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ABSTRACT

Exploiting More Binaries by Using Planning to Assemble ROP Attacks

by

Daroc Alden

University of New Hampshire, May, 2020

Return oriented programming (ROP) attacks have been studied for many years, but they are

usually still constructed manually. The existing tools to synthesize ROP exploits automatically,

such as ROPGadget and angrop, are very limited by their ad-hoc design: they rely on matching

fixed patterns and assembling gadgets in fixed ways. We propose a new method, PEACE, that

uses symbolic execution and partial-order planning to assemble gadgets more flexibly. Our method

incrementally selects gadgets to address a need in the partially-constructed exploit, and infers

ordering constraints over those gadgets based on their effects. This approach enables PEACE to

create exploits for many more binaries than existing tools. By creating a more flexible and powerful

ROP attack generation tool, we hope to raise awareness of how much code is vulnerable to ROP

attacks and give researchers better tools to test detection and mitigation techniques.
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CHAPTER 1

Introduction

Return Oriented Programming (ROP) attacks, a form of code-reuse attack, work by overwriting

the stack with a set of return addresses that cause the program to do something malicious. ROP

attacks leverage buffer overflows or other vulnerabilities to write return addresses and other data

to the stack of a running process. The process then eventually executes a return instruction, and

the attack gains control of the program’s control flow. This allows an attacker to make a program

perform malicious behaviors. First proposed by Shacham, ROP attacks have been widely em-

ployed to perform practical and versatile attacks (Shacham, 2007; Checkoway, Davi, Dmitrienko,

Sadeghi, Shacham, & Winandy, 2010). The popularity of ROP has also spurred research on de-

fense techniques, such as Address Space Layout Randomization (ASLR) (Team, 2003), Address

Space Layout Permutation (ASLP) (Bookholt, 2005), shadow stack-based approaches (Sinnadurai,

Zhao, & Fai Wong, 2008), compiler-based mitigations (Mortimer, 2019), and Control-Flow Integrity

(CFI) (Abadi, Budiu, Erlingsson, & Ligatti, 2005).

Most ROP exploits are created by hand; existing tools to generate ROP attacks have signifi-

cant limitations. Most of these techniques deal with the inherent complexity of assembling ROP

attacks by searching for fixed patters of machine code that can be assembled in particular ways.

Snippets of machine code that end with an indirect jump are called gadgets. Gadgets are the

fundamental building blocks of ROP attacks. ROPGadget (Salwan, 2011) was the first tool of

this type. Later work included angrop (Shoshitaishvili, Wang, Salls, Stephens, Polino, Dutcher,

Grosen, Feng, Hauser, Kruegel, & Vigna, 2016) that improved on ROPGadget by using symbolic

execution (based on the Angr framework) to defeat simple obfuscation techniques. However, the

ROP attacks produced by these tools rely on a fixed library of patterns to identify gadgets (leading

to stereotyped ROP exploits with distinctive signatures that make the attacks easy to identify).
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Furthermore, compilers equipped with ROP defense methods can avoid emitting code that matches

the templates these tools use, effectively crippling them. What originally sparked my interest in

this thesis was a presentation by a contributor to the OpenBSD project that talked about how

they had made changes to LLVM’s register allocation code so that it would choose registers that

were encoded in a way that ROP attacks could take advantage of less often. They were able to

substantially reduce the number of gadgets in the OpenBSD kernel.

In this paper we propose PEACE (Planning Exploits by Assembling Chains Efficiently) to ef-

fectively construct complex and diverse ROP attacks. Our method treats the construction of ROP

payloads as a planning problem and uses a specialized planning algorithm to assemble ROP pay-

loads. More specifically, PEACE uses symbolic execution to infer properties of possible gadgets,

and then uses that information to construct a payload via partial-order planning. PEACE incre-

mentally selects gadgets to address a need in the plan, and infers ordering constraints over those

gadgets based on their effects. This flexible system can plan around constraints that would stymie

other techniques by using symbolic execution to account for syntactic obfuscation and by generating

a binary-specific plan that can be augmented to avoid detection techniques. Our evaluation shows

that the flexible, principled, inference-based approach of PEACE is able to find more exploits in

standard Ubuntu binaries than existing techniques.

Our source code and evaluation benchmark are available at https://setupminimal.github.

io/thesis.tar.xz.

2



CHAPTER 2

Background

In this section, we introduce ROP attacks and planning concepts. We briefly discuss existing

mitigations against ROP attacks. We finish by explaining the components of a ROP attack and

what PEACE is designed to generate.

2.1 Return Oriented Programming

ROP attacks remain one of the most common kinds of remote-code-execution vulnerability (Carlini

& Wagner, 2014). ROP payloads allow an attacker to use an out-of-bounds write to direct the

execution of the program. This is done by placing fake return addresses on the stack. When a

program ‘returns’ to one of those addresses, it starts executing a series of gadgets, small sections of

code that end with a return instruction or other indirect jump. This allows the attacker to direct

the control flow in the application by placing more gadgets’ addresses on the stack. Chaining these

gadgets together can allow the attacker to perform any calculation, or execute syscalls to perform

actions on the computer with the permissions of the suborned process. ROP has been shown Turing-

complete in general (Shacham, 2007), although the gadgets available in any particular binary may

not allow constructing the needed algorithms for simulating a Turing machine. This means that

ROP attacks have very few theoretical limits.

ROP attacks are possible on many architectures, including Harvard architectures (Francillion &

Castelluccia, 2008). On architectures that allow unaligned access to instructions (such as x86 and

x86 64) they can be particularly devastating because of the possibility of unaligned or unintended

gadgets. These are gadgets that result from an alternate decoding of the instruction stream that

does not line up with what the compiler intended. These gadgets are important when considering

ROP attacks, and should be kept in mind when considering the impact of the various mitigation
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techniques that exist to hinder ROP attacks, because mitigation techniques involving modifications

of the machine code must consider unintentional gadgets.

Exploiting a binary using a ROP attack consists of gaining arbitrary code execution, which an

attacker may leverage to accomplish other aims. Ultimately, this is accomplished by one of a few

methods. For example:

• Making a call to execve or other related procedures that allow an attacker to replace the

running process with /bin/sh or some other known binary.

• Making a call to mprotect to mark a page containing attacker-controlled content executable,

and then jumping to it.

• Making a call to mmap or mremap to map an attacker-controlled file as executable, and then

jumping to it.

• Making a call to fchown or fchmod to change permissions on a file.

Our initial implementation of PEACE focuses on a execve call, but as will become clear, the

technique generalizes easily to other approaches. In order to execute this syscall, a ROP attack

needs to set the contents of specific registers and then jump to a syscall instruction.

2.2 Existing ROP Synthesis Methods

ROPGadget: ROPGadget (Salwan, 2011) was one of the first ROP synthesis methods. It focused

on identifying occurrences of a pre-defined set of gadgets and then putting them into a pre-defined

template. This approach works well on large binaries where instances of the gadgets it searches for

are likely to be present, but is inherently very brittle.

Angrop: Angrop (Shoshitaishvili et al., 2016) uses a similar technique that leverages the Angr

framework’s symbolic analysis capabilities. Symbolic execution is a binary analysis technique where

an emulated CPU executes a sequence of instructions with symbolic variables from a constraint

solver as values, which can be used to discover generic information about that sequence of instruc-

tions. Angrop uses symbolic execution to match slight variations on its templates — for example,

4



ignoring nop instructions. Once it has identified gadgets, however, it still combines them with an

inflexible template.

Both of these methods assume that they know the ASLR offsets or ASLP addresses of gadgets

in the binary, as well as the location of at least one writable page. These assumptions are not too

strong, and PEACE leverages the same information. We go into more detail about why this is

reasonable in the discussion section.

2.3 Planning

Planning is an area of artificial intelligence focused on finding sequences of actions that lead through

a space of possible states to a goal (Norvig, 2002; Ghallab, Nau, & Traverso, 2016). In the case of

PEACE, a state is a partially constructed exploit and an action is a gadget that can be added to that

exploit, so that a goal is a complete exploit of the binary. Planning has been used before for program

synthesis, although usually at a relatively high level and not to our knowledge in the context of

ROP attacks. For example, Bhansali (1991) uses hierarchical planning and analogical reasoning

to generate simple Unix shell scripts from high-level specifications. Ireland and Stark (Ireland &

Stark, 2006) use proof planning and partial-order planning to generate correct imperative programs

from specifications. Planning has also been used to automatically synthesize workflows of web

services (Bertoli, Pistore, & Traverso, 2010). In generalized planning, a planner attempts to find a

small program, often expressed as a finite-state controller, that solves a class of problems instead

of a single given problem (Srivastava, Immerman, & Zilberstein, 2011). In the context of computer

security, planning has been used to generate attacks on models of computer systems and networks

as an aid in penetration testing (Boddy, Gohde, Haigh, & Harp, 2005; Hoffmann, 2015). None of

these works focus on code at the assembly code level or on ROP attacks.

The planning approach most relevant to PEACE is called heuristic graph search (Edelkamp &

Schrödl, 2011). Graph search conceptually operates on a directed graph of discrete states. There

is an arc from state A to state B if there is a valid action in state A that results in state B. The

simplest form of graph search would be a breadth-first search, where we first examine every state

distance 1 from our initial state, then every state distance 2, and so on, until we find a goal.
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If we have no other information about the structure of the graph, this is the best that we can

do (in terms of the number of states that we have to examine before finding a goal). When working

on a specific problem, however, we often have heuristics that give us additional information about

how likely a state is to lead to a goal. We can use these heuristics to guide the graph search so

that it finds a goal much more quickly (Hart, Nilsson, & Raphael, 1968). Planning by examining

the area of the graph near an initial state and progressing towards a goal state is called progression

planning. Planning by examining the area near the goal and working backwards is called regression

planning. As we will see in Section 3.6, in the case of PEACE, regression planning has an advantage

because we can make better heuristics for it.

There is also an optimization that we can make to cut down the size of the graph. Planning

can construct a sequence of actions in either a total order or a partial order. Partial order planning

essentially takes the quotient of the graph by equivalence under re-ordering — i.e. we merge states

that are identical when re-ordering actions that don’t depend on each other (Weld, 1994). This

makes it more costly to calculate the effect of actions, but can reduce the size of the graph by a

factor of d! in the best case, where d is the size of the solution found in number of actions. Partial

order planning is a good fit for PEACE because we expect that many of the actions in the plans

we explore will be independent.

6



CHAPTER 3

The PEACE Approach

In this section, we describe a novel method called PEACE to synthesize diverse and complex ROP

chains. We first present a high-level picture of the whole methodology with an motivating example.

Then we elaborate every component in detail.

3.1 Overview

PEACE constructs ROP exploits using symbolic execution and partial-order regression planning.

Given a binary, it harnesses symbolic execution and a constraint solver to represent the functionality

of every gadget in the binary. Next, the gadgets are selected and assembled by a planner to construct

a complete ROP chain, which forms an exploit of the original binary.

The major research challenge is the enormous number of states which arise when searching for

a valid ROP chain due to many possible gadgets in any given binary. We design powerful heuristics

to guide the search to make it efficient, and use the techniques described in Section 2.3 to reduce

the size of the state space to search by identifying plans that are equivalent under valid re-orderings

and representing them as a single entity.

Figure 3-1 presents a high-level sketch of PEACE’s architecture. PEACE includes the following

five steps:

1. Gadget Extraction. PEACE extracts ROP Gadgets from a binary code, e.g., x86 64 ELF

Linux executables. It seeks to decode from every valid position in the binary, until reaching

certain forms of jump instruction. The valid starting positions depends on the details of the

architecture of the binary, such as instruction alignment and design of instruction length.

2. Loop Joining. From the list of potential gadgets, PEACE selects the subset of gadgets that

end in a controllable indirect jump. In particular, it determines that the ending jumps either

7



PEACE

Input Binary Angr Parses Code Extract Gadgets Join Loops

Synthesize Gadgets
De-duplicate Gadgets Plan Post-process Final plan

Figure 3-1: The high-level stages of PEACE.

have exactly one target, or can be fully controlled. To make analysis easier, any potential

gadget that can only branch to one location is joined with the gadget from that location,

and treated as a single gadget from then on. This lowers the number of gadgets that need

to be considered for inclusion in the exploit. Any circular references — infinite loops — are

dropped at this point.

3. Library Filtration. PEACE performs subsumption testing to winnow the list of gadgets down

to a minimal subset. Gadgets are discarded if their function can be completely replicated by

another gadget.

4. Heuristic Search PEACE chains the identified gadgets together as described in Section 3.6.2,

resulting in a completed partial plan (described in Section 3.5). The output of this step is a

set of gadgets and ordering constraints describing which gadgets should be executed, and in

what order.

5. Post-processing. As the last step, PEACE transforms the planning result into a linear ROP

payload. The payload uses existing gadgets in the binary to make the computer evaluate a

syscall with arguments we control.

Note that PEACE only needs to find a feasible plan, instead of seeking the shortest or most

efficient plan. Therefore, PEACE adopts optimizations to reduce the amount of time or memory

required to construct a plan, at the expense of potentially finding more complex plans. One example

of this is how PEACE handles detecting looping or redundant plans. In most planners, two partial

plans with similar current open dependencies (see below) could still be distinct if neither could yet

be shown to lead to the unambiguously better solution. PEACE can discard partially-formed plans

more aggressively.

8



3.2 Motivating Example

We present a small motivating example to illustrate our method. I recommend skimming the

motivating example, reading the rest of section 3, and then jumping back to the example when

you want a concrete explanation of something. Consider the following example binary (x86 64

machine code): 48 31 c0 c3 ff c0 c3 5f c3 48 89 f7 c3 48 31 d2 c3 48 01 d6 c3 48 ff

c0 29 d3 75 f9 c3 00. After decoding into assembly language, Table 3-1 presents all gadgets

that are not simply 32-bit versions of gadgets already present.

Synthetic gadgets: From these gadgets, PEACE first forms two additional synthetic gadgets: a

combination of gadgets 1 and 2 to set the value in %eax (referred to as gadget 13), and a combination

of 5 and 7 to generate the equivalent of mov %rdx, %rsi (referred to as gadget 14). This process

is explained in more depth in Section 3.3. The key advantage of combining gadgets early like this

is that it reduces the amount of work later phases have to do to chain gadgets together. As you

will see over the course of the example, creating synthetic gadgets greatly decreases the number of

interactions that have to be considered when planning, which lets the plans be shorter and more

flexible in terms of ordering.

Library filtration: During the library filtration phase, gadgets 3 and 4 get combined to set the

contents of %rsi (making gadget 15). Then gadget 15 can be combined with gadget 14 to set the

value of %rdx (making gadget 16).

The library filtration phase also removes gadgets 2, 4, 5, 7, 8, 9, 10, 11, 12, and 14 for being

redundant. This leaves us with the gadgets in Table 3-2. This is also the phase where the 32-bit

versions of various gadgets actually get dropped if there are 64-bit versions available. They were

not included earlier only because they would almost double the number of gadgets in the example,

making it harder to follow.

Planning: In the planning phase, we start with an initial partial plan where the set of unfulfilled

dependencies that we are seeking to resolve contains the goals listed in Figure 3-2. These goals

make a syscall on Linux to execve. PEACE expands this plan by trying to find a way to set %rdi.

9



Table 3-1: Gadgets in the motivating example.

No. Binary Code ROP Gadget

1
48 31 c0 xor %rax, %rax

c3 ret

2
ff c0 inc %eax

c3 ret

3
5f pop %rdi

c3 ret

4
48 89 f7 mov %rsi, %rdi

c3 ret

5
48 31 d2 xor %rdx, %rdx

c3 ret

6

d2 c3 rol %cl, %bl

48 01 d6 add %rdx, %rsi

c3 ret

7
48 01 d6 add %rdx, %rsi

c3 ret

8

48 ff c0 inc %rax

29 d3 sub %edx, %ebx

75 f9 jne <bad>

c3 ret

9

c0 29 d3 shr BYTE PTR [%rcx], 0xd3

75 f9 jne <bad>

c3 ret

10

29 d3 sub %edx, %ebx

75 f9 jne <bad>

c3 ret

11
75 f9 jne <bad>

c3 ret

12
f9 stc

c3 ret

In this case, applying gadget 3 in Table 3-2 results in a partial plan of {gadget3} where goal 2 has

been fulfilled.

10



Table 3-2: Remaining gadgets after the library filtration process.

No. ROP Gadget Behavior

1 xor %rax, %rax Reset %rax

ret

3 pop %rdi Set %rdi to some value

ret

6 rol %cl, %bl Rotate %cl and add to

add %rdx, %rsi %rdx

ret

13 xor %rax, %rax Set %eax to some value

ret

inc %eax

ret

15 pop %rdi Set %rsi to some value

ret

mov %rsi, %rdi

ret

16 pop %rdi Set %rdx to some value

ret

mov %rsi, %rdi

ret

xor %rdx, %rdx

ret

add %rdx, %rsi

ret

PEACE continues to expand this plan, using gadgets 13, 15, and 16 to fulfill all the goals.

Considering ordering constraints, gadget 16 interferes with gadget 15, and both interfere with

11



1 %rax = 57

2 %rdi points to the value ‘‘/bin/sh’’

3 %rsi points to 0

4 %rdx points to 0

Figure 3-2: An initial set of goals for executing an excve call.

gadget 3. Therefore, the following might be the order of gadgets produced: gadget 16, gadget 15,

gadget 3, gadget 13.

Post-processing: From this partial plan, and given information such as ASLR offsets, PEACE

produces a ROP payload that can be written to the stack. This payload includes addresses of

gadgets intermixed with data needed for, e.g. pop instructions, as well as static data that needs to

be referred to by a pointer.

We will now consider the major steps of PEACE in more detail.

3.3 Identifying Gadgets

As the first step towards a full ROP exploit, we seek available gadgets in a binary. This is the

step labeled “Identifying Gadgets” in the motivating example. We start decoding gadgets from

all valid positions in the binary, and use symbolic execution to quantify the gadgets according to

several metrics. Unlike Angrop (Shoshitaishvili et al., 2016), we deliberately include gadgets that

contain unconditional branches. The purpose of the loop joining step is to turn some of these into

useful gadgets. Since ROP attacks can only continue to be effective if they maintain control over

the instruction pointer, most techniques completely disregard gadgets where the IP is not fully

controlled afterwards. By seeing where it is possible for gadgets ending in constrained jumps to

jump to, we can potentially regain full control over the instruction pointer. The main advantage of

this is that it allows PEACE to consider gadgets that contain loops or other complex flow control.

Specifically, we recover this information about each gadget:

• Length in bytes
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Length 4

Registers clobbered ∅

Registers controlled {rdx}

Type of jump ret

Source location 16

Preconditions ∅

Postconditions rdxafter = rdxbefore + rsibefore

Table 3-3: Example values for Gadget 7

• Registers clobbered

• Registers controlled

• Type of jump used

• Source location

• Symbolic constraints required for gadget to run successfully with the IP still controlled: re-

quirements for register contents, and requirements for registers to contain readable/writable

pointers. These are represented as symbolic variables and constraints in the underlying con-

straint solver, Z3 (De Moura & Bjørner, 2008) in our case.

• Symbolic constraints representing the effects of the gadget.

This information is stored in a data-structure representing the gadget. An example is given

in Section 3.3 The symbolic constraints are stored in the following way: for every register in

the current architecture we store two symbolic variables — the state before and after the gadget

executes. The postconditions of the gadgets are represented as constraints relating the before and

after variables. For example, if gadget 7 from the motivating example had rdxbefore, rdxafter, and

rsibefore as symbolic variables (64-bit bit-vector), its effect would be recorded by the following
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formula constraint in CVC (The CVC development team, 2020) format.

rdxafter, rdxbefore, rsibefore : BITVECTOR(64)

rdxafter = BVPLUS(64, rdxbefore, rsibefore)

We also have some constraints that are generated by loads from or stores to memory, that

require that a particular value is a pointer to a readable or writable page. To express this, we

extend Z3’s constraint language with an additional predicate, POINTER. Since analyzing whether

an arbitrary address is readable or writable is difficult in general, PEACE restricts these reads or

writes to occur on the stack.

Symbolic constraints representing preconditions are stored in a separate list, but still stated in

terms of the before variables. For example, if gadget 10 from the motivating example had edxbefore

and ebxbefore as variables, its precondition would be represented as edxbefore = ebxbefore. If the

value of a register would depend on a read from memory that we control (e.g. the stack), the after

variable is left unconstrained, so that it is free to take on whatever value is necessary in the rest of

the plan.

We could restrict the set of gadgets we consider in a few ways, for example by only considering

call-preceded gadgets, which are more likely to bypass CFI-based countermeasures. In principle,

any ROP detection technique could be used as a black-box filter at this stage, to cause the planner to

only consider gadgets that cannot be analyzed by the given technique. PEACE does not implement

this, but it might be an interesting possible expansion.

One unique optimization PEACE makes is to synthesize additional synthetic gadgets. Synthetic

gadgets are sequences of gadgets that are treated as a unit for the purposes of planning and that

together perform some desirable behavior, such as “set %rsi to some value”. We decided to include

synthetic gadgets in the design of peace because they reduce the size of the exploits PEACE finds

on the two small binaries that we were using for benchmarking during development by 54 gadgets,

with a commensurate speedup. PEACE constructs synthetic gadgets using two different patterns:

one that combines a gadget that zeros a register with one that increments that register, and one
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that combines a gadget that zeros a register with ones that perform basic arithmetic manipulations

with other registers as sources. These patterns are partially taken from existing techniques, and

partially constructed to work well with PEACE. Note that synthetic gadgets are not actually

gadgets present in the binary, but rather chains of gadgets that we represent as a single entity. One

example of a synthetic gadget is gadget 16 in Table 3-2. By chaining four smaller gadgets together,

it implements the behavior “set %rsi to some value”.

This step greatly increases the efficiency of the search. In the language of search, it reduces the

distance from the initial state to a goal state at the expense of increasing the number of available

actions in each state. Practically, introducing more actions is not a problem both because of the

library filtration step described below, and because if b is the average number of actions available

in a state, the number of states within distance d of the initial state is bd. Optimizations that

decrease d are most important for keeping the size of the search feasible.

3.4 Library Filtration

The gadget extraction procedure described above results in an enormous number of gadgets in

most binaries, the number of available actions in our search will be very high. The synthesis of

useful synthetic gadgets is a technique to shorten the depth of the search, to keep the number of

states PEACE needs to consider smaller. Another effective way to reduce the number of states

is to remove redundant or irrelevant gadgets. We call this process library filtration — a kind of

subsumption testing.

Subsumption Testing: One way to reduce the number of gadgets is by performing subsumption

testing — for every pair of gadgets A and B, if A can produce all the same effects as B, B

is redundant, and we can completely remove it from our library of available gadgets. This is

determined by looking at each gadget’s pre- and post-conditions, and seeing if there is a gadget

with a subset of the preconditions and a superset of the postconditions. We can determine whether

a condition is a sub- or super-set of another condition by querying the constraint solver to see

whether cond1 ∧ ¬cond2 and ¬cond1 ∧ cond2 is satisfiable. If both queries are satisfiable, they are
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not super or subsets. If both are not satisfiable, they are equal. Otherwise, we can determine which

one is a subset of the other. Effectively this means that we keep exactly one gadget with each kind

of effect (one mov between each set of registers, one add to each register, etc.). If there is a tie (i.e.

A subsumes B and B subsumes A), we keep whichever of the gadgets is less amenable to analysis,

to make detection techniques less effective. For example, the 64-bit version of an instruction almost

always subsumes the 32-bit version of the instruction, because the set of states in which it could

leave a register is a strict superset of the 32-bit version. An example of what this entails is given

in the step labeled Library filtration in the motivating example. Empirically, it reduces the set

of gadgets in our library by an average factor of 2.97, which yields a significant speed-up during

search.

I think there might be a better way to perform the subsumption testing. Currently, have an

O(n2) loop over the library of gadgets, comparing each one to the unique gadgets so far. Each

subsumption test involves several queries to the constraint solver (one for each register the gad-

gets touch), which is expensive. A better implementation might involve using a disjoint-set data-

structure. I didn’t explore this because the näıve approach was sufficient on binaries that were

small enough to actually perform planning on.

Library Representation: One final way to reduce the number of actions to consider at each

step is to index the available gadgets by what registers they effect, which allows the planning phase

to easily select which gadgets are relevant for achieving a given goal. Selecting gadgets in this way,

instead of considering all gadgets in all states, is able to substantially reduce the branching factor

of the search. In our implementation of PEACE, this is simply done by representing the library as

a python dictionary keyed on register name.

Independent gadgets: Another technique to reduce the length of our search — that we didn’t

implement — is to scan through our library of gadgets to find gadgets without dependencies —

that is, that don’t require any particular pre-requisite to run correctly — and then combine these

gadgets with other gadgets that use their effects to try to reduce each gadget’s overall number of

dependencies. We could turn each gadget that has a dependency that we can fulfill in this way
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into a synthetic gadget that doesn’t have that dependency by chaining it with the gadget with no

dependencies. This reduces the number of inferential steps that our search needs to consider, and

makes our library of gadgets more generally useful.

3.5 Dependencies and Partial Plans

We now use planning to combine the gadgets resulting from the previous phases. As discussed in

Section 2.3, we use partial order planning, because it allows us to substantially reduce the search

space. As we construct the partial plan, we keep track of which registers we still need to find a

way to control at any particular point. We call these the dependencies of a gadget, because the

gadget depends on them being fulfilled. For example, the gadget xor %rax, %rax; ret; does

not have any dependencies, but the gadget inc %rax, sub %edx, %ebx; jnz .somewhere bad;

ret; requires %edx and %ebx to be equal in order to be usable. Every dependency is represented

by a constraint in the underlying constraint solver’s language that needs to be satisfied in order to

use the gadget.

The nodes in PEACE’s search space each represent a partial plan. Specifically, they contain a

candidate attack represented as a 5-tuple 〈α, β, γ, δ, ε〉:

• α is a set of gadget instances, which are particular instances of a gadget present in the binary.

• β is a set of ordering constraints over α. These ordering constraints are represented as a

simple temporal network (Cesta & Oddi, 1996; Dechter, Meiri, & Pearl, 1991).

• γ is a set of causal links over α. A causal link (of the form ai
−→p aj) is a commitment by the

planner that a given post-condition p of a gadget ai ∈ α fulfills a dependency of aj ∈ α or of

the final goal.

• δ is a set of dependencies that have not yet been fulfilled.

• ε is a set of causal links that are currently unsafe, meaning that there exists a threatening

action ak ∈ α that would negate the post-condition of the causal link and could be ordered

between ai and aj without violating the ordering constraints.

When there are no unfulfilled dependencies and no unsafe causal links, the node represents a

complete plan that leads from any state of the computer to an exploit.
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When representing the plan in our implementation, we represent a gadget instance as a separate

data structure that points to the gadget, the time point representing where in the plan the gadget

is executed, and how the gadget’s dependencies are fulfilled. This lets us share static information

about gadgets between uses, and use the same gadget multiple times in a plan unambiguously.

Our internal representation of partial plans is based on an immutable data-structure that allows

related plans to share data. Unfortunately, representing simple temporal networks the same way

proved problematic. PEACE represents STNs as an adjacency matrix, and uses the Floyd-Warshall

all-pairs-shortest-path algorithm to check them for consistency. Unfortunately, this is O(n3) in the

number of time points in the network. A better implementation would support partial updates

and/or immutable representations of the STN(Cesta & Oddi, 1996). This didn’t turn out to be

too important, because by the time the size of the STN became problematic, the search-space of

partial plans itself was too large to search in a reasonable amount of time.

3.6 Search

In this section we present how to construct partial plans and carry out the heuristic graph search.

We first describe how to construct possible successor plans, then describe the actual search process,

and end by discussing how to prevent infinite loops.

3.6.1 Successor Plans

Adding available actions to a plan is done by finding all valid successor plans. Given some particular

partial plan, we create successor plans by selecting an open dependency in δ, and try to find gadgets

that can fulfill it. If we fail, the plan is a dead-end and can be discarded. Otherwise, we generate

one successor plan for each gadget that has a postcondition that can fulfill the open dependency.

The postcondition is unified with the dependency by taking the symbolic variables representing the

state of the relevant register and unifying them. So the regbefore from the gadget with the open

dependency is unified with the regafter from the gadget being added to the plan. Then we add the

gadget to α, its dependencies to δ, an ordering constraint to β, and a causal link protecting the

dependency to γ.
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Usually in partial-order planners, successor plans are also constructed by seeing if there are

additional causal links that can be added to the plan using the already instantiated gadgets. We

don’t need to do that because we’re not trying to find the shortest plan, only a plan that will

suffice. This reduces the number of potential successor plans.

When we are generating successor plans, we choose the dependency to focus on by selecting the

dependency for which the fewest gadgets exist. The logic behind this choice is that it reduces our

branching factor, and eliminates impossible plans quickly.

Generating a successor plan in this way may result in a plan where ε 6= ∅. We then need to

eliminate all of the unsafe causal links in ε by finding a partial order that doesn’t violate any of

the dependencies of the gadgets in the plan. We do this by choosing to either promote or demote

each gadget that threatens a causal link, generating several new successor plans. Promoting or

demoting a gadget involves adding a new ordering constraint that the gadget happen after the last

gadget it threatens, or before the first, respectively. This prevents it from threatening the causal

link. We expand all of these successor plans in this way until ε = ∅.

3.6.2 Planning Algorithm

Now that we have a representation of a search space over possible plans, an initial node, and a

successor function, we can turn to the algorithm for performing that search. Goal nodes are plans

where δ = ∅ (recall that ε = ∅ due to threat resolution when successors are generated). Since each

plan may have many possible successor plans, the key to our search algorithm is to find a goal node

while expanding as few plans as possible, since each plan takes a non-trivial amount of computation

to elaborate. We accomplish this by using a specific heuristic to choose which plan to elaborate

next.

Algorithm 1 presents pseudocode for the whole planning process. The for loop beginning on

line 9 enumerates the possible successor plans. Since we use regression search, meaning that we

start from our desired exploit and work backwards, we first consider the plan consisting only of the

dependencies needed for the exploit. For example, Figure 3-2 shows a possible initial state. The

algorithm starts by inserting that initial state into a priority queue (lines 3 and 4). We use a greedy
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Algorithm 1 PEACE Planning Algorithm.

1: Input : A goal G, and a library of gadgets L.

2: function Search(G,L)

3: queue ← EmptyQueue()

4: Add EmptyPlan() to queue . Section 3.5

5: while queue is not empty do

6: best ← pop(queue)

7: register ← minBy(dependence(best), λr. len(L(r))) . L(r) refers to those gadgets that

can influence register r, as explained in Section 3.4

8: gadgets← L(register)

9: for gadget in gadgets do

10: plan ← addToPlan(gadget, best) . Section 3.5

11: if plan has unsatisfiable constraints then

12: continue

13: else if plan has no dependencies then

14: return plan

15: end if

16: Add plan to queue

17: end for

18: end while

19: return failure

20: end function

20



best-first search (implemented by the while loop beginning on line 5), meaning that the priority

queue is ordered by our heuristic, described below. We pull plans from the priority queue one by

one, expand them, and put the successor plans back in the queue. Lines 11 through 15 explain

how the successor plans are evaluated and added to the queue. We do this until a complete plan is

found.

We order the priority queue in the following way, in decreasing order of importance:

1. Increasing number of remaining dependencies. This causes the search to try first plans that

are probably almost done.

2. Increasing number of constraints on symbolic variables present in the plan. This biases the

search towards plans that deal with concrete values, because they are cheaper to enumerate

and elaborate, while still allowing the planner to deal with symbolic variables when necessary.

3. Increasing complexity. This term is based on the sum of the numeric values of open depen-

dencies, plus a small constant term for pointer-based constraints. This is useful because it

generally biases the search towards numbers that are small, and therefore easy to generate

from scratch with combinations of increments and mathematical operations.

This heuristic was chosen by observing how different possible heuristics influenced PEACE’s

behavior on a small collection of binaries that we used to help guide our implementation. Without

item 1, PEACE has no reason to prefer plans that are nearly complete, and so frequently fails

to terminate. Without item 2, PEACE will consider plans with increasing numbers of symbolic

constraints. This alone is not a problem, but often there is a very similar concrete plan that

would require fewer calls to the constraint solver. Including item 2 makes PEACE perform much

better by resorting to plans with many symbolic variables only when necessary. Without item 3,

PEACE tends to explore lots of possible mathematical manipulations of register contents, without

any notion of which numbers are ’easier’ to achieve. Since zeroing a register is a common operation,

biasing the search towards low numbers helps PEACE find ways to set registers quickly.

One interesting possible extension to PEACE would be to design better heuristics. I think

that heuristics that take the gadgets available in a binary into account can probably significantly

outperform the heuristic we use here.
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3.6.3 Dealing with Loops

Plans with identical dependencies are interchangeable for our purposes. Whenever we generate a

plan, before we insert it into the priority queue, we check that it is not completely subsumed by

another plan in the queue. Specifically, when there exists another plan with dependencies δ1 which

contains more general constraints than the new plan, the new plan can be considered superflous.

In other words, whenever for every dependency d in δ2, either δ1 has no dependency on the register

involved in d, or the set of values for that register that would satisfy the dependencies in δ1 that

depend on that register is a superset of the set of values that would satisfy d, the plan can be

discarded. As in subsumption testing, this is determined for each register by using the constraint

solver to determine whether there are any values that would satisfy the dependency from δ1 but

not d.

We also check each plan against its ancestor plans, which prevents the search from looping.

Otherwise, there could be a pathological problem where two dependencies that can each be easily

discharged by gadgets that introduce the other would cause a loop. Without tracking previously

examined plans, gadgets of this kind would give rise to chains containing cycles of the form “A - B

- A - B - A ...”.

3.7 Post-processing

After finding a plan, we have a partial order between the gadgets involved. This is much more

flexible than other tools — which usually result in a total order — because we can potentially

disguise the ROP attack. By using the partial ordering information and the causal links, we can

find places in the exploit where additional, extraneous gadgets can be inserted without threatening

the purpose of the ROP chain. This can break up the profile of the attack, making it harder to

detect. For example, many ROP detection techniques rely on global state, which may be confused

by threading. Inserting calls to yield() can cause the program to switch threads, potentially

dirtying the transition buffer that some techniques use (Pappas, 2012).
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CHAPTER 4

Implementation

Our implementation of PEACE is remarkably slim, coming in at just under 1,500 lines of python

on top of the Angr framework (Shoshitaishvili et al., 2016), which does the heavy lifting of parsing

different binary formats, performing symbolic execution, and providing access to Z3 (De Moura

& Bjørner, 2008) as a constraint solver. We do have to extend Vex, Angr’s representation of

Z3’s constraint language, a little to be able to represent constraints on whether or not a register

constains a pointer to a particular value. For example, executing a excve syscall requires a register

to point to the value 0 in memory. Angr cannot natively represent this constraint, so we represent

these kinds of constraints by wrapping them in a custom datatype. Vex is a generic AST for

representing constraints; since we only care about whether values are valid pointers when dealing

directly with the contents of registers, we can just wrap existing Vex expressions in an additional

layer to represent pointer constraints.

We define two key data structures to use during the algorithm; the record of a gadget’s at-

tributes, and the data structure representing partial plans. We present them in Figures 4-1 and 4-2

to ease understanding and replication of our implementation — there is nothing special about this

representation.

Since our implementation was mainly aimed at evaluating the feasibility of PEACE, several

steps could be taken to improve the performance of the method. Notably, our representation of

simple temporal networks was naive, and became the dominant factor affecting performance when

the length of plans exceeded about 50 steps. Our search process only reached that depth on fairly

small binaries (see Figure 4-3 for details on the size of exploits found), so it was usually not a

limiting factor in PEACE’s performance.
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Addresses of all basic blocks in the gadget

The symbolic state of the machine before and after the gadget’s execution

A map from a register to pre-requisite conditions

A map from a register to registers that can influence that register’s final value

A set of registers that can be changed by executing the gadget

Figure 4-1: Fields in the gadget data structure

A simple time network (Cesta & Oddi, 1996) relating gadget instances

An open list of gadget instances with unresolved dependencies

A set of protected causal links

A pointer to the parent plan

A reference to the constraint solver

Figure 4-2: Fields in the partial plan data structure

Figure 4-3: Size of ROP payloads found, in number of gadgets (including synthetic gadgets as one

entry)
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CHAPTER 5

Evaluation

We will begin by describing our experimental setup, and how the various previous methods can be

compared to PEACE, and then present our results in detail.

5.1 Experimental Setup

There are several existing implementations of similar programs for automatically assembling ROP

payloads.

There were several prior implementations that we were unable to evaluate. One used a very

different technique and, as of this writing, is still under active development (Simplex, 2020). An-

other had a very detailed paper, but no available code (Follner, Bartel, Peng, Chang, Ispoglou,

Payer, & Bodden, 2016). There were two other approaches that we could not compile, and they

did not appear to have any published results (Souchet, 2017; Pakt, 2013). We carefully read

their code, and concluded that it was structured largely similarly to Ropper (Schirra, 2019) and

ROPGadget (Salwan, 2011), which we discuss in detail below.

Some of the tools did not assume that they would know the address of a writable section at

runtime. Since this is one of the assumptions we made, where necessary we modified the tools to

continue running as though they had found such an address. We believe that with that adjustment,

all of the tools being compared make the same assumptions about what is needed for a successful

ROP attack.

Our complete source code, along with a Nix expression for its dependencies, this set of binaries,

pinned versions of the other tools we tested, and notes describing our experimental setup are

available at https://setupminimal.github.io/thesis.tar.xz.
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Table 5-1: Number of binaries successfully exploited by various programs.

Tool Exploited (out of 361) Percent(%)

ROPGadget (Salwan, 2011) 9 2.4

Ropper (Schirra, 2019) 0 0.0

Angrop (Shoshitaishvili et al., 2016) 0 0.0

PEACE 44 12.1

To systematically investigate the performance of PEACE versus previous work on a large cor-

pus, we collected 361 binaries from the Ubuntu 18.04 Desktop installation image. We extracted

every executable present in the image for use as our benchmark. Since Ubuntu is a very popular

distribution, every binary in the benchmark is a widely-deployed open-source program.

5.2 Capability of Synthesizing ROP Chains

For each of the implementations that we were able to evaluate, we ran them over our corpus and

counted how many binaries they were able to automatically exploit. On our corpus, PEACE was

able to create ROP chains for 44 binaries, nearly 5 times as many as ROPGadget. (See Table 5-1).

Success was self-reported by the tools. We considered ROPGadget failing only because it couldn’t

identify a writable page as a success, because that was a foundational assumption that other tools

made. We did not attempt to actually exploit the binaries with the generated ROP chains because

we did not have buffer overflows suitable for testing. An additional point of interest is that the sets of

binaries exploited by ROPGadget and by PEACE were disjoint. This may be because ROPGadget

performed well on large binaries where it could find many gadgets, but PEACE performed well on

small binaries that were possible to analyze exhaustively.

We carefully investigated the existing work to analyze why they failed to synthesize as many

ROP chains. Ropper and ROPGadget both take very similar approaches. They scan the executable

starting from every possible address, looking for gadgets that match a set of templates. This
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matching has to be exact. Inserting a nop instruction could prevent ROPGadget from recognizing

a gadget. Then these gadgets are strung together in a pre-determined order.

Angrop, in contrast, leverages the capabilities of the Angr framework. It likewise scans all

gadgets from every possible address, but then filters them by a few specific criteria. For Angrop

to consider them, gadgets must meet the following requirements: be fewer than 20 bytes long,

perform fewer than 2 memory writes, perform fewer than 2 memory reads, end with a return

instruction, and not contain a jump. These restrictions significantly reduce the number of gadgets

that Angrop can use, and makes it easy for ROP detection techniques like kBouncer to detect

that many indirect jumps in a row are occurring. The attributes of each gadget were discovered

using symbolic execution. This prevents the tool from being deterred by nops and other irrelevant

instructions. Then the gadgets are assembled in a pre-determined order.

PEACE includes gadgets that contain all kinds of jump, including unconditional and conditional

branches — for example, gadgets that include if statements or for loops. This allows PEACE to

make use of more complex gadgets than Angrop, which in theory makes ROP attacks generated by

PEACE more difficult for detection techniques to identify.

PEACE was able to show that for 54 binaries, there was no sequence of gadgets that could lead

to calling execve in a single-threaded context. The fact that PEACE can make this claim is worth

highlighting, because it is a property that other methods do not share — when PEACE does not

find an exploit, it is because one does not exist, subject to the assumptions PEACE makes.

Another interesting result is how important gadget-reduction is to PEACE. On average, the

library filtration phase reduces the number of gadgets that must be considered by a factor of 2.97

(Minimum: 1.54, 25th percentile: 2.53, Median: 2.93, 75th percentile: 3.29, Maximum: 7.62). This

reduces the average runtime of PEACE substantially. PEACE’s runtime is O(bd); this optimization

reduces b, which has an outsize effect on the runtime.
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Figure 5-1: The average size of gadgets in exploits assembled by PEACE.

5.3 ROP Chain Diversity

This section discusses the diversity of ROP chains produced by PEACE. We measure the attributes

of the gadget chains generated by PEACE and present the results as kebab plots. The plots show

a granular representation of the underlying distribution, akin to a histogram.

Figure 5-1 shows the distribution of sizes of the gadgets used by PEACE to assemble its exploits.

The average gadget was 3.3 instructions. On average, PEACE used more complex gadgets than

ROPGadget, which used gadgets with an average length of 2.0 instructions. The number of gadgets

in exploits PEACE generated varied according to the following distribution: Minimum: 5; 25th

percentile: 6; Median: 6; 75th percentile: 10; Maximum: 22. A search of depth 22 is quite

remarkable given that the average branching factor was 5.48, showing that our priority queue

ordering heuristics were highly effective.

Figure 5-2 shows the size of the exploits PEACE found in instructions. Compare this varied

distribution with ROPGadget, which usually constructs exploits (for x86 64) that are between 126

and 134 instructions long (Salwan, 2011). The fact that PEACE is able to generate exploits that

are so short is weak evidence for the claim that gadgets are usually independent, and therefore that
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Figure 5-2: Total number of instructions in all ROP payloads found.

partial-order planning is a good fit for this domain. If gadgets interfered with each other more, we

would expect to have long sequences of gadgets present to work around unhelpful side effects.

Figure 5-3 shows the average branching factor vs. the number of gadgets after library filtration.

The branching factor was weakly positively correlated (R2 = 0.284) with the number of gadgets

present in the binary. This makes sense because when there are more gadgets available in total,

there are more likely to be gadgets that effect each register.

Figure 5-4 shows the number of nodes that PEACE expanded during its search, both in cases

where an exploit was ultimately found, and in those where it was not. As the distributions show,

the difference between binaries was extreme, with some binaries having many plans explored before

they were found not to contain an exploit. The average number of expansions overall was 296.5.

Figure 5-5 shows how many gadgets PEACE was able to extract from the binaries in the corpus.

This plot shows that those binaries where PEACE was able to show that no exploit exists were

usually smaller in terms of number of gadgets. This makes sense, because exhaustively searching

all possible ROP exploits in a binary is more complex than trying to find a single example.

To evaluate the performance of PEACE, we allowed up to 12 hours for gadget extraction and

library filtration, and a further 2 hours for planning. Most binaries in the corpus did not take
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Figure 5-3: The average branching factor vs. number of gadgets found.

the full time for gadget extraction, but did take the full time for planning. Figure 5-6 shows that

PEACE was finding exploits over a wide range of times, even up to the 2-hour cutoff. This suggests

that given sufficient time, PEACE would be able to construct ROP payloads for more binaries. All

of the previous work that we evaluated executed in less than 3 hours total on our test machine, and

did not consume significant memory. The performance difference versus existing methods comes

from PEACE’s use of planning. This is still an acceptable trade-off because PEACE can provide

more complex and resilient ROP chains on binaries that stymie other techniques. It also suggests

that a hybrid method might be an interesting area of research.
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Figure 5-4: Number of expansions performed, for executions that found a plan versus those that

did not, on a log scale.

Figure 5-5: The number of gadgets present before library filtration for executions where a plan was

found versus not.
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Figure 5-6: Runtime of PEACE comparing executions that found a ROP payload to those that did

not.

Figure 5-7: Average number of branches seen while expanding plans, for executions that found a

plan versus those that did not.
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Figure 5-8: Size of ROP payloads found, in bytes.

Figure 5-9: Size of files for which a ROP payload was found versus not, in bytes
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Figure 5-10: Size of the main object loaded from the file for instances where a plan was found

versus not, in bytes, log scale.

Figure 5-11: The maximum number of actions available in some state in each execution where a

plan was found versus not.
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Figure 5-12: The maximum resident set size of PEACE for executions where a plan was found

versus not, in bytes.

Figure 5-13: The maximum size of the queue for executions where a plan was found versus not, log

scale.
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Figure 5-14: The minimum number of actions available in some state for executions where a plan

was found versus not.

Figure 5-15: The number of gadgets present after library filtration for executions where a plan was

found versus not.
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CHAPTER 6

Discussion

ROP attacks have been widely studied within the security community, and there is a lot of ex-

isting work dedicated to mitigating them. However, these techniques are orthogonal to PEACE’s

contribution. While we hope that research like ours can spur researchers to develop as many ROP

countermeasures as practical, there are plenty of theoretical issues with detecting or preventing

ROP attacks, which we briefly review. Detection techniques can use common characteristics (i.e.

frequency of indirect jumps, repetitive constructs, etc.) of ROP payloads to identify them before

they reach the target application, or can use architectural details to detect them as they execute.

Changing how code is compiled can reduce or eliminate gadgets entirely (Mortimer, 2019). ASLR

(Address Space Layout Randomization) can prevent the payload from being assembled unless pri-

vate information is known. We briefly discuss each of these techniques.

6.1 Detection Techniques

Several detection techniques are based on Control Flow Integrity, or CFI (Abadi et al., 2005;

Mashtizadeh, Bittau, Mazieres, & Boneh, 2014; Payer, Barresi, & Gross, 2015). This technique

analyses a binary to identify the potential control flow that the program could take, and then

detects when a ROP attack causes it to differ. This is a difficult problem because identifying the

CFI graph perfectly is in theory Turing Complete, and in practice quite difficult or inefficient.

Therefore most such protections use a conservative approximation of the true CFI graph. This is

usually insufficient to prevent code reuse attacks (Carlini & Wagner, 2014; Davi, Sadeghi, Lehmann,

& Monrose, 2014; Checkoway et al., 2010; Göktas, Athanasopoulos, Bos, & Portokalidis, 2014a).

Practically, many such protections check that indirect jumps are call-preceded, meaning that

they jump to an instruction directly after an instruction that could have called a function. There are
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several such instructions in x86 64, for example, but the most common one is call. Other analogous

instructions exist in every architecture. A possible extension to PEACE would be to optionally

consider only call-preceded gadgets, which should allow it to circumvent these techniques.

Another common prevention first introduced in kBouncer (Pappas, 2012) is to check for many

indirect jumps happening in a row using something like Intel’s Last Branch Record. However,

it turns out that common application patterns can have control flow that looks similar to ROP

attacks, and that ROP attacks don’t have to rely only on short, easily identified gadgets (Göktaş,

Athanasopoulos, Polychronakis, Bos, & Portokalidis, 2014b).

Other detection techniques include shadow stack based approaches (Sinnadurai et al., 2008;

Davi, Sadeghi, & Winandy, 2011). These track the call stack separately from the program’s main

stack, which makes it more difficult to overwrite return addresses. This originally had a significant

runtime overhead, although modern techniques have reduced it to a few percent (Dang, Maniatis,

& Wagner, 2015). This is a very promising defense against ROP attacks, although it is possible to

construct ROP attacks without using return instructions, instead relying on other kinds of indirect

jumps (Checkoway et al., 2010). Other kinds of indirect jumps are much rarer in practice, so

shadow stack based defenses remain a strong contender, but most ROP attack construction tools

— including PEACE — are capable of using other kinds of indirect jumps. Shadow stacks are also

usually less strict than they could be due to non-local control constructs such as C++ exceptions

or setjump and longjump.

PEACE addresses shadow stack based approaches by considering non-return indirect jumps,

as in JOP, and using unaligned instruction sequences to bypass function epilogues, which can

circumvent some shadow stack-based techniques (Dang et al., 2015; Sinnadurai et al., 2008).

6.2 Prevention Techniques

No existing method completely prevents ROP attacks, other than eliminating buffer overflows

as memory-safe languages do. The techniques that do exist operate by making it more difficult

to construct ROP attacks by reducing the number of gadgets, limiting indirect control flow, or

requiring attackers to have privileged information.
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For example, the OpenBSD Project was able to significantly decrease the number of gadgets in

the OpenBSD kernel by changing LLVM’s register selection algorithm to choose registers that result

in fewer unaligned ROP gadgets (Mortimer, 2019). They also used nop-sleds to make unaligned

access to function epilogues harder, by padding the function with one-byte nop instructions to

prevent unaligned instruction decoding, and then using specially-designed function epilogues that

don’t contain many useful operations for a ROP attack. Both of these techniques substantially

decrease the number of viable gadgets available to all ROP methods, including PEACE, but do

not eliminate them. These changes have been included in recent versions of LLVM and GCC, so

many binaries present in our corpus were built with some form of this mitigation enabled. Based on

our results, these mitigations don’t remove enough gadgets to prevent ROP attacks on commonly

distributed binaries.

These techniques can decrease the potential for ROP attacks, but cannot provably eliminate

them, because programs must always include indirect jumps to be useful. The only statically sound

way of eliminating ROP attacks is to completely prevent buffer overflows and other techniques that

allow malicious data to be used to influence the control flow of the program.

6.3 ASLR

Address Space Layout Randomization and its cousin Address Space Layout Permutation seek to

make ROP difficult by adding randomness to the location of code while the program is running.

However, numerous papers have shown that there are ways to use various side channels to leak ASLR

or ASLP information (Rudd, Skowyra, Bigelow, Dedhia, Hobson, Crane, Liebchen, Larsen, Davi,

Franz, Sadeghi, & Okhravi, 2017; Snow, Monrose, Davi, Dmitrienko, Liebchen, & Sadeghi, 2013;

Strackx, Younan, Philippaerts, Piessens, Lachmund, & Walter, 2009; Hund, Willems, & Holz, 2013).

Since side channels such as timing are exploitable even over networks that add a significant amount

of jitter and noise (Brumley & Boneh, 2003), it seems likely that ASLR and its variants will always

be susceptible to this kind of disclosure if running on a networked computer. PEACE therefore

assumes that as well as being able to write to the stack and control the instruction pointer, we know

the base offset at which the executable was loaded. Automated fuzzing techniques (Lcamtuf, 2014)

39



can already find ways to satisfy the first two automatically, and related work usually makes the

same assumptions (Shoshitaishvili et al., 2016; Follner et al., 2016; Schirra, 2019; Salwan, 2011).
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CHAPTER 7

Conclusion

ROP attacks remain a popular area of research, with many interesting offensive and defensive

techniques. However, the creation of ROP exploits is still largely manual. Existing automatic

ROP attack synthesis tools are far from mature. They still rely on matching fixed patterns and

assembling gadgets in fixed ways. This dearth of flexible tooling not only limits the development of

ROP attacks, but also restricts the evaluation of defensive techniques. In this work, we propose a

novel method combining symbolic execution and partial-order planning to automatically produce

diverse exploits from a binary file. PEACE is a more principled and flexible technique for assembling

ROP attacks, and our evaluation shows that it substantially outperforms the previous techniques

in exploiting widely distributed binaries. More broadly, our research suggests that there is exciting

work to be done on ROP attacks, particularly in adapting techniques from the planning and formal

methods communities to security research.
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