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ABSTRACT

ANALYSIS OF UNCERTAINTY IN UNDERWATER MULTIVIEW RECONSTRUCTION

by

Igor Kozlov

University of New Hampshire, September, 2018

Multiview reconstruction, a method for creating 3D models from multiple images from differ-

ent views, has been a popular topic of research in the field of computer vision in the last two

decades. Increased availability of high-quality cameras led to the development of advanced

techniques and algorithms. However, little attention has been paid to multiview reconstruc-

tion in underwater conditions. Researchers in a wide variety of fields (e.g. marine biology,

archaeology, and geology) could benefit from having 3D models of seafloor and underwater

objects. Cameras, designed to operate in air, must be put in protective housings to work

underwater. This affects the image formation process. The largest source of underwater

image distortion results from refraction of light, which occurs when light rays travel through

boundaries between media with different refractive indices. This study addresses methods

for accounting for light refraction when using a static rig with multiple cameras. We define

a set of procedures to achieve optimal underwater reconstruction results, and we analyze the

expected quality of the 3D models’ measurements.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

It is estimated that 71% of Earth is covered by water. However, despite all the efforts

of mankind, a large portion of it remains almost unexplored using modern high resolution

methods. In most regions of the ocean, the water pressure at the seafloor makes it extremely

difficult to operate for humans, further slowing down the process of ocean exploration.

Inexpensive 3D reconstruction of the undersea objects would be extremely valuable for

groundtruthing of underwater video and acoustic data. 3D information allows for the ex-

traction of spatial spectra (i.e., seafloor rugosity, which is considered to be one of the most

important characteristics of marine habitats), and shapes of larger species, such as scallops,

starfish, etc. Quantitatively accurate reconstruction requires careful calibration of individual

cameras and a multi-camera rig. Underwater imaging adds another level of complexity due

to refractive effects on the interfaces between media with different refraction indices. Typi-

cal cameras used for underwater imaging are designed for air, and are encased in waterproof

housings, which causes the light rays that carry information about scenery to be bent by

refraction. This is a nonlinear process governed by Snell’s Law that renders the standard

pinhole camera model invalid. Treibitz et al. [1] show that optical systems with a flat refrac-

tive interface do not have a single viewpoint. Instead, different rays behave as if the camera

has different focal lengths; i.e., is varifocal. Thus, ignoring refraction [3] or attempting to

compensate for refractive effects by standard calibration conducted underwater [4] leads to

erroneous 3D reconstruction. Quantitatively accurate reconstruction is possible only when

1



parameters related to refractive effects are estimated and taken into account during the

reconstruction process.

1.2 Purpose of this Study

A multi-camera system can be used to create a 3D reconstruction from a set of images

captured simultaneously by these cameras. However, it requires intrinsic, extrinsic and re-

fractive calibrations to be performed in advance for each of the cameras. In each calibration

there is an uncertainty in estimating each parameter. This study investigates the uncer-

tainty for measurements of these parameters as well as the ways to improve the accuracy of

calibration.
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CHAPTER 2

ALGEBRAIC GEOMETRY MODELS IN COMPUTER VISION

2.1 Pinhole Camera Model

xc

yc

zc

Fc

X = (X1, Y1, Z1)
>

u

v

x

yz = f

ū

v̄

x = (x1, y1)>

Figure 2.1: Pinhole camera model

We use Figure 2.1 to describe the pinhole camera model. Let the center of projection Fc be

the center of an orthogonal coordinate system. The image plane is located at Z = f . The

line to any point X = (X1, Y1, Z1)> to the camera center Fc intersects the camera’s image

plane at the projection point x = (x1, y1)>. The line from the camera center perpendicular

to the image plane is called principal axis of the camera or the camera axis. Equation 2.1

describes this transformation.

x =KX (2.1)
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where K is called a camera calibration matrix (2.2).

K =


f s x0

0 f y0

0 0 1

 (2.2)

f represents focal length, s is the skew parameter, and x0, y0 is the principal point. The

skew parameter for most digital cameras is zero, and in this thesis is assumed to be zero as

well. The principal point x0, y0 describes where the principal axis of the camera intersects

the image plane as shown in Figure 2.2.

Figure 2.2: Principal point

Transformation between two coordinate system can be described by Equation 2.3

Xcs1 =

R −RC

0 1

Xcs2 (2.3)

where Xcs1 and Xcs2 are coordinates of point X in two different coordinate systems, R

is a [3× 3] rotation matrix and C is the column vector coordinates of the origin of the first

coordinate system in the second coordinate system. Equation 2.1 assumes that the camera

center is located at the origin of the coordinate system. To extend it to a different coordinate

4



system Equation 2.4 is used.

x =


f s x0

0 f y0

0 0 1


[
R | −RC

]
X = PX (2.4)

where P is a projection matrix.

2.2 Lens Distortion

Most modern cameras have a single lens or a system of lenses. The nature of how light rays

refract passing through the lens causes the image to be distorted. It is most noticeable,

if the scene contains objects that have straight line patterns. Due to lens distortion these

lines appear curved on an image. In order to apply the pinhole camera model to an image

acquired by such a camera, images need to be corrected for the distortion caused by lenses.

Figure 2.3: Radial lens distortion: barrel(left), pincushion(right)

The Brown-Conrady model is the most commonly used distortion model. Using Equa-

tions 2.5 and 2.6 we can transform a camera image to match one taken by a pinhole camera.

Brown classifies lens distortion into two types: radial and tangential. There are two simple

types of radial distortion: barrel and pincushion as shown on figure 2.3. Tangential distortion

5



is usually cause by minor misalignments of the optical elements in the camera.

xu = (1 + R1r2 + R2r4 + R3r6)xd + 2T1xdyd + T2(r2 + 2x2
d) (2.5)

yu = (1 + R1r2 + R2r4 + R3r6)xd + 2T2xdyd + T1(r2 + 2y2
d) (2.6)

where R1, R2, R3 are radial distortion coefficients, T1, T2 are tangential distortion coefficients,

xu, yu and xd, yd are coordinates of the undistorted image point and distorted image point

on an image plane accordingly, and r is the distance from the distorted image point to the

principal point (Equation 2.7).

r =
√

(xd − x0)2 + (yd − y0)2 (2.7)

2.3 Camera Calibration

Camera calibration is the process of estimating parameters discussed in Sections 2.1 and 2.2.

There have been multiple efforts to develop a robust algorithm for calibrating cameras [5–8].

However, in modern computer vision, Zhang’s method [5] is the most widely used. This

method requires a planar calibration object with easily detectable features, and a known

geometry of those features, in contrast to many of the previous methods that require more

complicated calibration object or previous knowledge about the geometry of the scene. The

chessboard pattern is often used for these purposes.

6



Figure 2.4: Calibration images

Zhang’s method requires multiple images of the calibration object to be taken at different

poses, by either moving the calibration object or the camera itself as shown on Figure 2.4.

The projections of feature points are then detected in each image. In the final step calibration

software is used, wgich consists of a closed-form solution step and a nonlinear refinement

step to obtain the estimates of the cameras’ parameters.
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CHAPTER 3

REFRACTION

Whenever we look at an object submerged in water from above the water level, that object

appears to be closer to us than it really is. This effect happens due to a phenomenon called

refraction. Refraction occurs when the light ray passes through an interface between two

materials in which light travels at different speeds. At that point the light wave velocity

changes, but the frequency stays the same. Snell’s law (Equation 3.1), also known as law of

refraction, describes the relationship between the angles of incidence of the light ray before

and after passing the the interface between two media.

µ1sinθ1 = µ2sinθ2 (3.1)

where µ1, µ2 are the refractive indices and θ1 and θ2 are incidence angles. Figure 3.1

shows how the light ray changes its direction when passing through the interface between

two media with different refractive indices (µ1 < µ2).

8



Figure 3.1: Snell’s law

From Snell’s law we can see that only light rays that are perpendicular to the interface

between two media do not change their direction.

3.1 Flat Port Housing Geometry

A typical flat port housing consists of a waterproof case with a flat transparent material (e.g.

glass) for the camera to look through. The camera is installed inside the housing, so that it

faces the glass and the camera axis is nearly perpendicular to the glass surface. Inside the

housing there is either air or vacuum. In this case, when the camera is submerged in water,

light rays travel through two parallel interfaces — one between water on the outside of the

housing and glass, and one between glass and air inside the housing. Figure 3.2 shows the

refractive geometry of a flat port housing. The distance to the interface d0 is the shortest

distance along the interface normal between the camera center and the glass surface, and

d1 is the thickness of the glass medium. Snell’s law is symmetric, meaning that the light

ray traveling from the camera center to the object point has the same path as the light

ray traveling in the opposite direction. In reality, the camera sensor captures the light ray

9



reflected from the object point, but it is more convenient to observe the ray in the direction

from the camera center to the object point. Rays v0, v1, v2 show the path of the light ray

that enters the camera center after being reflected from the object point. We know that

refraction occurs when the light ray passes through both air-glass and glass-water interfaces.

Hence, Snell’s law can be applied to both refractions:

µ0sinθ0 = µ1sinθ1 = µ2sinθ2 (3.2)

10



µ1

µ0

µ2

d1

d0

z axis

x axis

interface normaloptical axis

camera

θ0

θ1

θ2

object point

ray v0

ray v1

ray v2

Figure 3.2: Flat port housing geometry

Agrawal et al. [9] shows that the flat port housing refraction system is an axial camera

system, where the axis is defined as the line parallel to the interface normal and passing

through the camera center. We refer to this axis as the interface normal axis. This means

11



that every segment of the light ray path and the interface normal axis lie in a single plane π

called the plane of refraction (POR).

3.1.1 Forward Projection

The process of projecting a point in the world onto the image plane of the camera is called

forward projection. Agrawal et al. [9] observe three cases of refractive environments. Case

1 is a single refraction case (µ1 6= µ2). In case 2 there are two refractions, but the refractive

index of the first layer is the same as the third layer(µ1 6= µ2, µ1 = µ3), which corresponds to

a flat port housing system in air. And in case 3 there are three layers, each with a different

refractive index, which corresponds to a flat port housing system in water. Agrawal et al. [9]

derive a polynomial equation for each case. For cases 1 and 2, the equations are 4th degree,

and for case 3 it is a 12th degree equation. Yau et al. also propose an optimization solution

for the forward projection [10].

3.1.2 Backward Projection

The process of computing the directions of each of the segments of the refracted ray is called

backward projection. Finding the geometry of a ray is a typical problem for ray tracing. The

direction of the ray from the camera to the first refractive interface can be acquired using

the camera calibration matrix using Equation 2.1. A recursive algorithm is then applied to

find the direction of each segment, using Equation 3.3 [11].

vi+1 = ai+1vi + bi+1n (3.3)

where

ai+1 = µi/µi+1, (3.4)

bi+1 =
−µivin−

√
µ2
i (vin)2 − (µ2

i − µ2
i+1)vi · vi

µi+1

. (3.5)

12



CHAPTER 4

REFRACTIVE CALIBRATION

In the case of a flat port interface, the refractive parameters consist of:

• Refractive indices of air, glass and water

• Distance from the camera viewpoint to the glass interface

• Glass layer thickness

• Normal to the plane of the glass interface

Refractive calibration is aimed at estimating these parameters. Various research focused on

calibration for one or more of the refractive parameters. The refractive indices are usually

assumed to be known. Treibitz et al. [1] suggest a calibration method, in which the camera

is oriented normally and the glass thickness is negligible. Gedge et al. [12] and Chen et

al. [13] use stereo matching for calibration. Yau et al. [10] use a calibration target that emits

disparate wavelengths of light. Agrawal et al. [9] propose an analytical solution using an

axial camera model. Most algorithms have a nonlinear refinement procedure to minimize

either reprojection error or 3D error of the calibration object features.

4.1 Pinhole Camera Model Approximation

When a camera is submerged in water the field of view decreases. Straight lines become

curved, which is similar to the effect of pincushion radial distortion. Many researchers

consider that refraction can be taken into account by using the pinhole camera model with

modified field of view and distortion coefficients [14–18].

13



The pinhole camera model assumes that the camera has a single view point (SVP).

Treibitz et al. [1] show, however, that a camera placed in a flat port housing corresponds to

a non-SVP camera model as shown on Figure 4.1.

physical lens
position

interface

n

apparent viewpoint?

apparent viewpoint?

Figure 4.1: Non-SVP nature of flat refraction model [1]

Dolereit et al. [19] describe a method of converting an image taken underwater to an

image as if it was taken in air. This approach works if the object captured by the camera is

flat. In most situations, however, 3D reconstruction is performed for objects with a complex

structure. In this case, the ”look behind the corner” phenomenon can be observed as shown

on Figure 6.2 in which point X1 is visible if the image is taken underwater, but is not visible

when taken in air..
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object point X1

camera

Figure 4.2: ”Look behind the corner” phenomenon

Point X1 will be visible if the image is taken underwater, however if the image was

captured in air it would be occluded.

4.2 Calibration Method by Agrawal et al.

One of the most comprehensive existing calibration methods was developed by Agrawal et

al. [9], because it allows the estimation of almost all of the refractive parameters.

vp2 ×
[
vp0/c0 vp1/c1 zp

]
d0

d1

α

 = −vp0 × u (4.1)

where vp0, vp1, vp2 are segments of the refracted ray in air, glass and water respectively,

zp = [0; 1] is a unit vector, cn = vp>n z1, d0 is the distance to the glass, d1 is the thickness

of the glass, α is the translation magnitude along the refractive axis and u = [z>2 Pc, z
>
1 Pc] is

15



the projection of the feature point Pc on POR. In the end a nonlinear optimization is used

to improve the accuracy of estimated parameters. The optimization algorithm minimizes

reprojection error for each detected feature as shown in Equation 4.2.

J(R, T, d0, d1, n) =

√√√√ 1

K

K∑
i=1

(p(i)− p̂(i))2 (4.2)

4.3 Calibration Method by Traffelet et al.

Traffelet et al. [20] proposes a calibration method that is based on acquiring multiple images

of a calibration object with different camera poses for each image. This approach is similar

to intrinsic camera calibration method by Zhang [5]. Nonlinear optimization is performed for

a sequence of images. Camera pose is estimated for each image, while housing parameters

optimized for all images simultaneously.

4.4 Multi-Camera Rig Calibration Method

The method proposed by Agrwal et al. [9] gives an accurate estimate of the normal to

the interface. However, the error in estimating the distance to the interface can be quite

significant. We propose a new calibration technique for a multi-camera system with fixed

poses of the cameras with respect to each other. Our calibration method extends the work

presented in [9].

4.4.1 Glass thickness

Most flat port underwater housings have a nonzero distance from camera center to glass, as

well as a nonzero glass thickness. However, in most situations the thickness of glass is known

from the housing specifications, therefore it does not need to be estimated. The equation

4.1 can be changed to equation 4.3, where d0 and α need to be determined.

16



vp2 ×
[
vp0/c0 zp

]d0

α

 = −vp0 × u− vp2 × (vp1/c1)d1 (4.3)

4.4.2 Distance to the interface

The method described in [9] gives an exact solution in the absence of noise in the detected

calibration object features. However, even as little as 0.1 pixel Gaussian noise leads to

significant errors in estimating the distance to the interface. We conducted a simulation

experiment to explore how the error in distance to the interface affects the reprojection

error. In the optimization step of the refractive calibration the distance to the interface

parameter is fixed for a given realization, and incremented by 1 mm for the next realization.

All other parameters are optimized. In the experiment, the ground truth distance to the

interface is d0 = 100 mm, and the calibration object is located 800 mm away from the camera

normally oriented to the optical axis. The location of detected feature projections is known.
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Figure 4.3: Reprojection error due to incorrectly estimated distance to the glass
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Figure 4.3 shows the results of the simulation. It is obvious that even when the distance

to the interface is estimated with error of 300 mm, the reprojection error is less than 0.06

pixel, which is significantly smaller than the noise usually present in the detected feature

projections from real images. It can be observed that when the distance to the interface

increases, the estimated distance to the calibration object decreases, as seen in Figure 4.4
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Figure 4.4: Optimal distance to the calibration object for incorrectly estimated distance to
the glass

It has been shown in [9] that in the air/layer/air scenario the distance from the camera

center to first refractive interface cannot be determined because in this case feature projec-

tions are not affected by this parameter. We have found that in water the refractive-related

distortions due to change of this distance can be compensated by the change of the distance

to the calibration object. Thus, even moderate noise in measurement of features’ projections

is stronger than the difference between refractive distortions related to these two factors and

may lead to significant errors in determination of refractive parameters. This, however, is
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true for a single camera. For a multi-camera rig with verged cameras, extrinsic parameters

can be accurately estimated in air, where the viewport layer leads only to relatively small

parallel shifts of all light rays. These estimates act as additional constraints in an overall

optimization procedure by restricting distance to the calibration object, and hence the dis-

tance to the refractive interface as well. It is worth noting that cameras without vergence do

not have the additional constraints and noise in images reduces the accuracy of determined

refractive parameters in the same way as for a single camera.

4.4.3 Calibration procedure

The following steps must be taken to calibrate a camera rig:

1. Acquire a set of images of a chessboard pattern calibration target in air in different

poses. The images have to be captured simultaneously by all cameras.

2. Repeat the previous step with underwater images.

3. Obtain the estimates of the unknown parameters, using the method described in [9].

4. Perform an overall nonlinear optimization

For each set of images from all cameras, the relative poses of the cameras are the same,

and thus for each pose of the calibration object we only need to estimate the pose of one

camera with respect to the target. Our method can be used in combination with the method

described by Traffelet [20] by taking multiple sets of images both in air and underwater

to further improve the accuracy. The function that minimizes by nonlinear optimization is

shown in Equation 4.4.

J(Wcam(1..m−1),Wpose(1..k), dcam(1..m), ncam(1..m)) =
1

K

K∑
i=1

(p(i)− p̂(i))2 (4.4)

where Wcam is the position of the cameras (R, T ) in relation to the camera that is assigned

to be the main camera, Wpose is the position of the main camera in relation to the calibration
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object, dcam is the distance to the interface for each camera, n is a normal unit vector, m is

the number of cameras, k is the number of poses, p is the detected feature point and p̂ is the

point acquired from the forward projection, K is the number of feature points.

K = sxsymn (4.5)

where sx, sy denote the number of squares on a chessboard pattern calibration object, hor-

izontally and vertically respectively. To initialize the optimization, the estimates acquired

using [9] are used. In our implementation of the calibration method we use the Leven-

berg–Marquardt nonlinear optimization algorithm, implemented by Lourakis et al. [21].

4.5 Single Camera Calibration Method

In the multi camera rig calibration method the relative poses of the cameras with respect to

each other act as an additional constraint. It is also possible to add an additional constraint

for the case of a single camera. In this case, the calibration object must be fixed with respect

to the camera. Two images are required: one taken in air and one taken underwater. Thus,

it is only needed to determine one camera pose in respect to the calibration object.

J(Wpose, dcam, ncam) =
1

K

K∑
i=1

(p(i)− p̂(i))2 (4.6)

K = 2sxsy (4.7)

4.5.1 Refractive Principal Point

Using the fixed target calibration method it is possible to obtain the normal to the interface

in a much simpler way than proposed by Agrawal et al. [9]. Figure 4.5 shows an example of

images acquired by using the fixed target calibration method. First, all the points on each

image are bijectively matched and a line is drawn through each pair of points as shown on

Figure 4.6. Note that projections of any feature on two images taken by the same camera are
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in a plane of refraction and thus lie on a line that also passes through the point where the

ray from the focal point and the normal to the interface intersects the retinal plane. Second,

we compute the intersections of all resulting lines.

Figure 4.5: Refractive principal point

The intersections of the lines happen at a single point if no noise is present in the detected

features. However, when noise is present, the line intersections result in a dense point cloud,

from which a single point can be obtained using least squares method. This point is called
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a refractive principal point (RPP) for convenience and it is, in fact, the point where the

refractive optical axis passes through the image plane. Using the calibration matrix we can

obtain the direction of the refractive optical axis, and hence, the normal to the refractive

interface.

Figure 4.6: Refractive principal point

4.6 Simulation Results

In this section we show the comparison of synthetic calibration results. We compare our

two methods of refractive calibration to the one proposed in [9]. For the multi-camera rig

calibration method, three setups were simulated:

1. 2 cameras, 1 image in air, 1 image underwater for each camera

2. 5 cameras, 1 image in air, 1 image underwater for each camera

3. 5 cameras, 4 images in air, 4 images underwater for each camera

A particular scene for the calibration setup was chosen: the cameras have a resolution of

1280 by 720 pixels, focal length varies uniformly between 1540 and 1580, which gives a field

of view of approximately 22 degrees; cameras are located such that one camera is placed
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directly above the calibration object and the other cameras are placed in corners of a square

with a side of 800 mm; the plane of the square is parallel to the plane of ”the floor” where the

calibration object is located; all cameras are pointed at a single orientation point on the floor

that is directly below the central camera; the calibration object is a chessboard pattern with

dimensions of 26 by 17 squares and the square size of 11.94 mm. The chessboard pattern is

placed in close proximity with the orientation point with different orientation for each set of

images, orientations vary with uniformly distributed rotations between 10 deg and −10 deg

around X, Y, Z axes; and the translation also changes uniformly in a bounding box with a

side of 150 mm. We ran 1000 simulations for different noise levels for feature point detection

ranging from 0.0 pixels to 0.5 pixels with 0.1 pixel increment.
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Figure 4.7: Average error in estimation of distance to the interface

Figures 4.7 and 4.8 show the results of the simulation for the estimation of the housing
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parameters. It is noticeable, that even with only two cameras, the rig calibration method

gives superior results in comparison to the method proposed in [9] (corresponds to 1 camera,

1 pose in water). The average error decreases when more cameras are used, as well as when

more images for each camera are used. In case of a single camera calibration method with

a fixed target the error is even smaller, and furthermore rises very slowly when more noise

is present in the detected calibration features. Table 4.1 shows the comparison of error in

estimation of the distance to the interface for 0.5 pixel noise level.
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Figure 4.8: Average error in estimation of normal to the interface
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Calibration method dint average error, mm Accuracy improvement

Ncam = 1, Nwater = 1, Nair = 0 13.7

Ncam = 2, Nwater = 1, Nair = 1 5.1 166%

Ncam = 5, Nwater = 1, Nair = 1 1.5 792%

Ncam = 5, Nwater = 4, Nair = 4 0.7 1783%

Ncam = 1, Nwater = 1, Nair = 1, fixed 0.3 4085%

Table 4.1: Comparison of error in estimation of the distance to the interface for 0.5 pixel
noise level

25



CHAPTER 5

3D RECONSTRUCTION

3D reconstruction is a process of extracting information about shape and appearance of

an object. The methods of 3D reconstruction can be divided into two categories: active

and passive. Active methods are based on using either mechanical or radiometric range

finders. Such methods actively interfere with an object. In contrast, passive methods are

non-invasive. Usually a camera sensor is used to measure the characteristics of light reflected

from the object. There are multiple cues that can be used to extract 3D information from

a 2D image. Monocular techniques are based on using a single image. They can use shade,

silhouette, or texture as the cues. Multiview methods of 3D reconstruction use multiple

images. They can be images produced either subsequently by the same camera, or by

different cameras. This study focuses on multiview reconstruction from images capture by

cameras that are statically fixed on a rig.

5.1 Multiview Reconstruction

Multiview reconstruction has been one of the most popular topics of research in computer

vision for years. There are multiple applications of this technology: maps with 3D models

of buildings and other objects, special effects in the movie industry, archaeology site virtual

reality tours and many others. Figure 5.1 shows an example of 3D reconstruction. We will

discuss some of the fundamental principles of multiview reconstruction.
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Figure 5.1: Point cloud of a house model acquired from 3D reconstruction [2]

5.1.1 Triangulation

In a system where point X can be observed by two cameras the projections x1, x2 of this

point appears on the image planes of both of the cameras as seen in Figure 5.2.

X

x1 x2

Figure 5.2: Triangulation
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Hence, we can use Equation 2.4 to derive a constraint:


x1 = P1X

x2 = P2X

(5.1)

where P1 and P2 are the projection matrices of the cameras. Given the exact x1, x2,P1,P2

it is possible to find the exact coordinates of point X. However, in real life all parameter

measurements have an error, which causes the lines (L1, L2) connecting detected feature

points x′1, x
′
2 and camera centers to not intersect. In this case optimal triangulation methods

are used to estimate the location of point X in space. The linear transformation method

suggests solving the resulting linear equation by obtaining the least squares solution. The

mid-point point is based on minimizing the sum of squares of the Euclidean distances between

Xest and the lines L1, L2 as shown in Equation 5.2.

J = d(L1, X)2 + d(L2, X)2 (5.2)

Other more complex techniques were proposed, such as a polynomial method, minimizing

the sum of the magnitudes of distances and others. Hartley and Strum [22] give an overview

of comparative performances of the most used algorithms.

5.1.2 Epipolar Geometry

Consider a scene, where two cameras observe a point in space X as shown in Figure 5.3. The

points eL, eR are the intersections between the lines connecting the camera optical centers

and respective image planes of left and right cameras. These points are called the epipoles.
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Figure 5.3: Epipolar geometry

A line CLX appears as a point on the image plane of the left camera. For the right

camera, however, it appears as a line eRxR, which is called the epipolar line. In fact, all

epipolar lines pass through the epipole eR. This relation can be written in Equation 5.4.

x>RFxL = 0 (5.3)

where F is called the fundamental matrix. The epipolar line corresponding to point xL can

be expressed as:

lr = FxL (5.4)

5.1.3 Multiview Reconstruction Methods

Over the last twenty years, a variety of different methods and techniques for multiview

reconstruction were developed. These methods differ in performance speed, accuracy and

completeness of reconstruction and other parameters. Seitz et al. [23] provide a comparison

for several algorithms. They categorized the existing methods by the scene representa-

tion, photoconsistency measure, visibility model, shape prior, reconstruction algorithm, and

initialization requirements. They also provide a publicly available benchmark along with cal-

ibrated images and ground truth models captured by the Cyberware Model 15 laser stripe
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scanner.

5.2 Underwater Multiview Reconstruction

Most algorithms for multiview reconstruction are designed to work for images taken in air.

However, as discussed in Chapter 3, refraction has a big impact on image formation for

underwater imagery. Hence, to perform an accurate multiview reconstruction of underwater

objects, the refraction model has to be taken into account explicitly. One of the major

differences with in air images is that straight lines appear curved on images taken by cameras

submerged in water in flat port housings, and as the epipolar lines become epipolar curves

[12,24,25].

In our work, we chose to use PMVS2 software [26] along with the modifications added by

Yau et al. [10] to take refraction into account. Although the original PMVS2 was developed

in 2010, it still compares well to the newer reconstruction methods. In PMVS2 salient

feature patches are extracted from the images. Correlating patches from pairs of images are

checked to satisfy epipolar geometry and triangulated to find their position in space, and

then optimized to improve their orientation in space. The patches are then filtered to satisfy

photometric discrepancy and neighborhood requirements. Yau et al. [10] expanded PMVS2

to explicitly incorporate a physically correct flat port housing refraction model. Housing

parameters, estimated from refractive calibration were added as additional input parameters.

The main changes were made in initial feature point matching, point triangulation, patch

projection and sampling, and patch neighbor radius determination. Rays are triangulated

using refractive forward projection. These modifications allow the acquisition of multiview

reconstruction results for underwater imagery, similar to the ones from images captured in

air.
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CHAPTER 6

UNCERTAINTY IN UNDERWATER 3D RECONSTRUCTION

Before performing a 3D reconstruction from images taken underwater by a multi-camera rig

the system has to be calibrated. A complete calibration consists of a series of steps, during

which the camera intrinsics and extrinsic parameters, as well as the housing’s refractive

parameters have to be estimated. In each calibration step an error is introduced, and the

error from each of the previous steps propagates to the subsequent ones. Because of those

factors, finding an analytical solution to estimate the uncertainty in the 3D reconstruction

can be very difficult.

Accuracy of 3D reconstruction depends not only on the hardware used for image acquisi-

tion, but also on the scene being imaged. Four major scene properties can be distinguished:

spatial frequencies and contrast of a texture and 3D structure (or Digital Elevation Model)

respectively. All of these are closely intertwined with the hardware capabilities. For exam-

ple, high texture contrast is clearly important for reconstruction, but algorithms failing with

8-bit imagery may be successful with images having 16-bit per pixel per channel. Generally,

substantial distance between cameras (baseline) makes reconstruction more accurate, but to

resolve a deep narrow crevasse cameras should have a small baseline, and the imagery with

low resolution may not resolve the crevasse at all. The great variety of possible scenarios

and the impossibility of formulation an analytical model due to a complex image forming

process does not allow for devising universal reconstruction optimization rules. This research

resorts to numerical simulation and thus is applicable only to a limited set of imaged scenes

and hardware configurations. However, the spatial frequencies and contrast levels are chosen
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to be similar to those that are encountered in reality, and the tendencies that are reported

are likely to hold for a wider set of conditions than the experiments were conducted for.

More accurate estimates of uncertainties can be obtained by modeling specific hardware and

typical characteristics of the 3D scene that needs to be reconstructed.

6.1 Monte Carlo Method

The Monte Carlo method is a computational technique that requires multiple random sam-

pling in order to estimate the probability distribution of the possible results. This method

is useful when an analytical solution of a problem is too complicated. Areas of applica-

tion include calculating risks in business and financing, exploring the properties of physical

and chemical processes, mathematical optimization, and others. In general, a Monte Carlo

algorithm follows these steps:

1. Define parameters of a process that are random in nature

2. Define probability distributions of these parameters

3. Generate random parameter values from the distributions

4. Numerically process the values in accordance with the explored process or model

5. Process the output

6.2 Monte Carlo Simulation Framework

We developed a software framework that allows us to simulate each of the required calibration

steps, along with a final step of creating a 3D model from synthetic images. Each realization

of the simulation framework goes through the following steps:

1. Generate a set of ground truth parameters for each camera with uniform distribution

for each camera in a given range.
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• Intrinsic parameters

• Extrinsic parameters

• Refractive parameters

2. Generate a set of feature projections of a calibration object. Poses of the cameras in

relation to the calibration object are uniformly distributed in a given range. Gaussian

noise is added to simulate the error in feature detection.

3. Generate a set of feature projections of a calibration object, as if the cameras were

enclosed in a protective housing and the images were taken in air and underwater. R,

T of the cameras in relation to the calibration object are uniformly distributed in a

given range. Gaussian noise is added to simulate the error in feature detection.

4. Obtain a set of estimated intrinsic parameters through intrinsic calibration

5. Perform refractive calibration, acquire a set of estimated refractive parameters and

extrinsic parameters through refractive calibration.

6. Generate a set of images of a 3D model

7. Perform a 3D reconstruction using the estimated parameters from previous steps.

6.2.1 Embree Ray Tracer

For generating images that are affected by refraction, the Embree ray tracing technology

developed by Intel [27] was used. The Intel Embree kernel supports assigning a material to

any surface, with a variety of properties. To simulate a camera placed in a flat port housing,

two square polygons were placed in front of the virtual cameras. The polygons were assigned

a material that is transparent, but causes the light rays to be refracted which corresponds

to a physical process, happening in a real life situation, when a camera captures an image

underwater.
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Figure 6.1: Intel Embree generated images

Figure 6.2: Point cloud from 3D reconstruction
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6.3 Simulation Results

A camera setup, described in Section 4.6, was used for Monte Carlo simulations. The object

was rendered at a distance of 900 mm directly under the central camera. For refractive

calibration the multi-camera rig method was used with one image in-air and one in-water

for each camera. Figures 6.3-6.11 show the histograms of error distributions for various

parameters. The iterative closest point algorithm was used to adjust for the error in the

location of the 3D model.
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Figure 6.3: Distance to the interface error
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Figure 6.4: Normal to the interface error
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Figure 6.5: Translation along Z axis error
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Figure 6.6: Translation along X and Y axes error
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Figure 6.7: Rotation error
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Figure 6.8: Mean error of 3D reconstruction
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Figure 6.9: Standard deviation of 3D reconstruction
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Figure 6.10: 70 percentile absolute maximum error, mm
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Figure 6.11: 80 percentile absolute maximum error

Strong correlation was found between the average error of the estimated distance to the

glass interface of the cameras and the error in the location of the reconstructed 3D model

as shown on Figure 6.12.
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Figure 6.12: Intel Embree generated images

As expected, the reconstructed 3D models had a relatively small error, with the majority

of the reconstructed points being within 1 mm of the groundtruth. Small errors in the

calibration did not severely affect the accuracy of the 3D reconstruction. However, this may

not be the case if the error in the calibration is more significant or a different camera setup is

used. For any given camera setup, the simulation framework allows to estimate the quality of

3D reconstruction from real underwater imagery, which can be used during the preliminary

stages of the multi-camera rig design.
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CHAPTER 7

REAL EXPERIMENTS

A rig was constructed for conducting underwater experiments. Underwater flat port housings

were built to protect the cameras from water. The housings were attached to the rig using

flexible clasps. e-con Systems See3CAM CU30 cameras were put into housings so that each

camera has a slightly different distance to the glass interface and normal. Cameras have a

USB 3.0 interface. All cameras connect to a USB hub with a 6ft cord. The hub is connected

to a PC. We developed software that allows images to be taken from the cameras almost

simultaneously.

A calibration target with a chessboard pattern was etched on a flat anodized aluminum

panel. The size of each square S = 11.994 mm. The dimensions are 27× 18 squares, which

effectively means 432 detectable feature points.

All the underwater experiments were conducted in the UNH School of Marine Science

and Ocean Engineering water tank. The rig was submerged in water using a crane.

7.1 Calibration Results

Two methods proposed in Chapter 4 to estimate the refractive parameters of the camera

were used as well, as the method proposed in [9] for comparison. For the multi camera

method we used four in-water and four in-air images. Table 7.1 shows the results of the

calibration for 30 realizations. As expected, the fixed target calibration method gives very

robust results. However, the multi-camera method also gives better results compared to the

method proposed by Agrawal et al. [9].
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# camera Multi-camera method Fixed target method Method by Agrawal et al.
mean σ mean σ mean σ

1 27.2 3.2 26.8 0.1 33.2 32.1
2 20.5 2.3 20.1 0.2 28.5 45.2
3 26.1 2.8 26.2 0.1 44.8 20.9
4 33.2 2.9 31.3 0.3 22.8 40.1
5 24.8 2.2 24.7 0.2 24.1 29.4

Table 7.1: Refractive calibration results

7.2 Multiview Reconstruction

Five images of a fish model captured underwater were used to perform a 3D reconstruction.

To obtain groundtruth we performed a 3D reconstruction of the model in air, as well as

captured the model using Kinect2 hardware. Unfortunately, the resulting Kinect2 model

was of noticeably poor quality. Hence, the comparison with the Kinect model is omitted.

Figure 7.1: Images for multiview reconstruction

500 realizations of Monte Carlo simulations were ran for a system closely resembling the

one we used for real experiments and compared the quality of thereconstructed 3D models to

the one obtained from a real experiment. A methodology used by the Middlebury archive [23]
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was applied to evaluate the quality of reconstruction. Table 7.2 shows the maximum absolute

error for 70, 80 and 90 percentile.

Monte Carlo simulations Real experminet

70%, mm 1.16 1.38

80%, mm 1.55 1.95

90%, mm 2.37 3.43

Table 7.2: Accuracy of underwater 3D reconstruction

Figure 7.2: 3D model acquired using refractive PMVS2
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, we proposed two novel methods for refractive calibration of a flat port housing.

Both methods use a simple chessboard pattern and give more accurate estimates of the

refractive parameters in comparison to the existing methods. A Monte Carlo simulation

framework was developed to investigate the effects of error in the calibration and the quality

of 3D reconstruction for a chosen multi-camera setup. We found that error in the distance

to the refractive interface affects the location of a reconstructed model.

We focused our research on flat port housing modeling. However, often underwater

imagery is acquired using hemispherical port housings. Although, such housings are supposed

to compensate for the refraction effects due to the fact that all light rays passing through

the refractive interface perpendicularly, it can only work if the camera’s optical center is

located precisely at the center of the hemisphere. In real life, it is impossible to achieve

that, and therefore it could be useful to use a refractive model, which explicitly incorporates

the shift of the optical center of the camera with respect to the hemisphere. We plan to

investigate how such a shift affects the quality of 3D reconstruction and a possibility of using

the proposed flat port housing calibration methods to estimate the refractive parameters of

a hemispherical housing.
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