
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Doctoral Dissertations Student Scholarship 

Fall 1982 

A RESIDENTIAL ELECTRICAL LOAD MODEL A RESIDENTIAL ELECTRICAL LOAD MODEL 

CHARLES FRANCIS WALKER 

Follow this and additional works at: https://scholars.unh.edu/dissertation 

Recommended Citation Recommended Citation 
WALKER, CHARLES FRANCIS, "A RESIDENTIAL ELECTRICAL LOAD MODEL" (1982). Doctoral Dissertations. 
1350. 
https://scholars.unh.edu/dissertation/1350 

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New 
Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of University of New Hampshire Scholars' Repository. For more information, please contact 
Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/dissertation
https://scholars.unh.edu/student
https://scholars.unh.edu/dissertation?utm_source=scholars.unh.edu%2Fdissertation%2F1350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/dissertation/1350?utm_source=scholars.unh.edu%2Fdissertation%2F1350&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


INFORMATION TO USERS 

This reproduction was made from a copy of a document sent to us for microfilming. 
While the most advanced technology has been used to photograph and reproduce 
this document, the quality of the reproduction is heavily dependent upon the 
quality of the material submitted. 

The following explanation of techniques is provided to help clarify markings or 
notations which may appear on this reproduction. 

1. The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. This 
may have necessitated cutting through an image and duplicating adjacent pages 
to assure complete continuity. 

2. When an image on the film is obliterated with a round black mark, it is an 
indication of either blurred copy because of movement during exposure, 
duplicate copy, or copyrighted materials that should not have been filmed. For 
blurred pages, a good image of the page can be found in the adjacent frame. If 
copyrighted materials were deleted, a target note will appear listing the pages in 
the adjacent frame. 

3. When a map, drawing or chart, etc., is part of the material being photographed, 
a definite method of "sectioning" the material has been followed. It is 
customary to begin filming at the upper left hand corner of a large sheet and to 
continue from left to right in equal sections with small overlaps. If necessary, 
sectioning is continued again—beginning below the first row and continuing on 
until complete. 

4. For illustrations that cannot be satisfactorily reproduced by xerographic 
means, photographic prints can be purchased at additional cost and inserted 
into your xerographic copy. These prints are available upon request from the 
Dissertations Customer Services Department. 

5. Some pages in any document may have indistinct print. In all cases the best 
available copy has been filmed. 

University 
Microfilms 

International 
300 N. Zeeb Road 
Ann Arbor, Ml 48106 



i \ 



Walker, Charles Francis 

A RESIDENTIAL ELECTRICAL LOAD MODEL 

University of New Hampshire 

University 
Microfilms 

International 300 N. Zeeb Road, Ann Arbor, Ml 48106 





PLEASE NOTE: 

In all cases this material has been filmed in the best possible way from the available copy. 
Problems encountered with this document have been identified here with a check mark V . 

1. Glossy photographs or pages 

2. Colored illustrations, paper or print 

3. Photographs with dark background 

4. Illustrations are poor copy 

5. Pages with black marks, not original copy 

6. Print shows through as there is text on both sides of page 

7. Indistinct, broken or small print on several pages 

8. Print exceeds margin requirements 

9. Tightly bound copy with print lost in spine 

10. Computer printout pages with indistinct print 

11. Page(s) lacking when material received, and not available from school or 
author. 

12. Page(s) seem to be missing in numbering only as text follows. 

13. Two pages n u mbered . Text fol lows. 

14. Curling and wrinkled pages 

15. Other 

University 
Microfilms 

International 





A RESIDENTIAL ELECTRICAL LOAD MODEL 

BY 

CHARLES F. WALKER 
B.E.E., THE COOPER UNION, 1953 

M.S.E.E., UNIVERSITY OF NEW HAMPSHIRE, 1970 

DISSERTATION 

Submitted to the University of New Hampshire 
in Partial Fulfillment of 

the Requirements for the Degree of 

Doctor of Philosophy 
in Engineering 

September, 1982 



This dissertation has been examined and approved. 

Dissertation Advisor 
John L. Pokoski, Professor, Electrical & Computer Engineering, 
Signal Processing Area, Engineering Ph.D. Program 

Ronald R. Clark, Professor/Chairman, Electrical & Computer 
Engineering, Signal Processing Area, Engineering Ph.D. Program 

7 
Filson H. Glanz, Associate ProfessElectrical & Computer 
Engineering, Signal Processing Ar&i, Engineering Ph.D. Program 

David E. Limbert, Associate Professor, Mechanical Engineering, 
Signal Processing Area, Engineering Ph.D. Program 

Robert W. Goodrich, Ph.D., Research and System Planning, 
Northeast Utilities Service Company 

August "2- j 

Date 



Dedicated 

To my wife, Helen 

i i i  



ACKNOWLEDGEMENT 

I want to first thank Dr. John Pokoski, the Chairman of my 

Committee, for his patience, guidance, encouragement and assistance in 

completing this work. 

I also want to thank the other members of my Committee, Dr. 

Ronald Clark, Dr. Filson Glanz, Dr. David Limbert and Dr. Robert Goodrich 

for their assistance and suggestions. 

I want to especially thank Dr. Goodrich for providing information 

on the availability of reference material, especially the test results 

associated with the Connecticut Light and Power Company Residential 

Load Test, which were used extensively in developing the work. I want 

to thank the Associates Program for providing the funding to obtain the 

data of the Residential Load Test. 

I want to thank Dr. Sivaprasad for his assistance with procedural 

matters. 

I also want to thank Nan Collins and Barbara Layne for typing 

the manuscript. 

i v  



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS - - jv 

LIST OF FIGURES viii 

LIST OF TABLES —- - xi 

ABSTRACT — - xii 

CHAPTER I INTRODUCTION 1 

1.1 Statement of Problem : 1 

1.2 History and Background 2 

1.3 Element Definition 4 

1.4 The Switching Functions 4 

1.4.1 The Availability Functions 5 

1.4.2 The Proclivity Functions 6 

1.4.3 The Normal-cycle Functions 7 

1.5 The Model 7 

CHAPTER II ELEMENTAL MODEL DETERMINATION - 8 

2.1 Residential Elemental Models 8 

2.1.1 Selection Criteria 8 

2.1.2 Diversity Within Element Types 9 

2.2 Switching Functions 9 

2.2.1 Switching Function Selection 10 

2.2.2 Variation in Switching Functions : 10 

2.3 Development of Major Switching Functions 11 

2.3.1 The Availability Function 11 

2.3.2 Proclivity Functions 21 

2.4 Model Development 30 

v 



2.4.1 The Lighting Model 33 

2.4.2 The Television Model 35 

2.4.3 The Refrigerator Model 41 

2.4.4 The Electric Range Model 47 

2.4.5 The Dishwasher Model 49 

2.4.6 The Clothes Washer Model 52 

2.4.7 The Clothes Dryer Model 53 

2.4.8 The Water Heater Model 56 

2.4.8.1 The Hot Water Use Function 58 

2.4.9 The Freezer Model 65 

2.4.10 The Air-Conditioner Model --- 65 

2.4.11 The Fan Model 66 

2.4.12 The Electric Heat Model 67 

2.4.13 The Humidifier/Dehumidifier Model 69 

2.4.14 The Swimming Pool Model 70 

CHAPTER III THE COMBINED MODEL 74 

3.1 Considerations in Combining the Model 74 

3.2 Implementation of the Combined Model 74 

3.3 Totalization of Results 79 

3.4 Summary 79 

CHAPTER IV MODEL EVALUATION 80 

4.1 Considerations in the Evaluation 80 

4.2 Types of Measures 81 

4.3 The Small Load Residence 83 

4.4 The Large Load Residence 90 

4.5 Group Models 94 

4.6 The Small Load Group Model 95 

v i  



4.7 The Large Load Group. Model 99 

4.8 Results of Combining the Load Data 105 

4.9 Forecasting with the Model 105 

4.10 Conclusions 108 

CHAPTER V SUMMARY AND RECOMMENDATIONS 110 

5.1 Summary of Work Accomplished 110 

5.2 Recommendations for Further Work 111 

APPENDIX A FORTRAN PROGRAM FOR THE RESIDENTIAL LOAD MODEL 114 

APPENDIX B FORTRAN PROGRAM FOR THE AVAILABILITY FUNCTION 128 

APPENDIX C PARAMETER DEVELOPMENT FOR REFRIGERATORS (FREEZERS)- 132 

APPENDIX D ADDITIONAL LOAD CURVES FOR LARGE LOAD GROUP 

PREDICTED DATA AND LARGE LOAD GROUP 

TEST DATA - 139 

v i i  



13 

20 

22 

25 

27 

28 

29 

31 

36 

38 

40 

42 

50 

51 

54 

59 

60 

62 

64 

68 

71 

73 

76 

LIST OF FIGURES 

Figure Title 

2.3.1.1 Block Diagram-Maximum Availability Function 

2.3.1.2 Typical Weekday General Availability Function 

2.3.1.3 Block Diagram of Function NAVAIL 

2.3.2.1 Survey Data for Clothes Washer Use 

2.3.2.2 Flow Diagram for Proclivity Functions 

2.3.2.3 Clothes Washer-Summer Weekday Proclivity Function 

2.3.2.4 Meal Time Survey Data 

2.3.2:5 Meal Time Proclivity Function 

2.4.1.1 Diagram of Lighting Model 

2.4.2.1 Diagram of Television Model. 

2.4.2.2 Diagram of Television Type Selection 

2.4.3.1 Diagram of Refrigerator Model 

2.4.4.1 Diagram of Electric Range Model 

2.4.5.1 Diagram of Dishwasher Model 

2.4.6.1 Diagram of Clothes Washer and Dryer Model 

2.4.8.1 Diagram of the Water Heater Model 

2.4.8.1.1 Stochastic Inputs to Hotwater Use 

2.4.8.1.2 Diagram of Handwashing and Bathing Function 

2.4.8.1.3 Diagram of Hand Dishwashing Function 

2.4.11 Diagram of Fan Model 

2.4.13 Diagram of the Humidifier/Dehumidifier Model 

2.4.14 Diagram of the Swimming Pool Model 

3.1 Flow Diagram for Combined Model 

vi i i 



Figure Title . Page 

4.1 Definition of the Normalized Variation Factor 84 

4.2 Customer Load Curve for a Small Load Residence-

Test Data for Tuesday 85 

4.3 Model Load Curve for Small Load Residence-

Predicted Data for Tuesday 86 

4.4 Customer Load Curve for Small Load Residence-

Test Data for Wednesday 87 

4.5 Customer Load Curve for Large Load Residence-

Test Data for Tuesday 91 

4.6 Model Load Curve for a Large Load Residence-

Predicted Data for Tuesday 92 

4.7 Customer Load Curve for a Large Load Residence-

Test Data for Friday .93 

4.8 Customer Load Curve for the Samll Load Group-

Test Data for Wednesday 96 

4.9 Model Load Curve for the Samll Load Group-

Predicted Data for Wednesday 97 

4.10 Customer Load Curve for the Small Load Group-

Test Data for Friday 

4.11 Cross Correlation Function-Small Load Group-

Model to Test Data 

4.12 Cross Correlation Function-Small Load Group-

Test Data to Test Data-Different Days 

4.13 Customer Load Curve for the Large Load Group-

Test Data for Wednesday 102 

4.14 Model Load Curve for the Large Load Group-

Predicted Data for Wednesday 

98 

100 

101 

i x  



Figure Title Page 

4.15 Customer Load Curve for the Large Load Group-

Test Data for Friday 104 

4.16 Cross Correlation Function-Large Load Group-

Model to Test Data 106 

4.17 Cross Correlation Function-Large Load Group-

Test Data to Test Data-Different Days 107 

4.18 Forecast Load Curve for Large Load Group 

with Additional Water-Heaters 109 

x 



LIST OF TABLES 

Page 

2.4.4.1 Electric Range Use and Load Data 48 

4.1 Summary of Daily Use Differences and Normalized 89 

Variation Factors 

x i  



ABSTRACT 

A RESIDENTIAL ELECTRICAL LOAD MODEL 

by 

CHARLES F. WALKER 

UNIVERSITY OF NEW HAMPSHIRE, SEPTEMBER 1982 

This work develops a time varying residential electric load 

model based on the philosophy that the availability of people to turn on 

electrical appliances and their tendency to do so at particular times 

are significant factors in determing the time varying nature of the 

residential load. Additional contributions to the load are the result 

of peoples availability and tendency to perform direct actions (e.g. 

dish washing) that indirectly cause electrical appliances (e.g. water 

heaters) to turn on and off under the control of their sensors. The 

availability and tendencies of the residents also affect, to some 

extent, the contribution to the load caused by weather conditions since 

the residents determine the settings of heating and cooling devices. 

A general availability function is developed to estimate the 

number of persons available in the residence at a particular time. 

Proclivity (tendency) functions are developed to specify the probability 

that an appliance will be used at a particular time by an available 

person or that the person will perform an action which will result in 

the operation of some appliance. 

Models for individual appliances, selected on the basis of their 

load significance, are developed using the foregoing functions together 



with operating characteristics of the appliances and estimates of.power 

consumption for prevalent sizes. The individual appliance models are 

combined into a residential model with provisions for specifying 

characteristics of the residence. The model is used to simulate in­

dividual residences and groups of residences. Heating and cooling loads 

are not included in the simulation. The load curves generated by the-

simulation are compared to test data obtained during the Connecticut Light 

and Power Company Residential Load Test [1] for equivalent residences 

and groups of residences. The results indicate that the model has 

potential for estimating the time varying residential electric load. 

xi i i 



CHAPTER I 

INTRODUCTION 

1.1 Statement of Problem 

This work describes the development of a residential electrical 

load model. A comprehensive load model allows an electric utility to 

adequately predict the magnitude and time variation of its load and 

therefore enables it to operate its generation capacity more efficiently. 

A load model, if it contains provisions for adjusting those parameters 

which can be expected to change with time, is an indispensable tool for 

accurate short and long term utility capacity planning. The reason for 

concentrating on a residential load model is that this section of the 

Toad is the most difficult to predict, since it involves many items of 

equipment and many individual decisions. The commercial and industrial 

sections of the load on the other hand, can be more easily predicted 

because of the lesser number of variables that affect them. 

The residential model involved developing a number of elemental 

appliance models which describe the operation of individual types of 

residential electrical equipment. The development of the individual 

models is described in Chapter 2. These models required the development 

of availability functions for household inhabitants and functions de­

fining their proclivity (tendency) to use various equipment at particular 

times. These elemental models were then incorporated into a combined 

model. The development of the combined model is described in Chapter 

3. This required investigating the interrelationships between daily 

1  
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aspects of living and then combining the elemental models in a 

correlated pattern to fit these aspects. 

The combined model has been programmed for operation on a 

digital computer. Load curves obtained by exercising the model have. 

been compared to load curves for similar residences obtained in a load 

test [1] conducted on the Connecticut Light and Power Company residential 

load and the results are presented in Chapter 4.. Recommendations for 

further work are included in Chapter 5. 

1.2 History and Background 

Some of the approaches that had been used in "near-term" load 

modeling were based on an analysis of previous system load data with a 

prediction of overall change based on periodicity and weather effects 

[2,3,4]. In general, no specific relationship between physical equipment 

and load was made for "demand" models although equipment characterization 

is utilized in "response" models [5]. 

More recently Woodward [6], proposed a model based in part on 

physical elements [for example, domestic water heaters] and in part on 

functional elements (for example, lighting load as determined by wattage 

per square foot and the area involved). His "switching" functions are 

based on element response to a combination of environmental functions and 

life-style functions, which are different for each category. He combines 

all of the elements of one type as one potential load. This is 

fractionally switched, partially by a life style function which uses a 

multiple harmonic expansion to describe the function. The initial para­

meters needed for the function would be obtained from a year's worth of 

empirical data. 
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The development of other physically based models was reported in 

[7] through [11]. These include various forms of aggregate component 

models with a "usage" function for each. The usage function includes 

or implies customer input, assumed to be specified elsewhere or obtained 

from empirical data or generated by various probability functions [7,8,9]. 

Boeing Computer Services indicates they consider summing individual 

component models to obtain a residence load and summing residence loads 

to obtain a feeder load to be too complex a process. They propose a 

customer-level model based on cyclic and environmental time functions 

from which component level information could be extracted [10]. A 

circuit based model, in which the coefficients of the describing 

differential equations are parameters represented by stochastic processes, 

has also been proposed [11]. 

References [12] and [13] describe end use models in which the 

basic load curves for residential appliances are developed by analysis 

of recordings of actual use of the appliances. 

The model proposed herein treats each piece of equipment as an 

individual load. It treats the individual switching actions as stochastic 

in nature and develops the switching functions based on the availability 

and proclivities of persons together with automatic switching functions 

which are, in part, triggered by their actions. 

A residential load is the sum of the individual appliance load 

and an area load is the sum of the loads of individual residences. The 

basic approach used will be summarized in the remainder of Chapter 1. 

Following chapters will discuss these issues in greater detail. 



1.3 Element Definition 

An element, in the context of this work, is a device, or an 

assemblage of devices, that represents the smallest load that will be 

switched ON or OFF an electrical system at one time. An example of an 

element is a household refrigerator. An example of an assemblage, 

acting as one element, is a singly switched section of the lighting load 

for a retail store. The amount of electricity used by these elements, 

when they are operating, is generally known. The switching ON and OFF 

of these elements determines the variation in the utility load curve. 

1.4 The Switching Functions 

The basic elemental model includes a function which describes 

the connecting and disconnecting'of the device to the system. This 

function is usually developed from a number of basic functions- which are 

interrelated. In this work the basic functions are called "availability" 

functions, "proclivity" functions and "normal-cycle" functions. The 

availability function indicates the probability that someone is available 

to operate a switch to connect a device to the system. The proclivity 

function indicates the probability that the person will operate the 

switch at a particular time. The "normal-cycle" function determines 

when th* device is switched ON or OFF as a result of information observed 

by its sensors. Availability and proclivity functions also are 

associated with the probability that someone will perform an act, at a 

particular time, which will lead eventually to a device being automatically 

connected to the system. A refrigerator is an example of the inter­

relationship between the three basic functions. The refrigerator switches 

on and off automatically when the inside temperature rises as a result of 



heat which infiltrates due to the outside ambient temperature and also 

a result of heat which enters when someone is "available" and has a 

"proclivity" to open the door. 

1 . 4 . 1  T h e  A v a i l a b i l i t y  F u n c t i o n s  

The availability of people to turn on residential electrical 

equipment depends on a number of factors. An adult person will not be 

"available" while that person is asleep, or while traveling to and from 

work, or while at work. The person's availability at home will also be 

affected by the probability of shopping or of outside recreation. Work­

ing, shopping and recreation hours are generally affected by the time of 

day and the day of the week. The availability function must consider all 

of these factors. Similar factors affect the availability of children 

and adults who normally remain home. 

For an individual person an availability function on a weekly, 

1/4 hour by 1/4 hour basis, would consist of a 672 element vector 

[7x96] indicating when that person is at home and awake. The vector would 

contain a "1" for each 1/4 hour the person is at home and awake and a "0" 

for all other 1/4 hours. In determining which element is a "1" and which 

a "0" the person's normal work shift, normal travel hours and normal 

sleeping hours for that work shift must be modified by probabilities of 

departure from normal routine and for the hours away from home due to 

shopping and recreational activities. 

For a "general" person, a general availability function can be 

developed. This takes into consideration the percentage of persons in an 

area on the various workshifts, including children at shcool, their 

generalized travel, shopping and recreational times as well as general­
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ized sleeping times. The probability of departure from the norm must 

also be applied in this case. This would result in a "quantized" function 

having values in the range "0.0" to "1.0" which when multiplied by the 

number of persons in a household will give a generalized availability 

of persons for that type of household. 

1.4.2 The Proclivity Functions 

Given the fact that a person is available, there is a tendency 

to do certain things at.certain times. This does not preclude doing 

these things at other times but there is a greater probability of doing 

them at one time than another. Such tendencies determine, for example, 

when people eat, when they watch television, when they wash clothes and 

when they perform other tasks that result in the use of electrical 

energy. Some of these tendencies are controlled by standard factors such 

as the work shift but others are controlled, to a large extent, by con­

vention or habit. In order to develop a "tendency function" or, as it will 

be called in this work, a "proclivity function", it is necessary to 

obtain information, on a sampling basis, of when people normally do 

certain things. As an example, surveys are periodically conducted of the 

size of television audiences as a function of the time of day, so that 

advertisers will know the potential audience available to watch their 

commercials. The proclivity functions developed in this work are based 

on a survey performed as part of the Connecticut Light and Power Company 

Residential Load Study [1] previously mentioned, or on estimates as to 

when various actions are performed, if survey data was not available. 
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1.4.3 The Normal-Cycle Function 

Various types of residential electrical equipment are automatically 

turned ON and OFF by environmental or other sensors. Some sensors, such 

as those on air-conditioners and humidifiers, respond to ambient conditions 

of temperature and humidity in the residence. Others respond to deviation 

from a preset temperature in a particular unit such as a refrigerator 

or a water heater. Functions of this type will be referred to as 

"normal-cycle" functions in this work. In modeling this type of equip­

ment, functions must also be developed which are based on the reasons for 

the change in temperature. For a water heater, as an example, a function 

that describes how hot water is used is required to determine when and 

for how long the heater is connected to the power system. 

1.5 The Combined Model 

The switching functions outlined in Section 1.4 are utilized in 

the development of the elemental (appliance) models to specify the pro­

bability of the appliance being ON or OFF. 

The individual elemental models are then incorporated into a 

combined model which determines the load for a residence. 



CHAPTER II 

ELEMENTAL MODEL DETERMINATION 

2.1 Residential Elemental Models 

In general, the demand model of a residential element can be 

characterized as a combination of a number of factors. These include: 

1) The wattage taken by the element when operating 

2) The basic duty cycle of the element (if one exists) 

3) The effect of weather on the basic cycle 

4) The effect of people's actions on the basic duty 

cycle including: 

a) the effect of people's living habits on the time 

of performing the actions, (proclivities). 

b) the availability of people to perform the actions. 

Not all factors affect all elements and the weightings are generally 

different for the different elements. 

In this chapter, some models include more detail than others. 

This was done to illustrate the level of complexity to which the 

analysis could be carried. To minimize computer time in a "production" 

model, each sub-model should have a complexity appropriate to the de­

sired accuracy of the overall model simulation. 

2.1.1 Selection Criteria 

The diversity in the stock of electrical goods owned by various 

households requires basic elemental models in the domestic area to be 

8 
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defined for that equipment, which by size and/or saturation, make a 

significant contribution to the load. Such elements would include space 

heating, water heating, refrigeration and similar loads. Groups of other 

elements such as entertainment or grooming could be treated as combined 

elemental models. The above approach is perferable to defining an 

"average" house as a primary element since it allows for changes in 

saturation of particular elements due to regional and economic differences 

when determining combined loads. It also permits easier modification 

of the model if the efficiencies of the primary elements are changed as for 

example the improved energy efficiency of solid state television or of 

better insulated refrigerators. 

\ 
2.1.2 Diversity Within Element Types 

Because there is a wide range of sizes encountered in many re­

sidential appliances provision was made in the individual models to vary 

appropriate parameters to suit the differences. In the computer coding 

for the model the parameters are defined as variables, whose values can 

be specified in data statements. 

2.2 Switching Functions 

After defining a basic element the switching functions that de­

scribe its use must be established. As an example the on-times and off-

times of a refrigerator are determined by a number of factors including 

the effectiveness of the thermal insulation, the effect of ambient 

temperature, the opening of the door, the humidity and the reloading 

of the refrigerator. 



If the function is represented by a set of interrelated sub-

functions based on contributing factors, the expected value of the total 

can be estimated as a function of time. Typical subfunctions to be con­

sidered are: 

a) Heat-entry function: the on-off cycle due to 

leakage and heat conduction at standard ambient 

conditions. 

b) Temperature function: the effect of temperature 

and humidity on the off-time. 

c) Door opening function: the additional on-time 

caused by opening the door. 

d) Reloading function: the additional on-time 

caused by restocking the refrigerator.-

2.2.1 Switching Function Selection 

An analysis of the factors which cause the device to be turned 

on and off must be made, to determine the switching functions which 

affect a particular element. For example, the lighting load is affected 

principally by the number of people available to require lighting and 

to turn the lights on. However the number of lights turned on is also 

generally affected by the time-of-day, by habit and by the number of 

rooms in the house. Thus the model for the lighting element should 

contain an 'availability' function, a function based on time-of-day 

and a function which relates lighting load to house size. 

2.2.2 Variation in Switching Functions 

A function which describes the "potential" for people to be at 

home on a weekday will be different from that which describes the 
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"potential" on a weekend day or holiday. In addition, the actual 

"availability" will generally be different for each weekday and each 

weekend day since the probability of people engaging in away-from-

home activities is normally different for each day. Seasonal and 

weather factors also affect the actual availability. 

Similarly, seasonal and to some extent weather factors have an 

effect on when people tend to do various tasks. As with the "availability" 

function the probability that something will be done is more likely on 

one particular weekday or weekend day than on another. Consequently, 

the weekday and weekend day "tendency" functions should be given an 

appropriate probability weighting to specify the actual "proclivity" 

function for a particular day. 

2.3 Development of the Major Functions 

The first basic switching function is the "availability" function 

since, at least to some degree, this function affects the switching of 

all the elements. Second in importance are the "proclivity" functions 

since they normally affect a number of elements. More peculiar to in­

dividual loads are the "normal-cycle" functions since they are concerned 

basically with one item of equipment. These basic functions are de­

veloped in the following sections. 

2.3.1 The Availability Function 

The maximum availability of a person at home is constrained 

by the times the person gets up, leaves for work, is able to return 

from work and goes to bed. Some allowance must be made to account for 

the deviation from typical times on a day to day basis. It is postulated 
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that this deviation takes the form of a normal distribution about the ' 

typical times with a standard deviation, "sigma", which is larger for 

the less critical times. Times for getting up and leaving for work 

are generally more critical than the times of returning from work and 

for going to bed. 

When the function is to be used to describe a generalized person, 

the variation must be increased to account for the different travel 

times to and from work for people living in the geographical area being 

modeled. In addition, if one function is to be used to describe the area 

availability, different optimal times must be used to suit the various 

work shifts, suitably weighted in proportion to area population on each 

shift. The block diagram of Figure 2.3.1.1, illustrates the development 

of the availability functions used in the residential load model. 

In the development of the general availability functions, and the 

other functions described in later sections, del J is one quarter hour and 

all times "T" are expressed as a number of quarter hours. This was done 

to suit the form of the data used from the load test [1]. The functions 

shown in Figure 2.3.1.1 are defined as follows: 

1) Ptw(n) and Pfw(n) are density functions which describe the 

distribution of travel times to and from work for a given shift and 

so affect the leave time density function Plt(T) and arrive home 

density function Pah(T). Evans [8] indicates that the residential 

density of workers decays exponentially with distance from the 

worksite. Heggie £9], presents data for a "Journey-to-Work-Behaviour" 

study which indicates that, after a minimum time offset, the 

travel time distribution is similarly exponential. 

The travel time functions (Ptw(n), Pfw(n)) used in this 
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development are exponential after an offset of del T (1/4 hour) as 

a reasonable minimum time to travel to work even for the closest 

workers. The exponential decay requires that 99.3% of the workers 

have travel times within 5 time constants plus the offset. The 

value of the time constant is an input parameter. For example, 

if del T is used as the time constant, essentially all the workers 

will have a travel time of 1-1/2 hours or less with the majority 

having travel times of 1/4 to 1/2 hour. This seems to be a 

reasonable expectation for the normal day shift. Because of 

greater uncertainty in the afternoon and night shifts with respect 

to eating, sleeping and recreation habits a longer time constant is 

more appropriate to these shifts. 

The function Ptw(n) gives the fraction of people who have 

travel times to work n period long and thus must leave between n and 

n+1 periods before the start time. Since the residential model is 

a discrete time model, the function is a discrete function with the 

requirement that the total distribution, for a normalized function, 

sum to one over the whole time span. Taking into consideration the 

one period offset, then 

Ptw(n) = Ptw(Tst-Ti) = 
x=n 

e"x/Taudx 
x=n-l 

= . [e-h/T.u ,e-^] 

and 

nmax 
I Ptw(n) =1.0 

n=l 

where: Ptw(n) = the fraction of people that have travel times n 

periods long. 
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= the shift start time 

= the present time period 

= the number of time periods before the shift 

start time 

= the time constant for travel time distributions 

= (l+5Tau): the maximum number of time periods 

during which people will be traveling before 

the shift start time. The 1 provides for the 

minimum time offset and the 5 yields the five 

time constants. 

(as used for the day shift in the model): 

Tau = del T (i.e. one time period) 

Tst = 32 (equivalent to 8:00 AM) 

Ti =28 (equivalent to 7:00 AM) 

n = 4 

PIt(28) = q(st,tw,n,T) 

= Ptw(32-28) 

= Ptw(4) 

= -[exp(-4/l)-exp(-3/l] 

= 0.03 

Where Plt(Ti) is defined as the fraction of people leaving for 

work during period Ti. Thus, 3% of the people who start work at 

8:00 AM are assumed to leave home between 6:45 AM and 7:00 AM. 

The travel time from work function, Pfw(n) defined as the 

fraction of people having travel times from work n periods long, 

is similar to the travel time to work function, Ptw(n). A minimum 

of one time period beyond the shift finish time is specified and the 

Tst 

•Ti 

n 

Tau 

nmax 

As an example 

For: 

and: 

When: 

Then: 

and: 



time constant, Tau, for the exponential distribution of the travel 

times can be specified to suit the shift or other considerations. 

This determines Pah(Ti), defined as the fraction of people arriving 

home at time Ti. 

2) The breakfast length function, Pbl(m), which also includes 

time for any other at home activites before leaving for work, is 

defined as the fraction of persons who get up m periods before they 

leave for work. When added to the travel time it establishes the 

wake up time (arise time). It is assumed to have a normal distri­

bution about a mean length of time which the average person requires 

between the time they get up and the time they leave for work. The 

standard deviation about the mean is specified as a number of time 

pericTds. Once again, because of the discrete nature of the model 

the densities Pbl(m) are discrete and are in fact the cumulative' 

distribution over each del.T. Because 99.75 of the cumulative 

distribution occurs between plus or minus three standard deviations 

a [16] the range of Pbl(m) is six standard deviations before each 

leaving time as established by Ptw(n). 

3) The arise time function is defined as the fraction of people 

who get up at time Ti. Thus, Pat(Ti) is the summation of the joint 

probabilities Ptw(n) x Pbl(m) for all values of m and n such that: 

Ti = Tst - n del T - m del T 

Where: Ti = the present time period 

Tst - the shift start time 

del T = one time period (1/4 hour) 

l<n<nmax 
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n m a x  = 1 + 5  T a u  

mmax =2x3 sigma 

For example: 

If: Tau = del T = 1 

and: sigma = del T = 1 

Then: nmax - 1 + 5  =  6  

and: mmax = 2 x 3  =  6  

If: Tst = 32 (8 AM) 

When: Ti = 24 (6 AM) 

Then : 24 = 32 -n del T - m del T 

= 3 2 - 6 - 2  

= 3 2 - 5 - 3  

= 3 2 - 4 - 4  

= 3 2 - 3 - 5  

= 3 2 - 2 - 6  

and: Pat(T1) = f(st,bl,tw,T,m,n) 

Pat(24) = Ptw(5) x Pbl(2) + + Ptw(2) x Pbl(6) 

4) The "to bed" density function Ptb(Ti)., defined as the fraction 

of people who go to bed at time Ti, depends on the bedtime probability 

function, Pbt(k), taken as a normal distribution about a mean bed­

time, Tbt, associated with each "shift". Thus: 

Ptb(Ti) = Pbt(k) = Pbt(Tbt - Ti); 

-3 a > k > 3 a 

Different mean bedtimes and different standard deviations can be 

specified to suit considerations peculiar to each shift. 
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5) F(Ti) defines the number of persons, for one shift, who can be 

available at home at a particular time. It is a cumulative function 

and thus: 

F(Ti) = F(Ti-l) + (Pat(Ti) - Plt(Ti) + Pah(Ti) 

- Ptb(Ti)) x Shift Population 

6) TF(Ti) defines the number of persons, for all shifts, who can 

be available at home at a particular time. It is therefore the 

sum of the F(Ti) for each shift. 

7) Dividing TF(Ti) by the total area population gives the 

maximum availability function Pavail(Ti) which is the "general" 

fraction of people who can be available at home at a particular 

time. 

The Fortran program for the availability function is included as 

Appendix B. It has the flexibility of allowing various values, in 

increments of del T, to be assigned to the standard deviation (sigma) 

and the time constant (Tau) which might be more suitable to different 

shifts. For example, in the model a time constant of one time period 

(1/4 hour) was used for the travel time to work for the first shift and 

a time constant of two time periods (1/2 hour) was used for the 2nd shift. 

Similarly the standard deviation, o, for the "breakfast length" function 

for the two shifts were also taken as one and two periods respectively. 

The work shifts for weekend days and holidays are, in general, different 

than those for weekdays and therefore a different set of statistics are 

entered in obtaining the function for weekend days. For the case of 

those work shifts that do not work on Saturday or Sunday, dummy start 

and stop times can be entered and both the leave for work function 



Plt(Ti) and the return from work function Pah(Ti), are set equal to "0" 

for all T. An example of the maximum availability function for a week­

day is shown in Figure 2.3.1.2. (The function is shown continuous in the 

figure but is implemented as a discrete function in the model). 

To account for the greater likelihood of people being away from 

home at certain times and on certain days for activities other than the 

work shift, the maximum availability function, Pavail (Ti), is modified 

by a probability function Paway(Ti), which is defined as the probability 

of being away from home for reasons other than work or school, based on 

the time of day and whether the day is a weekday, or weekend day or a 

holiday. It takes into consideration the times when activities are 

generally available and when people are more likely to do things outside 

the home. In the model only two away probability functions are used, one 

for weekdays and one for weekend days. A more comprehensive approach would 

result in a different away probability function for each day of the week 

and for holidays, with additional input form the time of year. 

Therefore the maximum availability function is adjusted by 

applying the probability for the particular day and time. In addition, 

since the actual number of people available at home during a particular 

time period, Ti, depends on whether the probability that they are at home 

is realized, a test is performed to determine how many of the residents 

are actually away during each interval. Since the process of being away 

is random with time dependent probability, the model used in computing 

the number of people at home begins by comparing a randomly drawn per­

centage to the "away probability", Paway(Ti), at time Ti. If the former 

is not within the range of the latter, the decision is made that those who 
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could be home, are home during this period. If the former is within 

the range of the latter the decision is that some of the residents are 

away. A second test is then made to determine how many are away. The 

likelihood of a larger number of potentially available persons being away 

is less than that of a smaller number being away. This factor, W(I), 

is a weighting factor, used in the test to decide how many persons are away. 

This test also uses a randomly selected percentage as the comparator. 

When using the generalized availability function, Pavail(Ti), the 

computed number of persons will generally not be an integer. A final 

test is therefore made, using the rounding convention, to convert to an 

integer number of persons. 

The block diagram which describes the function is given in 

Figure 2.3.1.3 and the definition of the variables follows it. 

2.3.2 Proclivity Functions 

Some of the proclivity functions developed for use in the re­

sidential model are based on the results of the Connecticut Light and 

Power Company Residential Load Test [1], which included a demographic 

survey. The data which was useful in developing proclivity functions 

for particular appliances were answers to the following questions 

which were asked in the demographic survey: 

1) How many times a week do you use a particular appliance in 

the summer? 

2) • In which time frames is the appliance normally used on a 

weekday and on a weekend day? 

3) How many hours is it used on an average day? 

4) What are the answers to items 1 through 3 for the winter? 
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The survey delineated specific time frames (which will be 

indicated in the development) to be answered by a yes or no. The 

primary purpose of the load test was to determine the elasticity of "time 

of day" use to "off-peak" time pricing schedules and the time frames were 

chosen to more readily reflect any changes. The data is therefore not 

as specific as could be desired but it still gives a reasonable basis 

for developing proclivity function. 

The method used is illustrated by the development of the proclivity 

functions for automatic clothes washing machines. Separate functions were 

developed for summer and winter weekdays and weekend days for this 

appliance. 

The development began by compiling the responses of all households 

having clothes washing machines. The survey provided data as to the 

estimated number of times the appliance was used in a week, the number 

of hours used on a weekday and on a weekend day and the estimated time 

frames of use. From the compiled data, averages were computed for 

times of use, hours of use and specific time frame of use. This 

data is presented in semigraphical form in Figure 2.3.2.1. 

The approach used in applying the time frame data in developing 

the proclivity functions was as follows: 

1) The usage data for the hours 9PM to 8AM was assumed to apply, 

more realistically, between 9PM and Midnight and again between 

6AM and 8AM. 

2) An incremental density function whose cumulative distribution 

is 1.0 over one day was developed by dividing the given per­

centage during each particular time interval, Ti, by the sum 

of the percentages for all time intervals in the day. This 
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function is the basic proclivity function for using clothes 

washers. The computer flow diagram which developes this, and 

similar proclivity functions, is given in Figure 2.3.2.2. 

It should be noted that the program computes the value for each of 

the 96 1/4 hour increments in the day. Utilization of the average times 

per week and average hours per use data is discussed in the elemental 

model development in Section 2.4. 

A plot of the proclivity function output by the computer program 

is shown in Figure 2.3.2.3. 

A second type of proclivity function, the tendency to do some-

thing which indirectly affects the use of one or more electrical 

appliances, is illustrated by the development of a meal time proclivity 

function. The times at which meals are eaten affects the use of the 

electric range, additional use of the refrigerator and the use of hot 

water from the electric hot water heater for personal washing and the 

washing of dishes. It therefore affects the models of a number of 

different appliances. The survey [1] generated data as to when meals 

were eaten by each hoursehold. As was done for the other data, totals 

for each time period were compiled. From these totals relative densities 

were computed for each Ti. The tabular analysis of the data and the de­

velopment of the function is shown in Figure 2.3.2.4. 

It should be noted that in the development the cumulative 

distribution of the function is 1.0 for each meal rather than for the whole 

day as in the other type of proclivity functions. Since each meal is at 

least semi-independent from the others, the cumulative distribution is 

not based on the total sample but rather on that portion of the sample 
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eating a particular meal. This is based on the reasoning that if a 

meal is eaten at home it implies that someone is there to eat it. In 

the models which use this function, it is applied in conjuction with the 

availability function which takes the requirement to have someone at home 

into account. 

The basic function is shown in Figure 2.3.2.5. It is shown as a 

continuous function in the figure but is implemented as a discrete function 

in the model. Its use in the various elemental models and in the composite 

residential model is discussed in Sections 2.4 and in Chapter 3.0. For 

weekend days the mealtimes are shifted 4 periods later. 

2.4 Model Development 

The form of the residential model is a combination of the loads 

due to individual appliances. Therefore the model has the flexibility 

that any appliances not present in a particular household can be de­

leted. Also any new type of applicance, which could have a significant 

affect on the load, can be modeled and readily included in the composite 

model. 

For this model the individual appliances were chosen on the basis 

of saturation, that is the percentage of households possessing the appli­

ance, as reported in "Merchandising" [17]; on the basis of the amount of 

average monthly use as reported in "Energy Facts" [18] and various public 

utility customer relations bulletins [19] and [20]; and on the basis of 

the size of the individual loads. Separate models were not developed for 

those appliances which essentially are a substitution for another 

appliance. For example, coffee-makers, broilers and micro-wave ovens 

are essentially a substitute for the electric range, which is modeled. 
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Some seasonal appliances such as humidifiers and dehumidifiers are grouped 

together where it is unlikely that both will be used together and where 

the switching functions have similar parameters. On the foregoing 

basis the following individual appliances were analyzed. The 

"miscellaneous" model is included to provide space in the composite 

model to more easily add an additional appliance if required. 

1) Lighting 

2) Television 

3) Refrigerator 

4) Electric range (or similar appliance) 

5) Dish washer 

6) Clothes washer 

7) Clothes dryer 

8) Water heater 

9) Freezer 

10) Air conditioner 

11) Fans/Unit heater 

12) Electric space heating 

13) Humi di fi er/Dehumi di f i er 

14) Swimming pool filter 

15) Miscellaneous 

Because of time constraints, all of the appliances listed have 

not been completely modeled or tested. Items 1 through 9, and a manual 

version of the dehumidifier, item 13, were included and exercised in 

the combined model. Items 11 and 14 were modeled but not tested. 

Items 10 and 12 are discussed but have not been modeled. 



2.4.1 The Lighting Model 

In determining a model for the residential lighting load, con­

ventional lumens per square foot and other methods of providing adequate 

lighting do not indicate the amount of lighting in use at a particular 

time. In general this is governed by the number of people at home as 

well as by the size of the house. Public Service Company of New Hampshire 

in its periodic publication, Light Lines [20], points this out. Their 

estimate of the normal monthly energy consumption for lighting by an 

average family of four is 75 kilowatt-hours per month when living in a 5 

room house, 85 kilowatt-hours in a 7 room house and 100 kilowatt-hours in 

a 10 room house. The major contributing factor to the lighting load is the 

lighting requirements of each person but additional factors are involved 

in a larger residence. Household members are more likely to occupy 

different areas in a larger house resulting in less communal lighting and 

there is a greater likelihood that rooms are left lighted even though not 

occupied. 

Based on the foregoing considerations the residential lighting 

model has been developed as a function of the number of persons at home 

and the number of rooms in the residence. 

The method followed in developing the parameters for the light­

ing model is outlined below. 

1) The availability of a generalized person was averaged over 

a month and found to be approximatley 40 percent. 

2) A nominal value of 60 watts (.06 kilowatts) was taken as 

the average lighting requirement for each person. 

3) On the above basis the energy used by four persons in 

a 30 day month was then calculated to be: 



Kilowatt-hour use = (# of Residents) x (average availability) x 

(24 ho.urs/day) x (30 days/month) x (.06 kilowatt) 

= (4 x .4 x 24 x 30 x .06) 

= 69 kwhrs. 

4) The parameter used for describing the average watts used 

for each room of the residence exceeding the number of 

residents was determined as follows, based on £20]: 

Estimated 
Kilowatt-hour 

# of Rooms Excess Rooms Difference 

5 1 75-69 = 6 

7 3 85-69 = 16 

10 6 100-69 = 31 

Total 10 Total 53 

Average kilowatt-hour/Excess room = 53/10 = 5.3 KWHR 

The wattage assigned to each "excess" room was based on 

the assumption that this lighting would be normally used 

only when someone was available to turn on the lights. 

Thus the parameter was calculated using the average 

availability as: 

Wattage/excess room = (kilowatt-hours/room) x 1000 

/(24 hours x 30 days x average avail.) 

= (5.3 x 1000)/(24 x 30 x .4) 

= 18 watts/room 

5) To adjust the model for time-of-day considerations 

necessitates estimation of the difference in requirements 

between daylight and darkness hours. During daylight hours 
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the load per person and the "excess room" load are normally 

less than during nightime hours, with the expectation that 

the "excess room" load will be considerably less during 

daylight hours. Therefore the "average" parameters were 

adjusted to reflect the two conditions. As an additional 

consideration, during daylight hours a minimum of one person 

must be. home to initiate the "excess room" load. 

The lighting function is described by: 

KWUSED(Ti) = .060 x NHOME(Ti) x Factor 1 

+ 0.018 x (NROOMS-NHOME(Ti)) x Factor 2 

Where: 

KWUSED(Ti) = Kilowatt load during period i 

NHOME(Ti) = Number of persons at home and awake during period i. 

NROOMS = Number of rooms in the residence 

Factor 1 = .5; 32 <_ Ti £ 68 (i.e. daytime) 

= 1.0; otherwise (i.e. nightime) 

Factor 2 = .1; 32 £ Ti £ 68 

=1.0; otherwise 

The time spans of Factor 1 and Factor 2 are subject 

to seasonal adjustment. 

The block diagram for the lighting model is given by Figure 2.4.1.1. 

2.4.2 The Television Model 

The time varying load due to television sets and similar home 

entertainment sources such as stereo music equipment is determined by a 

number of factors. These include the power taken by the sets, the number 

of sets in a residence, the availability of people at home to turn on 
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Figure 2.4.1.1 Diagram of the Lighting Model 



the sets and their proclivity to do so. The power used by older 

television sets (tube type sets) is greater than that taken by the newer 

models (solid state sets). It is also greater for color sets than for 

black and white models. The size of the set also affects the power re­

quired. However, in order to keep the model within reasonable bounds, 

"average" values of wattage for the four basic types (old, new, color and 

black and white) were used. The parameters are changeable in the model 

if greater detail is desired. A diagram of the method of "assigning" the 

television sets for a particular residence is given in Figure 2.4.2.1. 

The selection of the particular wattage is done on a probability basis 

using the fraction of old and new sets as the criterion. When there are 

both color and black and white sets in a residence it is assumed the color 

set is used first. Also, in the general model, a "single" television 

set is assumed to be color but this could be changed in the parameters 

supplied to the model. 

"Merchandising" [17] estimates the national saturation (1978) of 

color television sets at 85.2% and of black and white sets at 99.9% for 

all homes that have electricity. The actual saturation in a particular 

area depends to a great extent on the proximity to television stations but 

with the increase in Cable TV and other signal enhancing systems the eventual 

saturation can be expected to appraoch 100% for both types of units. The 

saturation percentages recorded in the Connecticut Light and Power Company 

Residential Load Test survey [1] were much less than those given above 

but the data is still considered sufficient for determining the proclivity 

functions for the model. The percentages recorded in the survey are 

listed below for information. 
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Houses with television sets - 89% 

Houses with B&W sets only - 21% 

Houses with Color sets only - 46% 

Houses with both Color and B&W - 23% 

Based on data given in "Merchandising" [17] for 1979, the number 

of B&W sets replaced per year is approximately 5% of the total number of 

sets and the number of Color sets replaced is approximately 10% of all 

Color sets. In the model, since the major shift to solid state occurred 

in 1973, the percentage of old color sets was estimated to be 80% and 

the number of old black and white sets was estimated at 90% for a nominal 

year 1975 (to suit the survey dates). 

Additional information obtained from Merchandising £17] indicates 

that the predominant size for color sets is 19 inch and for black and white 

is 13 inch. The nominal wattages used for these sets are: 

Color (tube type) = 350 watts 

Color (solid state ) = 150 watts 

B&W (tube type) = 100 watts 

B&W (solid state) = 30 watts . 

The proclivity function was developed in the manner previously 

discussed in Section 2.3.2. The model also uses the availability function 

to compute the number of people at home. That function was discussed in 

Section 2.3.1. 

Refer to Figure 2.4.2.2. During each period the model tests to 

see if anyone is available to watch television. Since essentially all 

programs start on the hour or half hour and run in half-hour increments, 

the test for TV "on" is made on even quarter hours and if the TV is "on" 

at that time it is assumed it will be on for at least one half hour, at 

which time another test i's made. 
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The probability of a television set being used during a particular 

period, Probtv, is the product of the television proclivity function and 

the average number of periods of use per day, as developed from the survey 

data. If there is more than one set in the house the tests are repeated 

to see if any other set is being watched. 

2.4.3 The Refrigerator Model 

The refrigerator model is a complex model since many factors combine 

to determine when it switches on and off. The basic control for the re­

frigerator is the thermostat which responds to a designed differential 

about a desired (set) refrigerator compartment temperature. In combination 

units (i.e. having both a refrigerator and a freezer compartment) one 

compressor system provides the cooling for both areas and is controlled 

by the setting of the refrigerator compartment thermostat. The percent­

age of cooling going to each area depends first on the location of the 

freezer, which can be inside the refrigerator compartment or be outside 

of it with a separate door. In the separate door type a deflector, which 

may be adjustable, is provided to regulate the percentage of cooling air 

flow to each compartment. The above discussion is based on the ASHRAE 

Handbook [21] and retail catalogue information. 

Factors (Figure 2.4.3.1) which cause the refrigerator (and 

freezer) compartment temperature to rise are: 

1) Heat transmission through the walls and the door gaskets due 

to the difference between inside and outside (ambient) temper­

ature. The rate of heat transmission varies as the temper­

ature difference varies and consequently has a seasonal vari­

ation, which is limited by household heating and cooling. 
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2) Heat entry due to door openings and air leakage around the 

gaskets. Particularly during humid weather, this air contains 

appreciable latent heat as well as sensible heat. 

3) Heat entry due to power dissipated by internal fans, lights 

and heaters. The heaters may be used for preventing condensation 

on the outside of the box and/or keeping the compartments frost 

free (automatic defrosting). 

4) Heat entry due to the heat stored in products placed in the 

refrigerator which must be cooled to the refrigerator or 

freezer compartment temperature. 

The factors which affect heat removal from the refrigerator in-

cl ude: 

1) The capacity of the compressor unit, assuming the other components 

such as the condenser, evaporator and the expansion device are 

adequately sized. 

2) The temperature of the air in the vicinity of the condenser 

which might exceed normal ambient due to poor circulation and 

thus affect the heat rejection capacity of the condenser. 

The run time is determined by the difference between the heat 

removal and heat entry rates. The off time is determined by the heat 

entry rate and the equivalent specific heat of the refrigerator products 

(since the thermostat responds to temperature). If a product is added 

at a higher temperature there will be additional run time until its 

temperature is reduced. 

Because the heating and cooling rates, coupled with the heat 

capacity of the refrigerator and its stored products, are such that the 

refrigerator cycle time is often much less than 1/4 hour, the refrigerator 

model operates on a one minute period. The 1/4 hour load is the 
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"average" kilowatts for that time. This is consistent with electric 

utility practice in determining and recording their time varying load. 

The foregoing factors have been included in the model. The 

simplifying assumptions and the provisions for expansion are discussed 

below. A detailed development of the refrigerator parameters is included 

- in Appendix 'C'. 

1) The rate of heat transmission is contained in one parameter 

which gives the heat rate per minute per degree fahrenheit. 

The value used in the model is based on an average refrigerator. 

The parameter can be readily changed as input data to suit 

studies of different refrigerators. It is based on simplified 

calculations suggested in the ASHRAE Handbook [21]. This 

parameter is multiplied by the'current difference between room 

ambient and refrigerator compartment temperature to obtain the 

heat added by heat transmission and leakage during the current 

minute. No separate parameter has been provided to specify 

the additional latent heat due to high humidity. However 

since the model responds to a summation of heats entering, 

this can be added at a later date with little difficulty. 

2) The time of heat entry due to door openings is random through­

out the day, with a greater likelihood at meantimes and when 

more people are home. A certain number of random openings and 

a certain number of openings per meal can be expected. The model 

includes these sub-functions as described below. 

The first sub-function compares a random number (between 

0 and 1) to a probability of the door being opened. This 

probability is determined on the basis of an expected number of 
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openings per day (10 in the model but the number is readily 

changed). Dividing this number by the number of minutes 

in a day gives the probability of the door being open during 

any one minute.' Since someone must be available to open the 

door the above probability is "weighted" by multiplying it by 

the number of persons at home. This gives the probability of 

the door being opened at a particular time. 

The second subfunction compares a random number (between 

0 and 1) to the probability that the door will be opened a 

number of times during each mealtime period. This probability 

is calculated using 6 as the "expected number" of openings for 

each meal. (This parameter can be changed). To account for 

the expectation of more openings for more involved meals this 

number is weighted by multiplying it by the number of people 

at home for a particular meal! To account for the greater 

likelihood of openings occuring before and after the actual 

meal the probability is weighted toward the beginning and end 

of the meal period. The mealtime is determined by the mealtime 

proclivity function described in Section 2.3.2.1. 

The amount of heat added per opening is calculated on the 

basis of a complete change of air per opening plus an additional 

random amount of heat due to a longer door opening (which causes 

a rise in stored product temperature) or due to the initial 

temperature of the product stored being higher than the re­

frigerator temperature. 

3) The amount of heat due to fans and surface heaters is accounted 

for in the model by including these components in the heat 

added and removed subfunctions. For frost-free refrigerators a 



47 

twice daily heat load is added for frost removal. The load due 

to lights is included in the door opening allocation. 

4) To model the rate of heat removal a subfunction based on data 

providad in the ASHRAE Handbook [21] is used. This specifies 

a fixed amount of heat removal per minute based upon the 

compressor capacity at standard conditions. 

The parameters presently used in the model are based on the most 

prevalent size of refrigerator, approximately 16 cubic feet, as reported 

in "Merchandising" [17] but can be changed to suit other sizes. The 

block diagram which describes the model is given in Figure 2.4.3.1. 

2.4.4 The Electric Range Model 

The model for the electric range combines data on time of use 

extracted from the Connecticut Light and Power Company Residential Load 

Test survey [1] together with data for estimated monthly use published 

by various electric utilities, [18], [19], and [20]. Unlike most other 

electric loads the amount of power used when the range is switched in 

is not a fixed amount. The most common range has four top elements, 

which are continuously or stepwise variable. It also has a thermostatically 

controlled oven and an on or off broiler. Nominal values for the top 

units are 1600 watts (6 inch) and 2100 watts (8 inch). The oven and 

broiler units are 2500 watts each. The amount of load switched in at a 

particular time depends on the nature of the meal being prepared and an 

estimate of this amount must be made in the model. 

Table 2.4.4.1 lists pertinent data from the previously cited 

sources which were used in developing the required parameters. The reason 

for including data on the coffee-maker in the breakfast factor is because 

it accounts for the difference between the reported "breakfast" range use 
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FACTOR DESCRIPTION DATA SOURCE 

Average times/day range use 2 1 

Average times/day coffee-maker use 1 1 

% range use - breakfast 60% 1 

% coffee-maker use - breakfast (weighted) 20% 1 . 

% range use - lunch 60% 1 

% range use - dinner 90% 1 

Estimated range energy/month 100 kwhr* 20 

Estimated coffee-maker energy/month 8 kwhr* 20 

Estimated average daily energy use (108/30) 3.6 kwhr 

Estimated percent of total for: 

Breakfast 30% 

Lunch 10% 

Dinner 60% 

Calculated Base Load per Period: 

Breakfast (3 periods) 3.6 x .3 x 1/3 = .36 kw 

Lunch (2 periods) 3.6 x .1 x 1/2 = .18 kw 

Dinner (4 periods) 3.6 x .6 x 1/4 = .54 kw 

*For an average family of four 

Table 2.4.4.1 Electric Range Use and Load Data 
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and the reported "breakfast eaten" percentages given in the survey [1]. As 

in the other appliance models, the parameters are included in such a way 

that modification is readily accomplished. 

A diagram of the electric range model is included as Figure 

2.4.4.1. Referring to the figure the model selects the base load for the 

next meal, based on the time of day. This load is then multiplied by the 

number of persons at home and by a random factor to obtain' the load 

connected each period. The random factor, which is the sum of .5 and a 

randomly selected number, PSIZE, allows the load to vary from .5 to 1.5 

times its estimated nominal value. 

Using the mealtime function previously described in Section 

2.3.2.2, the model decides if and when a particular meal is to be eaten. 

If the meal is to be eaten, the model then specifies the amount of load 

and the periods in which it is connected. The load is applied over a 

number of periods consistent with the type of meal being prepared. A 

random component could also be included to account for other than mealtime 

use such as baking and snack preparation (but is not included at present). 

2.4.5 The Dishwasher Model 

The information developed in the Connecticut Light and Power 

Residential Load Test survey [1] indicates that the automatic dishwasher 

is used an average of slightly less than once a day (i.e. 6.3 times a week) 

However in addition to the electric energy which it uses directly it con­

tributes to the hot water use (and so affects the water-heater load). It 

is therefore included in the model. The block diagram which describes the 

model is given in Figure 2.4.5.1. The probability of the dishwasher being 

used on a particular day is 90% on the average, based on the survey data, 
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data, and this is used as the first test in the model. The time of use 

on a particular day is based on a proclivity function for dishwashers de­

veloped in a manner similar to the one for the automatic clothes washer 

developed in Section 2.3.2.1. The proclivity function Padwd (T^) shows 

a greater tendency to use the. dishwasher at the end of the day which is 

certainly reasonable if it is used only once a day. To assure that the 

machine operates in the day specified by the first test, the "cumulative" 

proclivity, Padwt, is computed and tested at each period which further 

weights the probability of operation toward the end of the day. 

When the dishwasher operates, both the electric load connected to 

the system and the amount of heat used (in the form of hot water) are 

calculated. Padwt is reset to zero and a flag, Adwuse, is set to indicate 

the dishwasher has been used. 

2.4.6 The Clothes Washer Model 

The clothes washer does not use a large amount of electric energy 

during the month (it is estimated at 10 kilowatt-hours) but it is 

associated with the operation of the dryer and the water heater both of 

which consume appreciable energy. For that reason it is modeled here. 

The model uses the proclivity curve developed in Section 2.3.2.1. An 

estimate of the number of washes per week based on the survey data and 

the number of residents is also used. Each wash is considered to last 

one hour and the average power for each period has been estimated. A 

typical washer cycle was used in the estimation. 

The proclivity function, Pwhtim (T^) is a time-of-day function. 

It does not indicate a preference for any particular day, or if more than 

one wash may be done at a particular time. Therefore two additional factors 
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have been included. The first, Pwday (I), is the probability that the 

washer will be used on a particular day. This parameter is estimated 

by dividing the number of remaining washes by the number of remaining 

days in the week. The second, Swash (L), assigns the expectation that 

one, two or three washes will be done in succession. The total number 

of washes in a week is still limited based on the number of residents. 

In order to estimate the amount of hot water used by the washing 

machine, four combinations of wash and rinse temperatures are available 

and the function, Tywash (k), is used to select the combination for a 

particular wash, on a probabilistic basis. The heat demand on the water 

heater is calculated from this data. The block diagram for the washer 

(and dryer) model are shown in Figure 2.4.6.1. 

2.4.7 The Clothes Dryer Model 

The model tests for the availability of an electric clothes dryer 

and, if the residence has one, calculates the load associatd with it. 

The model assumes an average run time of one hour (four periods) and 

that drying follows immediately after washing.- The model selects the 

type of drying on a probabilistic basis using the function, Tydry (k), 

which assigns a small probability of air only or hot dry and the largest 

probability of warm dry. This is the type of drying recommended for 

"permanent press" fabrics which seem to predominate now. With energy 

conservation in mind a test could be readily added which would model the 

tendency not to use the dryer if weather permitted outside (or even in­

side) drying. 
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2.4.8 The Water-heater Model 

The water heater has a "normal cycle" which causes it to turn on 

and off when a thermostat senses a fixed deviation below or above a de­

sired (set) temperature. The hot water is drawn from the top of the 

tank and the cold replacement water is introduced at the bottom of the tank. 

Although some diffusion can be expected, the tank basically operates in a 

stratified mode. This allows a type of operation called off-peak in which 

the water is heated by a low-wattage (1000 to 2000 watt) element during the 

hours between 9PM and 6AM when utility demand is low. A reduced rate is 

charged for this service. A large tank (80 gallons minimum) is usually 

required by the utility for this service and a larger element which can 

operate at any time is provided in the top of the tank. This allows heat­

ing of the upper portion if more hot water is used than was stored off-

peak. Public utilities indicate that for this type of water heater 88% 

of the electric energy is used off-peak and only 12% is used during the 

day (on-peak). This seems to justify stratification principle use in the 

devleopment of the "normal-cycle" part of the model for the water heater. 

The off-peak water heater is not the most prevalent type of water 

heater (because of its size). More prevalent is a two element type with 

equal elements. The lower element keeps the whole tank hot and the upper 

element only operates when so much water is used at one time that even the 

upper portion of the tank drops below the desired water temperature. 

Public utilities give a special rate for this type of service, called 

"quick recovery", if the tank used is larger than a certain minimum size. 

There are also small tanks using one element, mostly in older 

mobile homes. 



Modern water heaters have submerged elements which are very efficient. 

There are older heaters, some of which are still in use, that use an 

external element which heats the water by heating the bottom of the tank. 

The developed model is based on the submerged element type but an 

efficiency factor could be added to account for the older type. 

The model simulates two element water heaters. Both the off-peak 

and the quick-recovery types can be simulated. Standard size water heaters 

with "average" size elements have been included. As in the other models 

these values can be readily changed. Other factors and approximations 

used in the model are listed below: 

1) The model operates on the basis of a summation of heat 

used, lost and added, in BTU. Heat is used when hot 

water is used, heat is lost through the insulation and 

heat is added when an element is turned on. 

2) The heat capacity of the water heater is determined by its 

liquid capacity and the difference between the desired 

water temperature and the temperature of the cold make-up 

water. 

3) In a two element unit the upper thermostat (and element) 

controls the upper third of the tank and the bottom thermo­

stat (and element) controls the lower two thirds of the 

tank. This is to be interpreted in the sense that the 

upper element will not come on until all the stored heat 

in the lower part is exhausted. 

4) The assumption is made that when an amount of heat is 

removed from a section that would lower the overall 

section water temperature by the lower differential temper­

ature, that element will be energised. It will stay on 
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until enough heat is added to. raise the sections temperature 

to the set point plus the differential. This approximation 

is considered consistant with placement of the elements 

and the water heater heat balance. 

5) The water heater cycle has been set at 5 minutes (i.e. 3 

times in each period) to minimize temperature overshoots 

for large element sizes and undershoots for large water 

use. 

6) The heat loss through conduction is based on the amount of 

hot water left in the tank. This is mainly significant for 

off-peak water heaters where the amount of hot water in the tank 

varies appreciably throughout the day. 

To indicate the actual model complexity for the water heater, its 

block diagram is shown in Figure 2.4.8.1. The stochastic use function 

is described in Section 2.4.8.1. 

2.4.8.1 The Hot Water Use Function. Water heater operation de­

pends primarily on when hot water is used, except for the off-peak heater 

which operates primarily after 9PM. In order to complete the modeling of 

the water heater a "hot water use" function was developed. Some of the 

inputs were mentioned previously in the dishwasher and clothes washer 

models. Other important inputs include hand washing of dishes, wash basin 

use and bath/shower use. Figure 2.4.8.1.1 is a block diagram of the "hot 

water use" function showing the inputs that have been included in the 

model. A separate hand clothes washing use was not included because of 

the saturation of washing machines and the avaiaability of laundry 

centers. However since the final input is a summation of the various uses 

during each time period, additional sub-functions can be easily added. 
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The amount of heat required by each use is based upon the average 

amount of water needed for a particular use, the temperature at which it is 

used and the temperature of the cold water entering the heater. Values 

for the amount and temperature of the water for various uses are based on 

data given in Hutton and Dillon £22]. Thus: 

Heat Use (BTU) = gallons use x 8.34 lbs/gal 

x (Temp, of Water - Cold Water Temp.) 

which for wash basin use is: 

Heat Use (BTU) = 2 x 8.34 x (105° F - 60° F) 

= 750 BTU/use (for TCW = 60° F) 

As previously indicated the time of hot water use for the clothes 

washer and the dishwasher are determined by their proclivity functions. 

The wash basin and the bath/shower sub-functions were combined in one 

function. A flow diagram of the wash and bathe function is shown in 

Figure 2.4.8.1.2. It is based on the following reasoning and assumptions: 

1) . That people normally wash their hands before and after eating. 

Considering that the mealtime spans an average of six periods 

for each meal there is a probability of 2/6 that a person will 

wash during each period. This has been weighted toward the 

beginning and end of each mealtime. The factor is designated 

Pwashm and is equal to zero outside of the meal periods. 

2) Each person is independent so that a test (comparison to a 

randomly drawn percentage) is made for each person at home. 

3) In addition, a probability of two additional random washbasin 

uses per person per day has been assumed. This yields a 

probability of 2/96 of wash basin use in any period by each 
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person. This is multiplied by the number of persons at home 

to give the probability of wash basin use, Pwash, during a 

particular time period. This is tested against a random per­

centage. A "children" factor increases the average amount of 

hot water used for hand washing. 

5) Bath/shower use is modeled by assuming an average of 5 uses 

for person per week. (This number is easily changed). This 

yields an unweighted probability of 5/672 where 672 is the 

number of periods in a week. This is weighted by (assumed) time 

of day and day of week preferences. When multiplied by the number 

of people at home it gives the probability of bath, Pbath, use in 

a particular period. (The daily total number of baths is also 

limited to one per person per day). 

A function for hand dishwashing was also developed since the 

saturation of dishwashers is only 42% (see "Merchandising" [17]), and 

even when a dishwasher is available it is not always used. A block 

diagram of this function is shown in Figure 2.4.8.1.3 and is based on the 

following assumptions: 

1) If there is no dishwasher or if it isn't used, the dishes 

will probably be done after each meal that is eaten. 

2) The probability, Dadish(MT), of doing the dishes is different 

for different meals. 

3) When they are done, the dishes are washed about an hour after 

the meal start (i.e. (MTime (MT)+4), where the value of MT de­

signates the particular meal. 
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2.4.9 The Freezer Model 

The normal-cycle function of the freezer model is essentially the 

same as the refrigerator normal-cycle function. The parameters are chosen 

to suit the different compartment temperature, insulation and compressor 

size. The freezer is often kept in an area whose ambient temperature 

is less than the house temperature (i.e. a basement) so that heat gains are 

less. The two basic types, upright and chest, gain different amounts of 

heat through door openings but the use function is much less than for a 

refrigerator. 

The freezer model assumes that most of the energy is used to remove 

heat gained through the walls and gaskets. The use function is based on 

an estimate of three openings a- day. A loading function based on one 

loading a week has been considered for a future addition but is not pre­

sently included. The model diagrams are similar to those for the refriger­

ator which are shown in Section 2.4.3. 

2.4.10 The Air-Conditioner Model 

The residential air conditioner can be a central (whole house) or 

unit (room) type, the predominance depending on the area weather. In 

either case some simplifying assumptions are needed for a viable model. If 

it is assumed that the size (maximum capacity) has been selected to cool 

the required area under the most severe (design) weather conditions, then 

the cooling load during any period is some fraction of the maximum 

capacity. "The cooling load is determined by the outside temperature and 

solar radiation but lags the present conditions due to the residence con­

struction and heat storage capability. The cooling load can be estimated 

by relating the outside weather to the design weather. The electrical 
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power consumption can then be estimated from the cooling load and the 

energy efficiency rating (EER) of the unit. 

Three functions "drive" the air conditioner. In hot weather areas 

the predominant function is the weather function. In temperate areas, 

where the air conditioner is not required constantly, the availability 

and proclivity functions would normally determine when the air conditioner 

was turned on. Once turned on, the weather function will have a large 

influence on how long it is left on. 

To model an "average" residence the predominant size air conditioner 

for the area must be estimated and the proclivity function developed. 

The later will have some basis in the "comfort index". As previously 

indicated, the air conditioner has not been modeled. 

2.4.11 The Fan Model 

Due to radiation on sunny days additional heat enters the house 

through windows. Radiation also causes the outside surfaces of the re­

sidence to be at a higher temperature than the outside air. The inside 

temperature can therefore become higher than the outside air. Under these 

conditions attic and window fans are often used to reduce inside temper­

atures, especially in the afternoon and evening. 

Large window fans (20 inch) use about 200 watts of power and re­

present a constant load. Attic fans, used in some residences, are usually 

larger and sometimes thermostatically controlled. The saturation of attic 

fans in the survey area [1] was only 10% and are not included in the 

model. The saturation of window and other fans was 70% and are modeled. 

A time of day function based on the percentages given in the survey data 

was used. This function indicates the fan is more likely to be used 
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in the afternoon and evening as expected. In the model a test is also 

made to determine if the inside temperature is higher than the outside 

temperature and if it is greater than 75 degrees F. A preliminary diagram 

for this model is given in Figure 2.4.11. The model requires further 

evaluation and testing. 

2.4.12 The Electric Heat Model 

A model for the electric heat load of a totally electrically heated 

residence relates the electric energy required for a period to the heat 

loss of the residence for that period. The heat loss for the "whole house" 

can be estimated based on the house geometry, the insulation values, the 

windown treatment and the inside-outside temperature difference. Some 

time lag will result with changing temperature due to the heat storage 

capability of the house. In a simplified approach which neglects the 

temperature swing about the thermostat setting, the function driving the 

model would be the predicted outside temperature and the thermostat . 

setting. For different residences both the "daytime" and "nighttime" 

settings will have a range of values based on a resident preference pro­

bability. The switching from "daytime" to "nighttime" settings would be 

governed by the availability function, considering that if no one is home 

the nighttime setting would probably be used. For a resistive type heating 

system the heat loss can be converted directly to a kilowatt load for the 

period. For a heat pump system a factor based on the outside temperature 

is also needed. 

A comprehensive residential electric heating load model must also 

consider the tendency to leave areas unheated and to use auxiliary heat 

sources. A comprehensive model may not be practical for electric heating 
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for this reason but a possible approach would be to introduce a "use factor" 

to modify the "whole house" loss to account for the unheated areas and a 

function to describe the heat added by the auxiliary source in each 

period. The electric load would then be based on the net heat required for 

the period. Determining and modeling the distribution of the "use factor" 

and the distribution and time dependence of the auxiliary heat function 

are subjects for future work. 

2.4.13 The Humidifier/Dehumidifier Model 

The humidifier operates primarily during the winter months. Low 

humidity in a residence is normally the result of infiltrating cold out­

side air being heated to the inside temperature. Very low humidity re­

sults when the outside humidity is low and is particularly severe in re­

sidences having forced hot air heating systems. 

Residential humidifiers are of many types including passive units 

installed in the ducts of hot air systems. Electrically operated units 

range from simple vaporizers to large (18 gallons per day) automatically 

controlled units. 

No saturation data for humidifiers is available in Merchandising 

[17]. The survey data [1] indicates that the percentage of residences 

having humidifiers is small (17%) but, where installed, have an 82% 

probability of being on approximately 20 hours a day. Even the largest 

units do not represent a very large load (approximately 100 watts) but the 

load is constant. Therefore a simplified model is included. 

The dehumidifier operates primarily during the summer months. 

High humidity in a residence results from dampness entering through the 

basement walls, water using activities such as showers, clothes drying 
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and high outside humidity. High humidity in the above ground spaces is 

often accompanied by high temperatures and is usually reduced by the use 

of air-conditioning. High humidity in below ground spaces is usually 

associated with moderate temperatures and is normally reduced by use of 

dehumidifiers. The saturation of dehumidifiers is approximately 40% 

nationwide [17] and in the survey area [1]. The survey data indicate a 

use of about 19 hours a day with the use probability ranging between 75% 

and 90%. Dehumidifiers represent a more substantial load than humidifiers 

since they contain a refrigeration unit. They are included in this 

simplified model. A diagram of a possible model is given in Figure 

2.4.13. The model checks to see if the unit is turned on by comparing 

the appliance use probability, Phon, to a random number. If the unit 

is turned on an automatic unit is controlled by the humidity, while a 

manual unit runs continuously. Only a manual dehumdifier is included 

in the model at this time. 

2.4.14 The Swimming-pool Model 

For in-ground pools and for large above-ground pools the water 

filter pump represents a large continuous load. Filters can be run 24 hours 

a day but are normally run only as long as required to give satisfactory, 

water conditions. Usually this is about 12 hours a day in the survey area 

based on manufacturers recommendations and electric utility estimates of 

monthly energy use £20]. The unit may be left off during inclement weather 

or for other reasons and a random factor, Pswim, is used to determine if 

the pool is used, and if it is used, at what time it is turned off and on, 

has been included in the model. 
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The model is a simple one as shown in Figure 2.4.14. The turn-on 

time was assumed to have a normal distribtuion about 8AM and the turn-off 

time to have a normal distribution about 8PM. The standard deviation is 

taken as three time periods (3/4 hours). An average value of 600 watts 

was used as the filter electrical load. (All values are changeable). 

This model was not included in the test. 
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CHAPTER III 

THE COMBINED MODEL 

3.1 Considerations in Combining the Elemental Models 

The number of persons available at home during a particular 

period affects the probability and the level of operation of appliances 

during that period. In addition, some functions, like the mealtime 

function, affect more than one appliance, such as the electric range, re 

frigerator and water heater, in the same or adjacent periods. Therefore 

the model was designed to operate each appliance model during each 

period, bypassing those elements that are not owned by the residence or 

elements like- the dishwasher, which once operated, have constraints on 

the next operating time. 

Some appliances, like a refrigerator, run different amounts of 

time during different fifteen minute intervals. In this case one call 

of the subroutine for the refrigerator model, when mixed with other 

pertinent information (e.g. meal times) generates the power demand for 

that device for that period. Other appliances, like a washing machine, 

overlap several periods, once started. In this case, the total energy 

is calculated during the first period, and the calculated amounts of 

power demand are saved for summation during later periods. 

3.2 Implementation of the Combined Model 

The combined model is implemented by a Fortran program which 

is included in Appendix A. Figure 3.1 is a block diagram outlining the 
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basic sections of the program. The blocks have been numbered to 

facilitate the identification. 

The operation of most of the blocks is self-evident. The data 

read in blocks 2 and 5 was generated by other programs and stored in 

files as'outlined in Section 2.3.1. The files can be modified by running 

these programs with other statistical data. Block 7 "preserves" the running 

total when the load for a group or groups of houses is required. The 

computations of blocks 9 and 10, discussed in Sections 2.4.8.1 and 2.4.2 

respectively, are statistical estimates. When the values are established 

they remain unchanged for the residence and are therefore included at 

this point. 

Certain counters are used to keep track of operations on a 

particular day, such as dishwasher use or next mealtime. Block 12 resets 

these counters to zero for the next day. 

Blocks 18 and 19 calculate the next mealtime when the time is one 

period before the earliest time for that meal, (i.e. based on the mealtime 

statistics used the earliest breakfast time would be 4:30 AM, time 

period 18). 

Blocks 21 and 22 set the pattern for all appliances. The 

calculation is bypassed if the appliance has not been specified in the 

residence parameters. Otherwise, the probability of the appliance being 

in use is examined. If the appliance is used the resulting load is 

computed and stored. The stored data is combined and is output at the end 

of the run or sets of runs. 

Hotwater use, estimated by Items b, c, d and e of Block 25 are 

totaled in Item f for use in computing the power demand of the hotwater 

heater, Item g. 
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3.3 Totalization of Results 

A "run" consists of a number of houses of one configuration, usually 

for seven days. For "Icode=lu, the total is written to file after each 

run and the next run uses the same availability function. For "Icode=2", 

the totals are written to file after all runs are- completed, and all runs 

use the same availability function. "Icode=3" provides for separate run 

totals with different availability functions for each run. 

3.4 Summary 

The combined model brings together the variables and parameters 

which are common to many of the elemental models. It allows residences 

with various configurations of appliances to be modeled. It provides 

for combining different configurations into a group model by totaling 

the results of a number of runs. It also'provides foroutput of the data 

for analysis and plotting. 



CHAPTER IV 

MODEL EVALUATION 

4.1 Considerations in the Evaluation 

The time-varying electric load for a single family residence 

depends on many probabilities as discussed in the model development, 

Chapters II and III. Consequently it is reasonable to expect that the 

load curve for a particular residence, while maintaining certain general 

characteristics, will not have the same shape each day. Also, the amount 

of variation in the hour-by-hour and day-to-day load curves depends, to 

a large extent, on the types of electric appliances owned by the house­

hold. A household with few electric appliances will have a relatively 

small time-of-day and day-to-day variation. On the pther hand, re­

sidences with many large appliances can be expected to have larger vari­

ations in their load curves, since larger loads, such as washers and 

dryers, are connected for relatively short periods of time and are 

normally used only once or twice a week. As another example a water 

heater element can require 5000 watts but may only be on for ten or fifteen 

minutes at a time. 

In accordance with the "law of large numbers" the average value 

of a large number of observations of a stochastic process will approach 

the "expected" value (probability) as the number of observations in­

creases. (See Schmidt [16]). If the availability and proclivity 

functions, postulated in the model development, are significant factors 

in determining residential load variation then the average of a number 

80 



81 

of days for one residence should agree more closely with a similar 

average for the test data than do the daily load curves for that re­

sidence. Also, on an ensemble basis, the load curve for a group of similar 

residences for a particular day has the expectation of being in closer 

agreement with their load curve for a similar day, than will the curves 

for one residence. 

4.2 Types of Measures 

A model for the residential load based on availability and pro­

clivity probabilities (assumed to be significant factors in the re­

sidential load) should display variations in the day-to-day load similar 

to the real load. Visual comparison will indicate if the general 

characteristics are similar but some quantitative method is needed to help 

determine the significance of the agreement between the model and the 

actual load curve. A variety of quantitative measures could be used 

depending on the primary purpose of the model. For example, only the 

daily peak load, or the weekly total load might be checked. On the other 

hand, a comparison each fifteen minutes may be important. One measure of 

agreement is how well the model can predict, on a day to day basis, the 

total energy used by a residence or group of residences. For a single 

residence the agreement can be expected to have a wide range of differences. 

However, the range should be at least of the same order of magnitude as 

the range of difference in actual day to day use of the residence being 

modeled. As the sample size is increased the day to day energy use should 

be more consistent (for similar weather conditions) and the model pre­

diction should agree more closely. 
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Since a primary goal of the model is to predict the hour by hour 

variation in the load, some measure of the agreement for this aspect is 

also needed. Visual comparison of a model predicted load curve to a test 

data load curve will indicate if there is general agreement of character­

istics. However, a quantitative measure is needed to determine improvement 

in the agreement as the test sample increases from a single residence to 

a group of residences. The agreement here should also be of the same order 

of magnitude as exists between test data for similar samples on similar days. 

Standard methods of investigating the relationship between paired 

sets of data include regression analysis and cross-correlation. Both 

of these measures involve factors associated with variation of the model 

data from its mean as well as the variation of the test data from its 

mean. However, in determining how well a model prediction tracks the actual 

load, another measure, independent of the mean of the model, is more 

appropriate. The size of the variation of the model curve about the 

test data curve, defined as the sum of the squares of the point by point 

difference between the model and test curves, is a measure of how well 

the model performs on a time basis. A large variation indicates poor 

agreement while a small variation signifies better agreement. For a 

particular sample the variation of the model data from the test data 

should have values similar in magnitude to the variation between test data 

for similar days. 

In order to compare the results of modeling different size samples, 

some method of normalizing the variation is needed. To divide the point 

by point difference by the point by point test data would result in un­

realistic weighting for test data near zero. Therefore the average load, 

which is a measure of the load magnitude, was used as the normalizing 



83 

factor. Figure 4.1 defines a normalized variation factor which is used 

in comparing the relative agreement of the model to test data for different 

sample sizes. A smaller normalized variation factor signifies a better 

agreement. 

In order to have a more familiar standard by which to judge the 

significance of the normalized variation factor, graphs of the cross 

correlation between model and test data are also included for the group 

loads. 

4.3 The Small Load Residence 

Using the foregoing criteria the model was tested against test 

data from the Connecticut Light and Power Company Residential Load Test 

[1] for various types of loads. Figure 4.2 is a load curve for a small 

load residence. According to the survey data the customer (Identification 

number 1103011) lives alone and has appliances consisting of a refrigerator 

and a television set. However, there are peaks in the load curve around 

mealtime that indicate the customer has at least one cooking appliance 

not listed in the survey. Figure 4.3 is a load curve predicted by the 

model for this residence. Visually comparing this curve to Figure 4.2 

shows that the model curve has characteristics similar to the customer 

load curve displaying periods where only intermitent refrigerator operation 

is indicated and periods where the more constant load associated with 

lighting and television are indicated. The customer's refrigerator is 

obviously smaller than the "average" refrigerator used in the model and 

the customer's availability is obviously different than that of the 

"general" availability function used. This is to be expected when 

comparing a particular test to a stochastic model. Better agreement, on a 
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one-to-one basis, can be expected using the. same model with different re­

frigerator parameters and a particularized availability function. How­

ever the purpose here is to demonstrate that the model, even with 

general parameters, gives results which are not unreasonable. Figure 4.4 

demonstrates that there can be wide differences in the load curves of the 

same customer on different days. 

In addition to the load curves included herein, load data for the 

model and for the customers were compared for each day of a test week and 

for the weekday average of these load curves. (For the "large load" group, 

the model and test data load curves for the week are included as Appendix 

"D" for additional information). Comparison of the customer's load curves 

for different days was also made. Table 4.1 is a listing of the results 

of the evaluation for a number of different tests. Line 1 of the table 

is concerned with the small load residence test. 

The energy use for the small load residence predicted by the model 

differed from the actual energy used by the customer by percentages 

ranging from approximately 2 percent to 163 percent. The energy used by 

the customer differed by percentages ranging from 3 percent to 165 percent 

when comparing the energy used on different days. (The 165 percent is the 

result of comparing the difference between days to.the low value day). 

Thus the model energy agreement has about the same range as the day to 

day difference in the test data. This is not unexpected in a stochastic 

process. The difference, 23 percent, between the weekday average energy 

use for the model and the customer lies in the lower end of the range as 

could be expected with a larger sample. 

The normalized variation factor exhibits similar characteristics. 

The range of the factors obtained for the variation of the model curve 
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DAILY ENERGY USE 
Range of Differences 

Model to Different Model to 
Customer Customer Customer 

Day to Day Day 5 Day Avg. 

2-163% 4-165% 

1-44% 

1-17% 

1-22% 

1-20% 

4-58% 

0-19% 

0-13% 

1-22% 

23% 

20% 

1% 

11% 

8.1% 

NORMALIZED VARIATION FACTOR 
Range of 

Model to • Different Model to 
Customer Customer Customer 

Day to Day Day 5 Day Avg. 

5.8-.7 

.13-.08 

.10-.06 

8.14-.65 0.4 

1.83-.69 1.65-.66 0.29 

.21-.09 .15-.07 0.07 

.05-.03 0.08 

.07-.02 0.06 

Table 4.1 - Summary of Daily Energy Use Differences and Normalized Variation Factors 
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about the test curve is slightly lower than the range of factors relating 

one test curve to another. However the ranges are very similar indicating 

that the model is capable of predicting the variation, for this sample, 

at least as well as the variation between test days. The variation 

factor, 0.4, which compares the model weekday average to the weekday average 

of the test data is lower than the range of single day values, indicating 

better period by period agreement. Since increasing the sample size in a 

stochastic process has the potential for smoothing the variations, the 

lower variation factor is consistent with expectations. The value should 

be at least in the lower end of a wide range to be significant. 

4.4 Large Load Residence 

Line 2 of Table 4.1 contains similar comparative data for another 

single residence, Customer ID 1300151. Figure 4.5 through 4.7 are load 

curves for this residence which has a larger electric load and a family 

size of five. The electrical appliances include two refrigerator-freezers, 

a freezer, two television sets, an electric range, a clothes washer and 

dryer, a dishwasher, a water heater, two air conditioners and a de-

humidifier. The model was compared to customer data for September in 

order to minimize the effect of cooling load and does not include operation 

of the air conditioner. Weather data indicated cool, humid weather; 

therefore the dehumidifier was included in manual operation. 

The second line of Table 4.1 shows that the range of the 

difference between the daily energy use predictions and the test data 

is I to 44 percent while the range of differences between test data for 

different days was 4 to 58 percent. For both cases the range is about 

1/3 of that found for the small load residence. Again the percent 
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difference for the 5 day averages, 20 percent, lies toward the lower end 

of the difference range. The improvement in the range of energy use can 

be attributed in part to the larger base load since part of the energy 

use by the refrigerators, freezer and water heater are independent of the 

availability and proclivities of the residents. The range of the normalized 

variation factor when comparing the model to the customer data is lower 

than that of the small load residence. The day to day customer data range 

is also smaller. The upper bound of both ranges are about 1/4 that of 

the small load residence. Although the larger base load results in a 

smaller range of energy use and a larger average load, visual comparison 

of Figures 4.5 and 4.7 demonstrate that large variations are still pre­

sent between day to day load curves for the same residence. This is due 

to large loads being connected for short periods at different times. For 

a large number of residences, and their model, the time of application of 

similar loads will normally vary, resulting in less variation of the 

total load. The fact that the comparison for the five day averages gives 

a smaller variation factor than either of the single day ranges indicates 

that the model does improve with a larger sample. 

4.5 Group Models 

Lines 3, 4 and 5 of Table 4.1 provide comparative data for a group 

of 38 small load customers (ID 1199999), a group of 44 larger load 

customers (ID 1399999) and the combination of these two groups. The 

models are again being compared to Connecticut Lighting and Power Company 

Residential Load test data. However the model for each group is a gen­

eralized model. That is to say the number of persons and the number of 

each kind of appliance reported in the survey were tabulated for each 
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group. Then a model was assembled distributing the total number of 

persons and the-total of the applicances so as to minimize the number 

of different household configurations and a generalized availability • 

function was used. For example, for the "smaller load" group the 38 

residences were reduced to 7 configurations. For large scale practical 

applications this method is necessary since it allows operation of the 

model with demographic and appliance saturation data, which is more 

available than individual residence data. To preserve the averaging 

effect of larger numbers each configuration was run a number of times 

equal to the number of houses it represented so that all appliances 

were represented (i.e. the model was run 38 times). 

4.6 The Small Load Group Model 

Figures 4.8, 4.9 and 4.10 are model and customer group load curves 

for the "small load" group. Line 3 of Table 4.1 contains the comparison 

data for this group. On a day to day basis the maximum difference between 

model and customer group energy use is 17 percent. This is an improve­

ment of about a factor of three over the single residence "large load" 

case, demonstrating the averaging affect of a larger sample, despite the 

simplifications made in the model. The energy use agrees with the 19 

percent range of the day to day customer group. Further agreement is 

shown by a reduction to a 1 percent difference when the "5,day average" 

energy use of the model is compared to the customer group. The model load 

curve Figure 4.9, when compared to the test data curves Figures 4.8 and 

4.10, indicate the model underestimated the "night" load by about 25 

percent. Since the night load represents a base load, which for this 

group consists mainly of the normal-cycling of refrigerators, refrigerator 
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CO 

<E 
3 
o 

a <r 
o 

42.4 

89-4 

80.4 

83. a 

80*4 

28 Q 

28.2 

22.4 

19.Q, 

tO.ft 

I4.ft 

It 

8.4 

3.Q 

4.4 

O.ft 

•Nji 
VnlU^^J Liht 

Lr 

J1 

1J 

n—r 
rV 

Ul 
1 

rTTTTTTTT t—r~ 
10 11 I2 Sis 14 S le 17 18 5 To 5i £ 5 2* 

TIME OF PAY 

Figure 4.10 - Customer Load Curve for the Small Load Group, 
Test Data for Friday 

ID 
00 



9* 

parameters may need revising. On the other hand the peak load values 

predicted by the model for the group are consistantly higher than the 

test data by an average of 21 percent. Comparing Figures 4.8 and 4.9 

reveals that, in particular, the morning peak and the evening peak are 

wider for the customer group than for the model. This would result in 

less concurrence of electric range and water heater loads so that the peaks 

would be smaller even though the total energy use is the same. It is an 

indication that the availability and mealtime functions may need adjusting. 

The range of normalized variation between the model and test data 

shows almost an order of magnitude improvement over the single residence 

case and the range only varies by a factor of 2 (.2-.1). This indicates 

Closer agreement on a day to day basis between the model's prediction and 

the test data curves. In addition the variation for the '5 day average' 

is within the range of the variations of the day to day test data. This, 

together with the smaller values of the normalized variation, demonstrates 

that the model's ability to predict improves with sample size. 

Finally, Figure 4.11, the graph of the cross correlation function 

of the model data of Figure 4.9 and the test data of Figure 4.8, shows 

that the maximum correlation occurs with only a three period lag and is 

within 15 percent of the value of the cross correlation for the two 

test days shown in Figure 4.12. This is a further indication of the 

model's potential for predicting the load curve. 

4.7 A Large Load Group Model 

Figures 4.13, 4.14 and 4.15 are load curves applicable to the 

"large load" group. This group was modeled in the same way as the "small 

load" group. Line 4 of Table 4.1 shows that the results are of the same 
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order of magnitude as the "small load" group. They show about the same 

energy difference range and a factor of two improvement in the variation 

range over the "small load" group. These results are an indication that 

the model performance is affected more by sample size than by the size of 

the load being modeled. For a model of a stochastic process this would 

be expected. 

The model tends to underestimate the night load for this group by 

about 17 percent and the peak loads by about 9 percent. Again, parameters 

of night load appliances may need adjustment but considering the simpli­

fications made in the test, the agreement is felt to be reasonable. 

Figure 4.16 graphs the cross correlation for the large load group 

model Figure 4.14 and its test data Figure 4.13. The maximum correlation 

occurs at a lag of one period and the value is within 15 percent 

correlation coefficient for the two test days as shown in Figure 4.17. 

4.8 Results of Combining the Load Data 

The load data for the two groups was combined on a period by 

period basis. The results of the analysis of the totals are recorded on 

Line 5 of Table 4.1. The energy value comparisons have about the same range 

as the individual groups but the variation factors again show improvement 

associated with a larger sample. 

4.9 Forecasting With The Model 

In order to demonstrate how the model could be used to forecast 

the effect of a change in the saturation of a class of appliances, another 

simulation was made. The "large load" group model was modified under 

the assumption that all houses had water heaters, which increased the 
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number of water heaters by 63 percent. Figure 4.18 is the resulting 

load curve. It should be compared'to Figure 4.14 for the unmodified 

model.. Comparison of the curves shows a change in average "night" load 

of about 4 kilowatts. However the peak load, at about 6 PM, increases 

by 18 kilowatts, a change of about 29 percent over the previous peak 

load. The smaller change in the "night" load is the energy required to 

replace the heat loss through the insulation, while the large change in 

peak load results from additional hot water use which the model attempts 

to predict. 

4.10 Conclusions 

Based on the results described in the foregoing evaluations the 

model appears able to predict the energy use and the period by period 

power demand to a degree comparable with the range of values experienced 

by the actual loads. This- does not include heating and cooling loads 

which, because the test data used in the comparison was for the second 

week in September, are believed to have been negligible. 
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CHAPTER V 

SUMMARY AND RECOMMENDATIONS 

5.1 Summary of Work Accomplished 

A residential load forecasting model using availability, 

proclivity and normal-cycle functions was developed based on an evalu­

ation of the probable reasons for the time dependency of the residen­

tial load. These functions were utilized in a residential model in 

determining the probability that specific appliances will be connected 

to the power system during particular time periods.- This dictated that 

the form of the model include the individual appliances as sub-models. 

Since the model is probabalistic-, a "monte-carlo type" approach 

was used in determining when appliances are connected. Because opera­

tion of some appliances depends on other actions in the residence, the 

basic model represents an individual residence configuration with 

provision for specifying residence parameters. 

Using the family size and stock of appliances for individual 

residents recorded during the Connecticut Light and Power Company Resi­

dential Load Test [1], two single family residences and two groups of ' 

residences were modeled. Load curves generated by these models were 

compared to the load data recorded for the residences and groups of 

residences whose statistics were used in constructing the models. 

Results obtained were consistent with day to day differences which 

occurred in the recorded test data. The model to test data agreement 

improved with sample size just as the test data to test data agreement 
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improved with sample size. This tends to confirm the stochastic nature 

of the residential load. 

In the group tests the model used an "equivalent set" of re­

sidences to test the feasibility of using demographic and appliance 

saturation data in the model. 

The overall evaluation indicates the model has reasonable 

potential for predicting the time varying residential load curve. 

5.2 Recommendations for Further Work 

The potential demonstrated by the model warrants continued in­

vestigation and testing. Further work on the model is recommended in 

the following areas: 

1. Additional tests should be conducted for the same and 

similar groups of loads to test the effect of parameter 

adjustments and the repeatability of results. 

2. Models for the weather sensitive loads should be 

completed and tested. 

3. To enhance the practicality of the model, the optimum 

sample size required to obtain consistent results while 

minimizing computer run time should be investigated. 

4. Additional methods of measuring the agreement of the 

model load curve with a test load curve should be 

investigated. 

5. When the weather sensitive models are completed the 

ability of the model to predict the monthly and/or 

annual energy use should be included as an independent 

comparison. 
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C FILE: RHODE! 

IMPLICIT REAL(K) 

DIMENSION KWUSE1 (7,96) , KWOSE2 (7,96) ,K*0SE3 (7,96) ,KWUSE4 (7,96) , 
1KW05E5(7,96),K10SE6(7,96),KW0SE7(7,96),KWOSE8(7,96), 
2KHOSE9(7,96),KHaS10(7,96) ,KSOS11 (7,96),KBOS12(7,96) , 
3KVUS13(7,96) ,KW0S14(7,96) ,KWtJS15 (7,96) ,KVUSET (7,96) 

DIMENSION KHSUH1(7,96),KSSOH2(7,96),KVSUM3(7,96),KWS0M4(7,96), 
1KWSOM5(7,96),KHSOM6(7,96),K?S0M7(7,96) ,KWSDB8 (7,96) , 
2KSSUM9(7,96),KWSH10(7,96) ,KWSH11 (7,96),KVSH12(7,96) , 
3 KWSM13 (7, 96) ,KWSH14(7, 96) , KWSH 1 5 (7 ,96) ,KWSOHT (7,96) 

DIMENSION QUSE1(7,96) ,QOSE2(7,96) ,QUSE3(7,96) ,QOSE4(7,96) , 
10DSE5(7,96),QUSET(7,96) 

DIMENSION PA (2,96) ,PHF(2,96) ,PBDAY(7) ,PBTIHE(96) ,JDFRS1 (2) , 
1 PAWAY (2,9 6) ,AITEM (15) ,CODE (15) , NOMD&T (3) ,NHM (9 6) ,JDFHS2 (2) 

DIMENSION COLT? (2) ,BHTV (2) ,CLT7SD (2 ,96) ,THEF (2) , 
1 EATPRB (3) , KWR ANG (3) , KWRANT (3) ,DODISH(3) ,PADWD(2,96) , 
2P1HDAY (8) , TYHASH (4) ,S«ASH(3) ,P«HTIH(2,96) ,TYDRY (3) , 
3TOUT (96) ,TIN (96) ,SUNFAC(96) ,PFAN(96) ,H0MID(96) ,PSSTIM(96) 

DATA TAMB/72./, THEF/36. ,38./,TRFDES/37-/,RFEPS/2./, OSTEP/1-/ ' 
DATA A/9-10,B/.12/,C/.044/,KWREF/.005/,ONE/10-/ 
DATA TFRZ/0. /,TFHDES/0--/, FRZEPS/2./ 
DATA E/8.0/,F/.073/,G/.04/,KBFRZ/.0059/,THEEE/3./,B«TV/100.,30-/ 
DATA COLTV/350-,150-/,EATPRB/.3,.75,-9/,KWRANG/.36,-18,-54/ 
DATA THW/150./,TCfl/60./,DODISH/.9,.75,.9/,ADLSAT/.65/ 
DATA PBDAI/1.12,-84,. 84, 1.12,.84, 1- 12,1- 12/ 
DATA PBTIrtE/24*.1,16*2-0,24*.6,16*1.2,12*2-0,4*1.0/ 
DATA SIASH/-1,.9,1-/,KS»ASH/.75/,KHDRY/5./ 
DATA TYBASH/. 2,-6,-9, 1./ 
DATA TYDRY/. 05,-9,1-/ 
DATA SATDIF/1./,WATSIZ/2./,IELSET/2/,SMQNET/—0.0/ 
DATA TSET/150./,HTLOS/0-5/,HOMID /96*72./ 

DATA (PAWA Y (1, J) ,J=1,96)/32*.1 ,16*.3,40*.5,8*. 2/ 
DATA (PAH AY (2, J) , J= 1, 96) /32*. 1, 16*. 2, 16*. 3,12*. 1,1 2*. 3, 8*. 1/ 
DATA PSRTI1/26*0-,.005,.022,-066,.147,.297,.489,.680 ,.830, 
1.912,-9 56,-973,-977,23*1.0,.977,.973,.956,.912,.830,-680, 
2.489,.297,.147,-066,-022,.005,23*0./ 
DATA PFAS/8*.75,40*.15,12*.2,24*.6,12*.75/ 
DATA C0DE/"1,"2,"4,"10,"20,"40,"100,"200,"40 0,"1000,"2000, 
1"4000,"10000,"20000,"40000/ 

0 PEN(0 NIT= 2 0,PIIE=•PAV AIL-D AT•,ACCESS=•SEQIN*) 
OPEN (UNIT=2 3,FILE=» RMODEL.OUT•,ACCESS='SEQOUT•) 

1 0 PEN(UNIT=2 4,FILE=* PM EAL.DAT',ACCESS='SEOIN') 

DO 10 J=1,2 
READ (20,*) (PA(J,L) ,L=1,96) 
READ (24,*) (PMF (J,L) ,L=1,96) 



CONTINUE 

SKWHRS=0 
NSTOTL=0 
TOTKWH=0. 
NFBZTL=0 
QUSUM=0. 
NBATH=0 
NFAC=0 

INITIALIZE RANDOM NUMBER GENERATOR 
CALL TIME [X , Y) 
N=IFIX(Y*1000.-1000.) 
DO 15 1=1, N 
TEMP=RAN (0) 
CONTINUE 

NOTE: WRITE STATEHENTS ARE SUPPRESED (BY USE OF "C") , 
SO THAT PROGRAM CAN BE RON WITH CARD INPUT. • 

WRITE {5,20) 
FOHMAT( » ENTER EQUIPMENT CODE AS A 5 DIGIT OCTAL NUMBER1) 
READ (2,25) A ITEMS 
FORMAT (05) 
DO 30 1=1,15 
AITEH (I) =AITEMS. AND. CODE (I) 
CONTINUE 
WRITE (5,35) 
FORMAT (» EN TEH REFBIG TYPE, NUMBER AND TV NUMBER') 
READ (2,*) IRE?»NHEF,NTY 
WRITE(5,40) 
PORMAT [* ENTER NUMBER OF PERSONS, ROOMS, DAYS, HOUSES, ICODE1) 
READ(2,*) N?ERS,NROOMS,NDAYS,NHOUSE,ICODE 

OPEN(UNIT=21,FTLE='PROB. D AT',ACCESS='S EQIN•) 

NUSDAT (1) = 1 11 
NUMDAT (2) =311 
NUMDAT (3) =111 

CALL DATA (NUMDAT (1) ,CLT7SD) 
CALL DATA (NUMDAT (2) ,PWHTIM) 
CALL DATA (NUMDAT (3) ,PADWD) 

DO 2200 NRUNS=1,HHOUSE 

ZERO USE DATA FOR EACH HOUSE. 
DO 50 1=1,7 
DO 50 J=1, 96 
KWUSE1 (I, J) =0.0 
KWUSE2 (I,J) =0.0 
KWUSE3 (I,J) =0.0 
KWUSEU (I,J) =0.0 
KWUSE5 (I,J) =0.0 
KWUSE6 (I, J) =0. 0 
KWUSE7 (I,J) =0-0 
KWUSE8 (I,J) =0.0 
KWUSE9 (I ,J) =0.0 
KWUS10 (I,J) =0.0 
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KSUS11 (I 
K W 0 S 1 2  ( I  
KWUS13 fl 
KWUS14 (I 
KBOS 15 (I 
KHOSET (I 
QOSE1 (I, 
QUSE2 (I, 
QOSE3 (I, 
QUSE4 (I, 
QOSE5 [I, 
QOSET fl, 
QOSUH=0. 

,J) =0.0 
,J)=0.0 
,J) =0.0 
,J) =0.0 
, J) =0.0 
r J )  = 0 . 0  
J) =0.0 
J) =0.0 
J) =0.0 
J) =0.0 
J) =0.0 
J) =0.0 
0 

ZERO HUH NT KG SOB OF OSE DATA ON FIBST HON ONLY. 

IF(NHUNS.3T.1.0R.IC0DE.EQ.2)GOTO 50 

50 

KWSUH1 (I,J 
KWSUK2 (I,J 
KWSOB3 {I, J 
KWSUM4 (I,J 
KWS0H5 (I,J 
KHS0H6 (I,J 
KSS0H7 (I#J 
KHSOH8 (I,J 
KWS0H9 (I, J 
KISM 10 (I,J 
KHSH11 fI,J 
KWSM12 (I,J 
KHSM13 (I,J 
KWSM1U (I, J 
KHSB15 (I, J 
KWSUHT (I,J 
CONTINOE 

=0.0  
=0 .0  
=0 .0  
= 0 . 0  
=0.0 
= 0 . 0  
= 0 . 0  
=0.0 
=0.0 
= 0 . 0  
= 0 .0  
=  0 . 0  
= 0 . 0  
=  0 . 0  
= 0 .0  
=  0 . 0  

0 DEF1=0. 
ODEF2=0. 
LWASH=0 
IAD0LT=0 
IDAY=0 

JDFRS1 (1)=0 
JDFRS 1 (2) =0 
JDFRS2 (1)=0 
JDFRS2 [2) =0 
IF flREP. EQ. 1) GOTO 52 
PDEF=RAN (U) 
JDFRS1 (1) = IFIX (PDEF*4 8. ) 
JDFRS1 [2) = J OFBS1 (1) + 4 8 
PDEF=RAN (W) 
JDFRS2 I1)=IFIX (PDEF««8. ) 
JDFRS2 (2) =J DFBS.2 (1) *48 

C 
52 

ESTIMATE N0M3EB OF ADULTS/CHILDHEN 
DO 55 LK=1,NPEBS 
PTYPE=RAN[U) 
IF (PTYPS.LE.ADLSAT) IADULT=IADULT+1 
CONTINUE 
NUNITS=IADULT+fNPEBS-IADULT)* 2  
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BASHFC*(NtJNITS*1.)/NPERS 
C BRITE (5, *) B ASH PC 

C COBPtJTE TYPE OF TV 
PROBER AN (U) 
NCOL-1 
IF (PROB.GT.-8O) HCOL=2 
PROB=R AN (U) 
N BW= 1 
IF(PROB.GT..90) NBW=2 

DO 2200 1=1,NDAYS 
IVAL=I 
IF (I.GT. 7) IVAL=I-7 
ADHOSE-O.O 
BTIBE=0 
H T=0 
J B= 1 
ONE 1-10. 
ONE 2=3. 
THREE=3. 
NSTOTL=Q 
NFSZTL=0 
QUSUB=0.0 
N FAC=0 
NBATH=0 

DO 1600 JTIBE=1,96 

IBDAY=2 
IF(I7AL.EQ.1.0B.I7AL.EQ.7)IBDAY=1 

C COBPOTE NUB BER OF PERSONS HOBE 5 ABAKE 
NHOBE=NAYAIL (PA (IBDAY,JTIBE) , PABAY (IBDAY, JTIBE) , NPERS) 
NHB (JTIBE) =NHCBE 

C COBPOTE BEALTIBE 
JVA'L=JTI?1E 
BSHIFT=0 
IFflYAL. SQ. 1.OR.IVAL.EQ.7)BSHIFT=4 
LBREK= 17 +MSHIFT 
IF (JTIBE.EQ.LBBEK)CALL BEAL (IBDAY,J7AL,24,PBF,NHOBE,EATPRB, 
11,BTIBE) 
L 0N=41•BSHIFT 
IF(JTIBE.SQ.LUB)CALL SEAL(IBDAY,J7AX,20,PBF,NHOBE,EATPRB,2,BTIBE) 
LDIN=61+BSHIFT 
IF (JTIBE.EQ.LDIN)CALL HEAL(IBDAY,J7AL,24,PBF,NHOBE,EATPBB, 
13,BTIBE) 

C COBPUTE LIGHTING LOAD 
100 IFfAITEB (1) .EQ. "0) GOTO 200 

FACT1=.06*1.0 
FACT2=.018*1.0 
IF (JTIBE.ST. 32- aND.JTIBE.LT.68) FACT1 = .06*.5 
IF(JTIBE.GT.32.AND.JTIHE.LT.68) FACT2=.018*.1 
NEX1BS=NBOOBS-NHOBE 
IFJNHOBS.LT.1)NEXBBS=0 
KWOSE1 (I7aL, JTIBE)= (NHOBE«FACT1) * (N EXRBS*FACT2) 
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C COMPOTE TELEVISION LOAD 
200 IF (AITEM (2) . EQ. "0) GOTO 300 

IF [ NHOME.EQ.0)GOTO 300 
DO 250 NT=1,NTV 
PROB=RAN (0) 
PROG = (JTIHE/2.)-IPIX (JTIHE/2.) 
IF (PROG. NE.O.) GOTO 300 
PROBTV=CLTVSD(IHDAY,JTIHE)•(1+[NHOHE-NT)*-2)#23. 
IF[PROB.GT. PROETV) GOTO 300 
TV«ATT=COLTV[NCOL) 
IP fNT.GT.1) TVWATT=BBTV(HBW) 
KWUSE2 [IVAL, JTIHE) =KHUSE2 (IVAL, JTIHE) +TVHATT/1000. 
KWUSE2 [IVAL, (JTIHE+1) ) =KHOSE2 [IVAL, (JTIHE+1) ) •TVWATT/1000. 

250 CONTINUE 

C COHPOTE REFRIGERATOR LOAD 
300 IP (AITEH [3) . EQ. n0) GO TO 400 

NRR=1 
CALL REFRIG [ JVAL,TAHB,TREF,TRFDES,RFEPS,OSTEP,A,B,C,KHHEF, 
1ENGY#ONE1 ,NHOHE,NSTOC,NSTOTL,TOTKWH,HTIME,NRR,JDFRS1,QDEF1} 
KHOSE3 (I, JTIHE) = KWOSE3 (I,JTIHE) +ENGY*4. 
IF[NREF. EQ. 1) GOTO 400 
NRR=2 
CALL REFRIG(JVAL,TAHB,TBEF,TRFDES,BFEPS,OSTEP,A,B,C,KHREF, 
1ENGY,ONE2,O.NSTOC,NSTOTL,TOTKBH,HTIHE,NBR,JDFRS2,QDEF2) 
KIOSE3 [I,JTIHE) =KH0SE3 (I,JTIHE) +ENGY*4. 

C COHPUTE ELECTRIC RANGE.LOAD 
400 IF(AITEH (4) . EQ. "0) GOTO 500 

IF[JTIHE.GE.LBREK.AND.JTIME.LT.LON)MT=1 
IF [JTIHE. SB. LON. AND. JTIHE. LT. LDIN) HT=2 
IF(JTIHE.GE.LDIN.AND.JTIME.LT.(LDIN+24))HT=3 
PSIZE= RAN (U) 
KBRANT (HT) = KHRANG(MT) *NHOHE* (.5 + PSIZE) 
IF(JTIHE.EQ.HTIHE) CALL ELRANG(IVAL,JVAL,HT,KH0SE4,KHRANT) 

C COMPOTE AOTOMATIC DISH HASHER LOAD 
500 IF (AITEM (5) .EQ."0) GOTO 550 

IFfJTIME.EQ.1)510,520 
510 PAD»=RAN(0) 
520 IF (PADW.GT. 0.9) GOTO 550 

IF [ADVUSE. EQ. 1. 0) GOTO 6 00 
CALL AODISH[IVAL#IHDAI,JVAL,THW,TCH,KW ADH,Q0SE5,KH0SE5,PADWD, 
1 ADWOSE) 

C COHPOTE HOT HATER OSE FOR HAND DISHWASHING 
550 IFfJTIME.EQ.(HTIHE+4))CALL HDDISH(IVAL,JVAL,QOSE1,HT,THW,TCH, 

1 DO DISH) 

C COMPOTE CLOTHES HASHER AND DBYER LOAD AND HOT HATER OSE 
600 IF (AITEH (6) . EQ. "0) GOTO 800 

NMHASH=IFIX [ (1.5«NPERS) +.5) 
IF (LHASH.GE.NHHASH)GOTO 800 
IF [I.GT. IDAY.AND.JTIME. EQ. 1) 610,640 

610 PDAY=RAN (0) 
PWHDAY [I)= (NMHASH-LHASH)/ (8-1) 
IF (PDAY. LT. PHHEAY (I) ) 630,800 

630 IDAY=I 
NTEHP=LWASH 



118 

640 IF(IDAY.NE.I) GOTO 800 
IF (LWASH. GT. NTEMP) GOTO 800 
CALL CLWASH (IDAY,J7AL,PWHTIM,SWASH,TYWASH,TYDRY, 
1RWWASH,KWDRY ,THW,TCW, AITEM,KWUSE6,KWUSE7,QUSE3,JW,N MWASH, 
2LWASH) 

C COMPUTE ELECT. HOT WATER HEATER LOAD 
800 IF (AITEM (8) . EQ. "0) GOTO 900 

C COMPOTE HOT WATIB OSE FOR WASH AHD BATHE 
CALL W AS HNB (I7AL,J7AL , MTIME,WASHFC, PBTINE ,PBDAY , NHOME, 
1THW,TCS,QUSE2,NFAC,NBATH,HPERS) 

CALL TOTQOS (I7AL,J7AL,QUSE1,QUSE2,QUSE3,QUSE5,QUSET, 
1QUSUM) 

CALL WATHET(I7AL,J7AL,THW,TCW,QUSET,TSET,WATDIF,WATSIZ, 
1 IELSET,SHQNET,UHSTEP, HTLOS,KWUSE8,TAMB) 

C COMPOTE FREEZER LOAD 
900 IF(AITEM(9)«EQ."0)GO TO 1000 

CALL FREEZR(JVAL,TAHB,TFRZ,TFRDES,FRZEPS,OSTEP,E,F,G,KWFBZ, 
1ENGY,THREE,NHOME,NFRZ15,NFRZTL,FBZKWH,MTIME) 
KWUSE9 (I,JTIME)-ENGY*4. 

C COMPOTE AIR CONDITIONER LOAD 
1000 IF (AITEM (10) .EQ."^) GOTO 1100 

C COMPOTE FANS/UNIT HEATER LOAD 
1100 IF(AITEM (11) . EQ."0) GOTO 1200 

IF (TIN (JTIME) .IT.TOUT (JTIME) ) GOTO 1200 
IF (TIM (JTIME) .LI.75.) GOTO 1-200 
P RO B= RAN [0) 
IF(P50B. LE. PFAH (JTIME) ) KWUS11 (I7AL, JTIME) =FANSIZ 
CONTINUE 

C COMPUTE ELECTRIC SPACE HEAT LOAD 
1200 IFfAITEM (12). EQ. "0) GOTO 1300 

C COMPUTE HUMIDIFIER/DEHUMIDIFIER LOAD 
1300 IFfAITEM (13) .EQ."0) GOTO 1400 

PDHON=RAN (U) 
IF (PDHON.3T. 0.9) GOTO 1400 
IF (HUM ID (JTIME) .GT.65.) KWUS13 (I, JTIME) =.65 

C COMPUTE SWIMMING POOL LOAD 
1400 IFfAITEM (14) .EQ."0) GOTO 1500 

IF (JTIME. EQ. 1) 1410,1420 
1410 SWDAY=0.0 

PSWM=RAN (U) 
IF(PSWM.LT. 0-9) SWDAY= 1.0 

1420 IF (SWDAY.EQ. 0.0) GOTO 1500 
SWFAC=0.0 
IF (PSWH. LT. PSflTIM (JTIME) ) SWFAC=1.0 
KWUS14 (I7AL, JTIME) =SWFAC*.6 

C COMPUTE MISC. LCAD 
1500 IFfAITEM (15).EQ."0)3OTO 1600 

KWUS15 (I7AL, JTIME) =0. 0 

1600 CONTINUE 
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2 000 

COBPUTE TOTAL KW LOAD 
DO 2000 JT=1,96 
JL=JT 
CALL TOTLKW[IVAL,JL,KWUSE1,KWUSE2,KWUSE3 ,KWUSE4',KWUSE5, 
1KWUSE6,KWUSE7, KWUSE8 , KWUSE9, KWUS10 , KWUS 11 , KWUS 12,KWUS13 , 
2KWUS14,KWOS15,KWUSET) 
CONTINUE 

COBPUTE RUNNING SUB OF LOADS. 
CALL SUBKW(IV AL, KWOSE1, KWSUB1) 
CALL SUBKW [IVAL,KWUSE2,KWSUB2) 
CALL SUBKW (IVAL,KWUSE3,KWSUB3) 
CALL SUBKW (IVAL,KWUSE4,KWSUB4) 
CALL SUBKW (IVAL,KWUSE5,KWSUB5) 
CALL SUBKW(IVAL,KWUSE6,KWSUB6) 
CALL SUBKW [IVAL,KWUSE7,KWSUB7) 
CALL SUBKW[IVAL,KWUSE8,KWSUB8) 
CALL SUBKW[IVAL,KWUSE9,KWSUB9) 
CALL SUBKW(IVAL,KWUS10,KWSB10) 
CALL SUBKW(IVAL,KWUS11,KWSB11) 
CALL SUBKW(IVAL,KWUS12,KWSB12) 
CALL SUBKW[IVAL,KWUS13,KWSB13) 
CALL SUBKW(IVAL,KWUS14,KWSB14) 
CALL SUBKW(IVAL,KWUS15,KWSB15) 
CALL SUBKW[IVAL,KWUSET,KSSUBT) 

2200 CONTINUE 

IF (ICODE. 20. 2) GOTO 2550 

NOTE: ONLY THE "TOTAL" LOAD IS WHITTEN TO FILE FOB 
A TEST BUN. BEBOVE THE APPROPRIATE C (S) IF 
SPECIFIC APPLIANCE LOADS ARE DESIRED. 

2250 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
2300 

2400 

DO 2400 J= 
WRITE (23 , 
WRITE (23, 
WRITE [23, 
WRITE(23, 
WRITE [23, 
WRITE[23, 
WRITE (23, 
WRITE (23, 
WHITE (23, 
WRITE (23, 
WRITE [23, 
WRITE(23, 
WRITE (23, 
WHITE(23, 
WRITE [23 , 
WRITE(23, 
WHITE [23, 
WRITE [23, 
WRITE (23, 
WRITE(23, 
WRITE (23, 

,NDAYS 
(KWSUB1 [J,L) ,L=1 ,96) 
[KWS0H2 (J,L) ,L=1 ,96) 
(KWSUH3 (J,L) ,L=1 ,96) 
(KWSUH4 (J,L) ,L=1 ,96) 
[KWSUB5 (J,L) ,L=1 ,96) 
(KWS0H6 (J,L) ,L=1 ,96) 
(KWSUH7 (J,L) ,L=1,96) 
(KWSUB8 (J, L) ,L=1 , 96) 
[KWSUB9 (J,L) , L=1 ,96) 
(KWSB10 (J, L) ,L=1 ,96) 
[KWSB11 (J,L) ,L=1,96) 
(KWSB12 (J, L) ,L=1 ,96) 
[KWSB13 (J,L) ,L=1 ,96) 
[KWSB14 (J,L) ,L=1 ,96) 
(KWSH15 (J, L) ,L=1,96) 
(KWSUBT (J, L) ,L-1 ,96) 
(QUSE1 (J,L) ,L=1, 96) 
(QUSE2 (J,L) ,L=1,96) 
[QUSE3 (J,L) ,L=1,96) 
[QUSE5 [J, L) ,L=1, 96) 
(QUSET (J,L) ,1=1,96) 

CONTINUE 
WRITE(23,2500)AITE3S,NPERS,NROOBS,J,NHOUSE, 
1KWHE?,WATSI7,HTLOS 
CONTINUE 
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WRITE (5, 2600) 
FORMAT ( ' ANYMORE HUMS? IF -YES- ENTER A 1 , IF -HO— ENTER A 0 
1 » . / )  
READ (2,*) JAGAIN 
IF (JAGAIN. RE. 1. AND.ICODE-EQ-2) SOTO 2250 
IF(JAGAIN-ME-1) GOTO 3000 
CLOSE(UNIT=21,FILE='PROB.DAT' , ACCESS® * SEQIN') 
IF (ICODEiNE.3) GOTO 10 
CLOSE (UNIT=2<*,FILE=« PMEAL.DAT' , ACCESS=»SEQIN') 
GOTO 1 
CONTINUE 
STOP 
END 

SUBROUTINE TOTLKW(I,J,KWUSE1,KWUSE2,KWUSE3,KWUSE4,KWUSE5r 

1KWUSE6,KWUSE7,KVUSE8,KWUSE9,KWUS10,KWUS11,KWUS12,KWUS13, 
2KWUS14,KWUS15,KWUSET) 
IMPLICIT REAL (K) 
DIMENSION KWUSE1 (7,96) ,KWUSE2 (7,96) ,KWUSE3(7,96) ,KWUSE4 (7,96) , 
1 KWUSE5(7, 96) ,KWUSE6 (7,96) ,KWUSE7 (7,96V,KWUSE8(7,96) , 
2KWUSE9(7,96),KWUS10(7,96),KWUS11(7,96),KWUS12(7,96), 
3KWUS13(7,96),KWUS14(7,96) ,KWUS15(7,96) ,KWUSET(7,96) 
KHT=0.0 
KWT=KWUSE1 (I, J) +KWUSE2 (I, J) +KWUSE3 (I, J) +KWUSE4 (I, J) 
KWT=KWT*KWUSE5 (I, J) +KWUSE6 (I, J) +KBUSE7 (I, J) +KWUSE8 [I,J) 
KWT=KWT*KWUSE9 (I,J) +KWUS10 (I,J) +KWUS11 (I,J) >KWUS12 (I,J) 
KWUSET (I, J) =KWT + K1US1 3 (I,J) +KWUS14(I,J) +KWUS15(7,96) 
RETURN 
END 

FUNCTION NAVAIL (X,Y,NPERS) 
N=0 
P1=RAN (U) 
IF (P1.GT. Y) GOTO 5 
P2=RAN (U) 
DO 2 1=1,NPERS 
IF(P2.GT.SXP (.5* (1-1) )) GOTO 3 

2 CONTINUE 
3 N=I 
5 A=X* (NPERS-N) 

S=A-IFIX (A) 
IF [S. GE. 0. 5) GOTO 10 
NAV AIL=IFIX(A) 
GOTO 20 

10 NAVAIL=IFIX(A) *1 
20 CONTINUE 

RETURN 
END 

SUBROUTINE TKWHRS(I7AL,KWUSET,KWHSS) 
REAL KWUSET,KWHRS 
DIMENSION KWUSET (7,96) 
KWHRS=0. 0 
DO 10 I=IVAL,IVAL 
DO 10 J=1,96 
K W HRS= KW HR S + K W U S ET (I, J) 

10 CONTINUE 
KWHRS=KWHRS/4« 
RETURN 

C 2550 
2600 

2550 

3000 
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END 

SOBHOOTINE TOTQOS(I,J,Q0SE1,QOSE2,QOSE3,QOSE5,QOSET,QOSOH) 
DIMENSION QUSE1 (7,96) ,QOSE2 (7,96) ,QUSE3 (7,96) ,Q0SE5 (7,96) , 
1QOSET (7,96) 
QOSET (I, J) =QOSE1 (I,J) +Q0SE2 (I,J). + Q0SE3 (I, J) •Q0SE5 (I, J) 
QOSOH=QOSUH +QUSET (I, J) 
RETORN 
END 

SUBROUTINE VflSHNB(I,JTIHE,HTIHE,HiSHFC,PBTIHE,PBDAY,NHOHE, 
1 TRW,TCW,QUS E2,NFAC, NBATH,NPERS) 
DIMENSION PBTIHE (96) ,PBDAY(7) ,QOSB2 (7,96) ,»FAC(7) 
DATA WFAC/.0,1.,1.,.5,.5,1.,1./ 
FACT= (105.-TCW) / (THW-TCW) 
BTUHW=2. *8. 34* (THS-TCH) *FACT*HASHFC 
BTOBAT=2 0. *8- 3ft* (THW-TCV) *F ACT 
NUH=0 
IF (JTIHE.ST. 3) LTIHE=3 *JTIHE-HTIHE 
HULT=- (LTINE.GE. 1. AND.LTIHE.LE. 6) 
PHASHH^ (2. /6. ) *SFAC(1 • (LTIHE*HULT) ) *HULT 
IFfPWASHH.EQ. 0.0) GOTO 30 
DO 10 N= 1, NHOHE 
PROB=RAN (0) 
IF(PROB.GT.PWASHH)GOTO 10 
00SE2 (I, JTIHE) =BTUHW+QDSE2 (I, JTIHE) 
NUH=NOH+1 
NFAC=NFAC*1 

10 CONTINOE 
IF (NUM.EQ. NHOHE) 20,30 

20 RETORN 
30 PiASH= (NHOHE-NUH)* (2-/96.) 

PHOB=R AN (0) 
IF (PHOB. GT. PHASH) GOTO 50 
Q0SE2 (I,JTIHE)=BTOHW+ Q0SE2(I,JTIHE) 
N0M=NUM+ 1 
NFAC=NFAC+1 
IF(N0M.EQ. NHOHE) 40,50 

40 RETORN 
50 IF (NBATH.GE. NPEFS) GOTO 60 

PBATH=NHOHE*(5-/672.) *(PBDAI(I) *PBTIH E (JTIHE) ) 
PBOB=RAN (0) 
IF (PROB. GT.PBATH) GOTO 60 
Q0SE2 (I, JTIHE) =BT0BAT*Q0SE2 (I,JTIHE) 
NBATH=NBATH*1 

60 SETORN 
END 

SOBROOTINE SOHKW (IV AL,KSOSEI,KWOSOH) 
REAL KVOSEI,KHUSOM 
DIHENSION KWOSEI (7,96) ,KWOSUH (7,96) 
DO 10 J=1,96 
KHUSOH (IVAL , J) =KWOSOH (IVAL,J) +KW0SEI (I7AL, J) 

10 CONTINOE 
RETORN 
END 

SOBROnTINE DATA (NUHREC,VARABL) 
DIHENSION V AR ABL (2, 96) 
N=0 
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50 BEAD{21, 100) HOH 
100 FORMAT(IX,•RECORD NOB.•,1X,14) 

IF (NUM.EQ.NOMBEC)GOTO 110 
DO 105 1 = 1, 13 
BEAD[21,120) 

105 CONTINUE 
GOTO 50 

110 READ (21, 120) 
120 POHSAT (57X) 

N=N +1 
. DO 150 J=1, 12 

K- (J-1) *8+1 
BEAD (21, 140) (VARABL (N,L) ,1=K, (K*7)) 

150 CONTINUE . 
140 FORMAT (1X,8F7„ 4) 

NOHBEC=NOMREC+1 
IFtN.EC?. 1) GOTO 50 
BETOHN 
END 

SOBROUTINE BEFRIG(JTIHE,TAM8,TACT,TDES,EPS,ONSTP, 
1A,B,C,»ATTS,ENGY,OPEN1,NHOME,NSTOC,NSTOTL,TOTKWH, 
1MTIME,NR,JDFRST,QDEF) 
DIMENSION POPEN (7) ,TACT (2) , JDFRST (2) 
DATA POP EN/. 0,1.,1.,.5,.5,1„,1./ 
DELTIM=1. 
ENGY=0„0 
NSTOC=0 
OPEN2=0. 

IFtJTIME.EQ.JDFRST(1) )GOTO 140 
IF [JTIME-EQ. JDFRST C2) ) GOTO 140 

DO 130 1=1,15 
DELT1=TAC?(NR)-TDES 
IFfDELT1.SE.EPS.AND.ONSTP.EQ.O.0)GO TO 100 
IF (DELT1.GT.-EPS-AND. ONSTP. EQ. 1.0) GO TO 100 
IF(DELT1.LE.-EPS.AND.UNSTP.EQ.1.0)GO TO 110 
IF (DELT1.3T.-EPS.AND.ONSTP.EQ.O.0)GO TO 110 
GO TO 120 

100 ONSTP—1. 0 
GO TO 120 

110 0NSTP=0.0 
120 ENGY=ENGH-ONSTP»BATTS*DELTIM 

QR2M=A*[1+.03*(110.-TAHB))*ONSTP 
DELT3=TAM3-TACT(NB) 
QIN=B*DELT3 

PBOB1= (OPEN 1/1440. )*NHOHE 
LTIi!E=0 
IF(JTIHE. GT.3)LTIME=3 +JTIHE-MTIME 
MOLT=- (LTIME. GE. O.AND.LTIME.LE.6) 
PROB2= (NHOH E*6./90.) *POPEN {1 + (LTIME*HOLT) ) *HOLT 
X=BAN (0) 
IF (X.LE. PROB2) GO TO 450 
IF(X.LE. PBOB1) GO TO 400 
QRANDM=0.0 
GO TO 600 

400 OPEN1=OPEN1 -1.0 
GO TO 470 
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450 OPEN2=OPEN2 + 1. 
£•70 Y=0. 

NSTOC= NSTOC+1 
DO 500 J=1, 6 
Y=Y+RAN{1.) 

500 CONTINUE 
QRANDS=I*5.+15. 

600 Q NET=QIN-QREH+QRANDH+ QDEP 
IF(QNET.LE.0.)QDEP=0. 
IFFUNSTP.EQ.1..AND.QDEP.GT.O)GOTO 125 
DELT2=C*DELTIH*CNET 
TACT {NR) -TACT (NR) +DELT2 
GOTO 130 

125 QDEP=QNET 
130 COHTINOE 

GOTO 150 
140 ENGY=.200 

QDEF=683 
TACT {NR) =40. 

150 NSTOTL=H STOTL+NSTOC 
TOTKWH=TOTKWH+ENGY 
RETURN 
END 

SUBROUTINE PREEZH{JTIHE,TA3B,TACT,TDES,EPS,UNSTP, 
1 A,B,C,WATTS,ENGY,OPEN1,NHOHE,NSTOC, NSTOTL,TOTKJIH, 
1HTIME) 
DELTIH=1. 
ENGY=0-0 
HSTOC=O 
DO 130 1=1,15 
DELT1-TACT-TDES 
IF [DELT1 .GE. EPS. AND.UNSTP. EQ.O. 0) GO TO 100 
IP(DELT1.3T.—EPS.AND.UNSTP.EQ.1.0)GO TO 100 
IF (DEI.T1. LE. -EPS. AND. UNSTP. EQ. 1.0) GO TO 110 
IF(DELT1. GT.-EPS.AND.UNSTP.EQ.0.0)GO TO 110 
GO TO 120 

100 UNSTP=1.0 
GO TO 120 

110 UNSTP=0.0 
120 ENGY=ENGY+UNSTP*8ATTS•DELTIH 

Q-REM=A*(1 + .03*[110.-TAMB) ) * UNSTP 
DELT3=TAHB-TACT 
QIN=B*DELT3 

PROB1= (OPEN 1/14 40. ) ON HO HE 
X=RAN JU) 
IF (X. LE. PROB1) GO TO 400 
QRANDM=0.0 
GO TO 600 

400 OPEN1=OPEN1-1.0 
GO TO 470 

470 Y=0. 
NSTOC=NSTOC +1 
DO 500 J=1,6 
Y=Y+RAN (1. ) 

500 CONTINUE 
QRANDH=Y*5. + 15-

600 QNET=QIN-QREa+QRANDM 
DELT2=C*DELTIM*QNET 

U 
1 
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T ACT=TACT* DELT2 
TIHE=TIHE+DELTIH 

130 CONTINUE 
NSTOTL=NSTOTL+NSTOC 
TOTKVH=TOTKWH+ENGY 
RETURN 
END 

SUBROUTINE HEAL(IWDAY,JTIHE,K,PHF,NHOHE,EATPRB,HfHT1MB) 
DIMENSION PHF (2,96),EATPRB(3) 
PHFT=0. 
PROB-RAN (U) 
IFfPROB. LE. EATPHB(H) ) GOTO 10 
RETURN 

10 DO 20 J=JTIHE, (K+JTIHE) 
PHFT=PHFT*PHP (IffDAY, J) 
IF(PHOB. GT.PHFT) GOTO 20 
HTIHE=J 
RETURN 

20 CONTINUE 
RETURN 
END 

SUBROUTINE ELBAHG(I,JTIHE,HT,KWUSE4,KHRANG) 
REAL KBUSE4,KWE ABG 
DIHENSION KHUSEU (7,96) , KWRA NG (3) 
M3=- ((HT-3) -EQ.O) 
H1=-((HT-1)-EQ.C) 
KTOSE4 [I , (JTIHE-3) ) =K»RABG(HT) *H3 
KHUSEU (I, (JTIHE-2) )=KRRANG(HT) *H3 
KUUSE4 (I , {JTIHE—1) )=KHRANG(HT) 
KHUSE4 (I , JTIHE) =KWRANG (HT) 
KWUSE4 (I, (JTIHE+1) ) *KiTRANG(HT)*Hl 
RETURN 
END 

SUBROUTINE AUDISH(I,IWDAY,JTIHE,THH,TCW,KWADB,QUSE5,KWUSE5, 
1PADHD,4DBUSE) 
REAL KHUSE5 
DIHENSION QUSE5 (7,96) ,KHUSE5(7,96),PAD8D(2,96) 
BTUADH=15. *8. 34* (THS-TCW) 
PROB=RAN (U) 
PADHT=PADWT+PADHD(IBDAY,JTIHE) 
IFfPROB. GT. PADHT) 10,20 

10 RETURN 
20 ID=I 

JT=JTIHE 
QUSE5 (ID,JT) =BTUADl/2. 
KHUSE5 (ID, JT) =.4 
IF(JT.GE.96)CALL NEXDAY (ID,JT) 
KHUSES (ID, (JT+ 1) )=mH 
IF( (JT + D.GE. 96) CALL NEXBAY (ID, JT) 
KWUSE5 (ID, (JT + 2) ) -«9 
QUSE5 (ID,(JT + 2))=BTUADW/2. 
IF ( (JT+2) . GE. 96) CALL NEXDAY (ID, JT) 
KWUSE5 (ID, (JT + 3)) --9 
ADHUSE=1. 
P ADWT=0. 
RETURN 
END 



125 

SOBROOTINE HDDISH (I, JTIME,QOSE1 ,HT,THW,TCW,DODISH) 
DIMENSION QOSE1 (7,96) ,DODISH (3) 
BTUHDW—10- *8. 34* (THW-TCW) 
PBOB=RAN(U) 
IFfPROB. GT. DO DISH (MT) ) 10,20 

10 RETOBN 
20 QOSE1 (I, JTIME) =BTOHDW 

BETORN 
END 

SOBROOTINE CLWASHflDAY,JTIHE,PWHTIH,SWASH,TY'WASH, 
1 TYDRY ,KWWASH,KWDRY,THW,TCW , AITEH,KH0SE6 , KWUSE7, QOSE3, J,21SASH, 
2LWASH) 
REAL KBWASH,KWDHY,FCWOSE6,KWUSE7 
DIMENSION PWHTIM (2,96) , SWASH (3) ,KWOSE6(7 ,96) , 
1KWOSE7 (7,96) ,QOSE3(7,96) ,TYWASH(4) ,TYDRY (3) , 
1 WASH (4) , R INS (4) ,HTFAC (3) , A ITEM (15) 
DATA WASH/20. ,20., 10. ,0./,RINS/10.,0. ,0.,0./ 
DATA HTFAC/1-,.5,0./ 
J=JTIME 
ITIME =JTIHE , 
I=IDAY 
WRITE (5,») IDAY 
PTI!!E=RAN (0) 
ND=2 
IFfI.EQ. 1-.OH. I. EQ. 7) ND=1 
FACTOR= (MWASH-LWASH) /2 
IF fPTTBE.LE. (P1HTIHf ND, J) *FACTOR)) 250,200 

200 RETURN 
250 PWASH=RAN(0) 

DO 300 L=1,3 
IF(PWASH.LE..,SWASH (L) ) GOTO 400 

300 CONTINOE 
400 IF (L.GT. (!1 WASH-LWASH) ) L=MWASH-LWASH 

NHWASH=L 
LWASH=LWAS H+L 
DO 425 N=1 ,NMWASH 
PWASH=RAN(U) 
DO 500 K=1,4 
IF(PWASH.LE.TYiASH(K) ) 520,500 

500 CONTINOE 
520 QOSE3 (I, (J-1))=WASH(K) *8.34* fTH W-TCW) 

KWUSE6 (I,J) =KiWASH 
IFfJ.EQ. 96) CALL NEXDAY (I, J) 
KWOSE6 (I, (J+ 1)) =KWWASH/3. 
Q0SE3 (I, (J* 1) ) =RINS fK) *8.34* (THW-TCW) 
IFf fJ+1) .EQ.96) CALL NEXDAY (I, J) 
KWOSE6 (I, (J + 2))=KW1ASH/1.5 
J=J + 4 
IFfJ.GT. 96) CALL NEXDAY (I,J) 

425 CONTINOE 
IFfAITES (7) .EQ. "0) GOTO 450 
I=IDAY 
JT=ITTME*3 
IFfJT.GE.96) CALL NEXDAY (I,JT) 
DO 430 IQ=1,NHWASH 
PDRY=RAN(0) 
DO 530 K=1,3 
IF(PDRY.LE. TYDRY (K)) 540,530 
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530 CONTINUE 
540 DO 435 IT=1,4 

KWUSE7 ri, (JT+IT) )=KWDRY*HTFAC (K) 
IP ( (JT+IT) . GE. 96) CALL NEXDAYfI,JT) 

435 CONTINUE 
JT=JT+4 
IF [JT. GT. 95) CALL NEXDAY (I,JT) 

430 CONTINUE 
IDAY=I 

C WRITE (5,*) IDAY,LHASH,J,JT 
450 RETURN 

END 

SUBROUTINE NEXDAY(I,J) 
1=1 + 1 
IF [I.GT- 7) 1=1-7 
J=J-96 
RETURN 
END 

SUBROUTINE iATHET [I,JtIME,THW,TCH,QUSET,TSET,DIF,BATSIZ, 
1IELSET, S*QNET,USTEP, HETLOS,KWUSE8,TAHB) 
REAL KWUSE8 
DIMENSION ELSIZE (8) ,IOFFPK(96) , QUSET (7 ,96) , KHUSE8 {7 , 96) 
DATA ELSIZE/3.0,3.0,4.5,4.5,5-5,5.5,5.5,2-0/ 
DATA IOFFPK/24* 1. ,60*0., 12*1. / 

C NEED INITIAL VALUES FOR TSET,TCW,TH1,TAHB,DIF,IELSET, 
C SHQSET, HETLOS, AND USTEP. 

IF {I. EQ. 1. AND. JTIHE-EQ. 1)THi1=THW 
ELENGY=0.0 
IF[WATSIZ.EQ.1.)GOTO 2000 
IF (WATSIZ.EQ.2.)GOTO 2025 
IFfWATSIZ.EQ.3.)GOTO 2050 
GAL=80. 
TOPEL= ELSIZE (7) 
GOTO 2 075 

2000 GAL=30. 
TOPEL= ELSIZE t1) 
BOTEL= ELSIZE [2) 
GOTO 2075 

2025 GAL=52. 
TOPEL= ELSIZE ( 3 )  
BOTEL=ELSIZE (4) 
GOTO 2 075 

2050 GAL=80. 
TOPEL= ELSIZE [5) 
BOTEL=ELSIZE (6) 

2075 BTUCAP=GAL*8.34* (TSET-TC!) 
DO 2275 L=1,3 
IFfWATSIZ. EQ. 4.) BOTEL=ELSIZE[8) *IOFFPK (JTIHE) 
DELT1=TSET-THH1 
IF(DELT1.GE.DIF.AND.USTEP.EQ.0.)GOTO 2100 
IF (DELT1. GT. f-DIF) . AND. USTEP. EQ. 1.) GOTO 2100 
IF(DELT1.LE. (-DIF) .AND. USTEP. EQ. 1.) GOTO 2125 
IFfDELT1.LT. DIF. AND. USTEP. EQ. 0. ) GOTO 2125 
WRITE {5, 2110) 

2110 FORMAT [1H,'THERE IS AN ERROR') 
GO TO 2300 

2100 USTEP=1.0 
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2125 
2150 

2175 

2200 

2225 

2250 

2260 
2275 
C 
C 
C 2290 

2300 

GOTO 2150 
0STEP=0.0 
IF (IELSET. EQ. 1) GOTO 2175 
ELEMNT=BOTEL 
DFBTU=1.0/(GAL*.66*8.34) 
GOTO 2200 
ELEMNT=TOPEL 
DFBTO=1.0/(GAL*.33*8. 34) 
ELEN"GT=ELENGY + (ELEHNT/1 2. 0) *OSTEP 
0 ADDED=3417.*(ELEBNT/12.0) *0STEP 
QLOSS= HETLOS* (TSET-TAMB) 
QNET=QADDED-QLOSS- (QOSET (I, JTIME) /3.) 
DELT2=QNET*DFBTU 
THS1=THM1+DELT2 
IF(THH1.LE.TCH)THi1=TC¥ 
SMQNET=SMQNET+QNET 
IF (THW1. GE. (TSET+5.) .AND. IELSET. EQ. 1) GO TO 2250 
IF(BTUCAP.LE- (-SMQNET)) SRQNET= (-BTOCAP) 
POSEO=-SMQNET/ETDCAP 
IF (POSED. GT. 1. 0) POSED551.0 
HETLOS=GAL* (1.-POSED) * (.02) /3. 
IF(POSED.GE..75.AND.IELSET.EQ.2) GOTO 2225 
IF(POSED.LE..66-AND.IELSET.EQ.1)GOTO 2250 
GO TO 2260 
IELSET=1 
THH1=TSET-10. 
GO TO 22 60 
IELSET=2 
THB1=TCA 
CONTINOE 
CONTINOE 
WHITE (5,2290) POSED,THW1 ,IELSET, OSTEP, SHQNET,QLOSS, QOSET (I,JTI!!E) 
1,QADDED 
FOBMAT(1H,F7.4,F7.2,12,F4.1,F10.1,F6.1,F10.1,F8.1,/) 
KWUSE8(I,JTINE)=ELENGY*4 
THW=TSET 
IF (PUS ED. GE. 1.) THB—TCH 
RETURN 
END 



APPENDIX B 

FORTRAN PROGRAM FOR THE AVAILABILITY FUNCTION 



FILE: AVML.FOR 

INTEGER VALUES SPECIFY A PARTICULAR 1/4 HOUR. (I. E. 33 
IS 8:15 A.M.BASED ON 96 1/4 HOURS IH A 24 HOUH DAY.) 
NTI=THE INTEGER VALUE CF THE PRESENT TIME 
N5T=THE INT£GEB VALUE CF SHIFT STABT TIME 
NFT=THE INTEGER VALUE CF SHIFT FINISH TIME 
NTAUS = THE INTEGER VALUE OF THE SHIFT STABT 'TIME CONSTANT1 

NTAU?=THE INTEGER VALUE OF TH SHIFT END 'TIME CONSTANT1 
NA=THE INTEBGER VALUE CF THE EARLIEST ABISE TIME 
NL=THE INTGER VALUE OF THE LAST LEAVE FOF WORK TIME 

NSIGBL AND NSIG3T CAN EE 1,2 OR 4 {DELTA T) 
DIMENSION DAT (24) , DAT 1 {6) ,DAT2(12) ,DAT4(24) ,TF (96) , 
1F (192) ,PAT (192) ,PLT (192) ,PAH (192) ,PBT (192) ,P AVAIL (96) , 
22BL (24) , PLTT (24) 

DATA DAT 1/.0215,. 1253,.3413,.3413,. 1259,. C215/ 
DATA DAT2/.0049,.0166,.0440,.0819,. 1498,- 1915,. 1915, 
1.1498,.0819,.0440,.C166,.0049/ 
DATA DAT4/.0017,.0032,.0060,-0106,.0173,.0267,.0388, 
1.04 31,.0679,.0319,.0928,-0987,.0387,.092 6,.0819, 
2.0679,.0431,-03 88,.0267,.0173,.0106,-006 0,.0032,.0017/ 

OPEN (UNIT=20,FILE=« PAVAIL.DAT•,ACCESS=•SEQOUT») 

WHITE (5,15) 
FORMAT (1H ,'HOH MANY SETS? *) 
READ (5,*)ISETS 
NSETS—2*1 SETS 

DO 7 00 NDAY=1, NSETS 

INITIALIZE THE FUNCTION 
DO 20 K=1,96 
TF (K) =0. 
PAVAIL (K) =0. 
CONTINUE 
TPOPDL=0.0 

WRITS (5,10) 
FORMAT (1H ,•HOW MANY SHIFTS?',/) 
READ (2,*) NSHIFT 

BO 5 00 J=1,NSHIFT 

WRITE (5,30) 
FORMAT£1H ,'ENTER DATA FOR THIS SHIFT-POPULATION,START TIMS 
1 END•TIME,TAU START,TAU END,SIGMA BREAKFAST,BEETIME, 
2SI3MA BEDTIKME•,/) 

READ (2,*) POPUL ,_NST ,NFT, NT A US ,NT AUF ,NS IGBL, NBT, NSIGBT 

INITIALIZE TH2 INTEHMEDIATE VABIAELES 
DO 4 0 K=1,192 
PAT(K)=0. 
PLT(X)=0. 
PAH (K) =0. 
?3T[K)=0. 
F(K) =0 
CONTINUE 
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MBAX=6*NSIGBL 
NMAX=1+ (5*NTAUS) 
NAHU AX = 1 + (5*NTAUF) 
OAX=3*NSIGBT 
NA=NST-NMAX 
IF ( (N A-HHAX) .LE. 0) NA=96+NA 
IF (NFT.EQ.200) NA=NST 
ML=N A + NBAX-1 
IF [NFT.EQ.200) NL=HA+1 
IF(NFT.HE.200.AND.NFT.LT.NA)8FT=NFT+96 
NBTT=NET 
IF (NBT.LT- NFT. OR» (NBT-KHAX)-LT. 0) NBT=NBT+96 
IF(NFT.EQ.200)NBT=NBTT 

C WRITE (5,*) NA,NL 

DO 400 NTI=1,192 

C COMPOTE "AHISE TIHE" PROBABILITIES 

IF (NA.GT.NTI.OH.NTI.GE. NL) GOT*} 100 
N=NL—NTT 

T1=" (1.* (N-1) )/NTAUS 
12=- (1.*N)/NTAUS 
PLT7 (N) =EXP (T1) -EXP (T2) 
IF (NFT.EQ.200)PITT(N) =1.0 

DO 100 M=1,3MAX 
IF (NSIGBL. EQ. 1) DAT (H) =DAT1 (B) 
IF {NSIGBL.EQ.2) DAT (M) =DAT2 (H) 
IF (NSIGBL. EQ. 4) DAT (M) =EAT4 (B) 
PBL (3) =DAT (11) 
PAT (NTI-3) =?AT (NTI-3) +ELTT (N) *PBL (H) 

C WRITE (5, *)?A? (NTI-M) ,H 
100 CONTINUE 

C COMPUTE "LEAVE FOB WORK" PROBABILITIES 

IF (NFT.EQ.200)GOTO 300 
C INDICATES NO WORK SHIFT. 

IF (NTI.LT.NA.OH.NTI.GE.NL) GOTO 200 
L=NL-NTT 
T3=- (1.* (L-1)) /NTAUS 
T4=-(1.*L)/NTAUS 
PLT (NTI) =EXP (T3) - EXP (T4) 

200 CONTINUE . 

C COMPUTE "ABfilVE HOME" PHOEAEIIITIES 

IF (NTT.LE. (NFT+1)-OB.NTI.GT. (NFT+NAHMAX) )GOTO 300 
L=-(NFT+1-NTI) 
T5=- (1 .*L) /NTAUF 
T6=- (1.# (L-1))/NTAUF 
PAH (NTI) = -EX? (T5) + EXP (16) 

300 CONTINUE 
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C COMPUTE "BEDTIME" PHOBABILITIES 

IP[NTI.LT. [NBT-KMAX).CH.NTI.GT. (NBT + KMAX))GOTO 400 
:IL=KMAX+NBT-NTI 
IF [NSIGBT.EQ. 1) DAT (ML) = DAT1 (ML) 
IF [NSIGBT.EQ.2) DAT (ML) = D AT2 (ML) 
IF (M SIGBT. EQ- 4) DAT (MI) = DAT4 [ML) 
PBT (NTI) = DAT (ML) 

C WHITE [5, *) PAT (NTI) ,PLT (NTI) ,PAH (NTI) , FBT (NTI) , NTI 

400 CONTINUE 

C COMPUTE TH2 CUMULATIVE DISTRIBUTION FUNCTION 

F (1) = [PAT [1) -PLT (1) +PAH (1)~PBT (1) ) *POPUL 
DO 450 NTI=2,192 
F [NTI) =F (NT 1-1) + [PAT [NTI) -PLT (NTI) +PAH JHTI) -PBT (NTI) ) *POPUL 

C WRITE [5,*) F [NTI) ,NTI 
450 CONTINUE 

C FOLLOWING TAKES CARE CF TIMES AFTER MIDNIGHT 

DO 430 NTI=1,96 
F (NT I) -F [NTI) +F (MTH-96) 
IF [F (NTI) .LT. 0. ) F [NTI) =0-

430 CONTINUE 

DO 4 75 NTI=1,96 
TF (NTI)=TF [NTI) +F (NTI) 

475 CONTINUE 

TPOPUL=TPOPUL+POPUL 

500 CONTINUE 

DO 6 00 NTI=1,9 6 
?AVAIL [NTI) =TF [NTI) /TPOPUL 
IF [?AVAIL [NTI) -LT.0.001) PAVAIL[NTI) =.001 

60 0 CONTINUE 

WRITE (20,*) [PAVAIL (L) ,L=1,96) 
700 CONTINUE 

STOP 
END 



APPENDIX C 

PARAMETER DEVELOPMENT FOR REFRIGERATORS (FREEZERS) 



Refrigerator and Freezer Models 

The basic relationship for the refrigerator and freezer models is 

given by: 

QNET = QIN - QREM + QRAN + QDEF 

where: 

QNET = net heat gain (+) or removed (-) 

QIN = heat gain through the walls and gasgets as well as 

internal fans and heaters, where applicable 

QREM = heat removed by the refrigeration unit 

QRAN = heat added by random opening of the door(s) 

QDEF = heat added to defrost the evaporator on automatic 

defrost models. (Not used in freezer models at 

present). 

The refrigeration unit is switched on and off when QNET changes 

the refrigerator (or freezer) temperature by the differential 

temperature, + 2°F. (See paragraph 7 for further details). 

QIN is calculated each minute in the program as: 

QIN = B * (Tambient - Tunit) 

B = the heat gain parameter for the refrigerator 

The value of "B" for-a particular refrigerator (and the equivalent 

parameter "F" for a freezer) is calculated as follows: 

a) Calculate the total "wall" area of the unit, wall 

thickness and determine insulation type. 
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b) Using a), calculate the heat gain per hour by' conduction 

based on a 110°F."standard maximum" ambient temperature and 

unit temperatures of 32°F (refrigerator sections) and 0°F 

(freezers and freezer sections). 

c) Estimate other heat gains due to leakage (and to internal 

fans and surface heaters where applicable). 

d) Then: 

n _ Total BTU/Hour heat qain (at 110°F) or 
B 60 x (110 -Preference) BTU/Min F 

QIN = B x (Tambient - Tunit) BTU/Min 

Where: Treference = 32°F for refrigerators 

= 0°F for freezers 

Tunit = actual temperature of refrigerator 

or freezer. 

For the 16 cubic foot refrigerator used in the model, the 

total BTU/hour heat gain used was 546 BTU/hour based on the 

ASHRAE Handbook [21]. The value of "B" used, based on this, is 

0.12 BTU/Min°F. 

For a combination unit, using the refrigerator section temperature, 

QIN will be somewhat underestimated at low ambient temperature 

based on this simplified parameter. 

is calculated each minute in the program as: 

QREM = A * (1+.03(110-Tambient)) * USTEP BTU/Min 

A = Refrigerator heat removal parameter ("E" for the 

freezer) 
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USTEP = "On-Off Switch", controlled by the refrigerator 

section temperature. 

The value of "A" for a particular refrigerator ("E" for a 

freezer) is determined on the basis that the refrigerator is 

designed to run continuously when the ambient temperature is 

110°F (at which time the condensing temperature is assumed 

to be 132°F). At a lower ambient temperature more heat will be 

rejected per minute, with less energy expended, since the 

capacity of the compressor/condenser unit increases with a 

lower condensing temperature (which results from a lower 

ambient temperature). At the same time the input power re­

quired is reduced. (This assumes the condenser, evaporator 

and expansion device support the increased capacity). In 

order to take into account the increase in capacity and the 

reduction in power at lower ambient temperatures, the value 

"A" is multiplied by a factor based on this "combined" effect, 

due to the variation from the maximum design temperature (110°F). 

Based on data from Reference 21 used in the model, an estimate 

of 3% increase in effective capacity per degree reduction in 

ambient temperature was estimated. (This value is probably 

optimistic and depends strongly on the characteristics of the 

refrigerators components). 

The value of "A" is calculated as follows: 

B _ Total BTU/Hour heat qain (at 110°F) 
rt " 60 

= = 9.10 BTU/Min (for model used) 
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5. QRAN is determined each minute in the program: 

a) A "monte-carlo" check is made to see if the door is 

opened. (See Section 2.4.3.2)). 

b) If the door is opened the amount of heat added is 

estimated to be: 

QRAN = (5.0 * y) + 15 BTU 

Where: y = the sum of 6 random numbers (0 to 1.0) 

5*y = the estimate for longer openings and warm products 

based on reasonable guesses) 

15 = an estimate for one air change and the heat due to 

the light. 

Thus if the door is held open a long time and/or warm items are 

added to the unit, QRAN could be as large as 45 BTU. 

6. QDEF, and its affect on the operation depends on the unit. The • 

defrost operation used in the model is as follows: 

a) Two defrost cycles are used per day, the times for a 

particular house being the same for each day. 

b) 800 watts are applied for 15 minutes (equivalent of 683 

BTU). The refrigerator temperature is constrained to stay at 

40°F maximum (based on observation). 

c) The refrigeration unit removes this amount of energy during 

the following periods in addition to the amount normally removed. 

(Note: Some of this heat goes out with the melted frost but this 

was neglected in the model). 
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7. Referring to paragraph 2, the ON-OFF times of the unit are controlled 

by a parameter "C" ("F" in the freezer), which gives the change in 

temperature of the unit per BTU. 

Thus: DELT2 = C*QNET 

and: New Temperature = Old Temperature + DELT2 

The value of "C" depends to some extent on the "loading" of the unit. 

(The unit will cycle more often when lightly loaded). For use in the 

model a "nominal" value was calculated based on the following: 

a) The temperature change between "ON" and "OFF" is 4° F 

(i.e. the differential is + 2° F) 

b) A typical "OFF" time at 70°F ambient is 20 minutes 

(approximately 80% of the cycle time) with no door openings! 

c) Then 4° = 20 DELT2 = 20(C*QNET) 

Where: QNET(70°) = QTN(70°) (i.e. no openings) 

and C = 20 QIN(70°) °F/BTU 

Use C £ .044°F/BTU 

8. The energy used per minute by the refrigerator (freezer) is contained 

in the parameter KWREF(KWFRZ). The refrigerator model "loops" 15 

times in each period in its subroutine and the "energy" is summed for 

the number of minutes the unit is "ON" in the period. This value is 

multiplied by 4 to give the average kilowatts for the period. (Since 

the period is 1/4 hour). 

ENGY = ENGY + KWREF(USTEP) 

KWUSED(Ti) = 4.0*ENGY (in main program) 

the parameter is calculated as follows: 
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i/unrr - rating of compressor, surface heaters and fans 
KWREF 60 Min/Hour KWHours/Min 

The rating of the compressor can be obtained from manufacturer's data 

based on calorimeter tests or can be estimated based on a typical 

cooling efficiency of 3 BTU/Watt hour [21]. 

Surface heaters, inside fan and condenser fan were estimated to use 

50 watts for the model. Calorimeter data for the 16 cubic foot 

refrigerator/freezer indicated a 250 watt load for a 546 BTU/Hour 

output. Based on this, the value used in the model was: 

KWREF = ,25° en 050 = -005 KWHours/Min 



APPENDIX D 

ADDITIONAL LOAD CURVES FOR LARGE LOAD GROUP PREDICTED DATA 

AND LARGE LOAD GROUP TEST DATA 
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Figure D-ll - Customer Load Curve for the Large Load Group 
Test Data for Friday 
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Figure D-12 -Model Load Curve for the Larqe Load Group 
Predicted Data For Friday 
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Figure, d-13 - Customer Load Curve for Larpe Load Group 
Test Data for Saturday 
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Figure D-14 —Model Load Curve for the Large Load Group 
Predicted Data For Saturday 
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