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ABSTRACT

A STUDY OF THE THERMODYNAMICS OF ANION 
BINDING TO HUMAN SERUM TRANSFERRIN

by

DONALD A. FOLAJTAR 

University  of  New Hampshire, September, 1982

Electron paramagnetic resonance d i f fe rence  spectroscopy 

of d i f e r r i c  human serum t r a n s f e r r in  ind ica tes  t h a t  ce r ta in  in ­

organic anions a l t e r  the e lec t ron ic  environment of the iron 

centers  of the pro tein  by binding to sp e c i f ic  anion s i t e s .

The binding of these anions ( th iocyanate ,  pe rch lo ra te ,  adeno- 

s ine tr iphospha te ,  pyrophosphate, and ch lor ide)  i s  shown to occur 

pairwise with high po s i t iv e  co opera t iv i ty ,  an observation unique 

to nonstereospecif ic  an ion-protein  in te r a c t io n s .  I t  i s  shown 

th a t  human serum t r a n s f e r r in  has binding s i t e s  for  four non- 

syne rg is t ic  anions,  two in each domain. The a ssoc ia t ion  con­

s ta n ts  are  reported.

I t  i s  unl ike ly  t h a t  the anions bind to a s i g n i f i c a n t  ex­

t e n t  a t  the s i t e s  occupied by the sy n e rg is t ic  anion since none 

o f  them f a c i l i t a t e s  iron binding in the absence of  bicarbonate.



I t  i s  more l ik e ly  t h a t  these anions bind to p os i t iv e ly  charged 

amino acids or possibly to amide dipoles of  the p ro te in .  The 

f ree  energy of a ssoc ia t ion  of  these anions follows the lyo trop ic  

se r ies  which is  approximately the  same sequence for  the a f f i n i t y  

o f  anions for  p o s i t iv e ly  charged s i t e s  on p ro te ins .

31-P NMR spectroscopy reveals  th a t  the locus of in te rac t io n  

is  near the iron cen ters  and confirms th a t  both s i t e s  a re  e f fec ted .  

In so lu t ions  conta ining an NTA:transferrin concentration of 4:1 

no paramagnetic enhancement in the 31-P re laxa t ion  r a t e  is  

observed. NTA a lso  negates the responce of  the EPR spectrum 

to the above anions. Cooperativi ty in anion binding is  a lso  

observed a t  pH 7.5 but a t  pH 9, no coopera t iv i ty  i s  evident.

A competit ive binding study between pyrophosphate and t r a n s ­

f e r r i n  fo r  iron i s  presented.  The r e s u l t s  reveal th a t  the t h e r ­

modynamics of iron binding to t r a n s f e r r in  i s  dependent on the 

concentration of  pyrophosphate, the pH of  the so lu t ion  and the 

bicarbonate concentra tion.



CHAPTER I

INTRODUCTION TO THE TRANSFERRINS AND THEIR 
ANION BINDING PROPERTIES

The t r a n s fe r r in s  are  a c la ss  of metal binding proteins  

widely d is t r ib u te d  in the physiological f lu id s  and c e l l s  of 

v e r teb ra te s .  Serum t r a n s fe r r in  plays an ac t ive  ro le  in iron 

metabolism, being the only protein known to carry iron from s i t e s  

of adsorption and s torage to s i t e s  of u t i l i z a t i o n  and excret ion (1). 

Ovotransferrin and l a c to f e r r i n ,  t r a n s fe r r in s  found in the white 

of avian eggs and in mammalian milk, respec t ive ly ,  appear to 

provide a defense mechanism aga ins t  infec t ion  by denying iron,  

an essen t ia l  n u t r i e n t ,  to invading organisms (2).

All t r a n s fe r r in s  are  B-globulins capable of binding two 

atoms of iron as high spin F e ( I I I ) .  The protein will a lso  bind 

a va r ie ty  of other  t race  metals such as Cu(II) ,  VO(II), Gd(II I ) ,  

Co(II I ) ,  and Zn(II) .  Metal binding is f a c i l i t a t e d  by the binding 

of c e r ta in  sy n e rg is t ic  organic anions possessing a carboxylate  

group and a second electron-withdrawing group. I t  i s  well es­

tab l ished  th a t ,  in physiological media, the syne rg is t ic  anion 

is  carbonate (or bicarbonate) and th a t  the protein cannot seques­

t e r  iron in the absence of a su i tab le  anion (3-6). Determination 

of the physiological ro les  of the  two metal binding s i t e s ,  the 

ro le  of the syn e rg is t ic  anions in binding, the id e n t i ty  of the 

coordinating l igands ,  and of  the mechanism of metal a ssoc ia t ion

1
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and d is so c ia t io n  are  focal points  in t r a n s f e r r in  research.

Several reviews of the t r a n s fe r r in  l i t e r a t u r e  have been published 

in recen t  years (7-12).

Physical Propert ies

Transferr in  cons is ts  of a s ing le  polypeptide chain with 

two p ros the t ic  carbohydrate groups. I t  has a molecular weight 

of 78,000 and has no subunits .  The protein cons is ts  of two 

s im ila r  domains, each containing one metal binding s i t e ,  as 

evidenced by the high degree of in ternal  homology (13) and by 

the production of fragments of various t r a n s fe r r in s  by p a r t i a l  

p ro teo lys is .  These fragments have approximately ha l f  the molec­

u lar  weight of the  whole protein  and a s ingle  F e ( I I I )  s i t e  (14- 

17). The complete amino acid sequence of human serum t r a n s fe r r in  

and ovo transfe rr in  has recent ly  been published, and about 40% 

of the amino acids are  ident ica l  in the N- and C-terminal domains 

(18,19). Studies of human l a c to f e r r in  reveal s imila r  in ternal  

homologies (20). T ransfe r r in ,  which conta ins two Fe-binding 

s i t e s ,  has c le a r ly  evolved by dupl icat ion  of the s t ruc tu ra l  

gene from an ances tra l  protein th a t  had a s ingle  Fe-binding s i t e  

and a molecular weight of 40,000 (18). Nonetheless, the two 

domains show some in te re s t in g  d i f fe rences  including the presence 

of more d i su l f id e  bonds in the C-terminal domain. Why t r a n s fe r r in  

has evolved as a two-sited protein and the biological  advantage 

obtained in th i s  evolution remain mysteries.

Preliminary X-ray c rys ta l  s t ru c tu re s  of  human serum t r a n s ­

f e r r i n ,  l a c to f e r r i n ,  and rabb i t  t r a n s fe r r in  have been reported (21-23).
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The ra b b i t  protein cons is t s  of two lobes,  resembling e l l ip so id s  

with major axes inc l ined  a t  about 30 degrees to each other  (23).

The overall  dimensions are  cons is ten t  with hydrodynamic measure­

ments .

Oxygen and nitrogen donor atoms have been implicated in 

the binding of iron to the p ro te in .  U l t r av io le t  d i f fe rence  spectra 

of  various m e ta l lo t r a n s fe r r in s  d isp lay  two prominent bands a t ­

t r ibu ted  to the binding of ionized phenolate groups (24-27). 

Presumably, two or possib ly three  tyrosines  a re  coordinated to 

the metal.  Fluorescent l i f e t im e  measurements of lanthanide 

t r a n s fe r r in s  suggest two tyrosines  (28). On the other hand, 

t i t r a t i o n  data on ty ros ine  in apo- and d i f e r r i c  t r a n s fe r r in s  

and n i t r a t i o n  of ty ros ine  suggest three  residues per metal s i t e  

(29). The v i s ib le  absorption spectra  of  F e ( I I I ) ,  Cu(II) ,  and 

Co(III) complexes r e f l e c t  e lec tron  donor-acceptor in te rac t ions  

between the metal and ty ros ine  (30). Transi t ions in the r e s ­

onance Raman spectrum a lso  implicate tyrosine  and h i s t id in e  

in the binding process (31,32). The EPR spectrum of  copper t r a n s ­

f e r r i n  exhib i ts  a th ree  component s p l i t t i n g  a t t r ib u t e d  to a super- 

hyperfine in te rac t io n  from coordinated n i trogen,  presumably from 

imidazole (33). Proton re laxa t ion  s tud ies  confirm th a t  solvent 

water molecules have access to the metal-binding s i t e  (34).

The ro le  of the syne rg is t ic  anion in the binding of metals 

to t r a n s fe r r in  i s  an area of g rea t  i n t e r e s t .  I t  appears th a t  

the anion is  l ig a ted  d i r e c t l y  to the metal and most l ike ly  to 

the prote in  as well (35-37). I t  is  not known whether carbonate
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or bicarbonate is  the  anion preferred  by t r a n s f e r r in ;  a recent  

NMR study has implicated both (38).

Transferr in  contains two completely functional metal binding 

s i t e s  located in the N- and C- terminal domains of the pro tein .  

Orig inal ly  the optical  spectra  of the  two s i t e s  were thought 

to be id en t ica l  (16). Recent successes in p ro te o ly t i c a l ly  

cleaving t r a n s f e r r in  into  two monoferric fragments have revealed 

small but d e f in i te  d i f fe rences  in the v i s ib le  region (14-17). 

Differences have a lso  been observed by EPR and NMR spectroscopy.

VO( I I ) EPR spectra  o f  t r a n s fe r r in  exh ib i t  up to three  spectro­

scopic species depending on pH, but a t  physiological  pH of 7 .5,  

only two species a re  i d e n t i f i a b le  (35,41). Further d i s t in c t io n s  

can be made from EPR spectra of i so to p ic a l ly  pure Cu(II) t r a n s ­

f e r r i n  and from s i n g l e - s i t e  monoferric t r a n s fe r r in s  (42,43).

The binding of iron to t r a n s f e r r in  and the d i s t r ib u t io n  

of iron between the two s i t e s  i s  dependent upon pH, the form 

of the added i ron ,  and whether small chela tes  are  present  or 

not. Iron, added as a f e r r i c  s a l t ,  gives va r iab le  and unpre­

d ic tab le  nonspecific  binding due to hydrolysis  and polynuclear 

complex formation. More r e l i a b l e  loading i s  achieved by the use 

of f e r r i c  chelates  or  f resh ly  prepared ferrous s a l t s .  Below 

pH 7.0, C-terminal binding i s  favored whereas a t  higher pH values,  

the N-terminal s i t e  i s  p referred .

Effect  of  Inorganic Anions on Transferr in

The binding o f  inorganic ions to proteins  has long been 

recognized. Anion binding to proteins  is  usual ly  r e l a t i v e ly
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weak, having s i t e  a f f i n i t y  constants  in the range of 0.1 nH  to 

1000 , although much higher values have been reported for

polyvalent e le c t ro ly te s  (44,45). The d i a l y s i s - r e s i s t e n t  binding 

of NTA and c i t r a t e  to t r a n s f e r r in  i s  probably an example of 

mult identate  attachment to the pro te in  (40).

Recently, Williams and Moreton observed th a t  d i a ly s i s  of 

serum aga ins t  buffer  caused i ron ,  p r e f e r e n t i a l l y  bound in the 

N-terminal s i t e ,  to migrate to the C-terminal s i t e  in e q u i l i ­

brated samples o f  f resh  serum (46). The low molecular weight 

component la rge ly  responsib le  fo r  t h i s  e f f e c t  has been id e n t i f i e d  

as the chlor ide  ion (47). Other anions can a lso  bring about 

th i s  change, perchlora te  being most e f f e c t iv e .  In combination, 

an increase in anion concentra tion and pH markedly enhances the 

s t a b i l i t y  of i ron-binding in the N-terminal domain r e l a t i v e  to 

the C-terminal domain (48).

The e f f e c t  of  inorganic anions on the p roper t ies  of t r a n s ­

f e r r i n  is  not l imited to t h e i r  inf luence on the thermodynamic 

s t a b i l i t i e s  of iron binding to the two s i t e s  of the pro te in .  

Because iron is  held so t i g h t l y  to the p ro te in ,  a k ine t ic  b a r r i e r - 

to the re lease  of  iron from the pro tein  must be overcome before 

t r a n s fe r  of iron is  achieved. Chloride has been found to be 

very e f f e c t iv e  a t  a cce le ra t ing  the k ine t ics  of  iron re lease  from 

the C-terminal s i t e  of  d i f e r r i c  t r a n s fe r r in  but r e ta rd s  the r e ­

lease  from the N-terminal s i t e  (47). Similar r e s u l t s  have been 

observed for  the two monoferric t r a n s fe r r in s  (49). In addit ion 

to ch lo r ide ,  other  anions, including perch lo ra te ,  f lu o r id e ,
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EDTA, and NTA, a re  capable of a f f e c t in g  the k ine t ics  of  iron 

re lease .

Of p a r t i c u la r  i n t e r e s t  a re  phosphorus conta ining chela tes  

and nucleotides which are  present  as po ten t ia l  iron ligands 

and t r ansp o r t  agents in the cytosol of the iron requir ing  r e ­

t i c u lo cy te .  Effic iency o f  iron removal in v i t ro  by such chela tes  

follows the  order pyrophosphate > adenosinetr iphosphate (ATP) > 

adenosinediphosphate (ADP) > 2,3-diphosphoglycerate.  Adeno- 

sinemonophosphate (AMP) and orthophosphate are  in e f fe c t iv e  as 

c a t a ly s t s  for  the re le a se  of  iron from t r a n s f e r r in  (50,51).

The pronounced influence of phys io log ical ly  re leven t  

inorganic anions on the metal binding proper t ies  of t r a n s fe r r in  

prompted the inves t ig a t ion s  reported in t h i s  d i s s e r t a t io n .



CHAPTER II

A STUDY OF ANION BINDING TO HUMAN SERUM TRANSFERRIN 
BY EPR DIFFERENCE SPECTROSCOPY

Figure 2.1 shows the frozen  so lu t ion  F e ( I I I )  EPR spectrum 

of d i f e r r i c  t r a n s f e r r i n .  The in tense  resonance a t  an e f f e c t iv e  

g-value of 4.3 (150 mT) and the weaker signal a t  g '=9.7 (70 mT) 

is  typical  of non-heme iron pro te ins  and rhombic Fe(III)-complexes. 

The f in g e rp r in t  of iron sp e c i f i c a l l y  bound to t r a n s fe r r in  i s  the 

de ta i led  s p l i t t i n g s  of the g '=4.3 resonance (9,52) . This f ine  

s t ru c tu re  i s  unique to t r a n s f e r r in  iron.  Small complexes exhib i t  

broad fea tu re le s s  spectra  in t h i s  region while uncomplexed Fe(I I I )  

e x i s t s  as a polymeric hydroxide and is  EPR s i l e n t  a t  77° K (3).

From X-band and Q-band l in e  posi t ion  measurements, the 

r a t i o  of axia l  to rhombic components of the zero f i e l d  (E/D) has 

been determined to be 0.31-0.32 (53). The value of E/D near 

1/3 r e f l e c t s  the low symmetry environment of the metal ion.

E/D r a t i o s  o f  1/3 with a z e ro f ie ld  s p l i t t i n g  g rea te r  than the 

energy of the spectrometer (D > hv) give r i s e  to spectra with 

e f f e c t iv e  g-values of 4 .3  (49). In a spherical  ligand f i e ld  

environment, F e ( I I I )  has six  degenerate spin s t a te s  (Figure 2 .2) ,  

but axia l  or rhombic pertu rba t ions  of the ligand f i e ld  remove 

some degeneracy, producing three pa irs  of degenerate spin s t a t e s  

(ms = ±1/2, ±3/2, ±5/2) known as Kramer's doublets (54). The 

degeneracies of t h i s  ze ro - f ie ld  s t a t e  a re  removed by applica t ion  

of  an external  magnetic f i e l d .  EPR t r a n s i t i o n s  observed a t  X-



 M 20 mT K

150mT

F ig u r e  2 .1 .  F rozen  s o l u t i o n  77K X-band ir o n  EPR sp ectru m  o f  d i f e r r i c  
human serum  t r a n s f e r r in .  In str u m e n t s e t t i n g s :  power = 20 mw, m o d u la tio n
a m p litu d e  = 10 G, sw eep r a te  = 2000 G /16 m in , tim e c o n s ta n t  = 0 . 3  s e c .
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± 3/2

- 1/2

- 3/2

- 3/2

H

Figure 2 .2 .  Iron I I I  energy level  diagram. Sixfold 
degeneracy removed by zero f i e l d .  Pos i t ion of  spin s t a t e s  
d i f f e r  depending on frequency. The g = 4.3 t r a n s i t i o n  a t  
X-band is  between +3/2 and -3/2  s t a t e s .
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band frequency correspond to those spin s t a t e s  separated by an 

energy d i f fe rence  of  9.2 GHz: the se lec t ion  ru le  fo r  allowed

t r a n s i t i o n s  in a strong magnetic f i e l d ,  ms= ±1, i s  not always 

obeyed. The c h a r a c t e r i s t i c  X-band signal  a t  g 1=4.3, re fe r red  

to above for  iron t r a n s f e r r in s ,  i s  the t r a n s i t i o n  between the 

-3/2 and +3/2 spin s t a t e s  (52).

Perturbat ions on the iron EPR spectra  of t r a n s f e r r i n  and 

ovo trans fe r r in  due to perchlora te  were f i r s t  noted by Price and 

Gibson (55). This anion was subsequently shown to perturb the 

EPR spectra  of  Cu(II) ,  Gd(II I ) ,  and VO(II) t r a n s f e r r i n s ,  ind ica t ing  

t h a t  the changes were a property of the pro tein  (56). Chloride 

was a lso  shown to perturb the EPR spectrum of  V O (II ) - t rans fe r r in  

(56). In l i g h t  of these observations a de ta i led  study of  anion- 

induced changes in the iron EPR spectrum of t r a n s fe r r in  was 

undertaken with the goal of determining the o r ig in  of the changes. 

I t  i s  es tab l ished  in t h i s  chapter  th a t  inorganic anions bind 

s p e c i f i c a l ly  to t r a n s f e r r i n .  The s to ich iom etr ies  and binding 

constants  are  presented.

Experimental Procedure

Commercial preperat ions o f  i ro n - f re e  human serum t r a n s ­

f e r r i n  of s ta ted  99% pur i ty  were purchased from Behring Diagnostics 

Corporation and used without fu r th e r  p u r i f i c a t io n .  The concen­

t r a t io n s  of apo tran s fe r r in  were determined spectrophotometrical ly  

a t  280 nm using E ^  of  11.4 (3) and a molecular weight of

78,000 (57): th i s  converts to a molar ex t inc t ion  c o e f f i c i e n t  of



8.89 x 10"^ c r r f \  Stock so lu t ions  of aqueous ferrous ammonium 

s u l f a t e  Fe(II)(NH^)2 (S0^)2 were prepared in 0.01 M HC1. At 

t h i s  pH, oxidation of Fe(I I )  i s  re ta rded .  The prote in  was brought 

to near 100% sa tu ra t ion  by the addit ion  of  two equivalents  of 

0.1 M Fe(I I )  to ap o t ra n s fe r r in  samples in 0.1 M HEFES (N-2- 

hydroxyethyl-piperazine-N-2 '-e thanesulfonic  acid)/Na0H, 0.01 

M HCOj, pH 7.5. Normally a 10-fold excess of bicarbonate was 

added to insure  s to ich iom etr ic  binding of the iron to the pro te in .  

A salmon pink color c h a r a c t e r i s t i c  of  d i f e r r i c  t r a n s f e r r i n  slowly 

developed. The so lu t ions  were in contact  with a i r  a t  4 degrees 

cent igrade for  a minimum of 24 hours or un t i l  no fu r th e r  increase  

in absorption a t  465 nm was observed.

1.0 M stock so lu t ions  of the  sodium s a l t s  of a l l  anions 

were prepared volumetrical ly .  Sodium pyrophosphate and sodium 

dodecylsulfate  were dissolved by warming and then slowly cooling 

the supersa tura ted so lu t ions  to room temperature and using them 

immediately t h e r e a f t e r .  Buffers and s a l t  so lu t ions  were rendered 

metal f ree  by shaking over Chelex-100. Glassware was cleansed 

of metals by soaking in 1:1 HgSÔ -HNOg followed by r in s ing  in 

doubly d i s t i l l e d  deionized water. All so lu t ions  were prepared 

in doubly d i s t i l l e d  water and buffered a t  pH 7.5 in 0.1 M HEPES 

buffer  (Sigma Chemical Corp.) .  D i s t i l l e d  deionized water was 

obtained from a Barnstead s t i l l  and subsequently passed through 

a Barnstead D0803 ion exchange column.

C-terminal monoferric t r a n s f e r r i n  was prepared by adding 

one equivalent  of  Fe ( I I )  to apo tran s fe r r in  a t  pH 6.0 followed
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by a i r  oxidat ion of the iron.  The so lu t ion  was allowed to stand 

un t i l  no fu r th e r  increase  in the was observed. The pur i ty  

of the C-terminal monoferric t r a n s f e r r in  was v e r i f ied  by urea/  

polyacrylamide-gel e lec t rophores is  (48). N-terminal monoferric 

t r a n s fe r r in  was prepared by the method of Williams (58). Apo- 

t r a n s f e r r in  was dissolved in 0.1 M HEPES/NaOH, 0.01 M HCOg, and 

pH 7.5 such t h a t  the concentra tion was 20 mg/ml ( to ta l  volume 

4 ml). Enough i ron ,  as ferrous ammonium s u l f a t e  was introduced 

to s a tu ra te  the  p ro te in .  The so lu t ion  was allowed to stand for  

24 hours a t  which time the percent sa tu ra t io n  was checked a t  

465 nm. The pro tein  was then d i lu ted  to 4 mg/ml with a 0.1 M 

HEPES, 0.5 M NaCl, 1 mM N a ^ O ^ ,  pH 7.5 so lu t ion .  Enough des- 

ferr ioxamine (CIBA Pharmaceuticals) was added to complex 50% 

of the i ron.  The amount of  iron being removed from t r a n s fe r r in  

was followed a t  465 nm. When the  reac t ion  had reached completion 

as evidenced by no fu r th e r  change in absorbance, the protein 

was dialyzed aga ins t  2 o n e - l i t e r  volumes of 0.1 M T r is ,  pH 7.5 

followed by d i a ly s i s  aga ins t  one 100-ml volume of 0.1 M HEPES, 

pH 7.5. F ina l ly ,  N-terminal monoferric t r a n s f e r r in  was concen­

t r a t e d  on an Ami con model 3 u l t r a f i l t r a t i o n  apparatus f i t t e d  

with a PM 10 (MW c u to f f  = 10,000) membrane under 20 psi of 

n i trogen.  Urea/polyacrylamide-gel e lec t rophores is  showed the 

presence of  only N-terminal monoferric and a small amount of 

ap o t ra n s fe r r in .

Urea/polyacrylamide-gel e lec t rophores is  was accomplished 

as fol lows.  After  thoroughly cleaning the glass  p la tes  with



13

95% ethanol to prevent gel s t i ck in g ,  a th in  layer  of Vaseline 

was applied to the spacer bars . The p la tes  were assembled and 

warmed b r i e f ly  in an oven a t  100° C to shorten set-up time and 

stop any leaks t h a t  might occur. The gel was prepared by dissolving 

3.25 g acrylamide, 160 mg bisacrylamide and 60 mg aimionium per­

s u l f a t e  in 2.5 ml stock buffer  (242 g Trizma Base, 12 g disodium 

EDTA, and 12.36 g boric  a c i d / l i t e r  of  buffer  a t  pH 8.5)  and 47.5 

ml of 6.3 M deionized urea. Urea was deionized on a Biorad 

AG501-X8CD mixed bed anion-cat ion exchange r e s in ,  20-50 mesh, 

immediately before use. A so lu t ion  of 30 ul of NNN'N'-tetra- 

methylethylenediamine (TEMED) was added to the gel solut ion as 

an i n i t i a t o r .  The gel was poured immediately t h e re a f t e r  and the 

comb inse r ted .  After  standing fo r  one hour under f luorescen t  

l i g h t ,  the comb was removed and the gel was ready to use.

Typical ly 10-50 ul of samples (1 mg/ml) in 10% g lyce ro l - 

90% tank buffer  (5% stock buffer)  colored with bromphenol blue 

were applied .  The glycerol  a ids in layering the sample in the 

s l o t .  Urea th a t  had leached out of the gel was removed with a 

Pasteur p ipet  j u s t  p r io r  to  sample app l ica t io n .  Samples were 

e lectrophoresed a t  120 V (constant  vol tage) for  20 hours with an 

LKB 2103 power supply un i t .  The i n i t i a l  cu rren t  readings were 

about 60 mA but f e l l  during the course of the run to around 30 mA. 

Staining so lu t ion  was 0.25 % Coomassie Blue R250 in methanol/ 

a c e t i c  acid /water  (5 :1 :5 ) .  The gel was s ta ined for  10 minutes 

and then destained fo r  1/2 hour with two changes of des ta in  so lu t ion  

(100 ml methanol, 150 ml g lac ia l  a c e t i c  acid to 2 l i t e r s  with 

water) followed by desta ining overnight  in a th i rd  change.
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EPR spectra were measured a t  X-band frequency on a Varian 

E-4 or E-9 spectrometer in te r faced  with a Minc-11 laboratory 

computer (Digita l Equipment Corporation).  Samples were placed 

in c a l ib ra te d  tubes (approximately 4 mm o .d . ,  3 mm i . d . )  for 

spectra  recorded a t  98° K. T i t r a t io n s  of  the protein  with the 

various anions were c a r r ied  out by del iver ing  a ca lcu la ted  volume 

of 1 M t i t r a n t  in 0.1 M HEPES/NaOH, pH 7.5 into  0.4 ml of buffered 

1 mM d i f e r r i c  t r a n s f e r r i n .  Approximately 300 ul of the sample 

was withdrawn and frozen in a quartz  tube by immersion in l iqu id  

ni trogen.  Temperature o f  the sample was measured with a copper- 

constantan thermocouple immersed in the frozen so lu t ion  and main­

tained a t  98° K by employing a Varian V-4257 variab le  temperature 

cav i ty  i n s e r t  on the spectrometer.  Spectra were recorded, d i g i ­

t iz e d ,  and stored on floppy d isc  a f t e r  each addit ion of t i t r a n t .

Results

Figure 2.3 shows the e f f e c t  of  ch lo r ide  on the iron EPR 

spectrum of d i f e r r i c  human serum transferr in . .  Both the g ' =4.3 

and the g'=9.7 s igna ls  are  changed. A broad shoulder i s  evident 

on the low f i e ld  side of the c h a r a c t e r i s t i c  doublet a t  g '=4.3.

This fea tu re  increases in amplitude as the concentra tion of chloride 

i s  increased. This increase as well as t h a t  in the g'=9.7 signal 

i s  enhanced in the computer subtracted d if ference  spectra of 

Figure 2.4 . In addit ion  to ch lo r ide ,  t h i s  e f f e c t  i s  observed 

for  the sodium s a l t s  of  pe rch lo ra te ,  ATP, pyrophosphate, do- 

decy lsu l fa te ,  and th iocyanate.  The fea tu re  of i n t e r e s t  in the 

thiocyanate spectrum appears a t  a s l i g h t ly  lower f i e l d  value than
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0 .5  MNoCI

8 . 0 .0  M NoC I

—H 10 mT I*—

!5 0 m T

Figure 2.3. Effect of chloride ion on the X-band EPR spectrum of 
diferric transferrin. (A) 0.5 M NaCl, (b) no NaCl. Conditions: 1 mM
protein, 0.1 M HEPES, 0.01 M NaHCO^, pH 7.4, 98 K. Instrument Settings: 
power = 20 mw, modulation amplitude = 10 G, sweep rate = 2000 G/16 min, 
time const =0.3 sec.
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429 mM NaCl

333 mM NaCl

I 49 mM NaCl

0. 91 mM NaCl

E. 48 mM NaCl

~ r
l50mT

— * i lOrnT M—

Figure 2.4. Computer subtracted EPR difference spectrum as a 
function of chloride concentration. Spectrum B subtracted from spectrum 
A of Figure 2.3. The difference spectrum parameter A. is indicated. 
Conditions as in Figure 2.3. 1
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th a t  of  the other  s a l t s  (Figure 2 .5 ) .  The sodium s a l t s  of 

t e t r a f lu o ro b o ra te ,  orthophosphate,  b icarbonate,  s u l f a t e  and aden- 

osinemonophosphate, t e s te d  a t  0 .5  M concentra tion and pH 7.5, 

showed l i t t l e  e f f e c t .

The f a c t  t h a t  some sodium s a l t s  a re  in e f f e c t iv e  in bringing 

about a s i g n i f i c a n t  change in the  EPR spectrum precludes the 

p o s s ib i l i t y  t h a t  sodium is  involved or th a t  the e f f e c t  i s  due 

to va r ia t ion  in ionic s t reng th .  Moreover, absorbance measure­

ments o f  the i r o n - t r a n s f e r r i n  complex a t  465 nm ind ica te  th a t ,  

except fo r  pyrophosphate, none o f  the anions i s  removing iron 

from the p ro te in ,  e l iminating the  p o s s i b i l i t y  t h a t  small F e ( I I I ) -  

anion complexes are  con tr ibu t ing  to the EPR d i f fe rence  spectrum. 

Also, so lu t ions  of 0.5 M ATP, ch lo r id e ,  perch lora te  or thiocya- 

nate containing 1 mM F e ( I I I )  a t  pH 7.5 in the  absence of protein  

do not exh ib i t  g '=4.3 s igna ls .  Solutions of  pyrophosphate and 

iron under the same condit ions do exh ib i t  a f ea tu re le s s  signal 

a t  g 1=4.3 (Figure 2.6) t h a t  may con tr ibu te  up to 51 to the 

observed d i f ference  spectrum. The p o s s i b i l i t y  t h a t  the d if fe rence  

spectrum a r i s e s  from no n -sp e c i f ica l ly  bound iron was a lso  ruled 

out  by e lu t ing  d i f e r r i c  t r a n s f e r r in  on Sephadex G75, a procedure 

known to remove such iron (59). The EPR spectrum responded to 

perchlorate  in the same was both before and a f t e r  e lu t io n .  In 

prote in  preparat ions in which Fe(III)-NTA in the r a t i o  of 1:2 

was used instead of Fe( I I )  to  s a tu r a te  the protein  with i ron,  

no anion e f f e c t  was observed.

The EPR f i r s t  de r iva t ive  peak-to-peak amplitude of the
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ISOaT

20 b T

Figure 2.5. Effect of thiocyanate on. 77 X-band Fe(III) EPR 
spectrum of ImMdiferric transferrin in 0.1 M HEPES, 0.01 M NaHCO^ pH 7.4. 
a) Transferrin with 0.5 M SCN; b) Transferrin, no SCN; c) computer 
subtracted difference spectrum (a-b). is the extinction of the feature 
of interest under these conditions.



150 mT

F ig u r e  2 . 6 .  F rozen  s o l u t i o n  77K i r o n  EPR sp ec tru m  o f  1 mM i r o n  ( I I I )  
and 0 . 0 1  M p y r o p h o sp h a te  a t  pH 7 . 5 .  I n s tr u m e n t  s e t t i n g s  a s  i n  F ig u r e  2 . 3 .
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F e(I I I )  signal a t  150 mT decreases with the  addit ion of s a l t s ,  

e . g . , NaCl and NaClO^, but the in tegra ted  in te n s i ty  remains 

f a i r l y  constant .  At 0.5 M ch lor ide ,  the amplitude corrected for  

d i lu t io n  is  reduced by approximately 40% while the in te n s i ty  

obtained from double in tegra t ion  o f  the spectrum between f i e ld  

values of 50 mT and 250 mT is  reduced by only 10%. Price and 

Gibson have observed a reduction in amplitude with perchlorate  

as well (55). Other amplitude reductions are  presented in 

Table 2.1. The small reduction in in tegra ted  i n t e n s i ty  with 

increasing s a l t  concentration could be due to a s l i g h t  change 

in d i e l e c t r i c  p roper t ies  of the sample or to some EPR in te n s i ty  

outside  the range of the l im i ts  of in teg ra t ion .  The rep roduc ib i l ­

i t y  of the double in tegra l  between samples did not warrant ex­

tending the l im i t s  fu r th e r .

Power sa tu ra t io n  s tud ies  of d i f e r r i c  t r a n s f e r r in  samples 

with 0.5 M ch lor ide  and with no chloride reveal th a t  fo r  micro­

wave power se t t in g s  between 0.01 and 30 mW no sa tu ra t ion  is  oc­

curr ing (Figure 2 .7 ) .  Furthermore, as shown in Figure 2.8,  the 

perturba t ions  on the iron EPR spectrum due to ch lor ide  are  evident  

a t  very low power s e t t in g s  well below the sa tu ra t io n  l im i t .  The 

EPR spectrum i s  a lso  independent of  the method of f reezing the 

sample: slow immersion in l iqu id  ni trogen or quick freezing  in

n-pentane; slush.

All F e ( I I I )  spectra  as a function of s a l t  were e i t h e r  

computer scaled to the  same peak-to-peak amplitude of the g'=

4.3 signal or to the same in tegra ted  i n t e n s i ty  p r io r  to subtrac-



21

T a b le  2 . 1  

% R e d u c t i o n  o f  EPR S i g n a l  A m p li tu d e

A n io n a R e d u c t i o n

h p 2o7 3“ 60%

Cl" 54%

c i o 4" 52%

ATP3" 48%

SCN" 30%

hpo4 2" 20%

f " 17%

S04 2" 10%

BV 10%

a )  C o n d i t i o n s :  1 mM p r o t e i n  i n  0 . 1  M HEPES/NaOH 
b u f f e r ,  pH 7 . 4 .  S p e c t r a  m easured  a t  98 K w i t h  
a n i o n  c o n c e n t r a t i o n  o f  0 . 5  M

b) R e d u c t io n  i s  t h e  amount ( i n  p e r c e n t )  t h a t  t h e  
p e a k - t o - p e a k  a m p l i t u d e  o f  t h e  i r o n  EPR s i g n a l  
o f  d i f e r r i c  t r a n s f e r r i n  i s  r e d u c e d  a t t e n d i n g  
a d d i t i o n  o f  t h e  above  a n i o n s .

an
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Figure 2.7. Effect of microwave power on the iron EPR peak-to- 
peak signal amplitude of diferric transferrin. A: ImM diferric transferrin 
at pH 7.5. Straight line indicates that signal is responding with the 
square root of power. B: ImM diferric transferrin in 0.5 M NaCl, Beyond
20 mM, curvature is exhibited indicating that the sample is being power 
saturated. Signal expressed in arbitrary units as S/G,



20 mT

150 mT

F ig u r e  2 . 8 .  F rozen  s o l u t i o n  77K X-band EPR sp ec tru m  o f  d i f e r r i c  
t r a n s f e r r i n  i n  0 . 1  M HEPES, 0 . 0 1  M NaHCO^/ 0 . 5  M NaCl,  pH 7 . 4 .  I n s tr u m e n t  
s e t t i n g s  as  i n  F ig u r e  2 . 3  e x c e p t  t h a t  th e  power i s  o n l y  1 mw. The f e a t u r e  
o f  i n t e r e s t  i s  e v i d e n t  e v en  a t  t h i s  low power s e t t i n g .
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t ion .  Because the ana lys is  of the data in terms of anion binding 

to the protein  involves taking the r a t i o  of  the amplitudes of 

the d i f fe rence  spec t ra ,  the s to ich iom etr ies  and binding constants  

obtained a re  not very s e n s i t iv e  to the method of  scal ing and 

are  the same for  both methods within experimental e r ro r  (Table 

2 . 2 ).

The value of A- in the d i f fe rence  spectrum as a function 

of s a l t  concentrat ion for  three  d i f f e r e n t  anions is shown in 

Figures 2.9 and 2.10. The curves display sa tu ra t ion  behavior, 

ind ica t ive  of a binding process. To a f i r s t  approximation, the 

binding of these anions to an iron containing domain of the protein 

can be represented by the following simplif ied equilibrium

domain + n A n ~  — > domain'

where domain' represen ts  an anion-protein  complex in which the 

e lec t ron ic  environment of  the metal center  is  a l t e r e d ,  giving 

r i s e  to a new EPR spectrum. The apparent  overal l a ssoc ia t ion  

constan t ,  K, is  given by

K = [donain1]/[domain][A]n = R/(l-R) [A]n (2.1)

where R (=A1-/Amax) i s  the  degree of sa tu ra t ion  of the anion binding 

s i t e s .

A.j and Amax are  determined from the graphs in Figures 2.9 

and 2.10. Equation 2.1 i s  equivalent  to the Hill equation and 

pred ic ts  t h a t  a p lo t  of  - log(R/l-R) vs -log[A] will y ie ld  a s t r a ig h t  

l in e  with a slope of n and an in te rce p t  of -log K. S t ra igh t



25

4.0

max

3.0

<1 2.0

0.60.50.3 0.40.1 0.2

[Anion ] , M

Figure 2.9. Difference spectrum parameter Ai in arbitrary units
as a function of anion concentration for different anions. The maximum
value A at saturating levels of anion is indicated. Conditions as in max
Figure 2.3.



26

■ai

S - -

<

4 - -

0.05 0.20

Figure 2.10. EPR titration of 1 mM diferric transferrin in 0.1 M
HEPES, 0.01 M NaHCO,, pH 7.4 with 1.0 M NaSCN, pH 7.4. A ± is measured
from the computer subtracted difference spectra obtained after each
addition of titrant. A is the limiting value of A .max i
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Tablft .2 . 2

B inding D ata f o r  Anions w ith  Human T ra n s fe r r in *

Anion P ro te in £

SCN" f PeTfFe* 2 .3 9 ( .3 4 )

c io 4 " FeTfFe 2 .3 4 ( .3 1 )

HP2°73' FeTfFe 1.85 (*.37)

ATP3" FeTfFe 1 .9 9 (.3 6 )

Cl" h FeTfFe 2 .1 5 ( . IS)

Cl" PeTf1 2 .0 2 (.4 1 )

Cl" TfFe^ 2 .1 3 (.2 7 )

hpo42- FeTfFe ----

AMP2" FeTfFe ----

so 42" FeTfFe ----

P" FeTfFe ----

bf4- FeTfFe ----

£ £

3 .5 6 (.0 9 ) 3630 0.9949

2 .9 0 ( .0 6 ) 795 0.9969

2 .8 6 (.0 7 ) 725 0.9695

2 .6 2 (.1 2 ) 420 0.9886

1 .9 7 (.0 5 ) 93 0.9969

2 .7 S (.2 4 ) 562 0.9456

2 .1 1 (.0 8 ) 128 0.9906

---- I 2 ----

---- <2 —

---- <2 ----

----- <2 —

— <2 ——

C o n d itio n s : ImM p r o te in  in  0 .1  M HEPES/NaOH b u f f e r ,  pH 7 .4 . S p e c tra  m easured
a t  98K and s c a le d  to  th e  same p ea k -to -p e ak  am plitude o f  th e  g ' ■ 4 .3  s ig n a l  
b e fo re  s u b s t r a c t io n .  The d if f e r e n c e  spectrum  p aram ete r Aj m easured from th e  
b road  s p e c t r a l  f e a tu re  a t  140 mT.

^ H ill  c o e f f ic ie n t  w ith  th e  9 5 t con fidence  in te r v a l  from th e  l i n e a r  r e g re s s io n  
g iven  in  p a re n th e s e s .

cLog10 o f  th e  o v e ra l l  ap p a ren t a s s o c ia t io n  c o n s ta n t K fo r  th e  b in d in g  o f  n an io n s . 
95% con fidence in te r v a l  in  p a re n th e s e s . Because th e  measurement i s  perform ed on 
a fro z en  s o lu t io n ,  th e  tem p era tu re  co rresp o n d in g  to  th e  v a lu e  o f  1C i s  unknown.

^The ex p erim en ta l r e p r o d u c ib i l i ty  o f  th e se  v a lu es  i s  about te n  p e rc e n t.

C o r r e l a t i o n  c o e f f ic ie n t  o f  th e  l i n e a r  r e g re s s io n

^A nalysis o f  th e  g ' ■ 9 .7  l i n e  a t  70 mT w ith  Ai m easured a t  t h i s  f i e l d  and s p e c tr a  
s c a le d  to  th e  same p ea k -to -p e ak  am plitude a t  g* > 4 . 3  g iv es th e  fo llo w in g  r e s u l t s  
n -  2 .3 1 ( .3 5 ) ;  log  K -  3 .4 7 ( .0 9 ) ;  and r  -  0 .994 .

^ d i f e r r i c  T ra n s fe r r in

hA nalys is  o f  th e  g ' ■ 4 .3  s ig n a l  w ith  th e  s p e c tr a  s c a le d  to  th e  same in te g r a te d  
I n te n s i ty  b e fo re  s u b tr a c t io n  g iv es th e  fo llo w in g  r e s u l t s :  n •  2 .3 2 ( .3 3 ) ;  log  
K -  1 . 9 S ( . l l ) ;  and r  ■ 0 .9 9 0 5 .where At i s  m easured from th e  broad  f e a tu re  a t  
140 eT; and n -  2 .2 2 ( .2 3 ) ;  log  K -  1 .8 8 ( .0 7 ) ;  and r  -  0.9932 where Ai i s  
m easured f ro n  th e  sh a rp  f e a tu re  a t  158.5 mT.

^ - t e r m in a l  m onoferric

^C -term inal m onoferric
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l in e  p lo ts  are  obtained for  a l l  of  the anions which perturb the 

EPR spectrum (Figures 2.11 and 2.12) . The values of the Hill 

c o e f f i c i e n t  n a re  general ly  2.0 within the 95% confidence in terval  

for  a l l  the e f f e c t iv e  anions (Table 2 .2 ) .  The overall  apparent  

a ssoc ia t ion  constants  a re  a lso  summarized in Table 2.2. Similar 

r e s u l t s  a re  obtained i f  the analysis  is  performed on the g'=

9.7 signal instead ( c . f .  SCN“ in Table 2 .2) .

Since t r a n s f e r r in  has two EPR a c t iv e  F e ( I I I )  c e n te r s ,  the 

prec ise  meanings of  the values of n and K obtained from the plots  

in Figures 2.11 and 2.12 a re  not c le a r .  An obvious question is 

whether one or both metal binding domains a re  influenced by the 

binding of anions . I t  i s  not poss ible  to t e l l  from the above 

treatment whether the  values of n^ 2 (Table 2.2) r e f l e c t s  the 

binding of two anions in each of the two domains (n^=2, n£=2), 

two in only one domain (n|yj=2, nc=0), one in each domain (nN=l ,  

nQ=l), or  some other  combination. To examine these p o s s i b i l i t i e s ,  

a more e labora te  model of anion binding to d i f e r r i c  t r a n s f e r r in  

was developed. The overall  binding scheme is  given by

FeTfFe

Cl_ -FeTfFe 
N

Cl -FeTfFe-Cl nM n ( 2 . 2 )
C

FeTfFe-Cl nC

where
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2.0

0.0

K

A. SOS

C. ATP 3

0.0 0.S 1.9 2.01.0

— Loq [Anion]

Figure 2.11. Hill plots of the data in Figure 2.9 for several anions. 
The slope is the Hill coefficient n and the intercept of the ordinate is - 
log K. Values from the linear regression are presented in Table 2.2.
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1.0 . .

OSI

a 0.0 . .
9
O

m i
I

1.0
1.2 2.01.8 1.8

Log ^SCN - ]

Figure 2.12. Log p lo t  o f  the t i t r a t i o n  o f  1 mM d i f e r r i c  
t r a n s f e r r i n  in 0.1 M HEPES, 0.01 M NaHC03, pH 7.4  with 1.0 M 
NaSCN, dH 7 .4 .  The slope i s  n, the  number of SCN" anions bound 
per EPR Chromophore, and the i n t e r c e p t  i s  - log K. n = 2.39+ 0.342, 
- log K = 3.56 + 0.037, c o r r e l a t io n  c o e f f i c i e n t  = 0.995.
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[Cl *FeTfFe]
K1N = - N________ _ (2.3)

[FeTfFe][Cl]nN

[Cl ‘FeTfFe] i s  the ana ly t ica l  concentration of  the d i f e r r i c  
N

species with n„ moles of ch lor ide  bound in the N-terminal domain.N
The other  concentra t ions a re  defined s im i la r ly .  The K values 

are  condit ional  overa l l  s t a b i l i t y  constants  for the binding of 

n^ and n^ chlor ide  ions in the N- and C-terminal domains, respec­

t iv e ly .  This scheme also allows for  pos i t ive  ( K1N = k2c/ k1C ^  

or negative ( k2N/k1N = K2C^K1C < ^  coopera t iv i ty  between domains 

in chloride binding. A s im ila r  scheme for  the binding of iron 

to t r a n s fe r r in  has been presented in de ta i l  elsewhere (43,48).

When chlor ide  i s  added to d i f e r r i c  t r a n s f e r r i n ,  a d i s t r i ­

bution of  anion-containing species wil l  be formed, each of  which 

wil l  con tr ibu te  to the  observed d i f ference  spectrum parameter 

Aj. The calculated  value, Aca-|c , i s  given by

Acalc = aNxN + ACXC + aN,CxN,C <2-4 )

where X^, Xc , and X̂  c are  the mole f rac t ion s  of  the t r a n s fe r r in

species Cln ‘FeTfFe, FeTfFe*Cl , and Cl ‘FeTfFe‘Cl , respec t ive ly .
N C N C

The values of A^, Ac , and ANjC are  the respec t ive  "extinct ions"

in the EPR d if fe rence  spectrum of each of these species.

Ajyj q is  taken as the value o f  obtained when d i f e r r i c

t r a n s fe r r in  i s  t i t r a t e d  with chlor ide  (Figure 2 .9 ) .  The values

of  Aĵ | and Aq  were chosen as Â  = Ac = A ^ ^ /2 ,  corresponding to

chlor ide  inducing the same maximum spectra l  change in both domains,

and AM = AN q with Ac = 0 , corresponding to a change in one
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domain only. Here i t  i s  assumed th a t  the spectra of the two 

domains a re  ad d i t ive .

Cooperativity between domains enters  equation 2.4 through 

the values of  XN, Xc , and XN c . The expressions for  the mole 

f rac t io n s  derived by a procedure analogous to th a t  out l ined for 

iron binding to t r a n s f e r r in  (48) a re  given by

XN ‘ 1 + l /K1N[C l f N  + * K2 C ^ C <2' 5>

X(: 1 + 1/Kl c [Cl]nC + - J.NCC1] t  K [C1]"N (2.6)
Kl c [C l]nC 2N

1
XN r -  K,r [C l]nC + K2N[Cl]nN n.  n„ (2.7)

N’c i + - 2 £ ----------------- 2-----------+ n/K„r K2N[ c i ] nc[ c i ] nN
K2cK2N[Cl]nC[Cl]"N 2C 2N

where the constants  a re  subject  to the co n s t ra in t  k2n/ N  = K2 ( / K1C 

imposed by the cyc l ic  equil ibrium 2.2.

Equations 2.4 through 2.7 were used to compute Aca i c a t  

the experimetal concentrat ions of  ch lo r ide .  From t h i s ,  log(R/l-R) 

where R = Acalc/Amax> was evaluated and compared with the  ex­

perimentally obtained quanti ty .  I n i t i a l l y ,  a s e t  of equil ibrium 

constants  and in teger  values of n^ and nQ were assumed. A non­

l in e a r  regress ion  ana lys is  employing a simplex optimization 

procedure was performed in which the values of the K. were varied 

to provide a l e a s t  squares f i t  to the 1og(R/l-R) data for  the 

given choice of n^ and nc . I t  was believed th a t  through th i s
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procedure a simulation o f  the experimental curve of Figure 2.9 

for  the c o r rec t  values o f  n^ and n^, would be obtained. The 

r e s u l t s  of  th i s  ana lys is  for  d i f f e r e n t  values of nN and nc , with 

and without coo p era t iv i ty  between domains in ch lor ide  binding, 

a re  presented in Table 2.3.

All models in Table 2.3 provide s t r a ig h t  l in e  p lo ts  of 

- log(R/l-R) vs - lo g [C l] ,  but several  of them can be discarded 

as providing u n sa t is fac to ry  s imulations of the experimental 

curve. The slope of the l in e  in case I i s  only 1 (compared to 

an experimentally obtained value of 2) and the negative binding 

constants  obtained in case KK ind ica te  th a t  ( for  t h i s  case) 

an attempt to f i t  the experimental curve with an inappropria te  

model i s  being made. Of the remaining models, the l a s t  three  

l i s t e d  in Table 2.3 provide s a t i s f a c to r y  f i t s  to the experimental 

data ( c . f .  model Sy values with the experimental value). The 

calcula ted values of  n and log K fo r  a l l  th ree  models a re  a lso  

close to the experimental values. A comparison of cases I I I  and 

IV reveals  t h a t  only a s l i g h t  improvement in f i t  is  obtained 

when coopera t iv i ty  between domains i s  introduced (case IV).

I t  i s  concluded th a t  i f  ch lor ide  binds in both domains of  t r a n s ­

f e r r i n  i t  does so e s s e n t i a l l y  independently. Therefore, only 

cases I I I  and V need be considered fu r th e r .

To determine which of the two s a t i s f a c to r y  cases ( I I I  or V) 

of Table 2.3 app l ies  to d i f e r r i c  t r a n s f e r r in ,  N- and C-terminal 

monoferric t r a n s f e r r in s  were prepared and each t i t r a t e d  with 

chlor ide .  The EPR spectra  o f  the monoferric species with and 

without ch lor ide  shown in Figure 2.13 ind ica te  th a t  the e f f e c t



34

T a b le  2 .3

R e s u l t s  o f  Itodcl C a l c u l a t i o n s  f o r  Ch lor i i le  B ind ing  to  Human Scrum T r a n s f e r r i n 3

Case

1

"c
C o o p c r u t iv i t y K1C K2N K2C

l»

Ilco l c <l o « K^c a lc
C dr

f i l l

1 1 no 7.71 7.71 ___ ___ 1.02 0.967 .9960 .455

11 1 1 yes -10.44 8.44 10.87 - 8 .7 9 2 .08 1 .91 .9982 .0654

I I I 2 2 no 64.95 68.39 . . . . . . 2 .00 1.85 .9992 .095

IV 2 2 yes 52.61 52.63 73.06 73.08 2 .13 1.95 .9995 .069

V 2 0 . . . 67.23 . . . . . . . . . 2.00 1.84 .9999 .088

Ex pe r im en ta l
. . . — . . . . . . . . . 2 .1 5 ^ . 1 5 f 1.97*_. 05 f .9969 .066*

a) C a l c u l a t i o n s based on e q u a t io n s  (5) th rough (8)  with ^  “ flc “ V c * 1 .75 .  K.l v a lu e s  a re s u b j e c t  t o th e  con:

K2N

*1N

*2C imposed by th e  c y c l i c  e q u i l i b r i u m .
2

b) C a l c u l a t e d  from th e  l i n e a r  r e g r e s s i o n  o f  log  ( 6 /1 - 0 )  . v s .  log  [C l ]
c a , c  exp t

c) C a l c u l a t e d  f r o *  t h e  i n t e r c e p t  o f  t h e  r e g r e s s i o n  l i n e  in  f o o tn o t e  b.

d) C o r r e l a t i o n  c o e f f i c i e n t  o f  t h e  r e g r e s s i o n  in  f o o tn o t e  b .  r  i s  a measure o f  t h e  l i n e a r i t y  o f  tfie l i n e  p r e d i c t e d  by
th e  model and  does  n o t  r e f l e c t  t h e  f i t  o f  t h e  model t o  t h e  d a t a .

0 } The r e s i d u a l  i s  d e f i n e d  a s  Sy -  [(Yc a l c  - ' o b j ) 2/ n ' - F ]'* where Yc a , c -  l o g ( B / l - 6 ) ca)c> Yobs -  1 o g ( f l / l - e ) obs

n* (»9)  i s  t h e  number o f  e x p e r i m e n t a l  p o i n t s  and p (=2 o r  3) i s  t h e  number o f  independent p a r a m e te r s  in  the
e q u a t io n .  5^ i s  a measure o f  t h e  goodness  o f  t h e  f i t  o f  t h e  model t o  t h e  d a t a .

f )  Ex pe r im en ta l  v a l u e s .  T a b le  I.

g) Ih e  r e s i d u a l  o f  t h e  e x p e r im e n ta l  d a t a  i s  d e f i n e d  by Sy * E ^ o h s ' * ^ * wher c * i s  t h e  c a l c u l a t e d  va lue  o f  

- l o g ( 6/1 -fl) from t h e  l i n e a r  r e g r e s s i o n  l i n e  a t  each  v a lu e  o f  - l o filc l l eXp f
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F#t, Tf

A 0.3 M NaCl

B 0.0 M NaCl

Tf Ft,

C 0.5 M NaCl

0. 0.0 MNaCl

130 mT

Figure 2.13. Effect of chloride on the X-band EPR spectra of the 
monoferric transferrins. (A) N-terminal monoferric with 0.5 M NaCl, (B) 
N-terminal monoferric without NaCl, (C) C-terminal monoferric with 0.5 M 
NaCl, (D) C-terminal monoferric without NaCl. Conditions and instrument 
settings as in Figure 2.3.
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on the spectrum occurs in both halves of the pro te in  but is  g rea te r  

in the N-terminal domain than in the C-terminal domain, e .g .

Aq -  Ajyj/2 when referenced to the same peak-to-peak amplitude for  

both monoferrics.

The Hill p lo ts  for  ch lor ide  binding a re  presented in 

Figures 2.14 and 2.15. The chlor ide  binding data for  the mono­

f e r r i c  t r a n s f e r r in s  a re  a lso  summarized in Table 2.2. The r e s u l t s  

ind ica te  th a t  two chlor ide  ions bind to both the  N-terminal and 

C-terminal monoferric species .  By inference ,  four anions bind 

to d i f e r r i c  t r a n s f e r r i n .  The value of  K fo r  the  C-terminal mono­

f e r r i c  i s  about the same as observed for  the d i f e r r i c  protein 

while the value of K for  the N-terminal monoferric i s  somewhat 

higher.

The e f f e c t s  of perchlorate  on the iron EPR spectrum of 

d i f e r r i c  t r a n s f e r r in  observed in t h i s  study are  s imilar  to those 

reported by Price and Gibson (55). Their ear ly  work demonstrated 

t h a t  perchlorate  produced opposite  e f fe c t s  on the EPR spectra  

of human serum t r a n s fe r r in  and ovo t rans fe r r in .  This has a lso 

been observed in the present study when perchlorate  i s  used; 

however, both prote ins  respond to ch lor ide  in the  same manner 

( c . f .  Figures 2.3 and 2.16). A logarithmic p lo t  of the data 

from a t i t r a t i o n  of ovo trans fe r r in  with chlor ide  (Figure 2.17) 

l ikewise y ie ld s  a s t r a ig h t  l in e  with n=2.00 ± 0.36,  log K =

1.29 + 0.08, (co r re la t ion  c o e f f i c i e n t  = 0.986),  indicat ing  tha t  

ch lor ide  a lso  binds to ovo trans fe r r in  but more weakly than to 

serum t r a n s f e r r in .
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Figure 2.14.  Hill p lo t  o f  data acquired during t i t r a t i o n  
0f  i terminal monoferric t r a n s f e r r i n  in Q.l M HEPES, 0.01 M
MaHCOo, a t  pH 7.5 with 1.0 M NaCl. n = 2.02 + 0.41,  - leg  k = 
2.75 ± 0.24, c o r r e l a t io n  c o e f f i c i e n t  = 0.9456.
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1.0
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Figure 2.15. Hill p lo t  of  r e s u l t s  obtained during t i t r a t i o n  
of  1 mM C-terminal monoferric t r a n s f e r r i n  in 0.1 M HEPES, 0.01 M 
NaHCOo a t  pH 7.5  with 1.0 M NaCl. n = 2.13 + 0.27, - log K = 2.11 + 
0.08,  c o r r e l a t io n  c o e f f i c i e n t  = 0.9906.



39

A. 0.5 MNoCI

a  0.0 M NoCI

I lOmT I

150 mT

Figure 2.16. Effect of chloride on the X-band EPR spectrum of 
diferric ovotransferrin. (A) 0.5 M NaCl, (B) no NaCl. Conditions and 
instrument settings as in Figure 2.3.
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Figure 2.17.  Hill p lo t  of  data  obtained during t i t r a t i o n ,  
of 1 mil d i f e r r i c  o v o t ra n s fe r r in  in 0.1 Nl HEPES, 0.01 M NaHC03 a t  
pH 7.5 with 1.0  M MaCl. n = 2.00 ± 0.36, - log K = 1.29 + 0.08, 
c o r r e la t io n  c o e f f i c i e n t  = 0.9860.
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Discussion

Based on the observations reported here ,  human serum 

t r a n s fe r r in  has binding s i t e s  for  non-synergis t ic  anions which 

a f f e c t  the metal cen ters  of the pro te in .  T i t r a t io n  of the 

monoferric t r a n s fe r r in s  ind ica tes  t h a t  there  a re  two s i t e s  in 

each domain of the pro tein  in accord with the predicted r e s u l t s  

fo r  case I I I  of our computer modeling study. Previous i n v e s t i ­

gations a lso lend support to t h i s  conclusion.  For example, 

perchlorate  has been shown to a f f e c t  both the N- and C-terminal 

metal binding fragments of o vo t rans fe r r in ;  and chlor ide  is  known 

to a f f e c t  the k ine t ics  of iron re lease  from both domains in d i -  

f e r r i c  t r a n s f e r r in  (47,48,60).  Moreover, the EPR spectra  of  both 

s i t e s  of divanadyl human t r a n s f e r r i n  a re  changed by perchlorate  

(61).

The exis tence  of these anion binding s i t e s  r a i s e s  the 

question as to t h e i r  loca t ion  on the p ro te in .  In d i f e r r i c  t r a n s ­

f e r r i n  i t  i s  unl ike ly  th a t  the anions bind to a s ig n i f i c a n t  ex­

t e n t  a t  the  s i t e s  occupied by the sy n e rg is t ic  anion since none 

of them f a c i l i t a t e s  iron binding in the absence of bicarbon­

a te .  The observation th a t  a l l  of  the anions a l t e r  the EPR spectrum 

in a s im ila r  manner seems to preclude the p o s s ib i l i t y  th a t  they 

are  d i r e c t l y  l iga ted  to the metal.  With various metal coordin­

ated syne rg is t ic  anions, d i f f e r e n t  spectra  a re  produced in both 

F e ( I I I )  and VO(II) t r a n s f e r r in s  (35,62). Perchlorate  i s  a r e l ­

a t iv e ly  t i g h t l y  held anion (see Table 2.2) but i s  known to be 

a poor ligand for  metal ions, while f lu o r id e ,  which has l i t t l e
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or no e f f e c t  on the EPR spectrum (vide supra), i s  a good ligand 

for  F e ( I I I ) .  I t  is  more l ik e ly  t h a t  these anions bind to pos­

i t i v e l y  charged amino acids or possib ly to amide dipoles of the 

protein .

The o r ig in  of the changes observed in the  EPR spectra  is 

not c le a r .  I t  is unl ike ly  th a t  a major s t ru c tu ra l  modificat ion 

occurs a t  the metal s i t e  a t tending anion binding since the per­

tu rbat ions  are  small.  A more reasonable explanation is  th a t  

anion binding causes an a l l o s t e r i c  e f f e c t  on the metal centers  

as a r e s u l t  of a conformational change in the p ro te in .  There 

i s  ample evidence in the l i t e r a t u r e  th a t  t r a n s fe r r in  e x is ts  

in more than one conformation (9,12,63). EPR spectra l  changes 

in Gd(III) ,  Cu(II) ,  and VO( I I ) t r a n s fe r r in s  have a lso  been ob­

served at tending  the addit ion  of  perchlorate  and ch lo r ide ,  in ­

d ica t ing  th a t  the anion s i t e s  may be preserved in a l l  of these 

metal de r iva t ives  of  the protein (27,56).

The e f f e c t  of anions on the conformational s t a te s  of
?  2 -proteins  of ten follow the lyotropic  s e r ie s  F < S0|  < HPÔ  < 

CHgCÔ  < Cl" < Br“ < NÔ  < I" < CIO" < SCN" (64). This s e r ie s  

is  approximately the same sequence for  the a f f i n i t y  of anions 

for  p os i t ive ly  charged s i t e s  on pro te ins .  Inspect ion of Table

2.2 reveals  th a t  the s t rength  o f  in te rac t io n  for  the anions r e ­

ported here a lso follows th i s  s e r i e s .

I t  may also be s ig n i f i c a n t  th a t  ATP and pyrophosphate 

which bind to the pro te in  (Table 2.2) a re  very e f f i c i e n t  c a ta ly s t s  

for  mediating the removal of iron from t r a n s fe r r in  to d e s f e r r i -  

oxamine in v i t ro  (50,51). The k ine t ics  of t h i s  process show
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sa tu ra t ion  behavior with respec t  to the anion, a r e s u l t  cons is ­

t e n t  with, but not proof o f ,  anion binding to the pro te in .  

Furthermore, the diphosphate s t ru c tu re  appears to be important. 

Neither AMP nor orthophosphate funct ions as e f f i c i e n t  c a ta ly s t s  

of  iron removal nor does e i th e r  bind appreciably  to the anion 

s i t e s  observed here.

I t  i s  i n te r e s t in g  th a t  so lu t ions  of the d i f e r r i c  protein 

which have been prepared from F e ( I I I ) - n i t r i l o t r i a c e t a t e  do not 

show the e f f e c t  of anions on the EPR spectrum. Price and Gibson 

have observed th a t  the presence of NTA in solut ions of t r a n s fe r r in  

negates the response of  the EPR spectrum to perchlorate  (55).

NTA is  a lso  known to bind tenaciously  to t r a n s fe r r in  and can 

only be removed by d ia ly s i s  or gel permeation chromatography 

in the presence of perchlorate  (40).

The ca lcu la t ions  ind ica te  th a t  coopera t iv i ty  between do­

mains in anion binding is  n eg l ig ib le :  however, the Hill p lo ts

for  d i f e r r i c  and monoferric t r a n s fe r r in s  (Figure 2.11 and Table 

2 . 2 ) show th a t  within each domain two anions bind with strong 

po s i t iv e  coopera t iv i ty .  The st rong pos i t ive  coopera t iv i ty  in 

anion binding i s  unexpected since normally the binding of  a second 

ligand is  more d i f f i c u l t  than the f i r s t .  This implies th a t ,  

in the pro te in ,  the in te rac t ion  of the f i r s t  anion causes s t r u c ­

tu ra l  changes th a t  f a c i l i t a t e  binding of the second anion.

Such a change would be c o ns is ten t  with an a l l o s t e r i c  mechanism 

discussed above. Strong po s i t iv e  coopera t iv i ty  in binding of 

nonstereospecif ic  anions to o ther  proteins  is  not known. In 

t h i s  regard,  t r a n s fe r r in  appears to be unique.
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Chasteen and Williams have recen t ly  shown th a t  two func­

t ional  groups undergo proton d is so c ia t ion  with strong pos i t ive  

coopera t iv i ty  in the  monoferric t r a n s fe r r in s  to bring about a 

change in the binding a f f i n i t i e s  of the two iron s i t e s  (48).

The phenomena of coopera t iv i ty  of  anion binding and of proton 

d is so c ia t io n  may be re la te d  in some way.

The r e s u l t s  presented here do not demonstrate th a t  the 

observed anion s i t e s  are  d i r e c t l y  involved in the k ine t ics  of 

iron removal from t r a n s f e r r i n .  However the p a ra l l e l s  between 

the k ine t ics  of iron removal and the s t rength  of anion binding 

to t r a n s fe r r in  r a i s e  t h i s  question (47,49-51). In addit ion ,  

the unusual property of po s i t iv e  coopera t iv i ty  exhibi ted in both 

anion binding and proton d i ssoc ia t ion  by t r a n s f e r r in  poses new 

questions about t h i s  important p ro te in .  Further s tud ies  are  

c le a r ly  necessary to understand f u l ly  the ro le  th a t  anions play 

in the s t ru c tu re  of t r a n s f e r r i n ,  the thermodynamics of iron 

binding,  and in the mechanism of iron removal.



CHAPTER III

THERMODYNAMICS OF IRON BINDING 
TO TRANSFERRIN

A major and y e t  unsolved problem in iron metabolism is  

how the metal i s  t r an s fe r red  from t r a n s fe r r in  to iron requir ing 

c e l l s  such as r e t i c u lo c y te s .  The precise  loca t ion  of iron r e ­

lease from t r a n s f e r r in  i s  not known, but i t  has been proposed th a t ,  

a f t e r  binding to a recep tor  s i t e  on the surface of  the c e l l ,  

the protein i s  in te rn a l ized  via endocytosis . Once in the cyto­

plasm, iron i s  removed and the apoprotein re tu rns  to the e x t r a ­

c e l l u l a r  medium (67,68). A l te rn a t iv e ly ,  i t  has been suggested 

th a t  iron i s  l ib e ra te d  a t  the c e l l  surface p r io r  to endocytosis 

(71).

Recent s tud ies  on cultured r a t  f ib ro b la s t s  suggest th a t  

the endocytotic vacuoles containing t r a n s f e r r in  bound to i t s  

receptor  fuse with the  ac id ic  lysosome where, because of the 

low pH, iron i s  re leased  from the prote in  (69,70). The molec­

u lar  mechanism of iron removal from t r a n s f e r r in  i s  an area of 

some dispute .  In order to lower the binding a f f i n i t y  of t r a n s ­

f e r r i n  for  F e ( I I I ) ,  i t  may be necessary to protonate the ligands 

of the iron binding s i t e  and/or d i s so c ia te  completely the syn­

e r g i s t i c  anion from the primary anion s i t e  (12). I t  has been 

proposed th a t  bicarbonate r e lease  i s  a p re re q u is i te  for  iron 

re lease  from t r a n s f e r r in .  Reduction of F e ( I I I )  to  Fe(II)  is  

another possible  means of removing iron in vivo (72-74).

45
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Another p o s s ib i l i ty  i s  t h a t  che la t ion  and ligand exchange 

provide the f ree  energy necessary for  removal of  iron from the 

pro te in .  Phosphorus-containing nucleotides and polyphosphates 

which a re  present  in the cytosol of r e t i c u lo c y te s  a re  of  p a r t i c ­

u la r  i n t e r e s t  because they a re  po ten t ia l  che la to rs  of i ron.  

Several of these agents (ATP, pyrophosphate, ADP, 2,3-diphos-  

phoglycerate,  e t c . )  have been shown to f a c i l i t a t e  re lease  of iron 

from t r a n s fe r r in  in v i t ro  and most are  r e l a t i v e l y  abundant ( e . g . ,  

ATP = 2 mM) in immature and mature red blood c e l l s  (50,51,75).

In addit ion to ca ta lyzing  the re lease  of iron from t r a n s f e r r in ,  

pyrophosphate and other  polyphosphates are  e f f e c t iv e  mediators 

of iron uptake by r a t  f ib ro b la s t s  and f e r r i t i n  (67,77,78) . 

Furthermore, most of these mediators of iron removal (small che­

l a t e s  capable of de l iver ing  iron to or removing iron from the 

pro te in)  a lso  seem to f a c i l i t a t e  exchange o f  t ransferr in-bound 

bicarbonate with ambient bicarbonate,  suggest ing th a t  they may 

l a b i l i z e  iron by d is rup t ing  the primary anion binding s i t e  (75, 

76).

This chapter i s  dedicated to e s tab l ish ing  whether, under 

condit ions within the cytosol where pyrophosphate would be in 

g rea t  excess over t r a n s f e r r i n ,  F e ( I I I )  binding to pyrophosphate 

might be thermodynamically favored. Several e a r l i e r  k ine t ic  

s tud ies  have demonstrated t h a t  the mediator pyrophosphate is  

a much more e f f i c i e n t  c a t a ly s t  than other  polyphosphates (such 

as ATP or 2,3-diphosphoglycerate) a t  f a c i l i t a t i n g  the removal 

of F e ( I I I )  from t r a n s fe r r in  in v i t ro  and deposi t ing i t  in des-
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ferrioxamine B, a che la to r  drug with a higher a f f i n i t y  for  iron 

than the protein (50,51). However, no information is  ava i lab le  

on the stoichiometry and equil ibrium constant  for  the competition 

react ion  between apo trans fe r r in  and pyrophosphate for  F e ( I I I )  

under equilibrium condit ions in the absence of desferrioxamine 

B. Such knowledge would be valuable in in te rp re t in g  k ine t ic  

data as well as providing a means o f  assess ing  the f e a s i b i l i t y  

of iron removal from the pro tein  by pyrophosphate in v ivo . In 

t h i s  chapter  i t  i s  shown th a t  the  equil ibrium d i s t r ib u t io n  of 

i r o n ( I I I )  between t r a n s f e r r in  and pyrophosphate i s  pH- and b i ­

carbonate-dependent and follows the equation

Fe(HP207 )(P207 )2~ + s i t e 2+1 + HCO^irrszi F e - s i t e z+ 3HP207~+ H+ (3.1)

where F e - s i t e  rep resen ts  iron bound a t  one of the sp e c i f ic  iron 

binding s i t e s  on the p ro te in .  The change in charge from Z to 

Z+l takes in to  account the f a c t  t h a t  the protein  gains a negative 

charge when F e ( I I I )  binds. The equil ibrium constant  has been 

determined.

A f i r s t  order dependence on bicarbonate  concentration 

in the equil ibrium binding of  iron to t r a n s f e r r in  i s  demonstra­

ted for  the f i r s t  time. This experiment proves th a t  bicarbonate 

does not bind appreciably to t r a n s f e r r in  in the absence of iron.

In the pas t ,  the p ro p o r t io na l i ty  between iron and bicarbonate 

binding has always been assumed based on the ea r ly  work of 

Warner and Weber which showed th a t  one mole of  CÔ  was l ibe ra ted  

per iron re leased  when conalbumin so lu t ions  were a c id i f i e d  (66).
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Experimental Procedure

The preparat ion of  so lu t ion s ,  ap o t ra n s fe r r in ,  monoferric 

t r a n s fe r r in s  and d i f e r r i c  t r a n s fe r r in  were as previously described 

in Chapter I I .

The percent Fe sa tu ra t ion  of  t r a n s fe r r in  was studied as 

a function of pH and pyrophosphate concentration by monitoring 

changes in absorbance a t  465 nm on a dual beam Carey 219 spec­

trophotometer. Two equivalents of f resh ly  prepared 0.01 M f e r ­

rous ammonium s u l f a t e  were added to one m i l l i l i t e r  of 0.5 mM 

apo tran s fe r r in .  The salmon pink color c h a r a c t e r i s t i c  of  spec­

i f i c a l l y  bound iron slowly developed over the 24-hour e q u i l i b ra ­

t ion period. 200 ul of  the protein so lu t ion  was mixed with 

1800 ul of  0.05 M HEPES/0.05 M EPPS/0.01 M NaHC03 , pH 7.8 buffer  

in a 1 cm quartz  cuvet te  giving approximately 50 uM d i f e r r i c  

t r a n s fe r r in .  The pH was adjus ted  to 7.5 with 1.0 N HC1 and the 

amount of iron bound to t r a n s fe r r in  determined a t  465 nm using 

a molar a b so rp t iv i ty  of  2500 cm"  ̂ Fe”  ̂ (9).

The competi tive e f f e c t  of  pyrophosphate concentration 

on iron binding to t r a n s fe r r in  was studied by t i t r a t i n g  d i f e r r i c  

t r a n s fe r r in  with a 0.1 M pyrophosphate/50 uM d i f e r r i c  t r a n s f e r r i n /  

0.01 M HC03, 0.1 HEPES, pH 7.5 so lu t ion .  T i t r a t io n s  were ca r r ied  

out by de l iver ing  a ca lcu la ted  volume of t i t r a n t  in to  a 1-cm 

quartz  cuvette  containing two m i l l i l i t e r s  of 50 uM d i f e r r i c  

t ran s fe r r in /0 .0 1  M HCO^/O.l M HEPES a t  pH 7.5. The pH of the 

so lu t ion  was measured a f t e r  each addit ion  of t i t r a n t  and found 

to be invar ian t  within  ± 0.02 pH uni ts  throughout the experiment.
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S u f f ic ie n t  time was allowed a f t e r  each addit ion for  the system 

to r e - e q u i l i b r a t e .  Achievement of equilibrium a f t e r  each in jec t ion  

was determined spectrophotometrical ly  a t  465 nm by allowing the 

pyrophosphate to r e a c t  un t i l  no fu r th e r  decrease in absorbance 

was observed. Typically 30 to 60 minutes was required.  This 

procedure was continued un t i l  subsequent addit ions  did not change 

the absorbance of the so lut ion fu r th e r .

A s im ila r  t i t r a t i o n  was conducted to study the e f f e c t  

of bicarbonate on the competi tive equil ibrium. The procedure 

was analogous to t h a t  described above. In t h i s  experiment a 

f resh ly  prepared 0.5 M HCO3/ 5O uM d i f e r r i c  t r a n s fe r r in /0 .0 4  M 

pyrophosphate, pH 7.5 so lut ion was t i t r a t e d  into  a stoppered 

cuvet te  containing two m i l l i l i t e r s  of 50 uM d i f e r r i c  t r a n s f e r r i n /  

0.04 M pyrophosphate/0.1 M HEPES a t  pH 7.5. Only ambient leve ls  

of bicarbonate due to  dissolved COg were i n i t i a l l y  present  in 

the d i f e r r i c  t r a n s f e r r in  so lu t ion .

The e f f e c t  of  pH was a lso  inves t iga ted  by t i t r a t i n g  three  

m i l l i l i t e r s  of 50 uM d i f e r r i c  t r a n s fe r r in /0 .0 4  M pyrophosphate/

0.01 M HCO3/O.O5 M HEPES/0.05 EPPS, pH 7.2 so lu t ion  with standard

1.0 N NaOH. The pH and A were measured a f t e r  each addit ion 

of base. Approximately twelve 5 ul add it ions  were made over the 

pH range 7.2 to 9 .2 .  A 50 ul sample o f  protein so lu t ion  was 

withdrawn from the cuvet te  a f t e r  each addit ion of NaOH and sub­

jec ted  to urea/polyacrylamide-gel e lec t rophores is .  The procedure 

for  e lec t rophores is  has been previously described in Chapter I I .

In another experiment, approximately 300 ul was withdrawn
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from the cuvet te ,  placed in a quartz  EPR tube,  and the frozen 

so lu t ion  EPR spectrum measured. A broad poorly resolved spectrum 

s im ilar  to t h a t  of iron t r a n s f e r r in  with an e f fe c t iv e  g value of 

4.3 was obtained (Figure 3 .1) ;  however, u l t r a f i l t r a t i o n  of  the 

sample in a Amicon model 3 u l t r a f i l t r a t i o n  ce l l  equipped with 

a PM 10 (MW c u to f f  = 10,000) membrane revealed th i s  spectrum 

to be a superimposition of two g 1=4.3 rhombic iron s igna ls  (Figures

3.2 and 3 .3) :  one due to an i ron(III)-pyrophosphate  complex

and the other  due to t r a n s f e r r in  bound iron.

The e f f e c t  of pH was studied in both d i rec t io n s ,  i . e . ,  

r a i s in g  the pH from 7.2 to 9.2 and then slowly lowering the pH 

back to 7.2 with 1.0 N HC1. Absorbence measurements were taken 

a f t e r  each addit ion  of acid.  Ident ical  p lo ts  of percent s a t u r ­

at ion vs pH were obtained, ind ica t ing  th a t  the system was a t  

t rue  equilibrium.

The number of  protons re leased  when F e ( I I I )  complexes to 

pyrophosphate was determined by pH re s to ra t io n  measurements.

0.01 M Fe(II)  was prepared in both deoxygenated water and in 

0.01 M HC1. By using the method of Fi tzgera ld  and Chasteen (79), 

the  pH of  the iron so lu t ion  was adjusted to 7.5 or to 9.0 under 

a blanket  of  moist ni trogen gas. Once the desired pH was obtained, 

a l iquo ts  of Fe(I I )  were added to ten m i l l i l i t e r s  of a pH 7.5 

or 9.0 0.01 M pyrophosphate so lu t ion  exposed to the a i r .  In 

more concentrated pyrophosphate so lu t ions  insoluble  white pre­

c i p i t a t e s  were obtained.  Following a 30-minute eq u i l ib ra t io n  

period for  each increment of iron added, the pyrophosphate so lu t ion



20 mT |

150 mT

F ig u r e  3 . 1 .  F rozen  s o l u t i o n  77K X-band EPR sp ectru m  o f  a s o l u t i o n  
o f  p y r o p h o sp h a te ,  t r a n s f e r r i n  and i r o n  ( I I I ) .  C o n d i t io n s :  50 uM d i ­
f e r r i c  t r a n s f e r r i n ,  0 .0  4 M p y r o p h o sp h a te ,  0 . 0 5  M HEPES, 0.05M EPPES, pH 8. 
In s tr u m e n t  s e t t i n g s :  power = 20 mw, m o d u la tio n  a m p litu d e  = 10 G, sweep
r a t e  = 2000 G/16 m in , t im e  c o n s t a n t  = 0 .3  s e c .
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F ig u r e  3 . 2 .  F rozen  s o l u t i o n  77K X-band EPR sp ectru m  o f  e l u e n t  ob ­
t a in e d  when th e  s o l u t i o n  i n  F ig u r e  3 .1  was s u b j e c t e d  t o  u l t r a f i l t r a t i o n .  
Spectrum  i s  due to  an ir o n r p y r o p h o sp h a te  com p lex . In s tr u m e n t  s e t t i n g s  a s  i n  
F ig u r e  3 . 1 .
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F ig u r e  3 . 3 .  F rozen  s o l u t i o n  X-band EPR sp ectru m  
t h e  r e t e n t a t e  o b t a in e d  when th e  s o l u t i o n  i n  F ig u r e  3 .1  was s u b j e c t e d  
t o  u l t r a f i l t r a t i o n .  In s tr u m e n t  s e t t i n g s  a s  i n  F ig u r e  3 . 1 .
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was t i t r a t e d  back to the  or ig ina l  pH with standardized 1.0 N 

NaOH. Duplicate runs with pyrophosphate:Fe r a t i o s  of 40:1,

10:1, 5:1, and 2.5:1 were performed. F in a l ly ,  to insure th a t  

no oxidation of Fe(I I )  to F e ( I I I )  was occurring p r io r  to i t s  

addit ion to the pyrophosphate so lu t io n ,  dup l ica te  runs of  the 

same pyrophosphate:Fe r a t i o s  were performed with so l id  ferrous 

ammonium su l f a te  c r y s t a l s .  These experiments were a lso  performed 

with the pyrophosphate so lu t ion  a t  pH 7.5 and pH 9.0.

Experiments were a lso  conducted in a medium designed to 

mimic c lose ly  the ionic environment of serum. 300 ul of 50 mg/ml 

d i f e r r i c  t r a n s fe r r in  was mixed with 2700 ul of a physiological 

s a l ine  buffer  so lu t ion  (0.12 M NaCl, 0.5 mM KC1, 1 mM MgSÔ ,

1 mM CaCl2> and 20 mM NaHC03 , pH 7.8) in a three  m i l l i l i t e r  

anaerobic quartz c e l l  (1 cm path length) .  The ce l l  was t i g h t l y  

stoppered with a serum cap and flushed for  approximately 1 hour 

with a moist stream of 95% O2 , 5% CO2 sp e c ia l ty  gas. This a t ­

mosphere has the 02/ 00^ tension of blood and provided a means 

of f ix ing  the concentration of bicarbonate accura te ly  and of 

buffering the so lut ion e a s i ly .  Aliquots of  0.1 M pyrophosphate 

and 5 mg/ml d i f e r r i c  t r a n s f e r r in  in physiological  sa l ine  buffer  

t h a t  had been purged with the gas mixture were t i t r a t e d  into 

the cuvette  and the r e su l t in g  changes in iron binding monitored.

A s l i g h t  pos i t ive  pressure of gas was l e f t  in the ce l l  during 

the e q u i l ib ra t io n  period.  The pH was checked a f t e r  each measurement. 

The average value was 7.242 and was found not to vary more than 

± 0.025 pH un i ts .  A dupl ica te  experiment was performed on a
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solut ion conta ining 0.025 M HCOg. The pH of  th i s  so lu t ion  

averaged 7.432.

The pH was measured on an Orion model 901 pH meter equipped 

with a radiometer GK2321C calomel-glass combination e lec trode .

The temperature of a l l  s tud ies  was 37° C. All chemicals were 

reagent grade and prepared in doubly d i s t i l l e d  deionized water. 

Preparation and handling of glassware and chemicals have been 

described in Chapter I I .

Results

When pyrophosphate i s  added to so lu t ions  of d i f e r r i c  t r a n s ­

f e r r i n ,  a decrease in absorbance a t  465 nm i s  observed. The 

loss  of s p e c i f i c a l ly  bound F e ( I I I )  i s  dependent on pH and b ic a r ­

bonate concentration and i s  c o ns is ten t  with the equilibrium 

react ion

Fe(complex)d + s i t e z+1+ aHC0“ ? = *  F e - s i t e z + bH P90^" + cH+ (3.2)
W L /

Various logari thmic forms of  equation 3.3 for the equilibrium 

constant  Q were analyzed to determine the values of the  c o e f f i ­

c ie n t s  a ,  b, and c.

[Fe-si te][HP903-]b[H+] c
Q = ■——---------------- — -------------  (3.3)

[Fe(complex)b] [ s i t e z][HCO“] a
O

Bicarbonate, pyrophosphate, and pH were varied independently 

and the e f f e c t  t h a t  each of  these var iab les  exerted on the amount 

of iron bound to t r a n s f e r r i n  was measured. [ F e - s i t e ]  i s  measured
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from the absorbance a t  465 nm. The value of [Fe(complex)] (= 

[ s i t e ] )  is  c a lcu la ted  from mass balance; [H+] i s  determined 

from the pH of the so lu t ion ;  and [HCOg] i s  equal to the concen­

t r a t io n  added. The concentra tion of HP20^“ i s  given by

3_ [PP-j]
[ Hp207 ] = --------------------  (3.4)

- Ka + i[H+]

where [PP.,-] i s  the a n a ly t ica l  concentra t ion of pyrophosphate.

Kg = 6.3 x 10"® i s  the  fourth proton d i s so c ia t ion  constant  for
3_

pyrophosphate. In the  pH range 7.2 to 9.2 employed here, HP2O7 

and P2O7" a re  the only species of pyrophosphate present  in appre­

c iab le  amounts.

Determination of  b

Figure 3.4 shows the dependence of  the percent iron s a t u r ­

a t ion  o f  t r a n s f e r r i n  as a function o f  pyrophosphate concentra tion.  

The observed decrease in absorbance a t  465 nm with increasing 

pyrophosphate concentrat ion c le a r ly  demonstrates pyrophosphate's 

a b i l i t y  to compete with t r a n s f e r r in  for  iron a t  pH 7.5 . To 

insure th a t  iron was indeed being removed from t r a n s fe r r in  and 

th a t  a co lo r less  te rne ry  Fe-Tf-PP^ complex was not being formed 

in so lu t ion ,  the reac t ion  mixture was separated by urea/polya- 

crylamide-gel e lec t rophores is .  Only a s ing le  band corresponding 

to a po tran s fe r r in  was observed a t  pH 7.5 in the presence of 

0.04 M pyrophosphate.
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Figure 3 .4 .  Dependence of the  percent  iron s a tu ra t io n  of  
t r a n s f e r r i n  as a funct ion of pyrophosphate concentra t ion .  
Conditions: 56 uv1 d i f e r r i c  t r a n s f e r r i n ,  1.3 m-1 MaHC03 , 0.01 M
HEPES a t  pK 7.5 and 37° C.
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This same so lu t ion  did ex h ib i t  a s l i g h t  absorbance a t  

465 nm when referenced to a 0.1 M HEPES buffer  so lu t ion .  However, 

when referenced to an a p o t ra n s fe r r in /b u f fe r  so lu t ion ,  the ab­

sorbance decreased to  a basel ine  value. Accordingly, in d e te r ­

mining the percent  s a tu ra t ion  a l l  absorbances measured vs buffer  

as the reference were corrected by sub trac t ing  from them the 

f ina l  absorbance measured a t  the end of the pyrophosphate t i t r a t i o n .  

This co rrec t ion  amounts to approximately 15% of the absorbance 

a t  465 nm of d i f e r r i c  t r a n s f e r r in .

These r e s u l t s  were used in determining b, the number of 

pyrophosphates in equation 3.3. A p lo t  of log B, where B = 

[F e (c o m p le x ) ] [ s i t e ] / [F e -s i t e ] ,  vs 1og[PP^] a t  constant  pH and 

bicarbonate concentra tion should y ie ld  a s t r a ig h t  l in e  with a 

slope equal to b. A log-1og p lo t  in which the pyrophosphate 

concentration i s  varied a t  pH 7.5 and a bicarbonate concentration 

of 0.01 M i s  presented in Figure 3.5. A s t r a ig h t  l in e  with a 

slope of 3.02 ± 0.29 (co r re la t io n  c o e f f i c i e n t  0.9925) i s  obtained 

ind ica t ing  th a t  a 3:1 pyrophosphate:iron complex is  formed.

E ar l ie r  s tud ies  of iron pyrophosphate complexes have con­

cluded th a t  in excess pyrophosphate a 2:1 pyrophosphate:iron
5 55complex i s  formed having an a ssoc ia t ion  constant  = 10 (80,81).

I t  i s  d i f f i c u l t ,  however, to  compare our r e s u l t s  with the l i t ­

e ra tu re  values because of the d i f f e r e n t  reac t ion  condit ions.

The present  study was conducted a t  a constant  pH of 7 .5 ,  whereas 

e a r l i e r  conclusions were obtained by t i t r a t i n g  a basic so lu t ion  

of  pyrophosphate a t  an or ig ina l  pH of  9.5 with F e ( I I I )  and
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Figure 3 .5 .  Log-log p lo t  o f  data shown in Figure 3.4 .
B = [ F e ( c o m p le x ) ] [ s i t e ] / [ F e - s i t e ] .  Slope of  the  l i n e  i s  equal 
to b, the  number of pyrophosphates involved in equation 3 .2 .  
b = 3.02 + 0.29,  c o r r e l a t io n  c o e f f i c i e n t  = 0.9925.
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monitoring the change in pH. No correc t ions  fo r  the amount of 

f ree  acid inherent in F e ( I I I )  so lu t ions  were applied to the 

l a t t e r  analyses. Moreover, although an iron complex with a 

log K of 5.55 might e x i s t  in acid so lu t ion ,  KSp data ind ica te  

th a t  the same complex exposed to a pH of 7.5 would hydrolyze 

and p re c ip i t a t e .

Recent k in e t ic  s tudies  conducted by Bates and coworkers 

provide fu r th e r  evidence fo r  the formation of a 3:1 pyrophosphate: 

iron complex a t  pH 7.5 (82). The a b i l i t y  of pyrophosphate to 

de l iver  iron to t r a n s f e r r i n  reaches a maximum r a t e  a t  a PPn-:

Fe r a t i o  of 3:1. Below th i s  stoichiometry hydrolysis of iron 

presumably occurs re ta rd ing  the k in e t ic s  of  the reac t ion .

Determination of c

The pH dependence of the percent Fe sa tu ra t ion  of t r a n s f e r r in  

in the presence of  0.04 M pyrophosphate i s  presented in Figure 

3.6. A Henderson-Hasselbach p lo t  of the data gives an apparent 

pK of approximately 8 for  the t i t r a t i o n  curve. Figure 3.7 shows 

the data c a s t  into  another log-log p lo t  where Log C, with C equal 

to [Fe(complex)][site][HC03] / [F e -s i te ] [H P 20y ] ,  i s  p lo t ted  

aga ins t  pH. Over the pH range 7.2 to 8 .5  a s t r a ig h t  l in e  i s  

obtained with a slope equal to 1.14 ± 0.14. From these r e s u l t s ,  

the value of c, the c o e f f i c i e n t  of H+ in the  equil ibrium, is  

taken to be one. (The values of the equilibrium constants  are  

changing over th i s  pH range, vide i n f r a , but not s u f f i c i e n t l y  

enough to a f f e c t  the determination of the c o e f f i c i e n t  c).

Results  of urea/polyacrylamide-gel e lec t rophores is  (Figure
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Figure 3 .6 .  Dependence of the  percent  iron s a tu ra t io n  of 
t r a n s f e r r i n  as a funct ion of pH a t  a fixed pyrophosphate and 
bicarbonate  concentra t ion  o f  40 mM and 10 mM re s p e c t iv e ly .  
Prote in concentra t ion  = 50 uM, temperature = 37° C.
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Figure 3 .7 .  Log-log p lo t  o f  data from Figure 3.6.
C = [Fe(complex][HC03] [ s i t e ] / [ F e - s i t e ] [ H P 20y3- ] 3 . The slope 
of  the  l in e  i s  equal to c ,  the  number of protons involved in 
equation 3.2. c = 1.14 + 0.14,  c o r r e l a t io n  c o e f f i c i e n t  = 0.9375.
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3.8) conducted on t r a n s f e r r i n  samples withdrawn during the pH 

t i t r a t i o n  ind ica te  t h a t ,  with increasing pH, there  i s  an increase 

in the  r e l a t i v e  s t a b i l i t y  of iron binding in the N-terminal 

domain over th a t  in the C-terminal domain, a r e s u l t  c on s is ten t  

with previous s tud ies  (48). At low pH values and le s s  than 

100% sa tu ra t io n ,  iron i s  bound in the C-terminal ha lf  of the mol­

ecule ,  becoming p r e f e r e n t i a l l y  bound in the  N-terminal h a l f  as 

the pH i s  ra ised .

Determination of a

In order to observe the e f f e c t  of bicarbonate on the 

competit ive equil ibrium, the  percent iron sa tu ra t ion  of  the protein  

in the presence of pyrophosphate was studied as a function of 

added bicarbonate.  I t  i s  important to e s t a b l i s h  th a t  bicarbonate 

i s  d i r e c t l y  involved in the binding of iron to t r a n s f e r r i n .

Some question has remained as to whether bicarbonate binds ap­

preciably  to the p ro te in  p r io r  to  iron binding. I f  bicarbonate  

binds s t rongly  to a p o t r a n s fe r r in ,  the percent  s a tu ra t ion  should 

be independent of the  concentration of  added bicarbonate provided 

a s to ich iom etr ic  amount i s  present  o r ig in a l ly .  As demonstrated 

in Figure 3 .9 ,  the percent  sa tu ra t io n  of t r a n s f e r r i n  i s  c le a r ly  

a function of added bicarbonate.  An increase  in t r a n s f e r r in -  

bound iron i s  observed with increasing bicarbonate concentration 

a t  pH 7.5.  Casting t h i s  data in to  another log-log p lo t  (Figure 

3.10) y ie ld s  a s t r a i g h t  l in e  with a slope of  0.982 ± 0.24, 

ind ica t ing  th a t  one bicarbonate is  involved per iron sequestered 

by the pro te in .  The d i r e c t  involvement of bicarbonate in the



Apo

C-terminal

N-terminal

Diferric

o n

D U

CTt

1 2 3 4 5 6 7 8 9 10 11 12 13

sample
Figure 3.8. Results of urea/polyacrylamide-gel electrophoresis conducted on 

transferrin samples withdrawn during the pH titration shown in Figure 3.6. Darker 
areas represent heaviest concentration of protein species. Sample #, pH: 1, 7.15;
2, 7.32; 3, 7.50; 4, 7.70; 5, 7.90; 6, 8.12; 7, 8.31; 8, 8.53; 9, 8.74; 10, 9.14; 
11, 9.34; 12, 9.56; 13, diferric transferrin.
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Figure 3 .9 .  Dependence of the percent  iron s a tu ra t io n  of 
t r a n s f e r r i n  as a funct ion of  added bicarbonate  a t  pH 7.5 and a 
oyrophosphate concentra t ion  o f  5 mM. Prote in  concentra t ion  =
50 uM a t  37° C. Suffer  i s  0.1 M HEPES.
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Fiqure 3.10. Log-1og p lo t  of data from Figure 3.9. Log A = 
[Fe-si te][HP2073 - ] 3/ [Fe(coir ip lex)][s i te ] .  Slope of the l in e  i s  
equal to a ,  the number of bicarbonates involved in equation 
3.2 .  a = 0.982 + 0.24, co r re la t io n  c o e f f i c i e n t  = 0.994.
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competit ive equil ibrium demonstrates th a t  bicarbonate does not 

bind s ig n i f i c a n t ly  to the sp e c i f i c  anion s i t e  in the absence of 

i ron .

From the values of a=l ,  b=3, and c=l and charge balance, 

the charge d of  the Fe-pyrophosphate complex must be equal to 

8- .  This value was checked by t i t r a t i n g  0.01 M pyrophosphate 

a t  pH 7.5 with Fe( I I )  and measuring, by pH re s to ra t io n ,  the number 

of protons re leased  (or consumed). When Fe(II)  i s  oxidized to 

F e ( I I I )  one proton per iron is  consumed, viz.

4H+ + 4Fe(II)  + 02------- »  4Fe(III)  + 2H20 (3.5)

Upon complexation to  th ree  pyrophosphates, however, a va r ie ty  

of p o s s i b i l i t i e s  could occur depending on the s t a t e  of proton­

a t ion  of  the pyrophosphate l igands.  These p o s s i b i l i t i e s  are  

summarized in Table 3.1. Which of the four p o s s i b i l i t i e s  i s  

occurring was determined by measuring the change in the number 

of  protons in so lu t ion  for  the overall  react ion  ( i . e . ,  equation 

3.5 + e i t h e r  I ,  I I ,  I I I ,  or IV of Table 3 .1) .

Addition of F e ( i i )  to pyrophosphate a t  pH 7.5 caused a 

reduction in pH for  Fe:PP r a t i o s  of 1:20, 1:10, 1:5, and 1 :2 .5 .

1.0 N standard NaOH was used to r e s to re  the so lu t ion  to the o r ­

iginal  pH. For a l l  but the 1 :2.5  case, 1.02 ± 0.18 equivalents  

of base (per F e ( I I ) )  were required .  An insoluble  white p r e c ip i t a te  

was observed in the l a t t e r  case,  which has been a t t r ib u t e d  to 

the f a c t  t h a t  the pyrophosphate concentration was not s u f f i c i e n t  

to complex a l l  the iron fu l ly .  Solutions with large iron p y r o ­

phosphate r a t i o s  have been observed to polymerize, y ie ld ing  in-
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Table 3 .1

P ossib le  Reactions o f  Iron (III)  
and Pyrophosphate a t pH 7.5

I. Fe3+ + 3HP203“ — ---> Fe(HP207)®" + 0H+
II. Pe3+ + 3HP203" — -- > Fe(HP207)2(P207)7" + 1H+
III. Fe3+ + CO 3

K
3 O  ̂

C
O

 1 1---> Fe(HP20?)(P207)2" + 2H+
IV. Fe3+ + 3HP20^" — ---> Fe(p2°7)93- + 3H+
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soluble material (67). Hydrolysis of the uncomplexed i r o n ( I I I )  

or p a r t i a l  hydrolysis  of an Fe(III)-pyrophosphate  complex would 

produce the observed increase  in the number of protons generated 

f o r  the 1:2.5 r a t i o .  The exis tence  of FefOH jg^Oy)^~ is  known 

(80).

The only p o s s ib i l i t y  of Table 3.1 and equation 3.5 th a t  

would generate  the net  of one proton produced for  the other  r a t i o s  

is  Case I I I .  I t  i s  the re fo re  concluded th a t  the ac t ive  species
Q

in so lut ion is  Fe(HP20y)( P2O7)2 in a9reement wlth the value ° f  

d obtained from charge balance.

To insure t h a t  the iron-pyrophosphate complex contained 

Fe( I I I )  and not appreciable  F e ( I I ) ,  400 ul a l iquo ts  were with­

drawn and th e i r  77° K frozen so lu t ion  EPR spectra measured a t  

X-band frequency. All samples produced spectra ident ica l  to th a t  

of Figure 3.3.

pH-Restoration experiments were a lso  conducted a t  pH 

9.0. At th i s  pH fewer protons should be generated per iron since 

the predominant species in so lu t ion  would now be. P2®7~’ ^ 11s

assumption is  borne out in the r e s u l t s  tab lu la ted  in Table 3.2. 

That the pH never increased upon addit ion of  Fe(I I )  is .probably  

due to some hydrolysis of F e ( I I I )  a t  th i s  high pH. Small amounts 

of p re c ip i t a te  which redissolved when the pH was res tored to 9.0 

were observed for  a l l  but the 20:1 sample. The re su l t in g  so lu­

t ions were s l i g h t l y  yellow in co lo r ,  unl ike the pH 7.5 samples, 

which were c o lo r l e s s .  Insoluble f e r r i c  pyrophosphate complexes 

are  known to d isso lve  in excess a lk a l in e  The r e s u l t s  can
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Table 3.2

T itra tab le  Protons released  during Fe Complexationa
H i  L 2+ ^

Fe added/pyrophosphate H Released/Fe

20 1 . 02, 1 .1

10C 0.98, 0.96

5° 0.95, 1.04

2.5C 1.4-2, 1.35

20d 0.41, 0.52

10d 0.30, 0.35

5d 0.65, 0.72

2.5d 0.82, 0.74

a) Conditions: 50 ml o f  10 mM pyrophosphate.
b) Primary data o f  two independent determ inations.
c) pH = 7.5
d) pH = 9.0
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be explained ne i the r  by a i r  oxidation of Fe(I I )  followed by simple 

hydrolysis  of F e ( I I I )  nor hydrolysis of uncomplexed Fe(II)  to 

Fe(0H)2. A net of two protons would be generated in the former 

case whereas the presence of oxygen in the samples renders the l a t t e r  

case unl ikely .  Fe(0H)2 is  green-black in the presence of a i r ;  

the observed p r e c ip i t a t e  is  white (83).

Determination o f  Q

Figure 3.11 shows the percent  iron sa tu ra t ion  of t r a n s ­

f e r r i n  in a physiological s a l in e  buffer  solut ion as a function 

of pyrophosphate concentration a t  three  d i f f e r e n t  values of  pH 

when referenced to apo trans fe r r in  in the same buffer .  This data 

is p lo t ted  in Figure 3.12 as l o g [ F e ( H P 2 0 y ' ) ] [ s i t e ] [ H C 0 g ] /  

[Fe-s i te ] [H+] vs 1ogCHPgOy- ] . The value of the s i t e  equil ibrium 

constant ,  0, as determined from the in te rce p t ,  is  found to be

The evaluation of  the equilibrium constant  Q in t h i s  manner 

i s  not s u f f i c i e n t l y  ref ined  to d is t in gu ish  between the two iron 

centers  of the pro te in .  Since t r a n s f e r r in  i s  a two-si ted pro te in ,  

a d i s t r ib u t io n  of  iron containing species is a c tu a l ly  formed in 

so lu t ion .  Four equilibrium expressions for  successive iron binding 

to t r a n s fe r r in  must be w r i t t e n ,  viz.

1.12 x 106.

Fe(complex)a " + Tf + HCO

Fe(complex) + Tf + HCO

Fe(complex)°~ + TfFe + HCO ( 3 . 8 )

(3.7)

(3.6)
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Figure 3.11. Dependence of the percent iron sa tu ra t ion  
of  5 mg/ml d i f e r r i c  t r a n s fe r r in  in physiological sa l ine  buffer 
a t  pH 7.3 (A), 7.45 (B), and pH 7.23 (C). Temperature = 37 C. 
pH and bicarbonate concentra tions regulated by 95% CC>2
spec ia l ty  gas.



Figure 3.12. Log-log p lo t  of  data shown in Figure 3.11 (B). 
The in te rce p t  i s  equal to log Q, an average s i t e  equilibrium 
constant  for  the competition react ion  of  equation 3.2. n = 2.96 
± 0.23, log 0 = 6.05 + 0.066, c o r re la t io n  c o e f f i c i e n t  = 0.989.
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Fe(complex)8" + FeTf + HCO3 - - - ^ FeTfFe + 3HP208“ + H+ (3.9)

For the case where the two s i t e s  a re  equivalent  and independent, 

one has Q = = q ^  = q2^ = q2q » the four i n t r i n s i c  s i t e

constants are  equal. Because one cannot d is t ingu ish  between 

C and N-terminal monoferric species in th i s  ana ly s i s ,  we define 

two thermodynamic equil ibrium cons tan ts ,  Q-j and Qg for  the binding 

of  the f i r s t  and second iron to t r a n s f e r r in ,  viz

[FeTf+TfFe][HP?03 ' ] 3[H+] CFeTfFe][HP„o2"]3[H+]
Q -  ------------------------- L------------  Q = ---------------- ^---------- -------------------

[Fe(complex)][site][HC02] [FeTf+TfFe][HC03][Fe(complex)]

(3.10) (3.11)

where [FeTfFe] and [Tf] a re  the concentrat ions of d i f e r r i c  t r a n s ­

f e r r i n  and a p o t ra n s fe r r in ,  r e sp ec t iv e ly ,  and [FeTf + TfFe] is  

the sum of the monoferric t r a n s fe r r in  concentra tions.  This 

treatment i s  analogous to th a t  for  the ion iza t ion  of a d ip ro t ic  

acid .  Q-| and Q2 a re  re la te d  to the i n t r i n s i c  s i t e  constants  of

equations 3 .6-3 .9  by the re la t io n sh ip s

Q1 = qlN + qiC (3‘ 12)

Q2] = q2N + q2(f 3̂ ‘ 13^

I f  the binding of iron to t r a n s fe r r in  i s  t o t a l l y  random, then 

Q-j = 2Q and Qg = Q/2 from which Q2 = Q]/4. I t  is  customary to 

wri te  Q2 = R Q-j/4, where R is  introduced to account fo r  non- 

random binding. For a t o t a l l y  random binding R = 1; the only 

d i f ference  between Q-| and Q2 is  the s t a t i s t i c a l  f ac to r  1/4.

An R value much le s s  than one ind ica tes  sequential  binding of
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iron to t r a n s fe r r in  (negative coopera t iv i ty )  while a value of 

R g rea te r  than one would suggest pairwise binding (pos i t ive  

c oopera t iv i ty ) .  To evaluate Q-| and Q2 and hence R, the  following 

equations were employed. The to ta l  concentra tion of protein

s i t e s  occupied by iron is  given by

[ F e - s i t e ]  = [FeTf] + [TfFe] + 2[FeTfFe] (3.14)

and the concentration o f  unoccupied s i t e s  by

[ s i t e ]  = 2[Tf] + [FeTf] + [TfFe] ( 3 . 1 5 )

Combining equations 3.10, 3.11, 2.14, and 3.15 leads to the following

formulation for  the r a t i o  of occupied and unoccupied s i t e s  in

terms of  the experimentally d ic ta ted  values of hydrogenpyrophos- 

phate, bicarbonate,  Fe(complex), and pH. A fu r the r  sub s t i tu t io n
q 3

of  x = [Fe(complex]/[Hp207 ] has been made.

( 3 . 1 6 )

The values of  Q-| and Q2 were determined by a simplex optimization 

procedure s im ila r  to th a t  described in Chapter II .

As is  evident from the graphs in Figure 3.13 the ca lcu la ted  

curve for  [ F e - s i t e ] / [ s i t e ]  conforms well with the experimental 

po in ts ,  indicat ing  th a t  we are  not using an inappropria te  model 

fo r  our an a ly s is .  From th i s  model we obtain the values fo r  Q-| 

and Q2 l i s t e d  in Table 3.3 for  d i f f e r e n t  values of pH. I t  i s
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Figure 3.13. Results  of  nonlinear  regress ion  ana lys is  of  
0, and CU a t  th ree  d i f f e r e n t  values of  pH. Solid l in e s  are  
ca lcu la ted  curves of  experimental data  (see r e s u l t s ) .  O  pH 7.23, 
□  pH 7.45,  A pH 7.80.



T a b l e  3 . 3

Summary of Equilibrium Constants and Q

pH k k a K 1N/ 1C k 2N/,RlN Q- R Rcalc

7.23 .277 .717 -7c7.2x10 2.2xl0-6 2.3xl0"7 0.41 0.49

7.45 .933 .690 l.lxl0"6c 2.4xl0"6 4.6xl0-7 0.75 0.53

7.80 1.22 1.18 2.5x 10“6C 4.4xl0“6 1.4xl0“6 1.27 1.25

a) From reference 48, interpolated to a chloride concentration of 0. 15 M
results).
Calculate

c) Q is related to Q.̂  and by the following equation
b) Calculated from k ^N :kic :k2N:k2C °f reference 48 •

Q (2 + R Q ([HCO~]2/[H+]2 x2 ))
Q = — : --------  f_____________

2 (2 + Q1([HCO~]/[H+] x))

Note than when R = 1, the equation reduces to Q = Q-^/2, otherwise there is 
a concentration dependence that becomes significant when large deviations 
of R from one is observed



78

evident th a t  over the  pH range 7.2 to 7.8 the a f f i n i t y  of t r a n s ­

f e r r i n  for  the f i r s t  and second iron changes. Furthermore, the 

binding of iron changes from negative to pos i t ive  coopera t iv i ty  

in the physiological pH range with the equil ibrium constant  

for  the binding of the second iron to the protein  la rge ly  in f luen­

cing the value of R. Q2 increases by a fac to r  of  = 5 over the 

pH range inves t iga ted  while the value of Q-j remains f a i r l y  constant . 

This f a c t  is  a lso  evident in Figure 3.13. As a check on the 

r e l i a b i l i t y  of t h i s  s tudy, a s e t  of  R values was ca lcu la ted  from 

previously published data for  the r e l a t i v e  values of the s i t e  

binding constants  ( k ^ ,  k-jQ, k2N, k2c) in the absence of pyro­

phosphate as obtained by urea/polyacrylamide-gel e lec trophores is  

(48). When re fe r r in g  to values of  reference 48, s i t e  binding 

constants  for  F e ( I I I )  wil l  be denoted by k. The s i t e  equil ibrium 

constants  presented here wil l  be denoted by a q. The term k ^ /  

k-j£ i s  the r a t io  of  the s i t e  constants  for  the binding of  the 

f i r s t  iron in the N- and C-terminal domain of  the p ro te in ,  r e ­

spect ive ly ,  and is  a measure of which s i t e  i s  favored by the 

f i r s t  iron th a t  binds. The coopera t iv i ty  fac to r  k2^/k-|N is  a 

measure of how read i ly  the second iron on t r a n s fe r r in  binds to 

the N-terminal s i t e  compared to the binding of the f i r s t  iron to 

the N-terminal s i t e .

Equations 3.13 and 3.14 r e l a t e  the i n t r i n s i c  s i t e  e q u i l i ­

brium constan ts ,  q ^ ,  q-j^, q2^j q2Q to Q-| and Q2 . Using the 

s i t e  preference fac to r  k ^ /k - |C and the coopera t iv i ty  fac to r  k2j\|/ 

k-jĵ  from the graphs in Figures 4 and 5 of  reference 48, the
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r e l a t i v e  values of Q-| and were obtained and a s e t  of R values 

were generated. I t  should be noted here t h a t  in the previous 

work, these r a t i o s  were quoted fo r  ch lor ide  concentra tions of 

e i th e r  0 or 0.5 M. Because chlor ide  has a la rge  e f f e c t  on these 

r e l a t i v e  values,  i t  was necessary to co r rec t  them to a ch lor ide  

concentration of 0.15 M, the leve ls  used in th i s  study.

Fortunate ly  the  e f f e c t  of ch lor ide  concentration on

^IN^IC anc* ^2N^1N 1S l i near over the ran9e of 0 to 0.5 M.

This allowed us to in te rp o la te  these r a t i o s  to the desired chlor ide  

concentra tion.  For example, a t  pH 7 .8 ,  Chasteen and Williams 

repor t  k-j^/k^ of 0.48 and 1.603 with and without ch lor ide ,  

respec t ive ly .  By mult iplying the d ifference  between these two 

values by the r a t i o  of  ch lor ide  concentrat ions one is  comparing

( i . e . ,  0.15 M/0.5 M) and adding t h i s  number to the s i t e  preference

fac to r  a t  0 ch lo r ide ,  a good approximation of k-|N/ k ^  a t  0.15 M 

chlor ide  r e s u l t s .  A s im ila r  in te rp o la t io n  of  the coopera t iv i ty  

fac to r  was a lso  necessary. From these two r a t i o s ,  ki|\j/k-]c and 

I^N^IN (= k2c/k-|0 ) the r e l a t i v e  values of k ' i k ^ : k 2^:k2C could 

be computed. A fu l l  l i s t i n g  of the s i t e  preference f ac to r s ,  

coopera t iv i ty  f a c to r s ,  Q-|, C^j and R are  presented in Table 3.3. 

Excellent  agreement between our values and the l i t e r a t u r e  values

is  achieved. Based on the comparable R values and the agreement

between the urea gels  of the two s tu d ies ,  we have calcula ted 

the thermodynamic s i t e  equilibrium constants  of  equations 3.6- 

3.9 for  the stepwise binding of iron to t r a n s fe r r in  in the presence 

of pyrophosphate (Table 3 .4) .
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Table 3.4  

Stepwise S ite  Equilibrium Constants

M2 qlCa M2 q2N, M2 q2C, M2

x 10’ 7 1 .7  x 10-6 3.4 x 10-7 1 .2  x 10"6

x 10-6 1 .2  x 1CT6 7.8 x 10“7 8.3 x 10-7

X H O
1 CD 2.0 x 10-6 2.9 x 10-6 2.4  x 10-6
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Discussion

The r e s u l t s  presented here c le a r ly  demonstrate pyrophos­

pha te 's  a b i l i t y  to compete with t r a n s f e r r in  for iron and th a t  

th i s  competition i s  pH and bicarbonate-dependent. I t  has been 

well e s tab l ished  t h a t  pyrophosphate i s  capable of  s t r ipp ing  iron 

from t r a n s f e r r i n  (50, 51, 75, 77) but ne i the r  the de ta i led  pH- 

dependence of  the  thermodynamics of  the competition react ion  

nor the  d i r e c t  influence of bicarbonate  on the equilibrium has 

been reported before.

According to our t i t r a t i o n  da ta ,  th ree  pyrophosphates

are  required to remove one iron from the pro te in .  The product

of  t h i s  reac t ion  is  a mixed pyrophosphate-iron complex FeCHP^y) 
8 -

(p2^7^2 ’ 1^s comPosi t i ° n has been extablished by charge balance 

and proton re lease  experiments. Also l ibe ra ted  in t h i s  react ion 

is  one bicarbonate ion. The d i r e c t  involvement of bicarbonate 

in t h i s  equil ibrium has been demonstrated, e s tab l ish ing  th a t  

s i g n i f i c a n t  spec i f ic  anion binding in the absence of iron does 

not occur.

When the pH of  a t r a n s f e r r i n ,  i ron ,  and pyrophosphate 

so lu t ion  is  r a i sed ,  an increase in iron binding to t r a n s fe r r in  

i s  observed. From the t i t r a t i o n  curve t h a t  i s  obtained i t  i s  

apparent t h a t  a net of  one proton i s  generated per iron bound 

below pH 8.5 and th a t  the increase in the overall  thermodynamic 

s t a b i l i t y  of  the i r o n - t r a n s f e r r i n  complex with increasing pH 

is  not large.



82

Our urea/polyacrylamide-gel e lec t rophores is  experiments 

are  in accord with those of  Chasteen and Williams (48). Because 

of  t h i s  agreement, we have used th e i r  r a t i o s  of  

a t  several values of pH to ca lcu la te  a se t  of R values to compare 

with those presented in t h i s  work and to obtain the stepwise 

equil ibrium constants  q ^ ,  q ^ ,  q2N> q2Q for the competition 

react ion  between pyrophosphate and t r a n s fe r r in  for  iron.  The 

s i t e  constants increase with increasing pH, the increase  being 

larger  for  q ^  than q ^ .  This i s  a lso cons is ten t  with the ob­

servation th a t  kny|/ki£ i s  la rge r  a t  higher pH values (48).

Aisen e t  a l . (43) have also measured the absolu te  values 

of the i n t r i n s i c  thermodynamic s i t e  constants  for  iron binding to 

t r a n s fe r r in  and reported s-milar  r e s u l t s  for  R. I t  i s  not pos­

s ib l e ,  however, to compare q u a n t i t a t iv e ly  the present  values 

with those of Aisen e t  a l . s ince the experimentswere run a t  

d i f f e r e n t  temperatures and so lu te  concentra t ions.

I t  i s  doubtful th a t  the l i t e r a t u r e  data on Fe-pyrophosphate

complexes (83) i s  app licab le  to t h i s  study. Once the formation
8 -

constant  for  the Fe(HP207) ( P2 ^ 2  comP^ex observed here i s  known

though, the equilibrium constant  for  the binding of iron to apo-

t r a n s fe r r in  can be ca lcu la ted  from th i s  data and an independent

measure of  the l i t e r a t u r e  value obtained.  From the Ksp for Fe(0H)g

and the concentrat ions of pyrophosphate and Fe(complex) used in

the proton re lease  experiments, a lower l im i t  on the binding of

Fe ( I I I )  to apo transfe r r in  can be ca lcu la ted .  From reference 21,

the KSp of iron hydroxide i s  2.5 x 1 0 " ^ .  At pH 7.5 , the maximum
90f ree  iron concentration is  the re fo re  7.9 x 10 M, which t r a n s la te s
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into  a minimum assoc ia t ion  constant  (Kpp) of  the Fe-pyrophosphate
O

complex of 3.93 x 10 . This number was ca lcu la ted  by su b s t i tu t in g  

the concentrations of Fe(complex) and pyrophosphate used in the 

proton re lease  s tudies  previously described into  the equation 

Kpp = [Fe(complex][H+] 2/ [F e ( I I I ) ] [H P 20^“] 3 . The product, Q] 

x Kpp = 180 r e f l e c t s  the  minimum value for  the assoc ia t ion  of 

iron to apo transfe r r in ;  t h i s  number i s  cons is ten t  with those 

reported by Aisen (43).

The values of and Q2 obtained here can be used to help 

e s tab l i sh  whether iron binding to t r a n s fe r r in  or to pyrophosphate 

i s  favored in the c e l l .  Ce llu lar  concentrations of pyrophosphate 

are  va r iab le .  In the cytosol concentrations of approximately 

0.25 mM (84) are  t y p ic a l ,  while in mitochondria, where pyrophos­

phate is  known to s h u t t l e  across the membrane, i t s  concentration 

can reach 20 mM (85). Using these values,  a bicarbonate con­

cen tra t ion  of 10 mM, and a pH of 7 .5 , equations 3.10 and 3.11 

can be employed to c a lcu la te  what concentration of t r a n s fe r r in  

i s  necessary to f a c i l i t a t e  a 50% dissoc ia t ion  of iron from the 

pro te in .  Setting the r a t i o  of [FeTfFe]/[Tf] = 1, su b s t i tu t in g  

for  [H+] ,  [HC0“] ,  and [HP20y],  we solve for  the value of [Fe( 

complex)], which is  equivalent  to the concentration of iron r e ­

moved from t r a n s f e r r in .  This value is  the same as the concentration 

of protein for  50% iron sa tu ra t ion  to occur.

We find th a t  a t  0.25 mM pyrophosphate the concentration 

of t r a n s fe r r in  would have to be 2.4 x 10"^  M. Under the same 

condit ions of bicarbonate and pH, the presence of 20 mM pyrophos­

phate requires  a protein  concentration of  2.5 x 10“  ̂ M to achieve
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the same r e s u l t s .  Typical serum leve ls  of t r a n s fe r r in  are  around 

10“® M. The concentration within the ce l l  i s  not known but would 

probably be lower. The importance of  careful  regu la t ion  o f  the 

bicarbonate concentration to t h i s  equilibrium can a lso  be seen 

in these c a lc u la t io n s .  I f  a bicarbonate concentra tion of 3.4 x 

10"® M (ambient l e v e l s ) i s  used (43), 50 percent o f  the iron will 

be removed a t  protein  and pyrophosphate concentrations of 5 uM 

and 0.5 mM respec t ive ly .  The family of  curves presented in 

Figure 3.14 was generated by ca lcu la t ing  the percent iron sa tu ra t ion  

for  any given pro tein  and pyrophosphate concentration a t  pH 7.4 

and a bicarbonate concentrat ion of 20 mM.

The curves in Figure 3.14 allow one to p red ic t  what meta­

bolic  condit ions would have to prevai l  before iron would be r e ­

moved from t r a n s f e r r in  and subsequently taken up by pyrophosphate. 

There i s  evidence t h a t  ferr ic-pyrophosphate  complexes bind to 

the mitochondria membrane where iron is  reduced by the r e s p i r ­

a tory  chain to F e ( I I ) .  The ferrous ion i s  l ibe ra ted  and, through 

an energy-requiring reac t io n ,  i s  passed to the fe r roche la tase  

inside the mitochondria to be inse r ted  into  heme (86,87).  To 

our knowledge no information is  ava i lab le  on the change in f ree  

energy a t tending the l a t t e r  processes in iron metabolism.

The r e s u l t s  of the present  study ind ica te  t h a t  pyrophosphate 

complexation of iron might be capable of providing the f ree  energy 

necessary for  iron removal from t r a n s fe r r in  in vivo and th a t  

the f e a s i b i l i t y  of t h i s  process i s  extremely dependent on pyro­

phosphate concentra t ion .  However, ex trapola t ion  from findings
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Figure 3.14.  Family o f  curves allowing one to p red ic t  
the percent  iron s a tu r a t io n  of  t r a n s f e r r i n  when pyrophosphate 
and pro te in  concen tra t ions  a re  known. Pyrophosphate concentra t ion 
0.1 mM (A), 0.5 mM (B), 1 mM (C), 2.5 mM (D), 5 mM (E), 10 mM (F), 
20 mM (G). pH and b icarbonate  concentra t ion  assumed to be 7.4 
and 20 mM re sp ec t iv e ly .
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in v i t ro  to the s i tu a t io n  in vivo is  exceedingly d i f f i c u l t .

Other fac to r s  not included in the  present  study may prove important 

in e s tab l ish in g  the means whereby iron is  removed from t r a n s f e r r in  

and shu t t led  to s i t e s  of u t i l i z a t i o n ,  e sp ec ia l ly  since i t  is  

known th a t  iron mobilized by pyrophosphate i s  not q u a n t i t a t iv e ly  

accumulated by mitochondria (77) and th a t  the  r a t e  of  uptake 

d i f f e r s  when pyrophosphate alone or when the che la to r  and a 

reductant  a re  present  (74). The suggestion t h a t  t r a n s fe r r in  

has access to low pH endocytotic  vacuoles implicates y e t  another 

v a r iab le .  Nonetheless, the r e s u l t s  presented in t h i s  chapter  

c l e a r ly  demonstrate the importance of  small phosphorus containing 

che la to rs  (espec ia l ly  pyrophosphate) in the chemistry of  t r a n s ­

f e r r i n .  Much has ye t  to be learned about the operation of th i s  

smal1-molecular weight polyphosphate pool in the ce l l  and i t s  

s ign i f icance  to the cy toso l ic  t r an sp o r t  of iron.



CHAPTER IV

STUDY OF ATP AND PYROPHOSPHATE BINDING TO TRANSFERRIN 
BY 31-P NMR SPECTROSCOPY

EPR dif fe rence  spectroscopy has es tab l ished  th a t  inorganic 

anions bind with pairwise coop era t iv i ty  to t r a n s fe r r in  and a f f e c t  

the e lec t ron ic  environment of the metal cen ters .  We believe 

the most l ik e ly  s i t e  of th i s  in te rac t io n  to be po s i t iv e ly  charged 

amino acid res idues  on the p ro te in .  I t  i s  probable th a t  anion 

binding s i t e s  c lose  to the metal s i t e s  of t r a n s fe r r in  a re  the 

ones primarily  responsible  fo r  a l t e r a t i o n s  in the iron binding 

proper t ies  of the p ro te in .  Paramagnetic re laxa t ion  enhance­

ment of  the anion NMR signa ls  due to the F e ( I I I )  enable one to 

focus on those l im ited  number of s i t e s  close to the metal.

This chapter repor ts  a prel iminary study of the in te rac t ion  of 

the anions pyrophosphate and ATP with d i f e r r i c  t r a n s fe r r in  by 

measuring the paramagnetic induced re laxa t ion  of  the 31-P nucleus 

as a function of temperature, pro te in  concentrat ion,  and anion 

concentra tion.

Experimental

D ife r r ic  human serum t r a n s f e r r in  was prepared as in 

Chapter II  and I I I .  All bu f fe rs ,  s a l t s ,  and D20 were shaken 

over Chelex 100 for  a minimum of 24 hours p r io r  to use. D iferr ic  

t r a n s fe r r in  was u l t r a f i l t r a t e d  in an Amicon Model 3 u l t r a f i l t r a t i o n  

ce l l  equipped with a PM 10 (molecular weight c u to f f  = 10,000)

87
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membrane with nine volumes of 0.09 M HEPES/0.01 M NaHCOg, pH

7.5 buffer  to e lu te  any unbound F e ( I I I ) .

ATP of the highest  pur i ty  was purchased from Sigma Chemical 

Corporation and i t s  binding to t r a n s fe r r in  studied a t  pH 7.5.  

Because pyrophosphate i s  capable of  s t r ipp ing  iron from t r a n s f e r r in  

a t  pH 7.5,  a l l  NMR stud ies  in which pyrophosphate was used were 

run a t  pH 9.0.

T-j values of 31-P nuclei were determined a t  36.2 MHz

on a JEOL FX-90Q NMR spectrometer by the inversion recovery

(180°-t-90°) pulse sequence (84). The 90 degree pulse was de­

termined by measuring a 180 degree pulse width (evidenced by 

a null FID and signal in the transformed spectrum) and dividing 

by two. Four pulse in te rv a l s  were stacked in each determination 

of T-j ; no change in T-j within the  r e l a t i v e  standard devia tion 

of + 2.2% was observed when six t  values were stacked. The

precis ion in measuring the Tj values was checked by placing

2 ml of  a 0.1 M ATP/10% D2O, pH 7.5 solut ion into  a 10 mm f l a t  

bottom NMR tube equipped with a vortex plug. Four r e p l i c a te  

measurements of the T̂  values of the a, 8 , and y phosphorus 

nuclei of ATP were made. The r e l a t i v e  standard deviat ion of 

these measurements was found to be 1.6%. The tube was removed 

from the probe p r io r  to each t r i a l .  Concentration e f fe c t s  were 

studied by measuring T̂  values of 0.02, 0.04, 0.08, and 0.30 M 

ATP solu t ions  a t  pH 7.5 and 10% DgO. No e f f e c t  of concentration 

on the T-j of  the f ree  ATP was observed. F ina l ly ,  the precision 

of  the 90 degree pulse was determined by measuring peak in ten ­

s i t i e s  a f t e r  each of four successive 90 degree pulses.  The
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r e l a t i v e  standard dev ia t ion  in peak i n t e n s i t i e s  was found to be 

+ 2 . 1%.

Temperature of  the probe was measured by placing a t h e r ­

mometer in a coaxial  arrangement ins ide  a 10 mm NMR tube, i n s e r t ­

ing i t  in to  the  probe and spinning i t  for  f iv e  minutes. All 

spectra  were measured a t  27 + 2° C. Temperature was determined 

p e r io d ic a l ly  throughout the  NMR t i t r a t i o n s .

Measurements o f  31-P re la x a t io n  times as a funct ion of 

anion concentra t ion  fo r  diamagnetic C o ( I I I ) t r a n s f e r r in  (38, 85) 

and paramagnetic iron t r a n s f e r r i n  p ro te in  complexes allowed the 

paramagnetic c o n tr ib u t io ns  to the  r e laxa t io n  r a t e ,  T-jp, to be 

determined. The data was p lo t te d  according to the  Dahlquis t-  

Raftery equation (86 ) which has been modified to take in to  account 

c o o p e ra t iv i ty  of  anion binding,  viz .

where [ Fe( I I I ) and [an ion]Q a re  the  to ta l  concentra t ion  of iron 

s i t e s  and anion re s p e c t iv e ly .  K i s  the overa l l  a s so c ia t io n  con­

s t a n t  fo r  the cooperat ive  binding of n anions per Fe( I I I )  s i t e .  

T-japp i s  the  apparent  re lax a t io n  time of  the bound anion and is  

given by

T

n-K-[anion]J"1[ F e ( I I I ) ] 0

1 + K-[anion]"
( 4 . 1)

1
( 4 . 2 )

Tlapp *M + T1M
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t^  and T-^ a re  the res idence time and the NMR re laxa t ion  time 

of the bound anion, respec t iv e ly .  I t  i s  assumed in these equations 

t h a t  exchange i s  rapid on the NMR time sca le ,  th a t  i s  l / t M»Aw, 

where Aw is  the frequency d i f fe rence  between bound and f ree  anion. 

This assumption can be confirmed by studying the e f fe c t s  of  tem­

perature  on the T-j values (84).

The paramagnetic con tr ibu tion  to the  31-P re laxa t ion  r a t e
3_

of ATP and HP2O7 was obtained from the following equation.

where 0/T-])o(i)S i s  the re laxat ion  r a t e  obtained in the presence 

of di f e r r i c  t r a n s fe r r in .  0 /T- |)  is  defined s im i la r ly ,  except 

th a t  in t h i s  case no iron is  present .

For NMR t i t r a t i o n s  a t  fixed anion concentra t ions ,  2 ml 

of  approximately 0.1 M phosphorus anion (e i the r  ATP or pyro­

phosphate) in 10% D£0, 0.1 M HEPES buffer  a t  pH 7.5 or pH 9.0 

was t i t r a t e d  with 50 ul a l iquo ts  of  d i f e r r i c  t r a n s fe r r in  in 0.1 

M ATP, 10% 020, 0.1 M HEPES, 0.01 M HCO3 , pH 7.5. The T] values
A C C

were measured a f t e r  each addit ion of t ' i t r a n t .  The pH and A 

were checked a f t e r  each t i t r a t i o n  to insure  th a t  no change in 

pH had occurred and th a t  iron had not been removed from the pro­

t e in .  T i t ra t io ns  were conducted in 10 mm f l a t  bottom NMR tubes 

sealed with a vortex plug. Similar t i t r a t i o n s  were accomplished

(4.3)
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a t  fixed protein concentra tion and varying concentrat ions of 

anion.

Results

31-P Spectroscopy of ATP Binding to Transferr in

Figure 4.1 shows the 31-P NMR spectrum of ATP. At pH

7.5 and 10 mM HCOg, s ig n i f i c a n t  enhancement of the a, 3, and 

y phosphorus nuclei o f  ATP is  observed in the presence of d i f e r r i c  

t r a n s f e r r in .  In the absence of d i f e r r i c  t r a n s f e r r i n ,  T-] values 

of 5.24, 4.12, and 5.71 s are  obtained for  the  a ,  6 , and y phos­

phorus nuc le i ,  r espec t ive ly  compared to 2.08, 3.25, and 2.02 s 

in the presence of 9.9 x 10“® M d i f e r r i c  t r a n s f e r r i n .  No change 

in T-| was observed with so lut ions of diamagnetic d i c o b a l t - t r a n s fe r r in  

or apo transfe r r in  and ATP. The concentration of ATP likewise  

did not a f f e c t  the measured T-j values; the concentration e f fe c t s  

were measured in a c o b a l t - t r a n s f e r r in  so lu t ion .

A l in e a r  r e la t io n sh ip  between 1/T-jp and d i f e r r i c  t r a n s ­

f e r r i n  concentration with the concentration of ATP fixed a t  0.30 

M is  obtained (Figures 4 .2 ,  4 .3 ,  and 4 .4 ) .  Since ATP exhib i ts  

multi p ie t s  in i t s  NMR spectrum, we were faced with the problem 

of se lec t ing  which peak to use in determining the value of T-|.

Because no s ig n i f i c a n t  d i f fe rence  was observed between peaks of 

the various m u l t ip le t s ,  the value of T-j was taken as the average of 

the T-| for  each l in e  in the respec t ive  m u l t ip le t .  All data 

points are  a lso  the average of two independent determinations of 

T | . That the observed re laxa t ion  enhancement i s  not due to some



Figure 4.1. 31-P NMR spectrum of 0.3M ATP in 10% D^O.
a, 6, and y peaks are labeled. Conditions: 0.30 M ATP
in 0.09 M HEPES/ 10% D-0 at pH 7.5 and 27 C. Spectral width 
= 2500 Hz, one 90° pulse.
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Figure 4.2 . P lot  of  (1/Ti)p vs [FeTfFe]. Data i s  for 
the paramagnetic enhancement of  tne alpha phosphorus of ATP. 
Conditions: 2 ml of 0.30 M ATP in 0.09 M HEPES, 10% DpO a t  
pH 7.5 t i t r a t e d  with 0.5 mM d i f e r r i c  t r a n s fe r r in  in 0.09 M 
HEPES, 0.01 M NaHC03 , 10% D20, 0.30 M ATP, pH 7.5.
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Figure 4.3. Plot  of (l/T-|)p vs [FeTfFe], Data is  for
the paramagnetic enhancement of  the beta phosphorus of  ATP. 
Conditions as in Figure 4.2.



, s
ec

0.30

0.20

0.10

10 205 15

[FeTfFe] , 10_SM

Figure 4 .4 .  Plot of  (1 /T-j )p vs [FeTfFe]. Data i s  for
the paramagnetic enhancement of the gamma phosphorus of ATP. 
Conditions as in Figure 4.2.
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Fe(I I I )  th a t  had been removed from the protein  was v e r i f i ed  by 

measuring the T-j of  the u l t r a f i l t r a t e  obtained by passing the 

protein so lut ion through an Amicon Model 3 u l t r a f i l t r a t i o n  ce l l  

equipped with a PM 10 membrane. Values of of 5.76, 4.21, and 

5.92 s were obtained for  the a , 6, and y nuc le i ,  re spec t ive ly ,  

which a re  comparable to the values for  ATP alone (vide supra).

Figures 4 .5-4 .7  are  p lo ts  of 1 /T-]p vs ATP concentrat ion 

for  a fixed protein concentration of  50 uM. The data has been 

f i t  to two d i f f e r e n t  equations, the  usual Dahlquis t-Raftery 

equation (represented by the dashed l in e )  where the binding of 

d i f f e r e n t  anions i s  assumed to be independent, and a modified 

Dahlquis t-Raftery equation in which two anions bind cooperatively 

per metal s i t e  (represented by the so l id  l in e ) .  Both l in e s  are  

the ca lcu la ted  l ines  obtained from a nonlinear regress ion ana lys is  

of both equations. The values of l/T-japp and K, the assoc ia t ion  

constant ,  obtained by th i s  method are  presented in Table 4.1.

Also presented in t h i s  tab le  is  the value of  the re s id u a l ,  Sy, 

for  each ca lcu la ted  l in e .  An improvement in f i t  i s  obtained when 

coopera t iv i ty  i s  taken into  account. Furthermore, the systematic 

trend in the res id ua ls  of the individual points  i s  e l iminated.  

Inappropriate  models will y ie ld  a trend in the r e s idu a ls .  Based 

on these r e s u l t s  i t  appears th a t  coopera t iv i ty  in ATP binding 

to t r a n s fe r r in  i s  observed a t  pH 7.5. Cooperative binding of 

ATP to t r a n s fe r r in  has a lso been observed by EPR d if ference  

spectroscopy.
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Figure 4 .5 .  Plot  of (1/T-j )p vs [ATP] from the t i t r a t i o n  
of  50 uM d i f e r r i c  t r a n s fe r r in  with 0.36 M ATP, pH 7.5 . The 
dashed and so l id  l in e s  are  the th eo re t ica l  l in e s  obtained by 
a nonlinear  regress ion  analys is  of the Dahlquis t-Raftery equation 
(equation 4.1) for  n = 1 and n = 2, re spec t ive ly .  Data i s  for  
the alpha phosphorus of ATP.
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Figure 4 .6 .  Plot  of (l/T-|)p vs [ATP] obtained from t i t r a t i o n
of 50 uM d i f e r r i c  t r a n s f e r r in  with 0.36 M ATP, pH 7.5. Data is 
fo r  the beta phosphorus nucleus o f  ATP. See Figure 4.5 and r e ­
s u l t s  for  explanation o f  dashed and so l id  l in e s .
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Figure 4 .7 .  Plot  of (1/T-|)D vs [ATP] obtained from t i t r a t i o n  
of  50 uM d i f e r r i c  t r a n s f e r r in  with 0.36 M ATP, pH 7.5.
Data i s  for  the gama phosphorus of ATP. See Figure 4.5 and 
r e s u l t s  for  explanation of dashed and so l id  l in e s .
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Table 4 .1

Summary o f  Binding Data o f  ATP 
to  Transferring

peak l/T^appjSec- ^ K sy
a 9.10 1 .6xl03 5xl0-3

6 26.7 1.4x103 8xl0~3

Y 33.2 9 .8 x l0 2 9xl0"3

a 23.7 4.2x102 2xl0“2

3 111 2 .8xl02 3x l0 -2

Y 128 2.8x102 2xl0-2

a) Conditions: 9.5x10” M d ife r r ic  tran sferr in  in  0.09. 
HEPES, 0.01 M NaHCOg a t pH 7.5.  Temperature = 2 7 + 2

b) With coop erativ ity
c) Without coop erativ ity

o
s
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by EPR d ifference  spectroscopy.

To ve r i fy  t h a t  two ATP molecules a re  binding per metal 

s i t e ,  a solut ion of  d i f e r r i c  t r a n s fe r r in  in buffer  a t  pH 7.5 

was t i t r a t e d  with a l iq u o ts  of 0.1 M NTA which is  known to bind 

tenaciously to t r a n s f e r r i n .  We have observed th a t  when NTA is  

present in so lut ion with ATP, there  i s  no enhancement in the 

31-P re laxat ion  r a t e  of the ATP nuc le i .  Figure 4.8 shows the 

change in l/T-|p as a function of NTA concentra t ion .  As NTA 

i s  continual ly  added, the  re laxat ion  r a t e so f  a l l  three  phosphorous 

nuclei decrease ,  ind ica t ing  th a t  NTA is  competing e f f e c t iv e ly  

fo r  anion binding s i t e s  on the pro te in .  This change in l/T-|p 

continues un t i l  a r a t i o  of approximately 4:1, NTA:transferrin, 

i s  achieved. I t  is  important to note th a t  the l im i t ing  values 

are  very c lose to the  values obtained in the absence of d i f e r r i c  

t r a n s f e r r in .

When iron as F e ( I I ) . i s  added s to ich iom etr ica l ly  to a 

so lu t ion  of a po tran s fe r r in  and ATP, a change in the 31 -P re la x ­

a t ion  r a t e  i s  observed un t i l  a r a t i o  of 2:1, Fe :pro te in ,  is  

reached (Figure 4 .9 ) .  Beyond t h i s  point ,  the slope of the l in e  

changes ind ica t ing  t h a t ,  i f  the  metal s i t e s  a re  being loaded 

sequen t ia l ly ,  ATP is  in te rac t in g  with both metal s i t e s  to  the 

same extent .

31-P NMR Spectroscopy of Pyrophosphate Binding to Transferr in

When pyrophosphate i s  added to 56 uM d i f e r r i c  t r a n s fe r r in  

a t  pH 9.0 , s i g n i f i c a n t  enhancement in the re laxa t ion  r a t e  i s  

observed. In the absence of d i f e r r i c  t r a n s f e r r i n  we f ind T-j



Figure 4 .8 .  Plot  of  (1 /T-j )0 vs [NTA]/[Tf] obtained from 
t i t r a t i o n  of 20 uM d i f e r r i c  t r a n s fe r r in  in 0.25 M ATP, 0.09 M 
HEPES, 0.01 M NaHCOo, 10% D20 a t  pH 7.5 with 0.1 M NTA a t  pH 
7.5.
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Figure 4 .9 .  (1/T])p vs [Fe] / [Tf]  obtained from t i t r a t i o n
of 20 uM apo transfe r r in  in 0.25 M ATP, 0.09 M HEPES, 0.01 M 
NaHC03, 10% D20 a t  pH 7.5 with 0.1 M F e ( I I ) .  A = gamma phosphorus, 
B = beta phosphorus.
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(PPn-) = 4.15 s for  0.10 M pyrophosphate compared to 0.866 s in 

the  presence of  the  pro te in  and 10 mM HCO3".

Linear r e l a t io n sh ip s  between 1/T-] and d i f e r r i c  t r a n s fe r r in  

concentration with pyrophosphate concentration fixed and l/T-|p 

and pyrophosphate concentrat ion with d i f e r r i c  t r a n s f e r r in  concen­

t r a t io n  fixed are  obtained (Figures 4.10 and 4 .11).  The data ,  

p lo t ted  according to the Dahlquis t-Raftery equation with n = 1, 

i s  shown in Figures 4.12 and 4.13. The two independent se t s  of 

data  give an a ssoc ia t ion  constant  fo r  pyrophosphate with d i ­

f e r r i c  t r a n s f e r r in  o f  204 M*̂  and 266 nH  . The values are  

reasonable fo r  anion binding to a p ro te in .  Cooperativ i ty  of 

pyrophosphate binding i s  not observed under these condit ions .  

Previous EPR measurements with pyrophosphate which did d isp lay  

pos i t ive  coopera t iv i ty  were made a t  pH 7.5 ra i s in g  the question 

th a t  a p o s i t iv e ly  charged amino acid c o n s t i tu t in g  an anion binding 

s i t e  might be t i t r a t e d  in the pH range 7 to 9.

Distance Calculation

As discussed above, i f  t h i s  system is  in the rapid exchange 

case, the value of  T-japp can be obtained from the Dahlquist- 

Raftery p lo ts .  Two cases a re  of i n t e r e s t  in equation 4 .2 ,  i . e . ,

^  t 1M Qiving ^ a p p  = T1M and t M »  T1M giving T ^pp  = t M.

In the l a t t e r  case the  only information th a t  can be obtained 

from the Dahlquis t-Raftery p lo ts  i s  the exchange r a t e  of ATP 

on t r a n s fe r r in  (86 , 87).  I f  the former case holds, the value 

of T]m can be used to c a lcu la te  the metal-anion d is tance  provided
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Figure 4.10 (1/T-j) vs [PP^] obtained from t i t r a t i o n  of
56 uM d i f e r r i c  t r a n s f e r r i n g  0.1 M HEPES, 0.01 M NaHCOg,
D20 with a 0.10 M pyrophosphate so lu t io n  a t  pH 9.0.
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Figure 4.11. (1 /T-j)p vs [Tf] obtained from t i t r a t i o n  of
0.10 M pyrophosphate with a 1 d i f e r r i c  t r a n s f e r r in ,  0.1 M 
HEPES, 0.01 M MaHCOg, 0.1 M pyrophosphate solut ion a t  pH 9.0.
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Figure 4.12.  Dahlquis t-Raftery  p lo t  of data shown in
Figure 4.11 fo r  n = 1. The slope o f  the  l i n e  i s  equal to
( 1 /T , ) and the in te r c e p t  to  -1/K. m = 371 + 41 s _l ,  K =' 1 app •,
204 + 3 1  M“ 1.
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Figure 4 .13. Dahlquis t-Raftery  p lo t  of data shown in 
Figure 4.10; f o r  n =1. The slope of  the l in e  i s  equal to (1/T-t )app
and the i n te r c e p t  to -1/K. m = 395 + 52 s " ^ , K = 266 + 38 M ^ .
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the co r re c t  c o r re la t io n  time i s  known (87). We assume th a t  

the ro ta t io n a l  c o r r e la t io n  time i s  the  appropria te  one. The 

d is tance  can be ca lcu la ted  from the Solomen-Blombergen equation 

(88 , 89).

where S i s  the e lec t ron  spin (S = 5 /2 ) ,  y  i s  the  magnetogyric 

r a t i o  for  31-P, g i s  the e lec tron  g f a c to r  (g = 2 .0 ) ,  B i s  the 

Bohr magneton, wj i s  the  larmour precession frequency of the 

31-P nucleus, and r  the metal-anion d is tance .

Using a ro ta t io n a l  c o r re la t io n  time of 31 ns (obtained 

from vanadyl EPR spectroscopy) and assuming the values of T-japp 

obtained from nonlinear  regress ion  and the Dahlquis t-Raftery plo ts  

(Figures 4.12 and 4.13) a re  equal to T-|[ ,̂ i . e . ,  T-j  ̂ »  t M, the 

metal-anion d is tances  tabula ted  in Table 4.2 were ca lcu la ted .

We are  a lso  assuming here t h a t  the  co r re la t io n  time i s  the same 

fo r  a l l  nuclei and i s  independent of  pH. Obviously more s tudies  

are  needed before any more d e f i n i t e  conclusions can be made 

about the metal-anion d is tance .

Discussion

This study demonstrates the po ten t ia l  of NMR spectroscopy 

fo r  studying the in te r a c t io n  of small molecular weight subs tra tes  

with d i f e r r i c  t r a n s f e r r i n .  More work is  c le a r ly  indicated in-

(4.4)



Table 4.2  

Calculated Metal-Anion D istances3,

Anion (peak) r

ATP (a) 12

ATP (6) 9

ATP Cy) 9

hp2o7 9b

a) Calculated by assuming a ro ta tio n a l correla tion  
o f  31 ns i s  the process dominating T-̂ .

b) Represents the average d istance o f  pyrophosphate 
phosphorous n u c le i.
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eluding a de ta i led  t i t r a t i o n  of ATP with t r a n s fe r r in  as a function 

of temperature and pro te in  concentrat ion.  Such a study would 

allow one to measure T-^ d i r e c t ly  as well as providing a measure 

of the thermodynamic p ro per t ie s ,  AG, AH, and AS of anion asso­

c ia t io n  with d i f e r r i c  t r a n s f e r r i n .  A study of the pH dependence 

of the T'j's of  ATP would a lso  ind ica te  whether an amino acid 

res idue ,  which c o n s t i tu te s  an anion binding s i t e ,  i s  being 

t i t r a t e d  between pH 7 and 9.



CHAPTER V

SUMMARY

The work presented in th i s  d i s s e r t a t io n  has helped to 

e luc ida te  the e f fe c t s  th a t  small molecular weight inorganic anions 

have on the metal cen ters  of t r a n s fe r r in .  Using EPR dif ference  

spectroscopy we have demonstrated th a t  there  are  spec i f ic  anion 

binding s i t e s  on t r a n s fe r r in  which when occupied a f f e c t  the 

e lec t ro n ic  environment of  the iron cen ters .  There are  two such 

s i t e s  in each domain of the protein and anions bind cooperat ively  

to these s i t e s .  Such an observation is  unique to nonstereospecif ic  

anion in te rac t ion  with p ro te ins .  The binding constants  have 

been determined.

A competitive binding study between t r a n s fe r r in  and pyro­

phosphate has provided thermodynamic information about the a b i l i t y  

of pyrophosphate to remove iron from t r a n s fe r r in  in vivo , a potent ia l  

ear ly  step in the metabolism of i ron.  The f i r s t  d i r e c t  dependence 

of  iron binding and f ree  bicarbonate concentration is  a lso  doc­

umented. This r e s u l t  confirms the long standing assumption th a t  

bicarbonate wil l not bind s t rongly  in the absence of iron.

A preliminary inves t iga t ion  of  ATP and pyrophosphate binding 

to d i f e r r i c  t r a n s fe r r in  i s  presented. Using the technique of 

paramagnetic enchancement o f  re laxa t ion  r a t e s ,  ATP and pyrophosphate 

have been shown to bind within the inf luence of the paramagnetic 

F e ( I I I )  centers  and th a t  both centers  are  a f fec ted .

112
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The s tud ies  presented here have provided ins igh t  into 

the chemistry of  t r a n s f e r r in  as well as ra i s in g  new and in tr igu ing  

questions about th i s  unique pro tein ;  finding the answers to these 

questions should provide challenging and s t imula t ing  research 

in the fu tu re .
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