
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Master's Theses and Capstones Student Scholarship 

Winter 2018 

Providing Nautical Chart Awareness to Autonomous Surface Providing Nautical Chart Awareness to Autonomous Surface 

Vehicles Vehicles 

Samuel John Reed 
University of New Hampshire, Durham 

Follow this and additional works at: https://scholars.unh.edu/thesis 

Recommended Citation Recommended Citation 
Reed, Samuel John, "Providing Nautical Chart Awareness to Autonomous Surface Vehicles" (2018). 
Master's Theses and Capstones. 1256. 
https://scholars.unh.edu/thesis/1256 

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire 
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized 
administrator of University of New Hampshire Scholars' Repository. For more information, please contact 
Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/1256?utm_source=scholars.unh.edu%2Fthesis%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


 
 

PROVIDING NAUTICAL CHART AWARENESS TO 

AUTONOMOUS SURFACE VEHICLES 

BY 

 

 

SAMUEL REED 

BS, University of New Hampshire, 2015 

 

 

THESIS 

 

 

Submitted to the University of New Hampshire 

In Partial Fulfillment of the Requirement for the Degree of  

 

 

Master of Science 

In 

Electrical Engineering 

 

 

December, 2018 



ii 
 

This thesis has been examined and approved in partial fulfillment of the requirements for the 

degree of Master of Science in Electrical Engineering by:  

 

Thesis Director, Dr. Brian Calder,  

Center for Coastal & Ocean Mapping Associate 

Director 

Affiliate Professor of Electrical and Computer 

Engineering  

Val Schmidt,  

Research Project Engineer, Center for Costal and 

Ocean Mapping  

Dr. Se Young Yoon 

Assistant Professor of Electrical and Computer 

Engineering 

Dr. Kent Chamberlin, 

Department Chair and Professor of Electrical and 

Computer Engineering 

on 11/27/2018.  

 

Approval signatures are on file with the University of New Hampshire Graduate School. 

  



iii 
 

ACKNOWLEDGEMENTS 

Sam Reed would like to thank many people including Val Schmidt who was vital in guiding 

Sam through his research and field work as well as the rest of the robotics lab at the Center for 

Coastal and Ocean Mapping at UNH. Additionally, Sam would thank the UNH Electrical 

Engineering department in help supporting his research. Sam would also like to thank his family 

and Liz Weidner for their encouragement and support over the last three and a half years. Finally, 

Sam would like to thank NOAA as this work was funded through the NOAA Grant 

NA15NOS4000200. 

  



iv 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS         iii 

LIST OF TABLES          vi 

LIST OF FIGURES          vii 

GLOSSARY           xiii 

ABSTRACT           xv 

1 INTRODUCTION         1 

 1.1 Electronic Nautical Charts (ENCs)      3 

 1.2 Previous Work        6 

 1.3 Contributions of this Thesis       8 

2 METHODS          10 

 2.1 ENC Derived Mission Planner      10 

  2.1.1 A* Search Algorithm       10 

  2.1.2 Building the Graph        15 

  2.1.3 Depth-Based A*       21 

  2.1.4 Mission Planner       22 

 2.2 ENC Derived Obstacle Avoidance      23 

  2.2.1 MOOS-IvP Architecture      24 

  2.2.2 MOOSTides        26 

  2.2.3 Threat Level        27 

2.2.4 ENC_Contact        29 

  2.2.4 Real-Time Reactive Obstacle Avoidance    35 



v 
 

  2.2.5 ENC Waypoint Checker      37 

3 RESULTS          39 

 3.1 Depth-Based A* Mission Planner      39 

 3.2 Reactive Obstacle Avoidance       43 

  3.2.1 Non-ENC (Synthetic) Obstacles      43 

  3.2.2 ENC-Based Obstacles       46 

 3.3 Depth-Based A* Mission Planner with Reactive Obstacle Avoidance 54 

4 DISCUSSION         57 

 4.1 Limitations and Future Work       57 

  4.1.1 Depth-Based A* Mission Planner     57 

  4.1.2 Reactive Obstacle Avoidance      58 

 4.2 ENC Scale and Uncertainty       60 

5 CONCLUSION         67 

LIST OF REFERENCES         68 

 

  



vi 
 

LIST OF TABLES 

1.1 Autonomy Levels for Unmanned Systems (AFLUS) Scale [8] . . . . . . . . . . . . . . . . . . . . . . 2 

2.1 Description of the Water Level Effect Attribute and the resulting depth ranges . . . . . . . . . 18 

2.2 Description and color on pMarineViewer of the threat level attribute . . . . . . . . . . . . . . . . . 31 

3.1 Minimum distance from the ASV to the ellipse-shaped obstacle while varying vessel length 

in simulation.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

3.2 Field data on the minimum distance from the EchoBoat to the synthetic ellipse . . . . . . . . . 46 

  



vii 
 

LIST OF FIGURES 

1.1 Section of an Electronic Nautical Chart (ENC) in the Portsmouth Harbor (US5NH02M) 

showing the University of New Hampshire’s (UNH’s) Pier in the top left corner. . . . . . . . . 4 

2.1 The plots here indicates the cells considered at each exploration step in A* when various 

branching factors are used. Increasing the branching factor allows for finer resolution of 

heading changes and more realistic path generation for marine vehicles. . . . . . . . . . . . . . . 12 

2.2 Example of the A* algorithm with a branching factor of 2 and the heuristic as the Euclidean 

Distance, where the node being expanded is outlined in yellow and the neighbors that can be 

reached during expansion in purple. The left image shows the first expansion (C1) and the 

right image shows the second expansion (C2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

2.3 The interpolated grid for the Portsmouth, NH ENC (US5NH02M) before post-processing. 

The left image gives the full grid and the right zooms into the area around the UNH Pier. The 

red box in the left image defines the bounds of the area shown in the right image. . . . . . . 16 

2.4 Images showing the rasters used in the conflict resolution process where the top images show 

DA_shoal (2.4a) and DA_deep rasters (2.4b) and the bottom images show the Point (2.4c) 

and Polygon Rasters (2.4d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

2.5 Algorithm to convert qualitative depth measurements to quantitative where positive depth 

values equate to deeper water.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

2.6 Algorithm to resolve the conflicting depth measurements using the raters shown in Figure 

2.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

2.7 Artifacts from interpolation in the left image are corrected in the right image. . . . . . . . . . . 20 



viii 
 

2.8 Comparison of different weighting for the depth-based cost in Depth-based A* for two 

different missions starting from the UNH pier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

2.9 Comparison of A* mission plans utilizing a depth-based cost function (red) and minimum 

path length cost function (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

2.10 Flow chart diagraming the chart-based reactive obstacle avoidance system. . . . . . . . . . . . 25 

2.11 Flow chart describing how to determine an obstacle’s threat level. . . . . . . . . . . . . . . . . . . . 27 

2.12 Algorithm to set threat level through obstacle type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

2.13 Algorithm to set threat level using depth measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

2.14 Information from the ENC_DB for the area around UNH’s Pier in Portsmouth, NH shown 

using MOOS’s pMarineViewer (top) and Electronic Chart Display and Information System 

(ECDIS) display for the corresponding ENC (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

2.15 Distance vs Utility curves for threat levels one through five. . . . . . . . . . . . . . . . . . . . . . . . 32 

2.16 Example of the angular-sweep algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

2.17 Example showing how the track-following works in MOOS’s waypoint behavior, where the 

steering-point is determined by the lead parameter (i.e. the distance from the perpendicular 

intersection point toward the next waypoint). Used with permission from Mike Benjamin 

[18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

2.18 MOOS’s waypoint behavior’s IvP Function for a westward waypoint. In the left image the 

heading is shown in the azimuthal direction, speed in the radial direction, and utility with 

height and color. In the right image, a simplified IvP Function for the waypoint behavior is 

shown (excluding speed from the IvP Function’s domain) where the heading is shown in the 

azimuthal direction and utility in the radial direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 



ix 
 

2.19 Scenario in Portsmouth, NH harbor showing the utility of ENC_WPT_Check, where the 

ASV skips the unsafe waypoints on its desired path. Displayed is the ASV’s traveled path 

(blue), the obstructions (red) and the track line (black dotted line). . . . . . . . . . . . . . . . . . . 38 

3.1 Depth-Based A* Mission plan (red) from the UNH Pier to a pier near Prescott Park overlaid 

on the interpolated grid. The left image is an overview of the mission and the right two 

images zoom into either the start (top right) and the finish (bottom right). . . . . . . . . . . . . .  39 

3.2 Depth-Based A* Mission plan (red) from the UNH Pier to the Isle of the Shoals in Maine 

overlaid on the interpolated grid. The left image is an overview of the mission and the right 

two images zoom into either the start (top right) and the finish (bottom right). . . . . . . . . . 41 

3.3 Depth-Based A* Mission plan (red) in the Boston, Massachusetts Harbor overlaid on the 

interpolated grid. The left image is an overview of the mission and the right two images zoom 

into either the start (top right) and the finish (bottom right). . . . . . . . . . . . . . . . . . . . . . . . .  42 

3.4 Profile view of the Seafloor Systems EchoBoat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 43 

3.5 Mission around an ellipse (pink) with varying threat levels during simulation where the color 

of the trackline defines the obstacle’s threat level. The top image’s simulates a Seafloor 

Systems EchoBoat and the bottom image simulates an ASV Global C-Worker 4. . . . . . . . 44 

3.6 Mission around an ellipse (pink) with varying threat levels from field data, where the color 

of the trackline defines the obstacle’s threat level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

3.7 Plan view of a mission driving around the breakwater near the UNH Pier using ENC_OA to 

avoid the breakwater. In this mission, the ASV drove from the far-side of the breakwater 

(with reference to the UNH pier), around the breakwater, to inside the pier’s cove on the path 

shown in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 



x 
 

3.8 Snapshots at the two critical junctions of the mission where the EchoBoat drove around the 

breakwater while line-following where the left images show the heading based IvP functions 

for ENC_OA (orange line), the waypoint behavior (blue line) and the combined IvP Function 

(green line) as well as the current and desired heading (red and black stars respectively) and 

a plan view of the mission (right images) where the ASV’s position is marked with a yellow 

dot at the time of the IvP Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

3.9 Plan view of a mission driving around the breakwater near the UNH Pier in the field using 

ENC_OA to avoid the breakwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 

3.10 Snapshots at the two critical junctions of the mission where the EchoBoat drove around the 

breakwater where the left images show the heading based IvP functions for ENC_OA 

(orange line), the waypoint behavior (blue line) and the combined IvP Function (green line) 

as well as the current and desired heading (red and black stars respectively) and a plan view 

of the mission (right images) where the ASV’s position is marked with a yellow dot at the 

time of the IvP Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

3.11 Plan view of a mission driving around the UNH Pier in the field using ENC_OA. The planned 

path is given with the green, dashed line and the path driven by the EchoBoat is shown in 

blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

3.12 Snapshot during the mission line-following while avoiding the UNH pier while in the field 

when ENC_OA starts to push the desired heading of the EchoBoat to the southeast to avoid 

the pier. In the left image, all IvP functions are shown with ENC_OA in orange, the waypoint 

behavior in blue, and combined IvP function in green as well as the current and desired 

heading with a red and black star respectfully.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 



xi 
 

3.13 Plan view of a mission driving towards the UNH Pier in the field where the EchoBoat got 

stuck in a local minimum. The path driven by the EchoBoat is shown in blue and the desired 

waypoint is shown with a pink star. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

3.14 Snapshots at the three critical junctions of the mission where the EchoBoat got stuck in a 

local minimum. The left images show the heading-based IvP functions for ENC_OA (orange 

line), the waypoint behavior (blue line) and the combined IvP Function (green line) as well 

as the current and desired heading (red and black stars respectively) and a plan view of the 

mission (right images) where the ASV’s position is marked with a yellow star at the time of 

the IvP Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

3.15 Tracklines from a mission planned in Boston Harbor where the red track shows the path 

traveled by a simulated EchoBoat following a path generated path using the Depth-Based A* 

Mission Planner (black) with ENC_OA enabled. The left panel gives an overview of the 

mission and the right zooms in to show where ENC_OA adjusted the planned mission. . . 55 

4.1 Snapshot during the mission where the Echoboat got stuck in a local minimum illustrating 

how the ASV turns towards obstacles if that is the shortest angular distance between the 

current and desired heading. The left image shows the heading-based IvP functions and the 

right image shows a plan view of the mission at the time of the left image. . . . . . . . . . . . . 58 

4.2 On the left, a portion of the Portsmouth Harbor chart is shown at scale, but the chart 

resolution at this scale is generally inadequate to safely approach the coast. One desires a 

view closer to the “Navigation scale” representation shown on the right. However in this 

over-scaled view, features are not uniformly represented at a single scale. . . . . . . . . . . . . . 61 



xii 
 

4.3 The left image properly represents the chart at scale for this area. Thus, we generate a grid 

for robotic path planning (right) that utilizes the vector representation of the data to retain 

the proper resolution of features. (Color indicates depth, or risk of grounding). . . . . . . . . . 62 

4.4 Little Harbor shown at chart scale (20000:1) as well as at a level conducive to navigation 

(middle). This work’s representation (right) attempts to buffer objects to their original 

representation at chart scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

4.5 Satellite image and ENC images of the UNH’s Pier Facility. A floating pier exists adjacent 

to the fixed pier but is not represented in the ENC where only the spatial extent of the fixed 

pier is shown. Similarly, the breakwater, (installed in 2006) was omitted until a recent update 

(Summer 2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

4.6 The raster chart with satellite image overlay (right) shows the word “Breakers” indicating 

hazardous water conditions. However, the location of the actual hazard is 88 m away from 

the actual hazard, which is apparent as white water in the satellite image, and confirmed by 

the underlying bathymetry in the right image. The location is misrepresented due to the 

cartographic depiction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

  



xiii 
 

GLOSSARY 

ALFUS – Autonomy Levels for Unmanned Systems  

ASV – Autonomous Surface vehicle  

AIS – Automatic Identification System  

ARPA – Automatic Radar Plotting Aid 

CoTS – Commercial off the Shelf 

DEM – Digital Elevation Model  

ECDIS – Electronic Chart Display and Information System 

ENC – Electronic Nautical Chart 

FAA* – Finite Angle A* 

GDAL – Geospatial Data Abstraction Library 

GPS – Global Positioning Satellite 

GUI – Graphical User Interface 

IHO – International Hydrographic Office 

IvP – Interval Programming 

LPF – Low-Pass Filter 

MLLW – Mean Lower Low Water 

MHW – Mean High Water 

MOOS – Mission Oriented Operating System 

NOAA – National Oceanography and Atmospheric Administration  

RNC – Raster Nautical Chart 

RTK – Real Time Kinematic 



xiv 
 

UNH – University of New Hampshire 

UTM – Universal Transverse Mercator 

VALSOU – Value of Sounding Attribute 

WATLEV – Water Level Effect Attribute 

WGS84 – World Geodetic System 1984 

 



xv 
 

ABSTRACT 

PROVIDING NAUTICAL CHART AWARENESS FOR AUTONOMOUS SURFACE 

VEHICLES 

by 

Samuel Reed 

University of New Hampshire, December 2018 

 

Autonomous surface vessels (ASVs) have many applications in both military and civilian 

domains including mine countermeasure, seafloor mapping, and physical oceanography. However, 

to act as effective tools, ASVs require high levels of autonomy. Currently, many commercially 

available ASVs have static mission plans with minimal awareness of their environment, which 

results in a labor intensive approach that does not scale to management of multiple vehicles. In 

this research, ASV autonomy was increased through the development of an intelligent mission 

planner and a real-time obstacle avoidance system utilizing Electronic Nautical Charts (ENCs), 

which describe known hazards in the marine environment without suffering from the challenges 

of real-time sensor processing. A new algorithm called Depth-Based A* was developed as the 

mission planner, where the nominal A* search algorithm was expanded by utilizing a novel cost 

function that balances driving in the channel with taking the most direct route on an ENC-derived 

cost map. Although charted obstacles can typically be avoided through mission planners, there is 

still an advantage in having the code do this. However, since it enables even higher levels of 

autonomy (e.g., “go in this area, but avoid all known obstacles”) they must still be accounted for 

in real time as other behaviors (i.e., avoiding uncharted obstacles or vessels) might cause the ASV 
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to deviate from the planned path. The reactive obstacle avoidance system developed in this 

research reorganizes the ENC into a quick-search database where ENC-based obstacles in the 

ASV’s proximity are determined and avoided. These algorithms were tested with both a Seafloor 

System EchoBoat and ASV Global C-Worker 4 in simulation and in the field using an EchoBoat, 

where they avoided both concave and convex polygons. The algorithms developed in this research 

provide the ASV with a higher level of autonomy, potentially allowing for the same number of 

human operators to manage more ASVs.  
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CHAPTER 1 

INTRODUCTION 

Autonomous surface vehicles (ASVs) have enormous potential as they have the ability to 

replace one manned vessel with multiple ASVs for the same number of operators. This 

replacement reduces the danger to operators and cost of operation for defense, industrial, and 

scientific applications. ASVs are defined as unmanned vessels that navigate on the water’s surface 

independent of direct human control. In the military domain, potential applications include harbor 

security [1], mine countermeasures [1], anti-submarine warfare [1] and perimeter patrol [1], [2]. 

Civilian applications include commercial shipping, seafloor mapping [3],[4],[5], pollution control 

[6] and physical oceanography [7]. ASVs can range from small and highly maneuverable vessels 

suitable for shallow coastal areas and rivers to large vessels with long endurances. 

For an ASV to be an effective tool, a high level of autonomy is necessary as this decreases 

the amount of human oversight and as a result, increases scalability. An ASV must be able to fulfill 

its desired mission and adjust its planned path to avoid potential hazards without direct human 

oversight and intervention. Additionally, the ASV must be able to interpret its internal states and 

understand if it can complete its current mission. 

Many of the currently commercially available vessels lack the necessary autonomy to reach 

their potential. Most vessels can autonomously navigate in a straight line between waypoints by 

maintaining a desired speed and heading, but they often lack knowledge of the environment around 

them and algorithms to safely navigate through it; human operator intervention is required for 
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these ASVs to avoid obstacles. This environmental blindness and the lack of autonomy results in 

labor-intensive mission planning and operations, severely limiting the feasibility of ASVs.  

Using the Autonomy Levels for Unmanned Systems (ALFUS) scale, defined in [8] and 

shown in Table 1.1, the present state of many commercial off the shelf (CoTS) vessels would be 

defined at ALFUS Level 3 – capable of executing pre-planned missions, but no knowledge of the 

local or planned environment (Level 4), no ability to detect and avoid hazards (Level 5/6), and 

little in the way of higher level capabilities. 

To unlock their potential, ASVs must utilize a hybrid mission planning and autonomy 

system consisting of an a priori mission planner and a real-time, reactive obstacle avoidance 

system, where both systems are cognizant of charted hazards to navigation. We feel that vehicles 

cannot unconditionally follow a pre-programmed list of waypoints nor react to other vessels in real 

time without regard to these hazards.  

When human mariners navigate into unknown ports, they would first consult a nautical 

chart as it provides a holistic view for the mariner to plan safe passage. They would use the chart 

 Autonomy Level 

1 Remote Control 

2 
Remote Control with Vehicle State 

Knowledge 

3 External Pre-Planned missions 

4 
Knowledge of local and planned path 

environment 

5 Hazard avoidance or negotiation 

6 
Object detection, recognition, avoidance, or 

negotiation 

7 Fusion of local sensors and data 

8 Cooperate operations 

9 Collaborate operations 

10 Full Autonomy 

Table 1.1: Autonomy Levels for Unmanned Systems (AFLUS) Scale [8] 
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to plan a path free of obstacles in deep water to ensure the vessel would not run aground. 

Invariably, when navigating the path, they would have to react to other vessels or obstacles that 

were not on the chart, and have to alter their course. When they do so, they will consult the chart 

again to ensure that their new course does not put them in danger. An ASV should operate 

similarly, planning missions with the knowledge of what is already known and be able to react 

safely in real-time to changing conditions. Thus, this research is devoted to increasing the 

autonomy of ASVs by providing situational awareness through both a mission planner and a 

reactive obstacle avoidance system utilizing Electronic Nautical Charts (ENCs). 

1.1: Electronic Nautical Charts (ENCs) 

Nautical charts give context to a mariner’s vessel location by providing the mariner with 

an indication of his environmental setting, such as the locations of hazardous objects, depth for 

underwater objects, contours and soundings, classification of lights, buoys and beacons, and 

descriptions of topographic landmarks. Nautical charts are a vital component to human maritime 

navigation as they allow the navigator to integrate the ship’s position, speed, and heading along 

with the information on its environment to them help plot a safe course. 

Traditionally printed on paper, nautical charts are a cartographic representation of objects 

optimized for the use of mariners. In recent years, nautical charts have been converted into digital 

form. There are two types of digital charts: Raster Nautical Charts (RNC) and Electronic Nautical 

Charts (ENCs). RNCs are a digitized raster image of the paper nautical chart.1 This raster 

cartographic representation makes machine interpretation extremely difficult. On the other hand, 

ENCs are produced in a vector format where each object type is semantically separated into 

                                                           
1 Originally, United States’ RNCs were produced by digitizing the paper charts, however they are currently made 
digitally and are only printed on demand. 
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different layers, and are encoded using the International Hydrographic Office (IHO) S-57 Standard 

[9]. A representation of a section of an ENC is shown in Figure 1.1. ENCs have significant 

advantages over RNCs: the semantic meaning of objects and metadata is easily understood in 

ENCs, they have significantly smaller file sizes, and individual elements are easily accessible. In 

the United States, nautical charts, in both raster and ENC form, are produced by the National 

Oceanic and Atmospheric Administration (NOAA) and are readily available on NOAA’s website 

(https://nauticalcharts.noaa.gov/).2 

Both RNCs and ENCs have scales associated with their data and display. RNCs have a 

static scale which matches the scale from the corresponding paper chart. For example, the scale of 

                                                           
2 In other countries ENCs are not free, but are still available at a cost. 

 

Figure 1.1: Section of an Electronic Nautical Chart (ENC) in the Portsmouth Harbor 

(US5NH02M) showing the University of New Hampshire’s (UNH’s) Pier in the top left 

corner. 
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a typical harbor chart is 1:20,000, where one millimeter on the chart corresponds to 20 m in real 

life. As a result, it is prudent (and recommended) to use the largest scale available chart when 

navigating. ENCs are vector charts and encoded into each ENC is a scale for display, including all 

subsets, which match the corresponding RNC.  

ENCs are composed of different layers, organized by object type (e.g. underwater rock, 

wreck, or sounding). Within each layer, all the individual objects in are stored as “features”. Each 

individual feature has many attributes that describe the object. For example, attributes of 

underwater rocks include quantitative and qualitative depth information (e.g. “5 meters” or “covers 

and uncovers during the tidal cycle”), quality of the sounding measurement, and the name of the 

rock. As ENCs hold pertinent information on the environment for vessel safety without needing 

additional sensors, ENCs are used as the data source for all algorithms in this research. 

The combination of shoal biasing during the gridding and compilation of charts as well as 

the chart being referenced to Mean Lower Low Water (MLLW)3 provides mariners with the 

assurance of vessel clearance largely without regard to tides. However, many ASVs operating in 

coastal environments are small, man-deployable crafts having small drafts and therefore 

navigation relative to MLLW can be overly conservative, particularly when the tidal range is large 

(as tides vary globally from negligible to over 10 m). Consequently, it is more practical to account 

for the current tide, so that the ASV does not make unnecessarily conservative course corrections. 

                                                           
3 Nautical charts produced by NOAA are referenced to Mean Lower Low Water (MLLW) for 

depths and Mean High Water (MHW) for drying heights. MLLW is the average of the lower of 

the two daily tides over a 19-year period and MHW is the average height of the high tides over a 

19-year period. MLLW is used for nautical charts to ensure that the measured depth of the water 

is unlikely to be lower than the charted depth. 
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In this research, charted depths are adjusted in real time to prevent an overly conservative estimate 

of grounding risk when the tidal range greatly exceeds the vessels draft.  

1.2: Previous Work 

Considerable work has been done on increasing the autonomy of ASVs though intelligent 

path planning and reactive obstacle avoidance. A priori maps of the marine environment, such as 

satellite images and OpenStreetMaps of coastal areas as well as nautical charts, have been used by 

others in their planning methods. Path planning can be classified into three categories: a priori 

mission planning, reactive obstacle avoidance, or a hybrid approach.  

Yang [10] defined a new search algorithm called Finite Angle A* (FAA*) to plan paths 

from satellite images. FAA* is a graph search algorithm that modifies the classic A* algorithm 

[11] (pronounced A-Star) by limiting the heading changes between waypoints. FAA* differed 

from the classic A* implementation by increasing the search area from the eight Moore Neighbors 

to 180 nodes through increasing the branching factor from one to eight. This increase in branching 

allowed Yang to disallow sharp turns by setting a maximum angular displacement between 

waypoints and prevents the creation of paths with turns sharper than can be practically navigated. 

Naus and Waz [12] used the A* graph search algorithm on a nautical chart as a mission 

planner for ASVs. Naus and Waz utilized the depth area and other features that define obstacles to 

translate the ENC to a binary graph used by A*.  

Sauze [13] developed a reactive mission planner for a robotic sailboat using a trajectory 

ray tracing method on an OpenStreetMap. Sauze’s algorithm casts 150-meter rays around the 

desired heading. If the ray intercepts land, then the algorithm selects the closest path to the desired 
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with a five-degree buffer. One of the limitations of Sauze’s work was that the algorithm could get 

stuck in local minima in which no satisfactory path could be found. 

Larson [14], [15] used a hybrid approach where obstacle avoidance was split into a far-

field and a near-field reactive planner. In the far-field, 2D obstacle maps were created with moving 

contacts from Automatic Identification System (AIS) and Automatic Radar Plotting Aid (ARPA) 

as well as stationary contacts from nautical charts. Obstacles from nautical charts were classified 

into four categories: above water, on the water surface, below water, and land. To find the path 

through the environment described with the 2D obstacle map, Larson used the A* graph search 

algorithm, which included a cost for the ASV being in close proximity to the obstacles.  

In Larson’s reactive planner, data was fused from obstacle avoidance sensors and the 2D 

obstacle map to create a world model. In Larson’s approach, arcs, whose radius is a function of 

velocity and turn rate, are projected in front of the ASV over the local world-model obstacle map 

and decisions are made by a weighted voting system using votes from the fused sensors, a free-

space behavior, and the path planner.  

Casalino [16] used a hybrid approach to obstacle avoidance consisting of three layers: 

static, moving, and short term. In the static layer, visibility graphs determined collision free paths 

through the environment known a priori through a chart server. Then, Dijkstra’s Algorithm [17] 

was used to determine the optimal path. Dijkstra’s Algorithm is a graph search algorithm utilizing 

a flood fill approach. In the moving layer, bounding boxes were placed around moving obstacles 

to account for their potential movements and A* was used to determine the optimal, collision-free 

path. The final layer was not discussed in the paper, however its goal is to provide a safety fallback 

if the first two layers should fail.  
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1.3: Contributions of this Thesis 

For ASVs to reach their potential, their autonomy must be increased from unquestionably 

following waypoint-based mission plans derived by human-operators to utilizing intelligent 

mission plans that autonomously avoid known obstacles. In this thesis, a safe, environmentally 

aware mission plan was generated with a variant of the classic A* [11] search algorithm, similar 

to the approaches taken in [10], [12], [14] and [15].  In this A* variant, the method of increasing 

the branching factor was adopted from [10] to allow for a smoother path. Additionally, a novel 

cost function that incorporates a depth-based cost was developed, which allows for prioritizing 

staying in deep water, like a human mariner. To incorporate a depth based-cost in the mission 

planner, the graph used in path planning for this thesis was created by interpolating and 

generalizing an ENC into a gridded cost map, where the cost in each cell is a proxy for risk. This 

graph, although utilizing ENCs like the approaches in [12], [14], [15], and [16], differs from ones 

used in the previously discussed works as it has depth values for each cell in the graph. Further 

details of the mission planner are described in Section 2.1. 

As the maritime environment is not static, it is also necessary for the ASV be able to avoid 

uncharted obstacles, like other vessels, and when doing so, maintain safety around charted 

obstacles in real-time using a reactive obstacle avoidance system. In this system, charted obstacles 

are categorized by the threat they pose to the ASV, similar to [14] and [15]. However, in this thesis, 

the proposed threat level attribute has a finer gradation, which allows the reactive obstacle 

avoidance system more degrees of freedom for its avoidance strategies. Next, all headings that 

lead toward obstacles are determined through an angular sweep method similar to the ray casting 

method in [13]. Once these headings have been determined, they are penalized using MOOS-IvP 

[18], [19], [20]. As a result, this thesis implements its chart-based reactive obstacle avoidance 
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system in a behavior based infrastructure, similar to [14] and [15]. However, in this thesis, 

obstacles in a full 360-degree sector are considered to ensure the safety of the ASV. Finally, tidal 

predictions are incorporated into the reactive obstacle avoidance system of this thesis unlike the 

other previously mentioned works ([10], [12]-[16]) as tidal predictions allows for more accurate 

risk assessment and helps minimize unnecessary avoidance procedures. Details of the real-time 

obstacle avoidance system are described further in Section 2.2. 

The research developed in this thesis helps increase autonomy of CoTS ASVs, from 

ALFUS level 3 to between levels 4-5 by providing an environmentally aware mission plan and 

guidance to the helm when its intended path is unsafe due to known hazards to navigation. This 

increase in autonomy was implemented using an A*-based mission planner on top of a nautical 

chart-derived cost map to provide the ASV a safe path plan and a real-time object avoidance system 

to avoid charted hazards during unplanned maneuvers.  
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Chapter 2 

 Method 

Section 2.1: ENC Derived Mission Planner 

Section 2.1.1: A* Search Algorithm 

Vessel path planning is an integral piece of safe decision making for ASVs. Since the 

inception of robotics, solving the problem of safe path planning has been the objective of many 

research efforts. One of the forefathers of path planning research, Edsger Dijkstra, published “A 

Note on Two Problems in Connexion with Graphs” [17] in which he proposed an algorithm for 

finding the shortest path between nodes, known colloquially as Dijkstra’s Algorithm. Dijkstra’s 

Algorithm determines the optimal path from the source node to all other potential nodes in an 

exhaustive search. As a result, this algorithm proved inefficient and in Peter Hart’s paper [11], he 

improved the performance of Dijkstra’s Algorithm through a “best-first search” method called A*. 

A* utilizes a heuristic function to guide exploration by preferentially searching nodes closer to the 

goal. This research utilizes the A* search algorithm for path planning purposes with several 

modifications adopted from others to better accommodate marine path planning. The 

implementation is described Section 2.1.2. 

The A* search algorithm works within a spatial domain known as a “graph” which may be 

a binary grid [10], [12], probabilistic occupancy grid [14], [15], visibility graph [16] or others. The 

graph is simply a representation of possible states with some cost associated with a transition 

between any two adjacent states. The graph in this thesis utilizes a weighted cost map in the form 
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a rectilinear grid, which is defined by gridding the topographical features from an ENC at a 

resolution of 0.25 mm of the ENC’s compilation scale. For example, a chart with a compilation 

scale of 1:20,000 is gridded at a scale of 5 m. This resolution strikes a balance between over 

interpolating sparse data having sufficient granularity for navigation, and computational cost. 

However, it is recommended to use the largest scale chart available when navigating using ENCs 

as they will produce grids with the greatest spatial resolution and have the least number of 

generalizations. A detailed description of the grid creation is given in Section 2.1.3.  

Safe navigation within A* path planning modules also requires consideration of the size of 

the vessel as large vessels are less maneuverable and more prone to grounding at a given water 

depth. For path planning in this thesis, prohibited areas and obstacles to be avoided are classified 

as any topographic feature with a depth less than three times the ASV’s draft. Additionally, the 

vessel’s dimensions are used elsewhere (Section 2.2) as weighting factors in its response to 

obstacles in real-time. 

Given a starting point and a desired destination on a gridded map, A* finds the optimal 

route between the points, for the given angular resolution. On the first iteration, cells in the 

immediate vicinity of the starting point are considered as candidate paths, prohibited cells are 

omitted, and the remaining cells create a “frontier” between explored and unexplored areas. The 

total projected cost of traversing through each cell in the frontier to the goal is calculated and the 

cell with the lowest cost is removed from the frontier having been explored; expansion of the 

frontier is begun anew from this cell. Finally, the explored cell is annotated with the coordinates 

of its prior cell, incrementally building a candidate path back through the graph. On successive 

iterations, the frontier is expanded, new cells are evaluated, and those with the lowest projected 
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cost to reach the goal are explored preferentially. When the goal point has been reached, the 

identified path through the map is the succession of least-cost cells pointing back to the start node. 

During each iteration of exploration as described above, A* determines which cells in its 

frontier have the lowest total projected cost traveling from the start node through the current node 

to the goal node. The total projected cost is calculated using the cost function: 

F(n)=G(n)+H(n)      (2.1) 

where F(n) is the total projected cost, G(n) is the cumulative cost to reach the current node, and 

H(n) is the estimated cost from the current node to the goal node, also known as the heuristic. Once 

the total projected cost for a node has been calculated, the node is considered “evaluated”. In the 

classic implementation of A*, this cost function minimizes the total path length by only 

considering the distance traveled and the projected distance to go for G(n) and H(n) respectively. 

Classic A* implementation adds the eight nearest neighbors (Moore Neighbors) to the 

frontier during each iteration. The Moore Neighbor search is defined as having a branching factor 

of one and is shown in Figure 2.1. This procedure limits the heading changes to one of eight 

possible directions, which often results in an irregular and/or impossible path for shipboard 

 

Figure 2.1: The plots here indicates the cells considered at each exploration step in A* when 

various branching factors are used. Increasing the branching factor allows for finer resolution 

of heading changes and more realistic path generation for marine vehicles. 
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navigation. In this research, the number of neighbors searched was expanded to 180 (branching 

factor of eight) using the method in [10], therefore allowing heading changes of less than two 

degrees in each step of the path. To illustrate the expanded branching factors, Figure 2.1 shows 

factors of one, two and three, searching eight, sixteen and thirty-two nodes respectively (a 

branching factor of eight is not easily depicted). Expansion is deemed valid for non-adjacent cells 

if the straight-line path between the two nodes does not pass through prohibited cells (i.e. 

obstacles). 

Once the cost for all frontier nodes have been evaluated, the node with the lowest total 

projected cost is used to expand the frontier through the branching process. The key for minimizing 

exploration in A* is the heuristic function, defined in this work as the Euclidean distance from the 

current node to the goal node. By including the heuristic in the total cost and by choosing the node 

with the lowest total cost for expansion, A* minimizes unnecessary exploration. 

An example of A* with a branching factor of 2, cost, G(n), based on minimum path length, 

and a Euclidean-distance-based heuristic, H(n), is shown in shown in Figure 2.2. The graph is 

represented by a 4x4 grid in which the centers of each box represent possible vehicle locations. 

Obstacles (squares for which passage is forbidden) are represented in blue and the cell that is being 

expanded is denoted with the yellow square. In this example, the start position is node C1 and the 

goal is node D4. On the first iteration, the neighbors that can be reached from C1 with a branching 

factor of two are identified (nodes D1, B1, A2, B2, C2, D2, B3, and D3, marked in purple). 

Although nodes B1, A2, D2, and D3 are potential neighbors to C1, they were omitted from 

consideration during expansion as the path from node C1 to the candidate node would travel 

through an obstacle. Therefore, only nodes D1, C2, B2 and B3 are considered and each of these 

nodes are placed in the frontier. The cumulative cost to get to each square, G, the heuristic 
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(calculated as the Euclidean distance to the goal), H, and the total projected cost of passing through 

the cell (𝐹 =  𝐺 +  𝐻), are calculated and shown for each cell in the frontier. After the first 

expansion, the node with the smallest total cost in the frontier, in this case C2, is subsequently 

expanded.  

On the second expansion, the neighbors of C2 that can be reached with a branching factor 

of two are again identified (A1, D1, B2, D2, A3, B3, C3, D3, B4 and D4, outlined in purple). 

Nodes A1 and D2 still cannot be explored as the path to reach these nodes would traverse through 

obstacles, but all other nodes are placed in the frontier. The cumulative cost, heuristic, and total 

projected cost are again calculated for the remaining nodes. However, since the cumulative cost to 

go from node C2 to nodes D1, B2 and B3 is higher than the previously stored cost for those cells, 

those values are not updated. This process ensures that the optimal path, given a branching factor 

of 2, is always taken during path reconstruction. After this second expansion, the node with the 

 
Figure 2.2: Example of the A* algorithm with a branching factor of 2 and the heuristic as the 

Euclidean Distance, where the node being expanded is outlined in yellow and the neighbors 

that can be reached during expansion in purple. The left image shows the first expansion (C1) 

and the right image shows the second expansion (C2). 
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lowest cost in the frontier is D4. Since D4 is the goal node, the algorithm terminates and the path 

is C1 -> C2 -> D4. 

Section 2.1.2: Building the Graph from ENCs 

In this research, the graph for the A*-based mission planner was an interpolated, depth-

based grid created from the vector features in ENCs that incorporate depth information including 

soundings, rocks, wrecks, land areas, buoys, etc. First, the vector features were converted from 

World Geodetic System 1984 (WGS84) to Universal Transverse Mercator (UTM) and were 

buffered using the widely used Geospatial Data Abstraction Library (GDAL) [21]. In this research, 

the buffer (B) took into account the vessel length (L), width (W), and a user defined safety margin 

(SM) (Equation 2.2). The buffer accounts for the potential positioning and control errors as well 

as allowing A* to treat the ASV as a point object as the ASV’s dimensions are now accounted for 

by buffering all obstacles. In this work, the Safety Margin is defined as two, but could be modified 

in future work to account for uncertainty in the underlying data or ship characteristics. 

B=
𝑆𝑀

2
*√𝐿2 +𝑊2     (2.2) 

In this work all points were also buffered at two millimeters (diameter) at chart scale as 

many objects that are represented as points in charts are not actually points and there is no official 

uncertainty measurement for these objects. This buffer may not be appropriate for all chart and 

vessel sizes and should be further explored in future work. However, in this work buffering of 

objects with point-based geometry was accomplished by replacing the original point with a 

diamond-shaped mask of points whose spacing is at the grid resolution and diameter is 2 mm at 

chart scale.  
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Next, the vertices of the polygons derived from these features and the diamond-shaped 

point masses were linearly interpolated to the grid’s resolution using GDAL. This interpolation 

produces an error-ridden surface (as shown in Figure 2.3, where the left image gives the full grid 

for the Portsmouth Harbor ENC and the right zooms into the area around the UNH Pier) as 

polygons are only represented by their outline and when buffered, they may intersect causing 

interpolation artifacts. Therefore, after interpolation, a conflict resolution process is needed.  

Additionally, when there is more than one depth measurement inside a grid cell, it is 

possible that a linear interpolation will produce an estimated depth that is deeper than the shoalest 

depth measurement. Were this to happen, the resulting graph may prove unsafe for navigation by 

failing to conservatively represent the depths of hazards. This has been mitigated through the 

conflict resolution process described below. 

 

Figure 2.3: The interpolated grid for the Portsmouth, NH ENC (US5NH02M) before post-

processing. The left image gives the full grid and the right zooms into the area around the 

UNH Pier. The red box in the left image defines the bounds of the area shown in the right 

image. 
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To begin the conflict resolution process, a series of rasterized masks of identical size to the 

interpolated grid were created. The M_COVR raster, created by an ENC feature of the same name, 

was generated to delineate the outer edges of the chart. The DA_shoal (Figure 2.4a) and DA_deep 

rasters (Figure 2.4b) were created to enforce the vertical bounds of each depth area after 

 
Figure 2.4: Images showing the rasters used in the conflict resolution process where the top 

images show DA_shoal (2.4a) and DA_deep rasters (2.4b) and the bottom images show the 

Point (2.4c) and Polygon Rasters (2.4d).  
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interpolation. The Points raster (Figure 2.4c), which is composed of rocks, wrecks, buoys, beacons, 

etc., and the Polygon Raster (Figure 2.4d), which is composed of land, pontoons, shoreline 

construction, obstructions, etc., both have features whose depths may be outside the vertical 

bounds of the depth area and were created to enforce the requirements that the depths of these 

features, which may be either qualitative or quantitative, are represented in the final grid. The 

section below describes the process of giving a quantitative depth measurement for objects with 

only a qualitative measurement.  

All ENC features that have the quantitative depth attribute, “value of sounding” 

(VALSOU), also have an attribute that describes the feature’s depth qualitatively, the “water level 

effect” (WATLEV). WATLEV describes the depth of the object relative to the tidal cycle. 

NOAA’s Hydrographic Surveys Specifications and Deliverables [22] gives a quantitative range 

for the WATLEV indices for both the Atlantic and the Pacific Oceans, as there are different 

hydrographic conditions on each coast, which are shown in Table 2.1. 

Water 

Level 
General Description 

Depth Range 

Atlantic Pacific 

1 
Partly Submerged at 

High Water 
--- --- 

2 Always Dry 1+ feet above MHW 2+ feet above MHW 

3 
Always Underwater/ 

Submergered 
1+ feet below MLLW 2+ feet below MLLW 

4 Covers and Uncovers 
1 foot below MLLW to 

1 foot above MHW 

2 feet below MLLW to 
2 foot above MHW 

5 Awash 
1 foot below MLLW to 

1 foot above MLLW 

2 feet below MLLW to 
2 feet above MLLW 

6 
Subject to Indundation 

or Flooding 
--- --- 

7 Floating --- --- 

Table 2.1: Description of the Water Level Effect Attribute and the resulting depth ranges 
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These ranges were used in Algorithm 1 (shown in Figure 2.5) to provide conservative depth 

values for the WATLEV indices relative to MLLW and MHW for the features without quantitative 

depth information. In this work, the MHW value was chosen from the closest NOAA tidal station 

and MLLW and MHW were assumed constant for all areas in the ENC. (This may be inaccurate, 

especially in large scale charts or in areas where tidal range varies spatially. A more sophisticated 

method for determining tidal datums spatially is left for future work.) Additionally, all objects that 

are considered land (pontoons, shoreline construction, piles, floating docks, and land areas) were 

assumed to have a depth of 2 m above MHW.  

After all depths were quantified and the rasters were created, the value of each cell in the 

interpolated grid was post-processed through the algorithm shown in Figure 2.6. Using this 

process, data from the original interpolated grid outside the ENC’s bounds is removed (no data is 

denoted by a depth of -10 m) via the first check, the seafloor dependent objects in the interpolated 

grid are confirmed to be within the depth area’s bounds (second step), and that the depths for all 

 
Figure 2.5: Algorithm to convert qualitative depth measurements to quantitative where 

positive depth values equate to deeper water. 
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seafloor independent obstacles are ensured to be in the final grid (third and fourth steps). The utility 

of the conflict resolution process is illustrated in Figure 2.7 where the depths are bounded by the 

depth area rasters and the artifacts crossing the UNH Pier from interpolation have been removed.  

 
Figure 2.7: Artifacts from interpolation in the left image are corrected in the right image. 

 
Figure 2.6: Algorithm to resolve the conflicting depth measurements using the rasters shown 

in Figure 2.4 
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Section 2.1.3: Depth-Based A* 

In this research, the cost function for determining the ASV’s path was augmented from the 

classic A* implementation of minimizing the path length by also maximizing depth under the ASV 

using the previously described, ENC-derived grid. Adding a depth component to the cost function 

more accurately emulates how human mariners navigate, creating paths that stay to the central 

channel in shallow areas and travel directly to the desired location in deeper water. We call 

utilizing this novel cost function with A*, Depth-Based A*. Once the ASV is navigating in water 

deeper than 15 m, the depth-based cost is omitted in the cost function as deep water poses no threat 

to the ASV. The cost function, G(n), for Depth-Based A* is shown in Equations 2.3 and 2.4: 

G(n) = G(n-1) + ((DP)+w*Costdepth)    (2.3)  

Costdepth= { 
(DP)(15-AD) AD<15

0 AD≥15
          (2.4)  

where G(n-1) is the cumulative cost to get to the previous grid cell, DP is the distance from the 

cell n to its parent node (n-1) and the AD is the average depth between the nodes calculated by 

integrating the depths between the two nodes and dividing by the distance between them. The 

depth-based cost is weighted by w, which provides a tuning parameter to accommodate different 

size vessels as well as other factors including the seafloors characteristics (i.e., rocky or sandy 

bottom) or the additional sensors on the vessel (i.e. towed side scan sonar).  

Figure 2.8 shows two missions planned with the Depth-Based A* algorithm while varying 

weighting of the depth-based cost, 𝑤. The two missions show five different weights: 0 (black), 0.1 

(purple), 0.15 (white), 0.25 (red), and 0.5 (green). As the weight of the depth-based cost increases, 

the planned path becomes more conservative. A weighting of 0.15 for a vessel like the ASV Global 

C-Worker 4 [23] (4.0 m in length, 1.58 m in width) as originally constructed (i.e., not towing any 
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additional equipment) was chosen as it allows the ASV to take a direct path while maintaining a 

safe depth under the boat. 

Section 2.1.4: Mission Planner 

Figure 2.9 illustrates the difference between the classic A* and Depth-Based A* mission 

planner, with an example mission planned using both methods. The classic A* algorithm utilizes 

a binary grid to indicate permissible or impermissible cells, whereas the Depth-Based A* 

algorithm utilizes the previously discussed ENC-based graph. These mission plans show how the 

addition of maximizing depth to the cost function gives a safer planned path than only minimizing 

path length, as it gives a wider safety margin to the border of the impermissible region.  

The Depth-Based A* algorithm utilizing a cost function on an ENC-derived depth graph 

creates an environmentally aware mission plan that simulates the navigational strategies of human 

mariners. However, the marine environment is not static and a pre-generated mission plan does 

 
Figure 2.8: Comparison of different weighting for the depth-based cost in Depth-based A* for 

two different missions starting from the UNH pier. 
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not have the capacity to account for uncharted obstacles and other vessels. Therefore, in addition 

to the mission plan, a reactive obstacle avoidance component is necessary to guarantee the ASV’s 

safety. The following section describes the chart-based reactive obstacle avoidance system 

developed in this work. 

Section 2.2: ENC Derived Obstacle Avoidance 

All reactive obstacle avoidance behaviors and applications have been developed in the 

Mission Oriented Operating System (MOOS) and the Interval Programming (IvP) Helm, an open 

source autonomy middleware and ship driving package [18],[19],[20]. The navigation and control 

of an ASV requires a current and desired position, along with the location of obstacles in the ASV’s 

path.  When the desired heading and speed have been established, a mechanism to convert these 

into rudder and thrust commands for the vehicle’s propulsion and control system is required. These 

 

Figure 2.6: Comparison of A* mission plans utilizing a depth-based cost function (red) and 

minimum path length cost function (black). 
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components are implemented in the MOOS-IvP architecture and are described in detail in the 

following sections. 

Section 2.2.1: MOOS-IvP Architecture 

MOOS is a software package for robotics that consists of a set of libraries and executables 

running in a “publish and subscribe” architecture. This architecture works as a framework for 

communication between applications using a centralized database, referred to as the MOOSDB. 

MOOS’s framework allows applications to publish and subscribe to data streams without 

knowledge of other applications. In the case of autonomous vessels, data streams can consist of 

the position and internal states of the vessel as well as information regarding the vessel’s 

environment. Some pre-existing MOOS applications include a data logger (pLogger), a graphical 

user interface (GUI) for overseeing missions (pMarineViewer), a 3D vehicle simulator 

(uSimMarine), a controller to convert desired speed and heading to thrust and rudder angle 

(pMarinePID), and the IvP Helm [18],[19]. 

The IvP Helm is a MOOS process for ship driving in which the appropriate course of action 

results from the combination of separate behavior modules. Individual behavior modules each 

produce an “IvP Function”, usually represented as a surface in polar coordinates whose azimuthal 

angle represents heading, radial distance represents speed, height indicates the utility of any 

combination of speed and heading, and whose peak indicates the optimal speed and heading for 

the vessel. These surfaces approximate each behavior’s underlining utility function and are 

combined in the Helm’s IvP Solver to determine the optimal vessel course of action. Some 

preexisting behavior modules include waypoint following, station keeping, and loitering [20]. 
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In this research, custom MOOS applications and behaviors were developed for reactive 

obstacle avoidance. A topology of the utilized MOOS-IvP applications is shown in Figure 2.10, 

where the processes developed in this work are shown in green. In this architecture, as a pre-

processing step, ENC_Contact converts an ENC covering the desired operating area into a spatial 

database that can be quickly searched in real-time, called ENC_DB. Inside ENC_DB, each feature 

is extracted and assigned a new attribute called “threat level”, which describes what threat the 

obstacle poses to the ASV. However, a full assessment of the threat requires a knowledge of the 

current tide, which can range globally from less than a meter to more than 10 m. A tidal prediction 

is provided using harmonic constituents from a user-provided tide station by the custom 

application MOOSTides. ENC_Contact then monitors the vessel’s position in real-time, identifies 

 
Figure 2.7: Flow chart diagraming the chart-based reactive obstacle avoidance system 
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obstacles in the near-field that pose a threat to the ASV while considering the tidal prediction, and 

publishes them to the MOOSDB. These processes are further discussed below. 

 The threats published by ENC_Contact are subscribed to by the obstacle avoidance 

behavior, BHV_ENC_OA. The vessel’s instantaneous choice of speed and heading is established 

by combining the IvP Function from the waypoint behavior along with the one from 

BHV_ENC_OA as described in Section 2.2.4.  

In addition to avoiding obstacles, the current waypoints, which are published by the 

waypoint behavior, are monitored in real time by ENC_WPT_Check. When a waypoint is 

considered unsafe or unreachable (e.g., it lies within an extended obstacle), the waypoint is skipped 

as the vessel approaches the obstacle’s boundary. In this way, an operator may plan a mission with 

little regard to obstacles in the ASV’s path and the vessel will make its best effort to complete the 

mission safely. 

Section 2.2.2: MOOSTides 

In the United States, nautical charts are referenced to MLLW allowing ships to safely 

navigate largely without accounting for tides. However, MLLW can be overly conservative for 

small vessels in areas with a high tidal range and a tidal model was used to more accurately assess 

the threat an obstacle poses to the ASV. MOOSTides publishes tidal predictions to the MOOSDB 

using the harmonic tidal model from Sam Cox’s python library pytides [24] from a user specified 

tide station.  

The real-time tidal prediction from MOOSTides is assumed to be equivalent for the entire 

region even though the tide may have a different phase and amplitude due to coastal effects. 

Although the harmonic tidal model implemented in pytides captures the effects of the gravitational 
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forces as well as the bathymetry of the local seafloor [25], it omits meteorological effects and tidal 

currents. Inclusion of more sophisticated tidal models is left for future work; however the inclusion 

of a more advanced tidal model might not be worth the cost of creating it unless the magnitude of 

the tidal range in the area of operations is large or significantly varies spatially.  

Section 2.2.3: Threat Level 

To address the vessel’s dimensions and lack of recorded depth for some charted hazards in 

this thesis, a new attribute called “threat level” was developed. Threat level is defined using both 

vessel dimensions and depth information form the ENC, where it uses quantitative depth 

information (VALSOU) when available or qualitative information (WATLLEV) otherwise. The 

threat level attribute has a range from zero to five and is calculated using the flow chart given in 

Figure 2.11 and the algorithms in Figures 2.5, 2.12, and 2.13.  

 
Figure 2.8: Flow chart describing how to determine an obstacle’s threat level 



28 
 

The first step in determining the obstacle’s threat level is to see if the object type is one 

without a quantitative depth (e.g., land, weeds/kelp, docks, buoys, beacons, etc.). If so, the threat 

level is determined by the algorithm in Figure 2.12. If the object can have an associated depth, the 

process then checks if the depth is explicitly given by the ENC. If so, the threat level is calculated 

by the algorithm in Figure 2.13. Otherwise, the method checks the qualitative depth information 

given by the feature’s WATLEV attribute, which is described in Table 2.1. If the qualitative depth 

information is given, the threat level is set using the algorithm in Figure 2.5. If the first three checks 

fail or the WATLEV ID is 1, 6, or 7, (e.g., ones whose qualitative depths are not explicitly defined) 

then a warning is posted and the threat level of the object is set to four indicating that without more 

information, the object must be assumed to pose a great threat to the ASV. 

 
Figure 2.9: Algorithm to set threat level using depth measurements 

 
Figure 2.10: Algorithm to set threat level through obstacle type 



29 
 

 Section 2.2.4: ENC_Contact 

To implement the real-time, reactive obstacle avoidance system, the data from ENCs are 

preemptively filtered to remove unnecessary information and translated into a spatial database for 

fast query by ENC_Contact. The native format of ENCs is S-57 [9], which organizes the spatial 

data by object type into different layers. The new spatial database, ENC_DB, created by 

ENC_Contact rearranges the ENC’s layers from obstacle type into a single shape file composed 

of polygons. This organization is significantly more efficient for obstacle avoidance than the native 

S-57 format because, during each iteration, ENC_Contact only needs to open, filter, and react to a 

single layer instead of over 20.  

The first step in creating ENC_DB, is to assign a threat level to each obstacle as described 

in Section 2.2.3. After the threat level for each obstacle is determined, each obstacle was buffered. 

As discussed in Section 2.1.2, due to the uncertainty of the charted objects with point geometry, 

points are buffered by one millimeter at chart scale giving them a diameter of two millimeter. 

Additionally, in order to assume the ASV is a point object, all objects are additionally buffered by 

equation 2.5 where TL is the obstacle’s threat level, L is the ASV’s length and W is the ASV’s 

width. Depending on threat level, the buffer can range from the absolute minimum to assume the 

ASV as a point object (threat level zero) to three times the absolute minimum (threat level five). 

B = 
(1+0.4*TL)

2
*√𝐿2 +𝑊2       (2.5)  

ENC_Contact also allows the user to set a minimum MLLW depth allowable for the ASV. 

This is accomplished utilizing an interpolated grid of the ENC using the method described in 

Section 2.1.3 for the Depth-Based A* mission planner. However, unlike the grid for the mission 

planner, the features used to create this surface only include soundings, piles, shoreline 
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construction, depth areas, land, pontoons, and docks. Once the grid is created, areas shoaler than 

the user’s specified depth are polygonised and are placed into the spatial database (ENC_DB). 

An example of the information extracted from the Portsmouth Harbor ENC (US5NH02M) 

is shown using MOOS-IvP’s GUI, pMarineViewer, in the top image of Figure 2.14. (For reference, 

the bottom image of Figure 2.14 shows the nominal ENC display, typically shown through an 

 
Figure 2.11: Information from the ENC_DB for the area around UNH’s Pier in Portsmouth, 

NH shown using MOOS’s pMarineViewer (top) and Electronic Chart Display and 

Information System (ECDIS) display for the corresponding ENC (bottom) 
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Electronic Chart Display and Information System or ECDIS display, for the corresponding area.) 

In the top image, the coastline is depicted with black lines, and the other features are color coded 

based on their threat level as described in Table 2.2. In this image, the tide set at zero meters and 

the draft of the vessel is 0.3 m. Obstacles with a threat level of zero (no threat) are not shown to 

avoid cluttering pMarineViewer.  

 Once ENC_Contact has translated the ENC into a useable spatial database, it then 

determines which objects are in the ASV’s immediate vicinity, as determined from a predefined 

search area. This search area is defined as a square with each side having a length of 20𝐿 centered 

on the ASV’s current position.  

 To determine safe headings, an angular-sweep algorithm is used to calculate the range of 

“utility” values in a full, 360-degree swath. Utility is defined between zero and 100, where a utility 

of 100 correlates to no current danger and zero is high danger. In this algorithm, rays of length 

10𝐿√2 are projected every eight degrees from the ASV and each polygon in the search area is 

iteratively cycled through to check for intersections. If the ray intersects the polygon, the distance 

between the ASV and the polygon is determined and the utility of the resulting eight-degree sector 

Threat 

Level 

Obstacle Attributes 

General 

Description 
Color 

0 No Threat --- 

1 Small Threat Yellow-Green 

2 Medium Threat Gold 

3 Large Threat Orange 

4 Great Threat Red 

5 Land Black 

Table 2.2: Description and color on pMarineViewer of the threat level attribute 
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is calculated and stored using Equation 2.6, where D is the distance to the obstacle in vessel lengths 

and TL is the obstacle’s threat level. If the ray does not intersect the polygon, the utility for the 

resulting angle is 100. This process is repeated for each obstacle in the search area. If there is a 

previously stored utility for the angle from another polygon, then the lesser (more conservative) 

utility value is stored.  

 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = min (2.5 ∗
2𝐷

𝑇𝐿2 , 100)         (2.6) 

Utility was defined in this way as the relationship between utility and distance should be 

concave up, the ASV should start penalizing headings farther away from the obstacle as threat 

levels increases, and an obstacle of threat level five should immediately penalize headings as soon 

as the ASV reaches 10 vessel lengths from the obstacle. The relationship between threat level, 

distance to an obstacle, and utility is shown graphically in Figure 2.15, where the distance to the 

object (defined in boat lengths) is shown on the x-axis and utility on the y-axis. Consider an 

 
Figure 2.12: Distance vs Utility curves for threat levels one through five 
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obstacle that is five vessels lengths from the ASV. Depending on the threat level of the obstacle, 

the utility can range from 80 (threat level one) to 8.9 (threat level three) to 3.2 (threat level five). 

Using the angular sweep method as currently described, a ray that passes just outside of 

the obstacle would be classified as no threat and would be stored as a utility of 100. Therefore, to 

“soften” the edges of the polygon, the utility vector determined by the angular sweep algorithm 

was low-pass filtered and the minimum of the result before and after the low-pass filter (LPF) was 

taken as the new utility. This LPF was implemented using a moving average with a window size 

of five. In effect, the angle that each polygon subtends was expanded to further increase the ASV’s 

safety margin as it effectively gives an angular buffer to the obstacle. 

An example of the angular-sweep algorithm is shown in Figure 2.16. In the left panel of 

this figure, the ASV is assumed to be in the middle of the image with the rays emanating this 

location. Each intersection of the polygons is shown with blue dots. On the polar plot in the right 

panel, the resulting utility function is plotted with utility on the radial-axis and angle on the 

azimuthal-axis.  

 

Figure 2.13: Example of the angular-sweep algorithm 
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 Finally, ENC_Contact also adjusts how strictly the waypoint behavior, MOOS’s generic 

line-following program, follows the planned track when obstacles are inside the search area by 

adjusting the waypoint behavior’s “lead” parameter. The lead parameter sets the location that the 

ASV dynamically steers toward, which is calculated using the distance (given by the value of the 

lead parameter) from the perpendicular intersection of the ASV's current location and the trackline 

as shown in Figure 2.17 [18].4 Utilization of the lead parameter results in the ASV aggressively 

approaching the trackline when the perpendicular distance is large and gradually when it is close.  

The result of adjusting the lead parameter is that the ASV only attempts track-following 

when it is safe to do so. This is defined as when there are no obstacles in the ASVs proximity or 

the ASV is driving away from the obstacle and is father than the safety distance (SD), defined in 

Equation 2.7, away from the obstacle. In this research, the value of the lead parameter is defined 

using Equations 2.7 and 2.8 where D is the distance to the closest obstacle on the current control 

iteration, ΔD is the change in distance to the closest obstacle since the last control iteration, MTL 

                                                           
4If the value of the lead parameter is greater than the distance to the next waypoint from the 

perpendicular intersection, then the location that the waypoint behavior’s IvP Function steers is 

towards the next waypoint (as shown in Figure 2.17). 

 

Figure 2.14: Example showing how the track-following works in MOOS’s waypoint 

behavior, where the steering-point is determined by the lead parameter (i.e. the distance from 

the perpendicular intersection point toward the next waypoint). Used with permission from 

Mike Benjamin [18]. 
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is the maximum threat level for all obstacles inside ENC_Contact’s search area, and SD is a 

threshold around an obstacle defined as too close to attempt track following. The value of the lead 

parameter varies from a MOOS default of eight to a value of 100 near a threat level 5. In future 

research, Equations 2.7 and 2.8 might be adjusted to account for larger vessels, as the parameters 

may be insignificant in reference to the vessels size. 

SD=3*L+0.5*MTL                       (2.7) 

lead= {
8 ∆𝐷 > 0 𝑎𝑛𝑑 𝐷 > 𝑆𝐷

𝑀𝑇𝐿 ∗ 20 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                (2.8) 

After the angular sweep algorithm is completed for each obstacle in the ASV’s search area, 

ENC_Contact publishes a comma separated list describing the utility for each candidate 8 degree 

heading choice. This message is published to the MOOSDB at 5 Hz and is subscribed to by the 

ENC-based reactive obstacle avoidance behavior.  

Section 2.2.5 - Obstacle Avoidance 

Once the nearby objects have been identified and unsafe heading choices are denoted, the 

next step is to determine the desired speed and heading for the ASV. In this research, the optimal 

speed and heading is calculated by optimizing the IvP Functions for the native waypoint behavior 

and a new behavior called ENC_OA. This new behavior subscribes to the heading utility report 

from ENC_Contact. With this new behavior, which penalizes unsafe headings, and the waypoint 

behavior, the IvP Solver determines the optimal speed and heading pair for the ASV.  

In MOOS-IvP, each behavior produces an IvP Function, which is a polar surface that is 

defined over its domain (e.g, speed and heading for the waypoint behavior and heading for 

ENC_OA). A graphical representation of the waypoint behavior’s IvP Function is shown in Figure 
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2.18. In the left image, the height indicates the utility of each combination of speed and heading 

and the peak indicates the optimal choice. The right image of Figure 2.18 shows the same IvP 

Function without the utility of speed (i.e., the domain only considering heading). This simplified 

representation of the waypoint’s IvP Function is useful when illustrating the combination of the 

two IvP Functions as heading is the control variable in the ENC_OA behavior. 

The IvP function of ENC_OA allows for any combination of heading and speed other than 

those that lead toward threats. ENC_OA uses the obstacle report from ENC_Contact, which gives 

the utility of the obstacles that intersected in the search area in eight-degree increments (after a 

LPF), and linearly interpolates between the angular increments to create its IvP Function.  

Additionally, if the ASV is within three boat lengths from an obstalce, ENC_OA biases the 

utility function towards the ASV’s current heading. Biasing the utility function increasingly 

penalizes making radical changes to the desired heading as drastically changing heading while the 

ASV is near obstacles can lead to dangerous situations. The new utility (U) from the heading bias 

 
Figure 2.15: MOOS’s waypoint behavior’s IvP Function for a westward waypoint. In the left 

image the heading is shown in the azimuthal direction, speed in the radial direction, and 

utility with height and color. In the right image, a simplified IvP Function for the waypoint 

behavior is shown (excluding speed from the IvP Function’s domain) where the heading is 

shown in the azimuthal direction and utility in the radial direction. 
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equation, given in Equation 2.9, linearly biases the previously calculated utility (PrevU) towards 

the current heading (H), which allows the ASV to avoid obstacles in a safer manner by severely 

penalizing radically changing the desired heading away from the ASV current track.  

 U=PrevU* (1-
|H-∠|

360
)                      (2.9) 

 ENC_OA allows for the ASV to avoid obstacles along the desired trackline in real time. 

However, if the planned mission has waypoints that reside inside obstacles in the ENC, the ASV 

will not be able to complete its desired mission, even with ENC_OA, and will require human 

intervention. Therefore, another MOOS application was developed, ENC_WPT_Check, to address 

this issue.  

Section 2.2.6: Waypoint Checker 

 Reactive obstacle avoidance behaviors provide ASV path adjustments between 

predetermined waypoints; however, due to faulty mission planning some waypoints may not be 

reachable with a navigable/realistically safe path. ENC_WPT_Check addresses this issue by 

determining if the desired waypoint is navigable and if it is not, skipping it once the ASV has 

reached a user defined distance from the obstacle. The utility of ENC_WPT_Check is shown in 

the scenario in Figure 2.19 where the red polygons are obstructions and all waypoints reside inside 

of these regions. The image shows the path that the simulated ASV traveled and using 

ENC_WPT_Check, the ASV successfully skipped all waypoints without running into the high 

threat obstruction. Although the planned path has waypoints that terminate inside high threat 

obstacles, ENC_WPT_Check allows a user to plan a mission near an irregular shoreline or 
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obstructions and be confident that the ASV will not run aground without requiring the planning of 

a complex survey pattern.  

 

  

 
Figure 2.16: Scenario in Portsmouth, NH harbor showing the utility of ENC_WPT_Check, 

where the ASV skips the unsafe waypoints on its desired path. Displayed is the ASV’s 

traveled path (blue), the obstructions (red) and the track line (black dotted line). 
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Chapter 3 

Results 

3.1: Depth-Based A* Mission Planner 

To illustrate the features of the Depth-Based A* mission planner, missions were planned 

on multiple ENCs. The first mission was planned from the UNH pier facility up the Piscataqua 

River to a pier near Prescott Park. To create the mission plan, the Depth-Based A* algorithm was 

given the start and end points along with the interpolated grid, as described in Section 2.1.2, 

generated from the US5NH02M ENC. In Figure 3.1, an overview of the entire mission is shown 

 
Figure 3.1: Depth-Based A* Mission plan (red) from the UNH Pier to a pier near Prescott 

Park overlaid on the interpolated grid. The left image is an overview of the mission and the 

right two images zoom into either the start (top right) and the finish (bottom right). 
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in the left panel, the top right panel depicts the start near the UNH pier, the bottom right panel 

portrays approximately the last third of the mission, and the color scale is defined between -5 m 

above MLLW (i.e., land) and 15 m below MLLW. In these images, the color scale does not depict 

water deeper than 15 m as any depth greater does not accumulate any depth-related cost. 

The planned mission safely avoids the pier and the breakwater before driving toward the 

channel. Once the depth below the boat’s keel is deeper than 15 m, there is no additional depth-

based cost and the mission planner follows nominal A*, where the planned path is the shortest 

distance between the start and end points through the admissible space. Near the end of the planned 

path, the river becomes shallower and, in these sections, the mission planner balances the two 

components of the cost function by planning a path to safely navigate through the shoaler areas 

without unnecessary maneuvers. 

In some situations the cost of traveling through shallow, non-dangerous waters is less 

costly than traveling through deeper water. To illustrate this, Figure 3.2 shows a different mission 

planned on the US5NH02M ENC that begins at the UNH pier and finishes near the Isle of the 

Shoals in Maine. The top right panel shows the planned path leaving the UNH pier and avoiding 

the breakwater before navigating towards the channel and the bottom right image shows the end 

of the mission near the Isle of Shoals.  

However, unlike the previous mission, the planned path does not exclusively drive in the 

deep water (shown as yellow in the figure). In a few cases, such as the middle lower-third in the 

top-right image and the middle of the bottom-right image (highlighted in the figure with the 

arrows), it was less costly to travel through shallower, but non-dangerous water, than to drive 
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around it. This is a key aspect of the Depth-Based A* mission planner, where it balances taking 

the most direct route with risk of grounding. 

Figure 3.3 illustrates another mission planned with the Depth-Based A* algorithm in 

Boston Harbor (US5MA11M). This mission starts at a pier near the Old North Church and ends at 

a pier at the Winthrop Yacht Club. After leaving the pier near the Old North Church, the path lies 

almost exclusively in the channel for the first half of the mission. However, approximately half 

way through the mission, the path leaves the channel and drives through shallower areas to 

effectively “cut the corner”. The planned mission drives approximately 2 km less than the 

alternative route following the channel; however, it still remains in the safe, deeper sections of this 

shallower area.  

 
Figure 3.2: Depth-Based A* Mission plan (red) from the UNH Pier to the Isle of the Shoals in 

Maine overlaid on the interpolated grid. The left image is an overview of the mission and the 

right two images zoom into either the start (top right) and the finish (bottom right). 
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As the planned path approaches the end of its mission (near the pier at the Winthrop Yacht 

Club), the path drives very close, approximately 2.5 m, to the lateral buoy (highlighted with an 

arrow in the bottom right panel). This is still safe as the obstacle is buffered; however, the close 

proximity to a mapped obstacle shows a limitation in the mission planner. Driving this close to the 

buoy in non-ideal conditions may be unsafe. This behavior is due to the masking of seafloor 

independent obstacles in the conflict resolution process, described in Section 2.1.3, as the 

obstacles, the buoy in this case, may be near relatively deep water and the water surrounding the 

buffered obstacle may not be heavily penalized. Therefore the path may be planned on the edge of 

the permissible regions. Using the reactive component of this research would mitigate these issues. 

These three missions clearly show that the Depth-Based A* mission planner avoids known 

obstacles and shoal areas from the ENC while attempting to stay to the channel, much like a human 

mariner. However, as shown in the third mission, the planned path can still drive near obstacles in 

 

Figure 3.3: Depth-Based A* Mission plan (red) in the Boston, Massachusetts Harbor overlaid 

on the interpolated grid. The left image is an overview of the mission and the right two 

images zoom into either the start (top right) and the finish (bottom right). 
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the ENC. The reactive component of this research further increases the ASV’s safety and should 

be used in conjunction with the Depth-Based A* mission planner. 

3.2: Reactive Obstacle Avoidance 

The reactive obstacle avoidance algorithms were tested in both the MOOS simulation 

environment, using a MOOS application called uSimMarine to simulate the ASV’s states 

(position, speed and heading), and in the field using a Seafloor Systems EchoBoat [26] (shown in 

Figure 3.4).  

3.2.1 Non-ENC (Synthetic) Obstacles 

For the initial tests, a synthetic ellipse with a major axis of 8 m and a minor axis of 5 m 

was placed in the middle of the ASV’s planned path. For these tests, the ASV traveled clockwise 

along the planned rectangular path, encountering the ellipsoidal obstacle with an increasingly 

higher threat level after each circumnavigation. Figure 3.5 depicts the path traveled by the 

simulated ASV while avoiding the synthetic obstacle. In these simulations, the dimensions of a 

Seafloor Systems EchoBoat (1.68 m, 0.79 m, 0.28 m) as well as an ASV Global C-Worker 4 (4.0 

 
Figure 3.4: Profile view of the Seafloor Systems EchoBoat 
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m, 1.58 m, 0.4 m) were used and the desired speed was set to the EchoBoat’s nominal speed of 1.5 

m/s. The pink, solid-line ellipse in these images is buffered version of the synthetic obstacle (pink, 

dotted line). This buffer, 1.3 m for the EchoBoat and 3.0 m for the C-Worker 4 (calculated using 

Equation 2.5 with a threat level 0 and the vessel’s dimensions), allows for the comparison of the 

paths of different size vessels around the obstacle for all threat levels as the ASV is represented as 

a point and not as multi-dimensional boat of various sizes.  

In each of these simulations, the ASV avoids the ellipse by at least 1.8 m or 4.4 m for the 

simulated EchoBoat and C-Worker 4 (as shown in Table 3.1). As the threat level of the obstacle 

 
Figure 3.5: Mission around an ellipse (pink) with varying threat levels during simulation 

where the color of the trackline defines the obstacle’s threat level. The top image’s simulates 

a Seafloor Systems EchoBoat and the bottom image simulates an ASV Global C-Worker 4.  
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increases, the simulated ASV gives the ellipse an increasingly wider berth as the penalty function 

(given in Equation 2.6 and shown graphically in Figure 2.15) is inversely proportional to the 

obstacle’s threat level squared.  

After the ASV passes the obstacle, it does not immediately prioritize track following. 

Instead, it waits until the distance between the obstacle and the ASV is greater than the safety 

distance (defined in Equation 2.7). Once the ASV has passed this threshold, ENC_Contact 

modifies the waypoint behavior’s lead parameter, which adjusts the location that the ASV steers 

toward (as described in Section 2.2.3).  

 This same scenario was field tested with the Seafloor System EchoBoat. In the field, the 

test consisted an obstacle of threat levels 1, 3 and 5. The resulting tracklines are shown in Figure 

 Minimum Distance Between ASV and the Synthetic 

Ellipse Obstacle (meters) 

Threat Level Simulated EchoBoat Simulated C-Worker 4 

1 1.8 m 4.4 m 

2 2.9 m 5.8 m 

3 3.4 m 7.3 m 

4 4.0 m 7.9 m 

5 4.2 m 8.7 m 

Table 3.1: Minimum distance from the ASV to the ellipse-shaped obstacle while varying 

vessel length in simulation 

 
Figure 3.6: Mission around an ellipse (pink) with varying threat levels from field data, where 

the color of the trackline defines the obstacle’s threat level. 



46 
 

3.6 where the color of the tracklines relates to the threat level of the synthetic ellipse. During the 

field tests, the EchoBoat traveled no closer than 2.6 m to the ellipse. The remaining minimum 

distances between the ASV and the ellipse are shown in Table 3.2.  

There are a few noticeable differences between the simulated and field results. The main 

difference is the EchoBoat’s path for threat level 3 and 5 are very similar, since the desired heading 

for the ASV with the threat level 5 obstacle oscillated between choosing a northerly or southerly 

path around the obstacle over a distance of 2.1 meters. Once the ASV hits a critical point, the 

desired heading remains to the north and the ASV follows a similar path to the threat level 3 

trackline. Although these oscillations are not ideal, the ASV avoided all polygons safely. Further 

discussion of this behavior is in Section 4.1.2.  

3.2.2 ENC-Based Obstacles 

The reactive algorithm was also tested in situations where the ASV’s planned path went 

through an obstacle denoted in the ENC, specifically the breakwater near the UNH pier and the 

UNH pier itself, requiring ENC_OA to provide a new, safe path. The results shown in the 

following tests are from data collected in the field. 

The EchoBoat successfully avoided the breakwater using only the reactive method in two 

different directions: driving into the cove (Figures 3.7 and 3.8) and leaving the cove (Figures 3.9 

and 3.10). The first mission started on the far-side of the breakwater with reference to the UNH 

 Minimum Distance Between EchoBoat  

and the Synthetic Ellipse (meters) Threat Level 

1 2.6 m  

3 4.8 m  

5 5.3 m  

Table 3.2: Field data on the minimum distance from the EchoBoat to the synthetic ellipse 
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pier, in which the EchoBoat’s planned mission was to line-follow through the breakwater. (A plan 

view of the mission is shown in Figure 3.7.)  

Due to the angular profile of the breakwater in reference to the planned path, the southern 

edge of the breakwater came into the search area first. The images in Figure 3.8 show snapshots 

of the IvP Functions (left), where the colored lines denote the Heading IvP Functions and the stars 

denote the desired (black) and current (red) heading, and a plan view of the mission, where the 

ASV’s current position is denoted with a yellow dot (right). The top images of Figure 3.8 clearly 

show that headings that lead toward the breakwater (southwest) are penalized by ENC_OA (orange 

IvP Function in the left image) and the desired heading shifts approximately 30 degrees to the 

northwest from the planned path. As the EchoBoat navigates around the breakwater, the penalized 

headings shift from the southwest to the southeast and once the ASV navigates around the 

 
Figure 3.7: Plan view of a mission driving around the breakwater near the UNH Pier using 

ENC_OA to avoid the breakwater. In this mission, the ASV drove from the far-side of the 

breakwater (with reference to the UNH pier), around the breakwater, to inside the pier’s cove 

on the path shown in blue. 
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dangerous area, the EchoBoat begins prioritizing track-following (bottom panels of Figure 3.8). 

During this mission, the EchoBoat drove no closer than 3.0 m away from the buffered breakwater.  

In the next mission, the ASV avoided the breakwater after starting on the near-side with 

reference to the UNH pier (a plan-view of the mission is shown in Figure 3.9). During this mission, 

the ASV avoided the breakwater towards the south instead of the north (unlike the previous 

 

Figure 3.8: Snapshots at the two critical junctions of the mission where the EchoBoat drove 

around the breakwater while line-following where the left images show the heading based 

IvP functions for ENC_OA (orange line), the waypoint behavior (blue line) and the combined 

IvP Function (green line) as well as the current and desired heading (red and black stars 

respectively) and a plan view of the mission (right images) where the ASV’s position is 

marked with a yellow dot at the time of the IvP Functions. 
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mission) as only the northwest corner of the breakwater was visible to ENC_Contact as the 

breakwater entered into the ASV’s search area. The left panel of Figure 3.10 shows that the penalty 

of driving around the breakwater to the north, due to ENC_OA (orange line) changing the 

combined IvP function (green line), was enough to force the EchoBoat to attempt to 

circumnavigate the breakwater to the south towards Fort Constitution. Once the EchoBoat drove 

to the southeast corner of the breakwater, the ASV was forced to split the gap between the 

breakwater and the shallow water polygon (bottom panels of Figure 3.10). As a result, it drove 

very close to both the breakwater (1.1 m at its closest point) and the shallow water (3.6 m at the 

closest point). Although the ASV drove very close to the buffered breakwater and shallow water, 

it successfully avoided all obstacles in its environment and safely arrived at its desired waypoint 

without human intervention. In these two examples, the ASV safely completed its mission by using 

 

Figure 3.9: Plan view of a mission driving around the breakwater near the UNH Pier in the 

field using ENC_OA to avoid the breakwater 
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ENC_OA to adjust its path around unsafe mission plans in real-time using both waypoint 

navigation and line following. 

In the next mission, the EchoBoat’s planned path drove straight through the pier as shown 

in Figure 3.11. Similar to previous missions, the ASV stayed on the desired path while it was safe, 

but when it was hazardous, the ASV left the planned path and avoided the pier. A snapshot of the 

mission as the ASV approaches the pier is shown in Figure 3.12 where the IvP functions illustrate 

 
Figure 3.10: Snapshots at the two critical junctions of the mission where the EchoBoat drove 

around the breakwater where the left images show the heading based IvP functions for 

ENC_OA (orange line), the waypoint behavior (blue line) and the combined IvP Function 

(green line) as well as the current and desired heading (red and black stars respectively) and a 

plan view of the mission (right images) where the ASV’s position is marked with a yellow 

dot at the time of the IvP Functions. 
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that the headings leading toward the UNH pier are penalized. As shown previously, once the 

EchoBoat safely navigated around the pier, the ASV returned to its desired trackline. Even though 

 

Figure 3.11: Plan view of a mission driving around the UNH Pier in the field using ENC_OA. 

The planned path is given with the green, dashed line and the path driven by the EchoBoat is 

shown in blue. 

 

Figure 3.12: Snapshot during the mission line-following while avoiding the UNH pier while 

in the field when ENC_OA starts to push the desired heading of the EchoBoat to the 

southeast to avoid the pier. In the left image, all IvP functions are shown with ENC_OA in 

orange, the waypoint behavior in blue, and combined IvP function in green as well as the 

current and desired heading with a red and black star respectfully. 
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the pier is a non-uniform obstacle, ENC_OA allowed for the ASV to safely reach its desired 

location, while driving no closer than 3.4 m away from the pier, despite poor mission planning.  

In some situations, the reactive mission planner can get stuck in local minima. An example 

mission is shown in Figure 3.13, where the EchoBoat attempted to navigate from one side of the 

pier to the other. In this mission, the EchoBoat oscillates between heading choices to achieve the 

waypoint and those that are penalized by the presence of the pier. This cycle was repeated ad 

infinitum as the EchoBoat was stuck in a local minimum and the mission had to be canceled. 

Snapshots of the heading IvP Functions, shown in Figure 3.14, illustrate the critical junctions of 

the ASV path as it got stuck in a local minimum. Although this behavior is not ideal, the ASV 

came no closer than 8.3 m away from the pier. This result illustrates that reactive behaviors alone 

may be insufficient for reliable navigation and that additional behaviors that look with a greater 

 

Figure 3.13: Plan view of a mission driving towards the UNH Pier in the field where the 

EchoBoat got stuck in a local minimum. The path driven by the EchoBoat is shown in blue 

and the desired waypoint is shown with a pink star. 
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field of interest, such as running Depth-Based A* when stuck in a local minimum, is required. 

Implementation of these behaviors are left for future work.  

 

Figure 3.14: Snapshots at the three critical junctions of the mission where the EchoBoat got 

stuck in a local minimum. The left images show the heading-based IvP functions for 

ENC_OA (orange line), the waypoint behavior (blue line) and the combined IvP Function 

(green line) as well as the current and desired heading (red and black stars respectively) and a 

plan view of the mission (right images) where the ASV’s position is marked with a yellow 

star at the time of the IvP Functions. 
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These manufactured scenarios of purposely driving at the pier, breakwater and synthetic 

ellipse show that the reactive obstacle avoidance procedures keep the ASV from hitting charted 

obstacles. Although charted obstacles can typically be avoided through mission planners (like the 

Depth-Based A* mission planner), they must still be accounted for in real time as other behaviors 

(i.e., avoiding uncharted obstacles or vessels) might cause the ASV to deviate from the planned 

path. Using the reactive obstacle avoidance system developed in this work, charted obstacles are 

accounted for and are avoided in real time without suffering from the challenges of real-time sensor 

processing. However, to further ensure the ASV’s safety, especially around uncharted obstacles, 

additional real-time obstacle avoidance systems should be implemented that use external sensors. 

The implementation of these systems has been left for future work. 

3.3 Depth-Based A* Mission Planner with Reactive Obstacle Avoidance 

The missions shown above clearly illustrate that the Depth-Based A* mission planner and 

ENC_OA both avoid obstacles in the environment. The recommended usage of this research is to 

plan the mission with the Depth-Based A* algorithm and to keep the reactive obstacle avoidance 

system active while navigating. Thus the ASV is provided with a safe mission plan that requires 

minimal use of the reactive planner, while ensuring the ASV avoids mapped obstacles if the ASV 

gets off the desired path through other means (i.e., avoiding other boats or environmental factors). 

One side effect of this recommended usage is that the planned path from the Depth-Based A* 

algorithm, which may have the ASV navigate within one grid cell away from objects whose depths 

are seafloor independent, may need to be adjusted to provide an additional margin of safety. 

The combination of the two obstacle avoidance methods was tested in simulation near the 

lateral buoy in the Boston Harbor mission (shown previously in Figure 3.3) using an ASV with 
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the dimensions of the EchoBoat. In this mission, the planned path was approximately the last 

kilometer of the mission in Boston Harbor shown earlier in Figure 3.3. As shown in Figure 3.15, 

the simulated ASV followed the planned path until it was near the lateral buoy. Once the lateral 

buoy was inside the ENC_Contact’s search area, the ASV deviated off of the planned path and 

drove no closer than 6.5 m from the buffered lateral buoy. Finally, once the ASV was safely beyond 

the lateral buoy, it drove on the desired path for the remainder of the mission. Without reactive 

obstacle avoidance, the ASV’s planned path would have only been 2.5 m away from the buffered 

lateral buoy, which may be dangerous in non-ideal conditions (i.e., with wind, current, or waves). 

This mission highlights the recommended usage of this work: planning the mission with 

the Depth-Based A* algorithm and then navigating with ENC_OA (and any other reactive obstacle 

 
Figure 3.15: Tracklines from a mission planned in Boston Harbor where the red track shows 

the path traveled by a simulated EchoBoat following a path generated path using the Depth-

Based A* Mission Planner (black) with ENC_OA enabled. The left panel gives an overview 

of the mission and the right zooms in to show where ENC_OA adjusted the planned mission 
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avoidance not developed by this work) enabled. Thus the path is optimized when possible by using 

a smart mission planner and ENC_OA increases the robot’s safety if it is off the desired track 

(through environmental factors or otherwise) or, in similar situations to the mission shown in 

Figure 3.3 and 3.15, where the mission planner drives too close to obstacles for non-ideal 

conditions. 
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Chapter 4 

Discussion 

4.1 Limitations and Future Work 

 The limitations for the Depth-Based A* mission planner and the reactive obstacle 

avoidance system are described below along with some workarounds and potential avenues for 

future work.  

4.1.1 Depth-Based A* 

The current implementation of the Depth-Based A* mission planner has limitations not 

addressed in this research. Currently, the mission planner is not optimized for speed, which results 

from the implementation of the path planner’s angular resolution. In the future, the method for 

increasing the angular resolution could be sped up by decreasing the branching factor or a new, 

faster method could be defined. Furthermore, Depth-Based A* could be expanded to limit 

unrealistic changes in heading between waypoints, similar to the method used in [10]. 

Also, as currently constructed, Depth-Based A* can only run on one chart, so if the start 

and end points of the mission are not on the same chart, a larger scale chart must be used. The 

ability to run missions on multiple charts is left for future work. Additionally, the Depth-Based A* 

mission planner could be expanded to real-time application, as in [14]-[16]. Real-time applications 

of the mission planner would be especially useful when the ASV’s course was adjusted mid-

mission from a reactive component, such as those described in this work or one from outside the 

scope of this thesis (e.g., avoiding boats or other unmapped 
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obstacles). In a situation where the ASV had diverged significantly from the desired path, a real-

time component of the Depth-Based A* mission planner could drive the ASV back on course.  

As shown previously in Figure 3.3 and 3.15, the planned path from the Depth-Based A* 

mission planner may pass within one grid cell from seafloor independent obstacles (e.g., docks, 

breakwaters, or buoys). Depending on the grid cell resolution and oceanographic conditions, this 

could represent a potentially dangerous path for the vessel. This limitation can be avoided by 

enabling the reactive obstacle avoidance also developed in this work. Other solutions are left for 

future work. Finally, the overall utility of the mission planner is heavily dependent on the chart 

scale and accuracy, which is described further in Section 4.2. Incorporating additional data sources 

that augment ENCs is left for future work. 

4.1.2 Reactive Obstacle Avoidance 

The reactive mission planner outlined in this work successfully avoids obstacles in the 

ASV’s planned path; however, there are some key limitations that an operator must be aware of to 

maintain the ASV’s safety. In the current MOOS build, the helm provides a safe heading for the 

ASV to navigate, but it does not control the direction in which the ASV can turn. This allows the 

 
Figure 4.1: Snapshot during the mission where the Echoboat got stuck in a local minimum 

illustrating how the ASV turns towards obstacles if that is the shortest angular distance 

between the current and desired heading. The left image shows the heading-based IvP 

functions and the right image shows a plan view of the mission at the time of the left image 
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reactive mission planner to change headings towards an obstacle, as shown in Figure 4.1. This 

situation can become dangerous while navigating in an enclosed space, especially near concave 

polygons or if the ASV has a large turning radius, as the ASV might run aground. Figure 4.1 

illustrates a scenario where the ASV is traveling towards the southwest (red star) and the new 

desired heading is towards the east (black star). Although turning counterclockwise drives the ASV 

closer to the pier and through penalized (i.e., dangerous) headings, the ASV turns 

counterclockwise as that is the shortest angular path to the desired heading. To account for this 

limitation, the IvP functions for all behaviors (including the default waypoint behavior) must be 

defined over angular velocity so that it may be controlled by the ASV. Addressing this issue is left 

for future work. 

Additionally, as shown in the field trials, the reactive mission planner can get stuck in local 

minimum of the IvP Function (see Figures 3.13 and 3.14 where the ASV failed to find a path to 

drive from one side of the UNH pier to the other). Additionally, there is no guaranteed the path 

will be the safest when using ENC_OA to avoid obstacles. The mission shown in Figures 3.9 and 

3.10 exemplify this behavior. In this mission, the ASV avoided the breakwater near the UNH pier 

towards the shallow water, south of the pier, rather than towards open water to the north due to a 

local minimum in the IvP Function. Although the reactive obstacle avoidance system successfully 

adjusted the ASV’s path to avoid all obstacles in the environment, the ASV drove unnecessarily 

close to both shallow water and the breakwater. Both of these undesirable reactions result from the 

localized nature of the search area, which is defined as a square centered on the ASV with sides of 

20𝐿 Furthermore when the helm chooses the optimal heading for the ASV, it only considers the 

heading with the greatest utility during the current iteration, disregarding the previous solution. To 
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work around this limitation, it is recommended to use the Depth-Based A* mission planner in 

conjunction with ENC_OA so that the local minima are avoided. 

Additionally, as shown with the threat level 5 path on the synthetic obstacle avoidance 

example (Figure 3.6), the ASV can oscillate in determining which side to avoid the obstacle. This 

issue shows up when driving at smooth obstacles where the planned path splits the obstacle in half. 

This indecisive behavior results from the penalty function being heavily dependent on the ASV 

distance from the obstacle. In the example situation, the northern and southern most extents of the 

obstacle are approximately the same distance from the ASV and as the ASV turns to avoid the 

obstacle, it gets closer to the northernmost extent, while moving away from the southernmost 

extent. This movement penalizes the northernmost extent, which is enough to change the ASV’s 

desired heading and force it to avoid the obstacle towards the south. One potential solution to this 

problem is to bias the IvP function towards the direction first chosen by the IvP helm. Rectifying 

this limitation is left for future work. 

4.2 ENC Scale and Uncertainty 

This work is largely dependent on the accuracy and scale of ENCs. To determine the 

appropriate resolution for a navigable chart, environmental risk factors and the vessel’s physical 

attributes should be consulted. Hazardous areas (e.g., shoals, breakers, rocky areas, or foul ground) 

require high levels of positional and depth accuracy so that vessels can make appropriate 

navigational decisions. In order for small vessels to navigate into places that other ships cannot 

reach, they need high accuracy positioning equipment. Horizontal positioning from global 

positioning satellites (GPS) coupled with real time kinematic (RTK) corrections provides 

centimeter-level precision. Using modern GPS with RTK corrections, the accuracy (and as a result, 

scale) of the charts becomes the limiting factor. 
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Figure 4.2 illustrates some of the resolution issues with ENCs, where the left image shows 

a portion of the Portsmouth Harbor ENC (US5NH02) viewed at 1:10,000, which is the highest 

resolution for this area. However, a chart of this scale is not suitable for navigation in the vicinity 

of the coastline. When approaching the pier, it is desired to view the chart at a higher resolution, 

here referred to as the “navigation scale” (shown in the image on the right). However, the chart is 

now over-scaled. The resulting representation is misleading and can be unsafe for both human and 

robotic mariners.  

The problem lies in attempting to use the chart in a way for which it was not intended. The 

intended scale of a printed RNC is always clear, as its nature prevents a misleading representation. 

However, the intended scale of an ENC is less clear as a point has no scale and a line has scale 

only in a single dimension. Thus, while the annotation of a “chart scale” in the ENC’s metadata is 

helpful and is used in this work, one is too easily tempted to use the power of vector graphics, 

over-zooming displays or equivalently, producing a grid with an artificially high resolution. On an 

 

Figure 4.2: On the left, a portion of the Portsmouth Harbor chart is shown at scale, but the 

chart resolution at this scale is generally inadequate to safely approach the coast. One desires 

a view closer to the “Navigation scale” representation shown on the right. However in this 

over-scaled view, features are not uniformly represented at a single scale.  
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Electronic Chart Display and Information System (ECDIS) display this is mitigated through the 

SCAMIN and SCAMAX attributes, which gives the upper and lower limit for the display of the 

data. However, they are not always available and in this research, a grid resolution of 0.25 mm at 

chart scale was used. Figure 4.3 depicts the same area of the chart as Figure 4.2 zoomed in to a 

practical navigational level (left image) and shows this work’s representation of the data where 

color indicates relative risk (i.e., depth) in an attempt to properly represent its underlying fidelity 

for robotic navigation (right image).   

Another example of the dangers of vector graphics is shown in Figure 4.4, where a section 

of Little Harbor is shown at chart scale (left image), which is inadequate for small vessel 

navigation. Thus, a higher resolution chart is needed to clearly determine a safe path (middle 

image). However, now the symbol for rocks, which were previously covered 40 m in diameter 

when viewed at chart scale, now only cover 10 m. The rock’s actual location may be anywhere 

within that 40 m circle, even though the location of the rock is represented in the ENC as a point 

with seven decimal precision, which is approximately centimeter-level accuracy. (In some cases, 

 

Figure 4.3: The left image properly represents the chart at scale for this area. Thus, we 

generate a grid for robotic path planning (right) that utilizes the vector representation of the 

data to retain the proper resolution of features. (Color indicates depth, or risk of grounding) 
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due to the chart compilation process, the actual feature may be outside the 40 m dimeter circle. 

However, dealing with these outliers are left for future work.) Thus, to safely navigate on the chart, 

this work buffers all obstacles with point-based geometry so that they are represented as their 

nominal size at their compilation scale, as shown in the right image of Figure 4.4.  

Another challenge in utilizing ENCs for ASV navigation is their completeness. Figure 4.5 

illustrates an example of their incompleteness by comparing a satellite image (left) with the 

 
Figure 4.4: Little Harbor shown at chart scale (20000:1) as well as at a level conducive to 

navigation (middle). This work’s representation (right) attempts to buffer objects to their 

original representation at chart scale. 

 
Figure 4.5: Satellite image and ENC images of the UNH’s Pier Facility. A floating pier exists 

adjacent to the fixed pier but is not represented in the ENC where only the spatial extent of 

the fixed pier is shown. Similarly, the breakwater, (installed in 2006) was omitted until a 

recent update (Summer 2018). 
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corresponding ENC (right). In this example, only the fixed part of the pier is represented in the 

ENC. However, the floating pier, which is adjacent to the fixed pier, is only represented in the 

ENC with a pontoon at the end of the pier instead of subscribing the pier’s entire length. 

Furthermore, this pontoon is represented as a line, when in reality the pontoon has a width of 

approximately 2.5 m. NOAA’s Nautical Charting Manual provides guidance for the representation 

of multiple piers as a single unit when the compilation scale prevents their clear depiction. [28] 

Unfortunately, there is no guidance specifying that the resulting depiction should encompass the 

union of the represented structures. Maps generated from ENCs for safe autonomous navigation 

must buffer around objects that were not fully depicted in the cartographic representation. In this 

work, buffering was done using the Equation 2.2 and 2.5 to mitigate this problem. 

Figure 4.5 also shows a floating breakwater in the upper right corner of the satellite image. 

This breakwater was installed in 2006 but remained unrepresented in the chart until a recent update 

of the ENCs in the summer of 2018. The omission likely resulted from a gap in coverage between 

those who delineate coastline and those who map coastal hazards. This omission, although recently 

fixed, epitomizes some of the challenges faced by utilizing only ENCs for the source data. 

Finally, Figure 4.6 presents a long-known issue with cartographic representations that is 

quite challenging for robotic systems: white water that mariners should avoid indicated by the 

word “Breakers” on the RNC. The satellite image overlain on the RNC (left image) shows that the 

actual breakers are approximately 88 m from the represented location. The right image shows the 

ENC overlain on a bathymetric grid. No shoal area exists where the breakers are indicated. The 

bathymetry further suggests that the white water in the satellite image is the correct location. It 

looks as if there was simply insufficient space on the raster chart for the word “Breakers” where 

the breakers actually exist. In the associated ENC, the reported location of “water turbulence” 
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(shown with the green and red dots on the left and right images respectfully) are precisely where 

the “Breakers” had been on the raster predecessor. 

The cartographic nuance illustrated by the “Breakers” example in Figure 4.6 is difficult for 

robotic vessels to interpret from the data provided in the ENC. The utility of a coastal chart is all 

but lost if one must buffer all objects conservatively enough to allow for archaic cartographic 

discrepancies resulting from the translation of raster-based charts. Without more accurate 

information, satellite imagery or other sources of data would be required to confirm the proper 

location of hazards for safe ASV work.  

To maintain the safety of both mariners and ASVs, a dual position encoding scheme for 

objects in ENCs should be put into place. The first value should be the actual position of the hazard 

as well as it can be measured and the second should provide an offset from that position for the 

recommended display location. Using this scheme, the fidelity of the data would be maintained as 

the true accuracy of the depth and position measurement would remain, while at the same time 

 

Figure 4.6: The raster chart with satellite image overlay (right) shows the word “Breakers” 

indicating hazardous water conditions. However, the location of the actual hazard is 88 m 

away from the actual hazard, which is apparent as white water in the satellite image, and 

confirmed by the underlying bathymetry in the right image. The location is misrepresented 

due to the cartographic depiction. 
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provide guidance for human mariners (and ASV operators) on the location of object’s 

representation on the chart.  

Additionally, objects that have depth should always be reported with a quantitative depth 

measurement and not just a qualitative depth assessment through the water level attribute. 

Although this might not be attainable for all obstacles whose depths are inside the tidal cycle, we 

feel that all obstacles that remains underwater through the tidal cycle (WATLEV = 3) should have 

their depth recorded quantitatively.  

As the methods in this work relies on the validity of ENCs, it is vital for charts to be 

accurate, but charts age discrepancies between charted depth and true depths may increase. 

Furthermore, in some locations, such as some coastal Alaskan waters, high resolution charts 

simply do not exist. In these locations, the compilation scale, which are often on the order of 

1:120,000, may not be sufficient for near shore navigation. In these situations, this author believes 

that additional sensors are necessary to ensure the ASV’s safety. However, charted hazards should 

not be disregarded entirely and the methods described in this thesis are still applicable, even in 

these worse case scenarios, for path planning between points of interest, as charts give the ASV 

NOAA’s best published a priori information on its environment. 
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Chapter 5 

Conclusion 

A complete package of obstacle avoidance using ENCs was developed in this research with 

both an a priori mission planner and a reactive obstacle avoidance system to help ASVs safely 

navigate their environment. This system allows a COTS ASV, like the Seafloor Systems EchoBoat 

or the ASV Global C-Worker 4, to increase its autonomy by giving it an understanding of its 

environment using ENCs. ENCs give information on a wide range of potential obstacles from 

coastlines to underwater rocks to buoys and breakwaters. The information is easily accessed and 

does not require sophisticated onboard sensor processing to avoid known features. 

Like [14]-[16], this research uses a hybrid approach that incorporates both a mission 

planner and reactive obstacle avoidance system, as when the two methods are combined, the flaws 

of each system are minimized. The Depth-Based A* mission planner uses a novel cost function 

which simulates the actions of a human mariner by prioritizing driving in the channel over shoal 

areas. This ability was made possible by the interpolation of the ENC into a depth-based cost map. 

Additionally, the reactive obstacle avoidance behavior successfully showed in both simulation and 

the field the ability to avoid obstacles with complex geometries. 

Human derived, static mission plans severely limits the feasibility of ASVs. Without an 

intelligent mission plan with reactive obstacle avoidance, a human operator must supervise the 

ASV and account for all hazards in its environment. Providing an ASV the ability to read, 

understand, and utilize nautical charts allows for the safe avoidance of known obstacles in the 

environment. No mariner goes into an unfamiliar harbor without consulting a nautical chart. 

Autonomous surface vehicles should not be an exception.  
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