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ABSTRACT 

 

OPTICAL PROPERTIES OF LABORATORY GENERATED AEROSOL:  COMPLEX 

REFRACTIVE INDEX RETRIEVAL FOR POLYSTYRENE LATEX SPHERES, AND 

EXTINCTION ENHANCEMENT OF MONTMORILLONITE BY WATER SWELLING 

 

by 

 

Tyler R. Galpin 

 

University of New Hampshire 

 

Aerosol can alter climate through the interaction with solar radiation by absorbing and scattering 

solar radiation. Absorption and scattering are governed by complex refractive index (CRI) 

dependent on the chemical composition and wavelength, the physical properties of the aerosol 

such as size, and other atmospheric parameters such as relative humidity (RH). CRI is commonly 

reported as the real portion at a single wavelength, or is unknown, which introduces uncertainty 

when those values are used as input for climate models. Two optical interrogation techniques, 

Aerosol Extinction Differential Absorption Spectroscopy (AE-DOAS) and Cavity Ring-Down 

Spectroscopy (CRD), allow for controlled measurements of laboratory generated aerosol. 

 

The AE-DOAS has facilitated the retrieval of wavelength dependent CRI for polystyrene latex 

spheres (PSL). The instrument includes a white-type multi-pass gas cell coupled to a 

spectrometer designed to maximize sensitivity over the spectral range of 235-700 nm where 



 

x 

 

particularly the UV region is not possible with most other aerosol instruments. Retrievals are 

achieved by iteratively minimizing the disagreement between Mie theory and measured 

extinction as a function of sphere size. The PSL retrieved values show agreement to previously 

published literature results while expanding the range of known values. 

 

The CRD has allowed for precise measurement of extinction for montmorillonite aerosol. The 

instrument includes a laser source at 532 nm and two cavities allowing for a direct comparison of 

measured extinction at different RH. Montmorillonite is an alumina silicate clay composed of a 

layered structure allowing for generated aerosol particles to swell in the presence of increased 

RH. Studies were conducted comparing two different generation methods, wet and dry, for 

aerosol samples. Experimental results indicate that the difficulty of fully drying wet generated 

aerosol may significantly impact the measured amount of adsorbed water. 
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CHAPTER 1 

 

INTRODUCTION TO AEROSOL CHEMISTRY 

 

1.1 CLIMATE CHANGE 

 

 Human impacts on the Earth’s climate, especially increasing atmospheric concentrations of 

greenhouse gases, have continued since the rapid industrialization period of the 20th century 

(IPCC 2013). These impacts can be divided into two major parts, climate forcings and climate 

responses (Seinfeld and Pandis 2006). Climate forcings change the energy balance of Earth and 

include greenhouse gases, aerosols, and variability in the Sun’s output. A compilation of the 

anthropogenic radiative forcing (RF, W/m2) for the main gas (upper three chemicals) and aerosol 

(remaining six components, including how aerosols influence clouds) climate forcers is shown in 

Figure 1.1. The x-axis represents RF, a measure of the difference in energy flow for the Earth 

with and without the component present (IPCC 2013). Carbon dioxide (CO2), the most prevalent 

greenhouse gas with anthropogenic contributions, has an RF of +1.68(18) W/m2 for the 

cumulative emissions from 1750-2011, representing a component that warms the atmosphere 

(IPCC 2013). Organic carbon aerosols have a negative estimated RF value of -0.3(2) W/m2 

representing a component that cools (IPCC 2013). Further, the major greenhouse gases like CO2 

and CH4 have long lifetimes in the atmosphere and are well mixed allowing for the RF of these 

gases to be known with a high level of confidence resulting in small relative error to the 
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magnitude of the values as compared to the aerosol components shown. The error bars for some 

aerosol, like mineral dust, span the range from negative to positive RF which indicates 

uncertainty in whether these components warm or cool the atmosphere. 

 

 

Figure 1.1. Radiative forcing from 1750-2011 for select atmospheric gas and aerosol components. The grey shaded 

bar represents the estimated value of RF for a particular component based off a combination of measured 

anthropogenic emissions and complex simulations and the black error bars show the 5 and 95 % confidence 

intervals. This figure is adapted from Figure TS.7 in the Technical Summary of the Intergovernmental Panel on 

Climate Change fifth assessment (IPCC 2013). 

 

Warming, or cooling, for an aerosol is dependent on the amount of scattered or absorbed light. 

Sulfate aerosol for example absorb almost no light and only scatter as shown by an RF of            

-0.4(2) W/m2 (Toon et al. 1976, IPCC 2013). Whether an aerosol component warms or cools can 

also be quantified with the single scattering albedo (SSA) which is a ratio of scattered light to the 

sum of scattered and absorbed light. The critical value of SSA = 0.85 has been shown to be a 

dividing line between aerosol components that warm or cool (Hansen et al. 1980). Most aerosol 
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have an SSA > 0.85 corresponding to the negative RF values shown in Figure 1.1. The critical 

value of SSA is further complicated by the underlying Earth surface below an aerosol. High 

albedo surfaces, like snow pack, will have a higher critical SSA because of the importance of 

reflected sunlight from those surfaces (Hsu et al. 2004). 

 

Climate responses to climate forcings can be seen in many Earth systems including temperature 

increase, sea rise, glacier melt, increased drought occurrence, and extreme weather (Hansen et al. 

2010, Church and White 2011, Lin et al. 2016). Further, climate responses and climate forcings 

have been shown to have adverse effects on human health and welfare (Kulp and Strauss 2017, 

Miller et al. 2017, Tong et al. 2017). 

 

An aerosol is a collection of solid or liquid particles suspended in a gas. A large fraction of total 

aerosol atmospheric loading is produced from natural sources with the majority from sea salt and 

mineral dust as shown by Table 1.1 (Seinfeld and Pandis 2006). While anthropogenically 

produced aerosol loading is low, human actions such as changes to land use and deforestation 

can alter emission rates of some aerosol typically considered natural, such as mineral dust 

(Prospero and Lamb 2003). Aerosol effects on RF are further broken down into two 

subcategories, direct and indirect effects. The direct effect is defined as scattering and absorption 

of light (Angstrom 1929). Scattering and absorption depend on the chemical and physical 

properties of the particles including size, shape, complex refractive index (CRI), concentration, 

and spatial distribution as well as how these properties vary as a function of other atmospheric 

variables like relative humidity (Bohren and Huffman 1983). The indirect effect of aerosol 

describes how particles alter the formation and persistence of clouds thus changing global cloud 
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albedo (Twomey et al. 1984). A pristine clean atmosphere with only homogeneous condensation 

would contain almost no clouds and upon the introduction of particles a dramatic increase in 

cloud cover (Koren et al. 2014). Generally the largest uncertainties associated with current 

climate models have to do with cloud lifetimes, coverage, radiative forcing, and created 

precipitation as depicted by the large error bar of aerosol-cloud RF in Figure 1.1 (Twomey et al. 

1984, IPCC 2013).  

 

Table 1.1. Annual total emission for select aerosol components where the SI prefix tera is 1012 g which is equivalent 

to the mass of three Empire State Buildings. This table is adapted from Table 2.20 in Atmospheric Chemistry and 

Physics containing additional references therein (Seinfeld and Pandis 2006). 

 

 

Aerosol particles are typically found in the size range with physical diameters (d) from a few 

nanometers to tens of micrometers and are composed of a cluster of molecules. A range covering 

this many orders of magnitude is subdivided into smaller, more specific, groups such as 

nucleation mode, Aitken mode, accumulation mode, and coarse mode (Seinfeld and Pandis 

2006). The nucleation mode contains the smallest particles with d < 10 nm. Nucleation mode 

particles are formed in the atmosphere by gas-to-particle reactions. For example, sulfates and 

nitrates are formed from the precursor gases SOx and NOx by oxidation reactions with other 
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gases such as hydroxyl and water, respectively (Saltzman et al. 1983, Ammann et al. 2013). 

Nucleated particles are small enough that gravitational settling is insignificant making the 

predominant removal mechanism condensation onto larger particles demonstrating a process of 

atmospheric ageing (Kulmala et al. 2001). The next largest mode, Aitken, is comprised of 

particles from 10-100 nm with formation primarily from nucleation mode particles continuing to 

grow. Aitken mode and nucleation mode particles make up a majority of the number of ambient 

particles. However, due to their small size these modes make up only a small fraction of total 

aerosol mass and volume. Aitken mode particles continue to grow from gas-to-particle reactions 

into the accumulation mode. Aitken mode particles are still too small to be efficiently removed 

from the atmosphere by gravitational settling as shown by Aalto et al. (2001). 

 

Accumulation mode particles range from 100-1000 nm consisting of grown particles from 

smaller modes as well as directly emitted particles as shown by Krejci et al. (2005). 

Accumulation mode particles fall in the size range where they are large enough to account for a 

large fraction of aerosol surface area (47 %) yet small enough to persist in the atmosphere 

without settling for times on the order of weeks. With long atmospheric lifetimes long range 

transportation occurs which allows for atmospheric processing to change the physical and optical 

properties of the particles as demonstrated by Matsui et al. (2011). Ultimately, accumulation 

mode aerosol is removed from the atmosphere primarily by wet deposition, where particles are 

scavenged by water droplets falling to the surface as for example work by Krejci et al. (2005). 

Coarse mode contains the largest particles with d > 1.0 μm. Generation occurs from mechanical 

processes such as wind blowing over the ocean surface producing sea salt aerosol. Coarse mode 

particles make up the majority of total aerosol volume. However, coarse mode particles are large 
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enough to efficiently undergo gravitational settling with atmospheric lifetimes on the order of a 

day. 

 

In addition to differences in size, aerosol particles have a range of possible morphologies 

(DeCarlo et al. 2004, Seinfeld and Pandis 2006). Aerosol are commonly assumed to be spherical 

homogenous spheres. Ammonium sulfate (AS) is a common component that forms spherical 

aerosol (Dick et al. 1998). Transmission electron microscopy (TEM) images of individual AS 

particles reveal round shapes with surface irregularities (Dick et al. 1998). For NaCl particles, 

TEM measurements have revealed crystalline cubic structures (Hirst and Kaye 1996, Dick et al. 

1998). Both AS and NaCl particles exhibit significant water activity during atmospheric 

transport allowing for dynamic shape effects where particles become more spherical at elevated 

humidity (Dick et al. 1998). 

 

Carbonaceous aerosol particles have been revealed to have a range of morphologies including 

spherical for secondary organic aerosol (SOA) (Virtanen et al. 2010). SOA can be formed in the 

atmosphere by gas-to-particle reactions first forming liquid clusters before transitioning to an 

amorphous solid state (Virtanen et al. 2010, Adler et al. 2013). SOA particles can contain 

internal voids (Adler et al. 2013). Research has shown that void size, shape, and occurrence can 

be further altered by atmospheric processing resulting in changes to particle density (Adler et al. 

2013). Carbonaceous aerosol can have further non-spherical morphologies such as the fractal 

shape of particles composed of black carbon (Andreae and Gelencser 2006, Petzold et al. 2013). 
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Due to the number of different possible morphologies, there are many ways to characterize a 

particle’s dimensions. The simplest particle to consider is spherical and composed of a single 

component. For this particle, the diameter (d) and other properties such as volume can be 

determined with basic geometry. The diameter is more difficult to define for particles that are 

non-spherical or contain voids. One way to describe this particle is to quantify the amount of 

material present using the volume equivalent diameter and mass. The volume equivalent 

diameter (dve) for a particle is defined as the diameter of a solid, smooth sphere with the same 

volume of material (DeCarlo et al. 2004). For a solid spherical particle, d = dve, but for a 

spherical particle with internal voids d > dve. 

 

Other diameter definitions for a particle depend on the measurement technique (Kelly and 

McMurry 1992, Alexander et al. 2016). For example, one commonly used technique for aerosol 

size distribution characterization is the scanning mobility particle sizer (SMPS) which defines 

the diameter by electrical mobility (Dm). In this case Dm is defined by a sphere which migrates 

with the same velocity in a constant electric field as the studied particle (Fissan et al. 1983, 

DeCarlo et al. 2004). For a solid spherical particle d = Dm. For the same particle volume, as the 

shape becomes less spherical Dm increases since the drag on a non-spherical particle is increased 

compared to a sphere (Fissan et al. 1983). Another way to separate particles is with settling 

velocity such as with an aerosol mass spectrometer (AMS) (Jayne et al. 2000, DeCarlo et al. 

2004). In this case, the aerodynamic diameter (da) is defined by a sphere which falls at the same 

terminal velocity as the studied particle. Much like with Dm, non-spherical particles have added 

drag resulting in increased da. 
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1.2  INTERACTION OF LIGHT WITH AEROSOL 

 

Light scattering is depicted in Figure 1.2 by a particle of arbitrary size and shape composed of 

small subregions. When light is incident on the particle a momentary dipole is induced on each 

subregion, which oscillates emitting secondary radiation (scattered wavelet) in all angles, θ, with 

the same energy as the incident beam (Kerker 1969). At some distant point (P) from the particle, 

total scattered light is calculated by superposing the scattered wavelets from each dipole taking 

into account the phase of each (Bohren and Huffman 1983). In practice a measurement at P is the 

total amount of energy which is a function of the incident wave and scattered wavelets. In order 

to separate contributions from the incident and scattered waves it is necessary to view the light 

falling on a lens shaped area located at P. As θ becomes smaller either the lens must be increased 

in area or P must be moved further away suggesting that instruments with the longest path 

lengths will be most sensitive (van de Hulst 1981). For a particle much smaller than the 

wavelength of light phase variation with scattering angle is negligible meaning that scattering 

intensity is not a function of θ. As size increases more possibilities exist for each scattered 

wavelet to possess a different phase creating a scattering pattern with many minima and maxima 

from wave interference. In addition to geometrical considerations for scattering pattern, the 

amplitude and phase of each wavelet will depend on the ability of the incident light to induce a 

dipole on the particle subregion which is related to the permittivity and ultimately the CRI of the 

material, or aerosol component (Bohren and Huffman 1983). For a collection of particles it 

would reason that the measured scattering at P is the summation of the cooperative effect of each 

particle. This only holds true for the special case known as independent scattering in which each 

particle is separated by at least three times the average radius of the particles ensuring each 
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particle is illuminated by the complete power of the incident wave and allowed sufficient space 

to create its own scattering pattern, while the scattered radiation has no interaction with adjacent 

particles (Kerker 1969, van de Hulst 1981).  

 

 

Figure 1.2. Incident wave of light on a particle of arbitrary size and shape. The particle is broken into smaller 

subregions each containing a dipole. The point P is assumed to be distant enough that all scattered light appears 

coherent. This figure is adapted from Figure 1.4 in Absorption and Scattering of Light by Small Particles (Bohren 

and Huffman 1983). 

 

Absorption of light by a particle is analogous to molecular excitation. At ambient conditions 

electrons predominantly exist in their lowest energy level, the ground state. By stimulating 

electrons with an external energy input, in this case the incident wave, they will undergo a 

transition to a higher energy level, an excited state. After a short period of time the electrons will 

return to the ground state emitting excess energy, usually in the form of heat (Skoog et al. 2007). 

Some spectroscopists measure the emitted energy to gain insight on molecular properties but 

more commonly, in simple absorption spectroscopy, the amount of absorbed light (A) is 

measured and related to concentration (c) using the Beer-Lambert Law shown in Equation (1.1) 
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where ε is the molar absorptivity, and l is the path length. Various excited energy levels can be 

achieved including electronic, vibrational, and rotational where the energy difference between 

the excited and ground state is proportional to a specific wavelength of light. For most aerosol 

components light absorption predominantly takes place in UV and IR regions of the spectrum 

from electronic and vibrational excitation respectively (Bohren and Huffman 1983). Some 

carbon containing aerosol absorbs visible wavelengths especially particles composed of black 

carbon explaining the large positive RF associated with this component in Figure 1.1.  

 

𝐴 = 𝜀𝑙𝑐                                                                    (1.1) 

 

The sum of scattering and absorption is extinction, or attenuation, of the incident wave. 

Scattering, absorption, and extinction coefficients for an aerosol are measured in units of length-1 

describing the total amount of light lost per unit distance between source and detector. Extinction 

coefficients are represented by σ with a subscript to denote the interaction type, although there is 

some debate about this in the literature due to the similarity with notation for molecular cross 

sections. Most commonly Mm-1 and cm-1 are the units found in the literature. A measure that 

may be more familiar to chemists is the cross section measured in units of length2 which 

describes light interactions for a single particle. Cross sections are typically represented by C, 

again with a subscript to denote scattering, absorption, or extinction. To remain consistent with 

gas phase spectroscopy and other aerosol literature the units of cm2 are used in this work. 

Integrating cross section over a size distribution of particles calculates the coefficient for the 

whole sample. 
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For a particle, extinction cross section is a function of shape, size, wavelength of incident light, 

and CRI. These variables are used as Mie Theory inputs to calculate extinction. Mie Theory can 

be used when the size of the particle is comparable to the wavelength of light, however the major 

assumption that particles are spheres does not hold true for all aerosols especially mineral dust. 

Other theories exist that compute extinction for other particle shapes including roughened 

spheres, spheroids, and rods though the agreement with measurements can still be improved 

(Bohren and Huffman 1983, Hudson et al. 2008, Veghte et al. 2015). 

 

The CRI (m(λ) = n(λ) ± ik(λ)) is often times unknown as an input variable for Mie Theory. In the 

CRI equation n is the real portion of the refractive index, k is the imaginary portion, and i is √-1. 

Both n and k are wavelength dependent as denoted with λ. CRI is a physical property of an 

aerosol component. The real portion is defined as the ratio of the speed of light in vacuum to the 

speed of light in the material. As described by Snell’s Law, when light enters a material it is 

bent, or refracted, by some angle. One way to measure n leveraging the bending of light is using 

an Abbe refractometer to measure the refraction for liquids at λ = 589 nm, the sodium D-line, by 

sandwiching the sample between two prisms of known refractive index (Dodd 1931). Most 

refractometers lack the ability to measure the wavelength dependence of n as they operate at a 

single wavelength. For aerosol particles n informs the amount of light scattered by the particle. 

Many instruments exist to measure light scattered by particles including nephelometers, optical 

particle counters, and even electrodynamic balance coupled with Mie resonance spectroscopy 

measurements for single particles (Charlson et al. 1974, Steimer et al. 2015). These instruments 

operate over a wider range of wavelengths but still fail to cover the entire solar spectrum. In 

reference books like the Chemical Rubber Company (CRC) Handbook of Chemistry and Physics 



 

12 

 

and Lange’s Handbook of Chemistry nD, where the subscript D denotes the sodium D-line, is 

listed for some aerosol components but missing for many others (Speight 2005, Haynes 2016). 

Data that does exist for multiple wavelengths exists because of specific targeted laboratory 

studies (Han et al. 2009). Several formulae exist for calculating n over a small wavelength range, 

like the Cauchy Dispersion relationship, the Sellmeier formula, or the Lorentz-Lorenz equation, 

however these have little physical meaning since they are empirically derived.  

 

The imaginary portion of the CRI is related to the absorption of a material. Many instruments 

measure absorption of bulk materials including UV-Vis and FT-IR spectrometers. Typically for 

these instruments samples are either solids or liquids. UV-Vis allows for accurate determination 

of physical properties like molar absorptivity, however, absorption may not be the same between 

bulk and nanoscale particles because of surface mode excitation (Bohren and Huffman 1983). 

Some approaches exist to calculate k from the measured bulk absorption, though particularly at 

UV wavelengths it may be difficult to find suitable solvents which do not interfere with 

measured spectra (Sun et al. 2007, Chen and Bond 2010). Instruments have also been developed 

for the measurement of aerosol absorption including photoacoustic spectroscopy (PAS), 

aethalometry, particle soot absorption photometers, and multi-filter rotating shadowband 

radiometers (Horvath 1993, Moosmuller et al. 2009). Several of these instruments may have 

added uncertainty on measured absorption since they rely on depositing samples on filters which 

can introduce artifacts. PAS is the most promising technique for measuring absorption but is 

currently limited by the number of operating wavelengths especially in the UV region (Wiegand 

et al. 2014, Radney et al. 2017). Ultimately measuring absorption for aerosol particles can be 
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quite challenging because small Cabs values for many types of aerosol require instruments with 

low limits of detection. 

 

A final series of instruments can measure extinction such as ellipsometry for bulk analysis and 

transmissometers, sun photometers, and cavity based spectrometers for particle measurements. A 

few of these instruments, including ellipsometers and broadband cavity enhanced spectroscopy 

operate over wide wavelength ranges into the UV where absorption becomes significant for 

some aerosol components (Humlicek 2005, French et al. 2007, Washenfelder et al. 2013). 

Ellipsometry measures the change in polarization of light reflected off a thin film of material. 

Much like other bulk measurements there may be discrepancies recreating the density and 

surface properties of particles which could yield different CRI results. The extinction results 

from aerosol instruments can be coupled with an iterative minimization routine to generate best 

fit CRI (Bluvshtein et al. 2012, Washenfelder et al. 2013, Zarzana et al. 2014). In some cases the 

retrieved values compare favorably to other literature results (Spindler et al. 2007, Dinar et al. 

2008). However, retrieving CRI from extinction can be challenging since it is difficult to 

separate scattering and absorption (Bohren and Huffman 1983). The error on retrieved CRI can 

be improved by measuring multiple particle sizes where scattering and absorption respond 

differently to changes in diameter as shown by Figure 1.3 (Bluvshtein et al. 2012, Zarzana et al. 

2014). For the two combinations of n and k, Mie Theory calculations of % of total extinction, for 

either scattering or absorption, show different relationships as a function of diameter. Others 

have paired extinction measurements with either a complimentary scattering or absorption 

measurement (Gerber 1979, Arnott et al. 1999, Lack et al. 2006). Calculating absorption from a 

subtraction method can be particularly challenging because extinction is predominated by 
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scattering as demonstrated by most aerosol components having SSA > 0.85 (Hansen et al. 1980, 

Singh et al. 2014). 

 

 

Figure 1.3. Mie Theory calculations of % of total extinction for scattering and absorption as a function of particle 

diameter. In all cases n = 1.50. The black solid line and dashed line represent k = 0.05 for scattering and 

absorption, respectively and the grey solid line and dashed line represent k = 0.5 for scattering and absorption, 

respectively. 

 

Particle morphology will also have an effect in determining the CRI for a particle. For a solid, 

spherical, single component particle the CRI is equivalent to the bulk material. Many ambient 

aerosol particles are multicomponent or contain internal voids resulting in challenges in 

determining the CRI. For a particle with internal voids the CRI is lower than a solid particle with 

the same dimensions since the light must pass through some amount of air within. 

Mathematically representing the contribution of the voids to CRI is challenging and further, is 

complicated by a lack of knowledge about the location and size of voids for in situ particles.  
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1.3  AMBIENT AEROSOL MEASUREMENTS 

 

Significant interest exists in measuring spatial and temporal distributions of ambient aerosol as a 

function of size and composition in order to better understand potential climate forcings. One 

approach to measure aerosol sources was installing instruments at large anthropogenic emitters 

like power plants and chemical manufacturers (Spurny 2005). In highly developed countries such 

as the United States spot monitoring is useful to enforce emission regulations. In 1998 a ground 

based global monitoring network, the Aerosol Robotic Network (AERONET), was introduced to 

expand the possible measurement locations (Holben et al. 1998). AERONET is a series of sun 

photometers placed around the globe to measure aerosol optical depth (AOD). AOD is a measure 

of the extinction of solar radiation by particles in the atmosphere. The quantity is dimensionless, 

corresponding to the amount of direct sunlight prevented from reaching the surface (Dutton et al. 

1984). For the AERONET deployment of sun photometers a solar panel power source is used 

allowing access to remote locations providing data at sites beyond previous point source 

measurements. Extinction of the total air column is measured using the Sun for a source of light. 

Sun photometers operate over a number of wavelengths from visible to IR where the Sun has 

substantial intensity. Wavelengths where atmospheric gases such as water vapor absorb are 

excluded (Shaw 1983). Currently over 800 AERONET measurement points exist globally with 

~25 existing over the ocean. This represents limitations of ground based measurements 

particularly since sea salt aerosol has high loading in the atmosphere as shown by Table 1.1 

(Seinfeld and Pandis 2006). However, AERONET stations can continuously collect data at a 

specific location allowing for long term comparisons with high temporal resolution of 

measurements every 15 minutes during daylight (Kokhanovsky and de Leeuw 2009). 
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Further advancements in satellite capabilities since 1998 have provided for even greater spatial 

coverage of the Earth. Various instrument payloads exist on satellite platforms including 

Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging 

Spectroradiometer (MISR), and the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP). In principle these instruments have similar operation to sun photometers in using the 

Sun as the source but differ by measuring reflection off the Earth’s surface. For satellite based 

instruments reflectance is measured and an algorithm is used to match to a database of simulated 

reflectance values for various expected conditions (Levy et al. 2010). Space based spectrometers 

have an added advantage of measuring Sun intensity at the top of the atmosphere directly 

whereas ground based instruments must make assumptions to calculate a value by measuring 

over multiple angles (Kokhanovsky and de Leeuw 2009). Satellites have further improved the 

spatial coverage of aerosol loading providing measures of important phenomena such as long 

range transport (Zhang et al. 2017). Spatial resolution of satellites could be improved where 

MODIS for example only has on average 1 km resolution which misses fine structure of some 

point sources. The number of satellite payloads has increased in the past decade but for an 

individual instrument the temporal coverage of one location is challenging as most satellites 

must orbit the Earth limiting measurements to once per day at the same time of day for          

mid-latitudes. Future planned and recently launched geostationary satellites with aerosol 

monitoring payloads will improve temporal coverage. 

 

In addition to the lack of spatial coverage for ground based instruments and the temporal 

coverage for space based instruments other inherent assumptions made in the calculations should 

be addressed to improve the ability to measure aerosol properties remotely. A few of these 
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challenges were outlined previously such as uncertainty in particle shape, CRI, and how 

atmospheric conditions such as relative humidity change these (Zhang et al. 2017). Additionally, 

the ability to make measurements on cloudy days is often times so challenging that those days 

are ignored from data sets (Zhang et al. 2017). The CRI is uncertain for some prevalent aerosol 

components over the entire wavelength range used by both ground and space based instruments 

making the determination of extinction difficult (Kokhanovsky and de Leeuw 2009). One recent 

study showed how errors in the assumed CRI for aerosol plumes located over Brazil led to 

MODIS overestimating the number concentration of accumulation mode particles (Levy et al. 

2010). Others have suggested that aerosol growth through water uptake is poorly represented by 

look up algorithms used by satellites causing overestimations in number concentration 

(Shinozuka et al. 2015). 

 

The work presented in this thesis is aimed at providing optical measurements for select aerosol 

components to expand the inventory of optical properties. Chapter 2 presents an iterative CRI 

retrieval algorithm for polystyrene spheres expanding the range of previously known values for 

aerosolized samples into UV wavelengths and Chapter 3 presents the measured optical extinction 

enhancement of montmorillonite as a function of water uptake for different aerosol generation 

methods. 
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CHAPTER 2 

 

REFRACTIVE INDEX RETRIEVALS FOR POLYSTYRENE LATEX SPHERES IN THE 

SPECTRAL RANGE 220-420 NM 
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2.2  INTRODUCTION 

 

Aerosol interact with solar radiation directly through absorption and scattering as well as 

indirectly by acting as cloud condensation or ice nuclei (Charlson et al. 1992, IPCC 2013). 

Currently, the uncertainty associated with direct interactions limits the ability of models to 

accurately predict radiative forcing thus constraining improvements in our understanding of 
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climate change (IPCC 2013). Particle-light interactions depend on the wavelength of light, the 

size and shape of the particle, and the complex refractive index (CRI, m = n ± ik) (Bohren and 

Huffman 1983). The CRI is a wavelength (λ) dependent physical property of each chemical 

species. The real portion of the refractive index (nD) for some chemicals are reported in the CRC 

Handbook of Chemistry and Physics at λ = 589 nm, which is the sodium D-line denoted as the 

subscript (Haynes 2016). Other general references exist for nD values, such as Lange’s Handbook 

of Chemistry (Speight 2005), but complete CRI are usually reported in the literature only as a 

result of specific experiments and even then are limited. Despite being more common, nD values 

are still not available within these reference books for some common chemicals present in 

ambient aerosols such as malonic acid, adipic acid, and pyrene (Rogge et al. 1993). In some 

cases the range of CRI for a chemical has been expanded by applying the Cauchy dispersion 

equation. This equation relates the wavelength of light to the real portion of the CRI through a 

series of constants which are characteristic of the chemical. While the theoretical basis of the 

equation no longer holds true, calculated indices in regions of normal dispersion are still 

satisfactory (Jenkins and White 2001). 

 

Knowledge of the CRI, along with the size distribution and shape, of a type of aerosol are used to 

predict the influence on Earth’s energy balance by calculating the single scattering albedo (SSA). 

Particularly the CRI provides information on the scattering and absorption ability of a type of 

aerosol. SSA is a ratio of the scattered light to the total attenuance where the dividing line 

between cooling and warming aerosol is 0.85 (Hansen et al. 1980, Ackerman and Toon 1981). 

Pure scatterers like particles composed of ammonium sulfate have a value of k = 1x10-7 in the 

visible region and represent aerosol that would have an SSA > 0.85 and a net cooling effect on 



 

20 

 

the atmosphere (Toon et al. 1976, Charlson et al. 1991). Particles composed of black carbon have 

a higher value of k, reported in the literature as k = 0.63-0.79 at λ = 550 nm, resulting in the 

absorption of solar radiation, an SSA < 0.85, and ultimately a net warming effect (Bond and 

Bergstrom 2006). Often the CRI for specific chemicals, or types of aerosol, is only reported at a 

single wavelength, is only reported for nD, or may even be unknown and thus climate impact is 

uncertain. 

 

Measurement, or retrieval, of CRIs or portions of the CRI has been done in several ways. For 

example, ellipsometry can be used to directly determine the CRI by collecting an aerosol sample 

to be prepared into a thin film where a change in polarization of light reflecting off the surface of 

the film is measured (Humlicek 2005, Liu et al. 2013). Another method for determining the CRI 

is through retrievals from other optical properties. In specific, Lack et al. (2006) describes an 

experiment where: 1) the aerosol extinction was measured with cavity ring-down spectroscopy 

(CRD) and absorption was measured with photoacoustic spectroscopy (PAS) for absorbing 

nigrosin particles at a series of sizes, 2) the CRI was retrieved exclusively from the extinction 

efficiency results and then 3) a Mie theory curve was generated from the retrieved CRI to 

compare with the measured absorption cross section. The agreement is very good between the 

Mie Theory based on extinction retrieved CRI and the PAS measured absorption data (Lack et al. 

2006). Others have followed a similar procedure for retrieving CRI for absorbing and            

non-absorbing aerosol which compare favorably with other methods and literature values (Abo 

Riziq et al. 2007, Spindler et al. 2007, Dinar et al. 2008, Freedman et al. 2009, Lang-Yona et al. 

2009, Kim et al. 2010, Mack et al. 2010, Miles et al. 2010, Miles et al. 2010, Erlick et al. 2011, 

Bluvshtein et al. 2012, Washenfelder et al. 2013, Flores et al. 2014). For individual refractive 
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index components, the Abbe refractometer has been used to determine the real portion, n, of the 

refractive index for chemical samples by measuring diffraction of light traveling through two 

prisms sandwiching the sample. The imaginary part of the refractive index, k, describes light 

absorption by the bulk through the relationship to the absorption coefficient (Horvath 1993, Sun 

et al. 2007, Moosmuller et al. 2009). The absorption coefficient has been measured in many 

ways and these techniques have been reviewed recently and include the following instruments: 

aethalometer, particle soot absorption photometer (PSAP), micro soot sensor, multi-angle 

absorption photometer (MAAP), multi-filter rotating shadowband radiometer, PAS, single 

particle soot photometer (SP2), integrating sphere, plate or sandwich, and the subtraction method 

via extinction and scattering measurements (Horvath 1993, Moosmuller et al. 2009). A number 

of these instruments and techniques have potential filter interference requiring corrections, 

complicated sample preparation requirements and/or operate at a single or limited number of 

wavelengths. 

 

The development of a broadband aerosol extinction differential optical absorption spectrometer 

(AE-DOAS) has allowed for the measurement of light extinction by aerosol over the spectral 

range of 220-1050 nm, with optimal results from 235-700 nm (Chartier and Greenslade 2012). 

The AE-DOAS can be used for the retrieval of CRI over nearly the entire solar spectrum when 

coupled with Mie Theory and an iterative minimization routine. To validate this application, 

measurements of extinction were made for polystyrene latex spheres (PSL), a common standard 

used to calibrate aerosol research instruments. PSLs are widely used since they are manufactured 

to be spherical and of a known diameter allowing Mie Theory to accurately predict extinction 

cross sections. The AE-DOAS measures extinction, so it is important to measure multiple 
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diameters in order to minimize the uncertainty on the retrieved values, as scattering and 

absorption can respond differently to changes in particle size (Zarzana et al. 2014). The 

measurement of extinction alone represents a limitation to instruments like the AE-DOAS or 

CRD in retrieving the CRI. To the best of our knowledge only French et al. have previously 

measured the CRI of thin film polystyrene below 360 nm (French et al. 2007). Washenfelder et 

al. (2013) retrieved CRI for polystyrene spheres between 360-420 nm based on similar optical 

measurements and Ma et al. measured suspensions of polystyrene spheres in water from        

370-1610 nm (Ma et al. 2003). Two other recent studies retrieved CRI outside of the wavelength 

range presented in this work, specifically in the visible and IR regions with references to 

additional studies contained within (Miles et al. 2010, Zhao et al. 2014). 

 

In this chapter, retrieved CRI values are presented for PSLs in the wavelength range from      

220-420 nm, larger uncertainties are expected where there is less lamp intensity below 235 nm. 

Further, the relationship between particle diameter and wavelength of light is investigated with 

respect to the retrievals, where the differences between Rayleigh and Mie scattering become 

important at small particle diameters. 

 

2.3  EXPERIMENTAL 

 

2.3.1  AE-DOAS Instrument Description 

 

The AE-DOAS manufactured by Cerex Monitoring Solutions (CMS UV-5000) consists of a 

xenon lamp and a detector as part of a standard UV-Vis spectrometer, plus a white-type      
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multi-pass gas cell (Chartier and Greenslade 2012). The Xe lamp produces photons spanning the 

range from the ultraviolet to near infrared (~220-1050 nm). The emission intensity of this lamp 

has a large broad peak, with substantial intensity from 275-800 nm. Lower energy wavelengths 

in the IR are characterized by sharp and intense emission peaks making this wavelength range 

challenging for measurement. Lamp variability can have a substantial effect on the measured 

extinction, but this variability is more significant from day to day as opposed to over the time of 

an experiment (Jordan et al. 2015). In this work, the 220-420 nm range is used and deviations in 

lamp intensity are minimized by using background measurements made before sampling. In a 

recent redesign of the AE-DOAS, which has also been referred to as the Spectral Aerosol 

Extinction (SpEx) instrument, higher flow rates are used to exchange the volume within the gas 

cell in as little as 40 s. In addition, backgrounds are taken both before and after sampling to 

better understand any lamp drift, where these modifications could be used in future AE-DOAS 

experiments (Jordan et al. 2015). 

 

In more detail, the optical cell contains one fixed (primary) and two movable (secondary) 

concave mirrors of equal curvature. Slight adjustments, of the secondary mirrors, allow for the 

path length to range in 2.44 m increments from 2.44 to 19.51 m by changing the number of 

internal reflections within the cell. These mirrors are not protected by any purge flow avoiding 

dilution corrections but degradation of mirror reflectivity could introduce uncertainty to 

measurements. This is minimized with the timing of the background measurements. The cell is 

made from stainless steel with dimensions of 73.0 cm x 19.2 cm x 7.5 cm creating an internal 

volume of around 5.8 L; it was kept grounded during experiments. Finally, the spectrometer 

detector consists of a grating and a 3078 linear diode array. Fiber optic cables (Ocean Optics 
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QP600-2-SR-BX) connect the gas cell to the lamp and spectrometer. For a more detailed 

explanation of instrumental design and validation, see previous work by Chartier and Greenslade 

(2012). 

 

2.3.2  Sample Generation and Extinction Measurement 

 

Samples were prepared from 10 % (w/w) polystyrene latex sphere suspensions (Thermo 

Scientific, formerly Duke Scientific) by further diluting 15 drops with 20 mL of deionized water 

(J. T. Baker, HPLC water). PSLs of five different sizes were used for the experiment including 

diameters (d) of 150 (3150A), 220 (HF22), 300 (HF30, 5030A), 430 (5043A), and                   

600 (5060A) nm. No attempts were made to remove the proprietary surfactant included during 

manufacturing. The sample is aerosolized in a Collison-type atomizer using nitrogen (N2) gas 

(May 1973, Liu and Lee 1975). The aerosol generation and further experimental design are 

depicted in Figure 2.1. This aerosol entrained in nitrogen is dried to a relative humidity of < 3 % 

by passing over molecular sieves housed in a diffusion drier before entering into a differential 

mobility analyzer (DMA, TSI model 3080L). Within the DMA, a minimally polydisperse aerosol 

sample is refined by first establishing a charge on the particles with a krypton source and then 

separating by electrical mobility within a concentric electric field between an inner rod and outer 

cylinder. Corrections for multiply charged particles exiting the DMA typically need to be applied 

to the particle number concentrations and the extinction results; however in this case, due to the 

nature of the sample, such a correction is not applied. 
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Figure 2.1. The complete experimental design used for broadband extinction measurements. The path through the 

system starts on the left with aerosol generation from a sample solution using nitrogen in an atomizer block. The 

aerosol is then dried before size selection with a DMA. Optical extinction is measured next with the AE-DOAS and 

finally number concentration is measured with the CPC. The abbreviations used are: DMA - differential mobility 

analyzer, AE-DOAS - aerosol extinction differential optical absorption spectrometer, LDA - linear diode array,     

Xe source – xenon lamp, CPC - condensation particle counter. 

 

Further information on multiply charged PSL particle and DMA size selection is included in the 

results section. This now monodisperse aerosol sample enters into the AE-DOAS where 

extinction is continuously measured. For these experiments, the AE-DOAS was operated at a 

path length between 17.08 and 19.51 m. The flow of aerosol then exits the cell and terminates at 

a condensation particle counter (CPC, TSI model 3775) where concentration is measured. The 

CPC has an uncertainty of ±10 % and this dominates the uncertainty of the extinction cross 

section measurements. The aerosol flow within the DMA, AE-DOAS, and CPC is kept at        

0.3 L/min to promote laminar flow within the setup. Importantly, a time offset between the    

AE-DOAS and the CPC is determined. This is done by correlating the highest concentration 

measured with the CPC to the highest extinction measured with the AE-DOAS, and applying this 

time offset to all other measurements; the observed offset agrees with times estimated from the 

flow and instrument dimensions between the two locations. Typically, an experiment takes about 

an hour from measuring the blank before sample to purging the cell of aerosol following 

measurement. 

AE-DOAS 
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2.4  RESULTS 

 

Collected data from individual experiments includes light intensity measurements of dry, 

filtered, particle free nitrogen gas from within the gas cell for background (I0) and of the aerosol 

sample (I), as well as aerosol number concentration (N). Aerosol size is controlled by 

manufacturing and DMA selection. This data allows for the determination of experimental 

extinction cross sections, Cext (cm2/particle), which can be compared to Mie Theory based 

calculations. First experimental extinction, σext (cm-1), is calculated using Equation (2.1) where l 

is the path length. 

 

𝜎𝑒𝑥𝑡 =
− ln(𝐼

𝐼0
⁄ )

𝑙
                                                           (2.1) 

 

Extinction cross sections (Cext) are then calculated using the number concentration, N 

(particles/cm3), from the CPC using Equation (2.2). Number concentrations are found by 

averaging 2.5 minutes of data from the CPC which corresponds to the time for the AE-DOAS to 

collect the light intensity data. Since there is an offset between intensity and concentration 

measurements from the travel time of the aerosol, a time offset described above is used. An 

experimentally obtained spectrum of the measured extinction cross section for PSLs with a 

diameter of 150 nm is represented by the open grey circles in Figure 2.2. 

 

𝐶𝑒𝑥𝑡 =
𝜎𝑒𝑥𝑡

𝑁
                                                                (2.2) 
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Figure 2.2. The measured extinction cross section for 150 nm PSLs using the AE-DOAS shown as open grey circles. 

The error bars on the measured values represent 1 σ of the mean. Shown for comparison are Mie Theory 

calculations based on various CRI. The solid black line represents the CRI retrieved in this manuscript, the dashed 

black line represents the CRI for polystyrene-568 measured by French et al. (2007), and the open hour glasses 

represent a constant RI supplied by the manufacturer at the wavelength of 589 nm. Points are connected by lines to 

guide the eye where the French et al. (2007) data is reported at larger intervals than the AE-DOAS data. 

 

In addition, the dimensionless extinction efficiency, Qext, is calculated for use in the CRI 

retrievals. A graph of this quantity versus the dimensionless size parameter (χ) produces a 

uniquely shaped curve that is distinctive for different CRI. The size parameter, defined as πd/λ, is 

useful when comparing the extinction of two spheres with the same CRI. Even if the spheres 

have different diameters as long as χ is the same, the extinction efficiency will be equal. Qext is 

calculated using Equation (2.3) below where r (cm) is the radius of the particle. 

 

𝑄𝑒𝑥𝑡 =
𝐶𝑒𝑥𝑡

𝜋𝑟2                                                                 (2.3) 
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Final manipulation of the data includes averaging Qext for replicate trials as well as calculating 

the standard deviation on Qext for each diameter. The number of trials and the experimental path 

lengths for each sized PSL are shown in Table 2.1. 

 

Table 2.1. Path length and number of trials averaged to calculate Qext for the various sized PSLs. The uncertainty on 

the diameter of the PSL in solution ranges from ≤ 3 % to ≤ 5 %. Fewer trials of 600 nm spheres were completed as 

it was more challenging to obtain the necessary particle number concentration. 

 

 

The experimental Qext average and standard deviation along with the sphere diameter and size 

uncertainty from the manufacturer are used for the retrieval algorithm (Washenfelder et al. 

2013). This algorithm compares the measured extinction efficiency calculated with Equations 

(2.1)-(2.3) to those calculated with Mie Theory for a particular CRI (Washenfelder et al. 2013). 

Both the real and imaginary portions of the CRI are varied within the retrieval to minimize the χ2 

in Equation (2.4), where NDp is an index for a particular PSL diameter, Qext is the experimental 

extinction efficiency, and QMie is the calculated Mie Theory extinction efficiency for some CRI: 

 

𝜒2 = ∑ (
𝑄𝑒𝑥𝑡−𝑄𝑀𝑖𝑒

𝑄𝑒𝑥𝑡
)

𝑖

2
.

𝑁𝐷𝑝

𝑖=1
                                                (2.4) 

 

The uncertainty in the retrieved real and imaginary portions of the CRI is obtained empirically 

by considering the range of Qext values bounded by the uncertainty, which is on average ±11 % 
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of Qext; the method used here is based on that described by (Washenfelder et al. 2013). This 

retrieval is repeated for the wavelength range 220-420 nm in 2 nm steps. 

 

 

Figure 2.3. The real portion (n) of the CRI versus wavelength retrieved from this work with literature values. The 

open grey circles represent the retrieved values from the AE-DOAS with error bars representing the retrieval 

uncertainty, the solid black squares represent the data from Washenfelder et al. (2013), the dashed line represents 

polystyrene-677 from French et al. (2007), the solid black line represents polystyrene-568 from French et al. (2007), 

and the dashed-dotted line represents the values generated from the Cauchy coefficients extrapolated below 370 nm 

from Ma et al. (2003). Lines are used for the French et al. (2007) and Ma et al. (2003) data to guide the eye where 

data is available at larger intervals than the AE-DOAS data. Numerical values and uncertainties for the retrieved 

refractive index are presented in Table A1 in the appendix, where only a subset of uncertainties are presented here 

for clarity. 

 

The retrieved CRI values and uncertainties are given in Table A1 in the appendix and are 

displayed graphically in Figures 2.3 (for the real portion (n)) and 2.4 (for the imaginary portion 

(k)). When using a DMA to size select particles for optical measurements, it is generally 

necessary to correct for multiply charged particles where larger sizes would have a similar 

mobility ratio so they could pass through the DMA and contribute to the observed number 

concentration and optical extinction (Hoppel 1978). 
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Figure 2.4. (a) - The imaginary portion (k) of the CRI versus wavelength retrieved from this work with literature 

values. The open grey circles represent the retrieved values from the AE-DOAS with error bars representing the 

retrieval uncertainty, the solid black squares represent the data from Washenfelder et al. (2013), the dashed line 

represents polystyrene-677 from French et al. (2007), and the solid black line represents polystyrene-568 from 

French et al. (2007). Lines are used for the French et al. (2007) data to guide the eye. (b) - An expanded view of 

panel (a) in the wavelength range from 240-420 nm to show detail. Only ~20 % of the data is shown with error bars 

for clarity. Numerical values and uncertainties for the retrieved refractive index are presented in Table A1 in the 

appendix. 
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Several literature reports have been considered on the necessity of such corrections for PSL in 

analyzing the results. A two DMA method has been used to show polydisperse samples like 

ammonium sulfate can have measured extinction cross sections 17-47 % greater than those 

predicted with Mie Theory whereas PSLs are typically only 2-12 % greater (Khalizov et al. 

2009). This small difference for PSLs was hypothesized to result from surfactant residue which 

prevents agglomeration and minimizes doublets but may yield small changes in diameter 

(Khalizov et al. 2009). Other researchers have noted that PSL conglomerates were observed in 

experiments, but when simplified and advanced correction approaches were compared, no 

systematic differences were observed (Petzold et al. 2013). 

 

Further, high linear correlation between Mie Theory including number concentration data and 

experimentally measured extinction values were observed yielding slopes between the two 

correction methods which were not statistically different, thus it was concluded no corrections 

were needed (Petzold et al. 2013). Another report noted that the DMA in use for the experiment 

removed aggregate and surfactant particles from the optically interrogated flow (Miles et al. 

2010). Ultimately, PSLs are nearly monodisperse with a size distribution smaller than the DMA 

transfer function, they contain surfactant to prevent aggregation, and other researchers have 

noted low impact to their data from multiply charged particles, therefore corrections are not 

applied for multiply charged particles in this work (Khalizov et al. 2009, Miles et al. 2010, 

Petzold et al. 2013). 

 

Coefficients (A, B, and C) for the Cauchy dispersion equation were found using Equation (2.5) 

where λ is the wavelength in microns and n(λ) is the real refractive index at that λ: 
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𝑛(𝜆) = 𝐴 +
𝐵

𝜆2 +
𝐶

𝜆4.                                                      (2.5) 

 

The retrieved PSL real refractive index data from Table A1 in the appendix is fit to Equation 

(2.5) using an iterative χ2 minimization in Igor Pro. The resulting Cauchy coefficients are given 

in Table 2.2 with values from the literature for comparison. Others have published results for 

similar relationships such as the Cauchy relationship based on a few wavelengths, a modified 

Cauchy relationship with additional coefficients, or Sellmeier’s formula. A recent and 

comprehensive review of the literature can be found in Miles et al. (2010). 

 

Table 2.2. Cauchy dispersion equation coefficients determined for polystyrene latex spheres based on fitting Equation (2.5). This 

work focuses on utilizing the retrieved real refractive index at UV-Vis wavelengths from 220-420 nm. Whereas, the Ma et al. 

(2003) values are based on the 390-1310 nm wavelength range and the Matheson and Saunderson (1952) values are based on 

measurements from 436-767 nm. 

 

 

2.5  DISCUSSION 

 

The retrieved values of the real and imaginary CRI as a function of wavelength for PSL are 

shown in Figures 2.3 and 2.4, respectively and Table A1. In Figure 2.3, the real portion (n) 

shows normal dispersion by an increase in the index with increasing energy (Bohren and 

Huffman 1983). Agreement with previous literature results is also shown for most regions of the 

spectrum. This is especially true for the Washenfelder et al. (2013) data which uses a similar 
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technique to that presented here. Briefly, Washenfelder et al. (2013) aerosolized PSLs and 

measured extinction with either a custom broadband cavity enhanced spectrometer (BBCES) or a 

CRD both of which are similar to our optical interrogation of suspended PSL but differ in the 

wavelengths available for measurement. The French et al. (2007) results also show general 

agreement for the real portion over the spectrum. That study employed spectroscopic 

ellipsometry to interrogate thin films of two different formulations of polystyrene. These two 

formulations of the polymer return CRI values with some differences suggesting that if the PSLs 

used in this work, or by Washenfelder et al. (2013), are a different formulation, then differences 

would be observed (Liu et al. 2013). Further, the manufacturer of the PSLs uses a proprietary 

surfactant which may stay on the surface of the aerosols after generation and this may contribute 

to the CRI retrieved in this work (Khalizov et al. 2009). The Ma et al. (2003) data shows more 

deviation compared with all three studies, particularly below λ = 300 nm. It is important to note 

that the data from Ma et al. (2003) has been extrapolated beyond the intended region which ends 

at λ = 390 nm using the reported Cauchy coefficients and the agreement with other data sets is 

good from 390-420 nm. To improve the accuracy of the Cauchy model for PSLs based on the 

newly retrieved real refractive index at UV wavelengths, new coefficients have been calculated 

and are shown in Table 2.2. The values compare well with the literature. The differences in 

coefficients may result from the significant increase in n(λ) into the UV observed in Figure 2.3 

and the different wavelength ranges considered. Further, the Ma et al. (2003) results may also 

differ because solution phase measurements of suspended PSLs were the basis of the coefficient 

determination and solvent effects may be possible. Whereas, the Matheson and Saunderson 

(1952) work was completed by measuring the diffraction of light through polystyrene prisms and 

are bulk measurements. 
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In Figure 2.4, the retrieved imaginary portion of the CRI shows excellent agreement with the 

similar work of Washenfelder et al. (2013). The uncertainty on a number of these retrieved 

values is larger than the values suggesting that the k + Δk represents an upper limit for k. Future 

refinements to k values for PSL in this wavelength region may benefit from a supplementary 

absorption measurement. PSLs show two absorption bands, one below λ = 240 nm and one 

centered at λ = 280 nm. While these compare well with the imaginary portion measured by 

French et al. (2007) the band centered at 280 nm may also be a result of additional gas phase 

absorption, mainly acetone, which was found to occasionally persist in the lab during 

measurement. There are noticeable differences however between the polymers of French et al. 

(2007) and this work. The disagreement is increased at wavelengths greater than 300 nm and is 

most likely caused by differences in the techniques used or the polymer formulation, as 

discussed above. With regard to the technique, French et al. (2007) note that based on spectral 

differences for a single polystyrene film measured with two different spectroscopic techniques 

used in the study, the uncertainty of the imaginary portion is quite large at the absorption 

maximum and could be at other wavelengths as well. The authors also demonstrate that 

absorption spectra have differences between bulk and surface sampling. The films used by 

French et al. (2007) may not replicate the same surface to bulk ratio of the PSLs causing the 

measured values to disagree. A final consideration is that birefringence, a measure of how the 

CRI varies with the direction of light propagation, has been shown to increase for polystyrene in 

the visible region with decreasing wavelength (Inoue et al. 1998). The birefringence is induced 

by strain from preparing the material and may not be the same between the films used by French 

et al. (2007) and the PSLs used here. 
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Figure 2.5. Extinction efficiency versus diameter for PSLs measured at λ = 228 nm with the AE-DOAS. The open 

circles represent the measured values with errors bars representing 1 σ of the mean, the solid black line is the Mie 

Theory extinction calculated using the retrieved CRI from this work, and the dashed line represents Mie Theory 

extinction calculated for ±5 % of both portions of the retrieved CRI. 

 

The diameter of the PSLs is an important variable depending on the wavelength of interest for a 

CRI retrieval. The uncertainty of the retrieved values generally increases as the wavelength of 

light decreases particularly into the UV region as seen in Figures 2.3 and 2.4. This increase in the 

uncertainty magnitude can be explained using a different representation of the experimental data. 

Here, Figures 2.5 and 2.6 show a comparison of the measured extinction efficiency (Qext) for 

PSLs and calculated Mie Theory extinction efficiency (QMie) for the retrieved CRI values versus 

particle diameter at two different wavelengths, 228 and 351 nm, respectively. In both Figures 2.5 

and 2.6, the measured Qext values are represented by open circles and the calculated Mie Theory 

model using the retrieved CRI is shown with a solid black line. Also included are two other Mie 

Theory models, shown as dashed lines calculated using ±5 % of both portions of the retrieved 

CRI. While Qext agrees with the model at λ = 228 nm better than at λ = 351 nm based off visual 
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inspection, the resulting uncertainty of the retrieved real portion of the CRI for 228 nm is 0.04 

which is greater than the uncertainty for 351 nm, 0.03. 

 

 

Figure 2.6. Extinction efficiency versus diameter for PSLs measured at λ = 351 nm with the AE-DOAS. The open 

circles represent the measured values with errors bars representing 1 σ of the mean, the solid black line is the Mie 

Theory extinction calculated using the retrieved CRI from this work, and the dashed line represents Mie Theory 

extinction calculated for ±5 % of both portions of the retrieved CRI. 

 

This is due to the fact that for each λ, the Qext becomes more sensitive to small changes of the 

CRI as the particle size decreases reflected by the decreasing area between the dashed lines 

towards the smallest diameters in Figures 2.5 and 2.6. In order to improve the precision of the 

retrieved CRI, it is crucial to select particles with diameters in the steep beginning portion of the 

curve where the variability in CRI causes only small differences in the calculated Qext. For 

example, at λ = 228 nm, the PSL diameters chosen for this experiment do not fall in the steep 

portion of the curve before d = 110 nm whereas at λ = 351 nm three of the particle diameters 

measured fall in this region. In this work, the extinction measurements were always completed 
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with the same particle diameters no matter the wavelength of interest. By failing to choose sizes 

in the steep region, the retrieved CRI will have more uncertainty thus our results yield increases 

in both portions of the CRI uncertainty with decreasing wavelength. Previous literature has 

shown that careful selection of particle diameters allows for increased precision in retrieval of 

CRI with as few as two diameters (Bluvshtein et al. 2012). 

 

This research on PSLs demonstrates how much the CRI can vary over a range of wavelengths. 

The CRI variation with λ will have a large impact on light extinction as shown in Figure 2.2. 

Specifically, when using the nD = 1.59 as supplied by the manufacturer at other wavelengths 

there is quite poor agreement between model and experiment. The model agreement looks good 

at wavelengths longer than 300 nm, but then begins deviating at shorter wavelengths and clearly 

fails to reproduce the peak in the experimental data around 220 nm. This demonstrates a need to 

measure the CRI for atmospherically relevant aerosol chemicals particularly in the UV region. In 

the visible region, it is generally the case that the variation in CRI is much less. However, at       

λ = 420 nm near the division between visible and UV regions, while the retrieved CRI from this 

work, n = 1.64, is only different from the manufacturer constant nD by 3 %, the Mie Theory 

modeled extinction cross section varies by 5-20 % depending on the particle diameter. Since the 

solar spectrum peaks within the visible region and still has significant intensity at wavelengths 

around 420 nm, this is further evidence that limited knowledge of the CRI can contribute added 

uncertainty in model predictions of radiative forcing. 

 

The AE-DOAS expands the wavelength range accessible for aerosol extinction measurements 

into the UV to 220 nm. For the wavelength range from 235-700 nm, the AE-DOAS average 
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detection limit based on 3σ baseline noise is 32.5 Mm-1 for a 3 minute average with an order of 

magnitude better detection limit at specific wavelengths. A few of the other instruments which 

have different advantages but have been designed and used for aerosol extinction measurements 

are discussed here for comparison. CRD instruments can use a variety of laser sources to 

measure aerosol extinction including but not limited to an Nd:YAG at λ = 355, 532, and/or   

1064 nm (Sappey et al. 1998, Smith and Atkinson 2001). CRD is incredibly sensitive and time 

responsive with detection limits around 0.17 Mm-1 per second average owing to the long path 

lengths and fast lasers (Pettersson et al. 2004). Washenfelder et al. (2013) developed a broadband 

cavity enhanced instrument, the BBCES, which measures aerosol extinction in the wavelength 

ranges from 360-390 nm and 385-425 nm with a precision of ~0.19 Mm-1 for 1 minute averages 

at the central wavelengths of 365 and 405 nm, respectively. The CAPS PMex instrument is based 

on the cavity attenuated phase shift technique and operates at 630 nm (and other wavelengths, 

see Massoli et al. (2010)) with a detection limit of less than 0.3 Mm-1 for 60 second averaging 

(Kebabian and Freedman 2007, Kebabian et al. 2007). BBCES, CAPS PMex and CRD all have 

versions or were specifically designed for field measurements (Baynard et al. 2007, Petzold et al. 

2013, Washenfelder et al. 2013). Still other instruments exist for laboratory measurements of 

aerosol extinction and were discussed in a previous paper (Chartier and Greenslade 2012). The 

AE-DOAS is unique because it expands extinction data collection and the potential for 

subsequent CRI retrieval further into the UV than any of these other instruments and provides 

closer to continuous spectral results. 

 

In conclusion, the ability of the AE-DOAS to retrieve CRI values at wavelengths from the visible 

into the UV for PSLs has been shown with good agreement to similar measurements by other 
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researchers. Importantly the wavelength range of known PSLs CRI values has been extended 

further into the UV. With regards to PSL characterization, these new results should allow for 

more accurate calibrations when used as a standard for a variety of optical measurements. It’s 

noted that some differences in CRI may arise due to differences in material and our work is 

specifically concerned with commercially available polystyrene spheres. 

 

In the future, this instrument can be used to optically characterize an expanded range of 

atmospherically relevant aerosol especially into the UV where work by others indicates light 

absorption by carbonaceous and secondary organic species (Hecobian et al. 2010, Flores et al. 

2014). The ability of the AE-DOAS to retrieve CRI allows the balance between scattering and 

absorption to be quantified and the warming or cooling of a particular aerosol species to be 

assessed. 
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CHAPTER 3 

 

MINERAL DUST AEROSOL WATER ADSORPTION MEASURED OPTICALLY WITH 

CAVITY RING-DOWN SPECTROSCOPY:  A COMPARSION BETWEEN DIFFERENT 

AEROSOL GENERATION METHODS 

 

3.1  ACKNOWLEDGEMENTS 

 

The work in this chapter was funded by the University of New Hampshire, College of 

Engineering and Physical Sciences and Chemistry Department. Dry generation was developed 

for our group by Jillian Morang based on the work of Garimella et al. (2014) and she participated 

in data collection. 

 

3.2  INTRODUCTION 

 

Mineral dust is a common component of atmospheric aerosol contributing around 25 % of the 

total yearly emitted mass, at 2,980 Tg, as well as a similar fraction to total atmospheric loading 

(Seinfeld and Pandis 2006, Zhang et al. 2012, IPCC 2013). Further, the amount of dust is 

expected to rise in the 21st century from desertification caused by changes to land use and 

climate (Prospero and Lamb 2003). Entrained mineral dust aerosols interact with light, thus 

contributing to radiative forcing (RF), a measure of the change in incoming minus outgoing 

irradiance often used to quantify a contribution to climate change. Mineral dust aerosol is made 
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up of clays, carbonates, iron oxides, and quartz with ratios dependent on the source (Prospero 

1999, Lafon et al. 2006). The clay portion of mineral dust aerosol has been shown in laboratory 

experiments to swell in the presence of water vapor (Herich et al. 2009, Koehler et al. 2009), and 

the swelling enhances light interaction (Attwood and Greenslade 2011) as has been observed in 

the atmosphere (Carrico et al. 2003, Lack et al. 2009). Recent studies have shown the method 

used to generate clay and mineral dust samples in laboratory experiments can affect the 

measured results (Kumar et al. 2009, Sullivan et al. 2010, Garimella et al. 2014). Differences 

observed in these studies could be linked to observations that suspension derived clay aerosol 

samples are difficult to dry, especially the complete removal of interlayer water (Mooney et al. 

1952, Cases et al. 1992). The typical low concentration of clay in the suspension used to generate 

aerosol results in a large amount of interlayer water (Norrish 1954, Svensson and Hansen 2013). 

As such, our work focuses on measuring light extinction enhancement as a function of relative 

humidity for montmorillonite aerosols wet generated from variable concentrated suspensions, as 

well as dry generated from powder, to investigate a concentration effect on water swelling. 

 

Atmospheric dust originates from the arid and semiarid regions of the world where important 

factors such as wind friction speed, vegetation cover, and soil moisture content affect the total 

burden (Zender et al. 2003, Seinfeld and Pandis 2006). Dust particles are injected into the 

atmosphere when wind blowing over the surface initiates the process of saltation. Due to high 

cohesion forces between individual particles in the soil, only large particles (d > 60 μm) are 

initially mobilized. These particles are so massive they fall quickly, generating longer lived 

aerosol by bombarding and sandblasting the surface, lofting smaller particles into the boundary 

layer (Alfaro and Gomes 2001, Zender et al. 2003). The smaller range of particles (< 1 μm) have 
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lifetimes on the order of a week allowing for long range transport around the globe during which 

particles encounter many different atmospheric conditions (Prospero 1999, Gong et al. 2006, 

Schepanski et al. 2009, Uno et al. 2009, Huneeus et al. 2011, Yu et al. 2012, Achakulwisut et al. 

2017). One example is Saharan dust transported across the Atlantic Ocean from Africa to the 

Caribbean and Eastern United States (Prospero 1999, Schepanski et al. 2009). Similarly Asian 

dust has been shown to travel across the Pacific Ocean to the Western United States, and even 

circumnavigate the Earth (Gong et al. 2006, Uno et al. 2009, Yu et al. 2012, Achakulwisut et al. 

2017). 

 

In terms of chemical composition, the clay portion of mineral dust aerosol contains aluminum 

and silicon. These elements coordinate to oxygen and form negatively charged repeating layers 

held together by van der Waals forces and interlayer charge countering cations such as Na+, Ca2+, 

and Mg2+. One type of clay is montmorillonite, formed from the weathering of volcanic material 

(Chester et al. 1972). Montmorillonite is a minor component of the total clay burden accounting 

for an average of ~20 % with the highest concentrations found at low latitudes (Chester et al. 

1972). Since adjacent montmorillonite aluminosilicate layers are weakly bound together through 

electrostatic interactions, water can penetrate into the interlamellar space and push the layers 

apart allowing the structure to swell (Brindly and Brown 1984). 

 

For montmorillonite, the amount of water within the structure is dependent on the properties of 

the interlayer cations such as hydration energy, charge, and size (Brindly and Brown 1984, 

Hensen and Smit 2002). The swelling of montmorillonite is determined by assessing if the 

energy released by hydrating a cation is greater than the attractive force between the cation and 
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the negatively charged aluminosilicate layers (Norrish 1954, Brindly and Brown 1984, Hsiao and 

Hedström 2017). If the process is energetically favorable, water will penetrate between the layers 

to hydrate additional cations resulting in the layers pushing apart (Grim 1962, Brindly and 

Brown 1984). For example, the cations Ca2+ and Na+ have similar ionic radii, but since divalent 

Ca2+ has twice the charge of monovalent Na+, Coulomb’s Law predicts a stronger attractive force 

to overcome for Ca2+ rich montmorillonite. However, divalent cations typically have larger 

hydration energies compared to monovalent cations (424 and 1616 kJ/mol for Na+ and Ca2+, 

respectively) (Norrish 1954). Ultimately, previous studies have measured increased water uptake 

for Na-montmorillonite compared to Ca-montmorillonite demonstrating the overall effect of the 

competing energetics (Norrish 1954, Brindly and Brown 1984). Natural samples of 

montmorillonite are likely to contain a mixture of cations in unknown or variable concentration 

which could result in observed differences in experimental water uptake measurements. 

 

Previous studies have shown that the generation method used to prepare laboratory mineral 

aerosol alters water uptake measurements (Sullivan et al. 2010, Kumar et al. 2011, Garimella et 

al. 2014). Those authors measured cloud condensation nuclei (CCN) activity at supersaturated 

conditions for aerosols generated with two methods, one from suspension of mineral in water, 

referred to as wet generation, and one from powder, referred to as dry generation. In all cases, 

the authors measured increased activity, indicating enhanced water uptake, for the wet generated 

particles compared to dry generated. Garimella et al. (2014) measured a difference in CCN 

activation between wet and dry generated Na-montmorillonite aerosol, hypothesizing the 

suspension used for wet generation allows for the interlayer cations to redistribute, resulting in 

enhanced water activity. Both Sullivan et al. (2010), using calcium mineral samples, and Kumar 
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et al. (2011), using montmorillonite samples, hypothesized artifacts are introduced to the mineral 

particles during wet generation, possibly water, resulting in a more wettable surface and thus 

enhanced water activity. 

 

Retained water on wet generated mineral particles, especially montmorillonite, could be 

explained by the ineffectiveness of the commonly used room temperature diffusion dryer. Due to 

the nature of the montmorillonite structure, with water residing on the exterior surface as well as 

in between the layers, generating a water free sample requires the use of elevated temperature, 

use of vacuum, or long drying times (Mooney et al. 1952, Cases et al. 1992, Schuttlefield et al. 

2007, Hatch et al. 2012). Specifically, Cases et al. (1992) studied the water content of bulk 

montmorillonite samples using controlled transformation rate thermal analysis, measuring mass 

loss as a function of temperature increase. At room temperature physically adsorbed water is 

removed efficiently from the clay surface (Cases et al. 1992). In order to remove the interlayer 

water hydrating the cations, in that case mostly Na+ for Wyoming sourced montmorillonite, 

temperatures as high as 527 ºC were required (Cases et al. 1992). Diffusion dryers operated at 

room temperature have been used extensively to prepare dry aerosol samples from wet 

generation which may not remove all the interlayer water. 

 

As mentioned previously, the amount of water contained within the montmorillonite structure is 

related to the types of interlayer cations present. Additionally, others have shown that when 

montmorillonite is in suspension, layer spacing, and therefore water content, is a function of the 

suspension concentration (Norrish 1954, Svensson and Hansen 2013). Svensson and Hansen 

(2013) used X-ray diffraction (XRD) to show that increasing the concentration of water in a   
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Na-montmorillonite suspension results in layer expansion. For suspensions made with low water 

content, 20 % (w/w), the authors measured layer spacing of 19 Å. Increasing the water 

concentration from 20 to 50, 70, and 90 % results in the layers expanding to separations of 45, 

88, and 280 Å, respectively (Svensson and Hansen 2013). Both Kumar et al. (2011) and 

Garimella et al. (2014) used montmorillonite suspensions with high water concentration (> 90 %) 

and other concentrations were not reported. Upon atomization and drying, the swelling process 

demonstrated by the increased layer spacing may not be fully reversible and we hypothesize this 

would result in variable water content correlated with suspension concentration for laboratory 

generated aerosol samples. 

 

Initial water content has been shown to be an important variable in other montmorillonite water 

activity studies. Mooney et al. (1952) used absorption gravimetry to measure the mass of water 

adsorbed by montmorillonite exposed to water vapor. Samples were prepared by drying the bulk 

powder at 70 ºC under high vacuum. The authors then cycled the sample through adsorption and 

desorption phases of water vapor exposure and found that while the desorption data was 

reproducible over multiple exposures, the adsorption data for exposures two and beyond failed to 

reproduce the data from the first exposure. For the subsequent adsorption exposures, increased 

water uptake was measured compared to exposure one, but no trend was found between the 

amount of water uptake and exposure number (Mooney et al. 1952). The authors hypothesized 

that simply reducing the vapor pressure of water above a sample during the desorption phase was 

not adequate to completely dry the montmorillonite sample to the same degree as the original 

sample and thus subsequent cycles experienced additional water activity during adsorption due to 

the presence of retained interlayer water (Mooney et al. 1952, Kijne 1969). 
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Our goal in this work is to improve the understanding of how the generation method, sample 

preparation, and chemical composition of mineral dust aerosol impacts light interaction as a 

function of relative humidity. To do so we measure the extinction based optical enhancement 

resulting from humidity increases, fRHext, for montmorillonite aerosol using cavity ring-down 

spectroscopy (CRD) at 532 nm in controlled laboratory experiments. Aerosol are dry generated, 

and separately wet generated and dried from suspensions of six different concentrations to 

investigate the generation method. Further, montmorillonite powder dried and reclaimed from 

suspension was dry generated to investigate the role of wet processing. We also measure fRHext 

via dry generation for two types of natural montmorillonite, a Ca2+ rich sample from Texas and a 

Na+ rich sample from Wyoming, to investigate the effect of interlayer cations. In all cases, 

calculations were used to compare optically measured fRHext data to previous literature by 

conversion to the physical growth factor. Finally, the impact on remote sensing by atmospheric 

processing caused by variable water content conditions likely experienced by ambient 

montmorillonite particles during transport is discussed. 

 

3.3  EXPERIMENTAL 

 

Clay aerosol were prepared from Ca-montmorillonite (The Clay Minerals Society, STx-1b) and 

Na-montmorillonite (The Clay Minerals Society, SWy-2). Aerosol samples were generated 

through both wet and dry methods. Wet samples of Ca-montmorillonite were prepared by adding 

the dry clay to HPLC grade water (Fisher Chemical) in 1 %, 5 %, 10 %, 15 %, 20 %, or            

30 % (w/w) suspensions. For the remainder of the chapter we define the weight percent as the 

amount of clay instead of the amount of water in suspension as used in the introduction to 
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describe the work of Svensson and Hansen (2013). Each individual suspension was placed on a 

magnetic stir plate to maintain homogeneity as liquid was drawn into the block of a Collison 

atomizer. Polydisperse aerosol samples are generated using nitrogen gas (N2, Airgas), flowing at 

4 L/min, forced through a small orifice to nebulize the suspension. The aerosol sample was then 

dried using silica gel beads housed inside of a diffusion dryer (~15 L) achieving a low relative 

humidity, RH < 10 %. The flow continued through the instrument path as depicted by Figure 3.1 

and described below. 

 

 

Figure 3.1. Experimental design for optical measurements of montmorillonite extinction as a function of RH with 

wet generation. DMA – differential mobility analyzer, CPC – condensation particle counter, and CRD – cavity  

ring-down spectrometer. 

 

Dry samples, of both Ca-montmorillonite and Na-montmorillonite, were generated using a side 

arm flask attached to a wrist action shaker (Burrell, model 75) as depicted in Figure 3.2 (Morang 

et al. 2018). The flask contained 2.0 g of the dry montmorillonite powder along with four Teflon 

coated stir bars. Through the top of the flask, 1.0 L/min of N2 gas was introduced as a carrier gas. 

The flask was agitated for the duration of the experiment causing dust to be entrained in the N2. 

The clay aerosol sample then traveled vertically up through a ~15 L glass settling volume with a 

diameter of ~15 cm which allowed the largest generated particles to settle by gravity. After the 

settling volume the particles passed through stages 3 and 2 of a cascade impactor (PIXE 
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International Corporation, model I-1) removing particles larger than 1000 and 500 nm, 

respectively. 

 

 

Figure 3.2. Experimental design for dry generation. N2 flowed through an agitated side arm flask to entrain aerosol 

in the gas flow. The aerosol then passed through the glass settling volume and a PIXE impactor to minimize large 

particles entering the DMA. Subsequent optical measurements of extinction as a function of RH are completed as 

depicted in Figure 3.1 from the vent followed by the DMA. 

 

In addition to dry generating the Ca-montmorillonite as received, experiments were performed to 

dry generate samples from reclaimed montmorillonite powder. Briefly, a 10 % (w/w) suspension 

of the clay in water was first vacuum filtered in a Büchner funnel. The still wet clay was scraped 

from the filter paper with a metal spatula and placed in an open glass jar inside a desiccator 

containing CaSO4 (W.A. Hammond DrieriteTM Company Ltd., 7778-18-9) for two days until it 

appeared dry, resembling a dry, cracked lakebed. This montmorillonite was then transferred to a 

mortar and pestle to break up large pieces followed by one additional day of drying in the 

desiccator at which point the sample resembled the original clay. The resulting reclaimed clay 

was then dry generated as described above and depicted in Figure 3.2. 

 

In both wet and dry generation experiments, conductive tubing (¼” ID) was used to connect each 

portion of the setup, limiting the length to minimize particle loss. Following generation, the 
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aerosol flow continued past a vent as depicted by Figure 3.1. This vent sent a portion of the flow 

needed for generation to a waste hood so the aerosol flow rate through the differential mobility 

analyzer (DMA, TSI 3081L) was 0.75 L/min. The DMA was operated at the recommended 10:1 

ratio of sheath flow to aerosol flow. For the work presented here, particles were selected at a 

mobility diameter Dm = 200 nm, where doublets were not measured but may contribute to the 

measured extinction. Doublets were minimized for wet generation by choosing Dm larger than 

the mode diameter of the distribution (~100 nm) as determined by a scanning mobility particle 

sizer (SMPS, TSI 3936). For dry generation, doublets were minimized using the settling volume 

and PIXE impactor prior to the DMA. Further, because fRHext is a ratio of extinction between the 

two cavities of the CRD, the impact of the doublets was minimized. In order to achieve the 

required 1.5 L/min flow rate for the condensation particle counter (CPC, TSI 3775), ~0.75 L/min 

of particle free N2 was added between the DMA and the CRD used for extinction measurements 

at a wavelength of 532 nm. The CRD used in these experiments has been described previously 

(Baynard et al. 2007, Garland et al. 2007, Lack et al. 2009, Attwood and Greenslade 2011). 

 

Briefly, CRD consists of five main components: the laser source (Nd:YAG, Quantel USA), a 

series of optics (Thor Labs), the sample cavities (custom), the photomultiplier tube detector 

(Hamamatusu H9433-03MOD), and a computer interface to digitize the data (NI-USB-6259 

BNC). Within the optical cavity, a light pulse is reflected multiple times between highly 

reflective mirrors (Advanced Thin Films) on the ends of the cavity. On each pass a small amount 

of light is transmitted through the mirrors allowing for the detection system to monitor the 

exponential decay of intensity with time (Herbelin et al. 1980, O'Keefe and Deacon 1988, 

Wheeler et al. 1998). 
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For these experiments the CRD consisted of two cavities to measure aerosol extinction. Between 

the two cavities, a custom permeable membrane (Microdyn Technologies Inc.) humidifier was 

used to control the RH in the second cavity by ramping temperature with heating tape (Watlow, 

1015C 06). RH of the aerosol flow was ramped at ~1.5 %/min by changing the set point of the 

heater (Watlow, PM6C1KK-AAAAAAA) controlling the tape by 5 °C every 15 minutes until 

trial termination when the raw RH reading was ~93 %. The raw values were subsequently 

adjusted using a calibration curve obtained by measuring the RH over three saturated salt 

solutions (LiCl, NaCl, and K2SO4) with known RH values (11, 75, and 97 % RH, respectively). 

During the RH ramping period, the extinction coefficient, σext (cm-1), was continuously measured 

in both cavities as the aerosol sample passed through the system. The flow terminated at the CPC 

where particle concentration, N, was measured as a function of time. The extinction cross 

section, Cext, was then calculated separately for each cavity using Equation (3.1). Average Cext 

values were calculated from 80 s of optical measurements corresponding to ~1500 laser shots. 

 

𝐶𝑒𝑥𝑡 =
𝜎𝑒𝑥𝑡

𝑁
                                                                (3.1) 

 

The particle concentration in each cavity was corrected for the nitrogen purge flow present in the 

CRD. For these experiments, the high flow (1.5 L/min) through the CRD helped to minimize the 

purge dilution to ~2 and 6 % of the total flow, making this correction small in comparison to Cext. 

The dilution was different between the two cavities since purge flow was introduced in front of 

each of the four highly reflective mirrors resulting in increased dilution as the aerosol passed 

through the system. fRHext was then calculated with Equation (3.2) and reported as a function of 

RH. 
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𝑓𝑅𝐻𝑒𝑥𝑡(𝑅𝐻) =
𝐶𝑒𝑥𝑡(𝑅𝐻)

𝐶𝑒𝑥𝑡(𝐷𝑟𝑦)
                                                  (3.2) 

 

To better compare with previous literature, two methods of interpreting the fRHext were utilized. 

The first exploits an exponential relationship between fRHext and RH to generate a curve fit to 

measured data, thus allowing extrapolation or interpolation to RH values not experimentally 

measured (Kotchenruther et al. 1999). The second is based on Mie theory and converts optically 

measured fRHext to the physical growth factor (GF) (Garland et al. 2007). 

 

A recent review article considered many relationships between fRHext and RH showing nine 

equations had very good agreement to measured data for non-deliquescing aerosol (Titos et al. 

2016). The authors suggested using any of the two parameter fits, such as Equation (3.3) where a 

and b are fit coefficients, since they are easy to apply and agree well with steady growth fRHext 

measurements (Kotchenruther et al. 1999, Titos et al. 2016). Equation (3.3) was fit to measured 

fRHext data using a χ2 minimization routine within Igor Pro. 

 

𝑓𝑅𝐻𝑒𝑥𝑡 = 1 + 𝑎 (
% 𝑅𝐻

100
)

𝑏
                                     (3.3) 

 

Calculating the physical growth factor from the measured fRHext allows for an expanded 

comparison to previous literature. GF is a ratio of the humidified particle diameter to the dry 

particle diameter and is reported based on observed physical size changes. In this model, Mie 

Theory is used to calculate the diameter of the humidified particles with the known CRI of the 

two components, water and montmorillonite, in correct ratios (Egan and Hilgeman 1979, Bohren 
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and Huffman 1983). Previous studies have further explained the calculations within the model 

(Garland et al. 2007, Attwood and Greenslade 2011). 

 

3.4  RESULTS AND DISCUSSION 

 

To examine the impact of water in the generation process contributing to experimental 

differences, the measured fRHext at two different RH values, 85 and 94 %, for STx-1b,            

Ca-montmorillonite, as a function of clay weight percent is shown by the left y-axis in Figure 

3.3. These relative humidity values were selected as a standard value and the highest measured 

value; further, they show significant changes. For the x-axis, the points at 100 % (w/w) 

correspond to dry generated aerosol and the rest were wet generated from a suspension of the 

clay weight percent. At both RH values there is a clear dependence of fRHext on the amount of 

clay in the suspension used for wet generation. Starting at low clay concentration and up to       

15 % (w/w), fRHext(94 %) is fairly constant with measured values ~2.6 corresponding to 

substantial extinction increase by the particles. Over the same weight percent range,       

fRHext(85 %) is similarly constant with a value of ~1.7 representing less extinction enhancement 

than at 94 % RH, as expected. Above 15 % (w/w), there is a sharp decrease in fRHext for both 94 

and 85 % RH. At 30 % (w/w), fRHext of 1.49(7) and 1.24(5) agree, within uncertainty, to dry 

generation aerosol measured values, represented by 100 % (w/w), of 1.39(4) and 1.22(4) for 94 

and 85 % RH, respectively. 
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Figure 3.3. Left y-axis: fRHext as a function of weight percent of Ca-montmorillonite (STx-1b) suspension used for 

aerosol generation. The points at 100 weight percent are dry generated while the rest are wet generated. The filled 

black circles represent measured values at 94 % RH and the open grey circles represent 85 % RH. Error bars on 

each point represent the standard deviation of at least three replicate trials. Right y-axis: XRD measured 

aluminosilicate layer spacing for Na-montmorillonite suspended in water by Svensson and Hansen (2013). The 

measurements are represented by crossed points connected by a line to help guide the eye. 

 

The observed trends indicate that differences between measured fRHext for aerosol wet generated 

from low weight percent suspensions and dry generation is related to the initial water present in 

the particles exiting the DMA (Mooney et al. 1952, Kijne 1969). Those authors measured 

increased water uptake for montmorillonite samples that were not completely dried. For our wet 

generation samples, the amount of water present in a particle after the DMA is related to the 

atomization process and the effectiveness of the diffusion dryer. We have no direct observation 

of particle water content for aerosolized particles, however, we can consider the XRD measured 

layer spacing of homoionic Na-montmorillonite suspensions as a function of the clay weight 

percentage, reported previously and shown by the right y-axis in Figure 3.3, to be representative 

of the water content of the particles generated from our suspensions (Svensson and Hansen 
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2013). Similar to our results, the authors measured a large, sharp increase in layer spacing 

distance between 10 and 30 % (w/w) montmorillonite. For this reason, we hypothesize that wet 

generation produces particles with variable water content depending on the concentration of the 

suspension used for atomization. 

 

Variable amounts of water in suspension could be correlated with water content of the aerosol 

particles since all wet generation samples are dried for the same amount of time at room 

temperature. Within the dryer, water is removed from the particles primarily by evaporation as 

the RH of the carrier gas is reduced through removal of water vapor by the silica gel beads. In 

this evaporation regime, interlayer water is difficult to remove from the particles due to the 

negative value of Gibbs free energy for cation hydration, and therefore is a non-spontaneous 

process (Kijne 1969). At low clay weight percent there is a large amount of interlayer water, 

approaching saturation, resulting in measured fRHext reaching a stable value. Our diffusion dryer 

can effectively remove some portion of the excess water since the energetics of hydration 

become minimized with added water. Similarly, Mooney et al. (1952) posited that water vapor 

desorption measurements are reproducible as long as the sample reaches a threshold amount of 

water in the structure. It is likely interlayer water that is not dried from the particles contributes 

to the difference in measured fRHext as a function of suspension concentration since increased 

interlayer water would yield increased water uptake and thus greater fRHext. 

 

Greater enhancement to fRHext for wet generation compared to dry could be explained by 

changes in cation distribution or surface area availability for the wet generated particles resulting 

from processing while in suspension (Stul and Vanleemput 1982, Stul and Vanleemput 1982, 
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Garimella et al. 2014). We investigated the possible effects of processing in suspension for wet 

generated particles by reclaiming clay from suspension and dry generating the resulting powder. 

To compare cases, measured fRHext as a function of RH is shown in Figure 3.4 for three STx-1b 

montmorillonite aerosol samples: one wet generated from 10 % (w/w) suspension, one dry 

generated from clay reclaimed from a 10 % (w/w) suspension, and one dry generated from the 

bulk powder. All three aerosol samples show little extinction enhancement up to 60 % RH with 

fRHext(60 %) ≈ 1. The clay aerosol extinction begins to increase steadily, at similar rates, 

between 60 and 75 % RH. Above 75 % RH, the 10 % (w/w) wet generated aerosol shows 

increased extinction compared to the dry generation methods, with fRHext(94 %) = 2.66(5). The 

dry generation data sets show good agreement with each other, within the calculated 

uncertainties, continuing extinction enhancement to the maximum RH studied. For fresh dry 

generated fRHext(94 %) is 1.39(4) and for reclaimed dry generated the extrapolated value is 

1.43(3). The extrapolated value is calculated with Equation (3.3), using the fit coefficients 

determined from the entire range of measured data found in Table A2 in the Appendix. 
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Figure 3.4. fRHext as a function of RH for Ca-montmorillonite (STx-1b) aerosol generated with different methods. 

The filled aqua circles represent wet generated 10 % (w/w) suspension of clay in water, the filled grey circles 

represent dry generated fresh powder, the filled red circles represent measured dry generated reclaimed powder 

which had previously been mixed in a 10 % (w/w) suspension, and the filled black circle represents Equation (3.3) 

extrapolated reclaimed dry generated. The error bars on each data set represent the standard deviation of at least 

three replicate trials. 
 

The similarity between the two dry generation samples suggests no irreversible change occurs to 

the montmorillonite in suspension. Even with this observation, there is still the possibility that 

due to differences in the drying mechanism between the reclaimed montmorillonite powder and 

the wet generated particles, ion redistribution could occur in the wet generated case. If more ions 

were present on the surface of the aerosol sample, instead of within the interlayer space, it might 

behave more like a mixed aerosol of mineral and salt which would be more hygroscopic than the 

parent clay, depending on the ion concentrations. Since there is little change between the two dry 

generated samples, the amount of redistributed ions is presumed to be small, and based on other 

literature this would minimize the impact on water activity and thus fRHext (Attwood and 

Greenslade 2012, Garimella et al. 2014). Attwood and Greenslade (2012) measured fRHext for 

aerosol wet generated from 10 % (w/w) montmorillonite suspensions mixed with a range of 
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NaCl concentrations. In the study, fRHext(90 %) increased as a function of the NaCl 

concentration, with a factor of approximately two enhancement for a 0.1 % (w/w) NaCl and     

10 % (w/w) montmorillonite compared to pure montmorillonite. Garimella et al. (2014) 

measured the concentrations of extracted ions from a filtered montmorillonite suspension with at 

least an order of magnitude lower concentration than the salt in suspension used by Attwood and 

Greenslade (2012) and therefore we would expect less than a factor of two enhancement between 

fresh dry generated and 10 % (w/w) wet generation if redistribution was the only explanation. 

Yet, we measured a factor of approximately two enhancement to fRHext(90 %) between fresh dry 

generated and 10 % (w/w) wet generated samples leading to the conclusion that other factors 

contribute to the observed enhancement. 

 

Another possible cause for the difference between wet and dry generated optical enhancement is 

that suspending montmorillonite causes the clay particles to restructure into different layer 

orientations from those in the bulk powder resulting in changes to surface area (Stul and 

Vanleemput 1982, Brindly and Brown 1984). Since the measured fRHext for the two dry 

generation cases agree within uncertainty, this suggests there is little difference between the 

powders. BET quantification of surface area would be a useful future experiment to determine 

whether aggregation during drying impacts the surface area, however, it is limited because the N2 

adsorption gas used by the instrument is only able to access the outer surface of montmorillonite 

and may miss important internal structures (Norrish et al. 1954, Cases et al. 1992). 

 

To provide additional context for our results, the GF, which for an aerosol component is an 

intensive parameter (not dependent on size or number of particles), allows for broader 
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comparison to previous literature where size may not have been controlled. Previously reported 

measurements of the GF for montmorillonite are compared to select values calculated from our 

experimental results, using the fRHext conversion model, in Table 3.1 (Mooney et al. 1952, Cases 

et al. 1992, Xu et al. 2000, Schuttlefield et al. 2007, Hatch et al. 2012). Most literature values are 

larger than the GF calculated in this work, though in some comparisons the uncertainties overlap. 

 

Table 3.1. Growth factor for montmorillonite at 68 and 85 % RH for various literature studies. 
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Our estimated GF may differ from prior results for various reasons including: the type of 

montmorillonite used, measurement sensitivity, and/or fRHext conversion model limitations 

which will be examined below. Previous literature has indicated that cations play a crucial role in 

clay water activity by assisting in the molecular arrangement of adsorbed water (Norrish 1954, 

Kijne 1969, Brindly and Brown 1984, Hsiao and Hedström 2017). In one study, increased water 

uptake was predicted from Ca-montmorillonite to Na-montmorillonite to Mg-montmorillonite, 

where Mg-montmorillonite has the most water uptake (Norrish 1954). The authors based their 

predictions on an index value, calculated for each cation by considering the charge of the cation 

and its hydration energy. In that study, samples of montmorillonite were assumed to be 

homoionic, whereas natural samples contain a mixture of cations, so direct comparison to the 

results in Table 3.1 is not possible but the trend can be useful. To investigate the cation effect on 

dry generated aerosol fRHext measurements, we compare Texas (STx) sourced montmorillonite 

richer in Ca2+ cations to Wyoming (SWy) sourced montmorillonite containing additional Na+. At 

68 % RH, the GF values of 1.03(1) and 1.04(1), for STx and SWy respectively, agree for the two 

varieties of montmorillonite. Much like with the results presented in Figure 3.4, montmorillonite 

samples generally have similar water activity at this RH with little uptake as further 

demonstrated by the overlap with our wet generation GF of 1.05(1). At 85 % RH, the GF for 

SWy (Na+ rich) of 1.13(2) is larger than the GF for STx (Ca2+ rich) of 1.07(2). Our samples show 

a similar trend to Norrish et al. (1954) with Na-montmorillonite swelling more than                 

Ca-montmorillonite. Most of the literature results used varieties of SWy clays, which we 

compare to below, with some Arizona (SAz) sourced montmorillonite containing additional 

Mg2+, and the Alfa Aesar montmorillonite with unknown cation concentrations. SAz 
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montmorillonite had the highest measured GF at 68 % RH which further agrees with the trend 

determined by Norrish (1954). 

 

To examine the measurement sensitivity and model limitations, we compare our SWy 

montmorillonite dry generation results to other Wyoming sourced samples presented in Table 

3.1. At 68 % RH our value of 1.04(1) is low compared to the GF of other SWy samples with 

overlap of uncertainties to the Cases et al. (1992) value of 1.09(4). When there is a small amount 

of water associated with the sample, such as at 68 % RH, the sensitivity of the measurement is 

important. For the mass based approaches shown in Table 3.1 the sensitivity of the balances are 

at least an order of magnitude lower than the measured mass change allowing for a robust 

measurement with a significant difference. For example, Xu et al. (2000) used a balance with     

1 μg sensitivity to measure a water mass deposition of 1.8 mg onto a 10 mg film of 

montmorillonite, corresponding to the calculated GF of 1.12(1). Contrast this with GF calculated 

from fRHext based on CRD extinction measurements where at 68 % RH, the measured extinction 

values are not statistically different. The humidified extinction (8.3(5) x 10-8 cm-1) agrees within 

the uncertainty to the dry extinction (7.5(5) x 10-8 cm-1). 

 

Further, at 68 % RH we approach the fRHext conversion model limitations. Consider adsorbing 

water onto the rough surface of a montmorillonite particle. At the beginning there is little change 

to the particle diameter (200 nm) from adsorption since water is first deposited on the surface, 

filling voids and depressions before a complete monolayer forms (Cases et al. 1992). After 

surface coverage, water begins to penetrate unevenly into the interlamellar space (Cases et al. 

1992). In this proposed coverage model the particle size experiences little change since a 
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monolayer of water is only ~2.8 Å. Depending on the exact distribution of water on the particle 

we may also consider that the homogeneous mixing assumed in our model may not be 

appropriate. Early stages of adsorption are better represented by a core shell model, though 

changing the mixing assumption results in a calculated GF at 68 % RH for dry generated SWy of 

1.03(1) which agrees within uncertainty to the homogeneously mixed value. Since our dry and 

humidified extinction measurements are equivalent within the error and the model selection is 

not sensitive to small water content, this likely explains why our calculated GF values at           

68 % RH do not better match other literature. 

 

At 85 % RH, when more water is present, our calculated GF for dry generated SWy (Na rich) of 

1.13(2) agrees with most of the other values within the calculated uncertainties. The amount of 

water adsorbed by montmorillonite is now enough to form at least bilayer surface coverage as 

well as hydrate the cations (Cases et al. 1992). The fRHext calculated GF of 1.13(2) represents 

particle growth to 225 nm compared to the initial 200 nm dry generated particle corresponding to 

extinction enhancement of 40 % and exceeding the uncertainties on the extinction measurements. 

Given the small size of a water bilayer (5.6 Å) compared to our calculated growth (25 nm), we 

predict substantial amounts of water penetrate into the layers. This morphology may now be 

better represented by the homogeneous mixing assumed in our model resulting in calculated 

values within agreement to literature. Additionally, while the model is not the best representation 

of the shape of the clay particles, previous literature has shown that since global climate models 

are often built assuming spherical particles, the input data should be derived with a similar level 

of theory otherwise model errors will compound and increase overall uncertainty in climate 

predictions (Saleh et al. 2016). Future refinements to the model will include incorporating a 
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newly derived refractive index assuming spherical morphology for irregularly shaped 

montmorillonite aerosol instead of the bulk value (Morang et al. 2018). 

 

The results of this chapter have implications related to determining atmospheric cloud 

condensation nuclei (CCN) concentration. Commonly, CCN concentrations are calculated by the 

relationship to satellite measured aerosol optical depth (AOD) through the use of various 

parameterizations (Liu and Li 2014, Shinozuka et al. 2015). AOD is defined as the total 

extinction for a column of air between the satellite and the surface of the Earth and is a function 

of the number of particles present and the associated optical properties of the particles (Ma et al. 

2013). Measured column extinction at visible wavelengths is normally dominated by large 

particles, such as mineral dust, even though these particles contribute little to the number 

concentration due to the contribution to total aerosol volume and large extinction cross sections 

(Waggoner et al. 1981, Seinfeld and Pandis 2006). AOD is inverted to the particle size 

distribution with various assumptions built in to the model including the refractive index (Zhang 

et al. 2017). For the swellable clays, such as montmorillonite, extinction increases and the 

refractive index changes as a function of RH without changing the number concentration. In this 

way, even though clay aerosols contribute very little to CCN concentration (typically particles 

between 50-120 nm), the relationship between extinction and CCN concentration as a function of 

RH (especially > 75 % RH) has been shown to contribute uncertainty in remote sensing and as 

such researchers commonly exclude dust dominated days from analysis (Levy et al. 2013, Liu 

and Li 2014, Shinozuka et al. 2015). 
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The relationship between extinction and CCN concentrations is further complicated in the 

presence of montmorillonite aerosol based on the results of this chapter, and work by others, 

showing that water uptake is affected by the initial presence of water (Mooney et al. 1952, 

Sorjamaa and Laaksonen 2007, Kumar et al. 2011). In this case fRHext is likely a function of 

ageing such that the dry generated results from this work represent fresh aerosol activity and the 

low concentration wet generated suspensions represent transported dust. As dust is transported 

through the atmosphere, cycling through regions of high and low humidity, it is unlikely the 

particles will ever be dried to the same degree as in arid source region. 

 

In conclusion, in this chapter we have measured extinction enhancement for montmorillonite 

aerosol as a function of relative humidity. Our data indicates that the concentration of the 

suspension used for wet generated Ca2+ rich montmorillonite samples influences measured 

fRHext by producing particles with variable amounts of initial water where increased initial water 

leads to increased water uptake. Further, we observed that dry generated samples, both 

unprocessed and reclaimed from water suspension, have similar measured water uptake which 

indicates the possibility of drying wet generated aerosols. In this regard, future studies could be 

used to confirm the presence of water within the particles; these studies could include 

implementing a heated dryer tube to facilitate water evaporation before optical interrogation or 

the use of microscopy, such as SEM or TEM, imaging the generated particles under high vacuum 

conditions to quantify potential diameter change such as in work by Dinneen et al. (2017).  

 

Additionally, future studies should investigate parameters which may affect the sharp transition 

in fRHext as a function of suspension concentration shown in Figure 3.3 including studying wet 



 

64 

 

generated samples with similar drying mechanisms to this work but with homoionic clays. The 

water/cation interaction is fundamental to clay swelling which suggests that particle drying may 

also be dependent on the energetics involved in the hydration process. Preparation of a 

completely dry particle is related to the amount of initial water present and the effectiveness of 

the diffusion dryer. Cation choice will potentially effect both of these, resulting in a shift along 

the x-axis for the steep transition portion of the data depending on the interlayer cation present. 

In terms of the GF calculations conducted with the fRHext conversion model we showed that at 

high RH the model produced results within the range of previous literature. At lower RH the 

model calculates low values of GF compared to literature, possibly due to the small change in 

diameter and refractive index, and therefore measured extinction, at the initial stages of water 

adsorption.  

 

Finally, our results indicate that atmospheric processing may result in variable behavior in terms 

of water uptake, and thus particle extinction, for aged montmorillonite particles compared to 

freshly emitted. Based on our results, particles will contain more water after transport than at an 

arid source region resulting in enhanced subsequent water uptake. The enhanced water uptake 

would contribute additional uncertainty in applying remote sensing to determine ambient particle 

concentrations within dust dominated aerosol plumes. In the future, we will probe these ageing 

dynamics by performing experiments with multiple dry and humidify steps. 
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CHAPTER 4 

 

CONCLUDING REMARKS 

 

Atmospheric aerosol alter the Earth’s climate by interacting with solar radiation by scattering 

and absorbing. The cumulative result of aerosol particle light interactions remains to be fully 

quantified. Several reasons for this are: unknown or limited knowledge of wavelength dependent 

complex refractive index (CRI) for all aerosol components, an incomplete understanding of 

water activity on particles, and the lack of a set of computational models capable of reproducing 

both laboratory and field based experimental results. 

 

The custom-built Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS) 

was used to measure light extinction of laboratory generated aerosol to obtain the wavelength 

dependent CRI from visible wavelengths into the UV. In Chapter 3 monodisperse polystyrene 

latex spheres (PSL) were wet generated from water suspension. The retrieved real portion (n) of 

the CRI agreed with previous literature and/or other measurement techniques when wavelength 

overlap existed with results detailed directly below. Further, the retrieved imaginary portion (k) 

of the CRI is then discussed. 

 

For PSL, using an iterative computational error minimization routine between experimental 

results and Mie Theory model, the retrieved n agrees with previous results down to λ = 360 nm 
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for aerosol derived results and down to 235 nm compared to thin film derived results. When the 

Cauchy model is used to represent measured n, results are only valid over small wavelength 

ranges. Previously derived Cauchy model coefficients by Ma et al. (2003) for PSL failed to 

reproduce the measured results here in the UV. Other models, such as Sellmeier formula, were 

considered, but failed to improve agreement over wide wavelength ranges. The lack of a 

sufficient model to represent the wavelength dependence of the real part of the refractive index 

demonstrates the need to continue to use instruments like the AE-DOAS. Further analysis of the 

results showed that more precise n can be retrieved by carefully choosing the particle diameters. 

Extending the AE-DOAS capabilities to retrieve n at the smallest wavelengths, where a good 

detection limit exists (λ ~ 235 nm), will require small particles sizes as these are most sensitive 

to change in n when considering extinction efficiency versus size parameter representations used 

for retrievals at specific wavelengths. This is possible for PSL, since the initial suspension used 

to wet generate the aerosol contains a nearly monodisperse sphere size. However, caution is 

needed when selecting small particle sizes for other aerosol components. 

 

We show that exclusively measuring extinction to derive n, for a specific type of aerosol, 

produced comparable results to previous literature and other measurement techniques. Deriving 

the imaginary portion of the CRI is more complicated than obtaining n. The imaginary portion is 

related to absorption and for most aerosol components absorption is negligible compared to 

scattering. Chapter 2 emphasizes the need for in situ absorption measurements since the retrieved 

k for PSL aerosol has large error bars and is different from the k determined from measured 

absorption by thin films. In this case, bulk materials such as thin films may not reproduce the 
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structural characteristics of particles. Additionally, the polymer formulation may not have been 

replicated between the experiments. 

 

In Chapter 3, the optical enhancement (fRHext) was measured for aerosol composed of the clay 

mineral montmorillonite using a cavity ring-down (CRD) spectrometer. Wet generation from 

suspensions of montmorillonite and dry generation from the fresh powder were compared. 

Results demonstrated elevated fRHext for wet generated aerosol from suspensions with low 

concentrations (< 15 % (w/w)) when compared to higher suspension concentrations and dry 

generated particles. First, the results demonstrated that careful consideration should be taken 

when generating aerosol in the laboratory to recreate natural processes. Second, the results have 

atmospheric transport implications, such as the need to better understand the dynamics of water 

uptake for in situ particles. As a particle is transported through the atmosphere it will encounter 

regions of low and high humidity such that the fRHext at the source may be significantly different 

from the fRHext following transport. Future controlled laboratory experiments should focus on 

probing the dynamics of water interaction by varying the type of interlayer cation within the 

montmorillonite lattice or implementing a more aggressive heated drying approach. 

 

The previous sections have discussed the results, implications, and future directions for acquiring 

physical properties of aerosol. However, even if all physical properties of aerosol were known 

there remains challenges implementing these properties into models such that they will correctly 

reproduce experimental results. Mie Theory was used in both chapters since this theory is readily 

available and is commonly used. However, Chapter 3 would benefit from a model which 

accounts for deviations from solid, homogeneous, and spherical particles such as an improved  
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T-matrix theory. In all chapters the generated particles were assumed to be single component 

whereas ambient particles are almost always a mixture of multiple components. Calculating the 

CRI for a mixture could be improved by knowing the exact mixing state of the components in a 

particle. Even for a spherical particle with known composition, calculating the refractive index 

for a composite particle from the components is still challenging. Some morphologies, such as 

core shell, with available models would be easier to use than randomly distributed compositions. 

 

In conclusion, both the AE-DOAS and CRD have been used to measure aerosol optical 

properties, including quantifying extinction directly and deriving refractive index in the visible 

region of the spectrum. Some results have extended into UV wavelengths and future experiments 

would benefit from method refinement described here to improve sensitivity. Further, laboratory 

produced aerosol should be generated by techniques which most closely mimic natural processes 

so that results can be used to interpret satellite and other field data. These experiments have 

provided results for specific aerosol processing cases, and future experiments should target 

additional relevant experimental conditions which will aid in understanding the dynamics of 

atmospheric ageing during transport. Finally, an important overarching conclusion is that even in 

the laboratory experimental control is difficult. Many variables exist including size, shape, and 

chemical composition which can be changed between experiments and different from particle to 

particle. These experiments have shown that often balance must be sought in selecting 

experimental design. Challenges are even greater in the field where particles are less controlled.  
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Table A1. Numerical complex refractive index retrieved values for polystyrene latex spheres. Values are presented 

graphically in Figures 2.3 and 2.4 in Chapter 2. 

λ (nm) n Δn k Δk 

221 2.2 0.5 0 6 

222 2.2 0.3 0.3 0.4 

224 2.10 0.17 0.2 0.3 

226 2.03 0.08 0.08 0.11 

228 2.00 0.04 0.04 0.05 

231 1.942 0.001 0.000 0.001 

233 1.960 0.002 0.000 0.05 

235 1.92 0.07 0.03 0.05 

236 1.91 0.04 0.02 0.03 

238 1.90 0.03 0.02 0.03 

240 1.878 0.003 0.000 0.002 

242 1.849 0.004 0.000 0.017 

245 1.862 0.005 0.000 0.004 

247 1.880 0.001 0.002 0.003 

249 1.900 0.003 0.001 0.002 

250 1.80 0.01 0.00 0.08 

253 1.816 0.004 0.000 0.005 

254 1.831 0.003 0.000 0.002 

256 1.796 0.017 0.01 0.03 

258 1.696 0.006 0.005 0.006 

260 1.711 0.006 0.005 0.006 

263 1.726 0.007 0.005 0.005 

265 1.740 0.009 0.005 0.005 

267 1.76 0.01 0.005 0.011 

269 1.770 0.013 0.00 0.02 

271 1.76 0.03 0.05 0.03 

272 1.75 0.03 0.06 0.03 

275 1.74 0.03 0.06 0.03 

276 1.73 0.02 0.06 0.04 

279 1.72 0.02 0.06 0.05 

280 1.69 0.02 0.05 0.05 

283 1.681 0.019 0.05 0.05 

284 1.680 0.017 0.03 0.05 

286 1.673 0.018 0.02 0.04 

288 1.667 0.016 0.01 0.04 

290 1.666 0.014 0.01 0.03 
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292 1.669 0.017 0.005 0.015 

294 1.677 0.017 0.005 0.016 

296 1.687 0.017 0.005 0.016 

299 1.69 0.02 0.005 0.017 

301 1.703 0.019 0.005 0.018 

303 1.66 0.03 0.03 0.05 

305 1.66 0.02 0.02 0.05 

307 1.649 0.015 0.01 0.05 

309 1.649 0.012 0.01 0.05 

311 1.650 0.015 0.01 0.04 

313 1.649 0.013 0.01 0.03 

315 1.650 0.013 0.01 0.02 

317 1.651 0.015 0.01 0.02 

319 1.650 0.016 0.01 0.03 

321 1.647 0.016 0.01 0.04 

322 1.646 0.017 0.01 0.05 

324 1.648 0.017 0.01 0.04 

326 1.651 0.017 0.01 0.04 

328 1.657 0.018 0.01 0.03 

330 1.647 0.019 0.01 0.03 

332 1.65 0.02 0.005 0.019 

335 1.65 0.03 0.004 0.019 

336 1.64 0.03 0.000 0.019 

339 1.63 0.03 0.002 0.018 

340 1.62 0.03 0.00 0.02 

343 1.62 0.04 0.01 0.03 

344 1.59 0.04 0.01 0.05 

347 1.60 0.03 0.01 0.04 

348 1.61 0.03 0.01 0.04 

351 1.62 0.03 0.01 0.04 

352 1.61 0.03 0.01 0.04 

355 1.60 0.03 0.01 0.04 

357 1.60 0.03 0.01 0.05 

358 1.63 0.03 0.01 0.03 

361 1.63 0.03 0.01 0.03 

362 1.613 0.019 0.01 0.05 

365 1.614 0.018 0.01 0.05 

366 1.62 0.02 0.01 0.05 

369 1.63 0.02 0.01 0.05 
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370 1.63 0.02 0.01 0.05 

373 1.63 0.02 0.01 0.04 

375 1.64 0.02 0.01 0.03 

376 1.64 0.02 0.01 0.04 

379 1.65 0.03 0.01 0.04 

380 1.63 0.02 0.01 0.04 

383 1.63 0.02 0.01 0.04 

384 1.63 0.02 0.01 0.04 

387 1.63 0.02 0.01 0.03 

388 1.63 0.02 0.01 0.04 

390 1.63 0.02 0.01 0.04 

393 1.63 0.02 0.01 0.04 

394 1.634 0.019 0.01 0.04 

397 1.64 0.02 0.01 0.04 

398 1.64 0.02 0.01 0.04 

401 1.64 0.02 0.01 0.03 

403 1.64 0.02 0.01 0.03 

404 1.65 0.02 0.01 0.03 

407 1.66 0.02 0.01 0.03 

408 1.66 0.02 0.01 0.03 

411 1.67 0.02 0.01 0.03 

413 1.67 0.02 0.01 0.03 

414 1.67 0.03 0.00 0.02 

417 1.63 0.03 0.01 0.02 

418 1.63 0.03 0.01 0.02 

421 1.64 0.03 0.01 0.02 
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Equation (4.4) was fit to data collected for Ca-montmorillonite sets with complete RH coverage 

resulting in the coefficients shown in Table 4.1. For all samples a good fit was produced as 

demonstrated by the χ2/N2 values less than 0.5 (Kotchenruther et al. 1999, Titos et al. 2016). The 

χ2/N2 ratios allow for comparison of the goodness of fit for the different generation methods used 

where fresh dry generation has the best fit and 5 % (w/w) wet generated is the poorest. 

 

Table A.2. Fit coefficients determined for Equation (4.4) for Ca-montmorillonite aerosol generated with various 

methods. χ2/N2 values indicate the goodness of fit of the model to the measured data. 
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