

plot(info.TrainingLoss)

YValidation = aslTest.Labels;
accuracy = mean(YPred == YValidation);

aslActual = aslTest.Labels;

% nnz==non-zero elements in an array
numCorrect = nnz(YPred == aslActual);
fracCorrect = numCorrect/numel(YPred);

../matrix.m
% ASLtranslate II
% Author: Andrea Murphy
% Date: Spring 2020
% DESC: Visualizations of the performance of the ASLtranslate algorithms

figure
cm = confusionchart(YPred, YValidation);

 44

ENDNOTES

1 MATHLAB Engine API enable execution of MATLABÒ in another programming environments. Currently
available for: C/C++, Fortran, Java, Python, and C#.

 45

LIST OF REFERENCES

[1] Retrieved March 29, 2020 from
https://matlabacademy.mathworks.com/R2019b/portal.html?course=machinelearning

[2] Tarang Shah. 2017. About Train, Validation and Test Sets in Machine Learning. (December
2017). Retrieved May 1, 2020 from https://towardsdatascience.com/train-validation-and-test-
sets-72cb40cba9e7

[2] Deafness and hearing loss.(March 1, 2020) Retrieved April 9, 2020 from
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

[3] The Manchester Baby, the world's first stored program computer, ran its first program.
Retrieved April 21, 2020, from http://www.computinghistory.org.uk/det/6013/The-Manchester-
Baby-the-world-s-first-stored-program-computer-ran-its-first-program

[4] A. M. 1950. I.-COMPUTING MACHINERY AND INTELLIGENCE. (October 1950).
Retrieved April 10, 2020 from https://academic.oup.com/mind/article/LIX/236/433/986238

[5] Garbage in, garbage out. (June 2019). Retrieved September 10, 2019 from
https://en.wikipedia.org/wiki/Garbage_in,_garbage_out

[6] Akash. 2018. ASL Alphabet. (April 2018). Retrieved September 10, 2019 from
https://www.kaggle.com/grassknoted/asl-alphabet

[7] George Seif. 2018. Retrieved April 7, 2020, from https://towardsdatascience.com/the-art-of-
cleaning-your-data-b713dbd49726

[8] Bethea Davida. 2018. Retrieved April 2, 2020, from https://towardsdatascience.com/bag-of-
visual-words-in-a-nutshell-9ceea97ce0fb

[9] DataFlair Team. 2019. Data Science K-means Clustering - In-depth Tutorial with Example.
(May 2019). Retrieved May 2, 2020 from https://data-flair.training/blogs/k-means-clustering-
tutorial/

[10] Pawan Jain. 2019. Complete Guide of Activation Functions. (June 2019). Retrieved May 4,
2020 from https://towardsdatascience.com/complete-guide-of-activation-functions-
34076e95d044

[11] Nahua Kang. 2019. Introducing Deep Learning and Neural Networks - Deep Learning for
Rookies (1). (February 2019). Retrieved May 4, 2020 from
https://towardsdatascience.com/introducing-deep-learning-and-neural-networks-deep-learning-
for-rookies-1-bd68f9cf5883

 46

[12] Devjyoti Saha, Diptangshu De, Pratick Ghosh, Sourish Sengupta, and Tripti Majumdar.
2020. Classification of Gender from Human Facial Images using Convolutional Neural
Networks. (February 2020).

[13] Retrieved February 17, 2020 from
https://matlabacademy.mathworks.com/R2019b/portal.html?course=deeplearning

[14] Vikas Gupta. 2017. Home. (October 2017). Retrieved May 4, 2020 from
https://www.learnopencv.com/understanding-feedforward-neural-networks/

Retrieved March 10, 2020, from https://www.mathworks.com/vision/ug/image-classification-
with-bag-of-visual-words.html

Michael T. Rosenstein, Zvika Marx, Leslie Pack Kaelbling. To Transfer or Not to Transfer.
Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology
Cambridge, MA 02139

Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine Learning 20, 3
(1995), 273–297. DOI:http://dx.doi.org/10.1007/bf00994018

Geron Aurélien. 2017. Hands-on Machine Learning with Scikit-Learn & TensorFlow: Concepts,
Tools, and Techniques to build Intelligent Systems, Sebastopol: OReilly Media.

Abhishek Pandey. Pramod Rathore. Dr.S.Balamurugan. 2019. Machine Learning and Deep
Learning Algorithms: BPB Publications.

A Gentle Introduction to Object Recognition with Deep Learning. July 2019. Retrieved
September 9, 2019 from https://machinelearningmastery.com/object-recognition-with-deep-
learning

Dang Ha The Hien. 2017. The Modern History of Object Recognition - Infographic. (November
2017). Retrieved September 9, 2019 from https://medium.com/@nikasa1889/the-modern-
history-of-object-recognition-infographic-aea18517c318

Sumit Saha. 2018. A Comprehensive Guide to Convolutional Neural Networks - the ELI5 way.
December 2018. Retrieved September 9, 2019 from https://towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

trainImageCategoryClassifier. Retrieved September 10, 2019 from
https://mathworks.com/help/vision/ref/trainimagecategoryclassifier.html

Andreopoulos, Alexander & Tsotsos, John. 2013. 50 Years of object recognition: Directions
forward. Computer Vision and Image Understanding.117. 827–891. 10.1016/j.cviu.2013.04.005.

Thesis and Dissertation Guide. Retrieved September 9, 2019 from
https://gradschool.unc.edu/academics/thesis-diss/guide/

 47

Framing: Key ML Terminology | Machine Learning Crash Course. Retrieved April 1, 2020 from
https://developers.google.com/machine-learning/crash-course/framing/ml-terminology

2020. Object Detection vs Object Recognition vs Image Segmentation. (February 2020).
Retrieved April 3, 2020 from https://www.geeksforgeeks.org/object-detection-vs-object-
recognition-vs-image-segmentation/

Anon. Deep Learning. Retrieved April 4, 2020 from http://www.deeplearningbook.org/

	THE APPLICATION OF COMPUTER VISION, MACHINE AND DEEP LEARNING ALGORITHMS UTILIZING MATLAB
	Recommended Citation

	Microsoft Word - Thesis.docx

