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ABSTRACT 

FILAMENTOUS BACTERIOPHAGE ASSOCIATED WITH SHAPING COMMUNITY STRUCTURE AND FITNESS 

OF INVASIVE VIBRIO PARAHAEMOLYTICUS ST36 

By 

Jillian Means 

University of New Hampshire 

 

Vibrio parahaemolyticus a ubiquitous coastal inhabitant, is the leading cause of bacterial 

seafood-borne illnesses in the United States.  An increasing number of reported cases and rapid 

expansion into new areas has led to the classification of V. parahaemolyticus  as an emergent pathogen. 

Most strains of V. parahaemolyticus are not virulent; however, the spread of virulent lineages from their 

native ranges to new locations has contributed drastically to the increase in vibriosis attributed to V. 

parahaemolyticus in recent years. In the United States (US), sequence type (ST) 36, a virulent strain 

endemic to the Pacific Northwest (PNW), spread from its native range up and down both coasts of North 

America even crossed the Atlantic to cause an outbreak in Spain in 2012,  Specifically, the North Atlantic 

coast of the US traditionally did not have a major disease burden due to V. parahaemolyticus; however, 

the introduction of ST36 and the evolution of local pathogenic lineages have led to a sharp increase in 

the number of cases traced to product from this region.   

Here we use genomics and phylogeographic analysis to examine the dynamics of the expansion 

of ST36 and its subsequent establishment in Northeast coastal waters.  The impact of basal acquisition 

of two unique filamentous bacteriophages by distinct clonal clades within the Northeastern ST36 

populations is also explored. We propose that the acquisition of these bacteriophages influenced the 

fitness of their hosts and enabled the establishment of robust local populations of pathogenic V. 
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parahaemolyticus, contributing greatly to the disease burden in the Northeast. Filamentous 

bacteriophages are distributed throughout many V. parahaemolyticus populations and may be 

important drivers of evolution amongst these strains. In direct competition under laboratory conditions, 

the bacteriophage associated with the Gulf of Maine clonal population, Vipa26, does not impact growth 

of persistently infected isolates and protects them from superinfection by similar phages. Upon new 

infection, the growth of susceptible isolates slows dramatically before the integration and down 

regulation of phage production. qPCR assays for integrated and replicative form of phage elucidate this 

dynamic during  infection. This implicates Vipa26 as a potential sword and shield for this strain, possibly 

aiding the progenitor of the Gulf of Maine population of ST36 in its subsequent global expansion. Impact 

of phage on biofilm formation, resistance to predatory grazing and competitive fitness in natural 

seawater microcosms were also investigated.  These studies indicate that phage integration is linked to 

environmental fitness of ST36 and further investigation into the phage-host relationship is warranted to 

shed light onto the dynamics of the establishment of novel V. parahaemolyticus populations. 
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INTRODUCTION 

Jillian Means1 

Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, 

USA 

1.  Justification 

 Food and water borne pathogens are a major concern for human health even in modern, 

developed nations. In the United States alone it is estimated that there are approximately 48 million 

cases of food borne illness, leading to about 3,000 deaths each year (1, 2).  In addition to the heavy 

burden on human health, the economic cost of these diseases is immense, estimated between $51 

billion to $77.7 billion annually in the USA (3). To combat this, national surveillance programs, food 

safety laws, wastewater management and clean drinking water are vital tools. Developing nations with 

less infrastructure and education devoted to curbing these diseases face a much higher burden on 

health and their economy.  The World Health Organization (WHO) estimates that 31 major causes of 

foodborne disease lead to about 600 million cases of disease globally, with the majority of the burden 

on less developed regions (4).  Understanding the ecology and virulence of these pathogens is important 

for informing management, prevention and treatment to reduce the severity of the impact these 

diseases have on human health. 

2. Vibrios 

Vibrios are a diverse aquatic group of halophilic bacteria, with over 100 species widely 

distributed through brackish and marine environments (5).  They are Gram-negative facultative 

anaerobes, characterized by a curved rod shape, lateral flagella and a polar flagellum (6).  Unusual in 

other bacteria, vibrios often contain two complete chromosomes, generally with one significantly larger 
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than the other (7, 8). Vibrios form diverse associations with other marine life, some such as the fish 

pathogen Vibrio salmonicida cause disease (9), whereas Vibrio fischeri form mutualistic symbioses with 

squid and fish species.  Although most vibrios are harmless to humans, approximately twelve species are 

capable of causing disease. In the United States the three most common causes of vibriosis are Vibrio 

parahaemolyticus, Vibrio vulnificus and Vibrio alginolyticus (10); however, globally the vibrio species 

leading to the greatest health crisis is Vibrio cholerae, the pathogen responsible for deadly cholera 

outbreaks. 

Cholera is a disease characterized by severe diarrhea leading to rapid dehydration and death if 

left untreated.  According to the WHO, cholera affects around 1.3 – 4 million people every year, with 

estimates of fatalities between 21,000 and 143,000 (11).  This devastating disease is caused by V. 

cholerae, a natural inhabitant of coastal and brackish water worldwide.  Despite the abundance of cases 

of cholera reported, all are caused by only two of the many serotypes, O1 and O139. These are 

designated toxigenic as they carry a prophage, CTXφ, which encodes the main cholera toxins, ctxA and 

ctxB (12). Lysogenic conversion of strains newly infected with CTXφ can give rise to new toxigenic 

lineages. There have been six historical cholera epidemics with a seventh ongoing since 1961 (13).  The 

severe diarrhea caused by cholera releases quantities of up to 107 shed V. cholerae per stool back into 

the environment, continuing the infective cycle when others consume the contaminated water (14, 15).  

Modern sanitation and access to clean drinking water have largely solved the issue of cholera in 

developed countries. Cholera is also a very treatable disease with access to proper medical facilities. 

Despite this, it remains a major burden in impoverished regions which lack access to these modern 

amenities, and in regions recently hit by a natural or man-made disaster, disrupting normal functioning 

of such facilities and allowing cholera to spread (16). 

 In the United States, cholera has not been a major issue since the advent of modern water 

safety systems and wastewater treatment plants.  However, vibriosis is still a major source of disease 
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and economic loss in the USA, usually as a foodborne infection but in rare cases through contact with 

contaminated seawater. One of the less common but most severe causative agents of infection is V. 

vulnificus. V. vulnificus is a widely distributed inhabitant of warm brackish and coastal waters and like 

many vibrios, its abundance is closely linked with water temperatures, with highest concentrations 

found in warm waters. Though V. vulnificus infections most commonly cause gastroenteritis linked to 

consumption of oysters harvested in the warm waters of the Gulf of Mexico (17), more famously V. 

vulnificus can cause severe and often fatal wound infections. Despite its low clinical prevalence with only 

approximately 100 cases annually in the United States, the severity of wound infection leads to a 91% 

hospitalization rate (1). These skin infections are most common in people who are immune 

compromised and have an open wound exposed to brackish or salt water (17, 18).  Amputation and 

intensive care are frequent treatments, despite such aggressive measures mortality associated with V. 

vulnificus infections is around 35% (1). 

V. alginolyticus, which is the second most prevalent cause of vibriosis reported in the United 

States since 2007, when it overtook V. vulnificus, is also endemic to coastal waters around the world (19).  

This species is also a noted pathogen of fish and shellfish leading to major losses in aquaculture (20).  

Unlike many other vibrios, V. alginolyticus is usually not a foodborne pathogen, instead skin or ear 

infection caused by contact with seawater are the most common infections (19, 21). Unlike V. vulnificus 

infections which are usually comorbid with other conditions, 74% of patients did not have any pre-

existing conditions, and less hospitalization was reported especially for ear infections and lower 

extremity skin infections (1 and, 11% respectively) (19).  Despite fairly low rates of hospitalization and 

mortality, V. alginotlyicus infections can rarely lead to serious treatments such as amputation or surgical 

intervention (19).  Although V. vulnificus and V. alginolyticus infections are serious, the majority of the 

burden of vibriosis in the USA is due to V. parahaemolyticus.  
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A ubiquitous inhabitant of marine and estuarine environments, V. parahaemolyticus, the focus 

of this work, is the most common cause of vibriosis in the USA and a leading cause of foodborne 

gastroenteritis causing an estimated 45,000 cases nationally each year  (10). V. parahaemolyticus 

infection is usually due to consuming raw or undercooked shellfish, although wound infections after 

exposure to water also occur (1).  First defined in Japan in 1950 after causing an outbreak of seafood-

borne illness with 272 cases reported and 20 deaths, V. parahaemolyticus has since become one of the 

leading causes of seafood-borne illness (10, 22, 23). 

3. Vibrio parahaemolyticus ecology 

An environmental pathogen, V. parahaemolyticus is widespread in tropical and temperate 

estuaries, and coastal waters and can tolerate a broad range of conditions (24, 25). In the Great Bay in 

New Hampshire, isolates have been collected from the water column even in temperatures as low as 

1°C (26).  Under optimal conditions in the laboratory, V. parahaemolyticus grows extremely quickly, able 

to double in <10 minutes (27). A strong relationship between V. parahaemolyticus abundance and 

temperature and salinity drives a seasonal cycle with peak abundance in the summer months reaching 

concentrations of 102CFU/100mL in the water column (28–31). However, as the temperature decreases, 

so does the abundance and genetic diversity of the strains in the water (26). V. parahaemolyticus enters 

a viable but non culturable (VBNC) state when faced with difficult conditions including low temperature, 

and most strains persist in sediment over the winter months; proliferating back into the water column 

as temperatures warm (26, 28, 32, 33).  

V. parahaemolyticus can be found free floating in the water column, in the sediment or living in 

association with, or as a pathogen of, marine life such as corals, plankton, shellfish and fish (29, 34–37). 

It attaches readily to many surfaces and V. parahaemolyticus abundance is often associated with high 

levels of plankton and chlorophyll-a, in addition to salinity and temperature (29, 33). The natural ability 

to use many substrates for energy and nitrogen enables a wide range of possible habitats.  It 
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accumulates and becomes particularly concentrated in shellfish, including oysters, relative to the 

surrounding water.  

V. parahaemolyticus naturally transforms exogenous DNA, facilitating horizontal gene 

transfer(HGT) (38). Several vibrio species including V. cholerae are competent in the presence of chitin; 

however, the dependence on chitin in V. parahaemolyticus may be strain dependent based on mixed 

reports (39–41). Although not all strains of V. parahaemolyticus are pathogenic, due to this and other 

mechanisms of HGT such as transduction or conjugation, new pathogenic lineages can arise from the 

transfer of Vibrio Pathogenicity Islands (VPaIs), to a previously non-disease causing environmental strain 

(42). 

4. Vibrio parahaemolyticus pathogenesis 

4.1 Clinical presentation and reporting 

Human pathogenic V. parahaemolyticus typically causes self-limiting gastroenteritis linked to 

the consumption of raw or undercooked seafood.  Symptoms generally include diarrhea, abdominal pain, 

nausea, vomiting, fever and chills (10). However, occasionally in immune compromised or elderly 

individuals, V. parahaemolyticus can lead to serious complications and, rarely, death (1). V. 

parahaemolyticus is also capable of infecting open wounds that occur in or are exposed to seawater (1). 

Classified as an emergent disease, it is one of the only foodborne pathogens which is increasing in 

abundance in the US over the last decade despite increasing management strategies, causing it to be a 

significant economic and health concern (43). Early surveillance of vibriosis including V. 

parahaemolyticus was dictated by individual states with some requiring clinical cases to be reported 

while others did not track clinical cases. However, in 2007 it became mandatory at a national level to 

report cases of vibriosis to the Cholera and Other Vibrio Illness Surveillance (COVIS) system. Information 

such as clinical data, potential sources of exposure to the patient, and potential sources of 
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contaminated food are collected where possible (44). Each region still has specific guidelines to govern 

the management of oyster harvesting, including potential closures under certain conditions.  

Despite mandated reporting measures, illnesses caused by V. parahaemolyticus are severely 

underreported and occasionally misdiagnosed (45). As it is usually self-limiting, resolving in around 72 

hours, those sickened will often not go to a hospital but self-care in their own homes. Even if they do, it 

is possible that the attending physician will not order a test to determine the infectious agent, and even 

if a test is ordered, not all labs are able to test for vibrios (45).  One study estimated that in the case of 

underreporting for V. parahaemolyticus, a corrective factor of around 20 must be applied to calculate 

the true number of illnesses (46). One issue facing public health officials is tracking levels of virulent V. 

parahaemolyticus compared to the total abundance, as well as modeling conditions which are favorable 

for rapid expansion of the V. parahaemolyticus population (47).  Currently, shellfish harvesting is only 

closed after a certain number of illnesses have been traced back to a harvest area within a defined time 

period. 

4.2 V. parahaemolyticus virulence determinants  

Most V. parahaemolyticus strains are not pathogenic and not all virulence factors are known in 

V. parahaemolyticus. Two of the major known virulence factors, thermostable direct hemolysin (tdh) 

and tdh-related hemolysin (trh), are sometimes used as genetic markers for the presence of pathogenic 

V. parahaemolyticus (48, 49). However, around 10% of clinical isolates exhibit neither of these classic 

virulence markers, increasing the difficulty of proactively monitoring danger levels (50, 51). 

Environmental and pathogenic strains alike may exhibit one, both or neither of these genes, with up to 

48% of environmental isolates containing either tdh or trh in certain locations (52).  

 The TDH protein is a cytotoxic and hemolytic pore-forming tetramer, leading to the release of 

water and ions from the cell and eventually cell death (53, 54). TRH is 70% homologous to TDH and also 
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alters ion flow in the mammalian cells (55, 56). Despite being considered a marker for virulence, the 

deletion of tdh only reduced, but did not eliminate the ability of the virulent sequence type (ST) 3 V. 

parahaemolyticus to cause fluid to accumulate in the intestines of infected rabbits, the premier model 

for gastrointestinal vibriosis (57, 58). Pathogenic strains often have genetic islands (VPaIs) containing tdh 

and trh which are horizontally transferred between strains (42, 59, 60).  Certain VPaIs contain Type 3 

Secretion Systems (T3SS) in conjunction with these hemolysins (42, 61, 62). Other pathogenicity 

determinants including T3SS2 effectors, vopV and vopZ, have been identified, illustrating the complexity 

of virulence in V. parahaemolyticus (63, 64). 

T3SSs are needle like structures able to deliver effectors directly into eukaryotic cells. All V. 

parahaemolyticus strains harbor a T3SS on chromosome I designated T3SS1, capable of cytotoxicity but 

not important for conferring virulence (65).  Many pathogenic strains contain a second accessory T3SS 

called T3SS2 with three currently described variations occurring as part of a VPaI with either tdh 

(T3SS2α), trh (T3SS2β) or both (T3SS2γ) (42, 61, 62). It has been suggested that the T3SS2α island, 

containing two copies of tdh and no trh, may have increased resistance to predatory grazing by 

eukaryotes compared to strains which lack this island (65, 66). This fitness advantage may explain the 

persistence of virulence trait in the environment, given the general lack of significant selection for the 

human as a host. The mechanisms for virulence in V. parahaemolyticus are complex and not yet fully 

understood, with many processes including adhesion, biofilm formation, siderophore production and 

extracellular proteases important for colonizing a host and eliciting an enterotoxic response.  

4.4 Epidemiology of disease 

Prior to 1996, outbreaks were rare and V. parahaemolyticus infection was sporadic and caused 

by dominant local variants restricted in geographic range (67, 68). In 1996, ST3 (serotype O3:K6) clonal 

complex arose in Southeast Asia, and by 2006 this complex had become pandemic causing illness in 
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Europe, Asia, Africa and the Americas (69). ST3 is now the only pandemic clonal complex of V. 

parahaemolyticus and is a leading cause of V. parahaemolyticus infections globally. This marked a shift 

in the epidemiology of V. parahaemolyticus. The rapid spread of the highly virulent ST3 illustrated the 

mobile nature of V. parahaemolyticus and highlighted potential mechanisms which could introduce it to 

new areas. Natural currents could carry it to new shores, either free floating, or more likely associated 

with plankton (70, 71). It is also likely that the greater globalization of the seafood market and well as 

expanding shipping routes enabled the bacteria to hitch rides to new regions (72, 73). One potential 

factor contributing to its heightened virulence and fitness that could contribute to the many outbreaks 

and spread of ST3 is a filamentous prophage, f237, which encodes a putative adhesive protein and may 

facilitate attachment to the host during infection (74). Since the spread of ST3 and its continued 

presence as a pathogen on the global scale, another sequence type, ST36 has also begun to spread 

widely from its native region of the Pacific Northwest establishing populations down into California as 

well as up and down the East Coast of the US and causing an outbreak in Spain (75–78).  

5. Vibrio parahaemolyticus ST36 expansion 

ST36 (serotype O4:K12 and O4:K(unknown)) is a highly virulent strain of V. parahaemolyticus 

originating from the Pacific Northwest (PNW) where it has been causing illnesses since the 1980s (76, 

79). It is trh and tdh positive and contains a T3SS2γ, and is found with high clinical prevalence (75). It was 

introduced into the Northeast US waters prior to 2012 by some unknown mechanism, and has since 

established robust local populations in the Gulf of Maine (GOM) and Long Island Sound (LIS) (Fig. 1.1, 77, 

80). In 2012, ST36 caused an outbreak in Galicia, Spain and was detected on the East Coast of the US (Fig. 

1.1, 76, 78). Then in 2013, it caused a major outbreak traced to Northeast product with 104 cases 

reported from multiple states (75). 
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Figure 1.1. Proposed spatial phylogenetic reconstruction of ST36 expansion.  Martinez-Urtaza et al. 
used BEAST and SPREAD to produce a model of the temporal spatial expansion of ST36 out of its native 
Pacific Northwest (76). 

 Since then ST36 has managed to persist in the Northeast (75, 80). Besides a similar outbreak 

that was caused by ST3 in 1998 and traced to New York product, V. parahaemolyticus infections from 

this area were quite rare and not cause for much concern (69, 81). Warming water globally due to 

climate change is a potential factor contributing to the spread of ST36, especially in the Gulf of Maine 

where sea surface temperatures have increased nearly 2°C since pre-1958 averages (82, 83).  Warm 

water temperatures are closely correlated to V. parahaemolyticus abundance, increasing the likelihood 

of human exposure to elevated dosages (28, 31).  Since the outbreak, ST36 has accounted for the 

majority of V. parahaemolyticus infections in the Northeast, making it a significant concern to the 

shellfish industry (80).  

6. Bacteriophages 

Bacteriophages are viruses specific to bacteria and archaea. Discovered in the early 20th century, 

they were first used as a method to cure or help prevent bacterial infections prior to the widespread 

usage of antibiotics (84, 85). The first paper on phage therapy was published in 1921 in Belgium, 

reporting excellent results in injecting staphylococcus-specific phage preparations into cutaneous boils 
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(86). Despite initial early success, the trials were often derided for being inconsistent and the results 

exaggerated. This controversy, combined with the rise of easily accessible and effective antibiotics in the 

aftermath of WWI, lead to phage therapy being largely abandoned for the greater part of the 20th 

century (87). In recent years the advent of multiple antibiotic resistant bacteria and the shortage of 

novel antibiotics to address these infections has led to renewed interest in bacteriophages (88, 89). 

Concurrently, they are also being recognized for having potentially huge, but often unaccounted for 

ecological roles, as the most abundant biological entities on earth with an estimated 10^31 on earth, 10 

times more than their prokaryotic hosts (89). 

6.1 Bacteriophage lifecycles 

Phages are traditionally classified into two main lifecycles, lytic and lysogenic. The T4 Escherichia 

coli bacteriophage is a classic model of a lytic phage (90). The phage attaches, or adsorbs to the host, 

injects its genetic material into the cell and replicates in the cytoplasm, hijacking host cell machinery to 

build new phage particles (91). The new phage genomes are then packaged into the icosahedral heads, 

the whole virion is assembled, and the bacteria is lysed, releasing the progeny phage into the 

surroundings. The successful completion of the lytic cycle always leads to the lysis and death of the host 

cell. In the lysogenic cycle, exemplified by the E. coli specific lambda phage, the phage integrates its 

genetic material into the host cells genome after adsorption. The phage genome then transmits 

vertically with the cell as it replicates, until some trigger leads to the phage entering a lytic cycle of 

replication and release. Lysogenic phages in their integrated forms are known as prophages, and many 

bacterial genomes are littered with both active and inactive prophages.  

Chronic temperate phages do not fit neatly into either the lysogenic or lytic lifecycles. These 

phages, including filamentous phages of the class Inovirus such as f237 in V. parahaemolyticus ST3, 

exhibit a long term infection of the host cell (74). Chronic infection is somewhat similar to the lysogenic 
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cycle, as the phage genome is often integrated as a prophage into the host cell chromosome. However, 

once integration has occurred, the phage is able to replicate with in the host cell without excising from 

the chromosome leaving a copy of the phage genome in the host chromosome. The virions then secrete 

from the host cell, usually without killing the cell. The infection can result in a slowing of growth as the 

phages use up valuable host cell resources even when the host is not lysed to release the progeny phage 

(92). 

7. Bacteriophage impact on bacterial ecology 

 As the most abundant lifeform on the planet (93, 94), phages are incredibly important in 

impacting the ecology of the bacteria they infect.  They have long been implicated in transfer of 

bacterial genes between species through transduction, as well as agents of population control (95, 96).  

More recent work has uncovered more ways in which phages influence bacterial ecology and host 

genomics.  Microbial diversity can be maintained through transduction and the introduction of novel 

phage genes (97, 98). Some bacterial strains have been found with over 30% of the genome made up of 

phages and phage remnants (99, 100). Phages are also capable of changing the dynamics of direct 

bacterial competition in many ways such as differential predation, introduction of novel genetic content 

and placing selective pressure on populations (101, 102).  

7.1 Phage distribution 

 Phages are believed to exist everywhere that bacteria can be found.  In the gut of animals, 

coliphages – phages specific to coliform bacteria – are found associated with the microbiota, including 

34% of humans, with much higher concentrations associated with ruminants (103, 104).  This is likely 

due to the necessity of high bacterial loads for digesting their cellulose rich diets.  In the environment, 

phages have been found at titers as high as 107 particles/gram of soil in agricultural fields (105). Marine 

sediment has one of the highest phage titers at 109 particles/gram (106).  This figure is relatively higher 
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than in the water column above, at around 107 particles/mL in estuarine systems (107). Phage 

concentrations are generally 10 times higher than the associated bacterial load.  

In some systems, phages are thought to ensure bacterial community diversity through the “kill 

the winner” model, which suggests that phages specific to the most successful strain in a community will 

proliferate, leading to a decrease in the population of the “winner”, the strain that is otherwise most fit, 

allowing less competitive strains to survive (101, 108).  This would kill the most abundant strain until the 

infective cycle was stopped due to a low abundance of susceptible bacteria, leading to cyclic boom/bust 

cycles in specific phage populations. This gives the more phage-defense oriented strains access to 

valuable resources and diversifies the overall community structure. 

7.2 Phages in the aquatic environment 

 Phages in marine systems impact their hosts in a variety of ways at both the population and 

community level.  Introduction of phages to a previously naïve population leads to the selection of 

resistant clones; in one study the overall density of the resulting culture was not affected, only the 

genetic composition (109).  In this context, phages are drivers of evolution acting as a direct selective 

pressure on certain populations and effecting their genetic makeup and the overall structure of marine 

communities. The interplay between environmental cholera phages and cholera epidemics highlights 

this. During seasonal epidemics of cholera, cholera phages were rarely detected, with the inverse true 

during periods with few incidences of cholera reported (110, 111).  Including cholera phage abundance 

is important when developing models of cholera epidemic severity and length (111).  V. cholerae 

introduced into naïve regions which may not contain high abundance of their natural phage 

counterparts could also lead to severe epidemics that are not seasonally curbed by the increase in lytic 

phage in the environments (110).  Interestingly, the lytic phages known to curb epidemics are selected 
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for in the host gut and may lead to increased predation in the environment after a period of many 

infections (112). 

7.3 Bacteria vs phage arms race 

 This interplay between phage and bacteria has given rise to many varied and ingenious 

measures to protect bacteria from infection.  This phage-bacteria arms race drives the evolution and 

ecology of both players. Bacteria have many weapons in their arsenal to protect against phage infection, 

preventing adsorption, blocking the injection of foreign DNA, abortive infection and restriction 

modification of foreign DNA found inside the cell. During adsorption the phages target a specific 

receptor on the target cell, so changes to this receptor or blocking it through production of extracellular 

matrix or competitive inhibitors will interfere with this step and neatly prevent the phage from infecting 

the cell (113). The plasticity of the phage genome leads to rapid evolution to overcome such barriers, 

thus causing a race between the bacteria and the phage. 

  A notable immunity system developed by bacteria is the clustered, regularly interspaced short 

palindromic repeats (CRISPR) - CRISPR associated (Cas) system, recently adapted as a powerful gene 

editing tool (114, 115). This type of system is found in about 40% of bacterial species, and is an adaptive 

way for the cell to respond to the incursion of foreign DNA in the form of phage genomes or plasmids. 

(116)  The cell is able to recognize and selectively cut the foreign DNA, protecting itself from infection.  

CRISPR-Cas systems work alongside the more ubiquitous (found in ~90% of bacterial species) restriction 

modification (R-M) systems (117).  Native restriction enzymes in the bacteria cut any foreign DNA using 

DNA modification differences to differentiate between host and alien DNA (117, 118).   

Bacteria that are lysogenized by certain phage will also be protected by that phage from 

infection by similar phages. Many forms of lysogenic phage prevent the superinfection of their 

lysogenized hosts, protecting the infected bacteria from potentially greater harm from a more 
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aggressive phage by down regulating phage production (119). This relationship benefits the phage as 

well because it keeps the lysogen alive until a trigger to induce the phage, as well as interfering with 

competition from other phages.  

Abortive infection is another well understood phage resistance mechanism.  It has been 

described mostly on plasmids found in Lactococci, a group of bacteria important in cheesemaking where 

phage related cell death is a dire concern (120).  This is an altruistic method of sacrificing the individual 

to save the population.  The incoming phage triggers the abortive infection operon, leading to host cell 

death and the release of nonviable phage progeny (120, 121).  These diverse systems are varied in their 

targets when activated, capable of acting on transcription, translation, replication, but are similar in 

their lethality to the cell.  

7.4 Mutualistic coevolution of phage and host 

Phage-host dynamics may seem mostly antagonistic at a glance; however, a deeper look will 

reveal a more complex relationship. Individual cells may benefit from harboring prophages, the novel 

genetic content of the phage giving the bacteria an edge in competition with other strains. In E. coli, 

phages can increase the survival of the cell after a severe stress through the upregulation of the stress 

response, in Salmonella species phages contribute directly to the gain of nitrate metabolism through a 

novel nitric oxide synthase encoded in the phage genome (122–124).  Population level dynamics are 

even more complex, where phage mediated cell death is crucial to biofilm formation in several species 

(125, 126), whereas in others phage induced lysis releases bacteriocins, significantly boosting the 

competitive fitness of the population when in competition with susceptible strains (127).  The balance 

between the bacterial species and their phages is intricate, covering the spectrum between true 

antagonists engaging in a never-ending arms race and a mutualistic relationship enhancing the fitness of 

the bacterial host. 
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7.5 Lysogenic conversion  

 Lysogenic conversion is another process of coevolution between the phage and the host.  The 

prophage in this case confers a phenotype to the host cell beyond the normal effects expected from 

phage infection due to the presence of genes carried on the phage genome which are not involved in 

the phage lifecycle.  These genes vary widely, from stress response regulators to antibiotic resistance, 

novel metabolic systems and most notoriously, virulence (128, 129).  Prophage encoded virulence 

factors are found across many species, including toxins in Corynebacterium diphtheriae, and Clostridium 

botulinum the causative agents of diphtheria and botulism, respectively (130–132). The deletion or 

excision of the prophages attenuates the virulence of these strains (132).  Although toxins are important 

for pathogen evolution due to lysogenic conversion, many less direct virulence factors that are equally 

crucial to pathogenesis are found on phage genomes, for example adhesins crucial for attachment and 

colonization of the host (133). 

8. Phage classification - Inoviridae 

Filamentous phages of the family Inoviridae are found across the spectrum of bacterial species, 

with the majority occurring in Gram negative species. They can vary greatly in genetic content; however, 

they maintain a similar core genome arrangement (Fig. 1.2). The coat of the phage is comprised of many 

repeating copies of a single protein down the length of the particle, with differing protein content in the 

head and tail structure (134, 135). They contain circular ssDNA genomes and are non-enveloped. These 

filamentous phage particles tend to have dimensions of around 7nm in width and 1000-2000nm in 

length (135). Filamentous phages can either be lysogenic or replicate solely in the cytoplasm; however, 

they do not follow a typical lytic life cycle (134). Instead the phage particle is extruded at a certain rate 

from the host cell without necessarily killing the cell (Fig. 1.2). Doing so does enact a significant drain on 

cellular resources and they are known to slow the growth of host cells.  
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Figure 1.2. Genome organization, replication and assembly of Inovirus.  A. Colors of genes are grouped 
and labelled based on function. B. Transcription/translation of the circular replicative form and assembly 
of the phage particle.  Colors of proteins match the corresponding open reading frames in A (92). 

9. Direct effects of select Inoviridae on hosts 

9.1 Pf Pseudomonas aeruginosa phages 

These filamentous phages are receiving attention for the impact they can have on the host 

bacteria. Some encode toxins, whereas others impact host motility and biofilm formation. For example 

the Pf phages of Pseudomonas aeruginosa, a medically important opportunistic pathogen, were found 

to stabilize the biofilm matrix and contribute to the formation and stability of the biofilm (136). The 

filamentous structure of the phage itself worked to strengthen the biofilm, while cell death increased 

due to superinfection, a condition frequently deadly to the host. Cell death is an important part of 

biofilm formation in Pseudomonas (137), and the extracellular DNA released is a crucial component of 

the biofilm matrix (138). P. aeruginosa causes difficult to treat infections in immune compromised 
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patients in part due to its ability to form dense biofilms in surgical wounds or the lungs of cystic fibrosis 

patients. These biofilms are largely antibiotic resistant, seriously narrowing potential treatment options. 

This is only one of many documented cases of phages being important players in the establishment of 

biofilms (125, 139).  

9.2 Shewanella piezotolerans WP3 phage transcriptional regulation 

Shewanella piezotolerans WP3 has decreased swarming motility after infection by the SW1 

filamentous phage (140, 141). Lateral flagellar proteins are downregulated in part by phage encoded 

transcriptional regulators, and deletion of the phage leads to higher production of the flagella. The 

phage impacted the expression of many host genes, a majority of which were involved in the production 

of lateral flagella (140). The M13 coliphage, likely the most studied of the filamentous phages, also 

regulates the transcription of host cell genes during lysogeny, using a native phage transcriptional 

regulator (142). These regulatory systems can have crucial impacts on the fitness of the host cell and 

many indirect effects may result from lysogeny by this phage. 

9.3 Virulence effects of filamentous phages 

9.3.1 CTXφ Vibrio cholerae phage 

Within the Vibrio genus there is an even more medically important filamentous phage, CTX 

found in Vibrio cholerae, the causative agent of toxigenic conversion in cholera (143). The phage 

integrates into the dif site of the genome and encodes several of the major toxins which lead to severe 

illness, CtxA and CtxB, as well as Ace and Zot (12). These toxins act on the epithelial cells of the human 

intestine to cause severe loss of fluids which can lead to dehydration and death if left untreated (11). 

The presence of a phage encoding the principle toxins that cause cholera means virulence can be spread 

horizontally through the population, leading to outbreaks. The phage can infect and convert previously 
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non-toxigenic environmental isolates (144). However, phage mediated effects can also attenuate an 

epidemic due to the induction of phage after infection by a satellite phage RS1 (145). 

9.3.2 RSS1 and RSM1 Ralstonia phages  

Sometimes different phages can have drastically differing impacts on their host’s virulence. For 

example, in Ralstonia solanacearum, a soil inhabiting plant pathogen, there are two well studied 

filamentous phages impacting its virulence. RSS1 enhances host virulence through a multitude of 

transcriptional regulatory changes to the host cell, including early induction of the global virulence 

regulator phcA (146, 147). On the other hand, RSM1, another somewhat distantly related filamentous 

phage actually has the opposite impact, instead reducing host virulence (146, 148). The interplay of 

bacteria and the phages determines the behavior and pathogenicity of the lysogen. 

10. Inoviridae in V. parahaemolyticus 

 In V. parahaemolyticus, the filamentous phage f237 is notably nearly universally associated with 

the pandemic complex ST3 (74, 149). This phage was found to integrate site specifically into the host 

chromosome targeting the dif site, an important region for dimer resolution (150).  CTXφ contains 

similar genomic structure and also integrates into the dif site of V. cholerae, indicating that this is a 

common target of integration for filamentous prophages in vibrios (150). Although the core architecture 

of the f237 phage in V. parahaemolyticus is similar CTXφ, the cholera toxins ctxA and B, are located in 

the variable region which lack any structural or sequence homology to f237 (149).  ORF8 is instead 

encoded by f237 in this region and shares motifs with an adhesin protein found in Drosophila, leading to 

speculation that the presence of ORF8 could increase attachment of ST3 in the human gut contributing 

to colonization and disease (74).  However, the true impact of f237 on the success and virulence of ST3 

remains unclear, with some clinical isolates lacking phage reported (151). 

11. Research Objectives 
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11.1 Chapter 2: Do genomic and phage content of V. parahaemolyticus strains correlate to their 

geographic region of origin? 

The introduction and persistence of V. parahaemolyticus ST36 along the Atlantic coast has led to serious 

increases in vibriosis throughout the region.  Elucidating the spread and population structure of ST36 

incursion to this region is important for understanding the second inter-oceanic expansion of V. 

parahaemolyticus strains.  Here we use a diverse library of clinical and environmental strains with robust 

traceback data spanning the period prior to the invasion of ST36 through the present. In this study we 

hypothesize that whole genome phylogeny, accurate traceback and phage content are crucial to 

understanding the ecological context of trans-oceanic expansion and uncover distinct sub-populations of 

ST36 relating directly to region of origin. 

11.2 Chapter 3: What is the impact of novel inovirus phage on the ecology and virulence of strains 

from clonal sub-populations of invasive ST36? 

ST36 is the second pathogenic sequence type of V. parahaemolyticus since ST3 to spread so far beyond 

its traditional range and establish long-term stable populations.  Analysis of ST36 genomes reveals the 

presence of filamentous prophages associated with distinct regional subpopulations. These phages are 

very similar to f237 found universally in ST3 and are classed in a family known for diverse impacts on the 

host cell function. Phages are drivers of microbial ecology and evolution, so the presence of these 

phages suggests that they could be influencing ST3 and ST36 subpopulations. Due to the success and 

pathogenicity of both of these phage harboring sequence types, in this study we investigate the 

potential effect of this phage on the host cell using molecular and culture based techniques.  We 

hypothesize that the acquisition of the phage provides a demonstrable fitness or virulence benefit to the 

host compared to phage deficient isolates. 
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Abstract 

Vibrio parahaemolyticus is a ubiquitous resident in coastal seawater bacterial communities.  Most 

strains are harmless; however, V. parahaemolyticus is still the most common cause of bacterial seafood-

borne gastroenteritis in the United States. In recent years, the epidemiology of V. parahaemolyticus 

outbreaks has shifted with the emergence and spread of virulent sequence types (ST) across the globe.  

ST3, the only pandemic clonal complex of pathogenic V. parahaemolyticus, is not a major health concern 

in the United States because it has not established robust local populations, including in the Northeast, 

where V. parahaemolyticus infections are not traditionally common.  A strain endemic to the Pacific 

Northwest, ST36, has since spread into the Atlantic and causes disease up and down the East Coast, as 

well as one outbreak in Spain in 2012. Martinez et al. previously described this expansion; however, 

here we leverage our unique collection of environmental and clinical strains with robust traceback data 

to the geographic location of origin to further elucidate the invasion of ST36 into the waters of the 

Northeast.  The current understanding of ST36 population dynamics and spread is based off of location 
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of reported illness, without accounting for the movement of shellfish and people.  Here we elucidate the 

population structure and unique phage content of the Northeast ST36 population and relate it to the 

body of water from which each strain originated, providing unprecedented insight into movement and 

evolution of ST36 through its natural environment as it expands far beyond its native range.  We find 

that much of the diversity of this lineage arose in the PNW and was subsequently introduced into new 

habitats, potentially influenced by phage acquisition or loss. Investigating the spread of pre-pandemic 

ST36 furthers our understanding of the virulent V. parahaemolyticus lineages and their evolution and 

expansion. 

Introduction 

Cases of V. parahaemolyticus, an emergent pathogen and the leading cause of bacterial 

seafood-borne gastroenteritis, have increased in the Northeast of the United States over the last decade 

(33, 80, 82).  Although a global increase in disease is in part due to the rise of a pandemic clonal complex 

(sequence type 3 or ST3) in Asia in 1996 and subsequent world-wide spread by 2006, this strain is not 

prevalent and does not contribute greatly to the rise in cases in the Northeast US region (69, 80).  

Warming water temperatures, a growing aquaculture industry, the emergence of new pathogenic 

lineages and expansion of highly virulent strains are all drivers of this trend (42, 77, 82). The introduction 

of ST36, a virulent lineage endemic to the Pacific Northwest, is particularly important to the shift in V. 

parahaemolyticus epidemiology in the region. Originally limited to Pacific Northwest where it began 

causing infections in 1979, ST36 began to spread beyond its traditional range into California in the early 

2000s (68, 76). Subsequently in 2012, ST36 was traced to product from the Long Island Sound (LIS) and 

caused the largest outbreak of V. parahaemolyticus in Europe on a cruise ship off the coast of Galicia, 

Spain, marking a interoceanic expansion, the first since the pandemic ST3 (77, 78).  The following year, 

ST36 caused an outbreak in 2013 traced to Northeast product with 104 illnesses reported across 
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multiple states (75, 77).   The interoceanic expansion of ST36 highlights its pandemic potential and 

provides a unique opportunity to broaden our understanding of how pandemic strains arise and spread.   

Martinez-Urtaza et al. investigated the spatial-temporal and genomic context of the dispersal of 

ST36; however, in this study we include more strains from the North Atlantic Coast of the US to gain 

insight into the genetic content and phylogeographic traceback of ST36 in the Northeast United States 

(76).  The previous study into the expansion of ST36 focused on explaining its incursion into new 

habitats through the location of disease occurrence (76). Whereas location of the reported illness yields 

valuable data on the epidemiology and disease incidence of the strain, it leaves a gap in knowledge of 

the ecological context of the expansion.  V. parahaemolyticus is an environmental pathogen; therefore, 

understanding the phylogeny of pathogenic lineages linked to the bodies of water from which they arise 

provides valuable insight into the ecological dynamics of the recent spread of these clades.  Robust 

connection of clinical samples with potential source where the bacteria originated is critical to building a 

better understanding of ST36 population dynamics.  Here we are uniquely situated to shed light on the 

ecological context of the incursion of ST36, due to our extensive library of both clinical and 

environmental strains with associated traceback information available for analysis.   

One potential factor influencing the spread and establishment of local ST36 populations is 

filamentous bacteriophage.  These viruses infecting bacteria, classified in the family Inoviridae, cause 

chronic infections of the host, which can lead to unexpected influences on host phenotype.   One 

example of the dramatic effect these phages can have on host phenotype and evolution is CTXφ, a 

phage responsible for toxigenic conversion in Vibrio cholerae (143).  Despite the well documented 

impacts on V. cholerae competition dynamics and virulence, filamentous phages in V. parahaemolyticus 

remain largely uncharacterized (112, 152). This is a critical gap in our understanding of V. 

parahaemolyticus diversity, especially considering that nearly every isolate of the pandemic lineage of V. 

parahaemolyticus, ST3, contains a filamentous bacteriophage named f237 integrated into the host (74, 
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149).  Using comparative genomics to identify novel content, we describe novel f237-like filamentous 

phages closely associated geographic origin of the host population.  We propose that these distinct 

phages can elucidate the spread and establishment of ST36 along the east coast and provide valuable 

insight into the influence of these phages on population dynamics of V. parahaemolyticus. 

 The incursion of ST36 into the Northeast is a critical concern for shellfish growers and 

distributers, therefore robust tracing and management is important to limit outbreaks. Monitoring the 

overall V. parahaemolyticus load is often a poor indicator of the amount of pathogenic V. 

parahaemolyticus present in a region, therefore rapid ways to identify strains of particular concern such 

as ST36 can inform management strategies. More robust traceback methods informed by V. 

parahaemolyticus population structure and genomic markers for use in PCR can improve current 

protocols. Unique phage content has been previously used to identify certain V. parahaemolyticus 

strains (74, 149).  In this context, we propose that phages can also be linked to region of origin of the 

strain as well as its identity.  

In this study, we elucidate the ecological context of the expansion of ST36 by using phylogeny in 

conjunction with data on geographic origin.  We are uniquely situated to shed light on limitations of 

prior studies, due to our extensive library of both clinical and environmental strains with associated 

traceback information available for analysis.  We describe three novel Inoviridae phages closely 

associated geographic origin of the host population and investigate how the distinct phages found in 

these populations can help elucidate the spread and establishment of ST36 along the east coast. We 

propose the phage as regional markers to facilitate rapid tracing of clinical ST36 isolates. 

Methods 

Acquiring, characterizing, and sequencing Vibrio parahaemolyticus strains 

 This study utilized quality whole genome sequences from strains of broad distribution, including 

those available through NCBI and our own collection from the Northeast US region to determine 
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relationships between lineages and phage content.  The genomes of 221 quality assemblies of  V. 

parahaemolyticus were obtained from NCBI (https://www.ncbi.nlm.nih.gov/genome/681, August, 

2019)(Table S1).  The sequence type of these strains was obtained by cross-referencing the PubMLST 

database (www.pubmlst.org).  The sequence type of assembled strains not in the database was 

determined either by using SRST2 or by PubMLST (153). 

The clinical V. parahaemolyticus strains in our collection were received from Massachusetts, 

Maine, New Hampshire, and Connecticut State public health labs spanning 2010-2017 (80).  

Environmental strains were isolated from New Hampshire, Connecticut, and Massachusetts oysters, 

water, sediment and plankton between 2007-2015 during Most Probable Number analyses as described 

previously (33, 154–156). All clinical and environmental isolates were confirmed as V. parahaemolyticus 

by detecting the thermolabile hemolysin gene (tlh) with PCR as published (157) and many determined 

by whole genome sequencing.  Regional isolates of interest were sequenced at the Hubbard Center for 

Genome Studies (University of New Hampshire, Durham, NH, USA) on an Illumina HiSeq 2500 (Illumina, 

Inc., San Diego, California, USA) as previously described (80).  Reads were de novo assembled with the 

A5 pipeline (158) and sequence-typed with SRST2 (153) and/or PCR amplification and sequencing the 

house-keeping loci (80). 

Analyzing genomic content and relationships of V. parahaemolyticus strains 

Whole genome variant analysis was performed on ST36 strains from the Pacific Northwest 

(10290) and Massachusetts (MAVP26, MAVP36) using breseq (159). One genome was selected from the 

PNW (10329) and compared to one from GOM (MAVP-26) using Mauve and visualized using EasyFig 

(160, 161). The unique prophage subsequently discovered in MAVP-26, MAVP-36 and 10290 were 

classified belonging to the family Inoviridae proposed subfamily Protoinoviridae (162) and named as 

Vibrio phage according to current recommendations, following confirmation that the chosen names 

were unique (163, 164). The family Inoviridae viruses infecting bacteria (vB) were named for the species 

https://www.ncbi.nlm.nih.gov/genome/681
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in which they infected, Vibrio parahaemolyticus (Vipa), and each were given a unique numeric 

designation representing the strain identity: vB_Vipa26 (in MAVP-26), vB_Vipa36 (in MAVP-36) and 

vB_Vipa10290 (in 10290).  All sequenced V. parahaemolyticus strains were evaluated for f237-like phage 

content (ORF1 – zona occludens toxin) and specific phage type using BLAST (165).   

To determine if phage evolved under selective pressure, a Nei-Gojobori codon-based Z test 

(166) was performed in Mega 6 (167) on the seven core genes shared between the filamentous phage 

f237, and the related Vipa26, Vipa36, and Vipa10290 described in this paper.  Protein sequences for 

other filamentous phages Vf33 (NC_005948.1), CTXΦ (MF155889.1) and the type strain for Inoviridae, 

M13 (GCF_000845205.1), were retrieved from NCBI database for comparison with Vipa26 using BLASTp 

(4). Proteins with similar size and location were included although no significant sequence similarity was 

found.  

 The evolutionary relatedness of ST36 strains was determined using reference-free, whole 

genome maximum likelihood phylogenetic trees built by kSNP 3.1 (168) and visualized with iTOL (169).  

Phage relatedness was found using the Genome-BLAST Distance Phylogeny (GBDP) method (170) to 

conduct pairwise comparisons of the nucleotide sequences under settings recommended for prokaryotic 

viruses (171). Branch support was inferred from 100 pseudo-bootstrap replicates each. Trees were 

rooted at the midpoint (172) and visualized using iTOL (169).   

The evolutionary relatedness of strains was determined using reference-free, whole genome 

alignments using kSNP 3.1 (168) and maximum likelihood phylogenetic trees built by RAxML (173) and 

visualized with iTOL (169). Whole genome trees were rooted using Vibrio alginolyticus ARGOS_108.  

Visualization of gene/feature gain and loss and recombination in MAVP-26 was determined by 

comparison with PNW strain 10329 using Mauve and visualized using EasyFig 2.2.0 (160, 161). 

Phage typing by PCR 
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 All ST36 clinical isolates were screened with PCR for the presence of phage related to f237 and 

subsequently, these same primers were employed for surveying environmental strains of unknown 

sequence type. Step-wise PCR primers were developed to detect f237-like phage content (1000bp), 

f237-like phage that had content unique within ST36 phages to those traced to New England, (NE-like 

phage content (618bp)) and primers for Vipa26 and Vipa36 (1440bp and 2870bp, respectively) that can 

be used in conjunction with tlh primers as an internal control (Table 2.1). f237-like primers are specific 

to the core conserved region of f237 and related phages, specifically ORF3 to ORF5. NE-like primers bind 

specifically to the hypothetical protein, HypA common to the NE phages and exclude Vipa10290.  It is 

important to note that the NE-like amplicon is present in isolates lacking phage entirely so it is only 

useful in conjunction with f237-like primers. Isolates positive for f237-like and NE-like phage were 

screened for Vipa26 or Vipa36 using the Vipa26/36 PCR which captured size differences between the 

variable regions of the two phage. These primers are utilized to screen for Vipa26 and Vipa36-like phage 

content in the general population and to identify isolates of interest for further analysis. In ST36 isolates, 

this screening differentiates between isolates containing Vipa10290 associated with the PNW 

population and members of the New England populations. 

 Each 10µL reaction contained 1x AccuStart II Supermix, 1µL DNA template, 0.2µM of each 

forward and reverse primer, and nuclease-free water to volume.  The first reaction used f237-like, NE-

like, and tlh primers at 94°C for 3 minutes; 30 cycles of 94°C for 1 minute, 55°C for 1 minute, and 72°C 

for 1 minute; and 72°C for 5 minutes.  The second reaction used the Vipa26/36 primers and tlh primers 

at the same conditions, with the exception of a 1.5 minute elongation time.  Reactions were then 

visualized on a 0.7% agarose gel for the expected band sizes. 

Table 2.1.  PCR primers used in this study.  Step wise primers used to rapidly screen isolates for 
potential phage content.  

Step Primers Genes amplified 5'-3'  sequence Reference 

f237-like 
ST36Phage F2  

ORF3-ORF5 
AGCAACGAAAACGCCTGT  This paper 

ST36Phage R2 ACCGTATCACCAATGGACTGT This paper 
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NE-like 
NEORF10F 

HypA 
TTTCTTACTTCTGTGAGCATTTGA This paper 

NEHypR GATTACTGAGCCTCTAAAGCCGTC  This paper 

Vipa26/36  
PhHypDF3 

HypD-ORF9 
AAGTGCTACATGAATGAAAGTGCT This paper 

PhORF9R1 TCAATGAAGTATCACGAAATGACTA This paper 

tlh 
Control 

TLH-F2  
tlh 

AGAACTTCATCTTGATGACACTGC (174) 

TLH-R  GCTACTTTCTAGCATTTTCTCTGC (157) 

 

Results 

Phylogeny of ST36 and distribution of filamentous phage within the population 

 To elucidate the phylogeographic relationship of both clinical and environmental isolates, we 

constructed a phylogeny with associated traceback data where possible.  Martinez-Urtaza et al. 

identified two lineages tracing to the Pacific Northwest (PNW) designated the “old” and “new” clades 

(both Green); here we will use the same terminology to differentiate the two major clades representing 

distinct lineages traced to the PNW throughout our analysis (76). The topology of the phylogenetic tree 

illustrates two main branches containing several distinct clades of ST36 strains, and excepting a few 

isolates these clades link closely to the geographic traceback of the isolates (Fig. 2.1).  One major branch 

includes three clonal clades, all derived from the “new” PNW lineage that are traced predominantly to 

North Atlantic sources of the US including the Gulf of Maine (most blue isolates), Long Island Sound 

(most light orange isolates), and Katama Bay (most dark orange isolates). The Gulf of Maine (GOM) 

clonal clade (Fig. 2.1; blue) shared its most recent common ancestor with the new PNW lineage, and was 

not derived from within the other ST36 populations traced to sources of the Atlantic, including those 

from the Mid-Atlantic and Long Island Sound, or from California. Surprisingly, one Long Island Sound 

(LIS) isolate (CTVP44C) with a definitive trace to a local source in 2013 is a member of the old PNW 

lineage (Fig. 2.1; green with black square), (Fig. 2.1; light orange) on the second major branch of the tree. 

The isolates from the outbreak caused by ST36 in Galicia, Spain in 2012 also group closely with this old 

population (Fig 2.1).  Interestingly, 10-4298, a clinical isolate from the PNW collected in 2001 is a part of 

the Spanish clade (Table S2.2, Fig. 2.1)  Two isolates from the PNW group (VpG-11 and 3324) group 
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closely with strains from California and the LIS.  Adjacent to the LIS clade, there is a clonal group tracing 

to Katama Bay (KB) (Fig. 2.1; dark orange) and possibly another clade tracing to the Mid-Atlantic Coast 

(MAC) (Fig. 2.1; purple); however, more strains with robust geographic traceback are needed to confirm 

this lineage. 

 

Figure 2.1. Maximum-likelihood tree of select Vibrio parahaemolyticus ST36 isolates. Isolates are 

colored to correspond to geographic origin of infection source, no color unknown traceback or several 

different potential source locations, due to inaccuracies inherent in traceback of clinical isolates. The 

shape next to each isolate indicates a specific but highly similar phage: square is Vipa10290, triangle is 

Vipa36, circle is Vipa26, and star is other which are not necessarily identical. 

Although members the GOM clade and the LIS clade have established populations that reside in 

close proximity to each other in the Atlantic and share a common ancestor with the new PNW clade, this 

whole genome phylogeny suggests they are distinct lineages.  The GOM and KB clades are both currently 
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clinically prevalent, whereas clinical isolates from the old PNW lineage are no longer highly clinically 

prevalent since the 1990s and early 2000s. To investigate differences in genetic content, we compared 

the complete, closed genomes of 10329 (PNW), MAVP-36 (KB) and MAVP-26 (GOM). Several major 

insertions, duplications and deletions occurred during evolution and divergence of the strains (Figure 

S2.1) and could be the focus of future study.  Here we investigate more closely one difference between 

strains; the phage content unique to each clonal population, specifically the type of filamentous 

prophages found in the genome (Figure S2.1).  The phages are classified in the family Inoviridae 

(inoviruses) and are designated according to current recommendations as viruses infecting bacteria (vB) 

Vipa26 in the GOM clonal population and Vipa10290 in the old PNW lineage. Further investigation of 

ST36 revealed a third similar prophage, subsequently named Vipa36, in the KB population (175). Since 

the outbreak in 2013, all but two clinical isolates (MAVP-20, MAVP-89, both GOM) in the GOM or KB 

clonal clades harbor their respective phage (Fig. 2.1). MAVP-41 contains a unique filamentous phage (Fig. 

2.2); however, further analysis of genetic content reveals a high degree of sequence identity to Vipa26 

across multiple scaffolds. 
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Figure 2.2. Phylogenetic tree of filamentous phages found in diverse STs. Genome-BLAST Distance 

Phylogeny (GBDP) of whole phage genomes of environmental and clinical V. parahaemolyticus isolates 

with date of isolation. Clinical and environmental isolates are indicated by a C or E, respectively. 

Traceback color coding relates to Figure 2.1. Shape next to isolate name corresponds to phage type (Fig. 

2.1); circle is Vipa26, square is Vipa10290 and triangle is Vipa36.  Isolates in bold are ST36 except for 

ST38 JJ21-1C (italicized and bold), which is a part of the ST36 clonal complex.   

 The presence of Vipa26 and Vipa36 in almost every clinical isolate from two highly successful 

and localized clades suggests the progenitors of each population acquired and maintained these 

inoviruses through clonal expansion. To determine whether these phages originated from local 

populations prior to expansion or the invading progenitor of the clade already contained these phage, 

we examined the evolutionary relatedness of filamentous phages in V. parahaemolyticus.  A Genome 

Blast Distance Tree of whole phage genomes was constructed from phages found in diverse V. 

parahaemolyticus strains.  
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Although Vipa26 is common in the ST36 GOM clade, it also occurred in non-ST36 environmental 

isolates from the GOM (G1445, G1449, G325 and G6499) (Fig. 2.2) one of which (G325) was isolated in 

2008 before ST36 was detected in areas of the Gulf of Maine.  Vipa26 and Vipa36 are more closely 

related with each other than they are to Vipa10290, in contrast to the arrangement of the host 

phylogeny (Fig. 2.1). Together this suggests that the phage in these ST8 strains were likely horizontally 

acquired after the invasion of ST36 into the Atlantic. Every ST8 isolate that caused an outbreak in 

Maryland in 2010 (VP19 and VP20) carry the same filamentous phage that was identical to phage 

contained by  ST8 environmental isolates at the same time ( VP21, VP23, VP24 and VP29) (Fig. 2.2) (176). 

Interestingly, the most closely related phage to the Vipa10290 clade was from a GOM environmental 

isolate (G4694) (Fig. 2.2).  Additionally, a phage infecting the deep-sea species Vibrio antiquarius (EX25) 

is closely related to an inovirus from an environmental isolate collected in Connecticut, CT4264 (Fig. 2.2). 

Comparison of inoviruses of V. parahaemolyticus reveal unique content 
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Figure 2.3. Shared core and distinctive content of filamentous f237-like phages. ORFs with the same 
color are homologous between the different phages with the exception of blue hypothetical proteins. 
The core genome (highlighted in gray) is highly conserved, while accessory regions vary, with some ORFs 
conserved in two or more of the phages. Color of the phage names and shapes correspond to those in 
Figures 2.1 & 2.2 (175).  

 A comparison of the genomes of Vipa26, Vipa36 and Vipa10290 elucidated their grouping with 

distinct geographic clades. This revealed similarity in structure to the ST3-associated f237 filamentous 

phage with a conserved core genome and two regions of highly variable content. . The ST36 phages lack 

ORF8 that is present in f237, and a useful diagnostic marker of the ST3 pandemic clonal complex. The 

core genome of ORF1-7 (bright pink through green, Fig. 2.3) is also flanked by the conserved ORF9 and 

ORF10 (gray and light green, Fig. 2.3).  These seven core genes (ORF1-7) have evolved under purifying 

selection (codon-based Z test; dS – dN =9.425, p < 0.001) and as is expected for genes encoding essential 
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phage functions in an active phage. The Northeast ST36 population associated phages, Vipa26 and 

Vipa36, both share variable region content HypA (light pink in Fig. 2.3) whereas Vipa10290 lacks this 

hypothetical protein.  Vipa26, Vipa36 and Vipa10290 all have in common the HypD hypothetical proteins 

(light green, Fig2.3), which is absent in f237. The ST36 phages as well as f237 share HypB (bright purple, 

Fig. 2.3), another hypothetical protein in the variable region, whereas all but Vipa26 contain HypC (light 

blue-green, Fig. 2.3).  Comparison of translated nucleotide sequence using BLAST; however, reveals 

similarity in amino acid sequence of the hypothetical protein syntenic to HypC in Vipa26 (E-

value<0.000001) with no relatedness of the nucleotide sequence (no alignment).  All Vipa26 and Vipa36 

prophages in sequenced isolates were integrated into the dif site of chromosome I as expected of 

inoviruses (150).  

Analysis of amino acid sequence of the phage proteins elucidated the potential function of these 

through comparison with previously described phages, Vf33, CTXφ, and the type strain for Inoviridae, 

M13 (Table 2.2).  Vf33 infects other V. parahaemolyticus strains, CTXφ infects V. cholerae and M13 is 

specific to Escherichia coli. The inoviruses encode their own integrase, whereas M13 replicates only 

extrachromosomally.  Interestingly, the phages in ST36, as well as f237, harbored accessory cholera 

enterotoxin (ace) and zonula occludens toxin (zot) homologs as well as a putative transcriptional 

regulator homologous to RstR (ORF9) (Table 2.2). ORF10 was not homologous to ORFs in any phages 

other than Vf33 and its function is unknown.   

Table 2.2. Homologs and potential functions of conserved core region of Vipa26. Vipa26 core 
protein homology compared to Vf33, a similar phage also found in Vibrio parahaemolyticus, CTXΦ from 
Vibrio cholera El Tor biotype and M13 of Escherichia coli. Core and accessory proteins without homology 
to other phages are not shown. 

Vipa26 
Proteins 

Vf33                           
(E-value/Identity) 

CTXΦ                     
(E-Value/Identity) 

M13                          
(E-Value/Identity) 

Predicted Function 
Based on 

Homologya 
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ORF1 
Vpf402            

(0.0/99%) 
RstA                     

(7e-66/36%) 
gII                              

(size and location) 
replication initiation 
protein 

Integrase 
Vpf117                     

(1E-85/92.5%) 
RstB             

(0.04/13.3%) 
- Integration 

ORF3 
Vpf81              

(0.004/7.8%) 
RstC                       

(size and location) 
gV                               

(size and location) 

ssDNA binding 
protein, helix 
destabilizing 

ORF4 
Vpf77               

(5.3/3.7%) 
Cep                  

(7.0/7.3%) 
gVIII                         

(0.45/4.9%) 
major coat protein 

ORF5 
Vpf491                 

(0.0/59%) 
OrfU                 

(0.54/11.9%) 
gIII                          

(0.6/11.3%) 

adsorption, 
termination of 
assembly, tail 
protein 

Ace 
Vpf104             

(0.2/19%) 
Ace                      

(5e-10/18.3%) 
gVI                          

(4.1/8.7%) 

minor coat protein, 
termination of 
assembly 

Zot 
Vpf380                     

(1E-4/13.9%) 
Zot                          

(2e-27/17.8%) 
gI                                 

(5e-04/8.5%) 
assembly protein, 
maturation 

ORF9 
Vpf122                      

(4e-66/68%) 
RstR                    

(0.17/5.7%) 
- 

transcriptional 
repressor, regulator 

a Functions summarized from Mai-Prochnow et al., 2015 (92) and Chang et al., 1998 (177) 

 

Screening  for inoviruses in genomes and environmental isolates 

Screening of available genomes using BLAST revealed filamentous phages distributed 

throughout diverse sequence types of V. parahaemolyticus (Fig 2.2). In order to better understand the 

ecological context and phage abundance of the communities invaded by KB and GOM ST36 founders, we 

screened environmental isolates from several locations in the Northeast for phage content using 

primers designed to identify 237-like filamentous phages and to detect and differentiate Vipa26, and 

Vipa36 in clinical ST36 isolates (see methods).  Many isolates containing f237-like prophage were 
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identified (Table 2.3). Isolates positive for f237-like, and NE-like amplicons were further tested for 

Vipa26/36 content.  Only if all three markers were present was an isolate putatively identified as 

containing Vipa26 or Vipa36 using this PCR method.  Vipa26 was only identified in 11 of the isolates 

from GOM and 2 from LIS, whereas putative VIpa36 positive isolates were encountered less frequently,  

with 9 from GOM and 1 from LIS (Table 2.3). 

    A selection of the isolates was sequenced and checked for phage content using BLAST. 

Although Vipa36-positive amplicon profiles were identified  in 10 isolates  this phage was not present in 

any environmental isolates (Table 2.3, Table S2.2, Table S2.3). Of these isolates available with robust 

sequence data, genomic analysis uncovered phages similar to Vipa36 with variable regions of similar size, 

possibly explaining the false positive identification considering the PCR assay relies on size 

differentiation. Additionally, some isolates harbored two filamentous phages in their genomes (MA145 

and G1286, Fig. S2.2), which could complicate identification with PCR with multiple bands or false 

positives. Genomic analysis confirmed at least four environmental isolates contained Vipa26, and the 

strains were of diverse STs. 

Further analysis of the distribution of HypA, one of the markers that distinguishes Vipa-

containing ST36 isolates established in the Atlantic from those of the native ST36 population (NE-like 

phage), revealed its presence in V. parahaemolyticus strains isolated from other locations, even in the 

absence of phage. Although the core region of the inoviruses we compared is highly conserved, the 

variable regions are divergent with no conserved structures between diverse phages. These regions 

varied greatly in size as well, with a larger variable region located downstream of the central core 

(between ~1500-4000bps) and a smaller variable region upstream of the central core (<1000bps). 

Several strains had phages with a core region similar to the f237-like core, but were divergent and did 

not align to the middle ~300bp. PCR detection is highly accurate and sensitive in ST36 isolates; however, 
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in other STs an extremely high rate of false positives (10/10 of detected Vipa36 and 9/13 of detected 

Vipa26) points to genomic analysis as more accurate. 

Table 2.3  Survey of the distribution of  f237-like inoviruses among Northeast regional environmental 

isolates.  Environmental isolates from the GOM and LIS populations screened for phage similarity to 

identify possible Vipa26 and Vipa36 in non-ST36 populations.  f237-like phage contain the core region 

typical of Inoviridae, as determine by BLAST alignment or PCR amplification.  Vipa26/36 are scored 

positive only if f237-like, NE-like and Vipa26/36 bands are present when using PCR screening.  
 

PCR DETECTION GENOME ANALYSIS 

  GOM LIS GOM LIS 

  MA NH MA CT MA NH MA CT 

f237-like 46 19 12 5 13 8 2 2 
Vipa26 7 4 1 1 0 4 0 0 
Vipa36 7 2 0 1 0 0 0 0 

Total Screened 154 138 28 50 14 10 2 2 
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Distribution of phage throughout V. parahaemolyticus populations 

 

Figure 2.4. Distribution of inoviruses across diverse V. parahaemolyticus populations. Strain branches 

are colored if traceback data is known, colors match Figure 2.1. Year collected is indicated in the middle 

ring and the ST is listed around the outer edge.  Specific filamentous phages are assigned different 

shapes – Vipa26 is a circle, Vipa10290 is a dark square and Vipa36 is a upside down triangle.  There are 

other lineages of related phage each assigned a unique shape but are all referred to as Other in the 

legend. Other phages marked with an empty square with a grey outline are diverse and not necessarily 

related (Figure courtesy of Randi Foxall).  

 

ST3 

ST36 
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Inoviruses are common throughout ST36 environmental and clinical isolates, suggesting robust 

environmental reservoirs of phage present in Northeast waters. To further investigate the relationship 

of V. parahaemolyticus strains with filamentous phages, inovirus distribution was assessed in the global 

population represented in NCBI genomes (https://www.ncbi.nlm.nih.gov/genome/681,  August, 2019) 

and our own collection of strains (Table S2.2, Table S2.3). Filamentous phages are fairly common with 

about 46% of isolates analyzed containing some type of phage (Table S2.1).  Several clades (ST1185, ST3, 

ST8; Fig. 2.4) appear to have basally acquired a filamentous phage and held them through the expansion 

of the lineage whereas other closely related isolates have diverse phage content (ST36, ST631, ST43; Fig. 

2.4). Interestingly, even in lineages with apparent basal phage acquisition the occasional phage deficient 

isolate appears (PMC48 in ST3; MAVP-20 in ST36 - GOM clade; Fig. 2.4, Table S2.3 and S2.4). Several 

distinct phages, including Vipa26, appear across multiple highly divergent sequence types supporting 

that these phages are active and move horizontally through populations. 

Discussion 

 V. parahaemolyticus ST36, a strain of high clinical prevalence, expanded extensively into new 

habitats from its native PNW (76, 77).  Understanding the diversification and spread of this lineage 

provides valuable insight into the evolution and ecology of newly arising pre-pandemic strains.   Previous 

studies characterizing the spread of ST36 use only reporting state of illness to trace its interoceanic 

movement (76). A lack of available sequence data on clinical isolates from the USA PNW in recent years 

compounds this gap in knowledge of the ST36 expansion.  To address this, we examine more closely the 

ecological context of diversity in ST36, leveraging a large library of strains with robust traceback data. 

Taken together, the topology and associated traceback of ST36 phylogeny implicates the PNW as a hot 

bed of evolution for ST36, generating diverse populations able to establish successfully in new habitats.  

The distribution of unique inoviruses in distinct clades alludes to a role of these phages in the evolution 

of V. parahaemolyticus. 

https://www.ncbi.nlm.nih.gov/genome/681
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 Although the old PNW clade no longer causes illness in the PNW after the new PNW lineage 

replaced it in the early 2000s, one isolate containing Vipa10290 belonging to the old PNW population 

was traced to LIS in 2013 (CTVP44C, Fig 2.1) arguing that the introduction and establishment of ST36 

occurred earlier than previously thought or the old PNW population is still present and simply no longer 

clinically prevalent contrary to previous reports (76).  Martinez-Urtaza et al. also postulated that some 

of the diversification of the North Atlantic clades occurred in the Atlantic after introduction from the 

PNW (76). The distinct histories of the GOM and LIS clades contends otherwise. These clades are close 

geographically; however, the GOM clade shares a more recent common ancestor with the new PNW 

clade than the LIS, KB or MAC. These clades south of Cape Cod are more closely related and may have 

diversified in the Atlantic.  It is difficult to fit the California clade (Yellow, Fig. 2.1) although the presence 

of a PNW isolate within this clade may support that this branch first arose on the West Coast.   

Although the new PNW lineage does not contain an f237-like phage, both the GOM and KB 

clades have unique phage content.  These clades likely acquired these phages from the environment 

prior to the clonal expansion of the progenitor of each clade. Environmental isolates from the GOM 

harbor Vipa26 and one of these isolates was collected several years prior to the first detection of ST36 

on the US East Coast, minimizing the likelihood that the phage was transferred from ST36 into the local 

populations.  In addition, all the environmental isolates harboring Vipa26 trace to the Great Bay in New 

Hampshire, an area where ST36 has never been detected despite robust surveillance. Although 

environmental screening did not detect Vipa36, this is likely due to considerably fewer available 

environmental isolates from KB and the LIS than from the GOM and none pre-dating the incursion of 

ST36 into the region.  

Considering the explosion of diversity from the PNW population and subsequent expansion of 

ST36 into new territory was concurrent with the loss of Vipa10290 from a portion of the PNW 

population, these phages may have a stabilizing influence on the host population. ST36 was fairly stable 
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and successful when associated with Vipa10290; however, when the infection was no longer beneficial, 

it led to considerable diversification and several novel lineages arising uniquely suited to new ecological 

niches. Subsequently, the acquisition of Vipa26 and 36 in the GOM and KB respectively, led to the 

establishment of persistent clonal clades. This hypothesis argues that phage content is in part a driving 

factor behind the rapid diversification and trans-Atlantic expansion of ST36.  The complex relationship 

between host, phage and environment warrant investigation to further our understanding of the 

establishment of pre-pandemic V. parahaemolyticus lineages. 

Diversity of phages does not correlate closely with diversity of their hosts but rather, the 

number of closely related phages present in V. parahaemolyticus and one from V. antiquarius suggests a 

large pool of phage moving horizontally through populations and even potentially between closely 

related species (Fig. 2.2).  On the other hand, basal lysogenic conversion by filamentous phage is 

sometimes propagated through a clade, leading to strong correlation between specific phages with 

certain clades. Inoviridae are capable of forming mutualistic relationships with their hosts; however, the 

balance is delicate with the same phage having different impacts on closely related strains (178).  Vipa26 

and Vipa36 could be the perfect mutualists for the GOM and KB populations respectively, whereas the 

upset of the balance between Vipa10290 and the old PNW clade lead to diversification of ST36. The 

phage deficient isolates arising occasionally in closely phage-associated populations could occur when 

the ecological context changed for that isolate enough to cause the phage to become detrimental. 

Alternatively, it could reflect a background level of prophage excision and re-infection amongst these 

populations. 

In ST36, the correlation between clade and geographic origin provides a unique opportunity to 

improve the accuracy of traceback for ST36 clinical isolates.  Traceback is important for managing the 

spread of V. parahaemolyticus during outbreaks by identifying high risk areas and closing them to 

prevent further infections.  Due to the movement of shellfish and people, relying on the reported 
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location of clinical cases does not provide enough information for meaningful phylogeographies. The 

PCR primers designed for this study are a rapid and accurate way of determining likely origin of clinical 

ST36 isolates for more targeted management strategies.  While valuable for aiding in discovering the 

origin of ST36, non-specific binding of the NE-like primers in non-phage harboring isolates of other STs 

limits the primers to just ST36.  Genomic analysis is more accurate but also more expensive and time 

consuming although costs are decreasing as technology improves. 

Additionally, Vipa26, Vipa36 and Vipa10290 all display the highly conserved core and variable 

regions typical of the family Inoviridae, a diverse class of phage known for the potential impacts they 

may have on the lysogen (92).  Alongside the highly conserved core genome are highly variable regions 

with widely differing content between phages.  In CTXφ, the ctxA and ctxB enterotoxins are located in 

this variable region (12, 143), as well as ORF8 in f237, speculated to be involved in adhesion in the host 

(74, 149).  Differing variable content could cause these phages to have highly divergent impacts on the 

host cell behavior. The transduction of novel DNA through acquisition of these bacteriophages is a noted 

mechanism of bacterial evolution and thus may be linked to the evolution of these pathogenic lineages 

(179, 180). Vipa26 and Vipa36 were both acquired by the progenitors of two successful clonal clades and 

held through expansion, whereas f237 is universally associated with the only pandemic clonal complex, 

ST3, suggesting the presence of phage in these lineages is not a coincidence (74, 149). Future studies 

into the potential impact of these phages on these populations may elucidate potential fitness or 

virulence benefits associated with acquisition of filamentous phages.  

 The discovery of diverse phage in many V. parahaemolyticus populations indicates a potentially 

broader application of filamentous phage content as a marker of geographic origin as well as identifying 

the particular clade the isolate belongs to as is already done with ORF8 of f237 in ST3 (149). The use of 

accurate traceback data and phage content provides valuable ecological context to V. parahaemolyticus 

spread and phylogeography. This could allow for better understanding of the evolution and subsequent 
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movement of these pathogens, informing management practices including more rapid and targeted 

closures of effected oyster farms to ensure limited economic impact on growers and distributers.  

Supplementary 

 

Figure Chromosome Change Cause Notable Elements 

2 A. 1 Δ6,945bp - - 

2 B. 1 Insert 22,338bp 
Possible 

duplications 

Motor proteins 
Metabolic enzymes 
Transcriptional 
regulator 

2 C. 2 Insert 14,910bp - 
Toxin/Antitoxin 
Plasmid stabilizing 
protein 
  

2 D. 1 Insert 24,780bp 
Transposase and 

duplication 

Maltose transport 
Capsular 
polysaccharides 
  

2 E. 1 - Phages 
Filamentous phages 
(Inoviridae) 

Figure S2.1. Comparison between PNW and GOM genomes. A-D. Depictions of insertions, duplications 
and deletions visualized with EasyFig2.2.2 (161), E. Filamentous phages integrated into chromosome 1 
are colored consistently with Fig. 2.3. BLAST identity gradient is shown on the bottom right of the figure. 
Notable genetic content and variation in the GOM isolate (MAVP-26) compared to a historic PNW isolate 
(10329) is summarized and the associated figure is referenced.  
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Figure S2.2. Phylogeny of filamentous phages found in New England isolates. Genome-BLAST Distance 
Phylogeny (GBDP) of whole phage genomes of environmental and clinical V. parahaemolyticus isolates 
with date of isolation. Clinical and environmental isolates are indicated by a C or E after the year of 
isolation.  Colors of geographic traceback match with Figure 2.1 and 2.2, and bold indicates ST36 isolates. 
Shapes next to isolate names highlight Vipa26 (circle) and Vipa36 (triangle). 

Table S2.1. Summary of phage content in all isolates used in this study. Number of isolates found 
harboring each specific phage according to genomic analysis. Other phages are not necessarily the same.   

Phage Type Count 

Vipa26 23 (4.67%) 

Vipa36 20 (4.06%) 

Vipa10290 21 (4.26%) 

f237 43 (8.72%) 

Other Phages 121 (24.54%) 

  

Total Isolates with Filamentous Phage 227 (46%) 

Total Isolates Screened 493 
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Table S2.2. List of ST36 strains used in this study. All strains used in this study including NCBI assembly 
ID unless sequenced in-house, year and geographic region collected, clinically or environmentally 
isolated (C/E respectively) sequence type and phage type.  N/A for any category indicates the 
information was not available.  

NAME ASSEMBLY YEAR 
REPORT-

ING 
STATE 

SOURCE 
TRACE 

COUNTRY C/E ST PHAGE 

846 GCA_000877405.1 2007 WA N/A USA E 36 Vipa1029
0 

3256 GCA_000519405.1 2007 WA WA USA C 36 None 
3324 GCA_000877495.1 2007 WA N/A USA C 36 Vipa1029

0 
10290 GCA_000454205.1 1997 WA WA USA C 36 Vipa1029

0 
10296 GCA_000500105.1 1997 WA WA USA C 36 Vipa1029

0 
10329 GCA_001188185.1 1998 WA WA USA C 36 Vipa1029

0 
12310 GCA_000500755.1 2006 WA WA USA C 36 None 
12315 GCA_000877535.1 2006 WA N/A USA C 36 Vipa1029

0-related 
48057 GCA_000706825.1 1990 WA WA USA C 36 Vipa1029

0 
48291 GCA_000707525.1 1990 WA WA USA C 36 Vipa1029

0 
04-1290 GCA_000878815.1 2004 Alberta N/A Canada C 36 None 
09-3216 GCA_000878785.1 2009 BC N/A Canada C 36 None 
09-
3216_10
0 

GCA_002144555.1 N/A N/A N/A Canada N/A 36 None 

10-4241 GCA_000878805.1 2006 BC N/A Canada C 36 None 
10-4242 GCA_000878755.1 2006 BC N/A Canada C 36 None 
10-4245 GCA_000878725.1 2006 BC N/A Canada C 36 None 
10-4246 GCA_000878705.1 2006 BC N/A Canada C 36 None 
10-4247 GCA_000878665.1 2006 BC N/A Canada C 36 None 
10-4248 GCA_000878675.1 2006 BC N/A Canada C 36 None 
10-4255 GCA_001006195.1 2006 BC N/A Canada C 36 Other 
10-4274 GCA_000878735.1 2005 BC N/A Canada C 36 None 
10-4288 GCA_000878645.1 2003 BC N/A Canada C 36 None 
10-4293 GCA_000878595.1 2002 BC N/A Canada C 36 Vipa1029

0 
10-4298 GCA_000878565.1 2001 BC N/A Canada C 36 None 
10-4303 GCA_000878575.1 2000 BC N/A Canada C 36 Vipa1029

0 
10-7197 GCA_000878585.1 2008 BC N/A Canada C 36 None 
A0EZ608 GCA_001608655.1 2000 BC N/A Canada C 36 Vipa1029

0 
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A1_9 GCA_006378975.1 2014 N/A N/A China E 36 Other 
A1EZ679 GCA_001609075.1 2001 BC N/A Canada C 36 Vipa1029

0 
A1EZ919 GCA_001559895.1 2001 BC N/A Canada C 36 Vipa1029

0 
A2EZ523 GCA_001609095.1 2002 BC N/A Canada C 36 Vipa1029

0 
A2EZ715 GCA_001608675.1 2002 BC N/A Canada C 36 Vipa1029

0 
A5Z652 GCA_001609515.1 2005 BC N/A Canada C 36 None 
A5Z878 GCA_001609695.1 2005 BC N/A Canada C 36 None 
A5Z905 GCA_001609635.1 2005 BC N/A Canada C 36 None 
A5Z924 GCA_001609675.1 2005 BC N/A Canada C 36 None 
AM47612 GCA_002198255.1 2011 WA WA USA C 36 None 
AM51556 GCA_002198415.1 2012 FL N/A USA C 36 None 
AM51816 GCA_002198485.1 2012 CA N/A N/A C 36 None 
AM51866 GCA_002198355.1 2012 WA N/A USA C 36 None 
AM51867 GCA_002198435.1 2012 WA WA USA C 36 None 
C143 GCA_001609395.1 2008 BC N/A Canada C 36 None 
C144 GCA_001609415.1 2008 BC N/A Canada C 36 None 
C147 GCA_001609495.1 2008 BC N/A Canada C 36 None 
CDC_121
898 

GCA_002198395.1 2012 NJ N/A USA C 36 None 

CDC_A89
62 

GCA_002198515.1 2008 MA N/A USA C 36 Other 

CDC_K46
39G  

GCA_001727895.1 2006 NY N/A USA C 36 None 

CDC_K46
39W  

GCA_001727885.1 2006 NY N/A USA C 36 None 

CDC_K52
78 

GCA_001728405.1 2007 N/A N/A USA C 36 None 

CDC_K52
78  

GCA_001728405.1 2007 WA N/A USA C 36 None 

CDC_K52
80 

GCA_001727625.1 2007 WA WA USA C 36 Other 

CDC_K52
81  

GCA_001727575.1 2007 WA N/A USA C 36 None 

CDC_K53
08 

GCA_001727485.1 2007 AK N/A USA C 36 Other 

CDC_K53
23G  

GCA_001727475.1 N/A VA N/A USA N/A 36 Other 

CDC_K53
28 

GCA_001727665.1 N/A N/A N/A USA C 36 None 

CDC_K53
45G 

GCA_001728465.1 2007 IA N/A USA C 36 Other 

CDC_K53
45W  

GCA_001728485.1 2007 IA N/A USA C 36 None 

CDC_K53 GCA_001728415.1 2007 PA N/A USA C 36 None 
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46  
CDC_K54
29  

GCA_001727585.1 2007 NV N/A USA C 36 None 

CDC_K54
33  

GCA_001727385.1 2007 WA N/A USA C 36 None 

CDC_K54
37  

GCA_001727565.1 2007 WA N/A USA C 36 None 

CDC_K54
56  

GCA_001728545.1 N/A WA N/A USA C 36 None 

CDC_K54
57  

GCA_001728505.1 2007 WA N/A USA C 36 None 

CDC_K55
12 

GCA_001728585.1 2007 OK N/A USA C 36 Other 

CDC_K56
29  

GCA_001728695.1 2007 GA N/A USA C 36 None 

CDC_K56
38 

GCA_001728745.1 N/A MD N/A USA C 36 None 

CDC_M1
2_106 

GCA_002198375.1 2012 MO MA USA C 36 None 

CDC_M1
2_108 

GCA_002198275.1 2012 MO NY USA C 36 None 

CFSAN00
1611 

GCA_000707045.2 1997 OR OR USA E 36 Vipa1029
0 

CFSAN00
1612 

GCA_000706825.2 1990 WA N/A USA C 36 Vipa1029
0 

CFSAN00
1613  

GCA_000707625.2 1997 WA N/A USA C 36 Vipa1029
0 

CFSAN00
1618 

GCA_000707525.2 1990 WA N/A USA C 36 Vipa1029
0 

CFSAN00
1619 

GCA_000707545.2 1998 WA WA USA E 36 Vipa1029
0 

CFSAN00
1620 

GCA_000707565.2 1998 NY NY USA E 36 Vipa1029
0 

CFSAN00
6133  

GCA_000707865.2 2013 MD N/A USA C 36 None 

CFSAN00
7461  

GCA_000707205.2 2004 N/A N/A USA N/A 36 None 

CFSAN00
7462  

GCA_000706905.2 2004 N/A N/A USA N/A 36 None 

CFSAN01
8777  

GCA_002198525.1 2012 N/A N/A USA N/A 36 None 

CFSAN02
2336  

GCA_002198615.1 2012 Galicia Galicia Spain C 36 None 

CTVP2C In-house 2012 N/A N/A USA C 36 None 
CTVP4C In-house 2012 CT CT USA C 36 None 
CTVP5C In-house 2012 CT CT or NY USA C 36 None 
CTVP6C In-house 2012 CT NY USA C 36 None 
CTVP13C In-house 2012 CT N/A N/A C 36 Vipa36 
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CTVP16C In-house 2012 N/A N/A USA C 36 None 
CTVP20C In-house 2013 CT N/A N/A C 36 Vipa26 
CTVP22C In-house 2013 CT N/A USA C 36 None 
CTVP23C In-house 2013 CT MA or 

VA 
USA C 36 None 

CTVP24C In-house 2013 CT N/A USA C 36 None 
CTVP25C In-house 2013 CT CT USA C 36 Vipa26 
CTVP26C In-house 2013 CT N/A USA C 36 None 
CTVP27C In-house 2013 CT or VA N/A USA C 36 None 
CTVP30C In-house 2013 CT CT USA C 36 None 
CTVP33C In-house 2013 CT; RI N/A USA C 36 None 
CTVP38C In-house 2013 CT, MA N/A USA C 36 None 
CTVP39C In-house 2013 CT N/A USA C 36 None 
CTVP40C In-house 2013 N/A N/A USA C 36 None 
CTVP41C In-house 2013 CT MA or 

PEI 
USA, 
Canada 

C 36 Vipa36 

CTVP42C In-house 2013 CT N/A USA C 36 None 
CTVP44C In-house 2013 CT CT USA C 36 Vipa1029

0 
CTVP45C In-house 2013 CT N/A USA C 36 None 
EN2910 GCA_000877685.1 2000 WA N/A USA C 36 Vipa1029

0 
EN97011
73 

GCA_000877555.1 1997 WA N/A USA C 36 Vipa1029
0 

EN99013
10 

GCA_000877565.1 1999 WA N/A USA C 36 Vipa1029
0 

F11-3A GCA_000707545.1 1988 WA WA USA E 36 Vipa1029
0 

F4395  GCA_001608685.1 2006 BC N/A Canada C 36 None 
G25 GCA_002198475.1 2012 Galicia Galicia Spain C 36 None 
G30 GCA_002198555.1 2012 Galicia Galicia Spain C 36 None 
G31 GCA_002198565.1 2012 Galicia Galicia Spain C 36 None 
G36 GCA_002198575.1 2012 Galicia Galicia Spain C 36 None 
G37 GCA_002198445.1 2012 Galicia Galicia Spain C 36 None 
H11523  GCA_001608595.1 2006 BC N/A Canada C 36 None 
H18983  GCA_001608895.1 2006 BC N/A Canada C 36 None 
H64024  GCA_001608615.1 2006 BC N/A Canada C 36 None 
JJ21-1C GCA_002072885.1 1990 WA WA USA E 38 Vipa1029

0 
K1461 GCA_000958575.1 2004 MA N/A USA C 36 None 
M59787  GCA_001608545.1 2006 BC N/A Canada C 36 None 
MAVP-1 In-house 2013 MA VA USA C 36 None 
MAVP-2 In-house 2013 MA MA, VA 

or WA 
USA C 36 Vipa26 

MAVP-6 In-house 2013 MA MA USA C 36 Vipa26 
MAVP-7 In-house 2013 MA MA, ME 

or NB 
USA, 
Canada 

C 36 None 

MAVP-8 In-house 2013 MA MA or USA C 36 Vipa26 
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ME 
MAVP-9 In-house 2013 MA N/A N/A C 36 Vipa26 
MAVP-14 In-house 2013 N/A Multiple USA; 

Canada 
C 36 None 

MAVP-16 In-house 2013 MA N/A N/A C 36 Vipa26 
MAVP-19 In-house 2013 MA CT USA C 36 None 
MAVP-20 In-house 2013 MA MA USA C 36 None 
MAVP-23 In-house 2013 MA VA USA C 36 None 
MAVP-24 In-house 2013 MA MA USA C 36 Vipa26 
MAVP-26 In-house 2013 MA MA USA C 36 Vipa26 
MAVP-29 In-house 2013 MA Multiple USA, 

Canada 
C 36 None 

MAVP-31 In-house 2013 MA CT USA C 36 Vipa36 
MAVP-36 In-house 2013 MA KB, MA USA C 36 Vipa36 
MAVP-37 In-house 2013 MA MA USA C 36 Vipa26 
MAVP-38 In-house 2013 MA VA or 

MA 
USA C 36 Vipa36 

MAVP-40 In-house 2013 CT or VA N/A USA C 36 Vipa26 
MAVP-41 In-house 2013 MA N/A N/A C 36 Vipa26 
MAVP-45 In-house 2013 MA KB, MA USA C 36 Vipa26 
MAVP-48 In-house 2013 MA KB, MA USA C 36 Vipa36 
MAVP-54 In-house 2013 MA KB, MA USA C 36 Vipa26* 
MAVP-60 In-house 2014 MA KB, MA USA C 36 Vipa36 
MAVP-61 In-house 2014 MA N/A USA C 36 Vipa36 
MAVP-62 In-house 2014 MA KB, MA USA C 36 Vipa36 
MAVP-63 In-house 2014 MA N/A USA C 36 Vipa36 
MAVP-64 In-house 2014 MA N/A USA C 36 None 
MAVP-70 In-house 2014 MA MA or 

VA 
USA C 36 Vipa26 

MAVP-72 In-house 2014 MA MA USA C 36 None 
MAVP-77 In-house 2014 MA MA or 

BC 
USA, 
Canada 

C 36 None 

MAVP-79 In-house 2014 MA KB, MA USA C 36 Vipa36 
MAVP-80 In-house 2015 MA KB, MA USA C 36 Vipa36 
MAVP-81 In-house 2015 MA MA or 

PEI 
USA, 
Canada 

C 36 None 

MAVP-82 In-house 2015 MA KB, MA USA C 36 Vipa36 
MAVP-83 In-house 2015 MA MA USA C 36 Vipa26 
MAVP-84 In-house 2015 MA KB, MA USA C 36 Vipa36 
MAVP-85 In-house 2015 MA MA USA C 36 Vipa36 
MAVP-86 In-house 2015 MA CA USA C 36 None 
MAVP-88 In-house 2015 MA N/A USA C 36 Vipa26 
MAVP-89 In-house 2015 MA N/A N/A C 36 Vipa36 
MAVP-92 In-house 2015 MA KB, MA USA C 36 Vipa36 
MAVP-97 In-house 2015 MA MA USA C 36 Vipa26 
MAVP-
101 

In-house 2015 MA KB MA USA C 36 Vipa36 

MAVP- In-house 2015 MA KB MA USA C 36 Vipa36 



49 
 

102 
MAVP-
103 

In-house 2015 MA KB MA USA C 36 Vipa36 

MAVP-
104 

In-house 2015 MA MA USA C 36 Vipa26 

MAVP-
105 

In-house 2015 MA MA USA C 36 Vipa26 

MAVP-
111 

In-house 2015 MA MA USA C 36 Vipa26 

MAVP-
114 

In-house 2015 MA N/A USA C 36 Vipa26 

MAVP-
123E 

In-house 2015 N/A MA USA E 36 Vipa36 

MAVP-
127 

In-house 2016 MA MA USA C 36 Vipa36 

MAVP-V In-house N/A MA N/A N/A C 36 None 
MDVP46 GCA_000706905.2 2013 N/A N/A USA C 36 None 
MDVP50 GCA_002072875.1 2013 N/A N/A USA C 36 None 
MDVP51 GCA_002072835.1 2013 N/A N/A USA C 36 None 
MEVP-4 In-house 2013 ME MA USA C 36 Vipa26 
MEVP-10 In-house 2014 ME N/A N/A C 36 Other 
MEVP-11 In-house 2015 BC N/A Canada C 36 None 
NHVP-2 In-house 2013 ME N/A USA C 36 None 
NHVP-3 In-house 2013 NH VA USA C 36 Vipa26 
NY-3438 GCA_000707565.1 1998 NY N/A USA C 36 Vipa1029

0 
O29-1b GCA_000707045.1 1997 OR WA USA E 36 Vipa1029

0 
PNUSAV0
00201 

SRR7551165 2018 CT N/A USA C 36 None 

PNUSAV0
00220 

SRR7586849 2018 CT N/A USA C 36 None 

S037 GCA_000491435.1 1994 N/A N/A N/A N/A 36 Vipa1029
0 

VP12 GCA_000707225.2 2012 MD NY USA C 36 None 
VP30 GCA_000706925.2 2013 MD VA USA C 36 None 
VP32 GCA_000707325.2 2013 MD NJ USA C 36 None 
VP33 GCA_000707845.2 2013 MD N/A USA C 36 None 
VP36 GCA_000707865.1 2013 MD NY USA C 36 None 
VP38 GCA_000706845.2 2013 MD CT USA C 36 None 
VP40 GCA_000706865.2 2013 MD CT USA C 36 None 
VP42 GCA_000706965.1 2013 MD N/A USA C 36 None 
VP43 GCA_000707205.2 2013 MD CT USA C 36 None 
VP43-1A GCA_002072915.1 1992 N/A N/A USA E 36 Vipa1029

0 
VpG-1 GCA_002198305.1 2006 NY NY USA C 36 None 
VpG-3 GCA_002198295.1 2012 MA NY USA C 36 None 
VpG-4 GCA_002198335.1 2012 MA NY USA C 36 None 
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VpG-7 GCA_002198075.1 2012 CA CA USA C 36 None 
VpG-8 GCA_002198055.1 2012 CA CA USA C 36 None 
VpG-9 GCA_002198175.1 2012 CA NY USA C 36 None 
VpG-10 GCA_002198135.1 2012 CT CT USA C 36 None 
VpG-11 GCA_002198195.1 2007 GA WA USA C 36 None 
VpG-12 GCA_002198185.1 2012 WA WA USA C 36 None 

 

Table S2.3. List of all non-ST36 strains used in this study. All strains used in this study including NCBI 
assembly ID unless sequenced in-house, year and geographic region collected or reported, clinically or 
environmentally isolated (C/E respectively) sequence type and phage type.  N/A for any category 
indicates the information was not available.  

Strain Assembly ID Year 
Reportin

g 
Location 

Country C/E ST Phage 

04-2192 GCA_001609555.1  2004 N/A South 
Korea 

C 629 Other 

07-1339 GCA_000972045.1 2007 British 
Columbia 

Canada C 3 f237 

08-0278 GCA_000960645.1 2008 Alberta Canada C 216 None 
090-96 GCA_000701045.1 1996 N/A Peru C 265 None 
49 GCA_000877625.1 2007 Washingt

on 
USA E 137 Other 

50 GCA_000519385.1 2006 N/A USA C 34 None 
271 GCA_003408935.1 2015 N/A China E 490 Other 
605 GCA_000519365.1 2006 Washingt

on 
USA E 3 f237 

861 GCA_000524535.1 2007 Washingt
on 

USA E 3 f237 

863 GCA_000877485.1 2007 Washingt
on 

USA E 3 f237 

930 GCA_000877475.1 2007 Washingt
on 

USA E 3 f237 

949 GCA_000454455.1 2006 Washingt
on 

USA C 3 f237 

3259 GCA_000454245.1 N/A N/A N/A N/
A 

479 None 

3355 GCA_000877615.1 2007 N/A USA C 65 None 
3631 GCA_000877595.1 2007 Washingt

on 
USA C 417 Other 

3644 GCA_000877755.1 2007 Washingt
on 

USA C 43 Vipa700 

3646 GCA_000877765.1 2007 Washingt
on 

USA C 417 None 

10292 GCA_000707245.1 1997 Washingt
on 

USA C 50 None 

22702 GCA_000958645.1 1998 Georgia USA E NF Other 
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04-2549 GCA_000951795.1 2004 Saskatch
ewan 

Canada C 3 f237 

04-2551 GCA_000975195.1 2004 Ontario Canada C 3 f237 
07-2965 GCA_000960565.1 2007 Saskatch

ewan 
Canada C 326 None 

09-3217 GCA_000960655.1 2009 British 
Columbia 

Canada C 43 Vipa4291 

09-3218 GCA_000974905.1 2009 British 
Columbia 

Canada C 417 Other 

10-4243 GCA_000972105.1 2006 British 
Columbia 

Canada C 141 Other 

10-4244 GCA_001006125.1 2006 British 
Columbia 

Canada C 141 Other 

10-4251 GCA_001006105.1 2006 British 
Columbia 

Canada C 3 f237 

10-4287 GCA_001006185.1 2003 British 
Columbia 

Canada C 50 None 

901128 GCA_000877675.1 1997 N/A USA C 135 Other 
09-4434 GCA_000972125.1 2009 Alberta Canada C 417 Other 
09-4435 GCA_000960685.1 2009 British 

Columbia 
Canada C 3 f237 

09-4660 GCA_000972055.1 2009 British 
Columbia 

Canada C 417 Other 

09-4661 GCA_001559885.1 2009 British 
Columbia 

Canada C 417 Other 

09-4663 GCA_001006115.1 2009 British 
Columbia 

Canada C 417 Other 

09-4664 GCA_000972035.1 2009 British 
Columbia 

Canada C 417 Other 

09-4681 GCA_000972025.1 2009 New 
Brunswic
k 

Canada C 632 None 

10-7205 GCA_001006205.1 2008 British 
Columbia 

Canada C 417 Other 

08-7626 GCA_000960665.1 2008 Alberta Canada C 417 Other 
13-028-
A3 

GCA_000737635.1 2013 N/A Vietnam E 1166 None 

239-09 GCA_001634245.1  2009 Lambaye
que 

Peru C 120 VipaP306 

281-09 GCA_001634105.1 2009 N/A Peru C 120 VipaP306 
283-09 GCA_001634165.1  2009 N/A Peru C 120 VipaP306 
285-09 GCA_001633855.1  2009 N/A Peru C 120 VipaP306 
98-513-
F52 

GCA_000707605.1 1998 Louisiana USA E 34 None 

A1EZ952 GCA_001609185.1 2001 British 
Columbia 

Canada C 43 Vipa71 

A4EZ700 GCA_001559805.1 2004 British 
Columbia 

Canada C 43 Vipa700 
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AN-5034 GCA_000182385.1 1998 N/A Bangla-
desh 

C 3 f237 

AQ3810 GCA_000154045.1 1983 N/A Japan C 87 None 
AQ4037 GCA_000182365.1 1985 N/A Japan C 96 Other 
ATC210 GCA_001270885.1 1998 N/A Chile C 3 f237 
ATC220 GCA_001270975.1 1998 N/A Chile C 3 f237 
ATCC_17
802 

GCA_001011015.1 1951 N/A Japan C 1 None 

B-265 GCA_000516875.1 2004 N/A Mozam-
bique 

C 3 f237 

BB22OP GCA_000328405.1 1982 N/A Bangla-
desh 

E 88 None 

C220-09 GCA_001634105.1  2009 Lambaye
que 

Peru C 120 VipaP306 

C224-09 GCA_001634125.1  2009 Lambaye
que 

Peru C 120 VipaP306 

C226-09 GCA_001634185.1  2009 N/A Peru C 120 VipaP306 
C235 GCA_001634215.1 2009 Cajamarc

a 
Peru  C 120 VipaP306 

C237 GCA_001634015.1  2009 Cajamarc
a 

Peru C 120 VipaP306 

C244-09 GCA_001634205.1 2009 N/A Peru C 120 VipaP306 
CT20E In-house 2013 Connecti

cut 
USA E 28 Other 

CT24E In-house 2013 Connecti
cut 

USA E 1136 Other 

CT4264 In-house 2013 Connecti
cut 

USA E 2033 Other 

CT4287 In-house 2013 Connecti
cut 

USA E 674 Vipa4291 

CT4291 In-house 2013 Connecti
cut 

USA E 674 Vipa4291 

CTVP19C NKGU00000000 2013 Massach
usetts 

USA C 34 None 

CTVP29C In-house 2013 Connecti
cut 

USA C NF None 

CTVP35C NIXS00000000 2013 Connecti
cut 

USA C 194 None 

EKP-008 GCA_000510585.1 2007 N/A Banglad
esh 

E 479 None 

EKP-021 GCA_000571915.1 2008 N/A Banglad
esh 

E 3 f237 

EKP-026 GCA_000525005.1 2008 N/A Banglad
esh 

E 3 f237 

EKP028 GCA_000522005.1 2008 N/A Banglad
esh 

E 3 f237 

EN97010
72 

GCA_000877715.1 1997 Washingt
on 

USA C 43 Vipa71 
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EN97011
21 

GCA_000877725.1 1997 Washingt
on 

USA C 50 None 

FDA_R31 GCA_000430405.1 2007 Louisiana USA N/
A 

23 Other 

FDAARG
OS_53 

GCA_001188035.2 2004 Alaska USA E 59 Other 

FIM-
S1708+ 

GCA_000732985.1 2014 N/A Mexico E 1167 Other 

FORC_00
4 

GCA_001433415.1 N/A N/A N/A N/
A 

1628 Other 

FORC_00
6 

GCA_001304775.1 2014 Gyeongn
am 

South 
Korea 

N/
A 

1630 Other 

FORC_00
8 

GCA_001244315.1 N/A N/A N/A N/
A 

984 Other 

G8 In-house 2007 New 
Hampshi
re 

USA E NF Other 

G61 In-house 2007 New 
Hampshi
re 

USA E 1125 Other 

G79 In-house 2007 New 
Hampshi
re 

USA E NF None 

G95 In-house 2007 New 
Hampshi
re 

USA E 2017 None 

G145 In-house 2007 New 
Hampshi
re 

USA E 2018 Other 

G149 MPPO00000000 2007 New 
Hampshi
re 

USA E 631 None 

G151 In-house 2007 New 
Hampshi
re 

USA E 83 Other 

G227 In-house 2007 New 
Hampshi
re 

USA E 1087 Other 

G320 In-house 2008 New 
Hampshi
re 

USA E NF Other 

G325 In-house 2008 New 
Hampshi
re 

USA E NF Vipa26 

G360 In-house 2008 New 
Hampshi
re 

USA E NF None 

G363 In-house 2008 New USA E 1574 Vipa26 
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Hampshi
re 

G441 In-house 2008 New 
Hampshi
re 

USA E 2017 None 

G445 In-house 2008 New 
Hampshi
re 

USA E 2019 None 

G640 In-house 2008 New 
Hampshi
re 

USA E NF None 

G650 In-house 2008 New 
Hampshi
re 

USA E 2020 None 

G653 In-house 2008 New 
Hampshi
re 

USA E 2021 None 

G729 In-house 2008 New 
Hampshi
re 

USA E 380 Other 

G735 In-house 2008 New 
Hampshi
re 

USA E NF None 

G755 In-house 2008 New 
Hampshi
re 

USA E 2021 None 

G1286 In-house 2009 New 
Hampshi
re 

USA E 107 Other 

G1334 In-house 2009 New 
Hampshi
re 

USA E 2026 None 

G1350 In-house 2009 New 
Hampshi
re 

USA E 1574 Vipa26 

G1355 In-house 2009 New 
Hampshi
re 

USA E 1847 Other 

G1386 In-house 2009 New 
Hampshi
re 

USA E 1356 Other 

G1393 In-house 2009 New 
Hampshi
re 

USA E NF None 

G1445 In-house 2009 New 
Hampshi
re 

USA E 2031 Vipa26 

G1449 In-house 2009 New USA E NF Vipa26 
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Hampshi
re 

G1463 In-house 2009 New 
Hampshi
re 

USA E NF None 

G1487 In-house 2009 New 
Hampshi
re 

USA E 2021 None 

G3578 NIYO00000000 2013 New 
Hampshi
re 

USA E 674 Vipa4291 

G3599 In-house 2013 New 
Hampshi
re 

USA E 674 Vipa4291 

G3654 In-house 2013 New 
Hampshi
re 

USA E 1123 None 

G4026 In-house 2013 New 
Hampshi
re 

USA E 773 None 

G4186 NIYP00000000 2013 New 
Hampshi
re 

USA E 34 None 

G6494 In-house 2015 New 
Hampshi
re 

USA E 1716 Other 

G6499 In-house 2015 New 
Hampshi
re 

USA E NF Vipa26 

G6928 In-house 2015 New 
Hampshi
re 

USA E 631 None 

GCSL_R2
1 

GCA_001726355.1  2007 Texas USA E 12 Vipa4291 

Guillen-
151-Peru 

GCA_001633955.1 2009 N/A Peru N/
A 

120 VipaP306 

Gxw_700
4 

GCA_001541615.1 2007 Guangxi China C 3 f237 

Gxw_914
3 

GCA_001541625.1 N/A N/A N/A N/
A 

NF None 

HS-06-05 GCA_001280705.1 N/A N/A N/A N/
A 

614 Other 

HS-13-1 GCA_001270125.1 N/A N/A N/A N/
A 

676 Other 

IDH0218
9 

GCA_000522025.1 2009 N/A India C 3 f237 

ISF-01-07 GCA_001267555.1 N/A N/A N/A N/
A 

88 None 
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ISF-25-6 GCA_001267595.1 N/A N/A N/A N/
A 

NF Other 

ISF-29-3 GCA_001273575.1 N/A N/A N/A N/
A 

1518 Other 

ISF-54-12 GCA_001280635.1 N/A N/A N/A N/
A 

1631 None 

ISF-77-01 GCA_001270285.1 N/A N/A N/A N/
A 

NF None 

ISF-94-1 GCA_001280645.1 N/A N/A N/A N/
A 

1632 None 

J-C2-34 GCA_000958655.1 N/A N/A N/A N/
A 

NF Other 

K1198 GCA_001188035.1 2004 Alaska USA E 59 Other 
K1203 GCA_000707585.1 2004 Alaska USA E 59 Other 
K23 GCA_001497485.1 N/A N/A N/A N/

A 
1052 Other 

K5030 GCA_000182465.1 2005 N/A India C 3 f237 
K5073 GCA_001728275.1  2007 Maryland USA C 750 Other 
M0605 GCA_000523375.1 2013 N/A Mexico E 539 Other 
MA5 In-house 2013 Massach

usetts 
USA E 2118 Other 

MA58 In-house 2014 Massach
usetts 

USA E 2119 Other 

MA60 In-house 2014 Massach
usetts 

USA E 2120 Other 

MA76 In-house 2014 Massach
usetts 

USA E 2120 Other 

MA77 In-house 2014 Massach
usetts 

USA E 2120 Other 

MA78 In-house 2014 Massach
usetts 

USA E 2119 Other 

MA97 In-house 2014 Massach
usetts 

USA E 2119 Other 

MA143 In-house 2014 Massach
usetts 

USA E NF Other 

MA145 In-house 2014 Massach
usetts 

USA E 1717 Other 

MA146 In-house 2014 Massach
usetts 

USA E NF Other 

MA147 In-house 2014 Massach
usetts 

USA E 1717 Other 

MA157 In-house 2014 Massach
usetts 

USA E 771 Other 

MA161 In-house 2014 Massach
usetts 

USA E NF Other 

MA175 In-house 2014 Massach
usetts 

USA E 1399 Vipa4291 

MA239 In-house 2014 Massach USA E 2032 Other 
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usetts 
MA271 In-house 2015 Massach

usetts 
USA E 1185 Vipa4291 

MA281 In-house 2015 Massach
usetts 

USA E 1556 None 

MA303 In-house 2015 Massach
usetts 

USA E NF Other 

MA304 In-house 2015 Massach
usetts 

USA E 1556 None 

MA371 In-house 2015 Massach
usetts 

USA E 1185 Vipa4291 

MA398 In-house 2015 Massach
usetts 

USA E 2123 None 

MA414 In-house 2015 Massach
usetts 

USA E NF Other 

MA432 In-house 2015 Massach
usetts 

USA E 1185 Vipa4291 

MA448 In-house 2015 Massach
usetts 

USA E 1185 Vipa4291 

MA459 In-house 2015 Massach
usetts 

USA E 1727 None 

MA561 MPPM00000000 2015 Massach
usetts 

USA E 631 None 

MAVP-4 MDWU00000000 2013 Massach
usetts 

MA C NF None 

MAVP-10 In-house 2013 Massach
usetts 

MA C 1346 None 

MAVP-13 NKGK00000000 2013 Massach
usetts 

MA C 1719 Other 

MAVP-14 NJAP00000000 2013 Massach
usetts 

USA C 324 None 

MAVP-21 NIXV00000000 2013 Massach
usetts 

MA C 674 Other 

MAVP-25 NJAN00000000 2013 N/A N/A C 1127 Other 
MAVP-30 MDWW00000000 2013 Massach

usetts 
USA C 631 Other 

MAVP-39 MDWV00000000 2013 Massach
usetts 

USA C 631 Other 

MAVP-46 NJAO00000000 2013 Massach
usetts 

USA C 110 None 

MAVP-50 NIXY00000000 2013 N/A N/A C 636 None 
MAVP-55 NKGI00000000 2013 Massach

usetts 
USA C 632 Other 

MAVP-56 MDWX00000000 2013 Massach
usetts 

USA C 631 Other 

MAVP-65 In-house 2014 Massach
usetts 

USA C 1727 None 

MAVP-66 NKGH00000000 2014 Massach USA C 2030 None 
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usetts 
MAVP-67 NIXX00000000 2014 Massach

usetts 
USA C 308 None 

MAVP-69 In-house 2014 Massach
usetts 

USA C 43 Vipa71 

MAVP-71 NIXZ00000000 2014 Massach
usetts 

USA C 43 Vipa71 

MAVP-73 NKGG00000000 2014 Massach
usetts 

USA C 1722 Other 

MAVP-74 MDWY00000000 2014 Massach
usetts 

USA C 631 Other 

MAVP-75 MDWZ00000000 2014 Massach
usetts 

USA C 631 Other 

MAVP-76 NKGF00000000 2014 Massach
usetts 

USA C 614 Other 

MAVP-78 MDXA00000000 2014 Massach
usetts 

USA C 631 Other 

MAVP-99 NIXW00000000 2015 Massach
usetts 

USA C 12 Other 

MAVP-
108 

NIXQ00000000 2015 Massach
usetts 

USA C 1716 Other 

MAVP-A MDWP00000000 2010 Massach
usetts 

N/A C 631 None 

MAVP-E LBHP00000000 2010 Massach
usetts 

USA C 631 None 

MAVP-F NKFY00000000 2011 Massach
usetts 

USA C 1726 None 

MAVP-G NIXR00000000 2011 Massach
usetts 

USA C 809 Other 

MAVP-H In-house 2011 Massach
usetts 

USA C 636 None 

MAVP-I In-house 2011 Massach
usetts 

USA C 1126 Vipa3 

MAVP-J NKFX00000000 2011 Massach
usetts 

USA C 1727 None 

MAVP-K In-house 2011 Massach
usetts 

USA C 8 VipaK 

MAVP-L MDWS00000000 2011 Massach
usetts 

USA C 631 None 

MAVP-M In-house 2011 Massach
usetts 

USA C 1127 None 

MAVP-N In-house 2011 Massach
usetts 

USA C NF Other 

MAVP-P MDWQ00000000 2010 Massach
usetts 

USA C 631 Other 

MAVP-Q MDWT00000000 2011 Massach
usetts 

USA C 631 None 

MAVP-R MPPP00000000 2011 Massach USA C 631 None 
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usetts 
MAVP-S In-house 2011 Massach

usetts 
USA C 1728 Other 

MAVP-T MDWR00000000 2010 Massach
usetts 

USA C 631 None 

MAVP-U NKFV00000000 2011 Massach
usetts 

USA C 749 Other 

MAVP-W In-house N/A Massach
usetts 

N/A C 43 Vipa71 

MAVP-X NKFU00000000 2011 Massach
usetts 

USA C 322 Vipa3 

MDOH-
04-
5M732 

In-house 2004 Florida USA C 3 Vipa3 

MEVP-5 In-house 2013 Maine USA C 1716 Other 
MEVP-6 In-house 2013 Maine USA C 1729 None 
MEVP-7 NKFQ00000000 2014 Maine USA C 1205 Other 
NA4 GCA_002880475.1 2017 N/A Malaysi

a 
E 1911 Other 

NA7 GCA_002880415.1 2017 N/A Malaysi
a 

E 1911 Other 

NA9 GCA_002880435.1 2017 N/A Malaysi
a 

E 1911 Other 

NBRC_12
711 

GCA_000813305.1 N/A N/A N/A N/
A 

1 None 

NCKU_T
N_S02 

GCA_000736345.1 N/A N/A N/A N/
A 

247 None 

NCKU_TV
_3HP 

GCA_000736335.1 N/A N/A N/A N/
A 

970 None 

NCKU_TV
_5HP 

GCA_000736315.1 N/A N/A N/A N/
A 

970 None 

NIHCB06
03 

GCA_000454265.1 2006 N/A Bangla-
desh 

C 3 f237 

NIHCB07
57 

GCA_000477475.1 2006 N/A Bangla-
desh 

C 65 None 

NSV_753
6 

GCA_001471485.1 N/A N/A N/A N/
A 

50 None 

P306 GCA_001633935.1  2009 N/A Peru E 120 VipaP306 
Peru288 GCA_000522065.1 2001 N/A Peru C 3 f237 
peru466 GCA_000182345.1 1996 N/A Peru C 3 f237 
PIURA-17 GCA_001633985.1  2009 Piura Peru  120 VipaP306 
PMA109
_5 

GCA_001270805.1 2005 Puerto 
Montt 

Chile E 3 f237 

PMA37.5 GCA_001270835.1 2005 Puerto 
Montt 

Chile E 3 f237 

PMC14_7 GCA_001270895.1 2007 Puerto 
Montt 

Chile C 3 f237 

PMC48 GCA_001270905.1 N/A N/A N/A N/ 3 None 
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A 
PMC58_5 GCA_001270815.1 2005 Puerto 

Montt 
Chile C 3 f237 

PMC58_7 GCA_001270825.1 2007 Puerto 
Montt 

Chile C 3 f237 

RIMD_22
10633 

GCA_001270945.1 1996 Kansai Japan C 3 f237 

RM-13-3 GCA_001267965.1 N/A N/A N/A N/
A 

137 None 

RM-14-5 GCA_001273555.1 N/A N/A N/A N/
A 

1663 None 

RM-17-6 GCA_001267655.1 N/A N/A N/A N/
A 

1346 None 

S096 GCA_000493225.1 1999 N/A South 
Korea 

C 217 Other 

S158 GCA_000489315.1 2006 N/A China E 419 Other 
S161 GCA_000489255.1 2006 N/A China E 419 Other 
S167 GCA_000489135.1  2007 N/A China E 490 Other 
S176-10 GCA_001280725.1 N/A N/A N/A N/

A 
1728 None 

S195-7 GCA_001268005.1 N/A N/A N/A N/
A 

1187 None 

S349-10 GCA_001268015.1 2010 N/A Canada E 1516 Other 
S357-21 GCA_001273635.1 N/A N/A N/A N/

A 
102 None 

S372-5 GCA_001280655.1 N/A N/A N/A N/
A 

324 None 

S383-6 GCA_001267625.1 2011 N/A Canada N/
A 

1134 Other 

S439-9 GCA_001270155.1 N/A N/A N/A N/
A 

1155 None 

S440-7 GCA_001270235.1 N/A N/A N/A N/
A 

34 None 

S448-16 GCA_001267635.1 2012 N/A Canada N/
A 

1134 Other 

S456-5 GCA_001268045.1 2012 N/A Canada N/
A 

NF Other 

S487-4 GCA_001270215.1 N/A N/A N/A N/
A 

631 None 

S499-7 GCA_001270145.1 2013 N/A Canada E 1134 Other 
SG176 GCA_000958565.1 2006 Georgia USA E NF Other 
SNUVpS-
1 

GCA_000315135.1 2012 N/A Korea E 917 Other 

T12739 GCA_000786835.1 N/A N/A N/A N/
A 

546 None 

T9109 GCA_000786845.1 N/A N/A N/A N/
A 

634 None 

TUMSAT GCA_000591495.1 N/A N/A N/A N/ 413 None 
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_D06_S3 A 
TUMSAT
_DE1_S1 

GCA_000591455.1 N/A N/A N/A N/
A 

114 Other 

TUMSAT
_DE2_S2 

GCA_000591475.1 N/A N/A N/A N/
A 

970 None 

TUMSAT
_H01_S4 

GCA_000591515.1 N/A N/A N/A N/
A 

698 None 

TUMSAT
_H10_S6 

GCA_000591555.1 N/A N/A N/A N/
A 

977 Other 

UCM-
V493 

GCA_000568495.1 2002 N/A Spain E 471 None 

v110 GCA_000388025.1 2010 Hong 
Kong 

China E 809 Other 

V14-01 GCA_000558885.1 2001 N/A Chile C 3 f237 
V223-04 GCA_000558905.2 2004 N/A Chile C NF f237 
VH3 GCA_001013435.1 N/A N/A N/A N/

A 
NF None 

VIP4-
0219 

GCA_000500525.1 2006 Hong 
Kong 

China E 937 Other 

VIP4-
0395 

GCA_000500505.1 2007 Hong 
Kong 

China C 3 f237 

VIP4-
0407 

GCA_000500405.1 2008 Hong 
Kong 

China C 3 f237 

VIP4-
0430 

GCA_000500445.1 2008 Hong 
Kong 

China E 507 Other 

VIP4-
0434 

GCA_000500425.1 N/A N/A N/A N/
A 

332 None 

VIP4-
0439 

GCA_000500365.1 2008 Hong 
Kong 

China C 3 f237 

VIP4-
0443 

GCA_000500465.1 N/A N/A N/A N/
A 

NF Other 

VIP4-
0444 

GCA_000500485.1 N/A N/A N/A N/
A 

2165 None 

VIP4-
0445 

GCA_000500385.1 2008 Hong 
Kong 

China C NF f237 

VIP4-
0447 

GCA_000500545.1 N/A N/A N/A N/
A 

396 Other 

VP1 GCA_000707405.1 2012 Maryland USA C 631 None 
VP2 GCA_000707165 2012 Maryland USA C 651 None 
VP3 GCA_000707145.1 2012 Maryland USA C 652 None 
VP4 GCA_000707025.1 2012 Maryland USA C 653 Other 
VP5 GCA_000706945.1 2012 Maryland USA C 113 None 
VP6 GCA_000707065.1 2012 Maryland USA C 677 Other 
VP7 GCA_000707305.1 2012 Maryland USA C 34 None 
VP8 GCA_000707425.1 2012 Maryland USA C 631 None 
VP9 GCA_000707385.1 2012 Maryland USA C 631 None 
VP10 GCA_000707125.2  2012 Maryland USA C 43 Vipa71 
VP11 GCA_000707105.1 2012 Maryland USA C 1116 None 
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VP13 GCA_000707685.1 2012 Maryland USA C 678 Other 
VP14 GCA_000707705.1 2012 Maryland USA C 162 Other 
VP15 GCA_000707725.1 2012 Maryland USA C 679 None 
VP16 GCA_000707745.1 2012 Maryland USA C 3 f237 
VP17 GCA_000707765.1 N/A N/A N/A N/

A 
3 f237 

VP18 GCA_000707805.1 2012 Maryland USA C 3 f237 
VP19 GCA_000707785.1 2010 Maryland USA C 8 VipaK 
VP20 GCA_000707825.1 2010 Maryland USA C 8 VipaK 
VP21 GCA_000707645.1 2010 Maryland USA E 8 VipaK 
VP22 GCA_000707905.1 2010 Maryland USA E 676 None 
VP23 GCA_000707665.1 2010 Maryland USA E 8 VipaK 
VP24 GCA_000707265.1 2010 Maryland USA E 8 VipaK 
VP25 GCA_000707285.1 2010 Maryland USA E 810 None 
VP26 GCA_000707085.1 2010 Maryland USA E 811 None 
VP27 GCA_000707365.1 2010 Maryland USA E 34 None 
VP28 GCA_000707185.1 2010 Maryland USA E 768 Other 
VP29 GCA_000707345.1 2010 Maryland USA E 8 VipaK 
VP31 GCA_000707445.1 2013 Maryland USA C 631 Other 
VP34 GCA_000707005.1 2012 Maryland USA C 653 None 
VP35 GCA_000707465.1 2013 Maryland USA C 631 None 
VP39 GCA_000706985.1 2013 Maryland USA C 896 Other 
VP41 GCA_000707485.1 2013 Maryland USA C 631 None 
VP44 GCA_000707505.1 2013 Maryland USA C 631 None 
VP45 GCA_000706885.1 2013 Maryland USA C 631 None 
Vp47 GCA_002153925.1 2012 N/A China E 1772 Other 
VP49 GCA_000662375.1 2008 Mangalo

re 
India E 1024 None 

VP232 GCA_000454185.1 1998 N/A India C 3 f237 
VP250 GCA_000454225.1 1998 N/A India C 3 f237 
Vp294 GCA_002154015.1 2013 N/A China E NF Other 
VP766 GCA_000877605.1 2007 Washingt

on 
USA E 133 None 

VP551 GCA_000877415.1 2007 Washingt
on 

USA E 3 f237 

VP2007-
007 

GCA_000558925.1 2007 Mississip
pi 

USA E 306 Other 

VP2007-
095 

GCA_000454165.1 2007 Florida USA C 631 None 

VP-48 GCA_000593285.1 1996 N/A India C 152 f237 
VP43-1A GCA_002072915.1 1992 N/A USA E 39 Vipa1029

0 
VPCR-
2009 

GCA_000593305.1 N/A N/A N/A N/
A 

1567 Other 

VPCR-
2010 

GCA_000454475.1 2010 N/A USA E 308 Other 

VP-NY4 GCA_000454145.1 1997 N/A India C 3 f237 
VPTS- GCA_000593325.1 N/A N/A N/A N/ 1013 None 
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2009 A 
VPTS-
2010 

GCA_000593345.1 N/A N/A N/A N/
A 

6 None 

VPTS-
2010-2 

GCA_000593365.1 N/A N/A N/A N/
A 

NF None 

W90A GCA_002072845.1  1986 Washingt
on 

USA E 21 Other 
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CHAPTER TWO 

 

The influence of the filamentous phage Vipa26 on the ecological fitness of an invasive Vibrio 
parahaemolyticus ST36 clinical isolate originating in the Gulf of Maine 

Jillian Means2, Wayne Faegerberg2, Cheryl Whistler1,2, 

 

1 Northeast Center for Vibrio Disease and Ecology, University of New Hampshire, Durham, NH, USA 
 

2 Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, 
NH, USA 

 

Abstract 

Vibrio parahaemolyticus, a common inhabitant of coastal waters, is the leading cause of 

bacterial seafood-borne illnesses in the United States of America. The incursion of the pathogenic 

lineage sequence type (ST) 36 into US North Atlantic Coastal waters from the Pacific Northwest has 

contributed greatly to disease burden in the region. A clonal clade of ST36 with high clinical prevalence 

in the Gulf of Maine (GOM) basally acquired a filamentous bacteriophage of the family Inoviridae 

(inoviruses) and held the prophage as its population clonally expanded into the GOM. In this work we 

investigate the potential impact of this Inovirus, Vipa26, on the fitness of a ST36 clinical isolate. ST36 

strains harboring Vipa26 integrated into its chromosome I dif site actively produce progeny, capable of 

infecting new susceptible hosts.  Curiously, infections are reversible, and spontaneous phage loss 

occurred under some culture conditions. Though sustained infection by Vipa26 were benign and did not 

discernably impair growth, new infections were immediately detrimental and abruptly impaired growth 

observed as both turbid plaques and an early plateau during exponential growth. Sustained phage 

integration protected ST36 strains from detrimental effects of superinfections by related phages.  

Furthermore phage-harboring strains were more fit in direct competitions with an isogenic susceptible 

host likely due to phage predation of the susceptible competitor.  Although natural phase variation 
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between non-isogenic phage-harboring and phage deficient ST36 strains used to examine environmental 

fitness effects of phage carriage impacted strain fitness confounded our analyses of potential 

advantages of phage in natural seawater microcosms, this model for environmental fitness is a potential 

avenue for further investigation. The protection of the host from superinfection by similar phages, and 

increased fitness in direct competition against a susceptible strain argue that the acquisition of Vipa26 

early in the establishment of the GOM clonal population may have contributed to its successful 

expansion. Further insight into the mechanism of infection of Vipa26 and impact on the host cell will 

expand our understanding of the complex interplay between bacteriophages and their hosts. 

Introduction 

 V. parahaemolyticus, a ubiquitous estuarine bacterium, is a major cause of food-borne illness in 

the United States, accounting for about 45,000 reported illnesses a year (10). Historically, V. 

parahaemolyticus was of little concern in the Northeast US; however, compared to the early 2000s the 

number of cases traced to Northeast product has increased, with a major outbreak in 2013 (33, 75).  

This was in part due to the introduction of an invasive virulent sequence type (ST) endemic to the Pacific 

Northwest, ST36, a lineage that caused the 2013 outbreak and has persisted in several harvest areas 

causing recurrent infections (75, 77, 80).   

 ST36 was likely introduced into the Atlantic Ocean multiple times (76), with several clades 

established in various regions along the US East Coast, including in the Gulf of Maine (GOM) and the 

Long Island Sound (LIS) with a clonal subpopulation in Katama Bay (KB) (Chapter 2).  Whereas ST36 was 

traced to several other Atlantic coastal locations including Spain and the US mid-Atlantic including 

Virginia and New Jersey, disease incidence from these other locations remains low suggesting ST36 may 

not have successfully established robust, persistent populations everywhere it invaded (76) (Chapter 2). 

However, the two most northern populations of ST36 in the GOM and KB continue to cause illnesses. 



66 
 

Prior to clonal expansion and establishment of the GOM and KB sub-populations, the related but 

genetically unique progenitors independently acquired and held distinct related filamentous phages 

(Vipa26 in the GOM population and Vipa36 in the KB population) of the family Inoviridae (Chapter 2 A 

similar but distinctive phage (Vipa10290) consistently associates with clinical isolates sourced to the 

Pacific in prior decades, known as the old Pacific Northwest (PNW) population (76); however, ST36 

isolates traced to other Atlantic coastal locations, and recent clinical isolates originating in the Pacific 

largely lack Inoviruses (76) (Chapter 2). It is notable that the clonal complex of pandemic strains 

originating in Asia, ST3, that spread globally and still causes the most illnesses worldwide, commonly 

identified as serotype O3:K6, also carries an Inovirus related to those in V. parahaemolyticus ST36 (69, 

74, 149) (see Chapter 2). The ST3-associated phage, called f237, is nearly universally associated with this 

highly successful invasive pathogen and is diagnostic for this lineage (69, 74, 149).  Whereas intra-

oceanic movement of V. parahaemolyticus can occur naturally, ST36 is remarkable in that it not only 

underwent inter-oceanic incursion but established populations in several new locations, similarly to the 

pandemic ST3 (76, 78).  ST3 acquired f237 basally prior to its pandemic spread, in contrast, ST36 phage 

acquisition occurred independently by only some members of the population and these phage-

harboring lineages have been particularly successful in their new locations. The presence of these 

phages in these highly successful pathogenic lineages suggests that the phages could influence the 

ecological fitness or virulence of their hosts. 

 Filamentous phages of the family Inoviridae have diverse impacts on their bacterial hosts (92). 

They do not typically kill the host cell during infection, but instead produce a chronic infection, 

reproducing and extruding progeny phage particles from a living cell (181).  Thus, phage infected-cells 

likely incur a fitness cost when producing phage including membrane stress from phage secretion (182, 

183). This growth cost may be balanced by potential benefits to the host. For example, a persistently 

infected cell may also infect susceptible competitors who would  incur the fitness cost thereby leveling 
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the playing field; although, based on distribution of phage in natural communities, it is unlikely that all V. 

parahaemolyticus are susceptible (see Chapter 2).  Furthermore, persistent infection could protect hosts 

from other related, and more-costly phage, including lytic dsDNA phage (162) and integration of the 

phage into the chromosome often down-regulates production of phage particles, minimizing the impact 

on the host cell (184, 185). These phages are also instruments of horizontal gene transfer, sometimes 

containing accessory content that confers new and useful traits upon their hosts, such as access to novel 

environments (92).  For instance, in addition to toxins encoded as part of the core genome of the Vibrio 

cholerae filamentous Inoviridae phage, CTXφ, which include accessory cholera enterotoxin (ace) and 

zonula occludens toxin (zot), CTXφ encodes cholera toxin (ctx) as part of its accessory genome (12, 143).  

The phages in V. parahaemolyticus that are related to CTXφ including f237, Vipa26, Vipa36, Vipa10290 

and others, also encode ace and zot and vary in accessory content from each other (Chapter 2). 

Accessory toxins produced by pathogenic variants of V. parahaemolyticus not only confer increased 

virulence but also may deter predation by bacterivorous protists and amoebae (66, 186), suggesting 

phage encoded toxins may confer ecologically relevant benefits. Filamentous phages are also important 

in the evolution of pathogens; the phage RS1 can cause CTXφ to excise from the chromosome, skewing 

the population towards nontoxigenic derivatives and potentially attenuating epidemics (145).  Despite 

the well-established precedent for phage influencing virulence and population dynamics of other human 

pathogenic bacteria (187), studies to investigate the potential impact of f237 on ST3 are lacking, 

although one report speculated that ORF8 may encode an adhesive protein involved in gut colonization, 

and another suggested a potential role of UV induction of f237 on decline of ST3 in South America (74, 

150, 188).  

The presence of Vipa26 and Vipa36 phages among clinical samples derived from two successful 

environmental populations is likely not serendipity. The potential costs and benefits associated with 

these phages have not been quantified and the contribution of phage-encoded attributes that could 
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promote environmental fitness or virulence have not been examined.  In this study, we focus on Vipa26, 

the phage associated with the successful GOM sub-population of ST36, to determine the dynamics and 

impact of phage infection on its host including competitive fitness in culture and microcosms, and for 

resistance to predation. These studies aim to provide additional understanding and insight into kinetics 

of infection by an active filamentous phage and the potential phenotypic differences conferred by this 

phage. 

Methods 

Bacterial strains, plasmids and culture conditions 

 Bacterial strains and plasmids used in this study are listed in Table 3.1. V. parahaemolyticus was 

routinely cultured at 37°C with aeration or at room temperature in static culture either in Heart Infusion 

broth (HI) for isolation of phage or in Luria Bertani (LB) amended with 10 mM MgCl2 for phage infections,  

in LB amended with 3% NaCl and buffered with 50mM TrisHCl pH 7.4 (LBS) for routine culturing, and on 

LBS plates containing 1.5% agar for colony isolation. Escherichia coli was cultured in LB broth and agar. 

Media was supplemented with antibiotics for maintenance and selection of plasmids at the following 

concentrations: for E. coli -  kanamycin (Kan) at 50 µg/mL, and chloramphenicol (Chl) at 25 µg/mL; for V. 

parahaemolyticus - Kan at 50 µg/mL, Chl at 2.5 µg/mL, and erythromycin (Erm) at 10 µg/mL.  Solid 

media was supplemented with 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) at a final 

concentration of 20μg/mL for evaluating presence or absence of betagalactosidase activity from a 

cloned lacZ gene for blue/white screening. Cafeteria roenbergensis ATCC 50301 was cultivated as 

recommended by ATCC at 25°C in 1525 seawater 802 medium which is 1x artificial seawater 

supplemented with 0.125% rye grass cerophyll (Wards Scientific) that was bacterized with Enterobacter 

aerogenes ATCC 13048. Acanthamoeba castellanii ATCC 30234 was maintained in axenic culture in 

medium 712: PYG with additives, at 25°C according to ATCC guidelines (189, 190). 
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Table 3.1 List of strains and plasmids used in this study. 

Strain and plasmids Notable characteristics Citation 

V. parahaemolyticus   

F11-3A Clinical, ST36, opaque; Vipa10290 GCA_000707545.1 

G149 Environmental, ST631, opaque This study 

G320 Environmental, STNF, opaque, other phage This study 

G1445 Environmental, STNF, opaque This study 

MAVP-3 Clinical, ST3, opaque; f237 This study 

MAVP-20 Clinical, ST36, translucent This study 

MAVP-20(26) Clinical, ST36, opaque; Vipa26 This study 

MAVP-20(26)-2 Clinical, ST36, translucent; Vipa26 This study 

MAVP-26 Clinical, ST36, opaque; Vipa26 This study 

MAVP-26::Erm Clinical, ST36, opaque; Vipa26::ErmR This study 

MAVP-26PD Clinical, ST36, opaque This study 

MAVP-C Clinical ST3, opaque, f237 This study 

MAVP-V Clinical, ST36, opaque This study 

MAVP-V(26) Clinical, ST36, opaque; Vipa26 This study 

E. coli   

Top10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80 
lacZΔ M15 Δ lacX74 recA1 araD139 Δ(ara-

leu)7697 galU galK rpsL (SmR) endA1 nupG 

Invitrogen, 

Carlsbad, CA 

DH5αλpir supE44 ΔlacU169 (φlacZΔM15) recA1 endA1 

hsdR17 

thi-1 gyrA96 relA1; λpir phage lysogen 

(191) 

NEB10β Δ(ara-leu)7697 araD139 fhuA ΔlacX74 galK16 

galE15 e14-φ80 dlacZ ΔM15 recA1relA1 endA1 

nupG rpsL 

(SmR) rph spoT1 Δ(mrr-hsdRMS-mcrBC) 

New England 

Biolabs, Ipswich, 

MA 

Plasmids   

pEVS104 R6Kγ oriV, KanR RP4-derived conjugative plasmid (192) 

pEVS79 Vibrio suicide cloning vector, ChlR, TcR (193) 

pSEElostfoX pEVS79 containing the tfoX gene from V. 

parahaemolyticus MAVP-26 under the control of 

the pBAD promoter and induced by growth on 

arabinose through the araC regulator; ChlR 

Courtesy of S.E. 

Eggert 

pVSV103 Blue on X-gal, KanR, lac-Z  (194) 

pCAW7B1 White on X-gal, pVSV103 containing lacZ Δ147–

1080 bp; KanR 

(195) 
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pCR2.1-TOPO PCR product cloning vector, KanR, AmpR Invitrogen, 

Carlsbad, CA 

pJM3F1 pCR2.1-TOPO containing tlh qPCR target 

amplicon, KanR 

This study 

pJM3F3 pCR2.1-TOPO containing 5’ Vipa26 prophage 

junction qPCR target amplicon, KanR 

This study 

pJM3F4 pCR2.1-TOPO containing 3’ Vipa26 prophage 

junction qPCR target amplicon, KanR 

This study 

pJM3F6 pCR2.1-TOPO containing no phage dif site qPCR 

target amplicon, KanR 

This study 

pJM3G1 pCR2.1-TOPO containing Vipa26 replicative form 

junction qPCR target amplicon, KanR 

This study 

pVCW18 pCR2.1-TOPO containing ErmR cassette flanked 

by homologous regions of phage genome, KanR 

This study 

 

Phage isolation, imaging, and infection 

To produce Vipa26 for visualization,  200mL cultures of MAVP-26 were grown in HI broth at 37°C 

with aeration to stationary phase (~18 hours), cells were pelleted by centrifugation at 4500g for 10 

minutes and the supernatant further cleared with a second centrifugation at the same conditions. Phage 

particles in the resultant supernatant were subsequently purified using a modified PEG-8000 

precipitation method (196). Briefly, the top 160mL of supernatant was transferred to a new tube and 

40mL 2.5M NaCl/20%(w/v) PEG-8000 solution was added and the mixture incubated overnight at 4°C. 

Subsequently phage were pelleted at 12000g for 15 minutes and the pellet resuspended in 10mL SB 

buffer.  The precipitation was repeated with 2mL of NaCl/PEG-8000 solution added to the resuspended 

pellet, incubated on ice for 1hr and pelleted again at 12000g for 15 minutes. The final pellet was 

resuspended in 1mL SM buffer (100 mM NaCl, 25 mM Tris-HCl pH 7.5, 8 mM MgSO4, 0.01% (w/v) 

gelatin) and stored at 4°C. Four parallel phage precipitation preps were concentrated using an Amicon 

Ultra-4 10K filter (MilliporeSigma, Burlington, MA, USA) then washed and resuspended in 1mL 0.1 M 

ammonium acetate (pH 7.0) before being stained for 45-60 seconds with 5% uranyl acetate and imaged 

on carbon coated Formvar grids using a Zeiss/LEO 922 Omega TEM.  
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Phage presence and infection of susceptible strains was determined by a double overlay plaque 

assay as previously described (74, 149) or by comparing the growth kinetics, as estimated by the optical 

densities (OD600) of cultures grown in phage-conditioned media. Briefly, bacterial cells were embedded 

in agar by combining 120µL of bacterial culture grown in HI medium to 0.5 OD600 (approximately 1.5 hr) 

with 7mL LB broth amended with 10mM MgCl2 and 0.6% agar held at 50°C and poured onto an LB agar 

plate. Bacterial-free phage suspensions were produced from phage-harboring strains grown overnight in 

HI as described above, and cell-free supernatant was generated by pelleting cells, and then filtering the 

supernatant with a 0.45 μm PES filter. The absence of contaminating bacteria was confirmed by lack of 

turbidity after overnight incubation, and by plating filtrates on LBS agar. A total of 20µl were 

subsequently spotted onto the soft agar overlay and the plates incubated at 37ºC until turbid plaques 

were observed (~ 3hrs).  

Kinetics of growth of isolates either  newly- and stably-phage infected 

To determine impact of phage on growth rates, strains with or without phage  were grown in HI, 

LBS and Hepes Minimal Media (HMM) in triplicate at 37°C with shaking and OD600 was determined in a 

Tecan Infinite plate reader for 12 hours.  Concurrent OD600 readings and CFU/mL determined by serially 

diluting in Instant Ocean and plating on LBS were compared to determine the strain specific correlation 

of OD600 to CFU.  Specific growth rate K was calculated using OD data from the log phase batch culture 

and compared between strains and conditions. Specific growth rates were assessed for significance 

using Tukey HSD test to compare means. 

For detection of phage by their impact on growth kinetics, specifically the early plateau during 

exponential  growth, LB supplemented with 10mM MgCl2 was conditioned with 2-10% phage 

conditioned media produced as described above (depending on the experiment and predicted yield 

based on plaque assays) or similarly conditioned with broth from phage free-supernatant. 1mL of LB was 
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inoculated with 18µL of bacterial culture grown in HI medium to OD600 0.5, and three to five 200 µL 

replicates aliquoted in each well of a 96-well polystyrene microplate. The growth of bacterial cultures 

was estimated by kinetic measurements of OD600 at 28°C, every 20 minutes for 18-36 hours in a Tecan 

M200 plate reader. Presence of phage was determined by the characteristic early plateau of growth by 

susceptible cultures (e.g. MAVP-V) after ~7-8 hours (OD600 ~0.6) in cultures grown in broth similarly 

conditioned with phage-free supernatants. Samples were stored at -20°C for later qPCR analysis. 

 The relative abundance of phage produced by infected cells following different treatments was 

also estimated by comparison of growth kinetics of susceptible cells in broth conditioned with serial 

dilutions of phage-containing filtrates.  Briefly, following experimental treatment, phage-harboring cells 

were grown in HI medium over-night and the final cell densities the cultures normalized to an OD600 of 

3.0 in HI broth. Following cell removal and filtration, 10µl of normalized phage suspensions was added 

to 230 µl of LB with 10mM MgCl2 that was pre-inoculated with a phage susceptible strain (MAVP-26PD) 

as described above, and 1:5 serial dilutions of the phage performed by sequential transfer of 40µl into 

200 µl of the neighboring well. Growth was monitored as described above and the change in growth 

kinetics compared for each dilution allowing the identification of dilutions exhibiting similar changes in 

growth kinetics.   

Spontaneous loss of Vipa26 

To evaluate the presence of phage in archived stocks, these stocks were  directly plated onto 

LBS agar  and lysates prepared from the resulting 20-30 individual colonies. Lysates were produced by 

suspending the cells  in diH20 and boiling.  A total of 0.7 µl of the lysate was screened by PCR-

amplification. The oligonucleotide primers ST36PhageF2 and ST36PhageR2 were used to specifically 

amplify ORF3-ORF5 on the phage genome and multiplexed with an internal control, the primers tlh-F2 

and tlh-R specific to tlh (see Table 3.2 and Chapter 2) with published cycling parameters (175). Presence 
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of phage was confirmed by the production of an amplicon of the correct size as visualized following 

separation on a 0.7% agarose gel containing 1x Gel Red. Subsequent analysis was conducted by 

multiplex PCR with three primers: two flanking the phage-integration dif site (dif_siteF and dif_siteR)  

which only produce an amplicon from phage-free chromosomes, and a third outward primer in 

Hypothetical Protein A that only produces an amplicon with the dif_SiteF primer when phage are 

integrated (NEHypR; Table 3.2). PCR parameters were as follows: an initial denaturation of 3min 94°C 

followed by 25 cycles of 1min 94°C, 30sec 55°C, and 1min 30sec at 72°C followed by a final elongation of 

6min at 72°C. Amplicons were differentiated by size by separation on a 0.7% agarose gel containing 1x 

Gel Red, as compared to controls (MAVP-20 which is phage free, and MAVP-26 which contains an 

integrated phage).  

In order to investigate the dynamics of phage loss in greater detail, lysates from 90 isolated 

colonies grown on agar directly from a single freezer stock were subsequently screened using the 

multiplex PCR specific for the Vipa26-integrated or phage-free dif site (NEHypR, dif_siteF and dif_siteR) 

as described above. Colonies with mixed phage/no phage genotype were re-streaked on LBS plates and 

screened over successive days (Figure 3.6). Phage deficient isolates were cryopreserved for future 

analysis. In parallel, phage content in liquid culture with passaging was examined.  Specifically, 3mL of 

LBS broth was inoculated with five Vipa26 positive (confirmed by PCR) colonies (MAVP-26) in triplicate 

and grown for 6 hours at 37°C with shaking.  Subsequently, a sterile loop was used to streak for isolated 

colonies on LBS agar and  30μl of the 6hr culture was subcultured into fresh LBS broth and grown 

overnight. Sampling and subculturing were repeated on day two and overnight to day three for a total of 

5 time points.  Individual colonies (~30 per replicate at each time point) were screened using the 

multiplex specific for integrated/excised prophage as above.    

To determine the effects of prolonged growth on Vipa26 excision, colonies on a single plate 

were sampled over time and tested for phage content using the integrated/excised prophage multiplex. 
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MAVP-26 cultured  on LBS agar incubated at 37°C for four days sealed with parafilm to prevent drying.  

Every day, lysates of five whole individual colonies were collected and frozen at -20°C prior to being 

tested with qPCR to quantitatively determine the abundance of Vipa26 in integrated and replicative 

form (see Fig. 3.1; Fig. 3.2 and Table 3.3; Table 3.4). Change of abundance of phage-free dif site over 

time was assessed for significance using Tukey Kramer’s HSD. 

Table 3.2. List of end point PCR primers used in this study. Reactions were regularly carried out in 
AccuStart II PCR Supermix (QuantaBio, Beverly, MA) under recommended conditions. PCR-SOE cloning 
reactions were performed with Phusion High Fidelity DNA Polymerase (New England Biolabs, Ipswich, 
MA) under recommended conditions. 

Name Sequence Source 

dif_siteR 5’ CCGAATTGATATGATCTTGATGG 3’ This paper 

dif_siteF 5’ CCATTGGATTGATAGGAACTGTG 3’ This paper 

NEHypR 5’ GATTACTGAGCCTCTAAAGCCGTC 3’ (175) 

ST36PhageF2 5’ AGCAACGAAAACGCCTGT 3’ (175) 

ST36PhageR2 5’ ACCGTATCACCAATGGACTGT 3’ (175) 

PhToxSoAF 5’ GGTTGAGTTCGTTTGCTATC 3’ 

 

This paper 

PhToxSoAR2 5’ GTTTCCGCCATTCTTTGGTCCTCACTTGCTCCGC 3’ This paper 

PhToxSoBF 5’CGGAGCAAGTGAGGACCAAAGAATGGCGGAAAC 3’ 

 

This paper 

PhToxSoBR 5’ CAATCGTCCTAGCCCGTTTACAAAAGCGACTCATAGA 3’ 

 

This paper 

PhToxSoCF  5’ TCTATGAGTCGCTTTTGTAAACGGGCTAGGACGATTG 3’ 

TCTATGAGTCGCTTTTGTAAACGGGCTAGGACGATTG 

TCTATGAGTCGCTTTTGTAAACGGGCTAGGACGATTG 

 

This paper 

PhToxSoCR2 5’ AGGTTCAGGGGTTGGCA 3' This paper 

Tlh-F2 

 

5’ AGAACTTCATCTTGATGACACTGC 3’  (174) 

Tlh-R 5’ GCTACTTTCTAGCATTTTCTCTGC 3’ (157) 

 

QPCR design, validation and quantification of phage content  
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Figure 3.1. Diagram of probe-based qPCR multiplex assessing replicative phage and integrated phage 
abundance.  Primers are in green, probes are in yellow or blue; the red box shows the dif site on the 
phage genome.  The multiplex also includes primers and probes specific to tlh. The diagram is not to 
scale. 

 Probe-based multiplex PCR assays were designed to quantify the number of integrated 

prophage (IP) and replicative form (RF) of Vipa26. Probes were synthesized by Applied Biosystems, 

Thermo Fisher Scientific (Waltham, MA, USA).  Two primers on the phage that flank the circularization 

junction, PhageFA and PhageRB3, degrade the PhageProbe during DNA synthesis only from the RF   (Fig. 

3.1). When PhageFA is combined with the ChromRC primer, that primes synthesis from the chromosome 

downstream of the dif prophage integration site, synthesis from the PhageFA primer degrades the 

ChromProbe only from an IP template. QtlhF and QtlhR combined with tlhProbe amplify a V. 

parahaemolyticus species-specific marker tlh (197). 
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Figure 3.2 Diagram of probe-based qPCR multiplex assessing quantity of integrated phage and no 
phage.  Primers are in green and probes in blue and yellow, the red box indicates the dif site on the 
phage genome and the bacterial genome.  Primers and probe specific to tlh not pictured are also 
included in the multiplex.  The diagram is not to scale.  

 A complementary assay was designed to assess abundance of the IP form phage and the dif site 

lacking a prophage, Integrated prophage deficient (IPD), to quantify phage-harboring and phage-

deficient cells.  The ChromDF2 primer, degrades the ChromProbe during amplification with the ChromRC 

primer only in the absence of a prophage in the chromosome I dif site. Similarly, the ChromDF2 primer 

only degrades the PhageProbe by amplification with the PhageRB3 primer.  As before, QtlhF and QtlhR 

with tlhProbe are specific to tlh. 

Table 3.3. Primers and probes for qPCR assessing replicative form, integrated phage, no phage and tlh. 
Cycling conditions are hot start for 1:00min at 95°C, then two-step amplification of 15sec at 95°C and 45 
sec at 59°C for 40 cycles. Reactions were carried out in PerfeCTa FastMix II (QuantaBio, Beverly, MA). 

Name Sequence Reference 

ChromDF2 5’ ACACTTATGAAAGGCTTAATCAAAGAG 3’ This paper 

PhageFA 5’  CAAGTCCACAGGAACCACTATATCAGT 3’ This paper 

PhageRB3 5’ GTTAAACCACATTCAAATTCACGAA 3’ This paper 

PhageProbe 5’ FAMa-CAATGAAGTATCACGAAATGA-MGBNFQb 3’ This paper 
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ChromRC 5 ‘TCTGAAAGCGATAGGAGAGCAAAG 3’ This paper 

ChromProbe 5’ TETc-AGTGTAACCATACGTCAGAT-MGBNFQb 3’ This paper 

tlh forward 5’ ACTCAACACAAGAAGAGATCGACAA 3’ (197) 

tlh reverse 5’ GATGAGCGGTTGATGTCCAA 3’ (197) 

tlh probe 5’ TxREDd-CGCTCGCGTTCACGAAACCGT-BHQ2e 3’ (197) 

a - FAM, 6-carboxyfluorescein; b - MGBNFQ, minor groove binding nonfluorescent quencher; c - TET, 
tetrachlorofluorescein; d - TxRED, Texas Red; e - BHQ2, black hole quencher 2. 

 

 

Table 3.4. Amplicon primers and probes, target and length.  

Primer and Probe Target Amplicon Length 

PhageFA – PhageRB3   PhageProbe Replicative Form 198bp 

PhageFA – ChromRC   ChromProbe 3’ Integrated Form 106bp 

ChromFD2 – ChromRC   ChromProbe No Phage 104bp 

ChromFD2 – PhageRB3   PhageProbe 5’ Integrated Form 194bp 

QtlhF – QtlhR   tlhProbe tlh  208bp 

 

For use in assay optimization and for positive controls and references, each amplicon was 

cloned into the plasmid pCR2.1-TOPO and transformed into E. coli TOP10. Plasmids were purified from 

cryopreserved stocks following manufacturer specification and EconoSpin All-In-One Silica Membrane 

Mini Spin Columns (Epoch Life Science, Missouri City, TX) and sequenced by Sanger-sequencing 

(Genewiz, Cambridge, MA) to ensure amplicon accuracy.  Copy number was calculated from the 

concentration and known sizes of the plasmid stocks, and 10-fold serial dilutions of 107 through 1 

copies/μL of the plasmid were prepared, including mixed stocks containing all three target plasmids for 

each assay. Standard curves were constructed and evaluated based on slope and fit to determine the 
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linear range of detection (Fig 3.1A-C; Fig. 3.2A-C). The multiplex curve was compared to the single-

amplicon assay to ensure accuracy.  Because detection was variable below 10 copies, we considered this 

to be the limit of detection. 

 

Figure 3.3. Standard Curves for the integrated and no phage qPCR multiplex. A. Integrated form 
amplicon in single- (orange) and multiplex (blue). B. No phage amplicon in single- (green) and multiplex 
(light blue). C. tlh amplicon in single- (black) and multiplex (red). All curves had efficiencies of 100% +/- 4 
and R2>0.99. 

C

 

B

 

A
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Figure 3.4. Standard curves for replicative form and integrated form multiplex. A. Replicative form 
amplicon in single- (orange) and multiplex (blue). B. Integrated form amplicon in single- (yellow) and 
multiplex (grey). C. tlh amplicon in single- (red) and multiplex (black).  All curves had efficiencies of 100% 
+/- 4 and R2>0.99. 

Relative abundance of phage replicative form, UV-C phage induction and resulting cell viability 

 Relative copy number of the circular replicative form of the phage was assessed by comparing 

copies of circularized phage to integrated phage using multiplex qPCR as described above. Data was log 

transformed prior to analysis, and all pairs Tukey-Kramer HSD test to compare means was used in JMP13 

to assess statistical significance.  To determine ratios of integrated prophage, phage deficient and 

replicative form, samples from the growth kinetic assay were evaluated using the above multiplex assay.  

A B 

C 
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Data were log transformed and divided by tlh log copy number as an approximation number per 

chromosomes in each sample. 

Phage-harboring and phage-deficient strains were grown in LBS at room temperature to late log 

phase (OD600 of ~1.0-1.5) and resuspended in 40% artificial seawater (ASW).  50μL of the culture was 

exposed to 10mJoules UV-C light in a GS Genelinker UV Chamber (Biorad, Hercules, CA, USA) on an open 

sterile petri plate, while another was kept as a control.  Both were recovered by immediate suspension 

in LBS and cells incubated at 37°C for 1 hour.  Samples were then resuspended in 40% ASW prior to 

storing at -20°C for later qPCR analysis. 

 To assess cell viability, cultures were grown in LBS at room temperature to late log phase and 

exposed to 10mJ of UV-C light as described above, allowed to recover for 1 hour in LBS, then ten-fold 

serially diluted into Instant Ocean (Instant Ocean, Blacksburg, VA, USA), a formulated sea salt solution 

commonly used in salt water aquariums to mimic natural conditions.  5μL of the dilution series were 

spotted onto an LBS plate and relative growth was assessed compared to an untreated control. The cell 

counts for the lowest concentration with robust colonies were acquired and the fraction surviving after 

UV treatment compared using an all pairs Tukey-Kramer HSD test in JMP13.  All assays were performed 

in triplicate. 

Environmental fitness in microcosms 

 To assess the impact of natural conditions on ecological fitness in competition, phage harboring 

and phage deficient strains were transformed with plasmids conferring resistance to Kan and containing 

either an intact lacZ gene which produces blue colonies when grown in the presence of 20μg/mL X-gal 

colorometric substrate  or a lacZ gene containing an internal deletion resulting in a frame shift mutation 

that produces white colonies on X-gal substrate, to allow for recovery and differentiation of strains 

during competitions. Natural seawater was collected from Adam’s Point (Great Bay, NH) within an hour 
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of low tide. The water was then distributed into flasks in triplicate for each competition performed and 

blue/white-tagged stationary phase V. parahaemolyticus strains (see Table 3.1) were washed with 40% 

ASW then inoculated in competition at a final concentration of ~106 CFU/mL. Samples were immediately 

taken for confirmation of initial counts and either plated to obtain live cell counts or frozen at -80°C for 

later qPCR analysis. Competition of isogenic strains differing only in plasmid content  were completed to 

confirm that the forms of the plasmid conferred no difference inf fitness.  . Microcosms experiments 

were conducted  in triplicate with a 12 hour light/dark cycle at room temperature, ~22-24°C. Flasks were 

sampled every 24 hours, with serial dilutions into Instant Ocean, then plating on LBS plates with 

50μg/mL kanamycin and 20μg/mL X-Gal to obtain cell counts.  In parallel, samples were collected and 

stored at -80°C for future qPCR analysis.  Data were log transformed prior to analysis, percent survival 

calculated and compared on each day using Tukey-Kramer HSD in JMP13 to assess significance. 

 Microcosms were treated to remove potential predators/competitors and elucidate the 

mechanism of fitness differences.  Treated microcosms were set up as detailed above; however prior to 

inoculation by V. parahaemolyticus the seawater would be treated as specified.  For antibiotic treatment 

to remove native bacteria, kanamycin was added to the seawater at a final concentration of 50ug/mL 

and allowed to rest 1 hour, then the V. parahaemolyticus was added and water samples collected and 

frozen at -80C for future qPCR analysis. Added V. parahaemolyticus was kanamycin resistant due to 

plasmid content. Filtered microcosms were sterilized using a 0.22um pore vacuum filtration system to 

remove native microorganisms, leaving  viral content prior to addition of V. parahaemolyticus strains, 

then sampled and analyzed as noted above. 

Quantification of biofilm  

Biofilm formation was assessed using a crystal violet assay as previously described (198). Briefly, strains 

were grown in LBS for 3 hours in a polystyrene, non-coated 96-well plate (CellTreat; Pepperell, MA, USA) 
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and OD600 measured on a Tecan Infinite M200 Plate Reader to determine cell density.  Without pelleting, 

the excess cells and media were expelled by inverting the plate leaving only adherent biofilm .  The 96-

well plate was then rinsed three times in water and dried to ensure no media or cell debris other than 

biofilm remained. Then 0.1% crystal violet was added and the 96-well plate was incubated for 20 

minutes to stain remaining biofilm attached to the wells.  The excess crystal violet was then rinsed three 

times in water and the stained biofilm allowed to completely dry prior to dissolving in 30% acetic acid 

for 15 minutes and taking the OD550 to quantify crystal violet remaining from the dissolved biofilms.  

Assays were performed by aliquoting a single colony resuspended in media for each strain into a 96-well 

plate in replicates of 6 to 8. Absorbance of crystal violet (OD550) was standardized against OD600 to 

account for differences in cell density and analyzed using Tukey-Kramers HSD to assess significance in 

JMP13. 

Protist predation and virulence 

 Cafeteria roenbergensis ATCC 50301 and Acanthamoeba castellanii ATCC 30234 were used to 

assess interaction of V. parahaemolyticus with bacterivorous eukaryotic predators. V. parahaemolyticus 

survival in coculture with C. roenbergensis was determined as previously described (66). In brief, 

stationary phase V. parahaemolyticus cultures diluted into 40% ASW at a final concentration of 

~106CFU/mL in a 24-well tissue culture plate (Cell Treat, Massachusetts) and incubated at room 

temperature. C. roenbergensis cultures were grown in media containing 50μg/mL kanamycin bacterized 

with heat-killed V. parahaemolyticus to remove most of the E. aerogenes from the xenic culture.  Five-

day old cultures were washed in 40% ASW and subsequently added to the 24-well plate containing 

washed V. parahaemolyticus to a final concentration of 103cells/mL. Cell counts for C. roenbergensis 

were determined using a standard hemocytometer on the red blood cell grid. Live cell counts of V. 

parahaemolyticus were obtained every 24 hours and compared to the initial concentration to obtain 

percent survival. Assays were performed in triplicate and compared to V. parahaemolyticus survival in 
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40% ASW with no C. roenbergensis. Significance of percent survival at the end time point (4 days) was 

assessed using a Student’s T-Test and Tukey Kramers HSD to assess significance of means.

 Amoeba seeded plate assays were used as a model of V. parahaemolyticus virulence as 

described (66, 199) and to determine their resistance to predation. A five-day old culture of A. castellanii 

was adjusted to a concentration of ~106cells/mL after enumerating using a hemocytometer and 

resuspended in 40% ASW prior to plating 1.5mL of suspension onto LB plates. The plates were dried for 

1-2hrs in a biosafety cabinet, and then incubated at room temperature (~22-24°C) overnight.  Stationary 

phase V. parahaemolyticus cultures grown in LBS at 37°C with shaking were then pelleted and 

resuspended in 40% ASW, adjusted to OD600 of 5.0, serially diluted in Instant Ocean and spotted onto 

the amoeba seeded plates in triplicate.  Virulence was scored by the lowest concentration of cells to 

produce robust colonies in the presence of the amoebas compared to replicates on LB with no amoeba 

challenge. Two strains from pathogenic linages were used as references: MAVP-C, an ST3 isolate 

harboring f237 and G149, an ST631 environmental isolate with no inovirus or pathogenicity island. 

Results 

Vipa26 is an active filamentous phage capable of forming turbid plaques  
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Figure 3.5. Evidence of phage activity. A. Cell-free supernatants of MAVP-26 (“26” with Vipa26) formed 
a turbid plaque on two ST36 isolates that do not harbor inoviruses. B. Visualization Vipa26 progeny by 
transmission electron microscopy as long bundles with some branching individual phage. Vipa26 is 
approximately 1000-2000 nm long and 8-12 nm wide. 

The Vipa26 phage have been consistently maintained in the ST36 lineage resident in the GOM 

environmental population as evidenced by its continued association with clinical samples collected 

between 2013-2017 (See Chapter 2) despite potential fitness costs of persistent infection and expected 

production of progeny phage. However, if the integrated phage was cryptic and had lost the ability to 

produce progeny phage, much of the cost of sustained infection would be mitigated, whereas potential 

beneficial traits could still be conferred. Therefore, our first line of inquiry was to determine whether 

cells infected with Vipa26 produced progeny.  The isolate in which the Vipa26 prophage was first 

described, MAVP-26, was tested for production of virions. Filtered supernatant confirmed free of 

bacterial contamination formed the turbid plaques characteristic of inoviruses on phage-deficient ST36 

strains, including MAVP-20 and MAVP-V (Fig. 3.5A). PCR analysis of bacteria isolated from the center of 

the turbid plaque revealed they had acquired Vipa26. We designated these newly infected derivatives as 

MAVP-20(Vipa26) and MAVP-V(Vipa26). The appearance of turbid plaques on lawns of susceptible cells 

A B 
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following phage exposure and acquisition reveals that at least during the early stages of new infections, 

Vipa26 exacts a fitness cost in the form of impaired growth. 

 TEM imaging confirmed the production of virions displaying the expected characteristics of a 

filamentous phage. The phages purified from supernatants formed large bundles with some individual 

branching particles (Fig. 3.5B) with estimated dimensions of 1000-2000nm long and 8-12nm wide, as is 

typical of Inoviruses.  

Vipa26 is spontaneously lost during laboratory culture  

Curiously, on several occasions, cultures derived from individual colonies of cryopreserved 

MAVP-26 did not produce plaques on the phage-deficient ST36 strain MAVP-V. This inconsistency 

suggested the potential that some individuals no longer produced phage progeny, which could have 

resulted from phage inactivation or phage loss, also known as curing.  To evaluate whether phage were 

cured, individual colonies derived from multiple laboratory stocks were evaluated using primers that 

amplify all Vipa26 (ST36PhageF2 and ST36PhageR2), including both integrated prophage (IP) and 

replicative form (RF).  PCR produced no phage amplicon in up to 10% of individual colonies suggesting 

they no longer harbored detectable phage. Subsequent screening of several of individual colonies using 

primers specific to the IP and intact form of the chromosomal dif site, where Vipa26 is integrated, 

hereafter referred to as integrated prophage deficient (IPD), revealed that Vipa26 had excised from the 

chromosome in these isolates.  

To quantify the dynamic of excision, we subsequently screened populations of bacteria founded 

by individual colonies and grown by serial passage in broth culture and on agar plates.  All 30 individuals 

derived from each of the 3 parallel liquid cultures over three days (a total of 90 per five time points)  

harbored phage, both IP and RF (Data not shown); however, as many as 23 out of 90 individuals 

propagated by serial passage on agar plates had spontaneously lost the prophage, and the proportion of 
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phage deficient (PD) derivatives lacking even RF of Vipa26 increased significantly (p<0.05) with 

successive passages (Fig. 3.6). Though Vipa26 excision was easily detected from colonies passaged on 

plates, the relative proportion of the total population undergoing a change in genotype is not directly 

comparable between liquid cultures and plates because liquid culture populations were randomly 

sampled and passaged, whereas colonies undergoing a change in genotype (mixed genotype) on agar 

were selectively passaged to increase resolution of the dynamic of phage loss overtime (Fig. 3.6). Even 

so, that phage loss was detected in multiple colonies propagated on plates, a change of genotype 

distribution, demonstrates a realized fitness cost. A phage deficient isolate (MAVP-26PD) was eventually 

attained by successive passage and archived for further analysis.  

 

Figure 3.6. Dynamic of phage loss from dif chromosomal insertion site in serially passaged colonies. 
Phage were lost from a GOM clinical isolate following passaging under laboratory conditions as 
confirmed by PCR screening of progeny colonies.  

 The dynamic change in phage genotype within parallel clonally derived colony populations was 

next investigated using the more sensitive method of qPCR. Each day for four days, the frequency of 

integrated Vipa26 in MAVP-26 was evaluated by destructive sampling of five different aging colonies, 

and the abundance of Integrated prophage deficient (IPD) dif sites and integrated prophage (IP) was 
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measured over time in each colony population.  As MAVP-26 colonies aged, the abundance of IPD dif 

sites increased (Fig. 3.7, orange).    

 

Figure 3.7.  Frequency of phage harboring vs phage deficient genotypes over time.  Log copy number 
integrated phage as determined by qPCR is represented by blue, phage deficient is orange. Five whole 
colonies per day were sampled and the data pooled to illustrate change in frequency over time. 
Significance over time was calculated using Tukey Kramer’s HSD test of means.   

Vipa26 prophage inhibited plaque formation by Inoviruses 

One potential  benefit for harboring Vipa26 is the protection it could provide against new 

Inovirus infections (162, 200). To evaluate the ability of phage integration to block infection, we 

investigated plaque-forming ability of Vipa26 and another ST36 Inovirus (Vipa10290) on strains either 

harboring or lacking Inovirus prophage (Table 3.5). Whereas both Vipa26 and Vipa10290 caused turbid 

plaques indicative of infection and growth impairment on three different ST36 strains that lack 

Inoviruses, including MAVP-26PD, they did not cause plaques on MAVP-26 or any other strain known to 
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harbor an Inovirus (Table 3.5). This suggests at least the potential that phage integration is protective of 

growth impairment that new infections apparently cause.  

Table 3.5. Host range of and cross-protection by phage. The ability of filtrate from MAVP-26PD (no 
phage), MAVP-26 (harboring Vipa26) and F11-3A (harboring Vipa10290), to cause plaques on soft-agar 
embedded bacteria. Lack of plaque formation designated by (-) and turbid plaques designated by (+). 

 
 

ST36 ST3 STNF STNF 

 No Phage Vipa26 Vipa10290 f237 Vipa26 Other 

Strain: 
MAVP-
26PD 

MAVP-20 MAVP-V MAVP-26 F11-3A MAVP-C G1445 G320 

Filtrate:         
MAVP-26PD - - - - - - - - 
MAVP-26 + + + - - - - - 
F11-3A + + + - - - - - 

 

Persistent Vipa26 infections are benign whereas new infections are detrimental 
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Figure 3.8. Growth of MAVP-26 and susceptible MAVP-26PD with and without Vipa26. A. Specific 
growth rate in HI (blue), Minimal Media (HMM) (yellow), and Luria-Bertani broth with 3% NaCl (LBS) 
(pink).  MAVP-26 naturally harbors Vipa26 whereas MAVP-26PD is a laboratory derived strain lacking 
Vipa26. Error bars represent standard deviation. B. Growth curve of MAVP-26 and MAVP-26PD (Dark 
blue and yellow, respectively) grown in culture with phage-free filtered supernatant, MAVP-26 and 
MAVP-26PD grown in culture conditioned with 5% filtered supernatant containing Vipa26 (blue and 
orange, respectively). 
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Vipa26 excision and loss by MAVP-26 occurred frequently in aging colonies (Fig. 3.7) but not in 

broth cultured cells. Though this potential difference could be explained by any of several or 

combination of factors including different rates of excision or patterns of phage diffusion and re-

infection, it could indicate that persistent phage infections are not detrimental in mass-action cultured 

cells. To further assess the impact of Vipa26, we examined the growth of isogenic strains either with 

(MAVP-26) or without (MAVP-26PD) Vipa26 in complex and defined media. The specific growth rates did 

not differ from each other (Fig. 3.8A) nor did the cultures achieve different total viable cell counts (data 

not shown). This suggests persistent infections do not detectably impair fitness as determined by growth 

rate and yield.   

Conversely, plaque turbidity suggests newly-initiated Vipa26 infection may slow bacterial cell 

growth, whereas the unaffected growth rate and absence of plaques by persistently-infected cells 

indicates sustained infection likely protects cells from the burden of new infections. If this interpretation 

is correct, Vipa26-growth impairment may be apparent in mass action liquid cultures provided a 

sufficient proportion of the population was newly infected. To quantify the impact of new infections on 

growth kinetics, we seeded MAVP-26 and MAVP-26PD at a low starting inoculum into liquid media 

conditioned with Vipa26 or with phage-free supernatant and monitored the growth kinetics for 18-14 

hours. As anticipated, MAVP-26 grew equally well in either phage-conditioned or phage-free broth and 

with a growth kinetic similar to that of MAVP-26PD in phage-free conditioned media (Fig. 3.7B).  In 

contrast, when grown in media conditioned with Vipa26, MAVP-26PD exhibited a striking growth defect 

(p<0.0001) (Fig. 3.8B; dark blue). Specifically, after ~8 hours of growth in Vipa26-condition broth, MAVP-

26PD abruptly and prematurely ceased growth as determined both by optical density (Fig. 3.8B) and cell 

counts (data not shown) and cultures entered a sustained plateau similar to the stationary phase. In 

contrast, MAVP-26PD grown in phage-free conditioned media increased in density for several more 

hours and cell counts increased by an additional order of magnitude (data not shown) before entering 
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stationary phase.  MAVP-26PD did eventually achieve a cell density that was similar to the other 

treatments after 16-24 hours of growth (Fig. 3.8B). Screening of 25 individual colonies derived from 

MAVP-26PD grown in Vipa26-condition media for 18 hours using primers that detect all forms of Vipa26 

revealed all survivors contained Vipa26 suggesting high efficiency of infection and potentially strong 

selection for phage retention under the assay conditions. 

 

Figure 3.9. Effect of Vipa26 integration on replicative form abundance in new and stable infections. 
Ratio of PD (orange), RF (green) and PI  (blue) forms standardized to a tlh control as measured with qPCR 
in A. MAVP-26  and B. MAVP-26PD in media either conditioned with phage-less cell-free supernatants or 
with Vipa26.  

Because screening individual colonies to determine distribution of phage genotype limits  

resolution of infection dynamics, we employed qPCR analysis of phage genotype on populations of 

cultured cells. Specifically, we quantified absolute and relative number of replicative (RF) and integrated 

prophage (IP) form abundance and chromosomes without integrated prophage (IPD) in parallel cultured 

populations of MAVP-26 and MAVP-26PD grown in media conditioned with phage-free supernatants or 

with Vipa26 and used the species genetic marker tlh to standardize for chromosomal copy number. The 

amount of IP Vipa26 remained high and constant in persistently infected MAVP-26 populations but 

interestingly, a subpopulation of cells did undergo prophage excision which also coincided with a 

marked increase in RF suggesting excision enhances phage replication (Fig. 3.9A). Vipa26 rapidly infected 
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the MAVP-26PD population and the number of chromosomes with IP form increased over time while 

the number of IPD chromosomes concurrently declined. Newly infected MAVP-26PD produced 

significantly (p<0.0001) more RF, based on total copy number than persistently infected MAVP-26 at 

every time point. Though, by 27 hrs post Vipa26 exposure, RF decreased significantly in the newly 

infected population concurrently with the increase integration as gleaned from IP form. Considering 

end-point PCR for Vipa26 does not discriminate between IP and RF, these data combined with the prior 

isolate analysis that 100% of survivors tested harbored Vipa26 post-exposure under the same culture 

conditions suggests that not every new phage infection leads to immediate chromosomal integration.

 

Figure 3.10.  Relative copy number of Vipa26 replicative form in non-isogenic strains. A. Relative copy 
number of the Vipa26 replicative form compared to the copy number of prophage in MAVP-26 (A) and 
MAVP-20(26) (B). Blue, orange and grey bars each represent a separate run of the assay. Error bars 
represent standard deviation. Note the different scales of the y-axis. 

New infections are costly and characterized by high abundance of replicative form and growth 

retardation; however, persistent infections do not cause growth defects that we could discern. One 

notable difference between the stable and newly infected strains is the higher abundance of replicative 

form copy number in newly initiated infections. To elucidate the range of replicative form abundance in 

stable infections, we quantified copy number of Vipa26 in two non-isogenic ST36 strains.. This revealed 
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that replicative form is maintained at a low copy number (less than one copy per cell) in stationary 

phase cultures of MAVP-26 and was nearly undetectable in MAVP-20(26), but this varied greatly from 

experiment to experiment (Fig. 3.10A and B). MAVP-26 maintained between 28 and 76% RF relative to 

IP form , and MAVP-20(26) maintained  between 0.1% and 3.5% RF relative to IP. The high variability 

between not only the strains but also each run complicated the attempt to use replicative form as a 

measure of phage activity to investigate environmental triggers that may cause an increase in Vipa26 

production.  Beyond the first explosion of replicative form production at the initiation of infection, it 

appears that the phage becomes largely quiescent (Fig. 3.10). 
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Figure 3.11. Quantification of viable phage progeny.  A. MAVP-26PD and MAVP-26 recovered from 
growth in Vipa26 suspension was resuspended in fresh media and grown to over-night at room 
temperature to late log phase. Susceptible MAVP-26PD growth in 5-fold serial dilutions of the resulting 
supernatant was measured. The OD600 of MAVP-26PD in dilutions of phage produced by MAVP-26 are 
triangles, circles represent OD600 in MAVP-26PD produced phage dilutions. Color represents dilution 
factor as specified in the legends; blue for the original media containing 5% phage filtrate (0 dilution 
factor); subsequent dilutions are in order: orange (1/5); grey (1/25); yellow (1/125); light green (1/625); 
and purple (1/3125). B. Overlapping growth curves: growth in the second lowest concentration (1/625; 
light green) of Vipa26 suspension from newly infected MAVP-26PD (circle) is equal to that in the highest 
concentration (0, blue) of Vipa26 produced by MAVP-26 (triangle). 
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These data indicate newly infected cells harbor a higher relative abundance of RF suggesting 

that these cells could produce more progeny virions, which could help explain the greater fitness cost, as 

suggested by the plateau in the growth of newly infected cells compared to persistently infected cells. 

To ascertain whether newly infected cells produce more virions we utilized a semi-quantitative 

conditioned broth assay. Filtrate from newly-infected cells and persistently infected cells were serially 

diluted, the resulting broth was inoculated with MAVP-26PD and the population growth kinetics 

subsequently determined and compared to identify phage dilutions with a similar ability to impair 

growth, and by extrapolation that had similar numbers of phage (Fig. 3.11A). When directly compared, 

filtrate from newly-infected cells suppressed the growth of MAVP-26PD better than filtrate from  

persistently-infected cells consistent with a greater production of phage (Fig. 3.11A). Identification of 

the dilution of filtrate from newly infected cells that conferred an identical modest kinetic of growth 

impairment conferred by undiluted Vipa26 from persistently infected cells indicates that newly infected 

cells produce ~625-times more infective progeny (Fig. 3.11B). 

Evidence of ecological benefits conferred by persistent phage infection 

 The early growth plateau of newly infected strains in broth seeded with Vipa26 and the 

extremely high titer of phage produced by these strains, suggest a fitness cost that may translate to a 

competitive deficit when phage deficient cells are in direct competition with phage harboring cells.  

Conversely, strains harboring a persistent infection do not experience this detriment, a potential benefit 

in mixed communities.  To directly measure competitive fitness, strains were cocultured either in broth 

conditioned with Vipa26 or in phage free broth.  Ratios of viable cells were determined at the first and 

last time points and presence of Vipa26 in survivors was analyzed with end point PCR using primers 

specific to the Vipa26 core region (see methods), and qPCR assessing the abundance of integrated 

prophage compared to integrated prophage deficient dif site.   
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MAVP-26PD labeled with a plasmid conferring lacZ (blue) was co-cultured with MAVP-26 labeled 

with a frame-shift mutant copy of lacZ (white) at a ratio of 3:1  (75%) in phage-free broth, and this 

proportion of PD community members decreased to ~1:32 (3%) following 27 hours of co-culture, 

although ~29% of the population were newly infected and derived from the original MAVP-26PD 

population (Fig. 3.12).  In broth seeded with Vipa26, the shift in population was similar, with Vipa26-free 

MAVP-26PD isolates declining from 50% of the population to approximately 1% by 27 hrs (Fig. 3.12).  

Potentially newly Vipa26-infected MAVP-26PD accounted for 17% of the population. Thus, even though 

seeded phage greatly decreased the competitiveness of a phage deficient variant (Fig. 3.12C), the 

presence of the stably infected MAVP-26 was sufficient to ensure the vast majority of the population 

contained Vipa26. 

To provide greater resolution into the dynamics of the competition without the limits of end 

point PCR, a qPCR assay to assess levels of Vipa26 integration revealed that the ratio of prophage to 

integrated prophage deficient dif sites (IP to IPD) increased significantly (p<0.05) during the 27 hr 

competition (PD broth – 0.33 to 0.63 respectively; Vipa26 broth – 0.43 to 0.87; Fig. 3.12A and B).  These 

trends were similar but less dramatic than the near total disappearance of prophage deficient (PD) 

individuals from end point PCR screening.   
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Figure 3.12. Shift of genotypic frequency of integrated prophage in direct competition. A. Ratio of IP 
(blue) compared to IPD dif site (orange) in a competition in phage deficient broth as determined with 
qPCR. B. Ratio of integrated prophage in competition in broth conditioned with Vipa26 determined by 
qPCR.  Colors are the same as part A. C. Relative competitive index of MAVP-26PD in coculture with 
MAVP-26 in Vipa26 conditioned or phage-free broth. 

 

 

 

Phage deficient broth: Vipa26 seeded broth:

Relative Competitive Index of MAVP-26PD
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Table 3.6. Shift in frequency of Vipa26 in viable cells in competition. Presence or absence of Vipa26 in 
viable cells by colony end point PCR specific to core phage ORFs, in direct competition in phage-free 
broth and Vipa26 seeded broth; new lysogens are noted in the parentheses. All forms (RF and prophage) 
of Vipa26 are indistinguishable with these primers. 
 

Vipa26 seeded broth end point PCR: 

Time(hrs): 
Vipa26-

Harboring 
Vipa-26-
Deficient 

Total 
Colonies  

6.33 23 22 45 

8.67 35 10 45 

11 28 14 42 

27.33 89 (15) 1 90 

 
 

Vipa26 selected against susceptible strains in competition, significantly decreasing their 

competitive fitness, a clear benefit for strains with integrated prophage. Conversely, the inovirus excises 

at a certain rate under laboratory conditions, alluding to a realized fitness cost. Vipa26 may have 

broader influences on the host cell not yet elucidated.  Since Vipa26 is actively produced even in 

persistent infection, it is possible that the phage is impacting the host cell in other ways after infection is 

established; a process known as lysogenic conversion for temperate phage (132). One potential fitness 

impact could be in response to UV-C light exposure, as UV light is frequently correlated with phage 

induction. To investigate this, we compared viability of phage harboring and phage deficient isolates 

after exposure to 10mJ UV-C light and subsequent recovery. Vipa26 harboring isolates recovered better 

after exposure, compared to isogenic phage deficient isolates (Fig. 3.13).  This difference was especially 

apparent for MAVP-26 and its phage deficient counterpart MAVP-26PD. The recently infected 

MAVP20(26) was more viable compared to the natively phage deficient MAVP-20; however, phage 

infection did not rescue it to the same level as MAVP-26.  MAVP-20(26) had almost identical viability to 

the phage deficient isolate MAVP-26PD.  Despite this difference, UV light did not appear to induce the 

phage (data not shown). Further analysis of the phage genome using BLAST and BPROM (201) identified 

no LexA binding sites further supporting that Vipa26 is not induced by UV damage. 

Phage deficient broth end point PCR: 

Time(hrs): 
Vipa26-

Harboring 
Vipa26-

Deficient 
Total 

Colonies  

6.33 9 36 45 

8.67 16 29 45 

11 17 28 45 

27.33 105 (32) 2 107 
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Figure 3.13. Viability after exposure to UV-C. Viability of MAVP-26 (phage; bold) compared to MAVP-
26PD (no phage) and MAVP-20(26) (phage; bold) compared to MAVP-20 (no phage) after exposure to 
10mJ UV-C light. First spot is undiluted and subsequent spots are 10-fold dilutions. Relative decrease in 
viability of phage deficient strains compared to phage harboring strains is significant based on cell 
counts compared using a Student’s T-test (p<0.05).   

 Another potential mechanism by which the Vipa26 may impact ecological fitness of their hosts is 

by enhancing biofilm formation. Previous studies have linked filamentous phages to changes in this (125, 

139) through increasing the cell death and eDNA release critical for biofilm formation and directly 

stabilizing the biofilm through interactions with the negatively charged filamentous phage particles. 

Crystal violet staining of biofilm of both phage harboring and phage deficient isolates elucidated the 

potential role of Vipa26 on biofilm. Phage content appeared to decrease biofilm in MAVP-26 (phage) 

compared to MAVP-26PD (no phage), but the change in absorbance was not significant (Fig. 3.14).  

MAVP-20(26) produced much more biofilm (p<0.05) than MAVP-20, likely due to the opaque and 

translucent respective phenotypes.  A plaque assay produced a secondary MAVP-20(26) isolate (MAVP-

20(26)-2) that was also translucent and had very similar biofilm formation to MAVP-20.  
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Figure 3.14. Biofilm formation of phage harboring and phage deficient isolates. Phage deficient isolates 
MAVP-20 and MAVP-26PD compared to Vipa26 harboring MAVP-20(26), MAVP-20(26)-2 and MAVP-26.  
MAVP-20 and MAVP-20(26)-2 are translucent phase variants, the others are opaque.  

Survival in microcosms as a model for ecological fitness 

Although biofilm formation did not differ, and phase variation confounded the potential analysis 

of UV survival, the protection against the burden of new infection points to potential fitness benefits of 

harboring the Vipa26 in the environment. However, testing of specific traits under laboratory conditions 

fails to capture the actual conditions found in the natural environment where selection would occur. To 

address this shortcoming, natural seawater microcosms were employed as a model to test overall 

environmental fitness. Phage harboring strain (MAVP-20(26)) that had undergone phase-variation to an 

opaque phenotype, survived significantly (p<0.01) better than the parental strain MAVP-20 which 

exhibits a translucent colony type on days two and three of the microcosm as determined by cell counts 

(Fig. 3.15A) and qPCR of prophage compared to integrated prophage deficient dif sites (Fig. 3.15B).  

qPCR of MAVP-20(26) reciprocal self-competition indicated the chromosomally integrated prophage did 

not excise over the course of the microcosm, validating the use of prophage content to differentiate 
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phage harboring and phage deficient strains. Future microcosms were analyzed solely with qPCR (Fig. 

3.15B). Copy number determined by qPCR has a linear relationship to CFU/mL (Fig. S3.1). 

 

 

Figure 3.15. Survival of MAVP-20 and MAVP-20(26) in natural seawater microcosms in competition. A. 

Differentially tagged strains were competed in seawater in reciprocal coculture for one week. Percent 

survival determined by viable cell counts of Vipa26 harboring strain MAVP-20(26) is blue and the phage 

deficient strain MAVP-20 is orange. B. Percent survival of MAVP-20(26) (phage; blue) and MAVP-20 (no 

phage, orange) as measured with qPCR. C. MAVP-26 (phage; blue) competed with MAVP-26PD (no 

phage; orange), measured with qPCR, both strains are opaque. All error bars represent standard 

deviation. 
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 MAVP-26 (phage harboring) and MAVP-26PD (phage deficient) competed in untreated 

microcosms did not differ in percent survival on any day of the microcosm (Fig 3.15C).  Percent survival 

across different microcosms of MAVP-20(26), MAVP-26, and MAVP-26PD did not differ significantly, 

with MAVP-20 alone exhibiting decreased survival (p<0.001) (Fig. 3.15). MAVP-20 has a translucent 

phenotype due to the phase variation observed in V. parahaemolyticus (202), whereas the MAVP-20(26) 

strain has an opaque phenotype (Fig 3.14). Microcosms were incubated for a week; however, levels of 

both Vipa26-harboring and Vipa26-deficient strains dropped below the level of detection by day four for 

both plate counts and qPCR.  V. parahaemolyticus and Vipa26 content were undetected in natural 

seawater with no added bacteria at any time point of the microcosm; however, the natural community 

was not investigated beyond this. 

 One of the major factors influencing ecological fitness is competition and predation amongst 

community members. By treating the seawater collected to remove specific parts of the community, we 

narrowed down the potential source of the observed difference in survival in the untreated microcosms. 

Filter sterilizing removes all native prokaryotic and eukaryotic species which might interact with V. 

parahaemolyticus leaving only the viral load, whereas kanamycin treatment kills most of the bacterial 

species present while leaving the eukaryotes. Percent survival of MAVP-20 and MAVP-20(26) competed 

in either of the treated microcosms did not differ significantly (Fig. 3.16A and B).  Both MAVP-20 and 

MAVP-20(26) survived longer in filtered seawater in comparison to the untreated seawater, with a 

measurable population still present on day four (Fig. 3.16A). Kanamycin treatment lowered overall 

percent survival on days two and three compared to the untreated set, with greater variability in 

survival on day three. 
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Figure 3.16. Percent survival in treated microcosms. A. Survival of phage harboring (MAVP-20(26)) and 
phage deficient (MAVP-20) strains in competition in a filter sterilized microcosm. Colors correspond to 
Fig 3.15: MAVP-20(26) (blue) and MAVP-20 (orange). B. Percent survival in a seawater microcosm 
treated with 50μg/mL kanamycin (same colors as A). Error bars represent standard deviation. 

Phage does not impact protist predation or preliminary models of virulence 

 

Figure 3.17. Percent survival after incubation with predatory protist challenge. Survival of MAVP-26 

(Vipa26; blue) and MAVP-26PD (no phage; orange) after incubation in 40% ASW with the bacterivore C. 

roenbergensis. MAVP-C (ST3; f237; yellow) and G149 (environmental; no phage; grey) were included as 

controls to recapitulate previously reported trends (66). Error bars represent standard deviation. 
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Harboring a phage may confer a fitness advantage illustrated by greater survival in untreated 

microcosms and mitigated by the kanamycin treatment to remove potential bacterial competition and 

predation, although attributing this advantage to Vipa26 is complicated by the translucent phenotype of 

MAVP-20.  Although this differential survival suggests that bacterial influences are the source of the 

advantage, pressure by eukaryotic predators is another component of environmental challenges facing 

V. parahaemolyticus. To investigate eukaryotic predation, resistance to C. roenbergensis grazing was 

quantified. Incubation in coculture with C. roenbergensis depressed the survival of V. parahaemolyticus 

over several days with no difference in survival of Vipa26 harboring MAVP-20(26) and phage deficient 

MAVP-20 (Fig. 3.17). Growth in media amended with 0.04% bile salts to stimulate virulence factors (203) 

and in competition also did not affect ability to survive in the presence of the protist (data not shown). 

Contrary to previous reports, the population size of the ST3 isolate MAVP-C did not increase in culture 

with C. roenbergensis, demonstrating killing of the protist, and the environmental isolate G149 

performed similarly to the clinical MAVP-26 (Fig. 3.17)(66).    

 

Figure 3.18. Virulotyping of isolates. MAVP-26 and MAVP-20 with Vipa26 (bold) and without Vipa26 
grown on plates seeded with A. castellanii to determine relative virulence against eukaryotes. MAVP-C 
(ST3 containing f237) and G149 (environmental isolate with no f237-like phage) are phage harboring and 
phage deficient references respectively. 
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V. parahaemolyticus is an environmental pathogen, therefore the first and arguably most 

important step in the infective pathway is ecological fitness.  If a strain is outcompeted and unsuccessful 

it is unlikely to accumulate in an oyster to the level necessary to cause illness.  Measuring ecological 

fitness is critical to understanding the impact of the phage on the success of ST36; however direct 

effects of virulence could also explain the high clinical prevalence of this population, perhaps due to 

selection for Vipa26 in the gut. To investigate this, virulotyping of phage harboring and phage deficient 

isolates was completed using amoeba seeded plate assays with A. castellanii as previously described (66, 

199). V. parahaemolyticus viability was impaired compared to the control; however, the minimum 

surviving concentration between any of the isolates tested did not change (Fig. 3.18).  An environmental 

isolate from a pathogenic lineage, G149, which lacks a pathogenicity island and is phage deficient, 

survived on amoebas at the same concentration as the clinical ST36 isolates, calling into question the 

validity of testing virulence using this assay. 

Discussion 

Inoviruses are known for their diverse impacts on host cell phenotypes through many 

mechanisms, including lysogenic conversion, effecting host transcription with phage encoded regulators 

and influencing biofilm formation (136, 140, 143).  The discovery of these phages associated closely with 

successful clonal populations of the invasive V. parahaemolyticus ST36 clade in the Northeast United 

States as well as the previous reports of a similar phage in the only pandemic clonal complex, ST3, raises 

the question of how these phages impact the fitness or virulence of their hosts. In this study we begin to 

describe the complex relationship of Vipa26, the phage stably maintained in the Gulf of Maine ST36 

population, and its host.  

Vipa26, an active filamentous phage of the class Inovirus, is closely associated with the highly 

successful GOM ST36 population, despite the potential burden on the host cell due to production of 
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progeny phage.  Spontaneous phage loss observed under laboratory conditions suggests that there may 

be a realized fitness cost to the burden of an active, chronic phage infection, yet phage harboring 

isolates remain clinically prevalent year after year. Naïve strains exposed to Vipa26 also demonstrate 

significant growth defects during the process of infection and integration of the phage into the host 

chromosome (Fig. 3.8A). The early plateau in exponential growth corresponds to a significantly higher 

titer of phage progeny as well as a high load of the replicative form (Fig. 3.9; Fig 3.11A and B). Other 

species of Inovirus slow host growth upon infection through the overexpression of gI (homologous to zot 

through size and location, see Chapter 2), together with membrane stress of secreting virions (182, 204).  

This can incite the phage shock protein response, a system conserved in many Gram-negative bacterial 

species that mitigates membrane stress and can be harmful if excessively upregulated (92, 205). The 

direct burden of diverting valuable resources to production of higher levels of Vipa26 progeny is another 

likely culprit behind the early plateau of the growth in newly initiated infections. However, persistently 

infected phage harboring derivatives exhibited no measurable growth defects (Fig. 3.8B) compared to 

phage deficient isogenic strains even though Vipa26 was actively produced by the chronically infected 

isolates when grown in rich medium (e.g. HI broth cultures, Fig. 3.8B). The benign nature of stable 

Vipa26 prophage infection is somewhat unexpected as during chronic infection, some inoviruses do slow 

the growth of their hosts (183). If even a low level of spontaneous excision Vipa26 such as that observed 

on agar plates regularly occurred in liquid culture even in a small portion of the population (Fig. 3.6 and 

3.7) this could initiate new or highly productive infections generating large bursts of phage by a few 

individuals without perceivably changing the growth kinetic of the entire population. Vipa26 virions 

would be produced and only a small minority of the population would be impacted in this benign 

infection model. However, since total excision of the prophage from the population would mitigate any 

cost associated with Vipa26 infection, then the persistence of Vipa26 points to a benefit of infection that 

outweighs any cost.  
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Maintenance of the replicative form of Vipa26 in MAVP-26 is less than one copy per 

chromosome (Fig. 3.10), whereas it is maintained in much greater abundance in newly infected strains, 

correlating to a 625 fold increase in infectivity (Fig. 3.9 and 3.11B).  Thus, the fitness cost in stably 

infected strains could be mitigated by the low proportion of the replicative form and therefore less 

strain on the host cell to produce progeny.  In Pseudomonas aeruginosa, superinfection by the inovirus 

Pf4 leads to increased phage production linked to small colony variants or cell death of the host (136, 

137).  The down regulation of the replicative form and subsequently phage production in V. 

parahaemolyticus upon integration of the prophage likely rescues the host from the potentially deadly 

or harmful effects of high virion production. Taken together, these data suggest that once 

chromosomally integrated, Vipa26 is relatively benign to ST36 hosts, exacting little cost upon achieving a 

stable, chronic infection.   

Certainly, the inability of Vipa26 to produce a plaque on cells harboring similar phage or slow 

their growth taken with its ability to produce pronounced plaques on the phage-deficient ST36 

derivatives (Table 3.5), suggests persistent infection provides protection from growth impairment during 

the early stages of new infections (Fig. 3.8A). This benefit could be strong enough to outweigh any 

burden associated with the benign persistent infection as demonstrated by prophage excision and loss. 

In the dynamic of phages and bacterial hosts, protection against superinfection can push the population 

structure towards maintaining phage infection (119). This is beneficial to the phage as well as the host, 

encouraging the vertical propagation of the phage and protection of the bacterium (178, 200). This 

protection; however, only partially explains the success of a phage harboring strain in competition with 

a susceptible strain. Phages can also be used as a weapon against naïve competitors, suppressing 

susceptible strains in mixed culture with hosts with established infections that are protected from 

superinfection (102). The appearance of newly infected isolates and drastic genotypic shift towards 

integrated Vipa26 in direct competition supports this sword and shield hypothesis (Fig 3.12).  Even in 
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broth that is not pre-conditioned to contain active virions, the native production of phage by MAVP-26 is 

sufficient to create new infections in its susceptible competitor and lead to a competitive advantage that 

depresses the growth of the susceptible strain (Fig. 3.12).   

Vipa26 infection was nearly total in the viable cells recovered, and the burden on cells with 

newly initiated infections was very high likely due to the stresses associated with producing 625 times 

more Vipa26 progeny than chronically infected strains.  Even without the growth suppression 

compromising cell reproduction and the competitiveness of the susceptible strain, Vipa26 shifted the 

genotype of the population to nearly entirely phage-harboring.  As the initial acute infection progresses, 

phage chromosomal integration apparently leads to down-regulation of RF production, settling into a 

stable infection, a process characterized in other types of phage but not well understood in inoviruses 

other than CTXφ (92, 206, 207).  CTXφ allows superinfection of tandem copies even after integration; 

therefore, it is not a good model of the dynamics of integration of protective filamentous phages such as 

Vipa26 (184, 206). In Vipa26, the production of a large quantity of progeny based on the availability of 

susceptible hosts that were newly infected prior to this down regulation is advantageous and ensures 

propagation of the phage through populations. Maintenance of the phage due to some conferred fitness 

advantage to the host, such as protection from new infections or other traits associated with phage 

integration, then benefits both the phage and the host which managed to survive the rough initial stages 

of infection. 

Interestingly, the recently infected strain MAVP-20(26) produces a very low amount of the 

replicative form relative to prophage abundance compared to MAVP-26 (28-76% for MAVP-26 versus 

0.1-3.5% for MAVP-20(26)) (Fig. 3.10).  This may be related to the opaque/translucent phase variation 

expressed by this isolate or other strain-specific genetic variation. The low amount of the replicative 

form in MAVP-20(26) may be a due to the regulatory differences in this strain.  Other recently infected 

strains produce significantly more virions than MAVP-26 (Fig. 3.11), so this down regulation may be 
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specific to MAVP-20. While there is a gap in understanding in the regulation of integration and phage 

production of inoviruses, it is likely that host regulators are involved (146, 206, 207). Further study into 

the regulatory underpinnings of phase variation, and potential relation to phage regulation could 

broaden our understanding of the toleration of chronic infection and ecological impact of phase 

variation.  

Beyond the direct effects of infection associated with the burden of producing virions, 

filamentous phages are transducing agents that often introduce novel and potentially useful genetic 

material to the host cell (92). Although more replicates are required, the potential increase in viability of 

Vipa26 harboring strains after UV challenge could be due to the phage encoding a gene related to DNA 

repair and the SOS response (Fig. 3.13). Similar filamentous phages have regulatory systems that are 

intertwined with host cell encoded proteins such as UvrD. UvrD is involved in mismatch DNA repair and 

is upregulated during the SOS response, including in response to UV light.  CTXφ and Pf4 in P. aeruginosa 

are UvrD dependent for replication, and close homology of their initiation protein domains compared to 

that of f237 (208, 209) suggests that Vipa26 could also be UvrD dependent. UvrD is a member of a 

partially LexA regulated operon in CTXφ, where phage replication is under control of both LexA and the 

phage-encoded RstR, a potential homolog to ORF9 based on size and location as well as a low amino 

acid identity (Chapter 2) (210). In contrast to CTXφ, Vipa26 lacks LexA binding sites, and therefore it is 

unlikely that the prophage is triggered to excise in the same way that CTXφ prophage are. Indeed, 

strains did not demonstrate more phage loss or progeny phage production after UV-C challenge. 

Although the phage may influence the SOS response regulators, Vipa26 does not have the LexA binding 

sites characterized in better studies phages, warranting further research into the molecular basis of the 

phage-host interaction of Vipa26. Resistance to UV and possibly other forms of stress are a crucial 

benefit to the bacteria, which are exposed to sunlight and other adverse conditions in their natural 

environment. 
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 The dynamics of the mixed community V. parahaemolyticus is a member of in natural seawater  

are important influences on ecological fitness. Vipa26-harboring and phage-deficient MAVP-20 variants 

competing in natural seawater microcosms revealed a potential increase in survival of the phage-

harboring isolate, but not in MAVP-26 competing with MAVP-26PD (Fig. 3.15). Complicating the 

potential success of MAVP-20(26) is the phenotypic switch observed in the phage deficient strain, 

leading to a translucent phenotype compared to the opaque Vipa26 harboring strain, adding a 

confounding variable. MAVP-20(26) does not produce high levels of the replicative form compared to 

MAVP-26 (Fig. 3.9), suggesting there is differential regulation of the phage, potentially influencing the 

impact of Vipa26 on each isolate. Vipa26 infection alone did not to lead to the switch between opaque 

and translucent, as several translucent phage-harboring derivatives of MAVP-20 were subsequently 

recovered (data not shown). The fitness impact of the translucent colony type in V. parahaemolyticus is 

not well understood beyond a study comparing killing by oyster hemocytes (211); however these 

morphology variants exhibit biofilm deficiencies (Fig. 3.14) (27, 202).  As phage deficient isolates derived 

from MAVP-26 survived as well as both Vipa-26 harboring isolates, MAVP-26 and MAVP20(26), the 

fitness defect may relate to the translucent phenotype rather than phage content (Fig. 3.15).  

Treating microcosms by filter-sterilization and kanamycin treatment microcosms eliminated the 

fitness benefit of the opaque strains, therefore bacterial competition and/or predation is likely where 

MAVP-20 is less fit (Fig. 3.16). Deficiency in biofilm, typical of translucent variants and demonstrated by 

MAVP-20 and the translucent MAVP-20(26)-2 (Fig 3.14), may leave the bacteria more vulnerable to 

predation by bacteria such as Halobacteriovorax, a known predator of V. parahaemolyticus (212).  The 

overall lower performance of the strains in kanamycin could be due to the stress of growing in antibiotic 

even when carrying a resistance cassette, whereas similar survival is due to the removal of the potential 

competitor/predator. In summary, although phage-harboring MAVP-20(26) was more fit than phage-

deficient MAVP-20, this difference could be explained by the additional phenotypic variation that 
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derivation of this strain produced (opacity) that is not phage-dependent since phage-harboring 

derivatives were recovered that remained translucent. Examining fitness of the translucent phage-

harboring variants in microcosms would address this limitation. 

 Although Vipa26 did not impact the virulence of MAVP-26  as determined by the amoeba 

seeded plate assay, the lack of significant differences between the highly virulent ST36 isolates and the 

environmental G149 calls into question the validity of this method for measuring virulence in V. 

parahaemolyticus. Although, this method has been used previously to virulotype V. parahaemolyticus, 

we were unable to reproduce prior results although notably we did not use the same ST3 strain (Fig. 

3.18) (66).  More robust methods such as cytotoxicity to human colon cells or in vivo pathogenicity 

studies may reveal differential toxicity. Vipa26 encodes two known putative toxins, ace and zot, as well 

as a number of hypothetical proteins located in the same region as ctxAB in CTXφ (12). These toxins and 

uncharacterized content could contribute the virulence and therefore high clinical prevalence of ST36.  

The balance of cost and benefit of mutualistic phage infection drives environmental fitness and 

evolution (180, 200). Mutualistic association between phage and host occurs when the benefits 

outweigh the defects for both the phage and its host (119). The relatively benign nature of established 

infection, protection against superinfection by similar phages and a potentially more robust SOS 

response may offset the burden of holding Vipa26 exemplified by spontaneous loss, as well as the deficit 

in growth early in the infective cycle.  Further study into the mechanism contributing to potential 

increased viability after exposure to UV could address the gap in knowledge of the interaction of phage 

regulation and the SOS response as well as shed light on the potential fitness benefit linked to 

acquisition of these phage. UV sterilization of circulating seawater during the depuration process in 

oysters is a common practice (213), greater resistance to killing by UV light could contribute to the 

survival of ST36 in harvested oysters, directly leading to higher disease incidence. Further application of 

microcosms as a model for ecological fitness using the translucent phage harboring and phage deficient 
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strains will confirm if the benefit is due to phenotypic variation or phage content.  This study suggests 

that Vipa26 provides a concrete fitness benefit through protecting against the infection of similar 

phages suppressing the growth of susceptible strains, along with potentially a better survival of the SOS 

response; explaining the continuing occurrence of Vipa26 in the population despite a realized fitness 

cost. 

Supplementary Figures 

 

Figure S3.1. Validation of relationship between Cq and cell densities. Crude lysates were analyzed in 
40%ASW, contributing to a reduction of primer efficiency to 87%; however, fit of the line is good with 
R2=0.998. 
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