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ABSTRACT 
 
 

MICROBIAL COMMUNITIES REGULATE NITROGEN USE EFFICIENCY BY 
BALANCING TRADEOFF BETWEEN RESOURCE ACQUISITION AND GROWTH RATE 

 
by 
 

Bennett Thompson 
 

University of New Hampshire, September 2019 
 
 
Microbial nitrogen use efficiency (NUE) is the portion of N uptake that microbes allocate to 

growth versus mineralize as ammonium and is thus a critical parameter governing the 

transformation of organic to inorganic nitrogen. Microbial NUE is sensitive to changes in the soil 

environment, but its microbial controls remain untested. I performed an incubation where 

identical mesocosms were inoculated with three distinct microbial communities derived from 

agricultural land management (conventional, organic, and deciduous forest). Through this 

incubation, I explored three scales at which communities may exercise control over NUE: in how 

microbes alter their soil environment through system-level processes; through their 

stoichiometric and community composition; and through community physiology. My results 

indicate that microbial activity and physiology are most strongly related to NUE in this 

controlled environment. Specifically, I show that NUE is positively related to microbial growth 

rate and not resource acquisition. I also empirically demonstrate for the first time that CUE and 

NUE are positively related. From these results I conclude that microbes may be important 

regulators of NUE and govern its variation in ways unpredictable by stoichiometric theory alone. 
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Introduction  

 Attempts to model the soil nitrogen (N) cycle have been hampered for years by our lack 

of understanding of the microbes that mediate it. Soil microbes are responsible for transforming 

N across nine different forms, spanning enormous polymeric organic N molecules to tiny 

dinitrogen gas (Robertson and Groffman, 2015). These microbial N transformations are 

particularly important to soil fertility in both unmanaged and agricultural systems. Even 

fertilized crops derive the majority of their N from the soil, and microbes help regulate the 

availability of N (Gardner and Drinkwater, 2009; Jilling et al., 2018). However, the contribution 

of N to fertility goes hand in hand with its potential to contribute to pollution. In excess, 

inorganic nitrate (NO3-) harms drinking water and causes coastal dead zones, while oxides of 

nitrogen (NOx) contribute to ozone depletion, acid rain, and climate change (Robertson and 

Vitousek, 2009). The two-sided nature of N challenges farmers to manage soil and fertilizer N 

efficiently, optimizing its contributions to crop yield while minimizing its losses to the 

environment (Bowles et al., 2018). In response to this challenge farmers have sought guidance 

for fertilizer applications that is holistic and responsive to variation in soil N availability (Reimer 

et al., 2017). While over a century of research has described the pathways by which microbes 

transform soil N and make it available to plants, we still struggle to predict the magnitude of 

these transformations. Better understanding the microbes that perform them, however, is a 

promising step in that direction. 

 Current N cycling theory identifies the depolymerization of soil organic matter (SOM) 

into bioavailable N-rich monomers as its rate-limiting step (Schimel and Bennett, 2004). In this 

process, microbes produce extracellular enzymes that cleave large organic molecules into their 

constituent monomers (e.g. proteins to oligopeptides and amino acids). Microbes and plants can 
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then uptake these N-rich monomers. Microbes metabolize N monomers to grow biomass and 

maintain cellular function; any N they uptake in excess of their demand, however, they 

mineralize and excrete as ammonium (Mooshammer et al., 2014a). These two microbial 

processes—depolymerization and the allocation of N to biomass versus mineralization—

constitute critical junctures in the N cycle, and yet remain under-studied. Recent methodological 

advances have enabled us begin studying the controls on gross depolymerization through the 

breakdown of proteins to amino acids (Noll et al., 2019; Wanek et al., 2010). However, research 

on microbial N allocation to biomass versus mineralization has been much more limited.  

 Microbial allocation of N to biomass versus mineralization has been formalized into the 

concept of nitrogen use efficiency (NUE; Mooshammer et al., 2014a). Because NUE demarcates 

the proportion of depolymerized organic N that actually becomes ammonium, it serves as a 

fundamental regulator of the total transformation of organic to inorganic N. Only a handful of 

papers have empirically examined NUE (Mooshammer et al., 2014a; Wild et al., 2018; S. Zhang 

et al., 2019), and its theoretical development to date has relied heavily on research on microbial 

carbon use efficiency (CUE). Similar to NUE, CUE denotes the portion of C uptake that 

microbes allocate to biomass growth versus respire as carbon dioxide (CO2). Microbial CUE has 

been demonstrated to be a major physiological control over C cycling, influencing SOM 

dynamics and C sequestration (Bradford et al., 2013; Frey et al., 2013; Kallenbach et al., 2015). 

Controls on CUE are varied; it integrates, and thus responds to, resource availability, 

environmental conditions, microbial stoichiometric demand, metabolic activity, and community 

dynamics (Geyer et al., 2016; Manzoni et al., 2012). NUE likely has distinct controls from CUE, 

though the two are linked through metabolic stoichiometry (Mooshammer et al., 2014a; 

Sinsabaugh et al., 2016). For example, one of the most fundamental controls on CUE and NUE is 
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the elemental imbalance between microbial communities and their resource (Sterner and Elser, 

2002). Microbes have a relatively fixed biomass C:N averaging 8:1; comparatively, the SOM 

which they metabolize can range anywhere from 4-185:1 (Sinsabaugh et al., 2016). In order to 

maintain a consistent biomass C:N, stoichiometric theory predicts microbes can alter their CUE 

and/or NUE in order to offload whichever element is available in excess of microbial demand 

(Zechmeister-Boltenstern et al., 2015). By indicating changing rates of C or N mineralization 

from the soil, together variation in microbial CUE and NUE partially determine the fate of 

energy and nutrients in the soil environment. 

 Though research on microbial NUE is in its infancy, we have several lines of empirical 

evidence for how microbial NUE responds to environmental variables. Mooshammer et al. 

(2014a) used gross rates of amino acid uptake and N mineralization to calculate NUE, 

demonstrating that NUE responds to the imbalance between microbial biomass C:N and SOM 

C:N. Using similar methodology, Wild et al. (2018) demonstrated that long term warming and 

drought moderately decreased microbial NUE, perhaps by releasing the microbial community 

from N-limitation. In an exciting advancement, S. Zhang et al. (2019) measured 18O-H2O 

incorporation into microbial DNA, thereby calculating NUE based on growth in microbial 

biomass N and mineralization (analogous to the CUE approach from Spohn et al., 2016). Using 

this substrate-independent assay, they found that NUE increased with temperature and was 

highly dependent on oxygen availability (S. Zhang et al., 2019). These environmental controls 

are critical to our understanding of NUE, and by extension, our understanding of the gross 

transformation of organic soil N into inorganic forms. However, no studies to date have 

examined how microbial communities themselves regulate NUE. Thus, my guiding research 

question is: what microbial controls on NUE exist? 
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Indirect influence of system-level microbial processes on NUE 

 Soil microbes may indirectly affect NUE through system-level processes by which 

microbes alter their chemical environment (Figure 1a). Though NUE is sensitive to the C:N 

imbalance between SOM and microbial biomass, soil microbes are able to alleviate this 

imbalance through enzyme production. Microbes produce extracellular enzymes which 

depolymerize SOM into dissolved organic matter (DOM), which microbes then directly uptake.  

Microbes are able to modulate enzyme production in order to target C- or N-rich compounds 

within the SOM pool, thereby forming a DOM pool with a reduced imbalance from microbial 

biomass C:N (Mooshammer et al., 2014b). These shifts in enzyme production to manage DOM 

C:N independent of SOM C:N may insulate NUE from needing to shift. Furthermore, the process 

of cell death deposits microbial necromass into the SOM pool, influencing SOM C:N over time. 

Heterotrophic microbial necromass is enriched in N compared to other sources of SOM, which 

would reduce NUE in the long term (Kaiser et al., 2014). Through these system-level processes, 

microbes may indirectly modulate NUE (Figure 1a). 

 

Influence of the microbial community composition on NUE 

 Microbes may directly influence NUE through the stoichiometry of their biomass, which 

can vary with changes in community composition (Figure 1b). Though microbial biomass C:N is 

relatively constrained, it does vary, and largely by the composition of the community. For 

example, bacterial C:N is near 6.5, whereas fungi range from 5-17 (Cleveland and Liptzin, 

2007). Microbial communities that vary in their biomass C:N would thus differentially adjust 

NUE in response to the same DOM C:N (Mooshammer et al., 2014a). Microbial communities 

demonstrate a limited capacity to alter biomass C:N in response to resource limitation, likely 
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driven primarily by shifts in microbial community structure (Fanin et al., 2013; Mooshammer et 

al., 2014b). Thus, microbial biomass C:N is likely an important control on NUE, and shifts in 

community structure may directly alter the C:N imbalance between microbial biomass and SOM.  

 Community composition may also drive differences in microbial processes (Figure 1a), 

thereby indirectly influencing NUE. Microbial communities can vary in their capacity to produce 

extracellular enzymes depending on community composition (Trivedi et al., 2016), which would 

influence their capacity to regulate DOM C:N. Microbial physiology may also directly vary due 

to community composition (Figure 1c). For example, CUE can vary widely among fungi, but is 

phylogenetically constrained (Morrison, 2017). It is possible that NUE may be similarly 

phylogenetically dependent. It is, however, an ongoing project in the field of soil ecology to 

assess how variation in microbial community composition relates to community-scale 

characteristics and ecosystem functioning (Graham et al., 2016; Reed and Martiny, 2007; Widder 

et al., 2016). While microbial biomass C:N presents a clear control on NUE, it is as of yet 

unclear whether community composition may provide direct or indirect influence on NUE. 

  

Role of microbial physiology as regulator of NUE 

 I have already discussed how microbial community composition may constrain NUE as it 

does CUE; however, elements of microbial physiology may serve as strong, direct regulators of 

NUE, even independent of community composition (Figure 1c). Physiology refers to the 

functional properties of the microbial community at the cellular scale, such as the rate and 

efficiency with which microbes metabolize resources. Because of the outsized role soil microbes 

play in the transformation of energy and nutrients, their underlying physiology carries 

tremendous implications for global biogeochemical cycles (Wieder et al., 2014). We have 
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historically understood there to be a tradeoff between growth rate and efficiency, based on an 

evolutionary perspective of fitness between oligotrophic and copiotrophic microbes. Copiotrophs 

are defined as fast-growing microbes that thrive in resource-rich environments; whereas, 

oligotrophs grow more slowly, invest heavily in extracellular enzymes, and are more competitive 

in resource-limited environments (Fierer et al., 2007; Koch, 2001). Roller and Schmidt (2015) 

argued that oligotrophs must efficiently convert substrate to biomass in order to survive in a 

resource-limited environment. Without similar resource constraints, copiotrophs have less need 

to grow efficiently. The tradeoff between microbial growth rate and efficiency has been 

demonstrated in both single strain cell cultures and whole soils, with the tradeoff generally 

attributed to less efficient fermentation metabolism employed by fast-growing microbes in 

glucose-rich environments (Anderson and Domsch, 1986; Lipson et al., 2009; MacLean and 

Gudelj, 2006; Pfeiffer et al., 2001; Shen and Bartha, 1996). However, the negative relationship 

between growth and efficiency conflicts with recent theory and research concerning community-

scale growth efficiency in soils. 

 Formalizations in CUE theory suggest that oligotrophs that invest heavily in resource 

acquisition and cell maintenance may not be more efficient. From a mass-balance perspective, 

microbial growth is the total microbial C uptake less respiration and exudate production, where 

exudates are enzymes and metabolites that are not part of biomass and have faster turnover 

(Geyer et al., 2016; Manzoni et al., 2012). By this equation, microbes (such as oligotrophs) that 

produce more enzymes are allocating less C to growth, and thus have lower efficiency—with the 

same relationship holding true for N as well. This revised view of growth and efficiency has 

received support in recent models and studies. Kaiser et al. (2014) demonstrated that the 

introduction of functional diversity (i.e. “degraders” that produce enzymes and “cheaters” that do 
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not) into an individual-based model increased CUE when resources became limiting, compared 

to a community composed only of degraders. This is accomplished by the decoupling of resource 

uptake from enzyme production. In other words, the individual microbes investing in enzyme 

production do not necessarily uptake the products of their enzymatic depolymerization. When 

cheaters uptake DOM instead of degraders, they are able to allocate more C to biomass, 

increasing the community’s overall CUE while decreasing enzyme production relative to the 

total community’s biomass. This inverse relationship between growth efficiency and investment 

in resource acquisition, as opposed to growth rate, has also held up in recent whole-soil 

incubations (Kallenbach et al., 2015; Malik et al., 2019; Soares and Rousk, 2019). Though the 

relationship between growth rate and efficiency thus far has focused on CUE, I would expect the 

same relationship to hold for NUE as well. Because microbial biomass has a relatively 

constrained C:N of 5-20 depending on the taxa present, C allocation to biomass is accompanied 

by a predictable allocation of N (Cleveland and Liptzin, 2007; Sinsabaugh et al., 2016). It stands 

to reason that fast-growing, efficient microbes that allocate more C to biomass must also allocate 

more N to biomass growth to maintain biomass C:N. Given the conflict in our understanding of 

the relationship between growth rate and efficiency, further exploring the contexts that modulate 

this relationship is essential to understanding how microbes may dynamically alter the 

transformation of both C and N in soil. 

While microbial growth rate may likely be positively related to both CUE and NUE, the 

effect of resource acquisition or cellular maintenance on NUE relative to CUE is dependent on 

the metabolic stoichiometry of these investments. The cost of resource acquisition to NUE is 

likely greater than CUE, due to the fact that enzymes are proteins, and thus are N-intensive to 

produce relative to biomass C:N. On the other hand, the stoichiometry of metabolite production 
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for cellular maintenance depends on the taxon. For example, many soil fungi produce trehalose 

in response to heat stress, which is an extremely C-intensive compound to produce (Treseder and 

Lennon, 2015). Conversely, soil bacteria produce N-intensive amino acids to resist desiccation 

(Schimel et al., 2007). CUE and NUE may therefore respond differently to investments in 

cellular maintenance, depending on the source of stress and the stoichiometry of dominant taxa’s 

stress response. 

Finally, to my knowledge, no study has empirically demonstrated the relationship 

between CUE and NUE. Because CUE and NUE are expected to respond inversely to resource 

C:N, theory predicts that CUE and NUE must also be inversely related (Sinsabaugh et al., 2016; 

Zechmeister-Boltenstern et al., 2015). However, the fact that both CUE and NUE may be 

positively related to growth rate suggests that CUE and NUE may not always be at odds. For 

example, in a high growth rate, resource unlimited scenario, microbes that demand more C for 

biomass will simultaneously demand more N. It seems possible that fast-growing microbes 

would benefit from exploiting both C and N efficiently. Providing an empirical link between 

CUE and NUE is an important step to understanding the dynamic role microbes play in C and N 

cycling. 

 

 To test whether microbial communities themselves exert control over NUE, I performed 

incubations in identical mesocosms inoculated with microbial communities from three long-term 

land use treatments observed to have developed physiologically distinct communities 

(Kallenbach et al., 2015; Xue et al., 2013). Agricultural management has well-documented 

impacts on the soil microbial community, with corresponding effects on soil processes. 

Agricultural practices such as tillage, pesticide application, soil amendment, and crop rotation 
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are all selection pressures for the soil microbial community size and composition. Organic 

management, which eschews synthetic fertilizer and pesticide usage, appears to boost soil 

microbial biomass over conventional management (Esperschütz et al., 2007; Kallenbach et al., 

2015). However, this difference appears to be due less to the plant protection or tillage regime, 

and more a consequence of the type and quality of substrate addition to the soil (Hartmann et al., 

2015; Jangid et al., 2008). In order to maintain soil fertility without the aid of synthetic 

fertilizers, organic farmers rely on crop rotation, compost, and manure applications that increase 

the input of organic substrates to the soil microbial community. In some cases, this enhanced 

substrate availability increases the diversity of the soil microbial community (Lupatini et al., 

2017; Tiemann et al., 2015). In others, the composition of the microbial community does not 

shift in response to organic management, but the physiology of the community does (Kallenbach 

et al., 2015). Whether due to shifts in microbial physiology or community composition, 

agricultural management practices carry high potential to alter intrinsic microbial NUE. By 

introducing these agricultural microbes to an identical environment independent of differences in 

soil quality, I aim to test for the first time whether differences in NUE can emerge between 

microbial communities 1) indirectly, through microbial transformation of the soil environment 

over time, 2) directly, through microbial stoichiometric and community composition, or 3) 

directly due to intrinsic differences in physiology between communities. 

 

Materials and methods 

Experimental site 

Soils were collected from the Kellogg Biological Station LTER Main Cropping System 

Experiment (MCSE), where hectare-sized plots have been under conventional (T1), certified 

organic (T4), or deciduous forest (DF) in a complete randomized block design since 1989 
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(https://lter.kbs.msu.edu/research/long-term-experiments/main-cropping-system-experiment/). 

The site is located in Hickory Corners, Michigan (42°240 N, 85°240 W), with mean annual total 

precipitation of 1005 mm and mean annual temperature of 10.1 °C. The soils are fine-loamy 

Kalamazoo and coarse-loamy Oshtemo, which are both Typic Hapludalfs formed on glacial till 

(Hamilton and Robertson, 2015). Both agricultural treatments are tilled and are on a corn-

soybean-wheat rotation. The conventional fields receive chemical fertilizer and pesticide 

treatment, while organic fields are planted with a post-harvest, fall red clover cover crop. 

Organic fields are cultivated for weed control, neither organic nor conventional fields receive 

compost or manure, and both were planted with soybean when sampled. The deciduous forest 

plots, which are limited to three replicates, are late-successional hardwood forests that have 

never been cleared for agriculture. In August 2018 ten 2.5 cm diameter by 10 cm depth cores 

were collected and composited within each replicate. Four field replicates each were sampled 

from the conventional and organic treatments, and three replicates from the deciduous forest 

treatment. Soils were transported on ice to the University of New Hampshire (UNH, Durham, 

NH), where they were sieved (< 2 mm) and refrigerated at 4 °C. Subsets of soil from each 

replicate were flash-frozen in liquid nitrogen and stored at -20 °C for measurement of microbial 

biomass. 

 

Incubation experiment 

 Microbial communities from conventional, organic, and forest soils collected from the 

MCSE were incubated in identical, sterile mesocosms comprised of plant litter and sand. 

Isolating microbial communities from differences in their native soils ensured that any 

differences in NUE between communities emerged from how microbes altered their 
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environment, or due to intrinsic differences in microbial community composition and physiology 

(Figure 1). Cereal rye (Secale cereale) was harvested prior to anthesis from UNH Woodman 

Horticultural Research Farm in May 2018 and dried for 48 hours at 60 °C. Shoots and leaves 

were ground in a ball grinder and sieved (< 250 µm). Mesocosms were composed of 98.5 g sand 

(53 µm – 2 mm) and 1.5 g ground rye litter (C:N = 20) combined in polypropylene sample cups 

(Schnecker et al., 2019). For simplicity I will refer to this sand-litter mixture as soil, though it 

has no secondary mineral component. To sterilize the mesocosms, they were wetted with Milli-Q 

water, covered with foil, and autoclaved for 20 minutes (121°C, 15 psi), then incubated 

overnight at 25 °C. This was repeated twice more; for the final autoclave the polypropylene cups 

were inserted into quart-sized canning jars and covered with foil (van Diepen et al., 2016). 

 Soil inocula were derived by blending 1 g fresh soil in 100 mL Milli-Q water 

(Kallenbach et al., 2016). A fourth pseudoreplicate was created for the forest treatment by 

combining 5 g soil from each forest replicate, and similarly blending 1 g of this mixture as 

inoculum. This pseudoreplicate was excluded from all analyses of land use treatment effects. 1 

mL of inoculum was added to a subset of mesocosms three days after soil sampling (n = 6 for 

each incubation sampling day). This “pre-track” subset was destructively harvested at days 3, 13, 

48, and 91 of incubation and background concentrations of free amino acids (FAA) and NH4+ 

determined. These background concentrations were used to target the atom% of isotopic label for 

pool dilution assays in the experimental mesocosms (see “Microbial Processes”). Experimental 

mesocosms were then inoculated nine days after soil sampling (n = 4 for each treatment for each 

incubation sampling day; 48 mesocosms total). Inoculated mesocosms were brought to 55% 

water holding capacity (WHC), sealed with a sterile lid fitted with rubber septa, and incubated at 

25 °C. Water content was tracked gravimetrically over the course of the incubation; sterile water 
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was added when WHC < 50%. Inoculations and water additions were performed under a laminar 

flow hood using sterile techniques, and a subset of non-inoculated mesocosms were incubated to 

detect contamination.  

Respiration measurements were taken on each mesocosm every 12 hours for the first four 

days of incubation, daily until the tenth day, and then twice weekly thereafter. Mesocosm 

headspace was purged of CO2 using ultra-zero grade air (Airgas) passed through a 2 µm 

Whatman GMF filter, and then incubated at 25 °C for 30 minutes to 2 hours depending on the 

rate of microbial activity. Headspace gas samples were injected into an infrared gas analyzer (Li-

COR LI 820, LI-COR, Lincoln, Nebraska, USA), and respiration rates calculated from the 

increase of CO2 in the headspace over time. In addition to tracking respiration rates over the 

course of the incubation, frequently purging the headspace of CO2 ensured that the mesocosms 

remained aerobic. 

Experimental mesocosms remained sealed and incubated at 25 °C until they were 

destructively sampled on day 3, 13, 48, or 91 of the incubation. These dates were selected based 

on a preliminary incubation, which showed these dates corresponded to maximum respiration at 

day 3, and progressively lower respiration rates thereafter. As such, they were intended to 

capture the microbial community at different stages of resource availability and growth. On each 

sampling day soil was weighed out, and each assay performed within three days of soil 

weighing. Soil aliquots destined for enzyme, DOM, and pH analysis on the third day of sampling 

were refrigerated at 4 °C to slow changes in the soil and microbial community. 

 

Characterization of mesocosm soil chemistry 
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 Initial total C and N were determined for the litter mixture and measured on each 

sampling day thereafter. Samples for total C and N analysis were dried at 60 °C for 24 hours, 

packed in tin capsules, and measured on an elemental analyzer (Costech Instruments ECS 4010, 

Costech Analytical Technologies, Valencia, California, USA). Day 3 measurements are missing 

for total C and N only. pH was determined in a 1:5 (w/w) fresh soil to Milli-Q water mixture 

using a Mettler Toledo Seveneasy pH Meter 20 (Mettler Toledo, Columbus, Ohio, USA). 

Dissolved C and N pools were extracted using a 1:10 (w/w) fresh soil to Milli-Q water mixture, 

which was shaken for 30 minutes and extracted through a 0.7 µm filter. Though < 0.45 µm is the 

standard operational definition for DOM, filtration through a 0.7 µm is common practice, with 

faster particle loading capabilities with no noticeable differences in DOM (Kawahigashi 

Masayuki et al., 2006; Sanderman et al., 2008). Total dissolved nitrogen (TDN) and dissolved 

organic C (DOC) were measured using a TOC-L CPH/CPN analyzer (Shimadzu, Kyoto, Japan). 

NH4+ and NO3- concentrations were determined colorimetrically (Hood-Nowotny et al., 2010; 

Kandeler and Gerber, 1988; Miranda et al., 2001). DON was then calculated as TDN – (NH4+ + 

NO3-).  

 

Mesocosm microbial community characterization  

 Microbial biomass C and N were determined by chloroform fumigation (Vance et al., 

1987). 15 g of each soil was fumigated in an evacuated dessicator under chloroform for 24 hours, 

and then extracted with 30 mL 0.05 M K2SO4 that was shaken and filtered through Whatman #40 

filter paper. DOC and TDN from fumigated and paired unfumigated samples were measured 

using the same TOC-L CPH/CPN analyzer. Biomass C and N were calculated as the difference 
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in DOC or TDN between fumigated and unfumigated samples, corrected by 0.45 for extraction 

efficiency. 

Microbial community biomass and composition was assayed using phospholipid-derived 

fatty acids (PLFAs) extracted from 4 g of freeze-dried soil (Bligh and Dyer, 1959; Guckert et al., 

1985; White et al., 1979). A single-phase chloroform solvent with phosphate buffer was used to 

extract PLFA only from viable microbes. Lipid extracts were fractionated on silicic acid columns 

into neutral, glycol-, and polar lipids. Polar lipids were collected and methylated with 0.2 M 

methanolic KOH to form fatty acid methyl esters (FAMEs), which were brought to volume with 

hexane and injected onto a Varian 3800 FID GC. Bacterial markers included saturated Gram-

positive fatty acids (i15:0, a15:0, i16:0, i17:0, and a17:0), monoenoic and cyclopropane 

unsaturated Gram-negative fatty acids (18:1ω7c and cy19:0), and general bacterial markers 

(15:0, 16:1ω7c, and 16:1ω7t), actinomycetes (10Me16), and fungal markers included non-

arbuscular mycorrhizal fungi (18:2ω6,9 and 18:1ω9) and arbuscular mycorrhizal fungi (AMF) 

(16:1ω5) (Ekelund et al., 2003; Leckie et al., 2004). 

 

Microbial processes 

 Potential enzyme activities were assayed for b-1,4-glucosidase (BG), b-1,4-N-

acetylglucosaminidase (NAG), and L-leucine aminopeptidase (LAP) (German et al., 2011; 

Saiya-Cork et al., 2002). Soils were suspended and homogenized in 100 mM sodium acetate 

buffer adjusted to a pH of 5.5. This slurry was transfered to black microtiter plates and amended 

with MUF (4-methylumbelliferyl) labeled substrates for BG and NAG, and alanine-

aminomethylcoumarin (AMC) substrate for LAP. Activity was measured fluorometrically 
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(excitation 365 nm and emission 450 nm; Biotek Synergy HT, Biotek Instruments, Winooski, 

Vermont, USA). 

Gross nitrogen mineralization was assayed on days 3, 13, and 91 of incubation using pool 

dilution of a 15N-NH4+ label (Hart et al., 1994). Duplicate 6 g soil samples were labeled with 15N-

NH4Cl solution to reach 15N as 20 at% of the background NH4+ concentration and bring the soil 

sample to 65% of WHC. Samples were incubated at 25 °C for 4 and 24 hours, then extracted 

with 30 mL 1 M KCl and shaken before filtering through #40 Whatman filter papers. NH4+ was 

brought to solid phase through microdiffusion and capture on a PTFE acid trap (Sørensen and 

Jensen, 1991). Dried acid traps were packed into tin capsules and run on a Thermo Delta V 

IRMS interfaced to a NC2500 elemental analyzer (Cornell Isotope Laboratory, NY). 

Gross protein depolymerization was assayed similarly by the pool dilution of 15N-labeled 

amino acids (Wanek et al., 2010). Duplicate 4 g soil samples were labeled with a mixture of 18 

15N-labeled amino acids to reach 15N as 20 at% of the background free amino acid (FAA) 

concentration, and bring the soil sample to 65% of WHC. The incubation was terminated after 10 

minutes (t1) and 30 minutes (t2) using a 10 mM CaSO4 and formaldehyde mixture which kills 

microbes without lysing their cells. Amino acids were separated by filtering the slurry through 

cation exchange cartridges, eluted, and derivatized using methyl-chloroformate (Chen et al., 

2010). 14N- and 15N-amino acids were quantified using gas chromatograph-mass spectrometry 

(Thermo Fisher: Trace 1300 GC/ISQ-LT single quadrupole MS). 

 

Microbial physiology 

 Microbial growth rate (MGR), CUE, and NUE were all calculated based on the 

incorporation of 18O-labeled water into microbial DNA (Blazewicz and Schwartz, 2011; Geyer et 
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al., 2019; Spohn et al., 2016). Due to cost, microbial physiology was only assayed on days 3, 13, 

and 91 of incubation. Duplicate 0.3 g soil samples were prepared; one received an 18O-labeled 

water amendment to reach 18O as 20 at% of water content and bring the soil sample to 65% of 

WHC. The other received unlabeled water to reach 65% of WHC. The soil samples were placed 

in glass vials sealed with rubber septa, and the headspace purged of CO2 using ultra-zero grade 

air. After 24 hours of incubation at 25 °C, headspace gas samples were injected into an infrared 

gas analyzer (LI-COR 6252, Lincoln, NE USA) to estimate respiration rate. The duplicate 

samples were then flash-frozen with liquid nitrogen and stored at -80 °C. DNA extraction was 

performed using Qiagen DNeasy PowerSoil Kit (Venlo, Netherlands) with modifications to 

maximize soil DNA yield (Geyer et al., 2019). DNA extracts were pipetted into silver tins, 

amended with salmon sperm solution to bring oxygen mass within detection limits, dried, and 

analyzed on a Thermo Delta V IRMS interfaced to a temperature conversion elemental analyzer 

(Cornell Isotope Laboratory, NY). 

 

Calculations 

 FAA pool size and gross depolymerization rates were calculated using the sum of pool 

and rate values for each amino acid observed within detection limits and that exhibited positive 

depolymerization rates for each sampling date. Due to a small at% of 15N label and low isotopic 

dilution rates, only 5 of the 18 amino acids assayed met these qualifications: valine, leucine, 

isoleucine, proline, and serine. Gross rates of production and consumption were calculated for 

both depolymerization and mineralization according to Kirkham and Bartholomew (1954): 

𝐺𝑃 =
(𝑁&' − 𝑁&))
(𝑡' − 𝑡))

× 60 × 24 ×
ln[(𝑎𝑡%)6𝑁&) − 𝑎𝑡%)6𝑁7)/(𝑎𝑡%)6𝑁&' − 𝑎𝑡%)6𝑁7)]

ln(𝑁&' /𝑁&))
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𝐺𝐶 =
(𝑁&) − 𝑁&')
(𝑡' − 𝑡))

× 60 × 24 × ;1 +
ln[(𝑎𝑡%)6𝑁&' − 𝑎𝑡%)6𝑁7)/(𝑎𝑡%)6𝑁&) − 𝑎𝑡%)6𝑁7)]

ln(𝑁&' /𝑁&))
> 

 

where Nt1, Nt2, at%15Nt1, and at%15Nt2 are the concentration of N and 15N (in µg N g-1 d.w.) in 

FAA or NH4+ at t1 and t2, and 𝑎𝑡%)6𝑁7 is the background 15N abundance (0.00366). Mean 

residence time (MRT) of both FAA and NH4+ was calculated by dividing the pool size by gross 

production. 

 Microbial growth was calculated from the atom % excess (APE) of 18O-DNA mass 

observed in the labeled sample compared to the control, and by scaling growth in DNA to 

growth in biomass C or N (Geyer et al., 2019; Spohn et al., 2016; S. Zhang et al., 2019). 

Microbial growth was then used to calculate both CUE and NUE as: 

𝑋𝑈𝐸 =
𝐺𝑟𝑜𝑤𝑡ℎ

(𝐺𝑟𝑜𝑤𝑡ℎ +𝑀𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛) 

where Growth is either growth of biomass C or N, and Mineralization is either the cumulative C 

respired or N mineralized (calculated from the gross mineralization rate). Microbial growth rate 

(MGR) was also calculated by dividing C growth by time from the 18O-labeling to flash-freezing, 

and microbial turnover calculated by dividing biomass C by growth rate. 

 Additionally, biomass specific rates were calculated for respiration (qCO2), 

mineralization (qMineralization), depolymerization (qDepolymerization), growth rate (qMGR), 

and enzyme activities (qBG, qNAG, qLAP) by dividing the rate of each by microbial biomass C. 

These values provide clearer indication of not just whether processes change in magnitude, but 

whether the microbial community itself is becoming more active relative to its size in performing 

the given process. 
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Statistical analysis 

 All statistical analyses were performed in JMP Pro 14.3.0 (SAS Institute Inc., 2018) 

unless otherwise noted. Normal distribution and homoscedasticity were tested with Shapiro-Wilk 

test and Levene test. Data were log transformed if necessary. Two-way ANOVA was conducted 

on a subset of values for which assumptions were met to test the effects of land use treatment and 

incubation day followed by Tukey’s HSD post-hoc test. However, because a number of variables 

were not normally distributed even after transformation, nonparametric approaches were selected 

for subsequent analyses. One-way differences by day were tested with Kruskal-Wallis, and 

pairwise comparisons made with Steel-Dwass all pairs test. Spearman correlation analysis was 

performed on non-transformed data to assess the relationship between soil and microbial 

variables with CUE and NUE. A linear regression was performed on CUE and NUE since both 

were normally distributed. All P-values less than 0.05 were considered significant. 

 PERMANOVA was performed in R 3.5.2 (R Core Team, 2018) using the vegan package 

in order to test the effects of land use treatment and incubation day on four multivariate 

groupings: mesocosm soil chemistry, microbial community composition, microbial processes, 

and microbial physiology. A partial least squares (PLS) model was also constructed in JMP to 

test the multivariate relationship between soil and microbial variables on CUE and NUE. PLS is 

an appropriate approach to test the relationship between multiple predictor and response 

variables with low sample size and high collinearity among predictors (Boulesteix and Strimmer, 

2007; Nash and Chaloud, 2011). Given the small number of response variables, NIPALS 

algorithm was used with KFold = 7 validation. All non-redundant variables (e.g. MGR vs. 

qMGR) were inputted into the first model; variables with VIP > 0.8 were selected and re-

analyzed to construct a second refined model. 
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Results 
 
Day and treatment effects on soil and microbial properties 

 Land use treatment did not significantly impact either litter chemistry or the microbial 

community (Table 1). Though microbial PLFA biomass did significantly differ by land use in 

native soils (Kruskal-Wallis, P = 0.007), the process of extraction and inoculation diluted the 

microbial community, resulting in inoculum of similar biomass size and composition. Combined 

with the selection pressure from the homogenous litter substrate, microbial biomass and 

composition did not significantly differ by treatment for the remainder of the incubation 

(PERMANOVA, P = 0.82). However, microbial community properties, processes, and 

physiology did change over the course of the incubation, and significantly interacted with 

treatment (Table 1). Two-way ANOVA performed on a subset of variables for which 

assumptions were met similarly showed that day was a significant effect, but that the interaction 

effect was predominately non-significant for individual variables (Table S1). For this reason, 

further analysis will focus solely on the one-way effect of incubation day by lumping together 

land use treatments. 

 Percent C loss from mesocosms was calculated from the difference over time in soil C 

from the initial C content. Total soil C decreased markedly over the course of the incubation, 

with an average 57% of initial soil C lost after 91 days (Table 2, Figure c). Soil C:N declined to 

half its initial level as soil N only marginally decreased (Figure a). However, DOM C:N 

remained highly constrained between approximately 14-20 (Figure b). As overall DOM 

decreased over time, specific enzyme activity increased (Table 3). qBG and qNAG increased 

significantly, while qLAP increased only by a factor of four from Day 3 to 91 (Figure d-f). 

qDepolymerization increased steadily (P < 0.001), while qCO2 and qMineralization did not 
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change over time (Table 3). CUE and NUE tracked closely over the course of the incubation 

(Figure g-h). CUE remained at approximately 0.50 and NUE at 0.60 for the first two sampling 

dates. By day 91, CUE dropped by half to 0.24, while NUE did not significantly decline (Table 

3). 

 

Relationship between soil and microbial properties and NUE 

 NUE was overall less related to soil chemical variables and microbial activity than CUE 

(Table 4). CUE was strongly positively related to DOC, soil C, and soil C:N, indicating its 

positive relationship to C availability overall. NUE was positively related to free amino acid 

(FAA) concentrations, but unrelated to all other soil variables. NUE was also positively related 

to the mean residence time of the FAA pool, indicating that NUE was higher when competition 

for FAA decreased. 

 NUE was similarly unrelated to variability in most microbial processes, unlike CUE 

(Table 4). While CUE was significantly related to raw enzyme activities, mineralization, 

depolymerization, and respiration, NUE was only positively related to LAP activity. 

Interestingly, NUE was unrelated to gross mineralization rates, despite gross mineralization 

being used to calculate NUE. Both CUE and NUE were unrelated to biomass C:N, as well as the 

stoichiometric imbalance (i.e. ratio) between microbial biomass C:N and both soil C:N and 

DOM C:N. 

 However, NUE and CUE both were tightly related to microbial physiological parameters 

(Table 4). Both were positively related to MBC and MBN. CUE and NUE were also positively 

related to specific growth rate (qMGR) (Figure 3a-b), and negatively related to microbial 

turnover (Table 4). CUE was strongly negatively related to specific enzyme activities, while 
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NUE had a more moderately negative relationship with qBG, qLAP, and was marginally related 

to qNAG (P = 0.057). Neither CUE nor NUE had a significant relationship with qCO2 (Figure 

3c-d), though NUE was negatively related to qMineralization and qDepolymerization (Figure 3e-

f). 

 Two PLS models were constructed to explore the relationship between soil and microbial 

variables with both CUE and NUE in multivariate space. All non-redundant soil and microbial 

variables were used to construct the first, in which six factors minimized predictive residual sum 

of squares (PRESS). Variables with VIP > 0.8 were selected to construct a second refined model. 

In the refined model, two factors explained 66% of variability in predictor variables and 89% of 

variability in CUE and NUE (Figure 4), where the majority of variation in all predictor and 

response variables can be explained by Factor 1 (R2X = 0.53, R2Y = 0.66).  CUE and NUE had 

clearly distinct patterns in their relationship to soil and microbial variables (Figure 4). While 

CUE was clustered (and thus similarly related to model factors) with indicators of resource 

availability and microbial growth, NUE was comparatively independent of soil and microbial 

variables. Though NUE was not as closely related to soil and microbial variables as CUE, NUE 

was positively related to MBN, AMF, soil N, and FAA, and most negatively related to 

qMineralization, fungi, F:B, and pH. CUE was most negatively related to qDepolymerization and 

specific enzyme activities (Table S2).  

 

Relationship between CUE and NUE 

 CUE and NUE had a strong positive relationship (Figure 5a). Though land use treatment 

was not a significant source of variation for either of these variables independently (Table S1), it 

was a significant factor mediating the relationship between CUE and NUE (Figure 5b). CUE and 
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NUE were strongly related in mesocosms inoculated with conventional and organic microbial 

communities but had no relationship in forest mesocosms. 

 

Discussion 
 
 Microbial NUE governs the proportion of organic N microbes transform to inorganic N 

and is thus a fundamental parameter of the nitrogen cycle. Despite its importance, microbial 

relationships to NUE have thus far remained largely unexplored (Mooshammer et al., 2014a; 

Wild et al., 2018; S. Zhang et al., 2019). My results show that NUE is tightly linked to microbial 

activity and physiology. Specifically, I show that NUE is positively related to microbial growth 

as opposed to resource acquisition, as estimated by specific enzyme activities. These 

relationships help explain variation in NUE that cannot be predicted by stoichiometric theory 

alone, and indicate that microbes may themselves be important regulators of NUE. 

 

Indirect influence of system-level microbial processes on NUE 

 In this incubation, microbes altered their environment significantly while NUE did not 

vary over time. The initial mesocosm soil C:N was 20, or approximately the threshold elemental 

ratio at which microbial communities switch between C- or N-limitation (Mooshammer et al., 

2014a; Sterner and Elser, 2002). As C was lost from the mesocosms through microbial 

respiration and soil C:N declined by half, stoichiometric theory predicts that microbes would 

become increasingly C-limited. Consequently, we would expect the microbial community to 

respond by offloading excess N through mineralization (Zechmeister-Boltenstern et al., 2015). 

Instead, I found that microbes altered enzyme activity to maximize C-acquisition, rather than 

significantly alter NUE (Figure 2). The increased activity of C-acquiring qBG over time relative 
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to N-acquiring qLAP likely helped constrain DOM C:N to a narrow range independent of soil 

C:N. Interestingly, significant increases in qBG were accompanied by increased qNAG activity. 

While qNAG is generally classified as an N-acquiring enzyme, it can also facilitate microbial 

access to both C and N through the degradation of fungal-derived chitin (Sinsabaugh et al., 

2008). Given that qNAG increased concurrently with C-limitation suggests both that microbes 

may have been using it primarily to acquire C, and that fungal necromass was an increasingly 

large portion of available substrate over time (Geisseler and Horwath, 2009; Schnecker et al., 

2019). Though NUE is one in the suite of tools microbial communities have to overcome 

stoichiometric imbalance, these patterns in enzyme activity suggest that microbes targeted 

enzyme production as their dominant strategy in response to C-limitation, rather than alter NUE. 

 I observed that NUE is unrelated to most soil chemical variables, suggesting that it might 

be difficult to predict from common parameters of resource availability (Table 4). This is in 

contrast to past results showing NUE is sensitive to soil C and C:N (Mooshammer et al., 2014a; 

S. Zhang et al., 2019). However, it is important to note that N was likely not limiting at any point 

in this experimental setup, given that soil C:N was always at or below the threshold elemental 

ratio of 20. As such, it is likely that we may observe distinct patterns of microbial NUE response 

to environments where N, or another nutrient, is limiting. While I have shown that NUE is less 

sensitive to stoichiometric imbalances than enzyme production in an N-unlimited environment, 

expanding these findings to other stoichiometric scenarios is important to better understanding 

the plasticity of NUE across the range of microbial environments. 

 

Influence of microbial community composition on NUE 
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Figure 2: Shifts in resource availability (a-c), enzyme activity (d-f), and physiology (g-h) over 
the course of the incubation. (c) Soil C loss was calculated as the percent difference in soil C 
content at each day from the initial mesocosm C content. Letters denote groups that are 
significantly different as a result of Steel-Dwass nonparametric comparisons. Values are means ± 
SE. 
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Figure 3: Spearman correlations between elements of microbial physiology and CUE, NUE. 
Inset presents Spearman r; significant relationship denoted by asterisks (*P < 0.05, **P < 0.01, 
***P < 0.001). 
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Figure 4: Multivariate correlations between soil and microbial variables (green) with CUE and 
NUE (blue). Correlation loadings of refined PLS model are presented. Each axis presents the 
correlation each variable has with either of the two model factors. Variable distance from the 
origin denotes its strength of relationship with the model factors; its sign is the direction of the 
relationship. Thus, variables nearer one another are similarly correlated with the model factors; 
those opposite are inversely related. Black points are a random set of rows inputted into the 
model for validation. Factor 1: R2X = 0.53, R2Y = 0.66. Factor 2: R2X = 0.14, R2Y = 0.23. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 46 

 

 
 

Figure 5: Regression between CUE and NUE for (a) all values and (b) divided by treatment. R2 
shown for significant relationships (P < 0.05). 
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APPENDIX: SUPPLMENTARY TABLES 
 
 
Table S1: Two-way ANOVA on effects of agricultural treatment and incubation day. 
Significance between effects denoted by asterisks (*P < 0.05, **P < 0.01, ***P < 0.001). 
 

Variable Treatment Day Treatment x Day 
TDN n.s. *** n.s. 
DOC n.s. *** n.s. 
NH4+ n.s. *** n.s. 
NO3- n.s. n.s. n.s. 
Val n.s. *** n.s. 
Leu n.s. ** n.s. 
Ile n.s. *** n.s. 
Ser n.s. ** n.s. 
FAA n.s. *** n.s. 
MRT NH4+ n.s. * n.s. 
MRT AA n.s. *** n.s. 
MBC:MBN n.s. * n.s. 
BG n.s. *** n.s. 
Gross NH4+ Production n.s. *** n.s. 
Gross NH4+ Uptake n.s. *** n.s. 
Net Mineralization n.s. n.s. n.s. 
Gross Depolymerization n.s. *** * 
CUE n.s. *** n.s. 
MGR-C n.s. *** n.s. 
NUE n.s. * n.s. 
Turnover n.s. *** n.s. 
qBG n.s. *** n.s. 
qNAG n.s. *** n.s. 
qLAP n.s. *** n.s. 
qCO2 n.s. n.s. n.s. 
qMineralization n.s. n.s. * 
qDepolymerization n.s. *** n.s. 
qMGR n.s. *** n.s. 
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Table S2: CUE and NUE model coefficients for centered and scaled data from refined PLS 
model. Predictor variables are ordered from most positively related to NUE to no relationship to 
most negatively related to NUE. 
 

 


