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ABSTRACT 

A MOLECULAR ORBITAL STUDY OF 

5-FLUOROURACIL AND RELATED COMPOUNDS

by

FRANK BLOCK 

University of New Hampshire, May, 1980

5-fluorouracil is a chemotherapeutic agent which is used in the 

treatment of disseminated colon and breast cancers, As an antimetabolite 

it has been found to inhibit the mechanism in which the normal substrate 

reacts with the enzyme and a cofactor in nucleic acid synthesis, A 

number' of mechanisms have been summarized describing the conversion of 

deoxyuridylate (dUMP) to deoxythymidylate (dTMP), elucidating the role 

of the involved enzyme, thymidylate synthetase, and the co-factor,N^, 

N^-methylenetetrahydrofolate, The effect of replacing the hydrogen 

bonded to the 5-position of the pyrimidine ring by a fluorine atom is 

also mechanistically described, A molecular orbital study employing the 

CNDO/2 approximation was performed on 5-fluorouracil, uracil, and thymine 

and the results support the mechanisms and chemical effects drawn from 

the literature which center around the bond polarization of the 5,6 double 

bond of uracil, The electronic effects of fluorine substitution (in 5- 

fluorourac.il) are also consistent with formation of a more stable enzyme- 

substrate complex and with favorable kinetic competition of 5-fluorouracil 

with uracil for the enzymatic nuclcophilic site.

vi i



SECTION I 

INTRODUCTION

Since nucleic acids play a principal role in the division 

and growth of the neoplastic cell, scientific research has addressed 

itself to the discovery of chemical substances which alter or in­

hibit the mechanisms controlling malignant cell division. Such 

substances are antimetabolites - structural analogs of normal 

metabolites for specific enzymes. The normal metabolite becomes 

displaced so the enzyme cannot carry out its normal function in 

nucleic acid synthesis. Antimetabolites may also interfere with 

normal cellular metabolism by fraudulent incorporation as a 

building unit.

1



SECTION II

BIOCHEMICAL CONSIDERATIONS OF 5-FLUOROURACIL 

AND RELATED COMPOUNDS 

' Introduction

In 1954 Rutman and co-workers* reported an increased utilization

of uracil (Fig. 1) for nucleic acid biosynthesis in a rat liver tumor.
2Two years later Cohen and Bamer conducted studies of "thymineless 

death" in E. coli and suggested the use of compounds in cancer 

chemotherapy which would inhibit deoxyribonucleic acid (DNA) synthesis. 

Thymineless death refers to cell death caused by unbalanced cell growth 

due to DNA starvation. DNA fails to be synthesized when deoxythymidylic 

acid (Fig. 1) is not produced; however the synthesis of protein and 

ribonucleic acid (RNA) are not affected. Consequently, cellular growth 

is not inhibited, but normal cell division is impaired by absence of DNA.
3In 1957 Heidelberger demonstrated that 5-fluorouracil (Fig. 1) inhibited

14the conversion of C -labelled formate into the methyl group in the bio­

synthesis of thymine (Fig. 1). The resulting paucity of thymine was then
4shown by the same investigator to have a significant effect toward in­

hibiting animal tumor growth. He established that 5-fluorouracil (5-FU) 

was incorporated in the nucleic acids but at that time had not yet deter­

mined whether it was in the DNA or the RNA. It was later demonstrated 

that 5-FU was incorporated into RNA (and not into DNA) in both mouse 

tissues and a human neoplasm^.



. Theory and Method

A. Structural Characteristics of the Antimetabolite

The rationale for choosing 5-FU was based upon the great

stability of the carbon-fluorine bond. The small Van der Waal’s
o

radius of the fluorine atom (1.35 A), which is nearly that of hydro­

gen, produces a molecule nearly isosteric with uracil**. The 5-position 

was chosen for substitution on the pyrimidine ring because of its 

structural similarity to thymine. It was felt that these characteristics 

would facilitate the ability of the antimetabolite to occupy active 

sites on enzyme and that it might interfere with either the synthesis 

of thymine or its incorporation into the DNA.

B. Inhibitory Effect of 5-Fluorouracil and 5-Fluoro-2*-deoxyridine

Further studies corroborated the finding that 5-FU inhibited both
14the conversion of uracil 2-C into DNA thymine and,to a lesser extent,

7RNA uracil in mice-bearing transplants of Ehrlich ascites carcinoma .
14It also completely inhibited the conversion of C formate into the

methyl group of DNA thymine in spleen and tumor.

Since 5-FU and 5-fluoro-2'-deoxyuridine (Fig. 1) both inhibit
14the incorporation of uracil 2-C into DNA thymine - but not significantly 

into RNA uracil when administered in chemotherapeutic doses to intact 

animals bearing malignant tumors - it follows that the inhibitory effect 

of fluorinated pyrimidines on the synthesis of DNA is responsible for the
g

antimetabolic behavior .

C. Metabolism of 5-Fluorouracil

The biosynthesis of deoxyuridylic acid (dUMP) and its conversion
9 10to deoxythymidylic acid (dTMP) is amply described in biochemistry texts ’

/

3
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The methylation takes place in the presence of thymidylate synthetase

and N̂ , N*— methylenetetrahydrofolate (which is oxidized to the

dihydrofolate). However, when 5-FU is introduced and competes with

the normal metabolite (Fig. 2), the synthesis of DNA is inhibited.

5-FU is converted to 5-fluorouridine (5-FUR) (Fig. 1) followed by

phosphorylation to the mono-di-, and tri-phosphates (Fig. 2). This

incorporation into the nucleic acid pool is the source of the aberrant

RNA. The monophosphate (5-FURMP) is also reduced to S-fluoro-21 -

deoxyuridylic acid (FUdRMP)*. The latter may also be formed directly

by phosphorylation of 5-fluoro-2' - deoxyuridine (FUdR). FUdRMP does not

phosphorylate any further. It is the FUdRMP which is considered to be

responsible for the antineoplastic activity of 5-FU by inhibiting DNA
11 12synthesis via thymidylate synthetase blockage ’ . The catabolism

of 5-FU is similar to that of uracil (Fig. 2). Consequently, normal 

degradation of FUdR and 5-FU occur by processes analagous to uracil 

(Fig. 2), so that effects from the breakdown of these materials are 

not implicated in the observed antineoplastic activity.

D. Unique Potential for Thymidine Interdiction

The novelty and uniqueness of thymidine nucleotide as opposed 

to the other nucleic acids reside in its singular pathway of formation. 

That is, in contrast to all other deoxribonucleotides of DNA, it is 

not synthesized by phosphorylation and reduction of the ribonucleoside 

monophosphate. Rather, it is synthesized by "modification of the 

pyrimidine base". Therefore, successful research thrust in cancer 

chemotherapy has centered around analogs of precursors to deoxythymidyHc 

acid. Further, the detailed findings related to the mechanisms of action

*The reaction proceeds via a multi-step pathway involving a reduction 
to the deoxyribose form at the diphosphate level.
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of the chemotherapeutic precursor antimetabolite fluorouracils

are substantially explained in the observation concerning the mechanism

of thymidine-forming reactions catalyzed by thymidylate synthetase.

Results

Aside from the results of quantitative studies of enzyme kinetics
12-25and radioactive tracers a number of mechanisms are available in

the literature and may be briefly summarized as follows: Friedkin and
18Komberg postulated a mechanism involving the formation of an inter­

mediate containing a methylene bridge between deoxyuridylate and tetra- 

hydrofolate joining carbon 5 of the pyrimidine and nitrogen 10 of the

p ter id in e  u A ^ c h 2 - n — t h f a

dRP= deoxyribose-5-phosphate
d R P

This would be followed by an intramolecular rearrangement and reductive

cleavage, giving rise to dihydrofolate and thymidylate. Pastore and 
19Friedkin then established experimentally that tritium is transferred

from tetrahydrofolate to the methyl carbon of the pyrimidine. Consistent

with Friedkin's mechanism and based on labeling experiments, Lorenson 
20et al suggested an intramolecular hydride ion transfer from the 6

position of the pteridine, 
dRP

H

OH

H*tf
i
H

*In a later paper (see ref. 25) the methylene bridge was postulated to 
be between carbon 5 of the pyrimidine and nitrogen 5 of the pteridine.



Kalman suggested a mechanism consistent, but not compelling, 

with active participation of a sulfhydryl group in the reaction 

catalyzed by thymidylate synthetase. His reasoning was based upon 

catalyzed label scrambling at position 5 of deoxyuridylate, observed 

by the mock ’’sulfhydryl enzyme", glutathione. The action of the

active site was pictured as follows:

H S -

d R P  n̂ : b - dRP dR PH B -
dRP = deoxyribose-5-phosphate 

B - basic group of the enzyme 

C = one carbon unit
27Langenbach et al concluded on the basis of: a. methylene-

tetrahydrofolate requirement and b. extreme stability of the ternary 

enzyme-methylenetetrahydrofolate-fluorouridylate complex (indicating 

covalent bonds on the ternary complex) that a product of the following 

type exists:

f-f-NOH
CH

N u - E N Z
d R P

This type of intermediate was also postulated for the normal enzyme reaction.



28Wilson and Mertes worked with chemical analogs (models) of the

binary complex of uridylic acid-methylenetetrahydrofolate. They showed 

that pyrolysis in̂  vacuo (200°C) or reflux in high boiling solvents 

yielded thymine analogs by "hydride shifts", e.g.

0 O §

1. R =R0=R =R =H1 2  3 4
2. R1=R3=R4=H;R2=CH3

3. R1=R2=H;R3=R4=2H

A
"h

R 3

4. R-=R =R =H;R = H 2 3 4 1

5. R.=R =R =H1 2  4
6. R1=R4=H;R2=CH3

7. Rx=R2=H;R4=2H

8. R2=H;R1=R4=2H

9. R3=H

10. R„= Ho

Consequently, they proposed a "hydride shift" mechanism for the action 

of thymidylate synthetase based on an enzyme assist to this "hydride 

transfer" on the preformed binary complex of uridylate and metnylene- 

tetrahydrofolate as follows:

H

R = CH2-NH-C^H4-CO-glutamyl. R' = 1-(5-phospho-21-deoxyribosyl).

Labeling in their system gave results suggesting both intramolecular 

and intermolecular rearrangements. (The situation may, however, be different 

in the less thermal enzyme reaction).
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They proposed an alternative,less credible mechanism for formation 

of the complex involving parallel aromatic tt - complexing of an 

N— formiminium tetrahydrofolate ionic intermediate with dUMP followed 

by reaction with the enzyme to "rehybridize" the methylene on ternary 

complex formation, e.g.

H - N

ENZYME

Sommer and Santi , based on amino acid analysis of an active site 

peptide from thymidylate synthetase, concluded that the nucleophilic 

functional group of the enzyme must be threonine hyroxyl or histidine 

nitrogen. They speculate poorly about the mechanism. If their results 

can be considered to be indicative, the histidine attack seems more 

likely, since the intermediate would then more readily decompose to 

products (histidine providing a more active intermediate for displacement 

than threonine). The prosthetic group sequence was Thr, His, Ala, Leu, 

Pro^. However, their results do not seem to have received either prior 

or subsequent support.



30..Santi, McHenry and Sommer stressed the possibility of FdUMP 

binding to enzyme which in some way "stimulates" build-up of an 

iminium cation, viz:

10-CH = FAH

A mechanism in which a reactive exocyclic methylene group on

the uracil heterocycle is formed as an intermediate has been
31postulated by Santi and Pogolotti . They have described "carbonium

ion" - like ionizations of methyl-substituted thymines of the following

types:

CH*X
X = acetoxy or p-nitrophenoxy 

Rx = CH3 or H

R2 = CH3 or H

When was H, the methoxide or borohydride-catalyzed displacement 

of X was facile, but when R^ was methyl, the reaction was difficult.

The substitution at R2 was not critical. These results are consistent 

with ionization at the 1-position followed by internal nucleophilic 

ionization, viz: Q
CHz.X

e

Although described as "carbonium-ion like", the reaction has virtually 

no indication of such an intermediate. The authors likened the more 

sluggish reaction (Rj=CH3) to the thymidylate synthetase reaction with 

deoxyuridylate which proceeds by nucleophilic addition to the 6-position.
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32Several years later the same authors again provided evidence 

for easy formation of exocyclic double bonds in thymine derivatives 

with a leaving group (p-nitrophenoxy) on the 5-methyl group. The 

necessity of the N-l anion precludes this mechanism (or analogues) 

for natural occurrence in the thymidylate synthetase-catalyzed reactions 

of uridylic acid. Nevertheless, the authors idly speculated concerning 

the relationship of these studies to the thymidylate synthetase enzymatic 

nucleophilic attack to generate an active nucleophilic intermediate. The 

intermediate then attacks the induced methylene-iminium ion arising from 

methylenetetrahydrofolate. The retrogressive scission of the adduct 

produced an exocyclic methylene which was reduced by the eliminated 

tetrahydrofolate (hydride ion transfer), yielding the product carbanion 

which eliminates the enzyme by anionization.

folate CH*H4-

CH3 (-k &
N-/ S<-r

All pyrimidine structures have a 1-(5-phospho-2•-deoxyribosyl) substituent

and R-CHo-NHC.H.C0Glu.Z o 4
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• The Mannich reaction mechanism has been proposed as a model

describing the reaction of thymidylate synthetase, 5-fluorodeoxyuridylic
33acid and 5,10-methylenetetrahydrofolate . In the Mannich reaction 

a primary or secondary amine reacts with a aldehyde (usually formaldehyde) 

and with a compound containing an active hydrogen. In acid solution 

it involves methylene iminium ion (referred to as "carbonium ion"). This 

lends some possible credence to postulated methylene iminium intermediates 

in both the dUMP and FdUMP reactions with thymidylate synthetase and 

methylenetetrahydrofolate. This mechanism lends support to the speculation 

of Pogolotti and Santi. The pertinent mechanism is as follows:

H+

R2NH + HCHO R2NCH2OH r 2n c h2©
H2 ° I

0
IIRC-CH„R'

:0H
r-2c

r2n = ch2 

©

©
c h 2n r 2

©

■R

OH H
« - l  'C-CH„-NR0: 

I 2 2R'

0 H 
II IRC— C-CH„NR0I 2 2

R'

This postulation of this mechanism for the enzymatic reaction involves 

the questionable assumption that the intermediate is generated in a hyperacidic 

environment which is somehow "protected" from immediate destruction by the 

base, water.
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•. In an effort to determine the extent of the reaction when 5-fluoro- 

2?-deoxyuridylic acid is substituted for 2'-deoxyuridylic acid, Dannenberg, 

Langenbach, and Heidelberger^ obtained a difference ultraviolet spectrum 

upon formation of the ternary complex with thymidylate synthetase and 

5,10-methylenetetrahydrofolate. The difference spectrum showed a de­

crease in the absorbance at 270nm providing evidence for saturation of the 

.5,6 double bond of the pyrimidine ring. An additional decrease in 

absorbance at 290nm is attributable to changes occurring in the tetra- 

hydrofolate chromophore. When 10-methyltetrahydrofolate was substituted, 

the difference spectrum showed only an absorption decrease at 270nm.

The data provides confirmation for reversible and nucleophilic addition 

to the 5,6 double bond which is responsible for the binding of 5-fluoro- 

deoxyuridylic acid to the enzyme in the presence of the tetrahydrofolate 

cofactor. The amino acid residue essential for enzyme activity and 

inhibitor binding was shown to be cysteine. The tendency of enzyme to 

add to the 5,6 double bond was given by the extent of tritium exchange

upon reversible addition of nucleophilic C-SH) to the double bond. Sharma 
35and Kisliuk showed that the tetrahydrofolate, upon reduction in the ternary 

complex with 5-fluoro-2'-deoxyuridylic acid gives an increase in the uv 

absorption at 335nm; by titration, the maximum change occurred upon 1:1 

addition of FdUMP. Further addition of FdUMP to the second enzyme site 

caused the dihydrofolate to shift again to the tetrahydrofolate. The 

latter change has not been rationalized.

Discussion

From the above summary it is apparent that there is no dearth of 

speculation concerning mechanisms for the thymidylate synthetase- 

catalyzed reaction. Yet, no decisive information is available which
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would clearly reveal a truly unique mechanism*. The evidence cited 

supports a covalently bound ternary complex of methylenetetrahydrofolate, 

deoxyuridylic acid (or 5-fluorodeoxyuridylic acid), and thymidylate 

synthetase. The following eclectic mechanism appears to be the most

plausible.
COOH 

H~C— N—

1

N — C H z

dRP
K

'-CHN ' C H i
OH

CHa

d R Pd R P dR P

(jJOOH 

H-C—V— CH

d R P
COOH

*Two additional mechanisms without supportive evidence have been suggested 
by IVahba and F r i e d k i n 2 5 .  One involves first the formation of N^-methyl-
dihydrofolate: 5-10-Methylenetetrahydrofolate  > N^-methydihydrofolate
■SME>dTMP + dihydrofolate. In the second mechanism, the thymidylate synthetase 
is first methylated: Enzyme + 5,10-methylenetetrahydrofolate— ^-CH^-enzyme
+ dihydrofolate. CH^-enzyme + d U M P ------------ >  dTMP + enzyme.
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The first step of the reaction is the addition of enzyme sulfhydryl 

to FdUMP at the 6-position of the pyrimidine ring. This carbanionic 

nucleophilic intermediate at the 5-position then attacks methylene- 

tetrahydrofolate, generating the ternary adduct (complex), The decisive 

lesion of the normal process occurs in the next step. That step is 

widely accepted as the elimination of enzyme by an analog to the B2 

process. The final step in the normal process is the formation of the 

deoxythymidylate group by an intramolecular hydride ion, proton, or free 

radical shift from the 6-position of the tetrahydrofolate pteridine ring 

system. The latter step as pictured should be immune to solvent deuterium 

kinetic isotope effect, An experiment using D 2 O would reveal any other 

existing factors contributing to the mechanism which presently is depicted 

entirely as an intramolecular process which only involves 4 atoms.



SECTION III 

QUANTUM CHEMICAL CONSIDERATIONS OF 

5-FLUOROURACIL AND RELATED COMPOUNDS 

. Introduction

There has been a steady increase in the literature in the application

of molecular orbital theory to an understanding of chemical reactions*.

In the field of biochemistry there has been an effort made to verify

the location of reactive sites in the molecule in order to elucidate

the reaction mechanisms involved**. Studies have been made involving

molecular orbital calculations in the search for correlations between

covalent bond formation and biological activity. Such studies include
36— 39the investigation of antibacterial agents, ~ the correlation of

ester hydrolysis rates of enzymes affected by drugs,^ ^  the effect
44-46 47of a class of compounds on plant growth, and enzymic acetylation

Reactions involving charge-transfer complexation have also been in­

vestigated quantum mechanically by studying electron-donor and electron- 

acceptor properties of molecules in a reaction through calculations of 

energy levels (E^q^q {highest occupied molecular orbital energy} and 

^LEMO flowest; empty molecular orbital energy}). Such studies included

*A knowledge of quantum theory is assumed by the author. An excellent 
reference text on the subject is "Elementary Quantum Chemistry", F. L. Pilar, 
McGraw-Hill, New York (1968). The following fine texts may also be con­
sulted. "Quantum Theory of Molecular Electronic Structure", R. G. Parr, 
Benjamin, New York (1963). "Approximate Molecular Orbital Theory",
J. A. Pople and D. L. Beveridge, McGraw-Hill, New York (1970).

** Texts related to the application of molecular orbital theory to bio­
chemical problems are: "Quantum Biochemistry", B. Pullman and A. Pullman,
Wiley (Interscience) New York (1963). "Molecular Orbital Theory in Drug 
Research", L. B. Kier, Academic Press, New York (1971). "Quantum Pharma­
cology", W. G. Richards, Butterworths, London (1971).

15
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antimalarial drug reactions^8,49 hallucinogenic reactions,local
51 52-57anesthetics, and carcinogenic hydrocarbons . An attempt was made

to explain carcinogenic activity of hydrocarbons on the basis of their
58electronic structure as determined by molecular orbital calculations 

The literature is abundant with studies in which molecular orbital 

theory has been applied to drugs in order to explain structure-activity 

relationships . The examples cited represent only a small fraction 

of the papers published in this field and are meant to be illustrative 

rather than exhaustive.

When performing molecular orbital calculations on an isolated 

molecule whose dimensions are based on x-ray crystallographic measure­

ments, the data obtained are not a true representation of the in vivo 

situation since one is dealing with a dynamic biological system in which 

thousands of interdependent reactions are occurring simultaneously with

solvent media and neighboring molecules exerting an effect. The calculations
* * * *

do not include the existence of these independent reactions

In the studies previously mentioned, the calculated molecular orbital 

data were consistent with experimental findings, which lends credence to 

the fact that these additional neighboring contributions were negligible.

Method and Theory 

A. Complete Neglect of Differential Overlap (CNDO)

One of the molecular orbital methods which considers all-valence

***A comprehensive bibliography can be found in "Quantum Pharmacology",
W. G. Richards. See previous notation on suggested reference texts.

****Molecular orbital calculations in general refer to the gas-phase 
molecule even though geometry of the molecule is usually obtained from 
x-ray crystallographic data.



59electrons is the CNDO/2 SCF method . This approximate method calculates

self-consistent molecular orbitals for all valence-electrons (with Is

electrons considered as part of a nuclear core) in molecules where all

atoms are first row elements. It is based on the complete neglect of

differential overlap (CNDO) approximation in which the differential

overlap distribution $m (l)<j>n (l)dTj m / n of any two atomic orbitals

is neglected in all electron repulsion integrals. The rationale is

that a large number of these repulsion integrals in LCAO-SCF calculations

are practically zero in value and are particularly difficult to evaluate

if the atomic functions are centered on different atoms.

With the CNDO method the assumption is made that (mn|&s) = 6^ 3 ^  fmm| &&)

where 6 and 5„ are Kronecker deltas and (mnUs) is the 2-electron re­ran £s
pulsion integral over atomic orbitals defined as f f $  (l)<f> (1)—  0 (2)cf> (2)dT.dT0in n r ^ 2  & s j. z
This approximation thereby eliminates all multi-centered as well as one- 

center integrals where different atomic orbitals are involved for either 

of the two electrons. Even though the CNDO method is applied to all 

^m^n atoni^c orbitals, m f  n, with Roothan’s ^  equation applying, the 

approximation is not invariant to cartesian axes rotation. However, this 

deficiency is corrected by making the remaining 2-electron repulsion in­

tegrals depend only on the atoms A 5 B on which <J> and <f> are situated;m &
(mm|HA) are set equal to representing an average electrostatic

interaction between an electron on A and one on B. Having neglected mon- 

atomic differential overlap, <f>m (l)(f) n (l)dTj (m f  n), the next consideration 

is that of the electrostatic interaction between an electron in an orbital 

of one atom and the cores of the other atoms. If V_ is the core potentialD

at atom B, then the integral (m|VgJn) also equals zero by virtue of the
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neglect of the monatomic differential overlap of the two unequal

orbitals on atom A. This can be written as fmlv.Jn) = 6 V.n,1 B 1 mn AB’
which then leads to H = U - SV , D with d> on atom A. Hmm mm AB T m mm

2represents the diagonal core matrix element where = (m|-%V -V^|m)

is the one-center electron-core matrix element, and V^g is the two-

center valence-electron core matrix interaction contribution.

Differential overlap is not neglected when $ and <p are on sepa-
2rate atoms because H [= (m|-%V -VA-V0|n)] - the off-diagonal coremu a  d

matrix elements - describes bonding between A and B. It is necessary

to retain differential overlap in H by having it depend semi-empirically

on overlap. H is also called the resonance integral 8 , and relatesr mn 6 mn’
to the bonding capacity of the overlap; it is proportional to the over­

lap and can be written as 8 = 8?r>S . 8?n depends only on the naturer mn AB mn AB r J

of atoms A and B. This satisfies the invariance requirements^.

The CNDO/2 and CNDO/1 approximations are basically similar. The 

modifications of the CNDO/1 method will be presented after the para­

meterization is described. Slater functions representing the orbitals 

are used for the minimal basis set (f>m (Is for hydrogen and 2s, 2p^,

2p , 2p orbitals for lithium to fluorine). Slater's rules are usedy ^
to obtain the exponents. For hydrogen the effective nuclear charge is

C = 1.2 instead of 1.0. The overlap integrals are calculated with

a computer. The repulsion integral is calculated as a two-center
2 -1coulomb integral using the s orbital on atom A, (sA). y ^  = f  s^ (1) (r^)

2Sg (2)dTjdx2- The electron-core interaction parameter V^g is also 

calculated using valence s functions. The core of atom B is treated
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2 -1as a point charge at the nucleus so that V^g = Zg/s^ (1)(rjg^

„ where Zg is the core charge and r^g is the distance between electron

1 and the B nucleus. The bonding parameters B°g are taken as the

average of the bonding parameters of each atom. Thus, =
A d

+ 3g) where 3^ and 3g are selected empirically. Finally,

the atomic matrix elements of the one-electron hamiltonian, U ,mm
are obtained from experimental energy levels. The energy of an

atomic core and the valence electrons are represented by an average

of several states. The core integrals for the 2s and 2p orbitals

are then related to either ionization energies or electron affinities

related to these states. The equation is U = - h ( I  + A )-(Z.-%)yAan mm m m A AA
with belonging to atom A. 1^ and A^ refer to the ionization energy and

electron affinity, while is the core charge on A.

B, Method of Solution of LCAOSCF Equations

The LCAOSCF equations are solved in the following manner. The

initial approximation to the molecular-orbital coefficients is ob-
• ■tained from a modified Huckel calculation in which the diagonal elements 

of the matrix representation of the Hartree-Fock operator, F .̂ are 

replaced by the atomic ionization energies from equations relating 

the ionization energies to core-and repulsion-integral parameters,

U and y '. ' The off-diagonal elements of the Fock hamiltonian are re­

placed by resonance integrals f^gS . The electrons are assigned 

in pairs to molecular orbitals with lowest energy. The density

matrix, whose elements are P , is calculated from the occupied molec-’ mn r
ular orbital coefficients in order to form a new F . Diagonalization 

of the new Fock matrix leads to a new set of orbital coefficients. The
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iterations are repeated until self consistency is achieved.

C. Comparison of CNDO/1 and CND0/2 Approximations
62The CNDO/1 approximation has several shortcomings . In

calculations for diatomic molecules the equilibrium distance is

too small and the corresponding dissociation energy is too large.

This is due to electrons in one orbital of an atom penetrating the

shell of another atom. The diagonal matrix element of the Fock

hamiltonian can be written as: F = U + (P.. -%P )y.. +mm mm AA. mnr AA

B (M) C’Qb YAB + (ZbY“  ’ Vab)] Where ?AA = ”Ap,nm iS the t0tal
valence electron density at atom A, P ^  is the charge on orbital

m, Qg is the net charge on atom B, and ZgY^g - V^g are the pene­

tration integrals. The inclusion of the latter term results in 

a net attraction where there should be a net repulsion and also 

leads to incorrect bonding energies. In the CND0/2 method, the 

penetration integrals are neglected and the shortcomings of CNDO 

in this regard are eliminated. Since the study is confined to a 

closed shell configuration, the following energy equations apply61.

The total energy is composed of the monatomic energy, and di­

atomic energy 5 : 5 = ZA P U + % Z A ZA (P P -%P 2)w  AB A m mm mm m n mm nn mn
SAD = IA ZB (2P B -%P 2y ad) + (Z.ZdRad_1-P..V.d AB m n  ̂ mn mn mn 'AB v A B AB AA AB

- P V  + P P y ')BB BA AA BByABj
For large internuclear distances, the last group of terms approximate

-1 -1to Rad and become QAQnRAD with Q.=ZA-PAA. In the CND0/2 methodAB Y B  AB XA A AA
the diagonal matrix elements of the Fock hamiltonian are now functions 

of the ionization energy, I, and the electron affinity, A, (an average 

of the two representing a one-center, one-electron term). The equations
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6 3for both the diagonal and off-diagonal elements are :

Fmm = * V  + ^ PM ~  V  ‘ls ̂miiT1 -1 -1YAA+ I (/A)^PBB"ZB^yAB

and Fnui ■ FAB^mn~^PmnYAB (m * n)

D. Mulliken Population Analysis

LCAO molecular orbital wave functions can be interpreted in terms

of charge distributions in molecules. Mulliken’s ^  population-analysis

method defines numerical indices giving the number of electrons associated

with each specific atom in the molecule. If <p is a normalized molecular

orbital of a diatomic molecule it can be written as a linear combination

of normalized atomic orbitals, y x j centered on atoms A § BAm An*
respectively, viz: <j> = cmxm + cnXn * The gross population at each atom

consists of the net atomic population at that atom plus one-half of the
2overlap population between the two atoms. N(A) = N(c +c c S ) and r  ̂ v m m n mn

2N(B) = N(c c S  +c ), where S =/x X dr and N is the over-all total m n m n n  mn in n
population of the electrons. In the general case (for any molecule) the

equation for the gross atomic population on atom A is N(i;m.) = N(l)c.A J.mA

^  ̂ °im + ^ A °in ^m.n ^A B A B
If the bonds between the atoms are polar, the gross charge on each atom 

can be obtained by subtracting the gross atomic population at the atom 

from the total number of electrons in the ground state of the free neutral 

atom.

E. Computer Program

A Fortran IV computer program for calculating CNDO and INDO molecular 

orbitals* was adapted for use in the Univac 1108 computer. The program

*This program was prepared by J. A. Pople, D. L. Beveridge, and P. A. Dobosh. 
It appears as Appendix A in J. A. Pople and D. L. Beveridge, "Approximate 
Molecular Orbital Theory", McGraw-Hill, NY (1970). Card copies of the program 
may be obtained from Quantum Chemistry Program Exchange (QCPE) Dept, of 
Chemistry, Indiana University, Bloomington, Ind. 47401.
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calculates energies and other properties based on assumed wave functions

for either open or closed shell molecules containing elements from H

to Cl (CNDO) and H to F (INDO)*. The matrices can accommodate molecules

containing up to 85 atoms or 80 basis functions (whichever is smaller).

One atomic orbital basis function is allotted to hydrogen (Is), and one

each of (2s, 2p , 2p , and 2p ) for Li thru F. Additional atomic orbital x y z
basis functions are available for the elements sodium through chlorine,

but will not be used in this study.

After the method of approximation (CNDO or INDO) and the type of

calculation (open or closed shell) have been selected, the number of

atoms, charge and multiplicity are entered. This is followed by the

cartesian coordinates of each atom. Following this, the coefficients

which are to be used in the calculation of the overlap and coulomb

integrals are assigned. The overlap and coulomb integral matrices

are computed and the overlap integrals are then transformed to the

molecular coordinate system by a rotation matrix. An extended Huckel-

type approximation with zero differential overlap is made for the Fock

matrix with F m formed from - % (I + A) and F formed from (B? + 8?)X mm mn A ts
S /2. This matrix is then diagonalized followed by the construction of 

a density matrix. Repulsion terms are then added to the hamiltonian 

for either CNDO or INDO calculations since they are not included in the 

Huckel scheme.

The initial density matrix and the core hamiltonian are then used to 

form the Fock matrix. This matrix is diagonalized, forming a new density

*IND0 (intermediate neglect of differential overlap) retains differential 
overlap in one-center integrals and consequently is better able to describe 
certain electronic states with open-shell configurations.



matrix, which then is used to form a new Fock matrix. This iteration 

is repeated until the electronic energy converges to 10 ^au, at which 

time the electronic energy is assumed to be minimized. The Fock matrix 

is diagonal.! zed, the eigenvectors are printed out, and both the total 

energy and binding energy calculated. The binding energy is the difference 

between the minimum total energy of the molecule and the sum of the atomic 

energies of the component atoms. The program then computes the dipole 

moment, the monatomic and diatomic energies, and the electrostatic inter­

action between charged atoms in the molecule. The program also gives 

the Mulliken overlap population at each atom location.

Results_

At the outset a calculation was carried out for formaldehyde and

the results compared with the output of the QGPE CND0/2 program for the

same molecule. There was perfect agreement for all the parameters to

the 4th decimal place or better. This substantiates the accuracy of

the program. Calculations were then made for uracil, 5-fluorouracil,

and thymine. The geometries* for these molecules were obtained from
65~67X-ray crystallography studies . Also a CNDO calculation was made

68from the geometry obtained in an ab initio study of thymine molecule 

Finally, the bond angles and bond lengths of 5-fluorouracil were used 

to calculate the parameters of thymine by substituting methyl for fluorine 

and using the C-F bond length for C-CH^. All of these calculations were

*The numbering system and the dimensions of each of the 2,4-diketo- 
pyrimidines which were obtained from crystal structure determinations 
and an ab initio study for use in the CNDO calculations are illustrated 
in Figures 3-6. Slight modifications in the bond angles were made whenever 
the literature values appeared incorrect. Estimated values for bond angles 
and lengths were introduced when they had been omitted. Figures 7 to 9 
illustrate the charge at each atom in the molecules and Tables I-V provide 
the density matrix and overlap population data. The calculated dipole moments 
(compared with literature experimental values) together with total energies 
are listed in Table VI. Table VII summarizes the calculated charges at the 
5 and 6 positions of uracil, 5-fluorouracil and thymine.
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performed to determine the reactive centers in the uracil molecule, the 

effect of the fluorine atom in the 5-position, and to substantiate, if 

possible, that part of the proposed mechanism which deals with the 

electro- and nucleophilicity of the reactive sites.

Discussion

Given the step-wise picture and the nucleophilic character of 

the attacking enzyme - as considerable evidence indicates - uracil has 

the appropriate electrophilic center at Cf6) as does fluorouracil and 

thymine. The presence of a negative charge at C(5) in both thymine and 

uracil favors development of high nucleophilicity in C(5) from any inter­

mediate produced upon nucleophilic attack at C(6), High nucleophilicity 

at C(5) in uracil favors the second stage of postulated mechanisms of 

attack of activated methylene species which are electrophilic, High 

nucleophilicity at C(5) in thymine would tend to favor breakup of the 

thymine-enzyme complex through ejection of the enzyme as an anionic species, 

especially since the methyl group sterically favors dissociation of the 

cofactor (methylenetetrahydrofolate) leading to the localization of the 

negative charge. Fluorouracil also possesses the required electrophilic 

C(6) position for enzymatic attack and formation of the postulated adducts. 

However, the C(5) position has a decided electrophilic quality which will 

probably only stabilize or accomodate the negative charge from the enzyme, 

and may not assume sufficient nucleophilic character in the intermediate 

stage for any further step-wise reaction with an activated methylene group 

such as in the tetrahydrofolate co-factor. Because it is indicated by 

these calculations that the fluorouracil can accommodate the negative 

charge, it may be that the intermediate will be stabilized and will not

easily dissociate the bound enzyme.
69Kulakowska and co-workers have calculated charge densities and
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other properties of the same group of molecules treated in this study.

They also used the CNDO/2 method as utilized in the present work.

However, they assumed a standard fixed geometry for the uracil nucleus 

to be invariant to the set of compounds and the only bond adjustments 

made were empirical adjustments on the various substituent atoms. Their 

calculations exhibit the qualitative characteristics of the present work. 

They are in reasonably good accord with the present values, but do not 

precisely agree because the charge densities show some geometric sensi­

tivity. The authors did not consider the implications of their work on 

biological systems, but attempted some rationalization of pK and dipole 

moment data. There is reasonably good agreement between their experimental

dipole moment data and those calculated in the present work (Table XIX).
70It is interesting at this point to mention a photochemical study 

in which comparative CNDO/2 calculations of the ground and excited states 

of uracil, thymine, and cytosine were performed. Atoms C(5) and C(6) were 

found to be highly reactive, indicating that even in the excited state the 

chemistry of these pyrimidines is dominated by the 5,6 reaction sites.
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SECTION IV 

SUMMARY*

1. There is a greater negative (or less positive) charge at C(5) 

than at C(6). This substantiates a nucleophilic attack by the enzyme 

at the C(6) position rather than at C(5). Indirectly, it implicates 

eventual potentiation of a nucleophilic attack by the substrate on 

the co-factor.

2. There is a change in polarity at C(5) due to the presence of 

fluorine in 5-fluorouracil.

The change in polarity with the introduction of a fluorine atom 

demonstrates the electronegativity of the halogen atom. The positive 

charge at C(5) results in a stabilization of the enzyme adduct.

3. The C(5) - C(6) bond moment in 5-fluorouracil is very small.

This suggests the presence of another factor (steric fit to the enzyme 

active site cavity) which may play a decisive role in determining 

positional attack.

Thus in the normal reaction (with uracil) steric fit may also be 

a contributing factor even though the molecule is electronically amenable 

to the observed selecivity.

*See Table VII

L
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TABLE I

URACIL

DIAGONALS OF THE DENSITY MATRIX 
. 9 9 8 0 4  . 9 1 3 9 8  . 8 3 9 7 1

.9 1 0 5 4  

1 . 1 4 4 8 8  

1 . 4 1 9 4 0

1 . 0 2 4 9 3  

1 . 7 3 4 0 0  

1 . 7 3 1 6 4

. 8 8 7 3 3  

1 . 0 0 0 1 8  

1 . 2 6 0 5 9

. 7 9 8 0 3  1 . 1 5 0 1 9  1 . 1 3 1 5 6

. 9 8 1 5 4  1 . 0 1 1 1 2  1 . 0 1 4 2 0

. 8 6 2 0 6  . 9 6 8 8 2  . 8 0 1 7 8

1 . 9 1 7 9 7  1 . 4 6 2 0 2  . 8 5 1 1 9

1 . 1 7 0 1 2  1 . 7 3 3 8 5  . 9 9 6 6 7

1 . 1 6 3 4 9  1 . 1 8 5 7 8  1 . 1 8 3 9 4

1 . 7 4 5 4 4  1 . 8 0 6 6 4  1 . 3 3 1 1 5

. 9 9 2 9 9  . 9 4 5 4 7  . 8 4 8 6 6

SUM approximate  overlap  p o p ul a ti on
3 . 5 4 9 7 8 0  

. 0 0 0 2 3 5
1 . 5 1 4 6 3 5  

. 0 0 6 6 8 3
. 0 1 5 4 5 8 - . 0 0 9 7 2 4 1 . 5 2 9 2 1 2 . 0 0 8 5 4 3 . 0 0 1 2 9 9 1 . 8 2 1 2 3 0 . 0 1 3 9 1 8 . 0 0 5 5 3 6

1 . 5 1 4 6 3 5  
. 0 0 3 8 6 5

5 . 2 0 5 7 2 3
. 0 0 3 9 2 3

1 . 5 6 9 3 8 5 - . 0 1 3 0 4 2 - . 0 2 2 7 3 2 - . 0 1 2 8 3 1 . 0 0 0 0 3 2 - . 0 2 4 0 7 7 1 . 4 5 5 5 8 1 —. 0 1 2 1 4 8

. 0 1 5 4 5 3  

. 0 0 4 1 6 2
1 . 5 6 9 3 8 5  

. 0 0 0 6 0 5
3 . 0 1 9 4 7 0 2 . 1 3 5 5 7 0 - . 0 1 3 6 0 1 . 0 3 4 4 5 6 . 0 0 0 9 5 0 . 0 0 1 3 4 0 . 0 0 2 8 3 7 1 . 5 0 7 1 3 3

0 0 9 7 2 4  
1 . 5 3 4 3 6 3

- . 0 1 3 0 4 2
. 0 0 6 1 0 3

2 . 1 3 5 5 7 0 4 . 1 7 0 3 4 5 - . 0 1 3 7 8 7 1 . 6 8 5 1 3 6 - . 0 1 8 2 1 0 . 0 0 0 0 8 7 . 0 0 5 8 0 1 ■ —. 0 0 6 8 7 8

1 . 5 2 9 2 1 2  
. 0 0 3 3 3 7

- . 0 2 2 7 3 2  
1 , 3  9669G

- . 0 1 3 6 0 1 - . 0 1 3 7 0 7 5 . 2 4 8 5 9 4 1 .5 0 7 5 6 1 - . 0 2 4 4 8 5 - . 0 2 4 9 1 8 . 0 0 4 2 0 3 . 0 0 0 0 3 2

. 0 0 8 5 4 3  

. 0041 10
- . 0 1 2 8 3 1  

. 0 1 1 1 1 7
. 0 3 4 4 5 6 1 . 6 8 5 1 3 6 1 .5 0 7 5 6 1 3 . 6 3 2 8 4 7 1 . 7 3 2 7 8 9 . 0 0 1 1 8 7 . 0 0 0 4 4 5 . 0 0 5 8 9 7

. 0 0 1 2 9 9  
- . 0 0 3 0 8 4

. 0 0 0 0 3 2
- . 0 0 2 4 2 0

. 0 0 0 9 5 0 - . 0 1 8 2 1 0 - . 0 2 4 4 8 5 1 . 7 3 2 7 8 9 6 . 3 6 2 7 1 7 - . 0 0 0 0 0 3 . 0 0 0 0 0 6 —. 0 0 0 0 5 2

1 . 8 2 1 2 3 0  
. 0 0 0 0 0 6

- . 0 2 4 0 7 7
- . 0 0 2 3 1 7

. 0 0 1 3 4 0 ' . 0 0 0 0 8 7 - . 0 2 4 9 1 8 . 0 0 1 1 8 7 - . 0 0 0 0 0 3 6 . 3 7 2 2 1 6 - . 0 0 2 1 8 3 w . 0 0 0 0 5 8

. 0 1 3 9 1 8
0 0 0 2 4 3

1 . 4 5 5 5 0 1  
- . 0 0 0 2 7 8

. 0 0 2 8 3 7 .0 05 88 1 . 0 0 4 2 0 5 . 0 0 0 4 4 5 . 0 0 0 0 0 6 - . 0 0 2 1 8 3 . 8 5 1 1 8 7 m . 0 1 1 8 7 5

. 0 0 5 5 3 6  
- . 0 1 0 3 1 7

- . 0 1 2 1 4 3
. 0 0 0 0 5 8

1 . 5 0 7 1 3 3 - . 0 0 6 8 7 8 • 0 0 0 0 3 2  * . 0 0 5 8 9 7 - . 0 0 0 0 5 2 - . 0 0 0 0 5 6 - . 0 1 1 8 7 5 . 9 9 2 9 8 8

. 0 0 0 2 3 5  
i0 4 S 4 7 4

. 0  0 3 8 6 5  
- . 0 0 0 2 4 4

. 0 0 4 1 5 2 1 . 5 3 4 3 6 3 . , 0 0 3 3 3 7 . 0 0 4 1 1 0 - . 0 0 3 0 8 4 . 0 0 0 0 0 8 - , 0 0 0 2 4 3 «P . 0 1 8 8 1 7

i 006603 
- . 0 0 0 2 4 4

.0 0 3 9 2 8 .

. 8 4 8 6 5 6
«0 0 060 3 . 0 0 8 1 0 3 1 . 3 9 6 6 9 6 . 0 1 1 1 1 7 - . 0 0 2 4 2 0 - . 0 0 2 3 1 7 - . 0 0 0 2 7 6 . 0 0 0 0 5 8



TABLE II

5-FLUOROURACIL

DIAGONALS OF THE DENSITY MATRIX
1 . 0 0 1 9 5  . 9 0 8 5 0  . 8 3 3 5 4  . 8 0 6 4 4  1 . 1 6 8 0 0  1 . 1 2 0 5 2  1 . 1 1 9 3 0  1 . 7 6 6 7 2  1 . 0 2 5 0 6

.9 1 3 3 2 1 . 0 0 7 7 3 . 9 5 1 6 5 1 . 0 0 2 9 1 . 7 9 0 0 0 1 . 0 0 1 9 7 1 . 1 2 7 0 3 1 . 8 4 0 1 9 1 . 3 9 9 0 8

1 . 9 8 3 6 1 1 .966 81 ' . 1 . 2 1 4 3 7 1 . 1 5 2 4 5 1 . 1 2 1 3 0 1 . 7 5 2 2 5 1 . 0 1 1 6 4 . 8 7 0 4 6 . 9 6 2 5 9

.8 1 6 9 0 1 . 7 4 2 5 0 1 .7 8 8 0 1 1 . 4 0 1 8 7 1 . 3 8 2 0 9 1 . 7 2 4 2 5 1 . 2 8 3 6 9 1 . 9 1 0 4 1 1 . 4 3 0 1 1

. 8 5 8 5 9 . 9 6 6 7 3 . 8 5 5 4 6

SUM APPROXIMAT E OVERLAP POPULATION
- . 0 0 5 9 4 13 . 5 5 0 4 3 0  

. 0 0 3 6 4 4
1 . 4 7 0 3 4 6  
- . 0 0 0 7 7 3

. 0 1 0 6 3 4 - . 0 0 7 2 9 3 . 0 0 0 0 3 7 1 . 4 8 5 8 8 7 . 0 0 3 9 5 2 . 0 0 1 1 0 4 1 . 0 7 3 2 4 3

1 . 4 7 0 3 4 6  
- . 0 1 2 0 3 0

5 . 1 9 4 5 4 0  
. 0 0 3 0 0 0

1 . 5 1 0 9 1 6 - . 0 0 4 0 6 1 . 0 0 0 3 4 6 - . 0 2 0 6 1 9 - . 0 0 8 8 0 0 . 0 0 0 0 2 5 - . 0 2 5 7 3 4 1 . 2 5 8 6 5 0

. 0 1 0 6 3 4  
1 . 3-18590

1 . 5 1 0 9 1 5 
. 0 0 0 2 5 9

3 . 8 9 7 7 6 0 2 . 1 3 6 2 1 9 - . 0 1 2 3 5 8  ' - . 0 0 9 0 2 8 . 0 1 0 6 9 7 . 0 0 0 6 3 5 . 0 0 1 3 3 1 - . 0 0 5 7 1 9

- . 0 0 7 2 9 3  
- . 0 0 7 4 0 7

- . 0 0 4 0 6 1
. 0 0 5 2 4 7

2 . 1 3 6 2 1 9 3 . 9 2 1 9 0 3 1 . 0 0 3 3 4 0 - . 0 0 6 8 9 4 1 . 6 3 9 0 6 7 - . 0 1 5 8 7 9 .0 0 0 1 2 1 . 0 0 4 6 6 6

. 0 0 0 0 3 7  
002337

. 0  0 0 3 4 6  
- . 0 0 0 0 3 - 3

- . 0 1 2 3 5 8 1 .0 0 3 3 4 0 7 . 1 8 9 6 8 9 . 0 0 0 3 4 9 —„ 0 0 9 4 7 3 - . 0 0 0 6 4 9 ,000.000 - . 0 0 0 0 3 1

1 . 4 9 5 5 8 7  
. CC0032

- . 0 2 0 6 1 9  
1 . 2  45 40  3

- . 0 0 9 0 2 8 - . 0 0 6 8 9 4 . 0 0 0 3 4 9 5 . 2 4 0 3 7 4 1 . 4 8 0 9 1 2 - . 0 2 2 3 1 8 - . 0 2 4 0 4 1 . 0 0 2 9 1 4

. 0 0 3 3 5 2  
. 0 0 3 8 5 1

- . 0 0 8 8 0 0
- . 0 0 1 0 5 1

. 0 1 0 6 9 7 1 . 6 3 9 0 6 7 - . 0 0 9 4 7 3 1 . 4 8 0 9 1 2 3 . 6 6 1 5 9 2 1 . 7 6 0 4 7 0 . 0 0 1 1 0 1 . 0 0 0 1 8 8

. 0 0 1 1 0 4  
- . 0 0 0 0 4 0

. 0  00025 
- . 0  01 607

. 0 0 0 6 3 5 - . 0 1 5 8 7 9 - . 0 0 0 6 4 9 - . 0 2 2 3 1 8 1 . 7 6 0 4 7 0 6 . 3 1 4 4 7 5 - . 0 0 0 0 0 2 . 0 0 0 0 0 3

. 1 . 8 7 3 2 4 3  
- . 0 0 0 0 4 2

- . 0  2 5 7 3 4  
-.0 01y49

.0 0 1 3 3 1 .0 0 0 1 2 1 . 0 0 0 0 0 0 - . 0 2 4 0 4 1 . 0 0 1 1 0 1 - . 0 0 0 0 0 2 6 . 3 4 8 4 6 1 - . 0 0 1 1 8 4

- . 0 0 5 9 4 1
- . 0 0 9 2 0 5

1 . 2  5 8 6 5 0  
- . 0 0 0 2 2 5

-.005719 . 0 0 4 6 0 6 - . 0 0 0 0 3 1 . 0 0 2 9 1 4 . 0 0 0 1 8 6 .000003 - . 0 0 1 1 0 4 . 0 5 8 9 9 0

. 0C3544 

. 9 6 6 7 2 9
- . 0  1 2080 '  

. 0 0 0 0 3 2
1 . 3 4 8 5 9 0 - . 0 0 7 4 0 7 - . 0 0 2 3 3 7 . 0 0 0 0 3 2 . 0 0 3 8 5 1 —. 0 0 0 0 4 0 - . 0 0 0 0 4 2 - . 0 0 9 2 0 5

- . 0 0 0 7 7 3
. 0 0 0 0 3 2

. 0 0 3 0 0 0

. 8 5 5 4 5 7
. 0 0 0 2 5 9 . 0 0 5 2 4 7 - . 0 0 0 0 3 8 1 . 2 4 5 4 0 3 - . 0 0 1 0 5 1 - . 0 0 1 6 0 7 - . 0 0 1 9 4 9 - . 0 0 0 2 2 5



TABLE III

THYMINE

DIAGONALS OF 
. 9 9 0 4 6

THE DENSITY MATRIX 
. 9 3 8 9 7  . 8 3 6 9 8 . 7 8 2 0 8 1 . 1 8 0 0 5 1 . 1 3 7 2 0 1 . 1 3 5 9 6 1 . 7 2 7 1 3 1 . 0 3 4 1 7

. 8 9 1 9 9 1 . 0 0 2 5 7 . 9 4 5 2 0 . 9 9 1 2 7 . 9 9 8 4 1 . 9 9 9 0 0 1 . 1 0 6 1 9 1 . 0 1 4 5 4 1 . 0 1 5 3 8

.9 8 2 8 9 . 9 8 2 3 9 1 . 2 1 2 8 5 1 . 1 6 0 3 6 1 . 1 3 0 8 1 1 . 7 4 0 2 3 1 . 0 0 4 7 9 . 8 5 5 9 8 . 9 5 1 8 0

.8 2 4 3 5 1 . 7 2 1 0 0 1 . 7 9 9 0 9 1 . 4 4 5 4 1 1 . 3 5 0 5 9 1 . 7 4 7 2 0 1 . 2 1 2 8 8 1 . 9 3 ^ 8 4 1 . 5 3 1 2 8

.86 21 1 . 9 9 1 2 0 . 9 8 9 3 2 . 9 8 5 1 3 . 9 9 9 1 0 . 8 5 8 8 9

1 APPROXIMATE o v e r l a p POPULATION
3 . 5 5 0 4 7 1 1 . 6 6 0 1 8 4 . 0 1 6 1 5 4 -.007618 .000111 1 . 6 0 1 9 8 0 . 0 0 8 4 0 6 . 0 0 1 2 6 2 1 . 7 0 9 3 8 4 - . 0 0 0 6 1 9

. 0 0 3 7 7 4 . 0 0 0 0 1 1 . 0 0 0 0 0 6 .0 0 0 0 0 2 . 0 0 0 7 1 5
1 . 6 5 0 1 8 4 5 . 1 8 0 3 4 6 1 . 4 6 8 1 9 3 - . 0 1 3 7 1 2 . 0 0 1 7 0 2 - . 0 1 9 7 8 5 - . 0 1 1 2 4 9 . 0 0 0 0 3 4 - . 0 2 4 9 7 8 1 . 2 5 1 6 1 7
- . 0 1 5 7 3 8 . 0 0 0 0 2 3 - . 0 0 0 0 4 0 . 0 0 0 1 0 3 . 0 0 3 7 9 6

. 0 1 6 1 5 4 1 . 4 6 8 1 9 3 3 . 8 7 3 9 2 9 2 . 0 7 9 7 0 2 . 0 0 6 5 8 2 - . 0 1 1 7 9 0 . 0 2 2 6 8 2 . 0 0 0 8 0 4 . 0 0 1 5 1 5 - . 0 0 5 7 8 1
1 . 3 5 1 0 8 8 - . 0 0 2 8 4 2 . 0 0 3 2 5 2 - . 0 0 8 7 0 3 . 0 0 0 4 1 8

007518 - . 0  13712 2 . 0 7 9 7 0 2 4 . 0 9 4 8 6 0 1 . 4 6 8 5 5 3 - . 0 1 6 4 3 8 1 . 5 8 0 6 0 2 - . 0 1 9 5 3 3 . 0 0 0 0 6 8 . 0 0 4 4 8 2
- . 0 1 2 5 5 4 . 0 0 6 0 4 5 . 0 0 3 5 0 0 . 0 0 3 7 9 4 . 0 0 4 7 2 0

. 0001 1 1 . 0 0 1 7 0 2 . 0 0 6 5 8 2 1 . 4 6 8 5 5 3 3 . 9 9 5 2 0 1 . 0 0 1 3 6 3 . 0 0 6 6 0 3 - . 0 0 3 1 1 2 .000001 - . 0 0 0 1 0 8
» , 0 0 6 9 5 0 1 , 3 4 2 7 8 4 1 . 3 4 9 3 0 2 1 .3 488 71 - . 0 0 0 1 0 2
1 .6 0 1 9 8 0 - . 0  19785 - . 0 1 1 7 9 0 - . 0 1 6 4 3 8 . 0 0 1 3 6 3 5 . 2 4 4 2 5 8 1 . 4 2 2 3 1 3 - . 0 2 5 7 9 6 - . 0 2 4 1 5 7 . 0 0 3 9 8 0

. 0 0 0 0 2 5 - . 0 0 0 0 1 5 . 0 0 0 1 1 8 - . 0 0 0 0 5 0 1 . 2 4 5 6 3 3

. 0 0 8 4 0 6 .0  1 1249 . 0 2 2 6 8 2 1 . 5 8 0 6 0 2 . 00 6 6 0 3 1 . 4 2 2 3 1 3 3 . 6 3 6 9 1 1 1 . 8 9 1 9 7 2 . 0 0 1 2 2 6 . 0 0 0 2 9 4

. 0 0 4 2 5 9 . 0 0 0 0 5 8 - . 0 0 6 5 6 6 . 0 0 3 3 0 9 - . 0 0 3 0 0 8

. 0 0 1 2 6 2 . 0 0 0 0 3 4 . 0 0 0 8 0 4 - . 0 1 9 5 3 3 - . 0 0 3 1 1 2 - . 0 2 5 7 9 6 1 . 8 9 1 9 7 2 6 . 3 1 6 0 8 5 - . 0 0 0 0 0 3 . 0 0 0 0 0 5
~ . 000041 . 0 0 0 0 3 8 00 1 212 . 0 0 0 0 0 7 - . 0 0 1 3 6 9
1 . 7 0 9 3 8 4 *». 0 2 4 9 7 8 .0711)15 .OCOOuB .COO001 - . 0 2 4 1 8 7 . 0 0 1 2 2 6 - . 6 0 0 0 0 3 € . 4 2 2 1 6 6 - . 0 0 2 2 7 3
- . 0 0 0 0 4 5 - . 0 0 0 0 0 0 - . 0 0 0 0 0 0 - . 0 0 0 0 0 0 - . 0 0 2 4 1 0
- . 0 0 0 6 1 9 1 . 2 5 1 6 1 7 - . 0 0 5 7 8 1 .0 0 4 4 8 2 - . 0 0 0 1 0 8 . 0 0 3 9 8 0 . 0 0 0 2 9 4 . 0 0 0 0 0 5 - . 0 0 2 2 7 3 . 8 6 2 1 0 8
- . 0 0 8 6 5 2 . 0 0 0 0 0 4 . 0 0 0 0 0 8 - . 0 0 0 0 1 7 - . 0 0 0 2 8 2

.0 0 3 7 7 4 - .0  15738 1 . 3 5  1088 - . 0 1 2 5 5 4 - . 0 0 6 9 5 0 . 0 0 0 0 2 5 . 0 0 4 2 5 9 - . 0 0 0 0 4 1 - . 0 0 0 0 4 5 - . 0 0 8 6 5 2

.9 9 1 1 9 8 . 0 C01 22. . 0 0 0 0 5 3 .0 0 1 5 9 7 . 0 0 0 0 3 7

. 00001 1 . 0 0 0 0 2 3 - . 0 0 2 8 4 2  • . 0 0 6 0 4 6 1 . 3 4 2 7 8 4 - . 0 0 0 0 1 5 . 0 0 0 0 5 8 . 0 0 0 0 3 8 -.000000 . 0 0 0 0 0 4

. 0 0 0 1 2 2 . 9 8 9 3 1 6 - . 0 0 0 1 9 3 - . 0 0 8 4 1 7 . 0 0 0 0 0 3

. 0 0 0 0 0 6 - . 0 0 0 0 4 0 . 0 0 3 2 5 2 .0 0 3 5 0 0 1 .3-19302 . 0 0 0 1 1 6 - . 0 0 6 5 6 6 .001212 -.000000 . 0 0 0 0 0 6

. 0 0 0 0 5 3 mm . 0 0 8 1 9 3 .9 0 5 1 3 1 - . 0 1 0 5 9 2 - . 0 0 0 0 2 3

. 0 0 0 0 0 2 . 0 0 0 1 0 3 - . 0 0 8 7 0 3 .0 0 3 7 9 4 1 .3 4 8 9 7 1 - . 0 0 0 0 5 0 . 0 0 3 3 0 9 . 0 0 0 0 0 7 - .000000 - . 0 0 0 0 1 7

. 0 0 1 5 9 7 - . 0 0 8 4 1 7 - . 0 1 0 5 9 2 . 9 9 9 0 9 7 . 0 0 0 0 0 9

. 0 0 0 7 1 5 . 0 0 3 7 9 6 . 0 0 0 4 1 8 . 0 0 4 7 2 0 - . 0 0 0 1 0 2 1 . 2 4 5 6 3 3 - . 0 0 3 0 0 8 - . 0 0 1 3 6 9 - . 0 0 2 4 1 0 - . 0 0 0 2 8 2

. 0 0 0 0 3 7 . . 0 0 0 0 0 3 - . 0 0 0 0 2 3 . 0 0 0 0 0 9 .8 5 8 3 9 1



TABLE IV

THYMINE*
DIAGONALS OF THE DENSITY MATRIX

1 . 7 3 3 9 0  1 . 9 2 6 0 3  1 . 2 6 7 4 9  1 . 4 5 2 4 7  1 . 7 3 4 0 1  1 . 5 3 9 2 6

1 . 1 4 0 5 8 1 . 1 2 5 0 3 1 . 7 2 7 8 9 .1 . 2 1 2 3 8 1 . 1 1 8 6 8 1 . 1 6 0 7 2

.9 2 5 0 0 . 8 0 3 4 1 1 . 0 2 4 7 3 1 . 0 2 4 3 2 . 8 9 1 5 3 . 9 1 3 8 8

1 . 1 4 5 4 9 . 9 8 9 3 6 .9 8 8 1 6 . 8 4 5 1 8 . 8 1 7 5 6 1 . 0 1 6 9 8

.84 83 1 . 8 5 6 2 3 . 9 9 3 9 7 1 . 0 0 6 1 ? . 9 9 5 8 2 .90371

sum a p p r o x i m a t e  o v e r l a p POPULATION
6 . 3 7 9 0 8 4 - . 0 0 0 0 0 3 - . 0 2 5 4 5 8 - . 0 2 7 3 8 4 1 . 8 0 2 3 5 7 . 0 0 1 4 4 4

001738 - . 0 0 0 0 5 0 - . 0 0 0 0 0 0 - . 0 0 0 0 0 0 - . 0 0 0 0 0 0
- . 0 0 0 0 0 3 6 . 3 5 4 5 9 3 . 0 0 0 0 3 9 - . 0 2 2 9 3 1 . 0 0 1 3 7 4 . 0 0 1 2 5 3

. 000005 - . 0 0 0 0 5 9 . 0 0 0 1 0 3 .0 0 0 1 0 6 . 0 0 1 9 0 0
025458 . 0 0 0 0 3 9 5 . 1 7 8 9 4 2 - . 0 1 8 2 6 1 1 .5 0 6 7 1 1 1 . 6 0 8 4 7 5

1 . 2 0 3 5 5 3 - . 0 1 6 7 8 8 . 0 0 0 1 1 7 . 0 0 0 0 2 9 - . 0 0 0 0 3 9
02 7364 - . 0 2 2 9 3 1 - . 0 1 8 2 5 1 5 . 2 3 6 3 4 7 1 . 5 2 4 0 7 3 - . 0 1 0 0 1 4

. 0 0 2 6 7 5 - . 0 0 0 0 1 4 - . 0 0 0 0 3 3 - .  COCO 13 . 0 0 0 0 8 9
1 . 6 0 2 3 5 7 . 0 0 1 3 7 4 1 .5 0 6 7 1 1 1 . 5 2 4 0 7 3 3 . 5 6 5 5 1 5 . 0 2 2 1 1 6

. 0 0 2 7 6 9  ■ . 0 0 4 5 1 3 .0 00001 . 0 0 0 0 1 0 . 0 0 0 0 0 7

. 0 0 1 4 4 4 . 0 0 1 2 5 3 1 . 6 0  84 75 - . 0 1 0 0 1 4 . 0 2 2 1 1 6 3 . 8 5 4 4 5 6
- . 0 1 5 5 0 3 1 . 3 6 6 3 0 7 - . 0 0 0 7 3 0 - . 0 0 2 5 4 3 . 0 0 3 1 8 4

. 0 0 0 1 4 7 - . 0 1 7 7 7 4 - . 0 1 3 1 3 0 - . 0 1 4 5 9 1 - . 0 1 1 0 7 4 2 . 0 1 9 2 7 1

. 0 0 4 6 7 5 - . 0  09682 . 0 0 1 6 0 5 .002 611 . 0 0 1 4 6 7

.0 0 1 4 5 1 1 . 7 8 7 3 5 5 - . 0 1 1 6 2 2 1 . 4 9 6 6 9 8 . 0 2 5 4 1 2 . 0 2 4 2 2 5

. 0 0 0 3 2 6 . 0 0 4 9 1 5 . 0 0 3 1 0 4 - . 0 0 0 1 3 3 - . 0 0 5 7 3 8

.0 00 00 1 - . 0 0 5 2 4 6 . 0 0 1 7 4 0 .0 01381 . 0 0 0 1 9 7 . 0 0 6 1 4 2
- . 0 0 0 1  18 - . 0 0 7 7 1 7 1 . 3 5 0 0 9 0 1 . 3 4 4 5 7 7 1 . 3 4 9 9 4 5

001746 - . 0  00901 . 0 0 2 6 4 2 . 1 . 2 0 6 1 0 5 - . 0 0 3 5 1 8 . 0 0 0 2 5 8
- . 0 0 0 1 8 5 . 0 0 0 0 4 0 .0 0 0 0 0 3 . 0 0 0 0 0 3 - . 0 0 0 0 2 0
- . 0 0 1 7 3 8 . 0 0 0 0 0 6 1 . 2 0 3 5 5 3 . 0 0 2 8 7 5 . 0 0 2 7 6 9 - . 0 1 5 5 0 3

. 8 5 6 2 3 0 - . 0 0 6 8 0 1 - . 0 0 0 0 1 8 . 0 0 0 0 0 4 . 0 0 0 0 0 8
- . 0 0 0 0 5 0 - . 0 0 0 0 5 9 - . 0 1 6 7 8 8 - . 0 0 0 0 1 4 . 0 0 4 5 1 3 1 . 3 6 6 3 0 7
- . 00S381 . 9  9397 2 .0 0 1 9 3 3 . 0 0 0 1 7 8 . 0 0 0 1 1 7
- . OOCOOO . 0 0 0 1 0 3 . 0 Q 0 1 17 - . 0 0 0 0 3 8 .0 0 0 0 0 1 - . 0 0 8 7 3 0
- . 0 0 0 0 1 8 . 0 0 1 9 3 3 1 . 0 0 6 1 7 2 - . 0 0 8 4 8 0 - . 0 0 9 4 3 3 ,
- . 0 0 0 0 0 0 . 0 0 0 1 0 6 . 0 0 0 0 2 9 - . 0 0 0 0 1 3 . 0 0 0 0 1 0 - . 0 0 2 5 4 3

. 0 0 0 0 0 4 . 0 0 0 1 7 8 - . 0 0 0 4 8 0 .9 9 5 8 1 6 - . 0 0 7 9 7 7
- . 0 0 0 0 0 0 . 0 0 1 9 0 0 - . 0 0 0 0 3 9 . 0 0 0 0 8 9 . 0 0 0 0 0 7 . 0 0 3 1 8 4

. 0 0 0 0 0 8 . 0 0 0 1 1 7 - . 0 0 9 4 3 3 - . 0 0 7 9 7 7 . 9 3 3 7 1 0

*Geometric dimensions taken from ab initio calculations

1 . 6 8 7 8 6 1 . 3 9 3 4 6 1 . 1 8 5 4 4

. 7 4 4 5 7 . 9 9 9 7 0 . 8 3 7 4 1

. 9 8 3 8 3 . 9 9 3 4 8 . 9 9 1 4 4

.9 8 3 1 7 1 . 0 0 6 3 5 . 9 9 2 0 4

. 0 0 0 1 4 7 .001451 .0 0 0 0 0 1 - . 0 0 1 7 4 6

- . 0 1 7 7 7 4 1 .787355. - . 0 0 5 2 4 6 - . 0 0 0 9 0 1

- . 0 1 3 1 3 0 - . 0 1 1 6 2 2 . 0 0 1 7 4 0 .0 0 2 6 4 2

- . 0 1 4 5 9 1 1 . 4 9 6 6 9 8 .0 0 1 3 8 1 1 . 2 0 6 1 0 5

- . 0 1 1 0 7 4 . 0 2 5 4 1 2 . 0 0 0 1 9 7 - . 0 0 3 5 1 8

2 . 0 1 9 2 7 1 . 0 2 4 2 2 5 . . 0 0 6 1 4 2 .00C2 53

4 . 1  17244 1 . 7 0 7 8 0 2 1 . 4 4 1 8 2 6 . 0 0 4 5 6 3

1 . 7 0 7 8 0 2 3 . 6 4 0 2 5 2 . 0 0 7 2 9 9 - . 0 1 2 6 9 1

1 . 4 4 1 8 2 6 . 0 0 7 2 9 9 3 . 9 8 0 5 5 6 - . 0 0 0 0 9 8

. 0 0 4 5 6 3 - . 0 1 2 6 9 1 - . 0 0 0 0 9 8 . 8 4 8 3 0 9

. 0 0 4 6 7 5 . 0 0 0 3 2 6 - . 0 0 0 1 1 8 - . 0 0 0 1 8 5

- . .Q096B2. 0 0 4 9 1 6 -  00771. ' _ n n n n a n

. 0 0 1 6 0 5 . 0 0 3 1 0 4 1 . 3 5 0 0 9 0 .0 0 0 0 0 3

. 0 0 2 6 1 1 - . 0 0 0 1 3 3 1 . 3 4 4 5 7 7 . 0 0 0 0 0 3

. 0 0 1 4 6 7 - . 0 0 5 7 3 8 1 . 3 4 9 9 4 5 - . 0 0 0 0 2 0



TABLE V

. THYMINE*
DIAGONALS OF THE DENSITY MATRIX

1 . 0 0 2 3 9 . 9 0 8 7 3 . 8 3 5 0 6 . 8 0 3 8 2 1 . 1 9 5 3 1 1 . 1 3 6 5 5 1 . 1 1 3 4 6 1 . 7 5 7 8 8 1 . 0 2 6 7 3

. 0 9 1 2 0 1 . 0 0 1 2 2 . 9 5 3 1 9 . 9 5 0 4 6 1 . 0 4 7 5 2 . 9 8 5 3 8 1 . 1 0 3 0 3 . 9 8 7 4 1 1 . 0 4 7 5 4

. 9 6 3 1 3 . 9 6 7 3 9 1 . 2 2 0 9 0 1 . 1 6 0 5 7 1 . 1 1 7 5 1 1 . 7 4 6 4 5 1 . 0 1 5 2 9 .8 5 5 9 4 . 9 6 3 3 5

. 8 0 5 5 4 1 . 7 4 3 4 2 1 . 7 8 7 1 7 1 . 4 0 8 e 2 1 . 4 0 0 5 7 1 . 7 2 4 2 9 1 . 2 8 5 2 8 1 . 9 1 1 1 4 1 . 4 3 6 9 3

.86861 . 9 9 0 7 9 1 . 0 0 0 0 3 . . 9 9 4 6 8 1 . 0 1 7 1 0 . 8 6 5 1 2

SUM APPROXIMATE OVERLAP POPULATION
3 . 5 4 9 9 9 9 1 . 4 7 3 8 5 2 . 0 1 0 2 0 0 - . 0 0 8 1 1 1 . 0 0 0 1 6 9 1 . 4 8 7 1 4 1 . 0 0 3 4 1 9 . 0 0 1 0 9 9 1 . 8 7 0 8 7 0 - . 0 0 8 0 4 5

.0 0 3 6 4 5 .0 0 0 0 2 0 . 0 0 0 0 1 2 .0 0 0 0 0 4 - . 0 0 0 9 3 9
1 . 4 7 3 8 5 2 8 . 2 0 3 1 9 5 1 , 5 0  7451 - . 0 1 4 3 7 5 . 0 0 2 6 2 3 019631' - . 0 0 9 9 1 8 .oooo t a - . 0 2 5 7 3 3 1,256879
- . 0 1 5 8 2 3 . 0 0 0 0 6 6 - . 0 0 0 0 6 5 .0 0 0 2 0 9 . 0 0 2 9 3 3

. 0 1 0 2 0 0 1 . 5 0 7 4 5 1 3 . 8 7 2 3 4 5 2 . 0 9 8 3 2 0 . 0 2 2 4 5 8 - . 0 1 0 5 6 7 . 0 1 5 0 6 3 . 0 0 0 6 7 5 . 0 0 1 3 0 0 - . 0 0 5 5 1 6
1 . 3 5 3 4 GS - . 0 0 5 1 2 9 . 0 0 5 3 8 0 - . 0 1 4 3 9 1 . 0 0 0 3 7 3
- . 0 0 8 1 1 1 - . 0 1 4 3 7 5 2 . 0 9 8 3 2 0 4 . 0 8 6 3 9 3 1 . 7 3 1 1 6 6 - . 0 1 5 3 2 1 1 . 5 9 9 1 3 8 - . 0 1 7 5 4 0 . 0 0 0 0 9 8 . 0 0 5 2 2 3
- . 0 1 2 5 4 8 . 0 1 3 5 1 5 . 0 0 9 0 2 2 . 0 0 8 2 4 8 . 0 0 5 7 5 6

. 0 0 0 1 6 9 .0 0 2 6 2 3 . 0 2  2458 1 . 7 3 1 1 6 6 3 . 9 6 8 4 6 3 . 0 0 2 2 7 4 .0 3 8 0 9 1 - . 0 0 5 8 7 4 . 0 0 0 0 0 1 - . 0 0 0 1 5 5
- . 0 0 8 4 7 9 1 . 3 2 0 9 6 7 1 . 3 3 3 8 9 3 1 . 3 2 9 4 4 0 - . 0 0 0 1 5 1
1.4 9 7 1 4 1 - . 0  19631 - . 0 1 0 5 6 7 - . 0 1 5 3 2 1 . 0 0 2 2 7 4 5 . 2 4 5 4 3 4 1 . 4 7 7 8 2 1 - . 0 2 3 3 6 2 - . 0 2 4 0 1 0 . 0 0 2 8 5 6
- . 0 0 0 0 4 0 - . 0 0 0 0 1 8 . 0 0 0 4 0 4 - . 0 0 0 1  13 1 . 2 4 3 2 4 5

.0 0 3 4 1 9 - . 0  09915 . 0 1 5 0 6 3 1 . 5 9 9 1 3 8 . 03 80 91 1 . 4 7 7 8 2 1 3 . 6 4 0 2 2 0 1 . 7 6 1 1 7 7 . 0 0 1 0 8 7 . C00265

. 0 0 4 1 4 2 - . 0 0 0 0 6 0 - . 0 1 2 7 0 3 . 0 0 6 4 1 8 - . 0 0 0 3 0 3

. 0 0 1 0 9 9 . 0 0 0 0 1 8 . 0 0 0 6 7 5 - . 0  17540 - . 0 0 5 3 7 4 - . 0 2 3 3 6 2 1 . 7 6 1 1 7 7 6 . 3 3 9 9 8 0 - . 0 0 0 0 0 2 . 0 0 0 0 0 4
- . 0 0 0 0 3 4 . 0 0 0 0 2 8 .0 0 3 4 0 1 .0 00061 - . 0 0 1 4 8 5
1 . 8 7 0 8 7 0 - . 0 2 5 7 3 3 . 0 0 1 3 0 0 .0 0 0 0 9 8 .000001 . - . 0 2 4 0 1 0 . 0 0 1 0 8 7 - . 0 0 0 0 0 2 6 . 3 5 7 6 4 2 - . 0 0 1 3 1 8
- . 0 0 0 0 4 4 - . 0 0 0 0 0 0 - . 0 0 0 0 0 0  ■ - . 0 0 0 0 0 0 - . 0 0 2 0 3 2 *
- . 0 0 6 0 4 5 1 . 2 5 6 8 7 5 - . 0 0 5 5 1 6 . 0 0 5 2 2 3 - . 0 0 0 1 5 5 . 0 0 2 8 5 6 . 0 0 0 2 6 5 . 0 0 0 0 0 4 - . 0 0 1 3 1 8 . 3 6 8 6 0 7
- . 0C6524 . 0 0 0 0 0 6 . 0 0 0 0 1 4 - . 0 0 0 0 3 2 - . 0 0 0 2 0 3

. 0C2645 - . 0 1 5 8 2 3 1 . 3 5  3 466 - . 0 1 2 6 4 8 - . 0 0 8 4 7 9 - . 0 0 0 0 4 0 . 0 0 4 1 4 2 r . 00 0 0 3 4 - . 0 0 0 0 4 4 - . 0 0 6 5 2 4

. 9 9 0 7 8 5 .0 0 0 1 1  1 . 0 0 0 0 4 3 . 0 0 2 3 7 9 . 0 0 0 0 4 0 '

.0 0 0 0 2 0 . 0 0 0 0 6 6 - . 0 0 5 1 2 9 .0 1 3 5 1 5 1 . 3 2 0 9 6 7 - . o o o o i e - . 0 0 0 0 6 0 . 00 00 2P - . 0 0 0 0 0 0 . 0 0 0 0 0 6

.0 0 0 1 1 1 1 . 0 0 0 0 3 0 - . 0 1 0 2 3 8 - . 0 1 0 2 4 7 . 0 0 0 0 0 5

. 0 0 0 0 1 2  

. 0 0 0 0 4 3
- . 0 0 0 0 6 5  
- . 0 1 0 2 0 8

. 0 0 5 3 8 0  

. 9 9 4 6 8 3
. 0 0 9 0 2 2

- . 0 1 5 2 2 1
1 . 3 3 3 8 9 3  
- . 0 0 0 0 7 0

. 0 0 0 4 0 4 . 0 1 2 7 0 3 . 0 0 3 4 0 1 ■ ' . 0 0 0 0 0 0 . 0 0 0 0 1 4
. 0 0 0 0 0 4  
. 0 0 2 3 7 9

. 0 0 0 2 0 9  
- . 0 1 0 2 4 7

- . 0 1 4 3 9 1  
- . 0 1 5 2 2 1

. 0 0 8 2 4 8  
1 .0 1 7 1 0 2

1 . 3 2 9 4 4 0  
. 0 0 0 0 2 0

- . 0 0 0 1 1 3 . 0 0 6 4 1 8 . 0 0 0 0 6 1 - . 0 0 0 0 0 0 - . 0 0 0 0 3 2
- . 0 0 0 9 3 9  

. 0 0 0 0 4 0
. 0 0 2 9 3 3
. 0 0 0 0 0 5

. 0 0 0 3 7 3
- . 0 0 0 0 7 0

. 0 0 5 7 5 6

. 0 0 0 0 2 0
- . 0 0 0 1 5 1  

. 8 6 5 1 1 9  •
1 . 2 4 3 2 4 5 - . 0 0 0 9 0 3 - . 0 0 1 4 8 5 - . 0 0 2 0 3 2 - . 0 0 0 2 0 3

*Geometric dimensions are those of 5-fluorouracil with the methyl group substituted for fluorine.



TABLE VI

Uracil 5-Fluorouracil Thymine Thymine3

Sum of EAC -77.98 -104.80 - 84.19 - 84.19

Sum of EAB^ -13.24 - 13.68 - 15.99 - 15.99

Total energy -91.22 -118.48 -100.18 -100.18

Binding energy6 - 5.69 - 6.04 - 7.21 - 7.20

Dipole moment f4.78 4.24® 4.31h 3.98h

a. Used geometric dimensions of 5-fluorouracil, substituting CH^ for F.

b. Geometric dimensions obtained from ab initio calculation of the molecule^.

c. Monatomic energy in electron volts.

d. Diatomic energy in electron volts.

e. Energy in atomic units.
71f. Literature experimental value 4.16 +_ 0.04 deby.es.
71g. Literature experimental value 4.11 _+ 0.05 debyes.
71h. Literature experimental value 4.13 _+ 0.03 debyes.

Thymine^

- 84.19

- 16.00 

-100.19 

- 7.22

4.07h
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TABLE VII 

POLARIZATION OF 5-6 BOND
cL bUracil 5-Fluorouracil Thymine Thymine Thymine

C(5) -.1703 .0781 -.0949 -0864 -.1172

C(6) .1805 .1022 .1262 .1277 .1455

Charge
Difference .3508 .0241 .2211 .2141 .2627

a. 5-Fluorouracil data

b. See * footnote in Figure 8.
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H

I
H

Uracil

FIGURE 1 

STRUCTURES

5-Fluorouracil Thymine

5-Fluorouridine
OH H

5-Fluoro-2'-deoxyuridine

HO-

5-Fluorouridylic acid

Deoxythymidylic acid

OOH

5 ->F1 uoro orot i dine 5-Fluorodeoxycytidine
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FIGURE 2 

METABOLISM OF 5-FLUOROURACIL

5-Fluorodeoxycytidine
1

5-Fluorodeoxyuridine > 5-Fluoro-
deoxyuridine 
Monophosphate

5-Fluorouracil ^  5-Fluorouridine

5-Fluoroorotidine Uridine
Monophosphate4;Deoxyuridine 
Monophosphate

5-Fluorodihydrouracil

5-Fluoroorotidine
Monophophate

5-Flourouridine * 5-Fluorodeoxyuridine^ 
Monophosphate ^  Monophosphate ^ 5

ct-Fluoro-3-ureidopropionic 
. acid

o-Fluoro-3-guanidopropionic 
acid

5-Fluorouridine
Diphosphate

I

Deoxythymidine 
Monophosphate

I

5-Fluorouridine
Triphosphate

a-Fluoro-3-alanine 
+

Urea
+

Carbon dioxide 
+

Ammonia

F-RNA

Deoxythymidine
Diphosphate

V
Deoxythymidine 
Triphosphate

V/
DNA

*Via a multi-step pathway involving reduction to the deoxyribose form 
at the diphosphate level.
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Bond Distances 

N Cl) - C (2)

C (2) - N (3)

N (3) - C (4)

C (4) - C (5)

C (5) - C (6)

C (6) - N (1)

C (2) - 0 (7)

C (4) - 0 (8)

C (5) - H (9)

C (6) - H (10)

N CD - H Cll)
N C3) - H (12)

FIGURE 3

and Angles of Uracil (Stewart) 
£
1.371

1.376 

1.371 

1.430 

1.340 

1.358 

1.215 

1.245 

0.931 

0.957 

0.836 

0.877

67

O C 8 )

(2) (6)

H(H)

N CD ■- C (2) ■- N (3) 114.0° C (5) - C (4) - 0 (8) 125,3'

C (2) ■- N (3) ■- C (4) 126.7 C (4) *- (5) •- H (9) 118,1

N (3) ■- C (4) ■- C (5) 115.5 C (6) - c (5) ■- H (9) 123,0

C (4) ■- C C5) •- c (6) 118.9 C C5) - c (6) ■- H (10) 132,2

c (5) ■- c (6) ■- N CD 122.3

c (6) -- N CD •- c (2) 122.6* N CD - c (6) ■- H (10) 114.5

N CD ■- c (2) ■- 0 (7) 123.7 C (6) - N CD •- H (11) 122.2

N (3) ■- c (2) -- 0 (7) 122.3 C (2) - N CD ■- H (11) 115.2

N (3) ■- c (4) •- 0 (8) 119.2 c (2) - N (3) •- H (12) 117.8

c (4) - N (3) ■- H (12) 115.5

o

* Corrected values



37

FIGURE 4

Bond Distances and Angles of 5-Fluorouracil (Fallon)
o

68

N Cl) - C (2)

C (2) - N (3)

N (3) - C (4)

C (4) - C (5)

C (5) - C (6)

C (6) - N (1)

C (2) - 0 (7)

C (4) - 0 (8)

C (5) - F (9)

C (6) - H (10)

N (1) - H (11)

N (3) - H (12)

1^40
1.40

1.39 

1.46

1.35

1.39 

1.20 

1.24

1.36 

1.10* 
1.00* 
1.00*

ft (8)

(12)

(2)
CD (10)

H(11)

N (1) - C (2) -- N (3) 116° C (5) ■- C (4) -- 0 (8) 126°

C (2) - N (3) •- C (4) 127 C (4) ■- C (5) •- F (9) 113

N (3) - C (4) ■- C (5) 112 C (6) ■- C (5) ■- F (9) 122

C (4) - C (5) ■- C (6) 125 C (5) •- C (6) ■- H (10) 121*

C (5) - c (6) ■- N CD 118 N (1) •- c (6) ■- H (10) 121*

c (6) - N (1) ■- C (2) 122 C (6) ■- N CD •- H (ID 119*

N CD - c (2) ■- 0 (7) 121 C (2) ■- N CD •- H (H) 119*

N (3) - c (2) •- 0 (7) 123 c (2) ■- N (3) ■- H (12) 116.5

N (3) - c (4) ■- 0 (8) 122 . c (4) ■- N (3) •- H (12) 116.5

*Estimated
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Bond Distances

N (1) - C (2)
C (2) - N (3)

N (3) - C (4)
C (4) - C (5)

C (5) - c (6)

c (6) - N (1)
c (2) - 0 (7)
c (4) - 0 (8)

c (5) - c (9)
c (6) - H (10)

N CD - H (11)
N (3) - H (12)

C (9) - H (13)

c (9) - H (14)

c (9) - H (15)

N (1) - C (2)

C (2) - N (3)

N (3) - C (4)
C (4) - C (5)
C (5) - c (6)

c (6) - N (1)
N (1) - c (2)

N (3) - c (2)
N (3) - c (4)

FIGURE 5

and Angles of Thymine (Ozeki et al) 

1*314

1.345

1.413

1.476

1.369

1.408

1.246

1.193

1.522

1.100

1.000
1.000
1.090

1.090

1.090

69

H
(11)

(15)

(4)(12)

(1)

(13)

(14)

N (3) 118° C (5) •- C (4) ■- 0 (8) 125°

C (4) 126 C (4) •- C (5) ■- C (9) 119

C (5) 114 C (6) -- C (5) •- C (9) 122**

c (6) 119 C (5) •- C (6) •- H (10) 120*

N (1) 120 N (1) •- C (6) ■- H (10) 120*

c (2) 123 C (6) ■- N (1) ■- H (ID 118.5*

0 (7) 121 C (2) •- N (1) ■- H (11) 118.5*

0 (7) 121 c (2) ■- N (3) •- H (12) 117*

0 (8) 121 c (4) ■- N (3) ■- H (12) 117*

*Estimated
**Corrected
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FIGURE 6

Bond Distances of Thymine (Clementi et al)
o

N (1) - C (2) 1*38

C (2) - N (3) 1.38

N (3) - C (4) 1.38

C (4) - C (5) 1.41

C (5) - C (6) 1.38

C (6) - N (1) 1.35

C (2) - 0 (7) 1.22

C (4) - 0 (8) 1.22

C (5) - C (9) 1.54

C (6) - H (10) l.'lO

N (1) - H (11) 1.00

N (3) - H (12) 1.00

70

(8)

(13)

(4) (14)

(2)
(1)

(11)



THYMINE

THYMINE *

FIGURE 7

CHARGE DISTRIBUTION

4Q

.3161
0009

.3631 048
2443 0949

4495 1261
1801.4222 0088

.1379

.0107

0149

3400 0171

1349 3598
-.08642454

.1277
-.2032.3576' 0092

314

.0000

.0053

*The bond angles and bond lengths are those of 5-fluorouracil with the 
methyl group substituted for fluorine.
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FIGURE 8

CHARGE DISTRIBUTION

-.3546

THYMINE

.0163

.0042

.1517 73597 -.0062
-.2363 -.1172

*

.4345 .1455
-, 3799, -.1789 .0060

.1438

*The molecular dimensions are those obtained by an ab initio calculation 
The special arrangement of the hydrogen atoms of the methyl group is the 
same as that used in the ab initio treatment.

70



r
42

FIGURE 9

CHARGE DISTRIBUTION

-.3622

URACIL

0545.151 . 3672
1702486

.18054502
-.2507 0070372

.1488

.3145

,0445

5 - F LUOROURAC11.

-.3485

P-.1897.338

07811-.2404

10224496
1945 0333

.1414
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