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Childhood apraxia of speech (CAS) is a motor speech disorder characterized by 

segmentation (increased segment and intersegment duration), speech sound distortions and equal 

lexical stress. This study examined the effects of four weeks of Treatment for Establishing Motor 

Program Organization (TEMPO) in inducing experience-based changes in the brain. A fMRI 

resting state functional connectivity analysis was used in a single-subject pre- and post-TEMPO 

to quantify the changes associated with this treatment. Increases in connectivity strength between 

specific regions of the brain were observed, with the largest change in connectivity strength 

occurring between the left and right ventral premotor cortex (vPMC). These regions are known 

to be involved in speech motor programming. These results demonstrate the efficacy of TEMPO 

in inducing experience-based neural plastic changes, as well as provide the first data supporting 

the involvement of the left ventral premotor cortex in CAS.  
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Introduction 
 

Childhood Apraxia of Speech (CAS) is an impairment in the programming and 

realization of intact motor units of speech (American Speech-Language-Hearing Association 

[ASHA], 2007; McNeil, Robin & Schmidt, 2009). Differential diagnosis of apraxia of speech is 

based on perceptual judgment of specific speech symptoms in the absence of fundamental 

neuromuscular, cognitive or linguistic impairments (McNeil et al., 2011). There are three core 

symptoms used to differentiate apraxia of speech from other speech sound disorders:  a) 

prolongation of speech sounds including increase in segment and intersegment duration, b) 

inconsistent distortion of speech sounds, with consistency in distortion type, c) and abnormal 

prosody, characterized by inappropriate stressing of syllables and sounds (Murray, McCabe & 

Ballard, 2015).  

CAS is a debilitating condition affecting the development of intelligible speech, causing 

deficits in social and academic growth (Sylvestre et al., 2013). When left untreated, CAS has 

been shown to persist into adulthood and lead to reduced career options, social interactions and 

increased rates of depression compared to the typical population (McCabe et al., 2017; Carigg et 

al. 2015; Lewis et al. 2004). Critically, the majority of treatments to date have not been 

structured within a motor learning framework limiting their potential success (Strand, Stoeckel, 

& Baas, 2006). Principles of Motor Learning (PML) can be used as a guideline for designing 

effective interventions in motor speech disorders (Maas et al., 2008). PML were explained by 

Schmidt within the context of the Schema Theory of Motor Control and Learning (1975). Motor 

Learning involves structuring practice and feedback conditions to promote relatively permanent 

changes in the capacity for developing skilled actions (Schmidt, & Lee, 2005). For example, 

these principles include conditions that describe practice amount, its variability, as well as the 

timing and frequency of feedback (Maas et al., 2008).  
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It is also known that the brain changes based on one’s experiences. This result is known 

as experience-based neural plasticity. Neural plasticity is the ability of the brain to change and 

adapt in response to environmental cues, experience and behavior (Ludlow et al., 2008). 

Effective speech treatment may serve as an example of an experience that results in neural 

plastic changes in the brain. Experience-based neural plasticity is driven and shaped by a number 

of principles including specificity, age, acuity, salience and intensity (Kleim & Jones, 2008). 

Other specific principles center around the idea of “use it or lose it” and “use it and improve it” 

which reflect the idea that when a neural connection or pathway is not used, it will begin to 

degrade, and conversely, if a pathway is engaged through positive adaptive practice and use, the 

connection will grow stronger. At a system level, the strength of network connectivity can be 

quantified using functional magnetic resonance imaging.   

The appropriate experiences result in changes in the brain, either by recruiting residual 

substrates to perform the impaired function, or by producing neuronal sprouting and dendritic 

growth (Saur et al., 2006). Therefore, it is critical for a speech treatment to target these principles 

of experience-based neural plasticity in order to maximize treatment potential and personal 

communication. Further, the development of treatments for CAS, a motor speech disorder, must 

be consistent with Principles of Motor Learning and those that drive neural plasticity.  

One approach to treating children with CAS is called Treatment for Establishing Motor 

Program Organization (TEMPO). TEMPO was developed based on PML, and was designed to 

engage experience-based neural plasticity, in order to target the three core features of CAS, that 

are a) prolongation of speech sounds including increase in segment and intersegment duration, b) 

distortion of speech sounds, c) and abnormal prosody, characterized by inappropriate stressing of 

syllables and sounds (McNeil, Robin & Schmidt, 2009 
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). In brief, TEMPO was designed to be intensive (four one-hour sessions per week for 

four weeks) and to incorporate high numbers of repetition with a 60% rate of feedback in order 

to maximize the potential for functional change to take place. The preliminary behavioral data 

for TEMPO have demonstrated moderate to strong effect sizes (Miller et al., 2018), but its 

effects on neural plasticity are still unknown, hampering the ability to optimize the treatment’s 

effect on neuralplasticity.  

Currently, there is limited research investigating the neurologic basis of CAS. Studies 

have proposed changes in cortical thickness (Liegeois, Mayes & Morgan, 2014) as well as 

general functional anomalies at the metabolic or neurotransmitter level (Legeois & Morgan, 

2012) as possible underlying causes or biomarkers. However, more research has been conducted 

in stroke-induced apraxia of speech (AOS), which has led to the current understanding that it is 

subsequent to damage in the left inferior frontal cortex, specifically the left ventral premotor 

cortex (left vPMc) (Robin et al., 2008; Ziegler, 2008; Duffy, 2013; Ballard et al., 2014) and its 

functional connectivity with right ventral premotor cortex (right vPMC) and right anterior insula 

(raINS) (New et al., 2015). Although CAS occurs in childhood and AOS occurs from known 

neurological damage later in life, both share the common core symptoms (Shriberg, Lohmeier, 

Strand & Jakielski, 2012) and many believe them to arise from the same underlying neural 

substrates (McNeil et al., 2009).  

Finally, CAS and AOS can be understood within the broad framework of the Directions 

into Velocities of Articulators (DIVA) model of motor speech control (Guenther et al., 1998; 

Guenther, 2006, 2016; Guenther and Vladusich, 2012; Ballard et al., 2018). DIVA provides a 

computationally and neuro-anatomically explicit account of the network of brain regions 

involved in speech acquisition and production (Tourville & Guenther, 2011; Guenther, 2016). 

The model is based on the principle that articulatory movements involve the precise integration 
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of feedback and forward control systems, with feedback coming from the auditory and 

somatosensory subsystem loops. A critical part of this model has been the mapping of each 

system component onto neural substrates or regions which permits the simulation of various 

speech disorders. Within DIVA, the left ventral premotor cortex (left vPMC) is associated with 

the “speech sound map”, or the section of the model that is crucial for the readout of frequently 

used speech motor programs belonging to the speaker’s native language. This section of the 

model has been theorized as the area of dysfunction in AOS, as it reflects the research supporting 

CAS and AOS as a disruption of the feedforward network, and the left vPMC, within DIVA is a 

key area that is necessary for feedforward processing (Ballard et al., 2018; Tourville, 2011; 

Maas, 2015). In addition to postulating individual brain regions as potential sites for damage, 

researchers have begun to consider the idea of studying a network of regions associated with 

AOS/CAS and corresponding to the DIVA model, in the hopes that it will be more representative 

and elucidating of the entire network’s function. 

One way to understand the neural basis of CAS as well as how TEMPO would induce 

experience-based neural plasticity is to use resting state functional MRI (rsfMRI). Resting state 

analysis, allows for the investigation of the relationship of brain regions independent of task 

performance. Moreover, rsfMRI is obtained when a subject is lying in the scanner in a task-free 

environment, and yet still reflects the majority of networks found during task performance 

(Smith et al., 2011).  Finally, it is thought that rsfMRI networks represent more permanent brain 

states than those elicited by performance-based tasks during scanning, meaning they are the ideal 

targets for assessing neuroplasticity as they are longer lasting over time (van den Heuvel and 

Hulshoff, 2010; New et al., 2015).  

In order to gain insight into the neural mechanisms underlying CAS, New et al. (2015) 

conducted a rsfMRI study investigating the differences in network connectivity between three 
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groups, categorized as stroke with AOS, stroke without AOS, and healthy controls. The regions 

of interest in that study included coordinates that have been identified by meta-analyses of 

speech (Eickhoff et al., 2009; Guenther, 2016). Specifically, the purpose was to test the three 

brain regions hypothesized by others (Nielson, 1936; Wertz et al., 1984; Trupe et al., 2013; 

Dronkers, 1996; Ogar et al., 2006; Hillis et al., 2004; Graff-Radfor et al., 2014; Robin et al., 

2008) to be responsible for apraxia of speech when lesioned. These areas include:  a) left interior 

frontal gyrus (IFG) (BA 44) b) left anterior insula (laINS) and c) left ventral premotor cortex 

(lvPM) (BA6). The study also included the homologous regions in the right hemisphere in order 

to further delineate potential network impairments, as well as provide information about the role 

of the right-sided regions following stroke.  

Results of the New et al. study revealed reduced functional connectivity of the bilateral 

PM seeds in participants with AOS compared to AOS-absent and healthy controls (New et al., 

2015). In addition, a negative relationship was observed between the left PMC and right aINS, 

potentially indicating the role of the right aINS in compensating for the left PMC damage. 

Connectivity strength was also found to correlate negatively with apraxia severity. Both of these 

findings support the role of the left PMC region in the pathogenesis of apraxia of speech (New et 

al., 2015). As outlined above, New et al. provided evidence that AOS and CAS stem from the 

same underlying mechanism. Therefore, it makes sense that the neural basis of the two disorders 

is similar, and using the coordinates (specific areas mapped out in the brain) reported by New et 

al., (2015) is justified. 

Importantly, there are few neural imaging data on children with CAS and, to our 

knowledge, none pre- and post-treatment. Therefore, the purpose of the current study was to 

collect brain imaging data in one child with apraxia of speech before and after TEMPO. 

Perceptual and acoustic measures of speech were also collected. This approach allowed for 
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gaining knowledge of functional connectivity in the subject associated with CAS and 

determining how that functional connectivity changed as a function of treatment with TEMPO. 

In summary, the purpose of this proof-of-principle experiment was to examine if TEMPO 

induces changes in experience-based neural plasticity by quantifying functional connectivity of 

the brain during resting state functional magnetic resonance imaging (rsfMRI) immediately pre-

and post-treatment. Specifically, it was predicted that the predominant changes induced by 

TEMPO would be between left and right premotor cortex. The hypothesized regions of interest 

emerged because of several prominent findings in the New et al. study. First, the patient group 

(those with AOS and those who suffered stroke without AOS (non-AOS)) were found to have 

weaker connectivity strength between all bilateral seeds when than compared to healthy controls. 

Second, further delineation of connectivity strength revealed that the AOS and non-AOS patient 

groups demonstrated differing patterns of connectivity between the lvPM and rvPM as well as 

lvPM and raINS. The final evidence in support of this hypothesis was that the severity of apraxia 

of speech correlated significantly with lvPM and rvPM, whereas laINS and raINS connectivity 

was associated with nonverbal oral apraxia, and not apraxia of speech.   

Based on these findings of New et al., the primary hypothesis of this work is that there 

will be changes in brain connectivity between left and right premotor cortex and between left 

premotor cortex and right anterior insula associated with TEMPO treatment in children with 

CAS.  

Methods 
 
Participant SC  
 
 The participant in this study was a 7-year-old male who was part of a larger study 

examining the behavioral effects of TEMPO in children with CAS aged 4-12 years (Miller et al., 

2018). The participant met the inclusion criteria for that study which included: a diagnosis of 
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CAS, absence of muscular and structural abnormalities, muscle weakness or altered tone/reflex, 

and absence of developmental, neurological, genetic conditions or speech disorders (other than 

confirmed CAS), native English speaker, functional hearing, and near normal receptive and 

expressive language skills to understand task instructions and requirements in the treatment 

program. To confirm functional hearing, the participant was given a pure tone hearing screen and 

passed at 25 dB for 500, 1000, 2000 and 4000 Hz in both ears.  Muscle weakness and tone were 

assessed with the Motor Speech Examination (Duffy, 2003), in which the participant was found 

to perform within normal limits for all non-speech tasks and demonstrated evidence of all three 

CAS core characteristics on the speech tasks. An absence of any co-occurring developmental 

condition was ruled out during parent interview. The diagnosis of CAS was made by unanimous 

agreement amongst experienced members of the research team (Robin, Ballard) during the 

speech tasks of the Motor Speech Examination (Duffy, 2013). Speech features observed during 

the Motor Speech Examination included the three key features of CAS, which are: increased 

segment and intersegment durations, distortion of speech sounds and inappropriate lexical stress.   

In order to characterize the participant’s language ability and rule out the presence of any 

co-occurring language deficit, the participant was administered the Clinical Evaluation of 

Language Fundamentals- Fifth Edition. (CELF-5; Wiig, Semel, & Secord, 2013) (see Table 1). 

The mean score for both the receptive and expressive language index is 100 (+/- 1 SD, 85-115). 

The participant scored 80 for both subtests, 1.33 SD below the mean. This score indicates a 

marginal or mild low average severity. However, the participant scored in the average range for 

4 out of the 6 subtests, one of which being sentence comprehension, so it was decided by the 

investigation team that average sentence comprehension and absence of any developmental 

diagnosis indicated adequate receptive language to participate in the treatment program.  

Table 1. Participant characteristics 
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Treatment Paradigm 

Stimuli 

This treatment paradigm was adapted from the larger group study completed in 2018 by 

Miller and colleagues. Treatment and experimental probe lists consisted of three-syllable 

pseudowords with either a strong-weak (SW; e.g., TAgibu) or weak-strong (WS; e.g., giTAbu) 

stress pattern over the first two syllables (see Ballard et al., 2010). A list of 72 possible 

CVCVCV combinations containing three different plosive consonants (/b/, /t/, and /g/) and three 

different long vowels (/a/, /i/, /u/) was generated, in both SW and WS stress conditions. Of those, 

20 syllable strings were randomly selected for treatment (Set 1) in both SW and WS stress 

conditions. The remaining 18 combinations were left untreated (Set 2) to measure transfer to 

similar but untreated exemplars of both stress conditions.  

Experimental Design 

 Our participant completed two baseline tests to measure pre-treatment performance on 

each of the stimulus sets. Additional experimental probes were completed during the treatment 

period, immediately post-treatment, and at one-month post-treatment to measure treatment 

effects, generalization to untreated items, and retention. Baseline and post-treatment probes 

contained a total of 120 items, including 20 items (10 SW and 10 WS) randomly selected from 

Set 1 and Set 2, as well as similar fricative pseudo-words, real words containing treated sounds, 

and a set of more and less complex pseudo-word stimuli (four-syllable versus three-syllable 
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targets). Only data from Set 1 and Set 2 are reported here. Stimuli were presented in one of ten 

randomly selected carrier phrases (eg. “There’s my ____” “It’s a red____).  

 Baseline probes were scheduled such that the last one was completed about one week 

before the beginning of the first treatment session. The first post-treatment probe was completed 

within three days of ending treatment. The second was completed approximately one-month 

post-treatment to measure retention of any treatment effect. The participant did not receive any 

speech therapy during the one-month retention phase. The author administered all treatment and 

all baseline and experimental post-treatment probes, with the exception of one baseline, which 

was completed by another clinician.  

Treatment 

 Treatment sessions were conducted on four consecutive days a week in 60-min sessions 

for a four-week period. The author, a student clinician, was the primary clinician for the 

participant. A minimum of 25% of the child’s sessions were observed by a certified Speech-

Language Pathologist and recordings of sessions were also observed by a second investigator 

(AP) on this project to measure treatment fidelity. 

 Intervention explicitly targeted each of the three features of CAS through repeated 

productions of the multisyllabic pseudo-words (e.g. taBIgu) at a natural speech rate, where 

correct production was assessed as having correct sound production, fluent transitions between 

syllables and accurate lexical stress. Twenty stimuli (10 SW and 10 WS) from Set 1 were 

randomly selected for practice in each session. Treatment was structured within a motor learning 

framework (Schmidt & Lee, 2005; Maas, Robin, Austermann Hula et al., 2008). That is, each 

treatment session consisted of (1) Pre-Practice, continuing until the child correctly produced five 

stimuli with clinician-provided Knowledge of Performance (KP) feedback and cues as necessary; 

and (2) Practice, consisting of 100 total productions of the twenty randomly ordered stimuli (see 
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Ballard et al., 2010). The Practice stage adhered to a strict low frequency, delayed feedback 

schedule with only Knowledge of Results (KR) feedback provided on 60% of trials after a 3-

second delay. Clinicians used a feedback sheet containing a visual of the three targeted features 

(sounds, stress, segmentation) during Pre-Practice and Practice to refer to each term as they gave 

feedback (e.g. “Nice and smooth but sounds and stress weren’t right.”) There was also a 5-

second delay following feedback before presentation of the next stimulus.  

 For the first two sessions, the participant completed an hour of Pre-Practice to train and 

understand the expectations for an accurate production. In subsequent sessions, Pre-Practice 

lasted no more than 15 minutes. Stimuli were presented auditorily by the clinician, with a 3 

second delay between the model and the child’s production.  

Equipment 

 All experimental probes and treatment sessions were recorded in a quiet room at 44.1 

kHz with Samson XPD1 microphones, positioned 15 cm for the child’s mouth.  

Acoustic Analysis 

 Acoustic analyses were completed by the author with support from an acoustically-

trained research assistant using Praat signal-processing software (Boersma & Weenik, 2001). 

Lexical stress was measured through comparison of vowel duration (ms) of strong and weak 

syllables in treated and untreated plosive stimuli on pre- and post-treatment experimental probes. 

Vowel duration was measured between the first and last glottal pulse of the vocalic nucleus, as 

indicated by energy extending through F1 and F2 displayed on the wideband spectrogram, and 

using fundamental frequency, formant, and intensity contours generated by the Praat software 

(Ballard et al., 2010, Kent & Read, 1992).  

The pairwise variability index (PVI) of each variable was calculated using Equation 1 to 

provide a normalized comparison of the strong and weak syllable in each stimulus: 
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PVI = 100 x [dk – dk+1)/[(dk + dk+1)/2],                                      (1) 

where d is the duration of the kth syllable (Ballard et al., 2010; Low, Grabe, & Nolan, 2000). A 

higher PVI value reflects increased contrast in lexical stress, whereas a PVI of zero indicates 

equal stress across syllables.  

PVI was only calculated for stimuli in which no syllables were omitted, and both strong 

and weak syllables had a measurable vowel (i.e. not whispered). Stimuli in which the child did 

not repeat the intended stress target (i.e. produced a WS pseudoword instead of SW) were also 

excluded from analysis.  

Segmentation was measured as intersegment duration, or the amount of time between 

syllables. This was defined as the time from the last glottal pulse in a syllable, as indicated by the 

end of F1 and F2 in the wideband spectrogram, to the onset of the plosive burst in the following 

syllable. For items in which the child added an extra syllable, only the syllables that best fit the 

intended stress pattern were included for analysis.  Due to either omission or severe distortion of 

the plosive consonant, it was not possible to distinguish start and end points of segments for 

0.03% of stimulus items. Thus, the ISD was not measurable for a total of 13 out of 414 data 

points.  

Perceptual Analysis 

 Stimuli that were eligible for acoustic analysis also underwent perceptual analysis which 

was completed by the author and the committee chair (DR). For items with disagreements, 

consensus was reached through discussion. Stimuli were perceptually judged on each of the CAS 

core characteristics which include: stress, segmentation and distortions. A unique scoring system 

was devised for each feature, the criteria for which are as follows:   

 Segmentation was scored using a 5-point scale where a 1 indicated smooth, connected 

syllables matching the clinician’s model, and a 5 was heavily segmented. The goal when scoring 
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smoothness was to grade according to the overall impression for the whole pseudo-word. For 

example, if the intersegment duration between the first two syllables was a 1, but the segment 

duration of the last syllable was a 5, a score of 3 was assigned based on the average or overall 

impression of smoothness.  

 Distortions were scored based on the number of syllables in a stimulus containing a 

distorted consonant (3 or 4 depending on the stimuli), and a percent correct was calculated per 

word. We chose to score consonants as opposed to all sounds because consonants were directly 

targeted for non-distorted production while vowels were targeted more for lexical stress. Errors 

other than distortions such as substitutions, omissions and transpositions were noted but not 

counted as they are not errors specifically characteristic of apraxia. If a substituted or transposed 

sound was distorted, however, that was then counted towards the overall distortion score.   

Finally, syllable stress was also rated on a 5-point scale where a 1 indicated a clear SW 

stress pattern, a 5 indicated a clear WS stress pattern, and a 3 indicated equal stress on the first 

two syllables (with a 2 or 4 trending in either direction). If the participant omitted either of the 

first two syllables, the stimulus was not scored for that criterion. 

MRI data acquisition 
 
 Resting state functional magnetic resonance imaging (fMRI) was completed on a 

MAGNETOM Prisma 3-Tesla Siemens fMRI scanner (Siemens Medical Solutions USA, 

Malvern, PA) using a 32-channel head coil system. Scanning took place at both pre-treatment 

and post-treatment time points. The pre-treatment scan was taken 4 days prior to the start of 

treatment, and the post-treatment scan was taken the next day following the end treatment. 

Functional, resting state images were acquired using the following parameters: a) 54 slices, b) 

voxel size = 3.0 x 3.0 x 3.0 mm, c) 255 images, d) TR/TE = 2000/30 ms, e) flip angle = 65°, f) 

FOV = 240 mm, g) matrix = 80 x 80, h) motion correction = OFF. The functional scan lasted 8 
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minutes and 37 seconds. Next, a high-resolution T1-weighted MPRAGE whole-brain scan was 

acquired for spatial normalization of the functional images. Prior to initiation of the scan session, 

the participant was allowed time to familiarize and become comfortable with the machine. He 

was given instructions by the Research Coordinator to lay still with his eyes open, fixated on the 

cross above him. In addition, the participant was given ear muffs and padding around the head 

for hearing protection and to provide comfort. The participant’s parent was also allowed to enter 

the scan room to provide comfort and reminders to remain still. Both the child and his parent 

were screened for metal prior to entering the scan room in accordance with IRB protocol. 

ROI selection  

 Functional connectivity was assessed by selecting and analyzing cortical regions of 

interest hypothesized to play a role in AOS. The specific coordinates and regions were selected 

from the 2015 study conducted by New and colleagues which include: left inferior frontal gyrus 

(lIFG), left anterior insula (laINS) and the left ventral premotor cortex (lvPMC) (see Table 2 for 

details). Bilateral correlates for the aforementioned regions were also included for a few primary 

reasons. First, bilateral regions were assessed in order to determine whether homolog regions 

were connected in our participant, as seen in typically developing children (Emerson, Gao & Lin, 

2016). Second, the rvPMC was specifically included due to its known involvement in speech 

processing and its probable role in the larger speech motor network (Guenther, 2006).  

Table 2. Regions of Interest  

Region of Interest MNI Coordinates 
 X Y Z 
Left inferior frontal gyrus (BA44) (lIFG) -50 10 5 
Left inferior frontal gyrus (rIFG) 50 10 5 
Left anterior insula (laINS) -32 15 2 
Right anterior insula (raINS) 32 15 2 
Left ventral premotor cortex (BA6) (lPM) -58 1 23 
Right ventral premotor cortex (rPM) 58 1 23 

 
 Data Analysis 
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 Data were analyzed with functional connectivity metrics, using Statistical Parametric 

Mapping, version 12 software (SPM12, http://www.fil.ion.ucl.ac.uk/sp m/software/spm12/) run 

through Matlab 9.3 (R2017b). Response Exploration for Neuroimaging Datasets (REX, 

https://www.ncbi.nlm.nih.gov/pubmed/17985253) was used to extract the time series. SPM12 

was used to spatially normalize the structural T1 scan to standard MNI space. All normalized   

images were then smoothed with an isotropic kernel of 9mm. Multi-Image Analysis GUI 

(Mango, http://ric.uthscsa.edu/) was used to create a 3D brain image after the functional 

connectivity metrics were applied. This adapted protocol has been completed successfully in the 

previously mentioned study conducted by New et al., in a group of patients classified as having 

AOS or AOS-absent following stroke (2015).  

Imaging analyses  
 
  The time course for each ROI was extracted as the first eigenvariate of the resting-state 

signal time-series of all grey-matter voxels located within 5mm of the respective peak 

coordinate. To measure functional connectivity, linear Pearson correlation coefficients were 

computed between the extracted time series of each of the seed regions. These voxel-wise 

correlation coefficients were then converted to Fisher’s Z-values representing the functional 

connectivity strength for each connection in the model. Network models of connectivity were 

analyzed pre- and post-treatment. 

Important Connections 

This is a descriptive study on a single-subject, where qualitative decisions were made 

during the selection of important connections. As a measure of functional connectivity strength, 

Pearson correlation coefficients (r) were calculated for each connection among the regions 

proposed to have involvement New et al. (2015), by correlating the extracted time series for each 

seed (bilateral: ventral premotor cortex (vPM), anterior insula (aINS) and inferior frontal gyrus 
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(IFG)). Correlations were then converted into Fisher z-scores for the functional connectivity 

analysis, as done in New et al. (2015). Table 3 displays both R-values and z-scores for all 

connections in which a resting state connectivity analysis was completed. Connections were 

important if they reached an R-value score of greater than 0.5 at the post-treatment time point. 

These significant connections were then calculated and reported as fisher z-scores (Figure 5). 

There are several connections we do not report that also demonstrate strong effect sizes, 

however, these connections remain stable pre-treatment compared to post-treatment, therefore 

they do not appear to be influenced by treatment. Thus, considering the goal of this study is to 

investigate how TEMPO induces experience-based changes in neural plasticity, we are only 

reporting those changed scores.   

Results 
 
Behavioral Data 

Acoustic Data 

Results from this study’s behavioral data analysis parallel those from a larger group study 

(n=12) (Miller et al., 2018). Specifically, phase analysis for intersegment duration revealed a 

significant effect due to phase, F(2, 401) = 16.32, p < 0.001, eta-squared 0.077 = medium to 

large effect size. Means for each treatment phase are plotted in Figure 1. Main effect of set was 

not significant in describing the variance of our dependent variable which indicates a 

generalizability effect of the treatment.  

A significant effect due to phase and set was seen for WS stimuli F(4, 95) = 2.77, p < 

0.05, eta-squared 0.114 = large effect, while no significant change was seen for the SW stimuli 

F(4, 102) = 0.447, p > 0.05. Means for each treatment phase are plotted in Figure 2.  

Figure 1. Intersegment duration means plotted by treatment phase. 
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Figure 2. PVI means plotted by treatment phase. 

 

 
Perceptual Data 

 
Significance for perceptual analysis was determined by calculating the percent correct of 

each feature (segmentation, distortions, stress) and comparing them at each time point. The 

results from this study paralleled those from the aforementioned larger group study (n=12) 

(Miller et al., 2018). Percent correct improved from baseline to post-treatment probe in each 

feature. A maintenance effect was also seen during comparison of baseline to the retention probe 

3-months post treatment. Results from this study are plotted in Figure 3.  

 

Figure 3. Percent correct of analyzed perceptual features by phase. 
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Imaging Data 

Strong connectivity was observed between all bilateral connections. A substantial 

relationship was also seen between the rvPM and laINS. Out of the three bilateral connections 

observed, the greatest change in connectivity strength was seen between the lvPM and rvPM. 

(See Table 3).  

Table 3. Correlation metrics for the functional connectivity analysis where (a) is correlation pre-

treatment and (b) is correlation post-treatment. Connections marked with an asterisk indicate 

those that demonstrated a weak connection pre-treatment that increased to a strong connection at 

post-treatment. 
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a. Pre-Treatment     b. Post-Treatment  

Figure 4a. Significant changes in functional connectivity where (a) is pre-treatment and (b) is 

post-treatment displayed using bolded lines with z-score indicating connectivity strength on 

model brain. 

a.  Pre-Treatment    b. Post-Treatment 
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Figure 4b. Important changes in functional connectivity where (a) is pre-treatment and (b) is 

post-treatment displayed using bolded lines with z-score indicating connectivity strength on 

circle diagram 

a. Pre-Treatment    b. Post-Treatment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion 
 

It is critical to understand the role experience-based neural plasticity in treatment important 

to the underlying mechanism in order to ensure effective, specific, and long-lasting changes in 

behavior. Therefore, this study aimed to investigate the effects of a new treatment for CAS, 

called TEMPO, in inducing changes in brain networks. This was done in a single subject by 

quantifying functional connectivity during resting state fMRI. All behavioral data that emerged 

from the TEMPO treatment were analyzed acoustically and perceptually as done in previous 

work (Miller et al., 2018). This approach allowed for interpretation of potential interpret brain 

changes associated with successful implementation of the treatment. 

The key behavioral findings of the study were that positive changes in acoustic and 

perceptual measures of speech paralleled those in the larger group study (Miller et al., 2018). 

Specifically, all three key features of CAS improved with treatment. Acoustically, we found 

reduced intersegment durations and increased PVI for SW and WS treated stimuli sets post-
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treatment compared to pre-treatment. In regard to region of interest selection in the brain, we 

selected three regions on the left and their homologs on the right which were: lvPM and rvPM, 

laINS and raINS, lIFG and rIFG. Each hypothesis is addressed below.  

Development in Homologous Brain Connectivity 
 

In typical development, at rest, it is expected to see homologous regions in the left and right 

hemisphere functionally connected to one another (Emerson, Gao & Lin, 2016). Prior to the start 

of treatment, none of our bilateral regions of interest demonstrated strong homologous 

connectivity. Following treatment, however, all of the observed bilateral regions increased to a 

strong level of connectivity (Pearson’s r, reported in Fisher Z). Importantly, this suggests a move 

towards normal brain function following treatment. Firstly, the realignment of general 

homologous regions to be more bilaterally connected is representative of typically developing 

children, as seen in our study (Emerson et al., 2016). Secondly, fMRI studies investigating 

emerging language in children have found that the language system, specifically, is more 

bilaterally organized than in its adult form (Emerson, Gao & Lin, 2016; Dehaene-Lambertz et al., 

2002; Perani et al., 2011; Sato et al., 2012; Shultz et al., 2014). Therefore, our subject displayed 

a more normalized pattern of functional connectivity than he did prior to treatment. 

Alternatively, the laINS and rvPM showed decreased connectivity strength associated with 

treatment, suggesting more normal pattern of brain function.  

The Critical Role of the lvPM and rvPM Connectivity 
 
The specific hypothesis in this study was that the predominant changes induced by TEMPO 

would be between lvPM and rvPM. In New et al., (2015), the prominent finding was that the 

AOS and non-AOS patient group demonstrated similar connectivity strength between the lvPM 

and raINS, while the AOS group had significantly reduced connectivity between lvPM and rvPM 

than compared to the non-AOS group. While both connections were reduced in both AOS and 
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non-AOS in comparison to the healthy controls, it was the connection between the lvPM and 

rvPM that was specific to the AOS group. Further, New et al. (2015) found that the connectivity 

strength between the lvPM and rvPM negatively correlated with apraxia severity, further 

providing evidence of the importance of this connection in apraxia of AOS. Recent analyses of 

these same data using causal modeling showed that the lvPM modulation of rvPM region 

differentiated apraxia from non-apraxia compared to healthy controls (Van De Water, 2019). 

The lvPM and rvPM connection can also be explained within the DIVA model of speech. As 

previously mentioned, the DIVA model provides a unified and quantitative account of a wide 

range of speech production phenomena and neuroimaging data (Guenther, 2006; Guenther et al., 

2006; Tourville and Guenther, 2011). Each module in the model has a hypothesized link to a 

specific neuroanatomic region based on previous human clinical and neuroimaging studies. In 

the DIVA model, the left ventral premotor cortex is predicted to play a role in the feedforward 

process associated with motor programming. In TEMPO, treatment was structured to bolster the 

INT subprocess of motor programming, which is the organizing of the internal structure of a unit 

by integrating various movement components into a coherent structure and loads the unit into a 

motor buffer until the time of initiation (Klapp, 1995, 2003; Maas, 2006). This INT process can 

be translated as the feedforward process in DIVA, which within the network is referred to as the 

speech sound map (lvPMC). The speech sound map in DIVA is likely responsible for similar 

processes as the INT subprocess in the model proposed by Klapp (1995, 2003), which is the 

motor programming, or “read out” of individual units of speech and the concatenation of those 

single unsegmented speech programs. 

 The data found here in CAS, support the use of DIVA relative to explaining various speech 

disorders. For example, DIVA has been used to simulate apraxia of speech and experimented by 

disrupting the speech sound map (Ames, 2009). The synthesized speech output in this case 
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presented with speech features consistent with apraxia of speech, including: phonemic 

distortions, schwa insertion, movement of syllable boundaries, vowel prolongations, and related 

prosodic alterations (McNeil et al., 2009, Ames, 2009, Ballard et al., 2014). In this same study, 

damage to the inferior frontal sulcus, however, did not appear to produce apraxic speech in this 

same manner, nor did it produce as many speech errors at the single word level, most of which 

were related to sequencing (a feature not characteristic of apraxia). Findings here may help 

further refine DIVA in the future by supporting the evidence of the left vPMC’s role as the 

speech sound map, as while as the DIVA model’s overall ability to inform disorders of speech.  

Other Connectivity Changes in the Brain 

As mentioned above, all of the bilateral connections observed in our study reached a 

Pearson’s r of greater than 0.5. However, the connection with the greatest change in connectivity 

strength was the lvPM and rvPM. The lvPM and rvPM connection demonstrated an increase of z 

= 0.5428, while the bilateral aINS connection increased by z = 0.404 and the bilateral IFG 

connection increased by z = 0.411. This finding indicates that when targeting the three core 

features of apraxia of speech in this individual, per the TEMPO treatment, the lvPM and rvPM 

connection was the one most susceptible to change. Therefore, the result of this hypothesis is in 

support of those findings in both New et al. (2015) and DIVA (Guenther, 2006), that the lvPM 

and rvPM connection, but specifically the lvPM is the driving region of disruption in both adult 

acquired apraxia of speech and childhood apraxia of speech. 

In DIVA, the lIFG is hypothesized as the phonological content buffer, which is responsible 

for the temporary storage of phonological units in an upcoming utterance (Guenther, 2006). The 

area in the model acts as a working memory buffer for the encoding and queuing of phonemes to 

be produced (Myers et al., 2009). It is an essential part of an efficient speech production model, 

and therefore makes sense that it too would improve and normalize with treatment.  
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The role of the left and right aINS in speech production is less clear. Several studies have 

investigated the role of various portions of the left insula and have found involvement in multiple 

aspects of both speech and language (Ackerman & Riecker, 2010; Oh et al., 2014). Given the 

general nature of the insula’s involvement, it is also reasonable to assume its connectivity 

strength would increase following a motor speech treatment. However, there is no evidence to 

suggest that the anterior insula plays an explicit role in apraxia of speech.  

Limitations 

 There are several limitations to this study. First, this was a single-case report, limiting the 

ability to generalize these results to other subjects. However, the preliminary data provides 

sufficient evidence that future studies should replicate these methods in a larger sample to 

determine group significances with more measurable effect sizes.  

 Second, this study should be replicated with a larger sample such that the behavioral 

metrics from treatment could be correlated with imaging results. Due to the nature of this single-

case report, we were unable to make associations between the improvement of specific 

behavioral measure with specific regions of interest.  

 Lastly, this study only seeded and observed six regions out of a potentially much larger 

network related to speech motor programming and apraxia of speech, specifically. Future studies 

should also consider investigating other regions supported by the literature and theorized models 

to potentially play a role in AOS/CAS. 

Conclusion 

 TEMPO induced experience-dependent neural plasticity in all observed bilateral seeds, 

signifying an assimilation of this subject’s neural network to that of a typically developing peer. 

The greatest change in connectivity strength was observed between the left ventral premotor 

cortex and right ventral premotor cortex. This provides important evidence in the consensus that, 
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specifically, the left ventral premotor cortex is the driving region associated with apraxia of 

speech. These results warrant further investigation of the neural basis of childhood apraxia of 

speech, as well as the effects of TEMPO in inducing experience-dependent neural plasticity in a 

larger sample.  
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