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Abstract

Glacial troughs are flat-bottomed, steep-sided submarine valleys, which almost or entirely

incise the shelf, that significantly alter coastal circulation. A barotropic, linear, steady-state

model is used to quantify this alteration as a function of shelf geometry. These model results

demonstrate that troughs eject most of the shelf transport offshore to the slope. This offshore

ejection diminishes wind-driven alongshore transport downwave of the trough; downwave is

the direction of long coastal trapped wave propagation.

Offshore ejection is caused by bottom friction dissipating relative vorticity. Troughs

enhance offshore ejection by generating relative vorticity. This is because linear flows on an

f-plane (used in this model) follow isobaths to first order. Troughs on the shelf generate

relative vorticity through two means: the curving isobaths, which define the trough, steer

flows, creating a “flow curvature,” and the narrowed shelf, between the coast and trough,

accelerates the flow and creates a “flow shear.” The relative importance of these two trough-

induced mechanisms and a quantification of the net ejection is found with this model.

VI



1 Introduction

Glacial troughs are relatively deep, “u-shaped” submarine valleys that cross most of the

shelf. Troughs, which were usually formed by glaciation, are concentrated at high lati-

tudes: the shelves of the Arctic, Southern Ocean, Greenland, Norway, and others (Harris

and Whiteway 2011). How troughs modify coastal circulation is understudied in the existing

literature. However, research exists on how narrowing/widening shelves and river-carved

canyons modify coastal circulation (Pringle 2002; Williams, Gawarkiewicz, and Beardsley

2001; Allen and Hickey 2010; Chapman and Gawarkiewicz 2012). This literature demon-

strates that bathymetric control of coastal circulation is important. Extending this type of

research to the trough will improve theories of coastal circulation, such as how shelfbreak

jets and concentrated slope flows are formed (Chapman 1986; Fratantoni and Pickart 2007;

Greatbatch, Pal, and Ren 1995; Greenberg and Petrie 1988; Han et al. 2008).

Modification of shelf circulation by troughs has been observed. Circulation developed

throughout the Labrador Sea is modified by the complex bathymetry of the Laurentian

Channel; this channel is a significant trough that incises the entire shelf. This modified cir-

culation then flows over the Scotian Shelf in a way that is primarily modified by bathymetry

(Sandstrom 1980). Also, on the Norwegian Shelf there exists vibrant ecosystems and distinct

sediment distribution patterns; both features have been attributed to the shelf’s multiple

troughs (Buhl-Mortensen et al. 2012). These observations demonstrate the importance of

understanding trough-driven dynamics.

Trough-driven dynamics are modeled here with a barotropic, linear, steady-state model.

This model’s results will help researchers refine how the Mid-Atlantic Bight is modified by

the Laurentian Channel, how wind-driven circulation on the Greenland shelf is altered by

its numerous troughs, and other circulation patterns that are impacted by troughs.

Understanding how fjords impact coastal circulation will be improved with these results,

as fjords are a limit case of trough bathymetry. Whether fjord bathymetry steers shelf flows
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into or away from the coast is found here. Understanding the circulation of these regions

aids in predicting glacial mass-balances. This is because fjords often have sea-ice interfaces,

whose instabilities depend on which water masses (warm or cold) penetrate onshore to the

ice (Straneo et al. 2011).

A trough separates the shelf into two primary study regions: the shelf upwave of the

trough, and the shelf downwave. Downwave is the propagation direction of long coastal

trapped waves, which travels with shallows on the right in the northern hemisphere (Battisti

and Hickey 1984); upwave is the reverse direction. The effect of winds on shelf circulation at

any particular alongshore point is due to winds upwave of such flows. At some alongshore

point, the structure of a shelf flow is the consequence of all upwave forcing. Therefore, the

upwave shelf circulation is unaltered by the trough, whereas the downwave shelf circulation is

an adjusted state to the trough impact (Csanady 1978; Pringle 2002). This study determines

how a trough modifies an unperturbed upwave flow into an adjusted, downwave flow.

A wind-generated shelf flow is used as the unperturbed, upwave condition. By studying

how troughs modify this wind-generated flow into some downwave-adjusted state, we can

better understand the interaction between bathymetric and surface forcing on the shelf.

Furthermore, downwave winds are also modeled, in addition to this upwave wind-generated

flow that has no downwave wind forcing. By including these winds downwave of the trough,

this allows for a better understanding of how troughs modify wind-forced shelf circulation.

Wind forcing and subsequent shelf circulation is studied from the downwelling-favorable

orientation in this study. Analysis of the results will assume this direction when describing

how troughs modify shelf flows. This analysis shows how a trough moves streamlines across

isobaths from the shelf to the slope. An equally valid analysis of these results, given the

linear nature of this model, shows how troughs can upwell slope flows onto the shelf, in the

case of forcing/flows of the opposite orientation. This opposite perspective is explored in the

discussion/conclusions.
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2 Methods

2.1 The Conceptual Model

Circulation is modeled on an f-plane shelf (constant Coriolis frequency), where the y-axis

points alongshore north and positive x-axis points offshore east. This western boundary

shelf’s bathymetry is defined to include a trough, as seen in figure 1.

Waters on this shelf are assumed to be barotropic, i.e., the Rossby radius of deformation,
√
gH
f

(where g is gravitational acceleration, H is depth, and f is the Coriolis frequency),

is small compared to the cross-shore length scale of bathymetry variation (Pringle 2002).

Therefore, these results are applicable to either barotropic shelf waters or to barotropic

modes of a baroclinic shelf.

Circulation on this shelf is studied in the steady-state limit, which assumes that the flow

has fully adjusted to its forcing, and that the forcing itself is steady. Because wind-driven

flows are used, the timescale of adjustment is the frictional spin-down time: H
r

(Williams

and Carmack 2008), where r is the frictional parameter. For the model parameters chosen,

this timescale is of O(2-3 days) at the shelfbreak; beyond this timescale, flows are at a fully

adjusted steady-state.

Flows are assumed to be linear, or at small Rossby number, i.e., u
fL

<< 1, where u is the

velocity of flows and L is its length scale of variation. Because linear flows follow isobaths to

first order, a flow convergence occurs at the narrowed shelf between the coast and the trough

head. This convergence accelerates the flow towards a nonlinear regime. This model will

properly describe flows approaching a linear breakdown. However, the detailed structure of

these accelerated flows is not properly described when u
fL

is of O(1).

A linear bottom friction is used, which averages over frictional variations at higher

frequencies than the assumed steady-state timescale: tides, surface gravity waves, etc.

(Csanady 1978; Greenberg and Petrie 1988). This approximation assumes bottom drag
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to be directly proportional to the depth-integrated velocity of the geostrophic interior. This

is reasonable, given that these waters are both barotropic and at steady-state. Furthermore,

the use of a linear bottom friction has replicated observations to first order (Brink and Allen

1978; Lentz et al. 1999; Wright and Thompson 1983). For simplicity,

~τbot = ρ0r
~U

H
, (1)

where τbot is the bottom frictional stress, ρ0 is the standard density of water, r is the frictional

parameter, ~U is the depth-integrated velocity, and H is the depth of water columns.

The aggregate of these assumptions comprises a model that has been explored by var-

ious studies (Csanady 1978; Chapman 1985; Chapman 1986; Gordon 1982; Pringle 2002;

Sandstrom 1980; Williams and Carmack 2008). They lead to momentum and continuity

equations of the following form:

−fV = −gHηx +
τxtop
ρ0

− τxbot
ρ0

(2a)

fU = −gHηy +
τ ytop
ρ0

− τ ybot
ρ0

(2b)

Ux + Vy = 0, (2c)

where U and V are the depth-integrated cross and alongshore transports (Hu, Hv), re-

spectively, f is the Coriolis frequency, g is gravitational acceleration, H(x,y) defines the

bathymetry, η is the surface elevation function, τxtop,bot and τ ytop,bot are the offshore and along-

shore components of the surface and bottom stresses, respectively, and ρ0 is the standard

density of water.

The use of mass transport streamfunctions, U = Ψy and V = −Ψx, satisfy the continuity

equation (2c). Cross-differentiation of the remaining two-dimensional momentum equations

leads to the potential vorticity equation (3):
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0 = J(Ψ,
f

H
) +∇ · ( r

H2
∇Ψ)−∇× (

τ top

ρ0H
), (3)

where J(a,b) is the Jacobian determinant of the partial derivatives of the vector (a,b).

The potential vorticity equation is composed of three terms (in order of appearance in

equation 3): 1) the advection of potential vorticity, f
H

, by Ψ, 2) the dissipation of relative

vorticity, ∇2Ψ, by bottom friction, r, and 3) the generation of potential vorticity by the

wind stress curl τ top. The mechanisms that give rise to the modification of shelf circulation

by a trough are described by examining this equation. The numerical implementation of this

equation into its model form is described in the appendix (6.1).

2.2 Upwave Wind-Generated Shelf Flow

Troughs are forced from the upwave direction because shelf response occurs in the direction

of coastal trapped wave propagation (Battisti and Hickey 1984; Csanady 1978). Therefore,

in order to isolate the trough’s alteration of shelf circulation, an initial set of model runs are

conducted where forcing is limited to the shelf upwave of the trough. By neglecting forcing

downwave of the trough, the circulation on the shelf downwave of the trough is purely a

trough-adjusted state; the response isn’t altered by additional forcing.

Winds are modeled by including the third term of the vorticity equation (3), whose form

is of alongshore winds over the shelf domain of interest (upwave of the trough in this case).

The section succeeding this one outlines how and why an additional set of model runs are

conducted where the shelf downwave of the trough is also forced with winds, in addition to

the upwave shelf.

The upwave boundary’s streamfunction is set to a flow forced by an alongshore uniform

wind forcing over an infinite alongshore uniform shelf upwave of the model domain. This

shelf velocity, whose solution is a balance of bottom friction and wind forcing, is
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v =
τ y

ρ0r
, (4)

where v is the alongshore velocity, τ y is the alongshore component of the wind stress, ρ0 is

the standard density of water, and r is the bottom friction parameter.

Without wind forcing over the shelf between this upwave boundary and the trough,

this wind-generated flow would migrate off its isobaths in the offshore direction (Csanady

1978). Therefore, wind forcing over the shelf is included in this region so that these wind-

generated flows maintain their structure. The combination of this upwave wind-generated

flow boundary condition, and wind forcing between this upwave boundary and the trough,

assures that the trough is forced with an unaltered wind-generated shelf flow.

The downwave boundary condition is set to match the upwave condition in all cases. This

assures that the transport that enters through the upwave boundary can exit the domain.

This is acceptable because the impact of this downwave condition is confined to within a

Stommel distance (approximately 5km for this shelf) upwave of it, leaving the vast majority

of the shelf unaltered by the exact choice of downwave condition (Pringle 2002; Stommel

1948). This assertion is defended in the appendix (6.2).

The coastal condition is set to a hard, no-flow wall. This is done by holding the coastal

streamfunction to a constant value so that cross-shore transport (Ψy = U) is equal to zero.

The offshore streamline is also set to the no-flow condition by holding its value to one

which is consistent with the transport through the upwave boundary. The rationale of this

choice is twofold: 1) open offshore boundaries are unnecessary for this study because the focus

is on isolated shelf dynamics, and 2) even if basin-forced flows came through this boundary,

they would steer downwave and follow isobaths out through the downwave boundary, without

penetrating onto the shelf. Isolation of the shelf from basin circulation is due to the steep

continental slope, whose vorticity gradient largely insulates the shelf from offshore forcing

(Chapman 1985).

These four boundary conditions are used for all model runs.
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2.3 Wind Forcing Downwave of the Trough

The aforementioned model run set, which uses wind forcing only upwave of the trough,

isolates the trough’s impact on upwave wind-generated shelf circulation. An additional set

of model runs are used which include wind forcing over the entire shelf, i.e., upwave, local,

and downwave to the trough.

Results from these runs allow for an observation of how far downwave of trough that

its impact remains significant. Winds over this downwave shelf will attempt to regenerate

shelf circulation. By observing how far alongshore it takes for a thorough regeneration, or

a lack thereof, insight is gained as to how far the trough’s alteration is of O(1) significance.

Whether winds regenerate shelf flows that were altered by the trough immediately downwave

of the trough, or if it takes a significant alongshore distance, is found.

The combination of the first set of runs, which have wind forcing only upwave of the

trough, and these model runs, which have winds over the entire shelf, gives a complete

picture of the trough impact. The former illustrates the structure and significance of trough

alteration to wind-generated shelf flows; the latter demonstrates how far alongshore a trough

must be considered.

2.4 Scaling Analysis

Given the model’s boundary and wind conditions, there are eight parameters that determine

the model input: the frictional parameter, the Coriolis frequency, and six geometric shelf

parameters (Figure 1). Model runs are initialized by choosing combinations of these param-

eter values: a baseline run where all parameters are held to their chosen standard value, and

variation runs where each parameter is varied over an array of values while the others are

held to their standard value (Table 1).

There exists a set of non-dimensional parameter groups which describe a problem’s dy-
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namics (Price 2003). The number of these parameter groups is determined by subtracting

the model dimensions from the defining parameter total:

N = P −D, (5)

where N is the number of non-dimensional parameter groups, P is the number of defining

parameters (eight in this case), and D is the number of dimensions (two in this case: space

and time). This gives six non-dimensional parameters groups, which are defined below in

the scaling analysis.

The solution to the potential vorticity equation (the satisfying streamfunction) is used in

a scaling analysis with these six parameter groups. This is done by quantifying the trough

alteration to the upwave wind-generated shelf flow, as a function of the non-dimensional

parameter values. This extracts the parameters that are dynamically dominant (Allen and

Hickey 2010). The scaling results, which demonstrates how a trough causes shelf circulation

to change, are presented in the following section.

The plots that come from this scaling analysis can be used to predict how much any

given trough will alter a shelf’s wind-driven circulation. However, an extrapolation of these

curves to other problems must be done within this model’s physical limits.
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3 Results

Long coastal trapped waves are the primary mode of transmitting forcing information to

downwave waters, being the initiator of flow adjustment. Therefore, a straightforward ap-

proach to analyzing how flows adjust in the alongshore direction is by progressing in the

long CTW direction (recall that these waves move with shallows on the right in the northern

hemisphere (Battisti and Hickey 1984)). The examination of model results in this study is

primarily conducted through a downwave orientation, i.e., north to south on this western-

boundary northern-hemisphere shelf. An examination of these same results can be done in

the reverse (upwave-oriented) because this model is linear. This secondary analysis is de-

scribed, in addition to the primary upwave-oriented analysis, in the discussion section. It is

shown in this upwave-oriented analysis how troughs can enhance the “absorption” of slope

flows onto the shelf through upwelling.

3.1 Bottom Friction Moves Streamlines Across Isobaths

In order to understand how streamlines cross isobaths, two model runs are presented here

of trough-less shelves: one with and one without bottom friction (Figure 3). Both shelves

are forced with upwave wind-generated shelf flows and were constructed with baseline-value

input parameters (Table 1). These model results demonstrate how bottom friction is the

mechanism responsible for moving flows across isobaths. Later sections will outline results

that build upon this simpler explanation of cross-isobath migration of streamlines, to explain

how troughs alter shelf circulation.

For both runs, wind forcing does not exist within the domain, i.e., the third term of the

vorticity equation (3) is set to zero. Therefore, the advection of potential vorticity, J(Ψ, f
H

)

is balanced by the dissipation of relative vorticity by bottom friction, ∇ · ( r
H2∇Ψ). This

balance’s resulting streamlines are plotted on the left panel of Figure 3. A further reduction,
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where bottom friction is set to zero, is plotted on the right panel. The vorticity equations

of these two cases are as follows:

0 = ∇ · ( r

H2
∇Ψ)− J(Ψ,

f

H
) (6a)

0 = J(Ψ,
f

H
), (6b)

where (6a) applies to the left panel of Figure 3, and (6b) applies to the right panel.

The contrast between these two cases demonstrates that friction is the mechanism re-

sponsible for moving streamlines across isobaths. In the case without bottom friction (right

panel), streamlines remain on lines of f
H

; these are simply isobaths on this f-plane. In the

case with bottom friction (left panel), streamlines move across isobaths, offshore to the slope.

This offshore migration occurs because of the Arrested Topographic Wave (hereafter ATW)

effect, which acts when the alongshore length scale is much larger than the cross-shore scale

(Csanady 1978). This ATW-driven offshore migration of streamlines occurs because of bot-

tom friction. Bottom friction acts against the direction of the currents, which in turn drives

an offshore bottom Ekman transport. How troughs modify shelf circulation through the

mechanism of offshore migration via bottom friction is described below.

3.2 Trough Ejection Mechanisms

Bottom friction acts to move shelf flows, which encounter trough bathymetry, across isobaths.

This is illustrated with two model runs: one shelf without a trough, and one with a trough

(Figure 4). Like the previous section, input parameters are set to their baseline values (Table

1), but a downwave-oriented wind forcing is used in addition to the wind-generated inflow.

Flows that enter through the upwave boundary are maintained with this downwave-oriented

wind forcing over the shelf, located upwave of the trough. No winds exist at or downwave
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of the trough, allowing for an examination of the trough impact alone. In the model run

without a trough on the shelf, the alongshore extent of wind forcing is identical to the

forcing used in the trough-shelf case; this allows for direct comparison of the trough impact.

A quantification of how much shelf transport is moved offshore to the slope is done for both

of these runs.

Figure 4 demonstrates how troughs alter wind-generated shelf circulation. The left panel

shows how streamlines on a trough-less shelf evolve in the alongshore, following the ATW

dynamic. Downwave of the red transect, where there is no wind forcing, streamlines begin to

drift offshore towards the slope. This migration of streamlines towards the slope is greatly

increased in the case of a trough, as seen in the right panel. Enhanced offshore migration of

shelf flows to the slope by the trough will be referred to as “ejection.”

An ejection metric is defined as the percentage of shelf transport lost offshore beyond the

shelfbreak across a trough. This is done by comparing how much transport passes through

the downwave (black) transect versus how much initially passes through the upwave (red)

one:

Etrough =
Ψshelfbreak,downwave

Ψshelfbreak,upwave

∗ 100− Enotrough, (7)

where Etrough quantifies the percentage of shelf transport lost offshore to slope, by com-

paring the initial amount (Ψshelfbreak,upwave) to the resulting amount (Ψshelfbreak,downwave).

Additionally, Enotrough quantifies shelf transport loss, but for a shelf without a trough. By

subtracting off this value found for a trough-less shelf, this normalizes trough results as

“additional” ejection values beyond the trough-less ATW case.

An additional 62% of shelf transport is ejected offshore to the slope in the case of the

baseline-parameter trough on the shelf (right panel). Both this ejection result and the visual

evolution of streamlines throughout this trough-shelf system indicates that troughs increase

the cross-isobath migration of flows to the slope, all the while sharpening an often-observed

shelfbreak jet (Chapman 1986; Gawarkiewicz and Chapman 1991).
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Enhanced offshore ejection of shelf circulation to the slope is caused by the trough mod-

ification of flows from upwave. Upon encountering the trough from the upwave direction,

flows steer onshore around the trough, are squeezed into the “narrowed” shelf, and then are

ejected offshore to the slope. Flows are attempting to follow isobaths throughout this pro-

gression because linear flows follow isobaths to first order (Csanady 1978). Because bottom

friction is the mechanism responsible for moving streamlines across isobaths in this linear

case, and because troughs enhance net offshore ejection, troughs must somehow intensify the

bottom friction mechanism.

Streamlines cross isobaths because bottom friction dissipates relative vorticity. There are

two sources of relative vorticity as this flow progresses around/through the trough. The first

source is from the steering flows around the trough’s curving isobaths. Steering of the flow

field along these isobaths creates a flow curvature, i.e., relative vorticity. The second source is

of the flow convergence through the narrowed shelf (between the coast and the trough head).

This flow convergence causes an acceleration and, in turn, a cross-shore velocity shear, i.e.,

relative vorticity. These two trough-induced vorticity sources will hereafter be referred to as

the curvature and narrowing sources, respectively.

Upon introducing relative vorticity through these two sources to these shelf waters, bot-

tom friction will act to dissipate such vorticity, and streamlines will cross isobaths. These

two vorticity sources are depicted with cartoon arrows in figure 5.

The next section explores results of model runs where the input parameters are varied.

The ejection metric is quantified for each run case, and a scaling analysis is conducted.

This analysis allows for an understanding of the relative contributions of these two vorticity

sources to net offshore ejection.
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3.3 Relative Contributions of the Curvature and Narrowing Sources to

Offshore Ejection

In order to quantify the relative contributions of the curvature and narrowing sources to

offshore ejection, variation runs are examined here. Input parameters of these model runs

were constructed by varying a single parameter at a time, while holding all others to their

baseline values (Table 1). Streamfunction solutions of these variation runs are then used to

quantify offshore ejection of shelf flow as a function of non-dimensional parameter groups

(Price 2003). As described above, these ejection metric results for trough cases are calculated

as “additional” offshore ejection (equation 7), beyond the background shelf transport loss

caused by the ATW-dynamic of a trough-less shelf (Csanady 1978). Recall that the trough-

less shelf run with baseline input parameters caused a shelf transport loss of 22% (Figure

4).

Scaling analyses extract the relative dominance of parameters on circulation dynamics

(Allen and Hickey 2010). In this case, the ejection scaling curves, which plot the dynamic

change (ejection) versus the parameters, demonstrates whether the outcome is affected by a

changing parameter. Therefore, this scaling analysis is used to quantify the relative strength

of the curvature and narrowing (shear) vorticity sources to offshore ejection. The stronger

the relation between ejection and a parameter related to one of the vorticity sources, the

more that that source contributes to trough ejection. See Figure (1), which introduced the

bathymetric schematic of this model, for the relevant parameters used for scaling these two

vorticity sources.

The narrowing (shear) source is scaled with two parameter groups: Lhead

Lshelf
, and

Wtrough

Lshelf
,

where Lhead is the offshore distance of the narrowed shelf, Lshelf is the offshore distance of

the entire shelf, and Wtrough is the alongshore distance of the trough’s base (Figure 1). The

first parameter group ( Lhead

Lshelf
) measures the strength of the narrowing source’s mechanism,

i.e., flow shear. The narrower the distance between the trough and the coast, the stronger
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the shear will become. As the narrowed shelf becomes wider until the trough disappears

to the slope, this shear effect will become negligible. The second parameter group (
Wtrough

Lshelf
)

measures the accumulation of this shear effect. A trough which spans a longer alongshore

distance creates a longer distance for the shear effect to accumulate, whereas a trough width

that disappears to zero gives no distance, and therefore, no accumulation of the shear effect.

Variation results are shown of enhanced offshore ejection as a function of these two parameter

groups (Figure 6).

The left panel plots the first parameter group of the narrowing source ( Lhead

Lshelf
), i.e., shear

strength. As the parameter reaches one, the trough disappears to the slope. As this narrowed

shelf approaches the total shelf width, the additional ejection caused by the trough reduces

to zero, confirming that the trough-less shelf converges to the ATW value. For small values

of Lhead

Lshelf
, the trough approaches a total intersection of the shelf. A full shelf intersection

leads to an additional 60% of the shelf flow being ejected offshore to the slope.

The right panel plots the second parameter group for the narrowing source (
Wtrough

Lshelf
),

i.e., shear accumulation. As the parameter approaches unity, the alongshore trough width

becomes the same distance as the entire shelf width (120 km), and an additional 70% of the

shelf flow is ejected to the slope. Because a wider trough increases the accumulation of the

shear effect, we see that this parameter is directly proportional to ejection. As the parameter

goes to zero, the trough disappears, and ejection converges to the background ATW value.

Both of these narrowing source parameter groups change offshore ejection by 60-70% for an

O(1) change in parameter.

The curvature source is scaled with the following parameter group: Wwall

Lhead
, where Wwall is

the alongshore distance of the trough walls (Figure 1). This parameter group correlates to

the significance of isobath curvature. As the trough walls’ alongshore distance increases, the

wall gradient decreases, reducing the sharpness of isobath curvature. A shorter alongshore

distance corresponds to cliff-like walls, i.e., sharper isobath curvature. Therefore, we expect

ejection to be indirectly proportional to this parameter because sharper isobaths will increase
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the curvature source’s contribution.

Figure 7 shows results of the enhanced offshore ejction as a function of this curvature

parameter. Indeed, ejection is reduced as the parameter increases because the walls’ along-

shore distance gets larger, decreasing isobath curvature. This reduction in the curvature

source’s contribution to ejection with increasing alongshore trough wall distance is because

more gradual isobaths reduce the significance of flow curvature. Inversely, as the alongshore

distance of the trough walls decreases, offshore ejection increases because isobath curvature

becomes more significant. Unlike the narrowing source’s scaling, an O(1) change in this

curvature parameter causes only a 10% change in offshore ejection (versus 60-70%); this is

about one-sixth to one-seventh that of the narrowing source’s scaling.

Scaling analyses of results from these variation runs allow for two succinct conclusions:

1) the narrowing and curvature sources cause trough-enhanced offshore ejection of shelf flows

to the slope, and 2) the narrowing source dominates these ejection dynamics by a factor of

O(5) over that of the curvature source’s contribution.

All the previously explored results were forced with winds only upwave of the trough (or

the equivalent location in the case of a trough-less shelf). This approach allowed for an iso-

lated understanding of how troughs modify wind-driven shelf circulation. A few conclusions

can be made about this impact: 1) troughs enhance the offshore ejection of shelf circulation

to the slope, beyond the background ATW amount, 2) this occurs because troughs generate

relativity vorticity, which friction dissipates and causes cross-isobath migration, via curva-

ture and narrowing sources, and 3) the narrowing source contributes to ejection more than

the curvature source by a factor of O(6-7).

3.4 Alongshore Response Scale of Wind Forcing vs Trough Ejection Impact

Wind forcing over the shelf acts to mitigate the enhanced offshore ejection of shelf transport

to the slope caused by a trough. The alongshore scales of both the trough-induced offshore
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ejection and shelf response to wind forcing determines how these two phenomena interact.

This interaction is determined in this section by examining model results on a shelf which

is four times longer than earlier model runs, i.e., 2000 km instead of 500 km. Two runs are

examined of this longer shelf: one with a single trough near the upwave boundary, and one

with two troughs separated across the alongshore expanse of the shelf. Previously examined

runs constrained wind forcing only upwave of the trough, which allowed for an isolation of

the trough impact. Instead, these runs use winds downwave of the trough, from the upwave

to the downwave boundary.

Figure 8 shows results of these downwave wind cases, with a one-trough run shown on

the left and a two-trough run shown on the right. The ejection metrics are normalized

against the resulting ATW offshore ejection of this 2000 km shelf without a trough, so that

these results are of ejection beyond that standard value. The cross-shore transects used to

calculate this change in shelf transport were placed upwave of the first trough and near the

downwave boundary. This large separation allows for an understanding of how the trough

impact evolves far away from the trough itself. The one-trough case shows a 9% enhanced

offshore ejection of shelf transport to the slope at an alongshore distance of approximately

1500 km downwave of the trough. This demonstrates that the trough ejection is largely

“forgotten” by this point downwave of the trough, because the wind forcing over the shelf

is regenerating the flows. The two-trough case shows a 44% enhanced offshore ejection of

shelf transport to the slope. Winds largely regenerated the shelf flows lost by the upwave

trough over this 1500 km distance, before shelf flows are once again largely ejected offshore

because of the downwave trough.

There is a significant difference between circulation response to wind forcing versus the

trough ejection impact. After the initial ejection caused by the upwave trough winds start

to regenerate flows on the shelf, acting as a mitigator to the trough ejection impact. How-

ever, the alongshore scales of these two responses are vastly different. These model results

demonstrate that trough ejection is acting on an alongshore scale of O(10’s km). Wind
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forcing, however, acts on an alongshore scale - corresponding to how far in the alongshore it

would take winds to fully establish shelf circulation - that scales as: Lfric = −Hf
2r
Lx, where

Lx is the offshore length scale (Chapman 1986; Pringle 2002). At the shelfbreak, which

is the relevant offshore length scale for considering the entire shelf’s circulation state, this

frictional scale is O(1500 km). Trough ejection is acting on a much shorter length scale than

wind response; the ejection scale is approximately 1% that of the wind scale. Therefore,

determining whether the trough ejection impact should be considered when modeling some

local shelf flows, one must determine how far upwave is the nearest trough. The discussion

section will further elaborate the implications of these model results, which show this vast

difference in alongshore scale between wind forcing and trough ejection.

3.5 Troughs Enhance Upwelling of Slope Waters to the Shelf

An upwave-oriented wind forcing will produce currents that move upwave. This upwave-

oriented configuration is opposite to the results examined thus far, where wind forcing over

the shelf is pointed downwave and, in turn, cause shelf flows to move downwave. Because this

model is linear, the previously examined results also describe flows oriented in the upwave

direction. Therefore, this section will analyze the results in the opposite perspective to

before, i.e., a forcing directed upwave that causes flows to move upwave.

Figure 9 shows slope currents moving northwards (upwave) because of winds that blow

upwave. The presence of the trough causes these slope flows to cross isobaths, moving onshore

to shallower isobaths. The interaction of the slope currents with the trough bathymetry is

constrained to streamlines on the slope that are at or shallower than the deepest trough

isobath. This can be seen in the figure, where streamlines on the slope offshore of that depth

are only slightly altered by the trough. This demonstrates that slope flows deeper than a

trough’s deepest depths will be unaltered by the trough for this system.

This progression of slope flows that move onshore to the shelf because of the trough is the

17



reverse case of that which was examined previously. Because the results from the offshore

ejection impact is used here to describe an upwelling-favorable case, the dynamics are the

same. The curvature and narrowing sources must introduce relative vorticity to these slope

currents, which friction will dissipate, causing an adjusted state of flows that end up on the

shelf. Whereas the downwelling-favorable case was described as a trough “ejection” impact,

this upwelling-favorable progression can be thought of as a trough “absorption” impact. This

baseline-parameter trough absorbs slope transport to the shelf, resulting in a 53% change in

shelf transport, as compared to the transport on the shelf downwave of the trough.

Recall that forcing is communicated via propagation of coastal trapped waves, which

move with shallows on the right in the northern hemisphere (southwards for this western-

boundary shelf). This remains true for both upwelling-favorable and downwelling-favorable

cases. Whether winds are oriented upwave or downwave, only the waters downwave of

these winds will adjust to the forcing because of the asymmetric communication of the

forcing. Therefore, the scaling results that demonstrated how far downwave of a trough its

impact must be considered, are equally valid for forcing/flows of either downwave or upwave

orientation.
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4 Discussion

4.1 Trough-Enhanced Downwelling of Shelf Flows to the Slope, and its Implications

Shelf currents that move downwave (in the direction of coastal trapped waves) are largely

ejected offshore to the slope by troughs (Figure 4). These flows, which were forced by

downwave-oriented winds over the shelf, encounter the trough and attempt to navigate

around it because linear flows follow isobaths on this f-plane. Upon navigating around/through

this trough bathymetry, relative vorticity is generated and introduced to the system. Bot-

tom friction works to dissipate this relative vorticity, and in turn, causes the migration of

shelf flows off their isobaths to deeper waters. This migration occurs through a downwelling

Ekman bottom transport. The net effect is that shelf transport is ejected offshore to the

slope.

There are two sources of relative vorticity due to these linear flows following the trough

isobaths: 1) curvature, and 2) narrowing. The scaling analysis revealed that the narrowing

source dominates the ejection dynamics by a factor of O(6-7) greater than that of the cur-

vature source’s contribution. Therefore, the trough parameters that most control ejection

of shelf flows are the alongshore width, and the distance between the trough head and the

coast. A trough that intersects most of the shelf, and extends a large alongshore distance,

will make a more significant impact on coastal circulation than one which is narrow in the

alongshore, and resides far offshore. A trough which exhibits this geometry, and indeed dras-

tically alters coastal circulation, is the Laurentian Channel. The southward-moving flows

from the Labrador Sea are swiftly ejected offshore to slope, resulting in a sharp boundary

of different shelf circulation types at this bathymetric boundary (Dever et al. 2016). The

opposite case to this is bathymetric features which are narrow and far offshore, i.e., outlier

river-carved canyons that incise a portion of shelf. Although these canyons do impact coastal

circulation, their impact is lesser and of a different nature to that the trough impact (Allen
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and Hickey 2010). It is only when canyons cut across much of the shelf that their impact

on shelf circulation becomes consequential; the Hudson Canyon is an example of such an

exceptional river-carved canyon (Zhang and Lentz 2017).

There are multiple secondary effects on ocean dynamics due to this trough ejection of

shelf transport to the slope. Because troughs cause shelf circulation to migrate offshore to

the slope this will enhance a shelfbreak jet, which is often observed (Fratantoni and Pickart

2007; Greatbatch, Pal, and Ren 1995; Greenberg and Petrie 1988; Han et al. 2008). The

enhancement of strong currents at the shelfbreak may add to the insulation of the shelf from

basin-scale dynamic (Chapman 1985). Additionally, the exchange of shelf waters to the

slope by a trough will impact the chemical compositions of both sets of waters. Shelf waters

are home to significant biological communities and physical exchange properties. Therefore,

because troughs downwell shelf waters to deeper depths along the slope, this mechanism

should be considered as it relates to exchange of properties between the shelf and ocean

basins. For example, the exchange of carbon through this downwelling will contribute to the

global carbon cycle (Holt, Wakelin, and Huthnance 2009). Any other secondary phenomenon

which would be impacted by the downwelling of shelf waters should consider the role of

troughs, especially at higher latitudes where troughs are concentrated.

4.2 Trough-Enhanced Upwelling of Slope Flows to the Shelf, and its Implications

Because this model is linear, the previously used results can be used to examine a downwelling-

favorable case, where upwave-oriented winds cause flows to move upwave, i.e., the same

pattern explored above, but with reversed flows. Figure (9) represents this upwave-oriented

(northward on this western boundary shelf) wind forcing with a white cartoon arrow. Upon

encountering the trough, these slope flows are forced to navigate through the trough bathymetry.

Subsequently, these flows end up on the shelf after migrating through this trough region. The

adjusted state is of an increase of shelf transport by 53% upwave of the trough, compared
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to the lack of shelf transport downwave of the trough. This is simply the reverse situation

to that of the downwelling-favorable case, where shelf flows are ejected offshore to the slope.

Flows on isobaths at or shallower than the trough’s deepest isobath are upwelled onto

the shelf. The most-offshore streamline plotted, which resides on a slope isobath at a depth

where the trough merges into the slope, is only slightly altered as it navigates through the

trough region. This demonstrates that a trough will only impact slope currents that run

along isobaths at least as shallow as the deepest isobaths of the trough. For the trough to

upwell flows of a depth deeper than its own, some other mechanism must first migrate flows

to the relatively shallower trough-depth.

The trough’s impact on these upwave-moving slope currents is the exact opposite as

that of the offshore ejection phenomenon. The difference is that for this upwelling-favorable

case, the trough increases the amount of transport on the shelf by moving slope currents

to the shelf: “absorbing” them. In light of this trough-induced absorption, two conclusions

can now be made in total about a trough’s impact on coastal circulation: 1) a trough will

cause downwave-moving shelf flows to eject offshore to the slope through downwelling, and

2) a trough will cause upwave-moving slope flows to absorb onshore to the shelf through

upwelling.

This upwelling-favorable situation is only relevant to upwave-moving flows. In the case

of steady-state upwave-moving currents, there must be some forcing, located upwave of such

flows, that is oriented upwave as well. Shorter timescale forcing of winds, such as storms, can

induce flows to move upwave on this timescale. For example, winter storm winds over the

New England Shelf drive circulation in an orientation opposite of the annual mean (Beardsley

and Haidvogel 1981). Therefore, this upwelling by a trough (just like downwelling) can

manifest on a shorter timescale than the steady-state scale described throughout this study.

The upwelling of flows onto the shelf will have substantial impacts on ocean dynamics.

For example, warm slope waters that upwell via a trough into the Amundsen Sea account

for most of the heating, and subsequent basal melting, of the entire West Antarctic Ice
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Shelf region (Walker et al. 2007; Wåhlin et al. 2013). Additionally, the troughs along the

Greenland Shelf significantly contribute to both nutrient cycling within those local coastal

waters (Cape et al. 2019), and ice melt (Rysgaard et al. 2020). Both the exchange of

heat and nutrients between the shelf and deeper waters through a trough are first order

ocean dynamics; dynamics which impact glacial-mass balances, biological populations within

coastal waters, etc. The combination of upwelling of slope waters to the shelf, and steering of

such flows between the trough head and the coast through the trough narrowing mechanism,

enhances the presence of slope waters onshore of the trough. Because this fjord location

may likely contain a glacial tongue, this mechanism could largely contribute to glacial melt.

Additionally, troughs upwelling deeper waters onto the shelf could largely contribute to

biological processes, because of deeper waters being rich in nutrients.

Although the literature attributes these observations of trough-induced upwelling to

buoyancy forcing, this study demonstrates that troughs can cause upwelling even in the

unstratified limit. Therefore, observations of trough-driven circulation patterns shouldn’t be

reduced to buoyancy forcing alone. Barotropic dynamics must be accounted for.

4.3 How Far Alongshore Does the Trough Impact Remain Significant?

The trough ejection and absorption impacts will be first-order effects on coastal circulation

within the alongshore trough-response scale of a trough. This was demonstrated by this

model’s baseline-parameter trough, which caused an O(50%) change in shelf transport. The

alongshore scaling of these trough dynamics, as compared to that of wind forcing, demon-

strates that the trough impact will remain relevant for hundreds of kilometers downwave of

the trough. Whereas the trough ejection/absorption impact acts on an alongshore scale of

O(10s km), the alongshore scale of wind response is known to be: Lfric = −Hf
2r
Lx (Chapman

1986). The appropriate depth scale for H to understand shelf adjustment is the shelfbreak

depth. The appropriate offshore length scale for Lx is the shelf width. Therefore, it can
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be concluded that a shelf with a shallower shelfbreak depth and a narrower offshore extent,

will have a shorter alongshore scale of adjustment to wind forcing. For shelves with this

structure, the trough impact will remain relevant for a lesser alongshore distance downwave

of the trough, because the shelf will more quickly adjust to wind forcing. Inversely, a wide

shelf with a deep shelfbreak depth will be subject to the trough impact for a longer distance

downwave of trough. The other two parameters that drive this alongshore response scale

are f, the Coriolis frequency, and r, the bottom frictional parameter. The trough impact will

remain significant for longer alongshore distances at high latitudes, when considering that

f increases with higher latitude. Finally, stronger linear bottom friction (greater frictional

parameter r) will decrease the alongshore distance that the trough impact remains signifi-

cant because it is inversely proportional; the frictional parameter r is typically 2− 5 ∗ 10−4 m
s

(Williams and Carmack 2008).

The results of a back of the envelope calculation of the alongshore wind response scale

(Lfric) for three specific shelves are considered: that of the Scotian Shelf, the shelf along

southwestern Greenland, and the Antarctic Shelf directly south of Africa. Appropriate Cori-

olis frequency values were chosen for each, as well as a frictional parameter value of 5∗10−4 m
s

,

and a shelfbreak depth of 100 m. The Scotian Shelf, with a width of approximately 150 km,

has an alongshore response scale of O(1,500 km), the southern Greenland Shelf, with a width

of approximately 40 km, has an alongshore response scale of O(500 km), and the Antarctic

Shelf near 15◦E, with a width of approximately 10 km, has an alongshore response scale of

O(100 km). These three cases show that the alongshore extent of the trough impact can vary

wildly depending on a shelf’s bathymetry. This scale is a guide to the extent of a trough’s

influence.

In addition to considering this alongshore scale, which depends on a shelf’s parameters, a

consideration of the frequency of troughs should be accounted for. Every time flows encounter

some trough, it is subject to the trough’s impact. The most recent trough encountered by

flows is the trough that sets the alongshore scale of relevance. Therefore, upon considering
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how far the extent of a trough-driven impact on shelf flows is, one must consider the most

nearby trough in the upwave direction.

Shelves with more troughs will be subject to these trough impacts more significantly.

Streamlines are more tightly constrained to isobaths at high latitudes because of the stronger

Coriolis parameter (f), and troughs exist in higher abundance on glaciated/previously-

glaciated shelves at these high latitudes (Harris and Whiteway 2011). Therefore, troughs

will be an even greater inhibition on wind-driven circulation on high-latitude shelves.

4.4 Where Does the Model Fail?

Results from this model demonstrate that troughs enhance the ejection of downwave-moving

shelf transport to the slope (and enhance the absorption of upwave-moving slope waters to

the shelf). Extrapolation of these results to shelf systems can only be done if the system

resides within this model’s physical regime. The following reiterates the physical limits of

this model and describes how to apply these results within these limits.

This model is of coastal flows in the steady-state limit, which depends on the underlying

forcing being at a steady-state. Rather than describing the dynamics of adjustment as flows

respond to some changing forcing, these results describe how that adjusted state behaves. If

a wind forcing changes against what was previously steady, such as a winter storm forcing

differently than the seasonal average, then the flows will start to adjust to this new forcing.

If this forcing remains stable for a long enough time for the flows to adjust into a steady-

state, then these results will once again become relevant. The time scale to determine if

flows have reached a steady-state after adjusting to a forcing is the frictional spindown time:

H
r

, where H is the depth of a water column, and r is the frictional parameter (Williams

and Carmack 2008). In order to understand the timescale for an entire shelf to adjust, an

appropriate choice of H is the shelfbreak depth. The choice of frictional parameter, r, must

be chosen as an empirically representative value of a shelf system of interest. Recall that this
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frictional parameter is typically in the range of 2− 5 ∗ 10−4 m
s

(Williams and Carmack 2008).

For example, a shelf with a shelfbreak depth (H) of 100 m and a frictional parameter (r) of

5 ∗ 10−4 m
s

, the frictional spindown time is 2 ∗ 105s or approximately 2.3 days. Therefore,

flows on a shelf of this nature will fully adjust to a steady-state in response to some forcing

(given that the forcing itself remains steady over this timescale) in about two days.

Barotropic dynamics are described with these model results, allowing for an extrapolation

to either barotropic waters or barotropic modes of baroclinic waters (Brink 2006). This limit

assumes that the Rossby radius of deformation (
√
gH
r

) is small compared to the cross-shore

length scale of bathymetry variation (Janowitz and Pietrafesa 1982). The barotropic Rossby

radius of deformation varies from approximately 20 km near the coast (at the 10 m isobath)

to approximately 60 km at the shelfbreak (using the 100 m isobath). These deformation

scales are smaller than the relevant cross-shore length scales, i.e., 30 km from the coast

to the trough head, and 150 km for the full shelf, respectively. However, the deformation

scale approaches the cross-shore length at the trough location, demonstrating that this is a

location where the details of this barotropic model reach its limit. An investigation of the

stratification of a coastal system must be conducted to understand whether these barotropic

results apply. A climatological analysis of the flows along the western North Atlantic showed

how stratification widely varies with seasonal variation of freshwater influx, heating, mixing,

and ice coverage (Fratantoni and Pickart 2007). Therefore, applying these barotropic insights

becomes more applicable as stratification decreases in the winter.

The final core limit of this model is that these shelf flows are linear. This occurs when

the Rossby number is small: u
fL

<< 1. The Rossby number at the upwave boundary of

this model, based on the 10 cm
s

inflow over a 150 km wide shelf, is approximately 0.006,

i.e., strongly linear. The Rossby number begins to increase in this system where the shelf

flows are constricted into the narrowed shelf, between the trough head and coast. Flows are

accelerated to a magnitude of approximately 30 cm
s

across this 25 km shelf (in the case of

baseline input parameters), giving a Rossby number of 0.12, i.e., approaching a nonlinear
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scale. In the variation run results, where the offshore distance to the trough head was varied,

the Rossby number greatly increases as the trough extent goes to the coast. A 1 km wide

narrowed shelf, where the trough essentially merges with the coast, gives a Rossby number

of 3. For this system, the details of the flow structure are not properly accounted by this

linear model. Therefore, currents of significant magnitude over significantly narrow shelves

are better described by nonlinear studies. An examination of nonlinear circulation in the

Arctic demonstrated how cross-shore exchange between the shelf and the slope occurs in this

nonlinear regime (Williams, Gawarkiewicz, and Beardsley 2001).
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5 Conclusions

Much of the current understanding of coastal circulation dynamics comes from studying

baroclinic dynamics and/or wind forcing (Csanady 1978; Pringle 2018), as well as dynamics

associated with river-carved canyons (Allen and Hickey 2010). The contributions of glacial

troughs to coastal circulation dynamics has been largely overlooked, despite observations

indicating their significance (Buhl-Mortensen et al. 2012; Cape et al. 2019; Wåhlin et al. 2013;

Walker et al. 2007). Model results explored in this study affirm that troughs significantly

impact coastal circulation dynamics. Although troughs may drive the exchange between the

slope and shelf through baroclinic processes, as demonstrated by these cited studies, this

model demonstrates that the exchange can occur within the barotropic limit.

Troughs enhance the offshore ejection of barotropic shelf flows to the slope during downwelling-

favorable downwave flows (and onshore absorption during upwelling-favorable upwave flows)

by generating relative vorticity, which bottom friction dissipates and causes cross-shore mi-

gration of currents. Relative vorticity is generated because linear flows navigate around the

trough, attempting to maintain their isobaths. This study identified two sources of relative

vorticity: curvature (relative vorticity of flows steering around the trough) and narrowing

(relative vorticity of accelerated flows between the trough and coast). A scaling analysis

demonstrated that the narrowing of isobaths by the trough contributes to offshore ejection

by a factor of O(5) more than that of the curvature of isobaths. Therefore, there are two

trough dimensions that will most dictate the strength of its impact on coastal circulation:

alongshore trough width, and offshore expanse of the trough across the shelf.

Finally, this model characterized how far downwave these trough dynamics remain sig-

nificant by contrasting its alongshore response scale to that of wind forcing (calculated with

the frictional distance, as described in the description section). This trough impact distance

can range from O(100 km) on narrow shelves like parts of the Antarctic to O(1500 km) on

wide shelves like the Scotian. This alongshore distance should be measured in relation to
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the closest trough upwave of some waters of interest.

The cross-shelfbreak exchange of flows driven by a trough can dominate cross-shelfbreak

exchange local to and downwave of such trough. This enhanced exchange will greatly modify

processes that depend on the exchange of flows between the shelf and slope. For example,

troughs downwelling shelf flows to the slope could be an important mechanism in the car-

bon pump, as well as driving biological growth on the shelf in the case of troughs upwelling

nutrient-rich waters from depths below ((Cape et al. 2019); Holt, Wakelin, and Huthnance

2009). Troughs enhancing the upwelling of slope currents to the shelf and subsequent con-

centration of these waters onshore into the fjord region is a heat-transfer mechanism re-

sponsible for glacial melt (Rysgaard et al. 2020; Walker et al. 2007; Wåhlin et al. 2013).

Model results explored here show that troughs upwell flows along isobaths shallower than

the deepest depths of the trough. The upwelling and subsequent of exchange of slope flows

from depths below the trough must first be brought up by some other mechanism. Finally,

as troughs cause currents to migrate offshore towards the slope, this will be one cause of

the (often-observed) shelfbreak jet (Fratantoni and Pickart 2007; Greatbatch, Pal, and Ren

1995; Greenberg and Petrie 1988; Han et al. 2008). This may contribute to the insulation of

coastal dynamics from basin-scale forcing (Chapman 1985).

This study shows that troughs can significantly impact coastal circulation. An increased

understanding of how significantly the trough impact is will come as these results are applied

to observations, and this study is expanded beyond these physical limits, i.e., the barotropic,

linear, and steady-state dynamics explored here.
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6 Appendix

6.1 Numerical Recipe

The model created for this study solves the vorticity equation (3) for a streamfunction Ψ,

given input geometry and forcing conditions. A direct solver is constructed to solve this

governing equation term by term over the entire domain. Terms are constructed where

partial derivatives (Hx, Hy, Ψx, Ψy) are central derivatives (apart from domain edges). The

alongshore and offshore resolutions of these terms are 500 and 100 meters, respectively.

Terms generated are filled into a matrix of vorticity equations, which describe the entire

domain.

All matrix filling and calculations steps are conducted in sparse form. This eliminates

unnecessary computation of zeros, and it speeds up run times significantly. The boundary

conditions, as prescribed in the methods, are handled in the matrix construction when do-

main edges are met. For runs where downwave winds exist, an array of alongshore wind

stress values is constructed as a forcing term.

After these matrix constructions steps are done, a streamfunction is solved for with built-

in linear algebra tools of Python. The streamfunction, Ψ, is found in this vector form and

then transformed into domain space (x by y):

EΨ = F, (8)

where E is the N by N equation matrix (where N is equal to the total amount of grid cells

of the domain), Ψ is an N by one streamfunction vector, and F is the forcing (which may

include downwave winds).
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6.2 Downwave Boundary Condition

The choice of downwave boundary condition is arbitrary to within an “error distance,” up-

wave of it. This error distance is found by scaling the vorticity equation in the limit of the

downwave boundary being a “no-flow,” hard wall, eliminating alongshore transport, Ψx:

0 = J(Ψ,
f
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This leaves a vorticity balance whose alongshore length scale describes this upwave error dis-

tance. This is the distance upwave that flow adjusts to this wall, i.e., the upwave length that

the wall “forces” the domain. This has been described previously as a frictional boundary

layer, or Stommel width (Pringle 2002; Stommel 1948).

Ly = Lfric ∝
r

fHx

, (10)

where Ψy scales as Ψ
Ly

.

This limit case gives the maximum upwave extent of this adjustment. The baseline values

used in this model give a frictional (Stommel) width of O(5 km), or about 1% of the along-

shore distance. Therefore, the vast majority of this shelf system is unforced/unperturbed by

this downwave boundary phenomenon.
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Figure 1: Model bathymetry includes a trough on the shelf. The key geometric parameters
used in the scaling analysis are labeled with red cartoon arrows. The upwave forcing of
wind-generated shelf flows are labeled with a blue cartoon arrow.
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Figure 2: On the left is a bathymetry plot of the Laurentian Channel, which is a significant
glacial trough that incises the shelf almost entirely. On the right is a bathymetry plot of
the region southeast of Cape Cod, which is home to many river-carved canyons that incise
mainly the slope. Notice the Hudson Canyon (39.5◦N, 72◦W) is exceptional because it incises
the shelf. As a general principle, canyons incise the slope but not the shelf, contrarily to
troughs which incise the shelf but not the slope.
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Figure 3: Streamlines are plotted as white dashed lines over color-coded bathymetry. On
the left is a plot of a run with bottom friction, whereas on the right is one without bottom
friction. Both runs were forced solely by wind-generated shelf flows that enter the upwave
boundary, i.e., no winds within the domain.
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Table 1: Model input parameters′ baseline values, as well as minima, maxima, and increments
used in variation runs.

Parameter Baseline value Minimuma Maximuma Step Sizea

r[m
s

] 0.005 0.002 0.01 0.001
f [1

s
] 0.001 0.0001 0.0015 0.0001

Hshelfbreak[m] 100 50 400 50
Htrough[m] 250 0 600 50
Lhead[km] 20 0 150 10
Lshelf [km] 150 100 180 5
Wwall[km] 20 5 50 5
Wtrough[km] 50 0 150 10
aApplies to the variation runs.
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Figure 4: Resulting streamlines of two model runs are plotted as white dashed lines. On the
left is of a run without a trough, and on the right is one with a baseline-parameter trough.
White cartoon arrows are included to represent the shelf wind forcing, which is confined to
only the shelf upwave of the trough location. Loss of shelf transport to the slope is quantified
by calculating the difference in flow from the upwave (red) transect to the downwave (black)
transect.
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Figure 5: This baseline-parameter trough run is superimposed with blue cartoon arrows,
representing the two relative vorticity sources: curvature and shear (narrowing).
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Figure 6: Two different parameter variation results are plotted here to show the impact of
the narrowing source on offshore ejection, i.e., change in ejection as a function of parameter
value change. On the left is the parameter Lhead

Lshelf
, which controls the magnitude of velocity

shear, reaching a maximum as the shelf width narrows to zero, and reaching a minimum as
the trough disappears to the slope. On the right is the parameter

Wtrough

Lshelf
, which controls the

accumulation of the shear impact. Ejection change is directly proportional to this parameter
(trough width) because a longer alongshore distance allows for a higher accumulation of the
shear impact. An O(1) change in both parameters alters offshore ejection by approximately
60%.
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Figure 7: This parameter variation result shows the impact of the curvature source on
offshore ejection. As the parameter Wwall

Lhead
increases, the offshore ejection by the trough

reduces. This is because the alongshore extent of the wall is increasing, i.e., more gradual
walls, which reduces the significance of isobath curvature and therefore reduces the curvature
impact on offshore ejection. Unlike the narrowing source’s scaling, an O(1) change in this
curvature parameter alters offshore ejection by approximately 10%, or one-fifth that of the
narrowing source impact.
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Figure 8: Resulting streamlines of two model runs are plotted above: one with a single trough
(left) and one with two troughs (right). White cartoon arrows are included to represent the
wind forcing, which extends over the entire shelf domain. Loss of shelf transport to the
slope is quantified by calculating the difference in flow from the upwave (red) transect to the
downwave (black) transect.
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Figure 9: Resulting streamlines are contoured of a single-trough model run. A white cartoon
arrow is included to represent the wind forcing. The percentage of slope transport absorbed
onto the shelf is quantified by calculating the difference in flow from the downwave (black)
transect to the upwave (red) transect.
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