Spring 1980

VALIDITY AND RELIABILITY OF FINAL SAY DECISION MEASURES OF MARITAL POWER

CRAIG MARSHALL ALLEN

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation
https://scholars.unh.edu/dissertation/1244

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
VALIDITY AND RELIABILITY OF FINAL SAY DECISION MEASURES OF MARITAL POWER

Abstract
The final say decision measure of marital power has fared poorly in several studies which have examined its validity. This research was designed to explore two possible explanations for these findings: (1) inadequate or inappropriate procedures in previous validity studies, and (2) weaknesses of the final say measure itself, including insensitivity to item saliency and the discrepancies in responses between family members.

Several US samples and one from India provided the data for this study. These samples had been gathered in other studies in which husbands’, wives’ and/or children had responded to the final say decision index. Up to three versions of the final say index were computed for each respondent. In the first version, decision items were unweighted (FSD index). In the other two versions, items were weighted by their relative importance (WFSD index) or by the amount of conflict associated with the particular decision area (CFSD index).

The reliability and validity of these measures and of measures based on the responses of husbands, wives and children was assessed through analytical procedures such as (1) analysis of item-removed alpha coefficients and (2) external criterion correlation analysis. The major findings of the study are: (1) The final say decision measure has cross-cultural validity, evidenced by consistent patterns among the validity coefficients across samples (though the coefficients were generally low). (2) Weighting the final say decision measure by importance or conflict does not improve validity and reliability. (3) The reliability of power measures based on wives’ reports is higher than measures using husbands' reports. (4) The validity of measures derived from husbands’ and wives’ reports is basically equivalent. (5) Although there is some indication that power measures based on children’s reports have the highest reliability and validity, the small sample size and other problems make such comparisons tenuous.

The results indicate that the simple unweighted final say measure is a more valid and reliable instrument than previous research has suggested.

Keywords
Sociology, Individual and Family Studies

This dissertation is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/dissertation/1244
INFORMATION TO USERS

This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)” If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity.

2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy.

University Microfilms International
300 N. ZEEB ROAD, ANN ARBOR, MI 48106
18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND
VALIDITY AND RELIABILITY OF FINAL SAY DECISION MEASURES OF MARITAL POWER

University of New Hampshire

Ph.D. 1980

Copyright 1980

by

Allen, Craig Marshall

All Rights Reserved
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark  

1. Glossy photographs  
2. Colored illustrations  
3. Photographs with dark background  
4. Illustrations are poor copy  
5. Print shows through as there is text on both sides of page  
6. Indistinct, broken or small print on several pages  
7. Tightly bound copy with print lost in spine  
8. Computer printout pages with indistinct print  
9. Page(s) lacking when material received, and not available from school or author  
10. Page(s) seem to be missing in numbering only as text follows  
11. Poor carbon copy  
12. Not original copy, several pages with blurred type  
13. Appendix pages are poor copy  
14. Original copy with light type  
15. Curling and wrinkled pages  
16. Other

University Microfilms International
300 N. ZEEB RD., ANN ARBOR, MI 48106 (313) 761-4700
VALIDITY AND RELIABILITY OF FINAL SAY DECISION MEASURES OF MARITAL POWER

BY

CRAIG M. ALLEN

B.S. (Geology), Brigham Young University, 1972
M.S. (Child Development and Family Relationships), Brigham Young University, 1975

A DISSERTATION

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy
Graduate School
Department of Sociology

May 1980
This dissertation has been examined and approved.

Dissertation director, Murray A. Straus
Professor of Sociology

Howard M. Shapiro
Associate Professor of Sociology

Frederick Samuels
Associate Professor of Sociology

Larry J. Hansen
Associate Professor of Home Economics

James W. Cerny
Adjunct Assistant Professor of Geography

May 5, 1980
Date
ACKNOWLEDGEMENTS

Appreciation and gratitude are owed to many for their support and assistance during the course of this project: to members of the Home Economics Department for use of an office and a video terminal, and for two delightful years of association; to Cindy Lewis for typing all the tables; to Gretchen Stevens and Sieglinde Fizz for making final alterations and overseeing the printing and distribution of the dissertation; to Fred Samuels for his willingness to sacrifice his schedule to accommodate my own; to Howard Shapiro for his part in persuading me to come to UNH to do graduate work; to Jim Cerny and his colleague, Roscoe Gort, for their keen sense of humor and for constantly demonstrating that all serious things have their lighter side; to Larry Hansen for watching over my family during my 'absence' as I worked on the dissertation; and to Murray Straus for his unrelenting standards of excellence.

My gratitude extends also to Verlin and Verna Allen, Kent and Wanda King, Mazle and Rose King, Tessar and Elizabeth Birch, and a host of other relatives and friends for their continued interest and encouragement, and to Kimberly, Rebecca, Scott and Christopher, who have believed that going to graduate school is normal.
Lastly, I am especially appreciative of my wife Lynette, whose remarkable patience is, more than all else, responsible for the successful completion of this project.
TABLE OF CONTENTS

LIST OF TABLES ................................................................. vi

ABSTRACT .............................................................................. xi

Chapter

I. FINAL SAY DECISION INDICES OF MARITAL POWER AND MARITAL POWER RESEARCH ................................................. 1

The Investigation of Marital Power
Olson and Rabunsky's (1972) Study: Nominal Level Analysis
Turk and Bell's (1972) Study: Ordinal Level Analysis
Hadley and Jacob's (1976) Study: A Complex Analysis with Ordinal Measures
Final Say Decision Measures of Marital Power: Parametric or Nonparametric Analysis?
Straus' (1977) Study: Interval Level Analysis Summary

II. FINAL SAY MEASURES OF MARITAL POWER: SOME METHODOLOGICAL SHORTCOMINGS .......................... 27

Final Say Decision Measures of Marital Power
Saliency of Decision Making Items
Husbands, Wives, and Children: Observers of Marital Power Summary

III. METHODOLOGY ................................................................. 45

Population and Sample
Final Say Indices of Marital Power
External Criterion Variables Summary

IV. DIFFERENCES IN POWER SCORES BY TYPE OF INDEX AND RESPONDENT .......................................................... 62

FSD, WFSD, and CFSD Decision Power Measures:
Comparisons of Mean Scores
Final Say Decision Indices: Husbands', Wives', and Children's Responses
Husbands' and Wives' Reports
Children's Reports
Summary
V. INTERNAL CONSISTENCY OF POWER SCORES BY TYPE OF INDEX AND RESPONDENT ...........................................109

FSD, WFSD and CFSD Decision Power Measures:
Comparisons of Internal Consistency
Internal Consistency of Husbands', Wives' and Children's Responses
Summary

VI. CONSTRUCT VALIDITY OF DECISION POWER SCORES BY TYPE OF INDEX AND RESPONDENT .................................171

Criterion Variables of the Final Say Measure
Construct Validity of the FSD, WFSD and CFSD Indices
Construct Validity of Husbands', Wives' and Children's Responses for the FSD, WFSD and CFSD Indices
Summary

VII. SUMMARY AND CONCLUSIONS ........................................... 238

Reflections on the Performance of the Final Say Decision Measure
Limitations of the Study and Suggestions for Future Research
In Conclusion

APPENDIX A: Using Item Products to Create Weighted
Measures of Final Say Decision Power ....................... 253
APPENDIX B: Coefficient Alpha ........................................ 261
APPENDIX C: Selected Items From the VC Study
Questionnaire .................................................. 265
APPENDIX D: Selected Items From the SMF Study
Questionnaire .................................................. 270
APPENDIX E: Selected Items From the VA Study
Questionnaire .................................................. 275
APPENDIX F: Selected Items From the MC Study
Questionnaires ............................................... 286
APPENDIX G: Selected Items From the VV Study
Questionnaires ............................................... 291
APPENDIX H: Selected Items From the TG Study
Questionnaires ............................................... 299

REFERENCES ................................................................. 313
LIST OF TABLES

TABLE

1.1 Intercorrelation of Five Conjugal Power Measures and a Multidimensional Power Index Combining the Five Measures .................................................................24

3.1 Possible Values for CFSD Items .....................................................54

4.1 FSD, WFSD and CFSD Indices: Descriptive Statistics by Sample .................................................................64

4.2 FSD, WFSD and CFSD Indices: Descriptive Statistics within Samples for VA, MC, VV, TG, and SMF Samples .................................................................72

4.3 Mean Scores of Husbands' and Wives' Education and FSD, WFSD and CFSD Indices .....................................................73

4.4 Husbands' Reports of FSD, WFSD and CFSD Indices: Descriptive Statistics .................................................................78

4.5 Wives' Reports of FSD, WFSD and CFSD Indices: Descriptive Statistics .................................................................79

4.6 Husbands' Reports of FSD, WFSD and CFSD Indices: Descriptive Statistics within Sample for VA, MC and VV Samples .................................................................84

4.7 Wives' Reports of FSD, WFSD and CFSD Indices: Descriptive Statistics within Sample for VA, MC, and VV Samples .................................................................85

4.8 Mean Scores of Husbands' FSD, WFSD and CFSD Indices Ranked by Mean Education Levels .................................................................89

4.9 Mean Scores of Wives' FSD, WFSD and CFSD Indices Ranked by Mean Educational Levels .................................................................90

4.10 Children's Reports of FSD and WFSD Indices: Descriptive Statistics .................................................................94

4.11 Children's Reports of FSD and WFSD Indices: Descriptive Statistics within Samples for VC, SMF, VV and TG Samples .................................................................97

4.12 Mean Scores of Children's FSD and WFSD Indices Ranked by Mean Education Levels .................................................................98

4.13 Mean Scores of Husbands' and Wives' FSD, WFSD and CFSD Indices Ranked by Mean Education Levels .................................................................100

4.14 Mean Scores of Husbands', Wives' and Children's FSD and WFSD Indices Ranked by Mean Education Levels .................................................................101
5.1 Alpha with Item Removed for FSD and WFSD
Indices: VC Sample ..............................................................113

5.2 Alpha with Item Removed for FSD and WFSD
Indices: SMF Sample ..............................................................117

5.3 Alpha with Item Removed for FSD Index: SIF
Sample ..................................................................................120

5.4 Alpha with Item Removed for FSD, WFSD and CFSD
Indices: VA Sample ..............................................................123

5.5 Alpha with Item Removed for FSD, WFSD and CFSD
Indices: MC Sample ..............................................................127

5.6 Alpha with Item Removed for FSD, WFSD and CFSD
Indices: VV Sample ..............................................................131

5.7 Alpha with Item Removed for FSD, WSFS and WSFDR
Indices: TG Sample ..............................................................136

5.8 Overall Alphas for the FSD, WSFS, WSFDR and
CFSD Indices ........................................................................139

5.9 Alpha with Item Removed by Husbands' and Wives'
Reports of the FSD, WFSD and CFSD Indices:
VA Sample .............................................................................142

5.10 Alpha with Item Removed by Husbands' and Wives'
Reports of the FSD, WFSD and CFSD Indices:
MC Sample .............................................................................147

5.11 Alpha with Item Removed by Husbands', Wives' and
Children's Reports of the FSD, WFSD and CFSD
Indices: VV Sample ................................................................153

5.12 Alpha with Item Removed by Husbands', Wives' and
Children's Reports of the FSD, WSFS and WSFDR
Indices: TG Sample ................................................................159

6.1 Validity Coefficients of the FSD and WFSD
Indices: VC Sample ..............................................................175

6.2 Validity Coefficients of the FSD and WFSD
Indices: SMF Sample ..............................................................179

6.3 Validity Coefficients of the FSD Index: SIF
Sample ..................................................................................183

6.4 Validity Coefficients of the FSD, WFSD and CFSD
Indices: VA Sample ..............................................................186

6.5 Validity Coefficients of the FSD, WFSD and CFSD
Indices: MC Sample ..............................................................192

6.6 Validity Coefficients for the FSD, WFSD and CFSD
Indices: VV Sample ..............................................................197
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Validity Coefficients for the FSD, WFSDS and WFSDR Indices: TG Sample</td>
<td>201</td>
</tr>
<tr>
<td>6.8</td>
<td>Validity Coefficients of the FSD, WFSD and CFSD Indices by Husbands and Wives: VA Sample</td>
<td>209</td>
</tr>
<tr>
<td>6.9</td>
<td>Validity Coefficients of the FSD, WFSD and CFSD Indices by Husbands and Wives: MC Sample</td>
<td>212</td>
</tr>
<tr>
<td>6.10</td>
<td>Validity Coefficients for the FSD, WFSD and CFSD Indices by Husbands, Wives and Children: VV Sample</td>
<td>217</td>
</tr>
<tr>
<td>6.11</td>
<td>Validity Coefficients of the FSD, WFSDS and WFSDR Indices by Husbands and Wives: TG Sample</td>
<td>223</td>
</tr>
</tbody>
</table>
The final say decision measure of marital power has fared poorly in several studies which have examined its validity. This research was designed to explore two possible explanations for these findings: (1) inadequate or inappropriate procedures in previous validity studies, and (2) weaknesses of the final say measure itself, including insensitivity to item saliency and the discrepancies in responses between family members.

Several US samples and one from India provided the data for this study. These samples had been gathered in other studies in which husbands', wives' and/or children had responded to the final say decision index. Up to three versions of the final say index were computed for each respondent. In the first version, decision items were unweighted (FSD index). In the other two versions, items were weighted by their relative importance (WFSD index) or by the amount of conflict associated with the particular decision area (CFSD index).
The reliability and validity of these measures and of measures based on the responses of husbands, wives and children was assessed through analytical procedures such as (1) analysis of item-removed 'alpha coefficients and (2) external criterion correlation analysis. The major findings of the study are:

(1) The final say decision measure has cross-cultural validity, evidenced by consistent patterns among the validity coefficients across samples (though the coefficients were generally low). (2) Weighting the final say decision measure by importance or conflict does not improve validity and reliability. (3) The reliability of power measures based on wives' reports is higher than measures using husbands' reports. (4) The validity of measures derived from husbands' and wives' reports is basically equivalent. (5) Although there is some indication that power measures based on children's reports have the highest reliability and validity, the small sample size and other problems make such comparisons tenuous.

The results indicate that the simple unweighted final say measure is a more valid and reliable instrument than previous research has suggested.
CHAPTER I

FINAL SAY DECISION INDICES OF MARITAL POWER AND MARITAL POWER RESEARCH

The study of marital power has been one of the most active areas of family research in the last two decades (Aldous, 1977). It has also been one of the most controversial (Olson and Cromwell, 1975; Safilios-Rothschild, 1969b, 1970, 1976). One of the major problems in this area seems to be the lack of correspondence among measures used to tap marital power, reflected in their generally low interrelationships in various methodological studies (Olsen, 1969; Olson and Rabunsky, 1972; Turk and Bell, 1972; Hadley and Jacob, 1973, 1976; Cromwell, Klein and Wieting, 1975).

THE INVESTIGATION OF MARITAL POWER

Marital Power: Controversial Conclusions

The lack of relationships among different measures of marital power has led some to suggest that there is no one meaning to marital power, no underlying theme or characteristic that ties indicators of this variable together (Turk and Bell, 1972). Even more radical is the suggestion that marital power should be regarded as a meaningless concept and done away with altogether, with family researchers being advised to redirect their thinking.
about family organization in terms of other variables (Sprey, 1975; Turk, 1974).

Others are more cautious in their conclusions. Hadley and Jacob (1973) state that a great need exists for some type of criterion research in which the marital power measures could be compared on the basis of their relationships to some outside variable. They allude to the fact that in most of the methodological studies of marital power measures have simply been intercorrelated, and comparisons made without having any external criterion against which the intercorrelations among the power measures can be assessed.*1

1. One of the main problems resulting from the lack of external criterion variables is the difficulty in determining the meaning of relative correlations among measures. For example, if two marital power measures correlate highly with each other, but both have very low correlations with a third measure, which of the three measures is more valid? An initial response might be the two measures that are highly correlated with each other. Yet just the opposite may be true. If the third measure has a high correlation with an external criterion variable which is related to marital power, while the first two measures have low correlations with this criterion variable, evidence is for the validity of the third measure and the invalidity of the first two. The high correlation between the first two measures indicates that they are much alike. Their low correlations with the external criterion indicates that they are both invalid. On the other hand, the low correlations of the third measure with the first two indicates that the third measure is unlike the first two. The high correlation of the third measure with the criterion is an indication of the validity of this third measure. In sum, it is impossible to determine the validity of measures through relative correlations, unless they can also be compared through correlations with an external criterion variable.
Because of its unexpectedly complex nature, perhaps family researchers should not expect complete understanding of marital power and its measurement to fall quickly out of one or two methodological studies. Abandoning the variable when simple results are not immediately forthcoming from a few studies may be premature, especially before other explanations for the low relationships among the various measures have been thoroughly explored.

One explanation for the low associations may be that the poor results are a reflection of the analytic procedures used to compare the various measures. Some procedures may be less appropriate than others for particular kinds of data. Another reason might be that the measurement instruments themselves had not been refined and maximally sensitized to variation in marital power before being compared. This makes it difficult to determine if low associations among them can be attributed to their real differences instead of to measurement error. However, even if appropriate analytical techniques are chosen and only refined marital power measures are included in the analysis, the meaning of these differences would still be difficult to determine in the absence of any external criterion variables to serve as check points against which the interrelationships among the measures can be compared.
A Strategy for the Validation of Marital Power Measures

In sum, so that confidence can be placed in comparative studies of marital power measures, the measures need to be improved and refined as much as possible before comparing them with other kinds of instruments, appropriate analytical procedures need to be selected, and external criterion variables must be used as validation checkpoints. Until other explanations for the low associations among the marital power measures have been ruled out, it is difficult to determine if any differences among them are, in fact, real differences, or if they simply reflect measurement error.

Rather than attempting to accomplish this objective in one herculean study, a more efficient approach might be the selection of a small sub-group of closely related measures. Perhaps variations of a single instrument could be selected for refinement and comparison in an external criterion validity study. Subsequent studies could compare the more dissimilar measures which seemed most promising on the basis of the results of the initial projects.

Final Say Decision Indices of Marital Power

In line with the strategy outlined in the previous paragraph, this study will focus on one category of the methods used to measure marital power: self-reports of which spouse has the final say in decisions involving various areas of married life. This measure, developed by Blood and
Wolfe (1960) in one of the first major studies of marital power, is a good candidate for examination if for only one reason: it is the most widely used of any instrument to measure marital power. Thus marital power theory and its verification is more heavily dependent on this than any other instrument.

Although this instrument has had widespread use, only a few studies have actually compared the final say measure with other measures of marital power. Nevertheless, the conclusions of these studies have had great influence in directing the focus of marital power research (Cromwell and Olson, 1975). However, little attention has been given to the analytic procedures by which these comparisons were made. These procedures will be the focus of the remainder of this chapter.

OLSON AND RABUNSKY'S (1972) STUDY: NOMINAL LEVEL ANALYSIS

Four Marital Power Measures Based on Decision-Making

Olson and Rabunsky (1972) compared four measures of marital power based on decision-making. Two of the measures were obtained from 35 couples who were expecting their first child to be born about four months hence, and the other two measures were obtained several months after the birth of the child. About 35 couples, primarily graduate students, participated in the first stage of the study, but only 17 couples could be located for the second data gathering
period. The rest, presumably, had moved away following their graduation from college.

**Predictive power.** The four measures were very similar, each being based on 27 items reflecting decisions parents make about a baby in the first few months of its life. They differed in that some measures referred to decisions yet to be made while other measures referred to decisions that had been made previously. Olson and Rabunsky (1972) derived the first measure, which they termed predictive power, from questionnaires which spouses were asked to fill out separately. These questionnaires contained items which asked the respondents to predict which spouse would exercise power in the various decision areas after the birth of their child.

**Process power.** The second measure was derived in part from the first. After couples had completed the predictive power measure, the investigators isolated those items on which spouses had disagreed in their responses. Without informing the couples how these items had been selected, they then asked each couple to discuss them and arrive at a mutually agreed upon decision which they would be willing to abide by. Power was assigned to that spouse whose preference prevailed. This measure they called process power. (Since it referred to a decision which was yet to be made it is also a predictive measure as well.)
Retrospective power. The third measure was obtained from the 17 remaining couples several months after the birth of their child. This was also a self-report measure, similar to the first self-report measure, predictive power. The only difference was that items were reworded to reflect the past occurrence of decision-making events, i.e., "who exercised power" instead of "who would exercise power". This third measure, referring to decisions which were assumed by the investigators to have already been made by the couples at the time this measure was administered, was termed retrospective power.

Outcome power. Their final measure was their criterion variable, against which they compared the other measures. This measure, which Olson and Rabunsky termed outcome power, was defined by Olson and Rabunsky (1972) as the actual exercise of power on the various decision areas. This measure was determined by comparing items in the retrospective power measure on which both spouses had responded identically with those items in the predictive measure on which those spouses had disagreed. Power was credited to the spouse whose responses in the retrospective power measure most closely agreed with his or her responses on the predictive power measure.*2

---

*2 Their criterion variable outcome power, contrary to their assertions, was not an independent measure, being determined in part from retrospective power and in part from predictive power. A truly independent criterion measure would require independent observations.
Explanation for Low Associations: Invalid Marital Power Measures

Using the nominal level nonparametric binomial test, Olsen and Rabunsky (1972) found no significant relationships among their measures. They concluded that their validity study demonstrated that these four measures were not valid measures of marital power. However, other explanations for the lack of relationships besides one based on invalidity of power measures exist as well. One explanation for the low associations may be the analytical procedures themselves.

A Second Explanation: Computational Errors

Frequency distribution of response pairs. Using the binomial test of frequencies, Olson and Rabunsky (1972) compared measures by comparing the number of congruent pairs of responses with the number of incongruent pairs of responses. A pair of responses was considered congruent if the responses of a spouse were identical for two parallel items, one on each measure, which referred to the same decision area. A pair of responses was classified as incongruent if responses for the two parallel items were different.

Binomial test of frequencies. The binomial test compares the actual frequency of cases falling into the congruent and incongruent groups with the frequency of cases which would fall into these groups if the frequency distribution of the two groups were determined strictly by chance. The greater the difference between the theoretical
and actual frequencies, the more likely the existence of an association between the two groups.

An important step in the development of the theoretical chance distributions to compare with the actual distribution of incongruent and congruent responses is the selection of the appropriate probability of occurrence of the two categories. One assumption could be that if measures were not really related then pairs of responses across measures would have as much likelihood of being congruent as incongruent. In essence, they would fall into a .50-.50 chance distribution pattern. The actual distribution of incongruent and congruent response pairs for any two measures could be compared with the theoretical distribution to determine if there was any evidence of association. Using the assumption of a .50-.50 chance distribution for incongruent and congruent response categories, one can obtain the same z-score values as those obtained by Olson and Rabunsky (1972:228).

Errors from improper choice of chance frequency distribution base. The major fallacy of this approach is that Olson and Rabunsky's (1972) incongruent and congruent response pairs do not have an equal probability of occurrence. To determine the probability of congruent response pairs occurring by chance, the number of outcomes which produce congruent response pairs is divided by the total number of outcomes. Since every item in Olson and Rabunsky's (1972) measures has three response categories
(Husband-dominant, Compromise, and Wife-dominant), there are 9 possible outcomes on any given pair of parallel items across the two measures. Only three of these outcomes produce congruent responses (H-H, C-C, and W-W); the other six outcomes are incongruent. Thus, instead of a .50-.50 probability, congruent and incongruent responses have a theoretical distribution of .33 and .67, respectively.

The effect of introducing the .33-.67 theoretical distribution into the binomial test is to shift all associations away from incongruence and towards congruence. For instance, the association between process power and outcome power, or between process power and retrospective power is reported by Olson and Rabunsky (1972) as non-significant. With the .33-.67 theoretical distribution, these relationships become significant beyond the .001 level.

This makes sense theoretically. One might suppose that the actual decision-making strategy would be a reflection of the strategy agreed upon by both spouses in the process power measure discussion, especially after a couple has ironed out their disagreements during the session, come to a consensus as to who would exercise power in certain decision areas in the future, and made a commitment to the investigators to follow through on their commitment.

What the .50-.50 chance distribution base of Olson and Rabunsky (1972) has done is to create a test much too stringent for the data. Although the few associations of
congruence they report as statistically significant are statistically significant indeed in light of the revised chance distribution base, the absence of associations does not necessarily mean marital power measures are not associated. Rather, it means that the test of their association is much too conservative, and moderate associations that actually exist might not be reported.

A Third Explanation: Insensitivities of Cardinal Statistics

Their test is conservative for another reason as well, even if correct theoretical probabilities had been used. With Olson and Rabunsky's (1972) method, responses to parallel items are either identical, or they are not. Suppose a respondent reports Husband-dominant on one measure and Compromise on another. This pair of responses is assigned to the same category as the pair of responses Husband-dominant and Wife-dominant. Both are allocated to the incongruent category. Even though the change in measures from Husband-dominant to Compromise might be considerably less a change in position than from Husband-dominant to Wife-dominant, both pairs of responses are allocated to the incongruent category.

Even when correct theoretical distributions are used, the nominal level binomial test could lead to a conclusion of no association when actually a low to moderate relationship might exist, because the binomial test ignores the meaning of differences among the various combinations of
distributions used. With the binomial test the various combinations of pairs of responses are forced to follow a very stringent and perhaps artificially high level of association if a relationship between a pair of measures is to be reported as statistically significant.

TURK AND BELL'S (1972) STUDY: ORDINAL LEVEL ANALYSIS

Turk and Bell (1972) devoted a major part of their study to the examination of the interrelationships among nine marital power measures, including the Blood and Wolfe (1960) final say decision index. With 211 Toronto families they found correlations among their marital power measures to vary from very low to slightly negative, with one or two exceptions. They concluded that these low correlations and the absence of any determinable patterns among the measures seemed to indicate that marital power instruments "are not measuring what they purport to measure at all" (1972:222). Instead, they were tapping unrelated phenomena. Later, Turk (1974) went so far as to suggest that researchers should throw out the "untenable" concept of marital power altogether. The findings of Turk and Bell (1972), however, may be of dubious validity because of their questionable use of Goodman and Kruskal's gamma.
A Second Explanation: The Gamma Statistic

Gamma and tied ranks. Gamma is an ordinal statistic used to determine rank order of pairs of values. Gamma provides a reasonable estimate of the degree to which two variables tend to rank in the same or opposite directions, provided there are only a few ties (cases with the same value on either or both ranking variables) in the data. Gamma ignores tied pairs in its computation, and as the proportion of tied pairs to total pairs of values increases, gamma is computed from a smaller and more unrepresentative number of untied pairs that remain. Gamma thus becomes unreliable as an indicator of the relationship between two variables as the proportion of tied pairs increases (Blalock, 1979:442-447).

One factor that is directly related to the proportion of tied pairs is the ratio of the number of cases being ranked to the number of categories of the ranking variables (Mueller, Schuessler, and Costner, 1977:215-219). This ratio is increased with either an increase in the number of cases or a decrease in the number of categories in either or both the variables being ranked.

To minimize the problem of ties, Blalock suggests that as many ordinal categories as possible be included in gamma's calculation, and that at all costs dichotomies or trichotomies in the variables are to be avoided (1979:444-445). Other statisticians have stated that it is inadvisable to use gamma in instances when researchers are
forced to use data classified into crude ordinal categories (Mueller et al., 1977:217).

Few categories in Turk and Bell's (1972) marital measures. Although it is not totally clear exactly how many categories of each pair of marital power measures were included in the analyses which Turk and Bell (1972) performed, it is possible to set a theoretical upper limit for several of his measures. One measure, the "who is the boss" measure, has only 3 categories to begin with, into which the 211 families in their sample are classified. Another measure has only 5 categories, the Heer (1958, 1963) "who wins when there is a disagreement" index.

Furthermore, if the frequency tables reported by Turk and Bell (1972) for each measure represent the actual number of categories of each measure included in the analyses, Blood and Wolfe's decision index is also collapsed from 33 into only 3 categories. Other indices as well are also collapsed into 3 to 5 category variables. How does the high ratio of cases to categories for these measures in Turk and Bell's (1972) study effect gamma?

Estimates of minimum number of ties in Turk and Bell's (1972) data. A method has been suggested by Mueller et al. (1977:217) for determining the approximate theoretical minimum number of ties for two variables from their frequency distributions. Using their approach, the approximate minimum number of ties was computed for the Blood and Wolfe (1960) index and the index for which it was
most highly cogammarelated \( (r=.54) \), the "who is the boss" measure. If the final say measure is assumed to have been collapsed into three categories for analysis as well as for tabular presentation, the minimum number of ties is from 67 to 80 percent of the total number of pairs, and this assumes that the data was equally distributed across all categories. Clustering the data around central categories, as occurs naturally with normally distributed data, raises the proportion of ties even higher (Mueller et al., 1977:217). If Turk and Bell (1972) did not collapse the Blood and Wolfe (1960) instrument, but used all 33 categories, a minimum of 55 percent of the pairs are still tied and ignored in the computation of gamma.

Reinterpretation of Turk and Bell's (1972) findings. With so much of the information ignored in gamma calculations, it is difficult to say what the correlations in the Turk and Bell (1972) study represent. If the value of gamma is sensitive to and determined in part by the number of ties in the variables being related, then the few moderate correlations reported among the measures in Turk and Bell's (1972) study may be more an artifact of variation in number of categories among the measures than actual indicators of the relationships themselves (Blalock, 1977:442-447).
HADLEY AND JACOB'S (1976) STUDY:  
A COMPLEX ANALYSIS WITH ORDINAL MEASURES

In a third methodological study in which a final say decision measure was compared with other marital power measures, Hadley and Jacob (1976) obtained data from a sample of 30 three-member families composed of mother, father, and high-school aged son. Four of their marital power measures were observational, one was the self-report "who is the boss" measure, and the last a Blood and Wolfe (1960) type decision index.

An Elaborate Analysis

Measures comprised of triad and dyad rankings. To compare measures, Hadley and Jacob (1976) developed their own very elaborate statistical procedure. Rather than using actual scores from their various instruments, their procedure required that the three members of each family need only be ranked according to their relative power for each measure. For instance, on the Blood and Wolfe (1960) type index, a 3-person ranking could be reported as M>F>S. This would represent a family in which mother had the most say, followed by father, and the least say allocated to the son. For any one measure 6 triad combinations were possible, with each triad having 3 dyad rankings. For the example above, the triad M>F>S would contain the 3 dyads M>F, M>S, and F>S.3

3. The 6 combinations of triad rankings are F>M>S, F>S>M, M>F>S, M>S>F, S>F>M, and S>M>F. The 3 dyads in each triad are represented by combinations from among the following 6 dyads possible: F>M, F>S, M>F, M>S, S>F, and S>M.
Comparison of measures with a t-test paradigm. Measures were compared by comparing triad combinations and noting how many dyad rankings were common to both triads. If triads were perfectly matched, all 3 dyad rankings would be identical, such as in the case of F>M>S - F>M>S. Less perfectly matched triads, such as F>M>S - M>F>S or F>M>S - S>F>M would hold, respectively, 2 or 1 dyad in common. A completely unmatched pair of triads such as F>M>S - S>M>F would have no dyads in common at all.

Although it could be assumed that the greater the number of dyads common to a triad pair, the greater the association between the two measures, a certain number of dyad matches could occur simply by chance. Allowing for this possibility, Hadley and Jacob (1976) computed for each pair of measures the mean number of dyadic matches for their 30 families. With the t-test statistic, they then compared this actual mean value to the expected mean number of dyadic matches, which they derived from the marginal frequencies for a pair of measures. They found a general lack of relationships among the various measures, concluding cautiously that their measures were either invalid or unreliable.

Explanations for the Low Associations

Unproven analytic procedures. In studies reviewed previously, analytic flaws were judged to have contributed much to the low associations among the marital power
measures. Hadley and Jacob (1976), however, were painfully careful in their analysis, providing very detailed information about their procedure. Nevertheless, their analytical approach is difficult to comprehend and is unproven. Perhaps their procedure hides internal flaws that only future experimentation will uncover. Even so, a more likely explanation for the low associations was attributed by the researchers themselves: limited variation among their measures.

**Severely skewed distributions of data.** Among the observation data two-thirds of the responses were either F>M>S or M>F>S. Among the self-report data the variation was even more severely restricted with all the responses but two being either F>M>S or M>F>S. In one instance, mothers' reports on the "who is the boss" measure, 30 identical responses (F>M>S) were obtained, representing no variation whatsoever. This is a condition which automatically leads to a t-value of .00 regardless of variation in the other measures.*4

**Insensitivity of ordinal measures.** Another problem acknowledged by Hadley and Jacob (1976) which might have contributed to the low associations is an aspect of ordinal

---

4. This extreme skew in the distribution of the data may be in part a reflection of sampling bias, in that only 23% of the families contacted agreed to participate in the study.
measures in general: they are not sensitive to differences among pairs of rankings. For instance, it is impossible to determine in the F>M ranking if father is a great deal more powerful than mother, somewhat more powerful, or perhaps nearly equal to her. This loss of information, occurring when rankings rather than actual scores of family members are compared, may have contributed to underestimates of the strength of relationships among the measures of marital power.

FINAL SAY DECISION MEASURES OF MARITAL POWER: PARAMETRIC OR NONPARAMETRIC ANALYSIS?

Rationalization for the Use of Nonparametric Procedures

Olson and Rabunsky (1972), Turk and Bell (1972) and Hadley and Jacob (1976) all used nominal and ordinal level statistics or measurement procedures in their comparisons of the final say decision index with other measures of marital power. Perhaps they felt this concession was necessary in recognition that items in some of their measures, such as those in the self-report Blood and Wolfe (1960) decision index, are ordinal level indicators in the strict sense. It might be supposed that by treating these nominal or ordinal level measures with appropriate nonparametric statistics potentially serious errors of inference resulting from mismatch of measurement level with statistical level could be avoided.
Advantages of Parametric Analysis

Labovitz (1975) argues, however, to the contrary. He states that to the degree to which characteristics of ordinal data approximate characteristics of interval level data, it is not only appropriate but actually better procedure to use interval level instead of ordinal level statistics.

According to his findings (Labovitz, 1970a), differences in correlations among ordinal and interval measures of the same data are minimal, provided the data do not fall into one or two types of non-normal distributions. In another study, he states that:

Certain assumptions of both descriptive and inference statistics can be violated without unduly altering the conclusions, and strict adherence to measurement scales may lead to an extensive waste of information. [1967:151].

Even if differences between adjacent values on a given variable can only be approximated and not determined with exact precision, Labovitz (1975) states that in most cases it is better procedure to use interval level statistics to analyze this data. He argues that less information is lost when these quasi-interval variables are correlated with the Pearson correlation coefficient, which is sensitive to scale
value differences, than when these variables are simply ranked and their ranks compared.*5

The Blood and Wolfe (1960) type decision measure is a quasi-interval level index. The items of the index each form a 5 value scale, with the values being integers which are arranged in ordinal fashion from 1 to 5. The differences between each pair of values is assumed to be roughly equivalent. Thus each item forms a quasi-interval scale. The items are summed to form a Likert-type index whose values approximate a normal distribution.

One of the major advantages of using interval level statistics with ordinal data is that interval statistics allow the use of techniques which are well developed and interpretable (Labovitz, 1970a). Of even more significance, however, is the power and sensitivity of these interval level statistical techniques in tests of theories as opposed to the limited strength, insensitivity, and difficulty in interpretation of unfamiliar ordinal statistics.

5. The loss of information or error from using an interval level statistic with ordinal level data occurs because the differences between successive adjacent integer values may not be constant, constant differences between adjacent integer values being one of the assumptions of interval level statistics (Labovitz, 1970a).
Support for Validity of Power Measures

Substantially higher correlations than in previous studies. In a more recent study of the interval level the Pearson correlation coefficient was used to determine interrelationships among the Blood and Wolfe (1960) type decision index and other marital power measures. Straus (1977) gathered information for a final say decision index, two other self-report measures and two observation measures from 32 families in Minneapolis and 32 families in Bombay, India. In both samples correlations were found to be substantially higher than correlations reported in previous studies of marital power measures.

Marital power measures are related. He suggested that the basically moderate intercorrelations among the measures gave evidence that the measures were not redundant, which high intercorrelations would have indicated, nor were they unrelated, which very low to non-existent correlations would have indicated. Rather the moderate correlations indicated that each power measure had something in common with the others, though each tapped a different aspect of marital power.

Thus, contrary to previous studies which have concluded on the basis of low associations that power measures are measuring separate unrelated concepts and therefore are invalid, Straus (1977) with a more powerful analysis
suggests that these differing measures of marital power might be related after all. However, one measure was less "related" than the others.

Low Associations Obtained for the Final Say Decision Index

Correlations among other marital power measures higher. Although the overall correlations among the measures were lower for the Bombay sample than for the Minneapolis sample, the same patterns of correlations were observed for each. Interestingly, in both samples the lowest correlations were obtained with the final say decision index. (See Table 1.1). With one or two exceptions, correlations among the other self-report and observational measures were much higher.

Explanation of low correlations. Why would the decision-making index have such low correlations with other indices of marital power? It has been repeatedly suggested throughout this chapter that low associations observed with the final say index and other marital power measures were a result of pitfalls associated with the improper or inappropriate use of ordinal and nominal level measures and less sensitive nonparametric statistics. If this line of reasoning were true, then higher correlations of the Blood and Wolfe (1960) type measure would have been expected in Straus' (1977) study, where relationships were based on the more sensitive Pearson r.
<table>
<thead>
<tr>
<th></th>
<th>IP-H</th>
<th>IP-%</th>
<th>FSP</th>
<th>SIMP</th>
<th>SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MINNEAPOLIS</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP-H Immediate Power of Husband</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP-% Relative Immediate Power of Husband</td>
<td>.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSP Final Say Power</td>
<td>.27</td>
<td>.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMP SIMFAM Husband's Power</td>
<td>.43</td>
<td>.39</td>
<td>.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIM% SIMFAM Relative Power Husband</td>
<td>.30</td>
<td>.27</td>
<td>.15</td>
<td>.69</td>
<td></td>
</tr>
<tr>
<td>MDPI Multidimensional Power Index*</td>
<td>.48</td>
<td>.54</td>
<td>.31</td>
<td>.67</td>
<td>.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>IP-H</th>
<th>IP-%</th>
<th>FSP</th>
<th>SIMP</th>
<th>SIM</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BOMBAY</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP-% Relative Immediate Power of Husband</td>
<td>.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSP Final Say Power</td>
<td>.08</td>
<td>.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMP SIMFAM Husband's Power</td>
<td>.23</td>
<td>.19</td>
<td>.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIM% SIMFAM Relative Power Husband</td>
<td>.21</td>
<td>.35</td>
<td>.01</td>
<td>.34</td>
<td></td>
</tr>
<tr>
<td>MDPI Multidimensional Power Index*</td>
<td>.35</td>
<td>.53</td>
<td>.12</td>
<td>.28</td>
<td>.35</td>
</tr>
</tbody>
</table>

*Correlations with the MDPI have been corrected for inclusion of the item as part of the MDPI (see Nunnally, 1968:262)

*From Straus (1977, p.5)
Since higher correlations were, in fact, obtained among all the other power measures, perhaps the lower correlations of the Blood and Wolfe (1960) type instrument stem from weaknesses of the instrument itself. Some of the most prominent shortcomings pointed out by critics of the final say measure include: 1) insensitivity to differences in the saliency of marital decision areas and 2) the efficacy of husbands', wives', and children's responses to the final say decision marital power measure. It is precisely these issues which will be addressed in the present study.

SUMMARY

The Blood and Wolfe (1960) type final say decision index of marital power, based on which spouse has the final say in decisions affecting areas of responsibility that involve them both, is the most widely used measure of marital power. Consequently, it serves as the underpinning for much of marital power theory. Unfortunately, several methodological studies which have compared this instrument to other measures of marital power have concluded they are all invalid, because of their low associations.

However, these conclusions have been deemed premature, especially before other explanations for the low associations between the final say decision index and other marital power measures have been ruled out. One possible explanation might be that the low associations are in part artifacts of analytical procedures used in these studies, to which little attention has been paid previously.
In three of the methodological studies in which authors have asserted that the low associations among marital power measures indicated their invalidity, incorrect or inappropriate use of nominal and ordinal level measurement procedures and nonparametric statistics might have contributed to the low associations (Hadley and Jacob, 1976; Olson and Rabunsky, 1972; Turk and Bell, 1972). In the fourth study reviewed (Straus, 1977), more sensitive interval level analytic procedures were used. Although the correlations among the self-report and observational power measures in this study were substantially higher than those reported in the other studies, the final say decision measure was still found to have the lowest correlations.

On the basis of this finding, a second alternative explanation might be that the shortcomings of the final say decision measure itself are also contributing to the low associations obtained among this and the other measures in the methodological studies of marital power measures. Two shortcomings of the final say measure which have engendered much criticism (Cromwell and Olson, 1975; Safilios-Rothschild, 1969b, 1970) will be discussed in the following chapter: 1) the insensitivity of the final say decision index to differences in the saliency of marital decision areas and 2) the relationships among husbands', wives', and children's responses to this measure.
CHAPTER II

FINAL SAY DECISION MEASURES OF MARITAL POWER:
SOME METHODOLOGICAL SHORTCOMINGS

The preceding chapter examined studies that compared the final say decision index with other measures of marital power. Improper or ill-fitting analytical procedures have been suggested as major contributors to the low associations found between the final say decision index and other measures in several studies (Hadley and Jacob, 1976; Olson and Rabunsky, 1972; Turk and Bell, 1972). It was suggested that, rather than demonstrating the validity or invalidity of the Blood and Wolfe (1960) type index and other marital power measures, these studies may have fallen short of their objective due to incorrect or insensitive analytical techniques.

However, in one study using a more sensitive procedure, the final say index was still characterized by low to very low intercorrelations even though intercorrelations among the other marital power measures were substantially higher than correlations reported in earlier studies (Straus, 1977). Why would this index show such low correlations, even when more suitable analytical techniques were used in the comparisons among measures? Perhaps weaknesses of the
instrument itself are also contributing to its low association with other measures of marital power indices. These potential weaknesses of the final say measure itself will serve as a focus of the discussion in this chapter.

**FINAL SAY DECISION MEASURES OF MARITAL POWER**

**Development of the Final Say Decision Index**

The final say decision index of marital power was developed by Blood and Wolfe (1960) in conjunction with one of the first major studies of marital power. In this study 731 metropolitan wives and 178 farm wives responded to a series of questions about the decision making patterns in their marital relationships. The questions focused on determining which spouse usually made the final decisions about aspects of their marriage and family.

The questions were worded similarly, and each focused on an area of marital responsibility such as, "who usually makes the final decision about what house or apartment to take" or "who usually makes the final decision as to whether or not you [the wife] should go to work or quit work." Other areas assessed by the questions included choice of life insurance, choice of car, allocation of food money, choice of doctor, and choice of vacation. The respondents were instructed to select the category that best reflected the pattern of decision making in their family from among five possible responses: (1) wife always, (2) wife more than husband, (3) husband and wife exactly the same, (4) husband more than wife, and (5) husband always.
One factor contributing to the popularity of the Blood and Wolfe instrument among marital power researchers is its impressive record of replication (Cromwell and Weiting, 1975). Kumagai and O'Donohue (1978) have suggested the appeal of the Blood and Wolfe (1960) instrument to marital power researchers might also be due to its use of what seems to be a very good indicator of marital power—the relative amount of decisions spouses make in areas of family responsibilities that concern them both. However, the concept of marital power itself has been the focus of some controversy in family power research. Perhaps it would be appropriate at this point to discuss the term "power".

The Concept of Power

Confusion about the term power. Power, being defined alternately as "influence", "control", "authority", "dominance", "potential power", and so forth, has engendered much confusion in the family power literature (Safilios-Rothschild, 1970; Sprey, 1975). Straus (1976) suggests power is better conceptualized as an umbrella term encompassing several dimensions, and thus should not be used unless accompanied by modifiers indicating the appropriate dimensions to be discussed. Some of these dimensions include the potential for exercising power, attempts to exercise power, and the successful exercise of power, indicated in various ways such as through compliance to another's wishes or requests or the adoption of another's suggestions.
"Final-say decision power." The dimension of power tapped by the Blood and Wolfe-type measure (1960) is restricted to that aspect of power which has been labeled as "final say decision power". Operationally, it is simply the respondent's report of who had the final say in deciding about a set of decisions common to families, for example, what car to buy, where to go on vacation, etc. Conceptually, final say power is most akin to the last of the dimensions listed in the previous paragraph: compliance to another's wishes or requests or the adoption of another's suggestions. It is intended to reflect the culmination of the process enacted by husbands and wives as they determine a course of action in some area of family responsibility.

Criticism of the Final Say Measure

In spite of the fact that the final say decision measure uses an intuitively appealing indicator of marital power which is fairly straightforward in its operationalization, and, in addition, has an impressive record of replication, the Blood and Wolfe measure has not been popular with every family power researcher. One of the major criticisms of the final say measure is that it is not sensitive to the differences among the various areas of responsibilities with respect to their saliency to the marital power balance.
SALIENCY OF DECISION MAKING ITEMS

Weighting Decision Items By Importance

In a review article of marital power research, Safilios-Rothschild (1970) criticized Blood and Wolfe (1970) for not taking into account the saliency of the various decision making items which they included in their measure. Instead, they assumed that all decision making areas carried equal weight. Some areas of family concerns may be more central and closely related to the marital balance of power, she continued, while other areas may be more peripheral. The effect of equal weighting is to over-represent those areas that are less relevant to the marital power balance, and under-represent those areas that are the more crucial determinants of marital power, resulting in a less sensitive marital power measure.

An initial step in importance weighting. In a study of the relationship between relative love involvement and decision making power, Safilios-Rothschild (1976) ranked decision making areas in order of importance to respondents. Unfortunately, she reported data only on who made these important decisions and not on the rankings of the decisions themselves. Furthermore, she did not include in her study a final say measure of power in which decisions were assumed to be equally important. Thus no comparisons were made with unweighted decision making scores and scores weighted by importance.
Unweighted decisions vs. decisions weighted by importance. In another study Price-Bonham (1977) did compare unweighted decision making scores and scores weighted by importance with a sample of 104 married college student couples. Using a series of resources such as age, education, occupation and others as construct variables she found little difference between husbands' and wives' unweighted decision making scores. However, she found a tendency for husbands' weighted scores to differ slightly from wives' weighted scores, particularly in the differences in importance assigned to the decision making areas.

Using a different method to score each decision making item included in her power index, Benson (1976) obtained responses from a sample of 90 upper-middle class urban couples which had recently married or remarried. She found that such resources as intelligence or dependability were positively related to marital power, more strongly for husbands than for wives. However, when each decision item was weighted by its importance before these items were summed, the resultant power index was not found to be related to any resources.

Weighting Decision Items By Conflict.

Marital power manifest in conflict. Bahr, Bowerman, and Gecas (1974) state that decisions should be weighted in a different fashion. In a study of adolescent's perceptions of conjugal power, they argue that even though power exists in the absence of conflict, making inferences on the nature
of the structure of power in the absence of conflict is much more difficult. Only in the presence of disagreement will the power balance become more manifest.

A conflict-weighted decision measure. Perhaps Quarm (1977) comes closest to this kind of comparison with her sample of 169 couples. In 123 of the couples both husbands and wives responded to a self-report decision power index comprised of 6 of the original 8 Blood and Wolfe (1960) items. For each of the 6 decision power items Quarm (1977) also included a corresponding item based on a hypothetical disagreement between spouses. These disagreement items were all of the same format, each asking the respondent to state which spouse would usually have his or her way when there was a difference of opinion, say, over choice of car, or how money was to be spent.

She found that responses to the disagreement items for two of the six decision areas, choice of car and child discipline, were less traditional and sex-typed than were the uncontested decisions. She used this evidence to support an argument stated earlier in her study that a single item was too unreliable an index to accurately measure a given decision area. She then proceeded to combine the disagreement item with the uncontested item to create a separate index for each decision area.

The conflict measure insensitive to saliency of decision areas. Unfortunately, although Quarm's indices (1977) and the index of Blood and Wolfe (1960) are at the
opposite ends of the contested-uncontested decision dimension, both are alike in that neither index differentiates decision areas of less conflict from those areas with more. In essence, Quarm's (1977) disagreement items are all implicitly weighted by some constant amount of disagreement, whereas items of Blood and Wolfe's indices implicitly carry the equal weight of no disagreement. Quarm (1977) recognized this shortcoming of her own instrument and suggested that future research on marital power should take into account the level or amount of conflict for each decision area, rather than just focusing on outcomes of decision making.

RESPONSE BIAS OF SPOUSES

Wives' only self-reports. One of the first criticisms levied at Blood and Wolfe's (1960) study was pointed at their exclusive use of wife's self-reports of the conjugal relationship. Blood and Wolfe (1960) rationalized that wives and husbands usually are in close enough agreement about their marriage that one partner's response is sufficient to represent the opinion of both. Since the wife is more likely to be at home when the interviewers drop by, they continued, her responses can be much more easily obtained than those of her husband.
Safilios-Rothschild (1969b, 1970) argued that the wife's reports would provide only her perception of the marital relationship which could very well be a distorted view. She stated that there were no grounds for assuming that husbands and wives saw their marital relationship similarly. Subsequently, her claims have been substantiated by many studies in which husbands' and wives' reports of the marital balance have been compared, which have found among other things that (1) spouses tend to underestimate their own power and over estimate their partner's and/or (2) spouses attach different levels of importance to the same decision making area (Cowen, 1977; Douglas and Wind, 1978; Meyer and Lewis, 1976; Price-Bonham, 1976; Quarm, 1977).

Confounding of norms with behavior in self-reports. Larson (1974), in her study of 571 family triads found that parents reported fewer disagreements and a greater image of equalitarianism in their reports than did the children who reported on their parents' relationship. She suggested that parents might have difficulty in separating normative expectations from the everyday exercise of power. Children may more objectively view the process of marital power because they are not faced with the normative-behavior conflict that parents might encounter as they report on their own behavior.

Larsen's (1974) findings are supported by Thomas, Gecas, Weigart and Rooney (1974) who found in their study that parents are more influenced by a social desireability
response set than children. Turk and Bell (1972) also found that parents presented a greater image of equalitarianism in the exercise of marital power than was reported by their children.

Children's Reports of Parents' Marital Power Balance

Children more accurate role-takers than their parents. Thomas, Franks, and Calonico (1972), using a four-item Blood and Wolfe type decision power index in a study of relative power and role-taking among family members, found that children can be better predictors of their parents' behavior than their parents are of each other. With a sample of 222 family tetrads, each consisting of both parents and one male and one female child, they found that fathers were least accurate predictors of the behavior of other family members in role-taking situations, mothers were more accurate, and children the most accurate of all, with only minor differences between the male and female children. These findings are consistent with those of Ferreira (1964), who observed in an experimental laboratory situation that children were more accurate than their parents in predicting how their choices of colors in a flag-coloring task would be rejected by other family members.

Validity of children's responses. Bahr et al. (1974) obtained information about marital power from a sample of over 19,000 adolescents in grades 7 through 12. They found that the relationship between the marital power of the
parents of the adolescents and several resources remained constant when controlled by age and sex of the adolescent respondent, even though absolute levels of power in the parents' relationship varied across categories of the control variables. This finding was taken as evidence of strong validity in adolescents' reports of their parents' power relationship. As a consequence, the authors suggested a much more frequent use of children's responses in studies of the family.


Thus, both a dilemma and its solution have been suggested. The dilemma is the confounding of normative expectations of a spouse and self-reports of his or her behavior which might lead to bias on self-report decision power indices. The solution is the use of the more objectively obtained reports of their children.

Unfortunately, with the exception of Turk and Bell (1972), other studies which have included children's responses (Ferreira, 1964; Larson, 1974; Thomas et al., 1972, 1974), beyond noting that differences exist, have done little in examining and explaining these differences in terms of their relative validities and reliabilities. Even Turk and Bell (1972) have done little more, for comparisons between the relative reliabilities of different family members' responses were only a side issue in their study.
Bahr et al. (1974), however, did present substantial evidence of the validity of adolescent responses by using resources as external criterion variables to assess the consistency of reports of marital power across categories of age and sex. Unfortunately, they presented no data on the responses of the parents to compare with those of their children, thus precluding any assessment of the relative validity of the responses of various family members. A clearer picture of the relative strengths or weaknesses of the responses of the various family members is still needed.

SUMMARY

In Chapter I, several methodological studies which have found low associations among the final say decision measure and other measures of marital power were examined. Improper or inappropriate analytical techniques were suggested as a contributing factor to the low associations, in contrast to the authors' explanation that the low associations were due to invalid measures.

In another study using more sensitive analytic procedures, higher intercorrelations were found among all marital power measures except the final say decision measure. This suggests that in addition to incorrect or ill-fitting analytic procedures, weaknesses of the final say measure itself also contribute to the low level of association found between this and other measures. Two of these weaknesses were discussed in this chapter: 1) item
saliency weighting and 2) the validity of husbands', wives' and children's responses.

**Conflict, Importance, and Decision Weighting**

Safilios-Rothschild (1969, 1970) argues that decision measures of power should be weighted according to the saliency of the decision area but produced no empirical evidence in support of that argument. Price-Bonham (1977) did find some slight differences between husbands' and wives' weighted scores but found little difference between husbands' and wives' unweighted decision power indices. Benson (1976) found no relationship between decision power indices weighted by importance and resources, while unweighted decision power indices were related to resources.

Bahr et al. (1974) suggest that an important indicator of saliency is the amount of disagreement over who should make the decision in a particular area, based on the premise that power is most easily assessable when it is manifest in conflict situations. However, no data is presented to test this hypothesis.

**Husbands, Wives, and Children as Observers**

Another possible problem of the final say decision measures that respondents may have difficulty in separating their normative expectations from their observations of the everyday exercise of power (Larson, 1974). One way to circumvent this dilemma is through the use of more objective observers, and children may fit this role well. They seem
to be more accurate observers of their parents' marital power relationship than parents are of their own relationship (Bahr et al., 1974; Larson, 1974; Thomas et al., 1972, 1974; Ferreira, 1964; Turk and Bell, 1972). However, none of these studies provides a comparison of the relative validity of husband's, wife's and child's responses within families. Thus, there is a lack of information about relative strengths and weaknesses of the responses of the various family members.1

OVERVIEW OF THE DISSERTATION

Refinement and Test of the Final Say Decision Index

In Chapter I the strategy of refining a measure by comparing it with its variations in an external criterion validity study, before further comparison with more dissimilar instruments, was suggested. In line with this approach the Flood and Wolfe (1960) type final say decision

1. An earlier criticism levied at Blood and Wolfe's study (1960) was pointed at their exclusion of wife's reports of conjugal power. A suggestion was made that husband's reports might be included as well. The position taken in this study goes a step further in assuming that the responses of both husbands and wives are held suspect and that children and other more objective observers might provide more accurate assessments of the power balance of the parents than the parents themselves. Even so, studies still continue to be done on the marital power balance with wife-only reports. Szinovacz (1978) reports data from 1370 Austrian blue and white collar working wives that substantiates one of Blood and Wolfe's conclusions about resource theory, namely, the higher the social status of the husband, the greater his power. This finding may lose some of its impact, based as it is on a suspect methodology.
index of marital power has been selected for examination in this study. The final say decision power instrument makes an excellent choice for review, primarily because it is 1) the most widely used of any index and 2) the most widely criticized.

Also in Chapter I, the possibility that improper or insensitive analytical procedures could account for the low associations of the final say decision index and other marital power measures was introduced. Additionally, in Chapter II several controversial aspects of the final say decision measure, which critics argue weaken this instrument and may contribute indirectly to the low associations, were discussed as well. These issues are couched in the questions below:

1. Are there any differences between indices based upon contested marital decisions and indices in which decisions are not contested?

2. Are there any differences between indices in which decisions are weighted by their importance and indices in which decisions are not weighted by their importance?

3. Are there any differences between indices based upon contested marital decisions and indices in which decisions are weighted by their importance?
4. Which, if any, family member provides more valid observations than others about the balance of marital power?

These four questions will be examined in this study by means of a series of external criterion correlational analyses and analyses of the alpha coefficient of reliability. These statistics will be obtained with the SPSS computer routines (Nie, Hull, Jenkins, Steinhbrenner and Bent, 1974; Hull and Nie, 1979).

Plan of the Study

This study is basically a secondary analysis of 7 sets of data, gathered from previous studies of marital power. All of the data sets contain responses that will allow construction of uncontested and contested final say decision indices. In addition, some of the data sets contain information that will allow construction of saliency weighted decision indices and/or indices of final say power norms. In the next chapter these samples will be described in some detail. Also included in Chapter III is an outline of the external criterion variables which will be used to help establish the construct validity of the various final say decision measures of marital power.

The data will undergo a preliminary analysis in Chapter IV, where the mean scores of the FSD, WFSD and CFSD indices will be compared. This comparison will be followed by a comparison of the mean scores of husbands', wives' and
children's responses to each of the final say decision indices where these responses are available. However, the most important analyses in this study are those of Chapters V and VI.

Chapter V will consist of an examination of the internal consistency of the decision power indices, and of husbands', wives' and children's responses to them. First, the three different measures will be compared within each of the seven samples. This will be followed by a summary of general trends across the samples. Next, the relative reliabilities of husbands', wives', and children's responses, reflected in measures of internal consistency, will be compared within each of the four samples (VA, MC, VV, and TG) which contain responses to the final say decision measures from more than one family member. This section will also be followed by a summary of general trends.

Chapter VI examines the construct validity of the indices by focusing on the comparison of the various relationships of the decision power indices to each of several criterion variables (socio-demographic and family structural variables such as income, education, stage in family life cycle, etc.). First, comparisons will be made among the FSD, WFSD and CFSD indices with respect to the relationship of each to the criterion variables. These comparisons will be made across the seven samples in turn, followed by a summary of general trends. Next, the
relationship of husbands', wives' and children's responses to the criterion variable will be compared in turn across samples in those samples where this information is available. This section will also be followed by a summarization of trends observed among the different samples.

Lastly, Chapter VII summarizes the information presented in this study.
CHAPTER III

METHODOLOGY

This chapter describes the samples and procedures used to create the weighted and unweighted versions of measures of final say decision power. An overview is provided of the external criterion variables against which the final say measures are assessed. The techniques used in this study, primarily correlational analyses, will not be discussed, as information about these procedures is widely disseminated and available elsewhere.*1

POPULATION AND SAMPLE

Marital Conflict (MC) Study

The MC data sets consist of a non-representative sample of 78 couples, married and living together, gathered during 1975 in conjunction with a study of marital interaction. Initially, 75 couples were chosen at random from the phone directory of Dover, New Hampshire, a small city near the University of New Hampshire. These couples received letters informing them of the proposed research project and their participation was solicited during a telephone conversation a short time later. As an added incentive, each couple was offered $10.00 for their participation. Still, only 8 couples agreed to participate.

---

*1 Some excellent references which develop correlational analysis in some detail are Edwards (1976), Kerlinger and Pedhazur (1973) and Nunnally (1967).
At this point a second random sample of couples was selected from the town voting lists of Durham, New Hampshire, a small college town, and a revised approach was developed. Personal visits were made to each of the couples a day or two after an initial contact interview. At that time they were asked if they would be willing to participate in the study. Through this more personal approach 54 more couples were obtained, who were also offered $10.00 for their help.

The remaining 16 couples were referred by area marriage counselors and counseling agencies, who described the project to their clients. As an incentive, these client couples were advised that this experience might be helpful for them in dealing with their problems.

Each couple participated in a two hour session in a laboratory setting. The first part of the session was devoted to completing a questionnaire that was administered to each spouse separately, and spouses were told that their responses would not be shown to their partner. Additional information about the characteristics of this sample is provided by Fcss (1978).

**Violence In American Families (VA) Study**

The VA data set is a national probability sample interviewed by the Response Analysis Corporation of Princeton, New Jersey for a survey entitled "Physical Violence in American Families." Responses were obtained from 2143 of the 2500 couples who were randomly selected across
the United States. To qualify for the sample each couple was required to have one or more children from 3 to 17 years of age, and the spouse responding was required to be between 18 and 70 years of age. Furthermore, couples were not required to be legally married but only living together as couples.

In one half of the sample husbands or male partners were randomly chosen to be the respondents, and wives or female partners were randomly chosen in the other half. Each respondent was interviewed during a one-hour session by an interviewer of the same language or racial group which was characteristic of the particular sample region. Call-backs were made in case the respondent was not at home when first contacted. The final sample included responses from 960 males and 1183 females. More detailed information about the VA sample can be found in Straus, Gelles, and Steinmetz (1979).

Training Grant (TG) Study

The TG data set consists of a sample of 367 adults gathered during a six-month period in 1973 as a part of a project entitled "Families, Behavior Problems, and Community Agencies". The sample was composed of two parts: (1) a non-random sample of people contacted through community agencies and (2) a random sample of non-agency respondents taken from city directories in areas serviced by the community agencies.
The non-random part of the sample was comprised of clients who had voluntarily sought help from two community mental health clinics, a child and family service organization, or a Catholic social service agency. These clients were actively involved in the program of the particular agency, or had been involved in the preceding two years but were no longer considered open cases. All active or recently active clients were contacted by telephone and asked if they would be willing to participate in the study.

Individuals in the non-agency part of the sample were obtained through random selection of telephone numbers. The choice of husband or wife as respondent was determined by the toss of a coin. A letter was sent to individuals thus selected describing the study, followed by a phone call or a home visit to elicit support.

Data were gathered from all respondents in interviews lasting from one and a half to four hours, with 46 percent of the interviews taking place in the respondents' homes and 56 percent at a central interviewing site. Response rates for the random part of the sample were 48 percent, opposed to 72 percent for the non-random agency sample. This difference was attributed to the greater reluctance of the non-agency individuals to give private information versus those from the agency sample who had had experience in talking about personal matters to counselors. Further information about the TG sample is provided by Giles (1976).
Violence Class (VC) Study

The VC data set was gathered from students enrolled in introductory sociology and anthropology courses at the University of New Hampshire in 1972. Questionnaires were distributed to 583 students who completed them during a regular class session. Participation was on a voluntary basis. Approximately 92 percent of the questionnaires were completed. However, because the parameters of the sample required both parents of the student and the student to have been living at home during the student's last year in high school, the referent year for the study, the sample size was narrowed to 437 cases.

Because not all questions were answered the final sample size varies according to the number of students responding to a given variable. Additional information about the sample is provided in Allen and Straus (1979).

Simulated Crisis (SC) Study

The SC data set consists of 1552 adolescents in Minneapolis, Minnesota (SMF sample), and in Bombay, India (SIF sample). All the adolescents who completed the questionnaire about their parents' relationship were living with both parents (natural or step-parents) at home.

The Minneapolis portion of the sample consisted of 530 ninth grade students in two Minneapolis junior high schools, one located in an upper-middle class residential area and the other in one of the lowest income areas of the city. The Bombay portion consists of 1022 students who were
attending the equivalent of the seventh grade, the point at which free municipal education ends. These students consisted of all who were attending two schools in a middle class area and two schools from a working class area. Even though the two sub-samples are 2 grades apart, they differ in age by only one year.

Although the Bombay measure is not phenomenally identical to the measure used in Minneapolis, it is culturally equivalent. The Bombay measure was written in Marathi to insure standardization, and was independently translated by two native Marathi speaking assistants and back-translated by two others. It was revised again after pretesting it at a fifth Bombay school. More information about this cross-cultural sample is contained in Straus and Vasques (1978).

Violence Measure Validity (VV) Study

The VV data set was obtained in 1974 from students enrolled in two family sociology courses at the University of New Hampshire and both parents of each student. First, 105 students completed a questionnaire in class, returning it with the names and addresses of their parents. Each questionnaire was coded, and parallel questionnaires with the same code number as the student's questionnaire were mailed separately to the father and mother. Each questionnaire packet mailed contained a stamped return envelope. The parents were asked in a cover letter not to collaborate with their partner and to return them the
morning after the questionnaires had been completed. They were also informed that the questionnaires would remain anonymous.

Although 105 students completed the questionnaires, only 90 families were contacted ultimately, since one or both parents of several students were deceased. Of the 180 questionnaires sent to parents 121 were returned, resulting in a reduced sample of 55 families which had reports from all three family members.

**FINAL SAY DECISION MEASURES OF MARITAL POWER**

**Unweighted Final Say Decision Power (FSD)**

FSD was computed in the following manner: First, the various decision making items were standardized by transforming them to range from 0 to 100. The five categories of the transformed decision power items are 0, 25, 50, 75, and 100, corresponding to the item raw categories of 1, 2, 3, 4, and 5. These items were then averaged to create the FSD index score, which also ranges from 0 to 100. Items comprising this and the other power measures (discussed below), as well as the indices themselves, were standardized to the familiar range of 0 to 100 to insure uniformity among the various items and indices and to facilitate comparisons among measures.

The number of decision power items in each index varies according to the number of items in each data set. The VA data set contains 6 items, the VV and VC sets 8 items each,
the MC set 9 items, and the SC and TG data sets 10 and 11 decision power items respectively. These decision power items were also used to construct the two other power indices used in this study, the conflict weighted or contested final say decision index (CFSD) and the final say decision index weighted by importance (WFSD).

Contested Final Say Decision Power (CFSD)

A measure of marital conflict. The CFSD index was constructed by weighting the FSD items by the amount of conflict associated with each item. The conflict items for this index were computed by subtracting the FSD item score, reflecting who makes the decision in a particular area, from the score of the item reflecting who should make the decision in that area. In essence, conflict is taken as the difference between the power level occurring in a particular decision area and the preferred or normative power level for that area. The sign of the difference reflects the marital partner who is favored in decision making where there is conflict.

For example, a decision power item score of 5 and a power norm score of 1 would produce a difference of +4, indicating maximum conflict and an outcome favoring the husband. A power score of 3, indicating both marital partners have an equal say in making decision in a particular area, and a power norm score of 5, indicating that husband should make all the decisions, produces a difference of -2, indicating the outcome favors the wife. A
power score of 3 and a power norm score of 1, indicating wife should make all the decision, produces a difference of +2, indicating the decision favors the husband.

A property space technique used to create CFSD items. The values assigned to the CFSD items were obtained from a matrix of values created by a property space technique. The approach used to create the CFSD item property space matrix is essentially the same as that used by Morris (1976) to create an index of satisfaction with housing weighted by importance.

To develop the CFSD item property space matrix, values were assigned to all possible combinations of levels of decision making power and conflict. These values were estimated on the basis of simultaneous increases in the magnitude of the two variables. Possible values for the CFSD item matrix are portrayed in Table 3.1. The plus (+) and minus (-) signs indicate possible outcomes which favor the husband or wife, respectively.*2

2. Although technically a measure produced by the property space technique is in the strictest sense a two-dimensional ordinal measure, it forms a quasi-interval level linear scale when estimates are made about the differences in magnitudes of adjacent values. Some may argue that such a scale is inferior to a ratio scale produced through multiplicative item product weighting. Such arguments are weak, however, especially if the two items used to create the products are both quasi-interval variables themselves, as are the attitude and evaluative or judgmental variables used in sociological research. Even after very stringent conditions are met through cumbersome and time-consuming efforts to avoid the generation of false values, a distribution of product values of two quasi-interval variables may still portray the joint distribution of values of the two variables less accurately than the quasi-interval scale produced through the much simpler property space technique.
**TABLE 3.1**

Possible Values for CFSD Items

<table>
<thead>
<tr>
<th>Decision Item Score&lt;sup&gt;a&lt;/sup&gt;</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>±4</td>
<td>-10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>±3</td>
<td>-8</td>
<td>-4</td>
<td>X</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>±2</td>
<td>-6</td>
<td>-3</td>
<td>+2</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>±1</td>
<td>-4</td>
<td>+2</td>
<td>+1</td>
<td>+2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<sup>a</sup> 5 = Husband always, 3 = Both the same, 1 = Wife always

<sup>b</sup> Conflict score computed as the difference between decision norm item and decision item
The theoretical distribution of values in the CFSD item matrix is symmetrical. Husbands and wives have the same absolute values for equivalent conflict and power level combinations. Furthermore, this matrix also incorporates the direction of the conflict outcome. Positive CFSD item values indicate that the exercise of power in the face of conflict favors the husband for a particular decision area, and negative values indicate that the outcome favors the wife.

**The CFSD index.** After the values were assigned to the CFSD items, these items were standardized to range from 0 to 100. Their average value was taken as the CFSD index score. The CFSD index is limited to data sets in which information is available about whether the decision power outcome favors husband or wife when conflict is present. This information is available in the VA, VV, TG, and MC samples. The number of items in any CFSD index varies from 6 to 11, depending on the particular data set.

**Weighted Final Say Decision Power (WFSD)**

A measure of importance. Forty-five students from an introductory sociology class and a home economics family relations course were asked to rank by degree of importance the various decision areas included in the data sets. The average rank for each area served as the importance weight for the particular decision power item.
Creation of the WFSD items. Due to problems encountered in using item products as weights, discussed in Appendix A, a multiplicative index was not used. Instead, in a procedure analogous to that used with the CFSD index, the WFSD index was built upon a property space matrix consisting of the possible combinations of decision power levels and importance rankings.*3

The WFSD index. The WFSD index was computed by first standardizing the WFSD item scores to range from 0 to 100 and then taking the average of these items as the WFSD index score. A score in which all power items indicated equal say would be 50, and scores in which the husband or the wife had all the say would be 100 and 0, respectively. Information is available in all data sets for the computation of the WFSD index.

In addition, in the TG sample, information is provided that can be used to compare with the importance rankings determined by outside observers. Although not available in the other data sets, in the TG set respondents provided importance rankings for each decision power item. These rankings are used to form an item property space matrix to serve as the basis for an "insiders" WFSD index, reflecting the importance rankings of the husbands and wives and the

3. WFSD items in which decision power item raw scores were 3, indicating that husband and wife have an equal say in having the final say in that decision, were assigned a weight of 0, regardless of the importance rankings of the decision areas. In instances of equal say the decision outcome favors both spouses equally, and thus neither spouse is credited with having more power than the other.
few children in the TG sample, which is compared to the "outsiders" WFSD index where decision power items were ranked by a separate sample of individuals apart from the data sets.

EXTERNAL CRITERION VARIABLES

Socio-Demographic Variables

Occupational prestige. This variable is comprised of a ranking by status of the various occupations reported in the data sets. In the TG sample the Duncan's Socio-Economic Index was used, in the MC sample the Hollingshead Two Factor of Social Position was used, in the VA sample the Tremain Socio-Economic Index was used, and in the VC, VV, SMF and SIF samples the U.S. Census Socioeconomic Status Scores were dichotomized into blue and white collar occupational classes. The occupation reported in the data sets a status ranking according to Duncan's Socio-Economic Index (SEI) scores for occupations (Reiss, Duncan, Hatt and North, 1961; Miller, 1977).

Relative occupational prestige. This variable is formed by computing husband's occupational prestige as a percentage of the combined total of husband's and wife's scores for occupational prestige.

Income. This variable is computed by collapsing the reported incomes of the husband or wife into categories. The number of categories varies from six to fourteen, depending on the particular data set.
Relative income. This variable is formed by computing the husband's income as a percentage of the combined total of the husband's and wife's incomes.

Education. Depending on the particular data set, seven to nine categories have been assigned to represent various levels of education in a hierarchical order. These levels vary from low, indicated by the completion of some grade school, to high, indicated by the completion of college and some graduate education culminating in a graduate degree.

Relative education. This variable is formed by computing husband's education as a percentage of the total combined education of husband and wife.

Wife's employment status. This variable is simply a dichotomy of employed wives and wives who are not employed. The latter category includes wives who are or are not seeking work. This variable is not available in every data set.

Family Structural Variables

Age. This variable is computed as reported for husbands and wives.

Relative Age. This variable is computed by adding the age of the wife and the husband and then taking the husband's age as a percent of the total as the score.

Number of children. This variable is computed as reported.
**Stage of family life cycle.** This variable contains seven categories, as follows: 1=No children, married less than seven years, 2=Oldest child under six years of age, 3=Oldest child from six to twelve, 4=Oldest child from thirteen to twenty, 5=Oldest child left home, or over twenty at home, 6=All children launched, and 7=Husband retired. One of the limitations of the family life cycle paradigm is that it does not account for couples married longer than 7 years with no children; these are not included in analyses involving this variable.

**Age of youngest child.** This variable is computed as reported. It serves as an alternative indicator of the development of a given marital relationships, versus the family life cycle variable.

**Marital satisfaction.** Although not a family structural variable in the strictest sense, marital satisfaction is closely intertwined with the family structure and process. This variable is computed by assigning levels of satisfaction into approximately seven categories (with some variation in number of categories across data sets). Typical categories are 1=Very unhappy, 2=Unhappy, 3=A little unhappier than average, 4=Just about average in happiness, 5=A little happier than average, 6=Very happy, 7=Extremely happy.
Several data sets containing information about the relative balance of power among marital couples along with information about socio-demographic and family structure characteristics serve as the data base for this study. Two of the data sets, VC and SC, contain reports from children about their parents' relationships. Three others, the MC, VA, and TG samples, contain information from husbands and wives about their own relationships. The final data set, the VV sample, contains reports from a child and both parents about the parents' relationships.

Three measures of marital power were computed. The first, the Final Say Decision Index (FSD), is created by standardizing decision power items to range from 0 to 100 and taking the FSD score as the average of the decision power item scores. The second measure, the Contested Final Say Decision Index (CFSD), is the average score of FSD items which have been weighted by conflict and standardized to range from 0 to 100. The third measure, the Weighted Final Say Decision Index (WFSD), takes as its value the average score of FSD items which have been weighted by another variable, importance, and standardized to range from 0 to 100 before entering into the WFSD score.

A series of socio-demographic and family structural variables, such as age, relative age, income, relative income, stage in the family life cycle, etc., were also described in this chapter. These variables are the external
criteria against which the relative validity of the various power measures will be assessed, as well as the relative validity of husbands', wives' and children's responses to these measures. The data are analyzed with interval level techniques, primarily correlational analyses. In Chapter IV a preliminary analysis of mean differences among the final say indices and the family members' responses to them are presented, followed in Chapters VI and VII by a presentation of the findings reflecting the relative levels of internal consistency and validity, respectively, of the indices and family members' responses.
CHAPTER IV

DIFFERENCES IN POWER SCORES BY TYPE OF INDEX AND RESPONDENT

In this chapter three variations of the final say decision measure will be compared through examination of mean scores, with additional comparisons also to be made among husbands', wives' and children's responses. By way of review, FSD is the acronym given the unweighted version of the final say measure, WFSD the version in which each item in the index is weighted by its relative importance, and CFSD the version of the final say measure in which each item is weighted by the amount of disagreement associated with its referent decision.*1

FSD, WFSD, AND CFSD DECISION POWER MEASURES: COMPARISONS OF MEAN SCORES

One of the major criticisms of Blood and Wolfe's final say decision power measure (1960) is that it is insensitive to the differences in the saliency of marital decision areas. All items are assumed to contribute equally to the total index score, which may or may not be the case (Cromwell and Olson, 1975). Some have suggested that decision items be weighted by their importance (Safilios-Rothschild, 1970, 1976) or by degree of conflict (Bahr, Bowerman, and Gecas, 1974).

1. Each index is standardized to range from 0 to 100, with 0 indicating maximum wife power, 100 maximum husband power, and 50 equal power between spouses.
Comparisons in the following sections will be made among mean scores and dispersion patterns of the FSD, WFSD, and CFSD indices. Although a more thorough test of these indices awaits the comparison of internal consistency and relative validity in Chapters V and VI, a preliminary idea of their differences and similarities can be obtained through comparisons of means and score distribution patterns.

**FSD Index**

*Stability of FSD means.* Data for the computation of the FSD index was available in all seven samples used in this study. In Table 4.1, it is apparent that there is about 7-8 points variation in the mean of the FSD index across the samples. Among five of the samples there is no more than 1 or 2 points difference. This low level of variation among mean scores could be taken as an indication of the relative stability of this measure across different sample populations, a finding that has been reported previously (Cromwell and Klein, 1975).

*FSD means favor husbands' power.* The consistency of the mean scores also highlights another aspect of the FSD index. With the exception of the MC sample, the means of the FSD index tip the balance of marital power slightly in favor of husbands. The low score of the MC sample, indicating that in this sample wives have slightly more power than husbands, may reflect the more liberal nature of a sample drawn from a university community.
### TABLE 4.1

**FSD, WFSD and CFSD Indices - Descriptive Statistics by Sample**

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max. Score</th>
<th>Min. Score</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. FSD INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>53.20</td>
<td>17.03</td>
<td>-.168</td>
<td>1.380</td>
<td>100</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>SMF</td>
<td>51.83</td>
<td>11.01</td>
<td>.502</td>
<td>1.971</td>
<td>100</td>
<td>10</td>
<td>528</td>
</tr>
<tr>
<td>SIF</td>
<td>55.77</td>
<td>18.20</td>
<td>.068</td>
<td>.675</td>
<td>100</td>
<td>0</td>
<td>1022</td>
</tr>
<tr>
<td>VA</td>
<td>53.45</td>
<td>11.28</td>
<td>.521</td>
<td>2.324</td>
<td>100</td>
<td>0</td>
<td>2099</td>
</tr>
<tr>
<td>MC</td>
<td>47.90</td>
<td>8.71</td>
<td>.194</td>
<td>1.042</td>
<td>75</td>
<td>22</td>
<td>153</td>
</tr>
<tr>
<td>VV</td>
<td>52.07</td>
<td>8.37</td>
<td>.070</td>
<td>.807</td>
<td>75</td>
<td>25</td>
<td>153</td>
</tr>
<tr>
<td>TG</td>
<td>52.47</td>
<td>12.70</td>
<td>.678</td>
<td>1.413</td>
<td>100</td>
<td>15</td>
<td>241</td>
</tr>
<tr>
<td>B. WFSD INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>51.68</td>
<td>18.03</td>
<td>-.092</td>
<td>.831</td>
<td>100</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>SMF</td>
<td>49.16</td>
<td>12.37</td>
<td>.497</td>
<td>1.893</td>
<td>100</td>
<td>4</td>
<td>528</td>
</tr>
<tr>
<td>VA</td>
<td>53.19</td>
<td>11.19</td>
<td>.502</td>
<td>2.431</td>
<td>100</td>
<td>0</td>
<td>2099</td>
</tr>
<tr>
<td>MC</td>
<td>46.76</td>
<td>9.32</td>
<td>.514</td>
<td>1.081</td>
<td>75</td>
<td>22</td>
<td>153</td>
</tr>
<tr>
<td>VV</td>
<td>51.04</td>
<td>9.64</td>
<td>.119</td>
<td>.353</td>
<td>81</td>
<td>27</td>
<td>153</td>
</tr>
<tr>
<td>TG</td>
<td>53.10</td>
<td>13.22</td>
<td>.769</td>
<td>1.301</td>
<td>100</td>
<td>17</td>
<td>241</td>
</tr>
<tr>
<td>C. CFSD INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>51.28</td>
<td>4.51</td>
<td>.852</td>
<td>7.830</td>
<td>84</td>
<td>26</td>
<td>2063</td>
</tr>
<tr>
<td>MC</td>
<td>49.55</td>
<td>4.45</td>
<td>.620</td>
<td>2.178</td>
<td>67</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td>VV</td>
<td>51.03</td>
<td>4.15</td>
<td>.002</td>
<td>.741</td>
<td>64</td>
<td>41</td>
<td>102</td>
</tr>
</tbody>
</table>

**a.** Data did not allow computation of the WFSD Index for the SIF sample

**b.** Data did not allow computation of the CFSD Index for the VC, SIF, SMF and TG sample
Some studies have suggested that higher levels of education are associated with more liberal attitudes about the exercise of marital power (Cowan, 1977; Rodman, 1967, 1972; Safilios-Rothschild, 1970). The MC sample is composed in large part of individuals who have completed college and hold prestigious occupations in or near a university in a small college town. This places the MC sample near the top end of the socio-economic continuum, which may explain why the mean power level in the MC sample is so low.*2

**WFSD Index**

WFSD means also quite stable. In every sample but the SIF sample data allowed computation of the WFSD index (See Table 4.1). As with the FSD index cross-sample comparisons, the 6-7 point spread in WFSD mean scores was well within one standard deviation of the mean WFSD score for any of the samples. Perhaps this low level of variation among mean WFSD scores is an indication that the WFSD measure is, like the FSD measure, also stable across samples.

**Better score distribution for WFSD index than FSD index.** There are some differences between the WFSD and FSD indices. The WFSD raw scores have a more widely dispersed and evenly distributed pattern than raw scores for the FSD index. This is evidenced by (1) the mean scores, which tend

---

*2 One third of the husbands in the MC sample had done some graduate work and over three quarters of the wives had had at least some college experience.
to be closer to the mid-point of the scale range, (2) slightly larger standard deviations, indicating greater amounts of variation, and (3) slightly wider ranges of scores.

Interestingly, every WFSD mean score, with the exception of mean scores in the TG sample, is lower than their FSD counterpart. Even in the TG sample a variant of the WFSD index, the WFSDR index, is also lower than the corresponding FSD index mean.*3 This reduction ranges from very slight, as in the VA sample, to about 3 points, as in the SMF sample. It has a tendency to take away the slight power edge given to husbands by the FSD index. It should be kept in mind, however, that these mean score differences are quite small. Whatever advantage they give to the WFSD index depends on whether the analyses to be presented in later chapters indicate that the WFSD index has a validity and reliability level that is equal or better than the validity and reliability level of the FSD index.

3. The WFSD index is the final say decision measure which is weighted by students' rankings of the importance of the different decision item areas. In the TG sample additional information is available which allows construction of a measure weighted by the importance assigned each decision area by the respondents themselves, and it is the respondent weighted measure that is assigned the acronymn of WFSDR. (See Chapter III.)
CFSD Index

CFSD means most stable of all. Data for the CFSD index is available only in the VA, MC and VV samples. (See Table 4.1). The most striking aspect of the CFSD index as it is viewed across samples is the large reduction in differences among the CFSD means relative to the variation in mean scores among the FSD and WFSD indices. The standard deviations for the CFSD indices across samples are nearly equal and from 2 to 3 times smaller than the standard deviations in their FSD and WFSD counterparts.

Extremely contracted distributions. Additional evidence of the contraction among the scores of the CFSD indices is indicated by the limited ranges of the CFSD scores. Also, kurtoses of the CFSD indices in the VA and MC sample are from 2 to 3 times larger than the kurtoses of their FSD and WFSD counterparts. The limited range and very high kurtosis of the CFSD index indicate that most of the scores for this instrument occur very near the mean value, and very, very few at the extremes.

Taken at face value, CFSD scores seem to indicate that the great majority of respondents view the actual balance of power in their marriages to be close to their expectations, as evidenced by the number of CFSD scores close to 50. Few see in their marriage even a moderate degree of conflict between their expectations and their observations of the power balance. Fewer still see this conflict existing in more than one or two decision areas at most.
Consequently, there is a high degree of homogeneity among scores on the CFSD index, when compared to scores on the FSD and WFSD measures. High and low scores on the CFSD index are much less differentiated than on the FSD or WFSD instruments, evidenced by the severely truncated range of the CFSD index.

CFSD index may be an insensitive measure of power. Unfortunately, the great degree of similarity among the scores of the CFSD index is a condition which could reduce the maximum possible correlations of this instrument with other variables, including external criterion variables. This is because the amount of variation is greatly reduced, a factor which tends to lower correlations regardless of the true nature of the relationship between two variables. It may be that correlations of the CFSD index with criterion variables will be lower than equivalent correlations with criterion variables of the FSD and WFSD indices, indices which have much greater amounts of variance. This possibility will be examined in Chapter VI where the validity of the final say measures is assessed.

Explanations for the Lack of Differentiation of the CFSD Index

Why should the CFSD index have such a truncated range and distribution pattern? Several factors could explain this: (1) the weights are not sensitive to differences in levels of disagreement, (2) in the marriages of the vast majority of couples there really is little conflict about
who should and who does make final decisions and (3) there exists very little variation in the power and normative items used to create the CFSD items.

**Weighting schema.** Problems with weighting seem a less likely explanation for the tight distribution of CFSD scores. The same schema was also used to create WFSD items, and the WFSD index has the greatest dispersion of all the indices. Even so, the conflict items could be underweighting the degree of disagreement. If conflict had been given a heavier weighting a more dispersed distribution might have been obtained. Nevertheless, such an expanded CFSD scale may still not reflect the interplay of disagreement and decision power any more accurately.

**Very little conflict in marriages?** As far as the second explanation is concerned, the fact that there is little disagreement between reports of observed and expected power balances is attested to in all three samples in which CFSD indices were computed. For instance, in the VA sample from 87 to 95 percent of the CFSD item scores fall between -2 and +2, with 67 to 73 percent of the CFSD item scores falling exactly on the mid-point of 0 in some cases!

Since the CFSD items range from -10 to +10, the scores on the CFSD items are indicating that couples are basically alike, and that most respondents report very little conflict between their expectations and observations of marital power. In fact, the great majority of respondents report no conflict whatsoever. But is this really true? Intuitively,
it would not seem that the power differences among respondents evident in the FSD and WFSD scores would disappear when conflict was introduced as a weighting factor. Why, then, is there so little variation in the CFSD items?

Lack of variation among norms about who should make final decisions. Perhaps the CFSD items are not doing a very good job of differentiating levels of marital power because of the indicators used to create conflict weighted power scores. The decision items themselves do not seem to be the source of the problem because as unweighted items their combination in the FSD index seems to have an adequate dispersion. Examination of the distribution of scores on the normative items about who should have the final say, however, reveals frequent instances where over 75 percent of the respondents' reports fall into a single category, "both partners should have equal say."

Apparently, the CFSD items are not doing a very good job of differentiating levels of marital power among respondents because of lack of variation in normative expectations. Another indicator used in combination with the decision power items, such as amount of satisfaction spouse has with partner's contribution or participation in a particular decision area, might produce a CFSD index in which there was much more variation.

4. In one instance 151 out of 152 respondents reported "both should have equal say". (the item about choice of vacation in the MC sample.)
**Comparisons among the FSD, WFSD, and CFSD Indices**

**Homogeneity within and heterogeneity across samples.** In Table 4.2 it appears that the mean scores of the different measures are more similar within each sample than are the means for the same measure across samples. The differences among samples could reflect the fact that different decision items were used in the different samples. However, noticeable mean differences exist among some samples in which almost identical sets of items are used (for instance, the MC and VV samples).

Another explanation for the differences could be that there is an underlying continuum along which the samples could be arrayed. Indirect evidence suggests that such a continuum exists.

**Education, Patriarchal Norms, and Marital Power.** As mentioned previously, education has been shown to be associated with more liberal attitudes about the distribution of marital power (Rodman, 1967, 1972). If this relationship between education and patriarchal norm adherence exists then it would be expected that as mean levels of education for groups of individuals increased, mean levels of husbands' power should decrease even though
TABLE 4.2

FSD, WFSD, and CFSD\(^a\) Indices - Descriptive Statistics for within samples for VA, MC, VV, TG, VC, and SMF samples

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Index</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max. Score</th>
<th>Min. Score</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD</td>
<td>53.45</td>
<td>11.28</td>
<td>.521</td>
<td>2.324</td>
<td>100</td>
<td>0</td>
<td>2099</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>53.19</td>
<td>11.19</td>
<td>.502</td>
<td>2.431</td>
<td>100</td>
<td>0</td>
<td>2099</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>51.28</td>
<td>4.51</td>
<td>.852</td>
<td>7.830</td>
<td>84</td>
<td>26</td>
<td>2063</td>
</tr>
<tr>
<td>VA</td>
<td>FSD</td>
<td>47.90</td>
<td>8.71</td>
<td>.194</td>
<td>1.042</td>
<td>75</td>
<td>22</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>46.76</td>
<td>9.32</td>
<td>.514</td>
<td>1.081</td>
<td>75</td>
<td>22</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>49.55</td>
<td>4.45</td>
<td>.620</td>
<td>2.178</td>
<td>67</td>
<td>39</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>FSD</td>
<td>52.07</td>
<td>8.37</td>
<td>-.070</td>
<td>.807</td>
<td>75</td>
<td>25</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>51.84</td>
<td>9.64</td>
<td>.119</td>
<td>.353</td>
<td>81</td>
<td>27</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>51.03</td>
<td>4.15</td>
<td>.002</td>
<td>.741</td>
<td>64</td>
<td>41</td>
<td>102</td>
</tr>
<tr>
<td>MC</td>
<td>FSD</td>
<td>52.47</td>
<td>12.70</td>
<td>.678</td>
<td>1.413</td>
<td>100</td>
<td>15</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>53.10</td>
<td>13.22</td>
<td>.769</td>
<td>1.301</td>
<td>100</td>
<td>17</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>WFSDR</td>
<td>51.66</td>
<td>9.12</td>
<td>.266</td>
<td>1.474</td>
<td>81</td>
<td>22</td>
<td>223</td>
</tr>
<tr>
<td>VV</td>
<td>FSD</td>
<td>52.20</td>
<td>17.03</td>
<td>-.168</td>
<td>1.380</td>
<td>100</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>51.68</td>
<td>18.03</td>
<td>-.092</td>
<td>.831</td>
<td>100</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>TG</td>
<td>FSD</td>
<td>51.83</td>
<td>11.01</td>
<td>.502</td>
<td>1.971</td>
<td>100</td>
<td>10</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>49.16</td>
<td>12.37</td>
<td>.497</td>
<td>1.893</td>
<td>100</td>
<td>4</td>
<td>528</td>
</tr>
<tr>
<td>VC</td>
<td>FSD</td>
<td>51.83</td>
<td>11.01</td>
<td>.502</td>
<td>1.971</td>
<td>100</td>
<td>10</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>49.16</td>
<td>12.37</td>
<td>.497</td>
<td>1.893</td>
<td>100</td>
<td>4</td>
<td>528</td>
</tr>
<tr>
<td>SMF</td>
<td>FSD</td>
<td>51.83</td>
<td>11.01</td>
<td>.502</td>
<td>1.971</td>
<td>100</td>
<td>10</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>49.16</td>
<td>12.37</td>
<td>.497</td>
<td>1.893</td>
<td>100</td>
<td>4</td>
<td>528</td>
</tr>
</tbody>
</table>

a. Data did not allow computation of CFSD Index for TG, VC and SMF samples

b. WFSDR Index available only for TG sample
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Husbands' Education</th>
<th>Wives' Education</th>
<th>FSD</th>
<th>WFSD</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>5.74</td>
<td>5.22</td>
<td>47.90</td>
<td>46.76</td>
<td>49.55</td>
</tr>
<tr>
<td>VV</td>
<td>5.31</td>
<td>4.96</td>
<td>52.07</td>
<td>51.84</td>
<td>51.03</td>
</tr>
<tr>
<td>AVC</td>
<td>5.12</td>
<td>4.86</td>
<td>53.20</td>
<td>51.68</td>
<td></td>
</tr>
<tr>
<td>SMF</td>
<td>4.94</td>
<td>4.73</td>
<td>51.83</td>
<td>49.16</td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>4.24</td>
<td>4.10</td>
<td>53.45</td>
<td>53.19</td>
<td>51.28</td>
</tr>
<tr>
<td>TG</td>
<td>3.96</td>
<td>4.00</td>
<td>52.47</td>
<td>53.10</td>
<td></td>
</tr>
<tr>
<td>SIF</td>
<td>3.07</td>
<td>1.89</td>
<td>55.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. CFSD Index not available

b. WFSD Index not available
within a given group the amount of education for respondents could still be positively related to their power.*5

In Table 4.3 the mean scores of the final say decision measures are arrayed along with the mean scores of husbands' and wives' levels of education, by sample. As mean education scores decrease mean power scores increase, suggesting the existence of a definite trend between the amount of education and marital power levels.

For the SMF and TG samples decision power scores seem to be incongruous, but these differences are not terribly out of line. The mean education levels for respondents in the VV, VC, and SMF samples are quite similar, and so are corresponding mean power scores. The discrepant TG scores may be due to the atypical nature of this sample. Approximately 40 percent of the TG sample is comprised of referrals from marriage and family counselors and community mental health clinics. If mean scores from just the control group, 3.96 and 4.00 for husbands' and wives' education

5. Each sample could represent larger strata in societies which vary in degree of adherence to patriarchal norms. By separating (1) between-sample difference from (2) associations within sample, the "ecological fallacy" of generalizing to groups from individual data, or the "atomistic fallacy" of generalizing to individuals from group data, can be avoided.
levels and 52.95 and 54.05 for the FSD and WFSD indices, respectively, are substituted for corresponding values of the TG sample in Table 4.3, an even more continuous pattern across education and power index means is obtained.

Summary

The FSD and WFSD indices are very similar in their overall distributions, with the distribution of the WFSD scores being slightly more evenly distributed and having a mean score closer to the center of the range. Although the CFSD index also has a mean close to the theoretical midpoint of 50, it possesses a detrimental quality not present in the FSD and WFSD indices. Scores for the CFSD index "stack up" on central values leading to a 5-fold reduction in variance. Unfortunately, this may lead to a reduction in the capability of the CFSD index to differentiate among extreme values, dropping the maximum possible correlation attainable with external criterion variables.

The FSD, WFSD, and CFSD indices have mean power scores that are more similar within samples than between samples, reflecting the interrelationships among these measures. The difference among the samples could be attributed to the degree to which members of the samples are more traditional or liberal in their adherence to patriarchal norms about marital power. Indirect evidence for this relationship is presented in Table 4.3, where the mean power scores for the various indices seem to decrease as education increase.
FINAL SAY DECISION INDICES: HUSBANDS', WIVES', AND CHILDREN'S RESPONSES

Although Blood and Wolfe (1960) rationalized that husbands' and wives' responses were in close enough agreement that only one spouse need respond to the final say decision index, other researchers have found spouses underestimating their own power and overestimating the power of their partner (Cromwell and Wieting, 1975; Olson and Cromwell, 1975; Quarm, 1977).

One explanation for this bias might be that husbands, sensitive to possible overtones of patriarchal dominance on their part in the light of the more modern American norm of "everybody's equal" tend to counterreact by underreporting what may be their actual level of marital power. Wives, equally sensitive to the possibility of husband dominance may overreport their partner's power. Another explanation might be that greater adherence to traditional or patriarchal norms may bias reports in the direction of husbands' power, and that higher wives' mean scores indicate that wives are slightly more traditional than husbands in their perceptions of the balance of marital power.

One solution to the problems engendered when spouses report on themselves is to use more objective observers, and children may fit this role well. They seem to be more accurate observers of their parents' power relationships than parents are of their own relationship (Bahr, Bowerman and Gecas, 1974; Thomas, Franks and Calenico, 1972; Thoma,
Gecas, Weigart, and Rooney, 1974). Perhaps children are less susceptible to the difficulty faced by their parents of separating normative expectations from observations of the everyday exercise of power (Larsen, 1974).

Although determining accuracy of the family members' reports is difficult without a criterion against which these comparisons can be weighed, at least some indication of the degree of similarity between husbands', wives', and children's responses on the power indices can be obtained by examining mean scores.

**HUSBANDS' AND WIVES' REPORTS**

**FSD Index**

_Husbands' mean scores_. Table 4.4 shows that there is about 7-8 points variation in husbands' FSD mean scores across samples. In three samples the means are only 1 or 2 points apart, well within one standard deviation from the husbands' mean FSD score for any of the samples. The low score of the husbands in the MC sample has been explained previously as possibly due to the more liberal nature of this sample with respect to marital decision norms. In essence, the basic pattern of the FSD index across samples for husbands seems to indicate the stability of this instrument. Interestingly, with the exception of the MC sample, husbands' mean FSD scores seem to indicate that husbands have slightly more power in their families.
TABLE 4.4

Husbands Reports of FSD, WFSD, and CFSD Indices: Descriptive Statistics

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max. Score</th>
<th>Min. Score</th>
<th>N</th>
</tr>
</thead>
</table>

**A. FSD INDEX**

| VA     | 52.67 | 10.88 | .608 | 3.063 | 100 | 0 | 937 |
| MC     | 45.90 | 8.09  | -.112 | .331 | 69 | 25 | 77 |
| VV     | 51.57 | 8.87  | -.028 | -.059 | 69 | 31 | 51 |
| TG     | 53.88 | 11.85 | .633 | .394 | 84 | 31 | 59 |

**B. WFSD INDEX**

| VA     | 52.15 | 10.97 | .484 | 3.112 | 100 | 0 | 937 |
| MC     | 44.75 | 8.47  | .335 | .600 | 72 | 26 | 77 |
| VV     | 51.18 | 10.23 | -.013 | .050 | 75 | 28 | 61 |
| TG     | 54.93 | 13.13 | .648 | .346 | 93 | 29 | 59 |

**C. CFSD INDEX a**

| VA     | 51.55 | 1.363 | 7.402 | 79 | 919 |
| MC     | 48.26 | 3.95  | 2.24  | 303 | 59 | 77 |
| VV     | 50.82 | 4.38  | -.037 | -.321 | 60 | 41 | 51 |

a. Data did not allow computation of the CFSD Index for the TG sample.
TABLE 4.5

Wives Reports of FSD, WFSD, and CFSD Indices: Descriptive Statistics

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max. Score</th>
<th>Min. Score</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. FSD INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>54.08</td>
<td>11.56</td>
<td>.448</td>
<td>1.882</td>
<td>100</td>
<td>0</td>
<td>1162</td>
</tr>
<tr>
<td>MC</td>
<td>49.93</td>
<td>8.88</td>
<td>.340</td>
<td>1.413</td>
<td>75</td>
<td>22</td>
<td>76</td>
</tr>
<tr>
<td>VV</td>
<td>52.82</td>
<td>7.38</td>
<td>.404</td>
<td>1.276</td>
<td>75</td>
<td>36</td>
<td>51</td>
</tr>
<tr>
<td>TG</td>
<td>52.45</td>
<td>13.07</td>
<td>.702</td>
<td>1.918</td>
<td>100</td>
<td>15</td>
<td>153</td>
</tr>
<tr>
<td>B. WFSD INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>54.03</td>
<td>11.30</td>
<td>.513</td>
<td>1.989</td>
<td>100</td>
<td>01</td>
<td>1162</td>
</tr>
<tr>
<td>MC</td>
<td>48.79</td>
<td>9.75</td>
<td>.529</td>
<td>1.269</td>
<td>75</td>
<td>22</td>
<td>76</td>
</tr>
<tr>
<td>VV</td>
<td>53.14</td>
<td>8.89</td>
<td>.566</td>
<td>.840</td>
<td>81</td>
<td>34</td>
<td>51</td>
</tr>
<tr>
<td>TG</td>
<td>52.80</td>
<td>13.51</td>
<td>.778</td>
<td>1.758</td>
<td>100</td>
<td>17</td>
<td>153</td>
</tr>
<tr>
<td>C. CFSD INDEX a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>51.06</td>
<td>4.55</td>
<td>.486</td>
<td>8.095</td>
<td>84</td>
<td>27</td>
<td>1144</td>
</tr>
<tr>
<td>MC</td>
<td>50.86</td>
<td>4.56</td>
<td>1.103</td>
<td>2.442</td>
<td>67</td>
<td>40</td>
<td>76</td>
</tr>
<tr>
<td>VV</td>
<td>51.24</td>
<td>3.93</td>
<td>.094</td>
<td>2.489</td>
<td>64</td>
<td>41</td>
<td>51</td>
</tr>
</tbody>
</table>

a. Data did not allow computation of the CFSD Index for the TG sample.
Wives' mean scores. The mean scores for wives' reports of the FSD index are reported in Table 4.5. Once again the first aspect noticed about the FSD mean scores across samples is their stability. In fact, wives' FSD means across samples are even more similar than are husbands' FSD means. Only about 4 points difference exists among wives' FSD means and among three samples the difference is only about 1 point. As was the case with husbands' mean FSD scores, wives' mean FSD scores also indicate husbands have relatively more power than wives in their marriages.

The dispersion patterns of husbands' and wives' FSD scores. The difference between samples in mean scores based on data provided by the wives follows the same pattern as the differences based on reports by husbands. There are a few subtle differences, however. The patterns of skewness and kurtosis are much more stable in the wives' reports than in the husbands', indicating that wives may vary less across samples in their scores on the FSD index than husbands. Also, ranges for husbands have a slight tendency to be more truncated than for wives. This greater variation on the part of husbands may simply be a reflection of the smaller number of husbands responding, relative to the number of wives.

FSD mean scores higher for wives than for husbands. The most obvious difference between husbands' and wives' responses on the FSD index is the difference between the respondents' mean FSD scores themselves, with mean FSD
scores being higher for wives than for husbands. This difference ranges from about 1 to 4 points, with only the TG sample showing husbands' scores higher than wives.

With the exception of the TG sample, the finding that mean scores for the FSD index are higher for wives than for husbands confirms patterns found in other studies. There, the discrepancy has been taken as evidence of husbands under-reporting and wives over-reporting the level of husbands' marital power (Cromwell and Olson, 1975; Douglas and Wind, 1978; Quarm, 1977).

The question of whether husbands' FSD scores are biased, or wives', or both, is not as important, however, as whether this sex bias differentially effects the reliability and validity of husbands' and wives' reports on the FSD instrument. A constant bias leading only to mean differences can be adjusted for and will not affect associations among variables in the samples. On the other hand, a husband-wife bias which leads to differential relations with other variables may not be so easily discounted. The differences between husbands' and wives' reports will be pursued further in the next two chapters.

Comparison of the WFSD Index with the FSD Index

Husbands' scores. For husbands, with the exception of the TG sample, WFSD means are lower than FSD means. As was noted previously in the context of the total samples, the WFSD mean scores for husbands' reports as well take away the slight edge of marital power given males by the FSD scores.
However, when viewed across samples, mean WFSD scores vary about the same amount as FSD scores.

With respect to patterns of dispersion, standard deviations are slightly larger and ranges wider for WFSD means. This indicates that a slightly greater dispersion exists for husbands' WFSD scores than for husbands' FSD scores. Overall, however, differences in husbands' FSD and WFSD dispersion patterns are not large. In sum, on the basis of mean scores and distribution patterns, the FSD and WFSD indices are interchangeable for husbands. However, this will be true only if validity and reliability of the two instruments are equivalent as well.

Wives' scores. What has been stated about the FSD and WFSD indices for husbands in the previous section holds for the FSD and WFSD reports of wives as well. Viewed across samples, about the same amount of variation exists among wives' mean WFSD scores as among wives' mean FSD scores. Standard deviations for wives' WFSD means are about the same as or slightly larger than wives' FSD counterparts. Ranges of scores are also about the same for wives' FSD and WFSD scores, although kurtoses for wives' WFSD means show a little more variation than kurtoses for wives' FSD means. Skewness is more consistent with wives' WFSD means than with wives' FSD means, indicating that for wives the WFSD measure is even more stable than the FSD measure. Again, only if reliability and validity data indicate that the WFSD measure is equal to or an improvement over the FSD index for wives.
will the relatively greater stability become an added asset of the WFSD index.

Although patterns of dispersion for wives' FSD and WFSD scores are quite consistent, the pattern of mean scores across samples for the FSD and WFSD indices for wives is mixed. In one sample (TG) the WFSD mean score is higher, in two others it is slightly lower (MC and VV) and in the remaining sample it is about the same (VA). Essentially, wives' mean scores for the FSD and WFSD index are very similar, scores from each index giving husbands relatively more power than wives in the marital relationship.

Husbands' and wives' scores. The similarity between wives' FSD and WFSD scores is accentuated when contrasted with the comparison between husbands' FSD and WFSD scores. There is more mean score variation within husbands' reports than within wives' reports, both across samples within indices and between indices within samples (See Tables 4.6 and 4.7).

The most notable finding for the spouses is that the mean scores of the WFSD and FSD indices are so stable across samples. In sum, even though there appears to exist a systematic sex bias, husbands and wives seem to have the same basic response patterns for the FSD and WFSD indices.
TABLE 4.6

Husbands Reports of FSD, WFSD, and CFSD Indices - Descriptive Statistics within samples for VA, MC, and VV samples

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Index</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max. Score</th>
<th>Min. Score</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>FSD</td>
<td>52.67</td>
<td>10.88</td>
<td>.608</td>
<td>3.063</td>
<td>100</td>
<td>0</td>
<td>937</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>52.15</td>
<td>10.97</td>
<td>.484</td>
<td>3.112</td>
<td>100</td>
<td>0</td>
<td>937</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>51.15</td>
<td>4.44</td>
<td>1.363</td>
<td>7.402</td>
<td>79</td>
<td>26</td>
<td>919</td>
</tr>
<tr>
<td>MC</td>
<td>FSD</td>
<td>45.90</td>
<td>8.09</td>
<td>-.112</td>
<td>.331</td>
<td>69</td>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>44.75</td>
<td>8.47</td>
<td>.335</td>
<td>.600</td>
<td>72</td>
<td>26</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>48.26</td>
<td>3.95</td>
<td>-.224</td>
<td>.303</td>
<td>59</td>
<td>39</td>
<td>77</td>
</tr>
<tr>
<td>VV</td>
<td>FSD</td>
<td>51.57</td>
<td>8.87</td>
<td>-.028</td>
<td>-.059</td>
<td>69</td>
<td>31</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>51.18</td>
<td>10.23</td>
<td>-.013</td>
<td>.050</td>
<td>75</td>
<td>28</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>50.82</td>
<td>4.38</td>
<td>-.037</td>
<td>-.321</td>
<td>60</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>aTG</td>
<td>FSD</td>
<td>53.88</td>
<td>11.85</td>
<td>.633</td>
<td>.394</td>
<td>84</td>
<td>31</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>WFSDS</td>
<td>54.93</td>
<td>13.13</td>
<td>.648</td>
<td>.346</td>
<td>93</td>
<td>29</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>WFSDR</td>
<td>55.04</td>
<td>8.28</td>
<td>.770</td>
<td>1.359</td>
<td>81</td>
<td>37</td>
<td>57</td>
</tr>
</tbody>
</table>

a. WFSDR samples available only in TG sample
b. WFSDR Index available only for TG sample
TABLE 4.7
Wives Reports of FSD, WFSD and CFSD Indices - Descriptive Statistics within samples for VA, MC, and VV samples

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>INDEX</th>
<th>MEAN</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max. Score</th>
<th>Min. Score</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>FSD</td>
<td>54.08</td>
<td>11.56</td>
<td>.448</td>
<td>1.882</td>
<td>100</td>
<td>0</td>
<td>1162</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>54.03</td>
<td>11.30</td>
<td>.513</td>
<td>1.989</td>
<td>100</td>
<td>0</td>
<td>1162</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>51.06</td>
<td>4.55</td>
<td>.486</td>
<td>8.095</td>
<td>84</td>
<td>27</td>
<td>1144</td>
</tr>
<tr>
<td>MC</td>
<td>FSD</td>
<td>49.93</td>
<td>8.88</td>
<td>.340</td>
<td>1.413</td>
<td>75</td>
<td>22</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>48.79</td>
<td>9.75</td>
<td>.529</td>
<td>1.269</td>
<td>75</td>
<td>22</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>50.86</td>
<td>4.56</td>
<td>1.103</td>
<td>2.442</td>
<td>76</td>
<td>40</td>
<td>76</td>
</tr>
<tr>
<td>VV</td>
<td>FSD</td>
<td>52.82</td>
<td>7.38</td>
<td>.404</td>
<td>1.276</td>
<td>75</td>
<td>36</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>53.14</td>
<td>8.89</td>
<td>.566</td>
<td>.840</td>
<td>81</td>
<td>34</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>CFSD</td>
<td>51.24</td>
<td>3.93</td>
<td>.094</td>
<td>2.489</td>
<td>64</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>aTG</td>
<td>FSD</td>
<td>52.45</td>
<td>13.07</td>
<td>.702</td>
<td>1.918</td>
<td>100</td>
<td>15</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>52.80</td>
<td>13.51</td>
<td>.778</td>
<td>1.750</td>
<td>100</td>
<td>17</td>
<td>153</td>
</tr>
</tbody>
</table>

a. Data does not allow computation of CFSD Index for TG sample
A Comparison of the CFSD Index With the FSD and WFSD Indices

Husbands' reports. Husbands' mean CFSD scores are very similar across the three samples for which CFSD indices are available (See Table 4.4). The same pattern of CFSD scores exist for husbands as exists for the complete samples. Standard deviations for husbands are greatly reduced, and the kurtosis of the largest sample (VA) is very high. Ranges of husbands' scores for the CFSD index are also severely truncated. It appears that husbands' reports of the CFSD index might have very low differentiating power, as the scores are very homogeneous.

The homogeneity and contracted distribution of scores of the CFSD index seems to reflect the very low degree of variation in the normative expectations in each of the decision areas. This lack of variation indirectly contributes to the finding that the great majority of respondents, husbands in this case, report very little disagreement between expectations and observations of marital power levels in their relationships.

Wives' reports. Wives' mean scores for the CFSD index (See Table 4.5) show the least amount of variation of any of the across-sample or across-index comparisons made in this chapter. Standard deviations for wives' CFSD reports are from 2 to 3 times smaller than their counterparts in the WFSD and FSD indices. Ranges for wives' CFSD scores are also greatly truncated, and in the VA sample the kurtosis is over twice as large as kurtoses for the FSD and WFSD indices.
Husbands' and wives' reports. The pattern of the reduced variability of the CFSD scores versus the variability of the FSD and WFSD scores for wives has been seen with husbands' CFSD scores previously. It was suggested for husbands that the massive grouping of CFSD scores so close to the mean was a reflection of the degree to which husbands hold to similar norms concerning which spouse should have the final say, with these norms reflecting an "equal say" perspective. This "equal say" norm pattern seems to hold for wives as well.

As a final note, wives' CFSD scores are slightly higher than husbands' CFSD mean scores, with the exception of the VA sample. It appears that the husband-wife response bias is fairly consistent across all the final say decision indices in this study, even though with the CFSD index this difference is greatly reduced.

Husbands and Wives: General Patterns Among the Decision Indices

Mean score differences between husbands and wives. The most noticeable trend among the FSD, WFSD and CFSD indices across samples is that even though the mean levels of the indices varies from sample to sample, in almost every instance wives' mean scores are higher than mean scores of husbands. Why might this be so?

Education, traditional norms and mean power scores. Previously, it was suggested for the combined respondents that mean scores across samples varied according to the
degree to which patriarchal norms were adhered to. With education as an indirect measure of the degree to which marital relationships are liberal or traditional, a definite trend was found in the predicted direction, with mean power scores decreasing across samples as mean educational levels increased (See Table 4.3).

In Tables 4.8 and 4.9 mean educational levels and mean power scores are arrayed across samples for husbands and wives.*6 There is a very consistent tendency for power means to increase as mean education levels decrease. This is evident for both husbands and wives, with the exception of the anomalous power scores for husbands in the TG sample.

Interestingly, in every sample wives’ mean education level is lower than husbands’ mean education level. Could it be that the explanation for higher mean power scores for wives than for husbands is related to the fact that wives’ mean education levels tend to be lower than education levels of their spouses? If indeed education is closely related to the degree of adherence to traditional norms about marital power, it may be that the reason wives’ mean power scores are higher than husbands’ is because wives tend to be slightly more traditional. Further research is needed to test out this line of thinking.

6. TG sample means are from control group.
### TABLE 4.8

Mean Scores of Husbands' FSD, WFSD and CFSD Indices
Ranked by Mean Education Levels

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>EDUCATION</th>
<th>FSD</th>
<th>WFSD</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>5.74</td>
<td>45.90</td>
<td>44.75</td>
<td>48.26</td>
</tr>
<tr>
<td>VV</td>
<td>5.31</td>
<td>51.57</td>
<td>51.18</td>
<td>50.82</td>
</tr>
<tr>
<td>a,b,TG</td>
<td>4.35</td>
<td>54.00</td>
<td>55.72</td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>4.24</td>
<td>52.67</td>
<td>52.15</td>
<td>51.15</td>
</tr>
</tbody>
</table>

- **a.** Mean scores from control group of TG sample
- **b.** Data did not allow computation of CFSD index for TG sample
### TABLE 4.9

Mean Scores of Wives' FSD, WFSD, and CFSD Indices Ranked by Mean Educational Levels

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>EDUCATION</th>
<th>FSD</th>
<th>WFSD</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>5.22</td>
<td>49.93</td>
<td>48.79</td>
<td>50.86</td>
</tr>
<tr>
<td>VV</td>
<td>4.96</td>
<td>52.82</td>
<td>53.14</td>
<td>51.24</td>
</tr>
<tr>
<td>(a,b)TG</td>
<td>4.12</td>
<td>52.72</td>
<td>53.28</td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>4.10</td>
<td>54.08</td>
<td>54.02</td>
<td>51.06</td>
</tr>
</tbody>
</table>

**a.** Mean scores from control group of TG sample  
**b.** Data did not allow computation of CFSD index for TG sample
Summary.

Stability of indices for husbands and wives. Husbands' and wives' mean scores for the FSD and WFSD index seem to be very stable across samples. They indicate as well that the two indices are very similar, both for husbands as well as for wives. Also, the WFSD index appears to have a slightly greater range and a bit more dispersion, though this tendency is little more pronounced with the husbands' reports.

The CFSD index is the most stable of the power indices. However, the stability may be an artifact of inadequate data in that it reflects the great degree of homogeneity among the CFSD scores. This homogeneity may decrease the power of the CFSD instrument to differentiate levels of marital power, thus hampering its usefulness.

Education, patriarchal norms, and decision power. Another trend that seems to hold for wives as well as husbands is the relationship between adherence to traditional norms and mean levels of power. Taking educational levels as an indirect indicator of the degree to which patriarchal norms may be lingering in marital relationships, the pattern across the samples indicates that for wives, as for husbands, the more traditional the sample the higher the mean power levels. That is, the more traditional the sample make-up, the more husbands are favored in the marital power balance.
The relationship among mean education level, traditional norms about marital power and reports of who has the final say may explain some of the differences between husbands' and wives' mean scores. While wives' mean power scores tend to be from 1 to 4 point higher than the corresponding mean power scores for husbands, wives' mean education levels tend to be lower than husbands' mean education levels. This could be an indication that wives tend to be more traditional than husbands. The anomaly is in the TG sample, where the difference is in the opposite direction, with husbands reporting slightly more power than wives.

Mean differences less important than relative validity and internal consistency. It is important to remember in conclusion, however, that the major question about husbands' and wives' reports is whether differences between corresponding mean scores for the FSD, WFSD or CFSD indices affects the reliability or validity of these instruments. A husband-wife bias would create no problems if it were constant, but would definitely be an obstacle if it had a different effect for each respondents' scores. These issues will be examined more closely in following chapters by comparison of the relative internal consistency and construct validity of the two spouses' responses.
CHILDREN'S REPORTS

Respondents who reported on their parents' relationships were not children as children are usually pictured. The youngest group of children was in junior high school (SMF and SIF samples). In two other samples these children were college students (VC and VV samples) and in the final sample they were married or previously married with families of their own (TG sample).

Children of the TG sample form a very atypical and unusual group. Only 18 individuals in this sample elected to respond on their parents' marital relationships rather than their own, and of these, 15 were part of the agency referred sample. One of the main reasons an individual would choose to respond for their parents in the TG sample would stem from the fact of the respondent's divorce, but other reasons could exist as well. In any event, the representativeness of the children's responses in the TG sample is very dubious. Nevertheless, they are included in this chapter for comparative purposes.

FSD Index

FSD index means stable for children. Although there is some variation among children's reports of FSD mean scores across samples, the range of variation is well within one standard deviation of any one of the samples. (See Table 4.10). Thus, as observed with husbands' and wives' FSD scores, children's mean FSD scores seem to indicate that the FSD index is fairly stable across samples.
### TABLE 4.10

Children's Reports of FSD and WFSD Indices: Descriptive Statistics

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max. Range</th>
<th>Min. Range</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A. FSD INDEX</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>53.20</td>
<td>17.03</td>
<td>-.168</td>
<td>1.380</td>
<td>100</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>SMF</td>
<td>51.83</td>
<td>11.01</td>
<td>.502</td>
<td>1.971</td>
<td>100</td>
<td>10</td>
<td>528</td>
</tr>
<tr>
<td>SIF</td>
<td>55.77</td>
<td>18.20</td>
<td>-.068</td>
<td>.675</td>
<td>100</td>
<td>0</td>
<td>1022</td>
</tr>
<tr>
<td>VV</td>
<td>51.62</td>
<td>8.88</td>
<td>-.307</td>
<td>1.430</td>
<td>72</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td>TG</td>
<td>49.39</td>
<td>12.91</td>
<td>1.001</td>
<td>1.493</td>
<td>84</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td><strong>B. WFSD INDEX</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC</td>
<td>51.68</td>
<td>18.03</td>
<td>-.092</td>
<td>.831</td>
<td>100</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>SMF</td>
<td>49.16</td>
<td>12.37</td>
<td>.497</td>
<td>1.893</td>
<td>100</td>
<td>4</td>
<td>528</td>
</tr>
<tr>
<td>VV</td>
<td>51.22</td>
<td>9.79</td>
<td>.033</td>
<td>.355</td>
<td>72</td>
<td>27</td>
<td>51</td>
</tr>
<tr>
<td>TG</td>
<td>50.11</td>
<td>12.96</td>
<td>1.245</td>
<td>1.579</td>
<td>85</td>
<td>35</td>
<td>18</td>
</tr>
</tbody>
</table>

*Data did not allow computation of WFSD Index from SIF sample*
**FSD index dispersion patterns.** Basically, the pattern of dispersion of the FSD index based on children's reports is very similar to those patterns found for husbands and wives, although the distributions of husbands' FSD scores tend to be flatter (See Tables 4.4, 4.5 and 4.10). The children's data is also similar to that of the husbands' and wives' in ranges of the FSD scores. The range seems to vary according to sample size, which was true of the ranges of the FSD scores for husbands and wives.

**WFSD Index**

**WFSD index means also stable across children's samples.** Although there is some variation across children's mean WFSD scores, these mean scores are well within one standard deviation of the mean of any of the samples, as was the case with children's FSD mean scores. (See Table 4.10). Interestingly, there is less variation for children among WFSD mean scores than among FSD mean scores, a pattern not obtained with husbands' and wives' responses. In fact, the variation among children's WFSD means is the least for any of the respondents for either the FSD or WFSD indices.

**WFSD score distribution patterns.** When the distribution of the WFSD scores is compared to the distribution of FSD scores for children, similar patterns as those of the FSD and WFSD comparisons for husbands and wives emerge. The ranges are about the same although standard deviations for the WFSD index are slightly larger. The WFSD means for children fall closer to the mid-point of the index
range than do corresponding FSD means, closer than FSD or WFSD means for any of the respondents in this study.

Comparisons Among Husbands', Wives', and Children's Responses

It is apparent from Table 4.11 that mean values for children's FSD and WFSD scores are about as similar within samples as across samples. Also, variation of children's mean decision power scores across samples is similar to variation of the mean power scores of husbands and wives. Interestingly, children's mean FSD and WFSD scores tend to fall in between scores of husbands and wives.

Objectivity of children unconfirmed. Although one explanation for the finding that children's mean scores seem to fall between scores of husbands and wives is that children's reports are more objective, this inference is very risky. By and large children's samples are from different sub-populations than husbands' and wives' samples. Only in the VV sample is there a control for the possible contaminating factor of sample variation, for husband, wife and child reports are taken from the same family. In the VV sample children's mean FSD scores do fall in between the FSD means of their parents, but children's WFSD mean scores fall outside the WFSD means of their parents. Thus the explanation that children are more objective than their parents remains unconfirmed, at least when tested with mean decision power scores.
### TABLE 4.11

Children's Reports of FSD and WFSD Indices: Descriptive Statistics within samples for VC, SMF, VV, and TG samples

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Index</th>
<th>Mean</th>
<th>S.D.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Max. Score</th>
<th>Min. Score</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>FSD</td>
<td>53.20</td>
<td>17.03</td>
<td>-0.168</td>
<td>1.380</td>
<td>100</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>51.68</td>
<td>18.03</td>
<td>-0.092</td>
<td>0.831</td>
<td>100</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FSD 11.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.307</td>
<td>1.430</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.099</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.396</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.506</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMF</td>
<td>FSD</td>
<td>51.83</td>
<td>11.01</td>
<td>0.502</td>
<td>1.971</td>
<td>100</td>
<td>0.10</td>
<td>528</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>49.16</td>
<td>12.37</td>
<td>0.497</td>
<td>1.893</td>
<td>100</td>
<td>4</td>
<td>528</td>
</tr>
<tr>
<td>VV</td>
<td>FSD</td>
<td>51.82</td>
<td>8.88</td>
<td>-0.307</td>
<td>1.430</td>
<td>72</td>
<td>25</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>51.22</td>
<td>9.79</td>
<td>0.033</td>
<td>0.355</td>
<td>72</td>
<td>27</td>
<td>51</td>
</tr>
<tr>
<td>TG a</td>
<td>FSD</td>
<td>49.39</td>
<td>12.91</td>
<td>1.001</td>
<td>1.493</td>
<td>84</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>WFSD</td>
<td>50.11</td>
<td>12.96</td>
<td>1.245</td>
<td>1.579</td>
<td>85</td>
<td>35</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>WFSDR</td>
<td>49.50</td>
<td>10.55</td>
<td>0.587</td>
<td>0.213</td>
<td>72</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>SIF b</td>
<td>FSD</td>
<td>55.77</td>
<td>18.20</td>
<td>0.068</td>
<td>0.675</td>
<td>100</td>
<td>0</td>
<td>1022</td>
</tr>
</tbody>
</table>

a. WFSDR Index available only for TG sample
### TABLE 4.12

Mean Scores of Children's FSD and WFSD Indices Ranked by Mean Education Levels

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>EDUCATION</th>
<th>FSD</th>
<th>WFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VV-C</td>
<td>5.10</td>
<td>51.82</td>
<td>51.22</td>
</tr>
<tr>
<td>VC-C</td>
<td>4.99</td>
<td>53.20</td>
<td>51.68</td>
</tr>
<tr>
<td>SMF-C</td>
<td>4.84</td>
<td>51.83</td>
<td>49.16</td>
</tr>
<tr>
<td>^TG-C</td>
<td>2.92</td>
<td>56.67</td>
<td>58.67</td>
</tr>
<tr>
<td>^SIF-C</td>
<td>2.48</td>
<td>55.77</td>
<td></td>
</tr>
</tbody>
</table>

* a. Mean Scores from Control Group of TG sample
* b. Data did not allow computation of WFSD Index for SIF sample
Children's reports related to parents' traditional norm adherence. Another explanation for the variation among mean scores of the respondents has been supported previously, namely, the degree of adherence to traditional norms by husbands and wives. In Table 4.12 mean educational levels of children's parents are arrayed along with children's mean FSD and WFSD mean scores.*7 As was the case with husbands' and wives' reports, with children's reports as mean education level increases mean power levels tend to decrease.

If adherence to norms is the major influence on mean power levels, ranking mean education levels and mean decision power scores for all samples should produce a negative correlation regardless of the family status of the respondent. Spearman-Brown rank order correlation coefficients for the relationship between mean education and mean power scores for the FSD, WFSD and CFSD indices are, respectively, -.76, -.79, and -.73 (See Table 4.13). When children's mean FSD and WFSD scores and mean education levels for their parents are included in the rankings (See Table 4.14), the rank order correlations are even stronger (-.86 for FSD and -.85 for WFSD). Perhaps the husband-wife bias in part is spurious, in the sense that it does not reflect a sex difference per se. Rather, it seems to reflect an average difference in the level of education of the husbands and wives in these samples.

*7. Education means reported for children are averages of father's and mother's education.
<table>
<thead>
<tr>
<th>SAMPLE/RESPONDENT</th>
<th>EDUCATION</th>
<th>FSD</th>
<th>WFSD</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC-H</td>
<td>5.74</td>
<td>45.90</td>
<td>44.75</td>
<td>48.26</td>
</tr>
<tr>
<td>VV-H</td>
<td>5.31</td>
<td>51.57</td>
<td>51.18</td>
<td>50.82</td>
</tr>
<tr>
<td>MC-W</td>
<td>5.22</td>
<td>49.93</td>
<td>28.79</td>
<td>50.86</td>
</tr>
<tr>
<td>VV-W</td>
<td>4.96</td>
<td>52.82</td>
<td>53.14</td>
<td>51.24</td>
</tr>
<tr>
<td>aTG-H</td>
<td>4.35</td>
<td>54.00</td>
<td>56.72</td>
<td></td>
</tr>
<tr>
<td>VA-H</td>
<td>4.24</td>
<td>52.67</td>
<td>52.15</td>
<td>51.15</td>
</tr>
<tr>
<td>aTG-W</td>
<td>4.12</td>
<td>52.72</td>
<td>53.28</td>
<td></td>
</tr>
<tr>
<td>VA-W</td>
<td>4.10</td>
<td>54.08</td>
<td>54.03</td>
<td>51.06</td>
</tr>
</tbody>
</table>

a. Mean scores from control group of TG sample

b. Spearman Brown $r_s$: FSD = -.76, WFSD = -.79, CFSD = -.73
TABLE 4.14

Mean Scores of Husbands', Wives', and Children's FSD and WFSD Indices Ranked by Mean Education Levels

<table>
<thead>
<tr>
<th>SAMPLE/RESPONDENT</th>
<th>EDUCATION</th>
<th>FSD</th>
<th>WFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC-H</td>
<td>5.74</td>
<td>45.90</td>
<td>44.75</td>
</tr>
<tr>
<td>W-H</td>
<td>5.31</td>
<td>51.57</td>
<td>51.18</td>
</tr>
<tr>
<td>MC-W</td>
<td>5.22</td>
<td>49.93</td>
<td>48.79</td>
</tr>
<tr>
<td>aVV-C</td>
<td>5.10</td>
<td>51.82</td>
<td>51.22</td>
</tr>
<tr>
<td>aVC-C</td>
<td>4.99</td>
<td>53.20</td>
<td>51.68</td>
</tr>
<tr>
<td>VV-W</td>
<td>4.96</td>
<td>52.82</td>
<td>53.14</td>
</tr>
<tr>
<td>aSMF-C</td>
<td>4.84</td>
<td>51.83</td>
<td>49.16</td>
</tr>
<tr>
<td>bTG-H</td>
<td>4.35</td>
<td>54.00</td>
<td>55.72</td>
</tr>
<tr>
<td>VA-H</td>
<td>4.24</td>
<td>52.67</td>
<td>52.15</td>
</tr>
<tr>
<td>bTG-W</td>
<td>4.12</td>
<td>52.72</td>
<td>53.28</td>
</tr>
<tr>
<td>VA-W</td>
<td>4.10</td>
<td>54.08</td>
<td>54.03</td>
</tr>
<tr>
<td>a,bTG-C</td>
<td>2.92</td>
<td>56.67</td>
<td>58.67</td>
</tr>
<tr>
<td>aSIF-C</td>
<td>2.48</td>
<td>55.77</td>
<td></td>
</tr>
</tbody>
</table>

a. For children respondents, education is average of parents education
b. Mean scores from control group of TG sample
c. Spearman Brown $r_s$: FSD = -.86, WFSD = -.85
It would seem from the data in Tables 4.13 and 4.14 that a major influence on mean power scores regardless of the family member responding is degree of adherence to traditional norms. However, this finding does not rule out the possibility that the over-under compensating bias on the part of husband and wife respondents could also be operating to contribute to husband-wife differences. A more thorough test of the adherence to traditional norms explanation versus the over-under compensating explanation awaits a multiple sample survey in which reports are solicited from husbands, wives, and children from each family.

Summary

Children's WFSD and FSD mean scores and distributions are more similar than the FSD or WFSD mean scores and distributions of husbands' or wives' reports. Furthermore, for children FSD and WFSD mean scores vary less across samples than corresponding mean scores for husbands and wives, with children's WFSD mean scores being the most stable across samples.

If one of the decision power indices were to be matched with one of the family member, the best combination seems to be the WFSD index with children as respondents. This choice is made on the basis of such desired index characteristics as (1) wide dispersion of scores within sample, (2) low variation of mean scores across samples and (3) means close to the mid-point of the index range. However, only if the relative reliability and validity of children's WFSD reports
is superior as well can this respondent-index combination be considered the best alternative. These more important aspects of the power indices will be compared in the following chapters.

Children's mean power scores seem to fall between mean power scores of husbands and wives. One explanation for this finding is that children are more objective observers than their parents, being less affected by the biases which drive husbands and wives in opposite directions away from true scores. In the one sample where this explanation could be tested (VV), unfortunately, while children's mean FSD scores did fall between the mean FSD scores of their parents, children's mean WFSD scores fell outside the parent's mean WFSD scores. Thus the explanation that children are more objective than parents remains unconfirmed when tested with mean power scores.

Another explanation holds that adherence to traditional norms about marital power biases power scores in favor of husbands, regardless of the status of the respondent. When mean power scores of respondents in the various samples are arrayed along with mean levels of education (an indirect indicator of the liberalness of the sample), a strong tendency is observed for mean power scores to decrease as mean educational levels increase (See Table 4.14). Thus the husband-wife bias per se may be somewhat spurious, with mean power score differences of the spouses really reflecting differences in education levels and indirectly differences in degree of adherence to patriarchal norms.
SUMMARY

FSD, WFSD, and CFSD Indices

The FSD and WFSD indices are very similar in their overall distributions, with the distribution of the WFSD scores being slightly more evenly distributed as well as having a mean score closer to the center of the range. The CFSD index, though having a mean close to the theoretical midpoint of 50, differs markedly from the FSD and WFSD indices. Scores for the CFSD index "stack up" on central values leading to as much as a 5-fold reduction in variance. Unfortunately, this may reduce the capability of the CFSD index to differentiate among extreme values and therefore reduce the size of correlations attainable with other variables.

The mean power scores of the FSD, WFSD, and CFSD indices are more similar within samples than between samples. One explanation for the difference in mean power score levels among the samples could be that the decision power scores are affected by the degree to which members of a sample adhere to traditional norms about marital power. If this explanation is correct, those samples more traditional in their makeup would have higher mean power scores than those sample which tended to be more liberal. Indirect evidence for this relationship is presented in Table 4.3, where the mean power scores for the various indices tend to decrease as mean education levels increase.
Husbands' Wives' and Children's Responses

Power indices stable for each family member. The mean scores of the FSD and WFSD indices appear to be quite stable across samples for each of the family members. Furthermore, FSD and WFSD means and distribution patterns appear to be very similar for each respondent, with the WFSD scores showing slightly more variation and range. FSD and WFSD scores are most similar within samples and show the least variation across samples for children.

The CFSD index, available only for husbands and wives, shows the most stable pattern of all the indices, but this stability may only be an artifact. With the CFSD index there is a massive grouping of scores very close to the mean. This grouping is a reflection of the degree to which respondents profess similar norms about which spouse should have the final say, with these norms reflecting an "equal say" perspective. The resultant contracted distribution and homogeneity of scores, though contributing to the stability of the CFSD means across samples for both spouses, may actually decrease the power of the CFSD instrument to differentiate levels of marital power and lead to lowered correlations with other variables.

Mean score differences. The most noticeable trend among comparisons of husbands' and wives' mean power scores is that wives' mean scores are higher than husbands'. This husband-wife response difference is fairly consistent across all the final say decision indices in this study, even
though with the CFSD index the difference is greatly reduced as a result of the contracted distributions of the CFSD scores. Finally, children's means for the FSD and WFSD indices tend to fall in between corresponding mean scores of husbands and wives. Two explanations for the differences in the mean scores of husbands, wives and children are: (1) children are more objective observers than their parents of the parents relationship and (2) greater degree of adherence to traditional norms about marital power biases mean power scores in favor of husbands, with lower power scores being found in more liberal samples.

Objectivity of children as respondents. One explanation for the finding that children's mean power scores tend to fall between means of husbands and wives is that children are less affected by a modesty bias which drive husbands and wives scores in opposite directions away from true scores. In the one sample where this idea could be tested (VV) the children's FSD mean did fall between the FSD mean of the parents, but children's WFSD mean fell outside their parents WFSD means. Thus, as far as mean power scores of this study are concerned, the explanation that children are more objective than parents remains unconfirmed.

Influence of traditional norms. Another explanation holds that as the degree to which members of a sample adhere to traditional norms increases, mean power scores for that sample increase also. Using education as an indirect
indicator of adherence to traditional norms (higher education being associated with more liberal norms about marital power), a strong tendency exists for power means to decrease as educational levels increase, regardless of the type of respondent. Thus, mean power differences may be reflecting differences in education of husbands and wives rather than a husband-wife bias per se.

In Conclusion

One of the basic findings reported in this chapter is that the FSD, WFSD, and CFSD indices are so similar. In fact, as far as mean scores are concerned, they could be considered interchangeable. This is tantamount to stating that it does not matter whether the items in the decision indices are weighted or not. There are some differences among the three indices, however, with respect to patterns of dispersion, with the WFSD index having slightly more variation than the FSD index, and the CFSD index having much less variation than the other two. It remains to be seen if these differences in dispersion are only incidental or if they reflect more important differences that appear when these indices are correlated with other variables.

As far as respondents are concerned, similar patterns of mean scores and dispersion are observed for each respondent. The most noticeable difference among respondents is in the mean scores of husbands and wives, which may actually reflect educational differences, rather than a sex bias per se. The impact of these differences in
spouses' mean scores, regardless of their source, depends on whether these differences are reflected in the relative validity and reliability of the responses of the various family members. These more important issues will be the focus of the next two chapters.
CHAPTER V

INTERNAL CONSISTENCY OF POWER SCORES
BY TYPE OF INDEX AND RESPONDENT

One of the most important characteristics of a measurement instrument is its reliability. Reliability can be considered as the degree to which differences or similarities in different observations can be attributed to true differences or similarities in the phenomena being measured, and not to measurement error (Anderson and Zelditch, 1975:330-334). The less a measure fluctuates because of random error, the greater its utility. If its reliability is high, confidence can be placed in the results of a single administration of a measure, a very desirable quality for an instrument.*1

In determining if taking the saliency of the decision measure improves the final say measure, examination of its reliability is most appropriate. Any improvement brought about by weighting should be reflected in the relative levels of reliability of the final say indices of this study. This can be phrased as a question which will guide

1. Many administrations of a measure may be required to obtain an estimate of true scores if it has low reliability, a procedure which for practical and theoretical reasons may not even be possible. Learning that takes place as subjects respond to measures may make them "test-wise" and lead to different responses on successive administrations of the measure, other changes may take place in the respondent, situation or setting between successive administrations of a measure, the phenomena itself may change, it may not be possible to administer a measure to a sample more than once, and so forth.
Reliability could be estimated with two general procedures. However, the first procedure, in which reliability is determined by correlating responses of individuals to a measure or its alternative form on two different occasions, is subject to the problems outlined in footnote 1. In the second procedure, on the other hand, reliability is based on the internal consistency of the measure and can be obtained through just one administration of a measure.*2

A very useful procedure which has been suggested as a technique to estimate the internal consistency reliability of a measure is the calculation of a series of coefficient alphas, in which an alpha computed for all items of a measure is compared with alphas recomputed on the measure after each item, in turn, has been removed (Armor, 1974; Green, Lissitz, and Muliak, 1977; Hull and Nie, 1979). The impact of each item is assessed by comparing the recomputed

2. Internal consistency can be defined as the degree to which each item contributes to the reliability of an instrument as a whole. If each item contributes to the measurement error of the instrument then the less random the fluctuation of the individual items, the lower the measurement error of the instrument. This assumes that error is cumulative across the items.
alpha of the measure without a particular item to the overall alpha of the measure with the item included.*3

Item-removed and overall alphas will be used to assess and compare the internal consistencies of the FSD, WFSD, and CFSD indices in the section below, and the internal consistency of husbands', wives' and children's responses to these measures in the section to follow. Since samples of this study have differing numbers and combinations of items, comparisons will be made only within and not across samples. However, general trends will be summarized at the conclusion of each section.

FSD, WFSD, AND CFSD DECISION POWER MEASURES: COMPARISONS OF INTERNAL CONSISTENCY

Seven diverse samples from populations in the United States and India provide the bases for comparison of the internal consistency of an unweighted (FSD), a saliency or importance weighted (WFSD) and a conflict weighted (CFSD) version of the final say decision index. The number of decision items on which these indices are based vary in

3. Although item-total correlations are often used to assess the internal consistency of a measure, this method lacks several advantages of the item-removed and overall alpha comparisons. These advantages as well as a general description of this procedure are outlined in Appendix B.
number from 6 (VC and VA samples) to 11 (TG sample). The indices of each sample in turn will be examined below.

**Six Item FSD and WFSD Indices: VC Sample**

The FSD and WFSD indices of this sample have at their base the following six decision items: (1) Choices about budgeting income, (2) whether wife should work, (3) choice of housing, (4) children's activities, (5) choice of car, and (6) choices about vacations. (For exact wording of the items, see Appendix C.) The internal consistency of the indices will be examined below.

**FSD index: VC sample.** The alpha estimate of reliability of .73 for the FSD index is very respectable. (See Table 5.1). It can be seen that for the FSD index the item-removed alphas are quite similar to one another, indicating a high degree of homogeneity among the items.*4

4. The lower the item-removed alpha relative to the overall alpha of the index, the greater the item's contribution to the internal consistency of the index beyond that already made by other items. Conversely, smaller differences indicate that items make less of an additional contribution. If item-removed alphas are higher than the overall alpha, items are actually reducing the internal consistency of the index.
TABLE 5.1

Alpha With Item Removed\textsuperscript{a} for FSD and WFSD Indices: VC Sample\textsuperscript{b}

<table>
<thead>
<tr>
<th>ITEM\textsuperscript{c}</th>
<th>Alpha With Item Removed</th>
<th>FSD</th>
<th>WFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgeting Income</td>
<td>0.68</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>0.73</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>0.69</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Children's Activities</td>
<td>0.70</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Car</td>
<td>0.70</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Vacation</td>
<td>0.69</td>
<td>0.64</td>
<td></td>
</tr>
</tbody>
</table>

OVERALL ALPHAS FOR INDICES 0.73 0.65

\textsuperscript{a} Alpha Of Index If Item Is Removed
\textsuperscript{b} N = 512
\textsuperscript{c} Ranked By WFSD Item Importance
With the exception of the item-removed alpha for the wife should work item, these alphas are lower than the overall alpha. This is an indication that each item does make some additional contribution, to the reliability of the FSD index beyond that of the other items. Budgeting income has the most impact of all, indicated by its relatively low item-removed alpha. The item-removed alpha for wife should work, however, is equal to the overall alpha, indicating that this item makes no additional contribution to the internal consistency of the index. All other things being equal, if parsimony is a criterion of index construction, this would be the item to delete. Budgeting income, vacation, and car items would be first choice for items to keep.

**Comparisons of the FSD and WFSD indices: VC Sample.**

The WFSD index has a lower level of internal consistency than the FSD index, indicated by alpha's of .65 and .73 respectively. These alphas seem to indicate that the WFSD index is less reliable than the FSD index. Slightly more variation exists among item-removed alphas in the WFSD index than among these alphas in the FSD index.

Surprisingly, weighting by importance seems to make no difference in the relationship among items. Budgeting income, the most important item, seems to make the greatest contribution to the WFSD index's internal consistency, as it did for the FSD index. However, contributing least is the second-most important item, wife should work, sharing this position with the least important item, vacation. The
pattern for the wife should work item was also observed for the FSD index. With the exception of vacation, items retain basically the same interrelationship pattern in the WFSD index as in the FSD index.

**Summary.** The internal consistencies are quite high, although reliability seems less for the WFSD index. Item-removed alphas indicate that the same basic patterns exist among items in both the FSD and WFSD indices, with items making roughly equivalent contributions to the internal consistency in both measures. Interestingly, the contribution of the importance of an item to internal consistency seems rather limited.

Although the most important item, budgeting income, makes the greatest contribution to the reliability of the WFSD index, the second-most important item, whether wife should work, makes the least. Because overall differences are small, examination of these items in other samples is required before more definitive conclusions can be made.

**Ten Item FSD and WFSD Indices: SMF Sample**

The decision items used to construct the FSD and WFSD indices in this sample are: (1) budgeting income, (2) whether wife should work, (3) household management, (4) food money, (5) housing, (6) children's activities, (7) insurance, (8) social activities of the couple, (9) car and (10) vacation. The exact wording of these items is detailed in Appendix D.
FSD index: SMF sample. The overall alpha of the FSD index is .65, indicating a relatively high level of internal consistency. (See Table 5.2). The item-removed alphas for the FSD index show a pattern similar to that of its VC sample counterpart, although the pattern is more pronounced with the SMF sample. Removing the budgeting income item drops the alpha for the remaining 9 items from .65 to .45, indicating the great impact of this item on the reliability of the final say measure. In the other direction, dropping the wife should work item increases the alpha of the index slightly, from .65 to .67. Apparently, the FSD index has greater internal consistency without this item. All of the other items seem to add about the same relative additional amount to the reliability of the measure, with the exception of the housing item which seems to have more of an impact.

Comparison of the FSD and WFSD indices: SMF sample. As was the case in the VC sample, in the SMF sample the WFSD index appears to be a less reliable instrument than the FSD index, evidenced by overall alphas of .57 and .65, respectively. Furthermore, weighting by importance does not seem to affect the relative contribution of items to the reliability of the final say measure. Patterns are very similar in both instruments.

Loss of the most important item, budgeting income, has the greatest impact on the reliability of the WFSD index, dropping alpha from .57 to .48. On the other hand, dropping the second-most important item, wife should work, increases reliability of the WFSD index from .57 to .62, indicating
TABLE 5.2

Alpha With Item Removed\textsuperscript{a} for FSD and WFSD Indices: SMF Sample\textsuperscript{b}

<table>
<thead>
<tr>
<th>ITEM\textsuperscript{c}</th>
<th>Alpha With Item Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD</td>
</tr>
<tr>
<td>Budgeting Income</td>
<td>.45</td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>.67</td>
</tr>
<tr>
<td>Household Management</td>
<td>.63</td>
</tr>
<tr>
<td>Food Money</td>
<td>.62</td>
</tr>
<tr>
<td>Housing</td>
<td>.59</td>
</tr>
<tr>
<td>Children's Activities</td>
<td>.62</td>
</tr>
<tr>
<td>Insurance</td>
<td>.62</td>
</tr>
<tr>
<td>Social Activities of Couple</td>
<td>.63</td>
</tr>
<tr>
<td>Car</td>
<td>.64</td>
</tr>
<tr>
<td>Vacation</td>
<td>.62</td>
</tr>
</tbody>
</table>

OVERALL ALPHAS FOR INDICES

\textsuperscript{a} Alpha Of Index If Item Is Removed
\textsuperscript{b} N = 512
\textsuperscript{c} Ranked By WFSD Item Importance
that this item is even more detrimental to the WFSD than to the FSD index. Other items with low impact include vacation and car, neither of which add additionally to the reliability of the WFSD index.

**Summary.** The same patterns among items in the 6-item indices of the VC sample were observed in the 10-item SMF sample as well, with internal consistency being higher for the FSD index than for the WFSD index. Budgeting income makes the most additional contribution to the reliability of the FSD and WFSD indices in both samples, though its impact was markedly greater in the SMF sample. The least contributing item, wife should work, actually lowered the reliability of both indices. Other items seemed to form a more homogeneous group, having item-removed alphas only slightly lower than overall alphas.

In sum, the only differences between the FSD and WFSD indices seem to be slight variations in the impact of items while overall patterns remain nearly identical. Weighting the items by their importance seems to add little to the final say measure beyond lowering its internal consistency.

**A Ten Item FSD Index from Respondents in India: The SIF Sample**

Only the FSD index is available for the SIF sample. Decision items include questions referring to (1) budgeting income, (2) whether wife should work, (3) food money, (4) children's activities, (5) insurance, (6) social activities of the couple, (7) vacation, (8) movie, (9) savings and (10)
furniture. (Unfortunately, the questionnaire containing these items is not available in an English version.)

**FSD index: SIF sample.** The most notable aspect about the items of the FSD index for the SIF sample (See Table 5.3) is the homogeneity among their alphas. The overall alpha is .77, the highest estimate of reliability so far for the final say measure.

With respect to patterns among items, the difference between the overall alpha and the lowest item-removed alpha is only .04, and the range of item-removed alphas is even smaller: .03. Interestingly, even among these very homogeneous item-removed alphas traces of patterns seen in previous samples can be observed. The budgeting income item has the most and the wife should work item among the least impact, respectively, on the overall index though the difference between the two items is very small. Apparently, the relevance of budgeting income to marital power cuts across culture along with the relatively low relevance of choices about whether the wife should work.

Food money is also less a contributor than other items. One would expect this item to have about the same impact as budgeting income, since they both tap distribution of money. Perhaps, and it seems reasonable to think so, budgeting income is more central because it sweeps through all areas of income allocation, rather than just one segment. Furthermore, food money traditionally has been the realm of one spouse, whereas budgeting income in general is more likely to involve participation of both spouses.
TABLE 5.3

Alpha With Item Removed\textsuperscript{d} for FSD Index: SIF Sample\textsuperscript{b}

<table>
<thead>
<tr>
<th>ITEM\textsuperscript{c}</th>
<th>FSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Budgeting Income</td>
<td>.73</td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>.76</td>
</tr>
<tr>
<td>Food Money</td>
<td>.76</td>
</tr>
<tr>
<td>Children's Activities</td>
<td>.74</td>
</tr>
<tr>
<td>Insurance</td>
<td>.75</td>
</tr>
<tr>
<td>Social Activities of Couple</td>
<td>.74</td>
</tr>
<tr>
<td>Vacation</td>
<td>.75</td>
</tr>
<tr>
<td>Movie</td>
<td>.75</td>
</tr>
<tr>
<td>Savings</td>
<td>.74</td>
</tr>
<tr>
<td>Furniture</td>
<td>.75</td>
</tr>
</tbody>
</table>

OVERALL ALPHA FOR INDEX .77

\textsuperscript{a.} Alpha Of Index If Item Is Removed

\textsuperscript{b.} N = 1022

\textsuperscript{c.} Items Are Not Ranked, No Rankings Available For SIF Sample
One final issue to discuss is why the items of the FSD index in the SIF sample are so remarkably homogeneous. Perhaps scores are biased, in that respondents tend to answer all items the same, regardless of their content. However, this possibility would not account for the similarities among item contributions to reliability that were also observed among items of the FSD index in other samples. It may be that some aspect of the culture is contributing to the uniformity among item-removed alphas of the FSD index in the SIF sample, indicating a need for more thorough cross-cultural studies of the final say measure.

Summary. The FSD index in the SIF sample has a very high degree of internal consistency and remarkable homogeneity among the relative contributions of the items to the measure's internal consistency, indicated by overall and item-removed alphas. Budgeting income seems to have the greatest relative impact on the internal consistency of the measure while wife should work and, interestingly, food money have the least. Other items have very similar item-removed alphas, however, indicating that the majority of the items of this index are quite homogeneous.

The relative positioning of the items appears to remain fairly constant even across cultures. This stability of internal consistency strengthens the final say measure, and weakens the arguments of its distractors who contend that it is not a reliable instrument. However, the more important aspect of the measure is its validity. Thus final evidence
about the efficacy of the measure will await the criterion validity analysis of the next chapter.

A Six Item Index: VA Sample

The three FSD, WFSD and CFSD indices are available for the VA sample, the largest sample in the study. The decision items in this study tap six areas: (1) having children, (2) which job husband should take, (3) whether wife should work, (4) food money, (5) housing, and (6) car choices. The exact wording of the items can be found in Appendix E.

FSD index: VA sample. For the FSD index, alpha is a moderate .41. (See Table 5.4). Item-removed alphas indicate that, with the exception of the husband's job item, items are fairly homogeneous in their contribution to the reliability of the index. Housing makes the greatest additional contribution, sharing this position with car, which is a surprise. Car has been among the least contributing items to the final say measure's reliability in previous samples. The pattern with housing, however, has been seen before. Housing has consistently been among the items with the most impact in previous samples; only budgeting income has been higher.

At the other extreme, the husband's job item lowers the internal consistency of the FSD index, indicated by an increase of alpha from .41 to .44 when it is dropped. The wife should work item is next in the little impact category,
<table>
<thead>
<tr>
<th>ITEM</th>
<th>FSD (2099)</th>
<th>WFSD (2099)</th>
<th>CFSD (2063)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Having Children</td>
<td>.35</td>
<td>.18</td>
<td>.38</td>
</tr>
<tr>
<td>Which Job Husband Should Take</td>
<td>.44</td>
<td>.40</td>
<td>.44</td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>.38</td>
<td>.23</td>
<td>.40</td>
</tr>
<tr>
<td>Food Money</td>
<td>.39</td>
<td>.24</td>
<td>.39</td>
</tr>
<tr>
<td>Housing</td>
<td>.32</td>
<td>.27</td>
<td>.36</td>
</tr>
<tr>
<td>Car</td>
<td>.32</td>
<td>.27</td>
<td>.36</td>
</tr>
</tbody>
</table>

OVERALL ALPHAS FOR INDICES  .41  .30  .43

a. Alpha Of Index If Item Is Removed

b. Ranked By WFSD Item Importance
along with food money. Apparently, as has been the trend so far, items about occupation choices for either spouse contribute little to the reliability of the FSD index.

**Comparison of the FSD and WFSD indices: VA sample.** As in previous samples, the internal consistency of the WFSD index of the VA sample is substantially less than that of the FSD index, indicated by overall alphas of .30 and .41, respectively. With respect to item-removed alphas, the item with the most impact seems to be having children, its absence dropping the overall alpha almost by half. One wonders if this item would make a similar impact in other samples had it been included in their indices.

At the other extreme, deleting the husband's job item raises alpha by .10, from .30 to .40. The other four items form a rather homogeneous group, as they did in the FSD index. Interestingly, the wife should work item does make a moderate contribution to the reliability of the indices, more so for the WFSD than the FSD index. This pattern was not seen in previous samples. Overall, however, the primary factor differentiating among items seems to be content area, not relative importance of the items.
When the CFSD index is compared to the other two, it has the highest level of internal consistency of the three, .43, though this level is only slightly higher than that of the FSD index. However, patterns among the CFSD items parallel those of the FSD and WFSD items, being most similar to those of the FSD index.

As in the other indices, dropping the husband's job item actually increases the reliability of the index. The wife should work item makes the next lowest contribution to the reliability of the CFSD measure. Housing and car seem to contribute the most, with having children as the item with the next largest impact. Again, content area seems to be the primary differentiating factor among the items, the presence or lack of conflict or importance weighting seeming not to have much effect on the relative impact of the items to the reliability of the final say measure.

Summary. The pattern of relationships among the item-removed alphas coupled with overall alphas seem to indicate that either the FSD or CFSD indices would be better choices than the WFSD index. The uniformity among the items of the CFSD index along with the fact that it has slightly higher overall reliability than other indices would seem to indicate that this index is the best choice. However, because of the greatly contracted distributions of the CFSD index, discussed in Chapter IV, the the moderate level of internal consistency of the CFSD index may be in part an
artifact of the distribution pattern. If this is so, the safest choice of instrument might be the more simply computed FSD measure. However, before these conclusions are given any weight, the CFSD, WFSD and FSD indices should be examined in other samples.

With respect to content areas, husband's job choice and whether wife works are the least and next to least contributing items for all three indices (although food money also is a low contributor in the FSD index). The most contributing item, housing, has also had relatively high impact in previous samples reviewed. Only budgeting income, an item not in the VA study, has had consistently more impact. It appears, therefore, that the referent area of the item has the greatest impact on the internal consistency of the final say index, not the weighting method.

**Nine Item FSD, WFSD and CFSD Indices: MC Sample**

The nine decision items in this sample include three items relating to the occupation of the spouse, the most items of this type of any sample in this study: (1) husband's job choice, (2) whether wife should work and (3) wife's job choice. Other items are (4) food money, (5) housing, (6) insurance, (7) doctor, (8) car and (9) vacation. (Exact wording of items can be found in Appendix F.) These items are arranged in Table 5.5 by index.
TABLE 5.5

Alpha With Item Removed\textsuperscript{a} for FSD, WFSD, and CFSD Indices: MC Sample

<table>
<thead>
<tr>
<th>ITEM\textsuperscript{c}</th>
<th>Alpha With Item Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD (144)</td>
</tr>
<tr>
<td>Which Job Husband Should Take</td>
<td>0.56</td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>0.50</td>
</tr>
<tr>
<td>Which Job Wife Should Take</td>
<td>0.46</td>
</tr>
<tr>
<td>Food Money</td>
<td>0.51</td>
</tr>
<tr>
<td>Housing</td>
<td>0.49</td>
</tr>
<tr>
<td>Insurance</td>
<td>0.48</td>
</tr>
<tr>
<td>Doctor</td>
<td>0.56</td>
</tr>
<tr>
<td>Car</td>
<td>0.52</td>
</tr>
<tr>
<td>Vacation</td>
<td>0.45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OVERALL ALPHAS FOR INDICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSD (144)</td>
</tr>
<tr>
<td>0.53</td>
</tr>
</tbody>
</table>

\textsuperscript{a} Alpha Of Index If Item Is Removed

\textsuperscript{b} Ranked By WFSD Item Importance
**FSD index: MC sample.** The overall alpha of the FSD index is a moderately high .53, a value consistent with previous samples. In the FSD index, surprisingly, the item with greatest impact is vacation. This item in previous samples has had only very little to moderate impact. Close in its impact is an item which has not been seen in other samples, wife's job choice. The contribution of this item to the FSD index's reliability is even more dramatic when contrasted with the negative impact of its counterpart, husband's job choice, which decreases the internal consistency of the FSD index. It is interesting that the choice of wife's job has more of an impact than choices about whether wife should work at all. Another item which decreases the reliability of the FSD index is doctor.

**Comparison of the FSD and WFSD indices: MC sample.** With respect to the WFSD index, item-removed alphas have quite a wide range: .27 to .52. The internal consistency of this index is increased .09 when the husband's job item is removed, indicating how detrimental this item is to the reliability of the index. On the other hand, alpha is lowered .16, from .43 to .27, when the wife's job item is removed, a remarkable drop in value. The wife should work item also makes a significant impact on this index, as it did for the FSD index.

Other than increasing variation among item-removed alphas and reducing the overall alpha from .53 to .43, weighting by importance does not seem to differentiate among
WFSD items. Patterns are very similar to those of the FSD index. With the exception of vacation, which has less relative impact in the WFSD index, items tend to occupy the same relative position in both measures, a pattern also seen in other samples.

**CFSD compared with FSD and WFSD indices: MC sample.** Overall alphas indicate that the internal consistency of the WFSD index is lowest of the indices, a pattern observed in every sample so far. These estimates of reliability indicate that the internal consistencies of the FSD and CFSD indices are equivalent, although patterns among the item-removed alphas show more homogeneity among the items of the FSD index. Items of the WFSD index show the greatest item-removed alpha variation.

Item-removed alphas in the CFSD index are very similar to their FSD counterparts, with only a .01 or .02 difference in most cases. The husband's job lowers the reliability of the CFSD index as it did in the FSD and WFSD indices, indicating its relatively low contribution. The greatest impact is made by the housing item and to a lesser degree, vacation. Two other items are noticeable not so much because of their relative small differences between the FSD and CFSD indices but because of the direction of these differences. Whether wife should work and wife's job choice make less of a contribution in the CFSD index, which is surprising. Because of the current emphasis on sex roles and supposed heightened awareness of the spouses of
conflicting role models, it would be expected that conflict in this area would make wife's job choice and whether wife should work among the strongest indicators of marital power, more so at least than conflict over vacations.

Summary. The most consistent finding seems to be that content of decision items has a much greater impact on the internal consistency of the final say measure than does weighting schema. Neither the importance nor the conflict associated with an item seems to change the pattern of relationships among items. However, other factors which differentiate among items may still be operating.

It may be that areas in which one spouse will have primary involvement after the decision is made are less effective indicators than items which refer to areas in which the joint involvement of spouses is continued. This may be true especially with areas in which norms dictate joint involvement, or norms about involvement of either spouse are absent.

Eight Item ESL, WFSD and CFSD Indices: VV Sample

The eight decision items of the VV sample are (1) which job husband should take, (2) whether wife should work, (3) food money, (4) housing, (5) insurance, (6) doctor, (7) car and (8) vacation. (See Appendix G for more detail.)

FSD index: VV sample. In contrast with previous samples, the overall alpha of the FSD index in the VV sample is remarkably low: .23. (See Table 5.6) This indicates
TABLE 5.6

Alpha With Item Removed\textsuperscript{a} for FSD, WFSD, and CFSD Indices:
VV Sample

<table>
<thead>
<tr>
<th>ITEM\textsuperscript{c}</th>
<th>Alpha With Item Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD (145)</td>
</tr>
<tr>
<td>Which Job Husband Should Take</td>
<td>.17</td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>.27</td>
</tr>
<tr>
<td>Food Money</td>
<td>.13</td>
</tr>
<tr>
<td>Housing</td>
<td>.17</td>
</tr>
<tr>
<td>Insurance</td>
<td>.27</td>
</tr>
<tr>
<td>Doctor</td>
<td>.27</td>
</tr>
<tr>
<td>Car</td>
<td>.16</td>
</tr>
<tr>
<td>Vacation</td>
<td>.19</td>
</tr>
</tbody>
</table>

OVERALL ALPHAS FOR INDICES .23 .18 .15

\textsuperscript{a} Alpha Of Index If Item Is Removed

\textsuperscript{b} Ranked By WFSD Item Importance
that relative to the FSD indices in other samples, the FSD index in the VV sample has the lowest internal consistency, making it the most unreliable FSD index so far. The pattern of item-removed alphas among the items deviates somewhat from previous patterns as well.

Food money, husband's job and car, three items previously noted for their low impact on the FSD index, have the most impact on the internal consistency of the measure. However, housing is consistent with its position in other samples, contributing more to the internal consistency of the FSD index relative to other items. The wife should work item is also somewhat consistent in its relatively low impact, the internal consistency of the FSD index increasing from .23 to .27 when it is deleted. Other items whose relative influence was moderately low with previous samples, doctor and insurance, have even less influence, their presence dropping the internal consistency of the measure.

Comparisons of the FSD and WFSD indices: VV Sample. The overall level of internal consistency of the WFSD index, .18, is even lower than that of the FSD index. Consistently the reliability of the WFSD index is lower than that of the FSD index in every sample. The item with the most impact, as in the FSD index, is food money, though its relative influence is greater with the WFSD index. The absence of food money drops the internal consistency of the measure to nearly zero. Housing and car also have relatively high impact as in the FSD index.
At the other extreme, the wife should work item lowers the reliability of the WFSD index which rises to .29 when the item is deleted. Internal consistency is also improved with the deletion of the insurance item. Of note is the fact that even though general patterns among item-removed alphas vary from those of previous samples, within this sample patterns are similar for both indices. are maintained across both the FSD and WFSD indices. Once again it appears that the importance of the item has little effect upon the items' relative contribution.

**CFSD compared with FSD and WFSD indices: VV sample.**

The internal consistency of the CFSD index, .15, is the lowest of this study. In contrast to the performance of the CFSD index in the other samples, in the VV sample its reliability is lower than that of the FSD index by .08, and is even lower than the reliability of the WFSD index. It would probably be safe to state that the CFSD and WFSD indices, and perhaps the FSD index as well, lack internal consistency in the VV sample. This is the only sample in which the final say measures have performed so poorly.

Even though reliability is very low for the CFSD and other indices, the relative pattern of item-removed alphas is consistent across the three indices, with food money and housing making the greatest contribution to the reliability of the measures and wife should work and insurance making the least. In fact deleting either wife should work or insurance increases the overall alpha substantially.
suggesting that these items would be among those to consider deleting if a higher level of internal consistency were desired. On the other hand, housing food money and car would be items to retain.

Summary. Even when estimated reliability is so low as to make the performance of the measures appear unpredictable, the impact of the content areas is still apparent, as well as the lack of impact of the weighting schemas. Once again it appears that the more simply computed unweighted FSD version of the final say measure is the most reliable index.

As in other samples, the detrimental effect of the wife should work item would be among those to consider deleting if a particular level of reliability were to be maintained with fewer items. However, housing should be retained. Surprisingly, food money and doctor, which have had relatively low impact in other studies, seem to more important in the VV sample. Perhaps when the comparisons among the family members of this sample are made, explanations for the very low and somewhat discrepant overall and item-removed alphas will become apparent.

Eleven item FSD, WFSDS and WFSDR Indices: TG Sample

The TG sample contains the most items of any sample: (1) which job husband should take, (2) whether wife should work, (3) food money, (4) housing, (5) children's discipline, (6) insurance, (7) doctor, (8) children's
curfew, (9) car, (10) children's allowance and (11) vacation. Complete wording of these items is contained in Appendix H.

**FSD index: TG sample.** The internal consistency of the FSD index is moderately high, indicated by a overall alpha of .63. (See Table 5.7). This is consistent with the performance of the FSD index in most other samples. The same pattern observed among the items of the FSD index in other samples is present in the TG sample FSD index as well. The items with the least relative impact include husband's job and whether wife should work. Other items with less impact are doctor, which generally has had moderately low impact in other studies as well, and vacation, which seems to vary in its impact from sample to sample. Food money, insurance and car have relatively moderate influence, as they have in most previous samples.

At the other extreme, housing is among items with the most relative impact. Interestingly, the other three lowest item-removed alphas occur with children's discipline, children's curfew, and children's allowance. Perhaps these items have relatively more impact because they refer to children, an area which involves the joint participation of both spouses more than other marital responsibilities.

**Comparisons of the FSD and WFSDS indices: TG sample.** As in every other sample the WFSDS (WFSD) index is more unreliable than the FSD index, evidenced by overall alphas of .52 and .63, respectively. However, patterns within the
TABLE 5.7

Alpha With Item Removed a for FSD, WFSD, and CFSD Indices:
TG Sample

<table>
<thead>
<tr>
<th>ITEM b</th>
<th>Alpha With Item Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD (24)</td>
</tr>
<tr>
<td>Which Job Husband Should Take</td>
<td>.63</td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>.62</td>
</tr>
<tr>
<td>Food Money</td>
<td>.61</td>
</tr>
<tr>
<td>Housing</td>
<td>.59</td>
</tr>
<tr>
<td>Children's Discipline</td>
<td>.59</td>
</tr>
<tr>
<td>Insurance</td>
<td>.61</td>
</tr>
<tr>
<td>Doctor</td>
<td>.63</td>
</tr>
<tr>
<td>Children's Curfew</td>
<td>.60</td>
</tr>
<tr>
<td>Car</td>
<td>.61</td>
</tr>
<tr>
<td>Children's Allowance</td>
<td>.58</td>
</tr>
<tr>
<td>Vacation</td>
<td>.62</td>
</tr>
</tbody>
</table>

OVERALL ALPHAS FOR INDICES .63 .52 .60

a. Alpha Of Index If Item Is Removed
b. Ranked According To Importance Of WFSDS Items
two measures are almost identical. Deleting either the husband's job or wife should work item raises the level of internal consistency of the WFSDS index slightly, indicating the relatively low impact of these two items. On the other hand, removal of housing and the children's items lowers the overall alpha more than removal of the other items, indicating the strength of these items in their contribution to the reliability of the WFSDS measure.

WFSDR index compared with the WFSDS and FSD indices: TG sample. The overall alpha of .60 for the WFSDR index indicates that the importance weighted decision measure is more reliable when respondents assign their own importance weights to decision items than when student assigned weights are used, a finding that should not be too surprising. More interesting is the finding that the FSD index has a higher level of internal consistency than either of the two importance weighted indices.

Furthermore, patterns of relationships among the items are very consistent across all three indices. As in the FSD and WFSDS indices, husband's job and wife should work have the least additional contribution to the WFSDR index's reliability, whereas housing and the children's items have the most. Vacation, car, doctor and food money fall somewhere in between in their impact, though these items do not seem to make any additional contribution to the reliability of the WFSDR index.
Summary. Findings consistent with those of previous samples were obtained with the TG sample. The more easily computed FSD index has an internal consistency higher than those where decision items are weighted by importance, whether by respondent or student assigned weights. Furthermore, the pattern of relationships among the items is sustained across the FSD, WFSDS and WFSDR indices, regardless of the presence or absence of item weights.

These patterns of item-removed alphas among the FSD, WFSDS and WFSDR indices provide the strongest evidence so far of the lack of influence the importance of the decision item has on the reliability of the final say measure. Instead, content area seems to determine the contribution of the items to the reliability of an index. Patterns seem to suggest that items touching areas of marital relationships which require continuing joint involvement or interaction of the spouses have more impact than items which tap other areas.

Internal Consistency: General Trends Among the FSD, WFSD and CFSD Indices

Internal consistency not improved by weighting. The most important finding of this chapter is that weighting items does not increase the level of internal consistency of the final say measure. In fact, as Table 5.8 shows, weighting by either method has a tendency to lower the internal consistency of the measure, especially weighting by importance.
<table>
<thead>
<tr>
<th>Sample</th>
<th>FSD</th>
<th>WFSDS</th>
<th>WFSDR</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>.73</td>
<td>.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMF</td>
<td>.65</td>
<td>.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIF</td>
<td>.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>.41</td>
<td>.30</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>.53</td>
<td>.43</td>
<td></td>
<td>.52</td>
</tr>
<tr>
<td>VV</td>
<td>.23</td>
<td>.18</td>
<td></td>
<td>.15</td>
</tr>
<tr>
<td>TG</td>
<td>.63</td>
<td>.52</td>
<td>.60</td>
<td></td>
</tr>
</tbody>
</table>
Reliability influenced most by item's referent area. Even stronger evidence for the negligible influence of weighting is provided by the almost identical patterns across the measures of the relative impact of the items on reliability. With few exceptions it appears that the content of the item, not the manner in which it is weighted, determines its contribution to the overall reliability of the final say measure.

Among items which consistently make the largest contribution to the internal consistency of the final say measure were budgeting income, housing and items which referred to decisions about continuing on-going processes involving joint participation of the spouses, such as responsibilities associated with having children. Items involving other aspects of the couple's interaction such as vacation or social activities are next in their impact, though vacation varied in its contribution from sample to sample.

On the other hand, items referring to occupational involvement such as husband's job choice or whether wife should work were least influential, even lowering the reliability of the measure by their presence. Other items reflecting economic choices such as insurance, car, doctor and food money seem to have moderate to low impact as well, although food money exhibited some variation in its impact.
Final say decision measure a reliable instrument. Essentially, the findings in this section show the final say decision measure to be very stable in its internal consistency. Although there was some fluctuation in overall levels, the patterns among the decision items were remarkably similar across the samples, including the one from India. Because patterns are so constant, it is very likely that the fluctuation is more a result of sampling differences than problems of internal consistency.

INTERNAL CONSISTENCY OF HUSBANDS', WIVES' AND CHILDREN'S RESPONSES

Husbands' and wives' responses are available in four of the samples reviewed in the previous section: VA, MC, VV, and TG samples. In addition, the VV and TG samples also contain children's responses as well. Following the pattern established in the previous section, the family members' responses will be compared within each sample followed by a summary of general trends.

Husbands' and Wives' Reports: VA Sample

Husbands and wives: FSD index, VA sample. The most obvious difference between the two spouses is that wives' FSD reports have a higher level of internal consistency than husbands' FSD reports, shown in Table 5.9 by overall alphas of .43 and .37, respectively. For husbands, the item-removed alphas have the same pattern seen previously, in that housing and having children seem to have the most
<table>
<thead>
<tr>
<th>ITEM</th>
<th>Husbands</th>
<th>Wives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD</td>
<td>WFSD</td>
</tr>
<tr>
<td></td>
<td>(937)</td>
<td>(937)</td>
</tr>
<tr>
<td>Having Children</td>
<td>.30</td>
<td>.13</td>
</tr>
<tr>
<td>Which Job Husband Should Take</td>
<td>.40</td>
<td>.40</td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>.34</td>
<td>.22</td>
</tr>
<tr>
<td>Food Money</td>
<td>.37</td>
<td>.24</td>
</tr>
<tr>
<td>Housing</td>
<td>.26</td>
<td>.22</td>
</tr>
<tr>
<td>Car</td>
<td>.31</td>
<td>.27</td>
</tr>
</tbody>
</table>

OVERALL ALPHAS FOR INDICES  

<table>
<thead>
<tr>
<th></th>
<th>Husbands</th>
<th>Wives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD</td>
<td>WFSD</td>
</tr>
<tr>
<td></td>
<td>(937)</td>
<td>(937)</td>
</tr>
<tr>
<td></td>
<td>.37</td>
<td>.29</td>
</tr>
</tbody>
</table>

a. Alpha Of Index If Item Removed  
b. Ranked By WFSD Item Importance
impact on reliability and husband's job and food money having the least. Interestingly, for husbands the wife should work item does make a moderate contribution.

For wives, the pattern among the item-removed alphas is similar to that of husbands, with one or two differences including the moderate impact of having children for wives. However, the relative influence of other items is more similar, with housing for wives being a strong item while husband's job serves only to reduce the internal consistency of wives' FSD reports substantially.

Husbands and wives: Comparisons of the FSD and WFSD indices, VA sample. For both husbands and wives, the internal consistency of the FSD index is higher than the internal consistency of the WFSD index, indicated by overall alphas of .37 and .29 for husbands and .43 and .30 for wives, respectively. Also noteworthy is the finding that for both the FSD and WFSD indices the internal consistency of wives' reports is higher.

For husbands, the patterns of item-removed alphas are very similar in both measures. As in husbands' FSD reports, in husbands' WFSD reports having children makes the greatest contribution to reliability and husband's job the least. Minor differences include a slight increase in the impact of food money and slight decrease in the impact of housing and car.
Surprisingly, the deviations from the general pattern of the contribution of items to reliability which were present in wives' FSD reports are not evident in wives' WFSD reports. Wives' WFSD reports, in fact, evidence a pattern almost identical to that of husbands' WFSD reports, with having children and housing items making the greatest contribution to reliability and husband's job the least. However, having children still appears to have more impact for husbands than for wives. Nevertheless, it appears in general that importance does not differentiate much among items. In fact, weighting the final say measure lowers its internal consistency for both husbands and wives. Rather than weighting method, content area seems to be the primary determinant of an item's contribution to the reliability of the final say measure, with sex of spouse having a secondary impact.

Husbands and wives: CFSD compared with FSD and WFSD indices. VA sample. For both husbands and wives the internal consistency of the CFSD index is higher than for the FSD and WFSD indices. Additionally, the internal consistency of wives' CFSD reports is higher than that of husbands' CFSD reports, a finding also obtained with FSD and WFSD reports as well.

For husbands, patterns among item contribution for the CFSD index are basically the same as patterns among the FSD and WFSD items. Housing, having children and car are significant contributors while husbands' job contributes
less. Of interest, though, is that husband's job does make some contribution to the CFSD index, more so than food money, one of the few places where the husband's job choice item has contributed to the final say measure.

For wives, patterns among item-removed alphas for the CFSD index are very similar to wives' FSD item-removed alphas. However, car has slightly less impact in the CFSD index, and whether wife should work relatively more. As in wives' FSD reports, husband's job lowers the internal consistency of wives' CFSD reports, and having children has only a moderate impact.

Comparisons of the CFSD indices of husbands and wives reveals mainly similar patterns, though there are a few differences. Husband's job contributes relatively less to the reliability of wives' than to husbands' CFSD reports, and food money contributes more to wives' CFSD reports. Perhaps items tapping areas traditionally the realm of husbands contribute more to the reliability of husbands' reports than to wives' reports, whereas the reverse is true for items tapping areas traditionally the realm of wives.

These small possibly normatively determined differences among some of the items of the CFSD index for husbands and wives should not obscure, however, the more important finding: the basic pattern among CFSD items is preserved to some degree for both spouses. It is preserved, in fact, for husbands and wives in all three indices.
Summary. Overall alphas indicate that wives' responses are more consistent than responses of husbands. Other than this difference, the responses of husbands and wives are quite similar. Patterns among the items of the final say measure are basically equivalent for husbands and wives across all three measures, though there is variation among some of the items.

Food money and whether wife should work seem to have slightly more impact for wives than for husbands, whereas the reverse is true for husband's job choice. Even though general patterns indicate that content, not weighting method, is the primary determinant of the impact of an item for both spouses, a secondary influence might be the degree to which an area has been the traditional realm of one or the other spouse.

Husbands' and wives' Reports: MC Sample

Husbands and wives: FSD index. MC sample. Wives's FSD reports are substantially more internally consistent than husband's FSD reports, indicated by overall alphas of .59 and .45, respectively. (See Table 5.10.) This pattern was also observed in the VA sample. With respect to the patterns of item-removed alphas for husbands the presence of husband's job choice greatly lowers the internal consistency of husbands' FSD reports, from .53 to .45. Doctor also is an item which lowers the reliability of the measure. At the other extreme, the two items referring to wife's occupation,
TABLE 5.10

Alpha With Item Removed<sup>a</sup> By Husbands' and Wives' Reports Of The FSD, WFSD, and CFSD Indices: MC Sample

<table>
<thead>
<tr>
<th>ITEM&lt;sup&gt;b&lt;/sup&gt;</th>
<th>Alpha With Item Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Husbands</td>
</tr>
<tr>
<td></td>
<td>FSD (74)</td>
</tr>
<tr>
<td>Which Job Husband Should Take</td>
<td>.53</td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>.37</td>
</tr>
<tr>
<td>Which Job Wife Should Take</td>
<td>.31</td>
</tr>
<tr>
<td>Food Money</td>
<td>.42</td>
</tr>
<tr>
<td>Housing</td>
<td>.44</td>
</tr>
<tr>
<td>Insurance</td>
<td>.39</td>
</tr>
<tr>
<td>Doctor</td>
<td>.49</td>
</tr>
<tr>
<td>Car</td>
<td>.43</td>
</tr>
<tr>
<td>Vacation</td>
<td>.31</td>
</tr>
</tbody>
</table>

OVERALL ALPHAS FOR INDICES                             | .45                     | .31                     | .38       | .59       | .49       | .56       |

<sup>a</sup> Alpha Of Index If Item Is Removed

<sup>b</sup> Ranked By WFSD Item Importance
the wife's job choice and whether wife should work items, have the greatest impact. Also high in impact is vacation, an item involving continued joint involvement. Other items tend to form a homogeneous group, each making a moderate contribution to the reliability of the husbands' FSD index.

Why should the two items reflecting wife's occupation be such strong contributors to the husbands' FSD index? Though wife's job choice is available only for the MC sample, wife should work is available for both the VA and VV sample. In the VA sample, wife should work is a moderately low contributor to the reliability of husbands' FSD reports and, as shall be seen, in the VV sample this item actually lowers the internal consistency of husbands' FSD reports. Perhaps the difference is the high level of education which may reflect a more liberal nature in the MC sample. Husbands in a university atmosphere are probably most sensitized to issues involving women's occupation and their responses may reflect their heightened awareness.

As far as wives' FSD reports are concerned, housing has the greatest impact on the measure's reliability, followed by vacation which was a high contributor for husbands as well. At the other extreme, again similar to the pattern for husbands, doctor and husband's job contributed least. Interestingly, in contrast to their strong impact for husbands, for wives the whether wife should work item has
low and wife's job choice only moderate influence. Perhaps in this sample husbands are even more sensitive than wives to issues involving women's opportunities.

**Husbands and wives: Comparisons of FSD and WFSD indices.** Not surprising is the finding that the WFSD index is less reliable than the FSD index, for both husbands and wives. Also tying in to an emerging pattern is the finding that wives' WFSD reports are more consistent than husbands' WFSD reports.

For husbands, the patterns of relationship among the item-removed alphas of the FSD and WFSD indices are almost identical. The most noteworthy aspect of the husbands' WFSD measure is the remarkable difference in the reliability of the index when the least contributing item, husband's job, is removed and when the most contributing item, wife's job, is deleted. These item-removed alphas are .09 and .49, respectively, a difference of .40! These two extreme item-removed alphas demonstrate, as do other items, the lack of impact of the item's importance on improving the reliability of the final say measure.

Interestingly, for wives' WFSD reports wife's job choice is the item with the most impact, which was not the case for wives' FSD reports. Other important contributors include whether wife should work, housing and insurance. Among the least contributors to the wives' WFSD index's reliability is husband's job and doctor, which is same pattern observed for wives' FSD reports and for husband's
WFSD and FSD reports also. Other items tend to be more homogeneous and moderate in their relative contribution to wives' WFSD reports.

As a final note, WFSD indices for both spouses seem to repeat the same pattern observed throughout this chapter: content, not importance, is the primary determinant of an item's impact on the internal consistency of the final say measure. A secondary pattern unique to this sample is the postulated influence of the high level of education and consequent liberalness of this sample on the impact of decision items about wife's occupation.

**Husbands and wives: CFSD compared with FSD and WFSD indices.** The largest difference observed so far between the internal consistency of husbands and wives is present with the CFSD index, with overall alphas of .56 for wives and .38 for husbands, respectively. Husbands' contested decision items appear to be considerably less reliable indicators of marital power than wives' contested items. Still, WFSD scores are even more unreliable for both spouses, and the basic FSD reports the most reliable measure of all.

For husbands, the items with least impact are husband's job choice, doctor, and food money, each of which lowers the internal consistency of husbands' CFSD index when present. On the other hand, vacation and wife's job choice are strong items, followed by housing and insurance in their impact. These same patterns are observed for husbands' FSD and WFSD indices as well. Thus, with husbands' CFSD scores, it
appears that content area, not degree of conflict or importance associated with an item, is the primary determinant of an item's contribution to reliability.

For wives' CFSD reports the overall and item-removed alphas tend to be lower by .03 to .05 points than alphas of wives' FSD reports. Besides this difference the patterns among the items of both indices are almost identical. The one exception is wives' job choice, the absence of which cuts the reliability of the CFSD index almost in half. However, decisions about whether wife should work at all seem to have relatively low impact for the CFSD measure. Although an explanation for the impact of the wife's job choice on wives' CFSD reports is readily available, in that with this liberal sample the issue over women's occupation might be expected to occupy a more central position in determining the marital power balance, no explanation is offered as to why whether wife should work at all should not also be equally as strong an item.

Summary. The most basic finding is that wives' reports are more reliable than husbands' reports, for all three indices. The same basic patterns among the relationships of the items observed throughout this chapter were observed for both husbands and wives although sex of spouse did produce a few moderate differences. The few items about areas of mutual involvement seemed to be more equal in their impact for both spouses than items which covered areas in which only one spouse would be involved after the decision.
Another important finding is that the basic FSD index appears to be more reliable than either of the more complicated WFSD and CFSD indices for both spouses. Weighting by conflict or by importance does not seem to be a major influence in determining an item's impact on the final say measure. The content of the item appears to be the key factor in its influence on the measure, with a small secondary impact of sex of spouse.

Husbands', Wives' and Children's Reports: VV Sample

Husbands, wives and children: FSD index, VV sample. FSD reports for husbands have low internal consistency, with an overall alpha of only .27. (See Table 5.11.) However, similar to patterns in husbands' FSD reports in other samples, housing and car are among the strongest contributing items and insurance and doctor have lower impact. The least contributing item is wife should work. Interestingly, husband's job item also has a stronger impact on reliability than has been observed previously.

Wives' FSD reports are the most unreliable of any of this study, with an overall alpha of only .13. This is the only sample in which husbands' FSD reports are more reliable than wives' FSD reports. With such a very low level of internal consistency conclusions about item relationships must be viewed with skepticism. Nevertheless, as among wives' FSD reports in the MC sample, and to a lesser degree among wives' FSD reports in the VA sample, the wife should
TABLE 5.11

Alpha With Item Removed\(^a\) By Husbands’, Wives’ and Childrens Reports Of The FSD, WFSD and CFSD\(^b\) Indices: WV Sample

<table>
<thead>
<tr>
<th>ITEM(^c)</th>
<th>Husbands</th>
<th></th>
<th></th>
<th>Wives</th>
<th></th>
<th></th>
<th>Children</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Which Job Husband Should Take</td>
<td>.14</td>
<td>.05</td>
<td>.03</td>
<td>.15</td>
<td>.27</td>
<td>.20</td>
<td>.26</td>
<td>.18</td>
<td></td>
</tr>
<tr>
<td>Whether Wife Should Work</td>
<td>.32</td>
<td>.29</td>
<td>.30</td>
<td>.08</td>
<td>.06</td>
<td>.14</td>
<td>.37</td>
<td>.31</td>
<td></td>
</tr>
<tr>
<td>Food Money</td>
<td>.26</td>
<td>.12</td>
<td>.07</td>
<td>-.06</td>
<td>.04</td>
<td>.01</td>
<td>.16</td>
<td>-.07</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>.19</td>
<td>.05</td>
<td>.03</td>
<td>.10</td>
<td>.12</td>
<td>.16</td>
<td>.23</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>Insurance</td>
<td>.35</td>
<td>.26</td>
<td>.27</td>
<td>.15</td>
<td>.18</td>
<td>.24</td>
<td>.31</td>
<td>.19</td>
<td></td>
</tr>
<tr>
<td>Doctor</td>
<td>.30</td>
<td>.16</td>
<td>.17</td>
<td>.10</td>
<td>.18</td>
<td>.15</td>
<td>.23</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>Car</td>
<td>.02</td>
<td>.06</td>
<td>.04</td>
<td>.28</td>
<td>.24</td>
<td>.32</td>
<td>.17</td>
<td>.13</td>
<td></td>
</tr>
<tr>
<td>Vacation</td>
<td>.26</td>
<td>.17</td>
<td>.14</td>
<td>.10</td>
<td>.18</td>
<td>.15</td>
<td>.30</td>
<td>.19</td>
<td></td>
</tr>
</tbody>
</table>

OVERALL ALPHAS FOR INDICES                      | .27      | .14    | .17    | .13   | .18    | .19    | .30      | .19    |        |

\(^a\) Alpha Index If Item Is Removed

\(^b\) CFSD Index Not Available For Children

\(^c\) Items Ranked By WFSD Item Importance
work and food money items are the strongest contributors. However, although husband's job choice is among the least contributing items, so is insurance and especially car, a pattern not found with wives' FSD scores in other samples.

As a consequence of greater variation, FSD item patterns for husbands and wives have more dissimilarities than have been observed in other samples. Interestingly, though, the patterns appear to be almost complementary, with the least contributing item for wives, car, making the strongest contribution for husbands while strong items for wives, wife should work and food money, have least impact for husbands. These differences seem to fall along normative lines, with items in areas traditionally the husband's domain having most impact for him and items in areas belonging traditionally to wives having most impact for her.

Children's FSD reports have the highest internal consistency (overall alpha=.30) of the family members, though this level is only slightly higher than the internal consistency of the FSD index for husbands, and still very low overall. The pattern of relationships among items is very similar to those in children's FSD reports of the VC and SMF samples. With respect to their parents, though, these item patterns of children's FSD reports are mixed, some items being similar in their contribution to their counterparts in husbands' FSD reports while others are more similar to items in wives' FSD reports.
Husbands, wives, and children: Comparisons of FSD and WFSD indices, VV Sample. For husbands and children, overall alphas show that the FSD index is more reliable than the WFSD index. For wives*, however, WFSD reports are slightly more reliable than FSD reports. This is the only instance of this study where the WFSD index is more reliable than the FSD index.

The patterns of relationships among item-removed alphas of the WFSD index and those of the FSD index are practically identical for each of the family members. When the rank orders of the item-removed alphas of the WFSD and FSD indices are correlated, Spearman rank correlation coefficients of .92, .90, and .98 are obtained for husbands, wives, and children, respectively.

It may be that the VV sample is one in which normative tendencies have more of an influence on item impact than in other samples, evidenced by the differing yet complementary patterns of husbands and wives. Interestingly, the impact of children's items seems to fall between the relative impact of items for husbands and wives, especially in areas where differences between husbands and wives are more extreme such as husband's job and doctor. Perhaps the explanation for the mixed patterns of children when compared to reports of husbands and wives is that children's reports tend to meld together their parent's normative differences. This would be the pattern expected if indeed children are less biased observers of their parent's relationship than
are the parents themselves. As further support for this explanation, item-removed alphas tend to be noticeably more homogeneous for children than for either husbands or wives, not to mention their higher level of internal consistency overall.

Husbands and wives: CFSD compared with FSD and WFSD indices. VV sample. Overall, the reliability of the CFSD index is very low, though reliability for wives' reports is slightly higher than for husbands. However, the low level of internal consistency does not mask relationships that have been noted previously. The level of internal consistency of the CFSD index for both spouses is higher than that of the WFSD index, though the relative contribution to reliability of items in the CFSD reports are similar to those in the FSD and WFSD reports. For husbands, car, husband's job and housing have greatest impact while the wife should work and insurance items have the least. For wives, food money and whether wife should work have the most influence on the internal consistency of wives' CFSD reports and car, husband's job choice and insurance have the least.

It appears that weighting the items by either their importance or the amount of conflict associated with them makes little difference when these indices are compared for each spouse. However, there is a sex of spouse factor present in this sample which seems to involve the impact of norms about decision areas, reflected in the differing yet
complementary patterns of husbands and wives. It may be that children's reports tend to meld these differences, evidence by greater uniformity and less extreme values among the item-removed alphas relative to those of husbands and wives reports.

**Summary.** Relative to the others, the VV sample is anomalous in that it is characterized by very low levels of reliability for all family members, with some item-removed alphas even being slightly negative. As in previous samples, the FSD index for husbands is the most reliable instrument, though for wives reliability for the FSD index was slightly lower than with the weighted indices. Furthermore, husbands' FSD reports have higher internal consistency than FSD reports of wives.

Nevertheless, patterns among the items are very similar across the three indices for each respondent, with the presence or absence of item weighting having almost negligible influence on relative contributions of items to reliability. The absence of weighting effects is all the more noticeable because the relationship among items is different for each respondent, while by respondent the relationship among the items is almost identical for the three indices.

Although responses of the parents in this sample deviated in some instances from response patterns of husbands and wives in other samples, children's response patterns are similar to those in the VC and SMF samples.
This may indicate that children's responses, besides compensating for normatively influenced differences among items for husbands and wives, are also more stable. An additional strength of children's reports is that they have a higher level of internal consistency overall than reports of either husband or wife.

Husbands' and Wives' Reports: TG Sample

Husbands, wives and children: FSD index, TG sample. As in almost every other instance, wives' FSD reports have a higher level of internal consistency than husbands' FSD reports, indicated by overall alphas of .64 and .59, respectively (See Table 5.12). As in the VV sample, however, the internal consistency of children's FSD reports is highest of all, with an overall alpha of .68.

For husbands, items with greatest relative influence, wife should work, housing, and car, have also been strong for husbands' FSD reports in other samples. However, doctor, another strong item, has been one of the least central items with husbands' FSD reports previously. Perhaps prevalence of experience with the counseling clinics in among husbands in this sample has led to a more central position for this item. The influence of items referring to children is mixed, with children's curfew, children's discipline and children's allowance having relatively high, moderate and low influence in that order. In fact, either children's allowance or vacation lower the internal consistency slightly.
TABLE 5.12

Alpha With Item Removed* By Husbands', Wives' and Children's Reports Of The FSD, WFSDS, and WFSDR Indices: TG Sample

<table>
<thead>
<tr>
<th>ITEM b</th>
<th>Husbands</th>
<th>Wives</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD (50)</td>
<td>WFSD (50)</td>
<td>WFSDR (57)</td>
</tr>
<tr>
<td></td>
<td>FSD (153)</td>
<td>WFSD (153)</td>
<td>WFSDR (150)</td>
</tr>
<tr>
<td></td>
<td>FSD (18)</td>
<td>WFSD (18)</td>
<td>WFSDR (16)</td>
</tr>
</tbody>
</table>

- Which Job Husband Should Take .59 .61 .62 .65 .55 .59 .68 .54 .69
- Whether Wife Should Work .55 .49 .60 .64 .55 .57 .64 .53 .68
- Food Money .57 .45 .57 .61 .51 .55 .70 .58 .71
- Housing .56 .49 .55 .60 .45 .51 .65 .51 .67
- Children's Discipline .59 .49 .58 .61 .47 .51 .64 .52 .66
- Insurance .59 .49 .56 .60 .46 .52 .66 .54 .68
- Doctor .55 .45 .56 .65 .52 .59 .64 .49 .62
- Children's Curfew .56 .49 .57 .62 .49 .55 .65 .52 .66
- Car .56 .49 .59 .63 .51 .56 .67 .54 .73
- Children's Allowance .62 .48 .56 .59 .50 .51 .67 .54 .73
- Vacation .62 .52 .63 .63 .52 .55 .60 .54 .64

a. Alpha of Index if item is removed

b. Ranked By WFSDS Item importance
For wives, interestingly, children's allowance is the strongest contributor to the FSD index, just opposite the pattern for husbands. Other strong items, however, make equivalent contributions, such as housing and insurance. Among items with less impact for wives are husband's job choice, wife should work and doctor. Also, there seems to be a slight tendency for items involving joint participation to have more impact than the other items, though this tendency is not readily apparent for husbands.

For children's FSD reports the items with least impact is food money, which had more influence for husbands and wives. On the other hand, vacation, an item with relatively low impact for husbands and wives is the strongest item for children. Other stronger items, however, include housing, children's discipline, children's curfew, and wife should work.

In general, patterns among items in husbands' and wives' FSD reports are mixed. There are some similarities among their item contribution patterns and a few exceptions, notably, differences in impact of doctor, wife should work and children's allowance. Economic contributors seem to have more prominence for husbands whereas children's items have a little more impact for wives. For children, emphasis seems to be on items which concern them most such as discipline and curfew, though overall, responses of children are more similar to wives than to husbands.
Husbands, wives and children: Comparison of FSD and WFSDS indices, TG sample. For husbands, wives and children, FSD reports have a higher level of internal consistency than WFSDS reports, a consistent finding in this study. Also, wives' WFSDS reports are slightly more reliable than husbands' WFSDS reports, with children's WFSDS reports having the highest level of reliability. This trend for wives' reports to have higher levels of internal consistency than husbands' reports, and for children's reports to have the highest level of all, has been observed previously.

Although there are few differences in the patterns of item contribution among the respondents, patterns are similar for the FSD and WFSDS index of each respondent. The greatest similarity between the two indices exists with children's reports. Less similar are responses of husbands, with contribution of the children's allowance and food money items noticeably stronger and wife should work weaker for the WFSDS index. Other trends are the lack of impact of food money for children, the impact of doctor for wives, and the lack of importance of vacation for husbands. With an atypical sample such as the TG sample the few differences among respondents in the impact of items could reflect sample-specific characteristics. Even with these deviations, though, it appears that weighting by importance does not improve the internal consistency of the final say measure; it lowers it instead.
Husbands, wives and children: WFSDR compared with WFSDS and FSD indices, TG sample. For all family members, overall alphas show that the respondent-weighted WFSDR index is more reliable than the student-weighted WFSDS index. The level of internal consistency of the WFSDR index is about the same as that of the FSD index for husbands and children, and lower for wives. Thus, a conclusion that can be drawn from the TG sample is that weighting of decision items by importance, even when respondents themselves assign weights, does not improve the internal consistency of the final say measure.

For each respondent, patterns of relationships among WFSDR items are more similar than those among WFSDS items to the FSD item patterns. Patterns among all three indices are most similar for children and wives, with husbands' reports evidencing a little more variation. For husbands, wife should work is a relatively low contributor to the WFSDS and WFSDR indices, but a strong contributor to the reliability of the FSD index. The reverse pattern is observed for food money and children's allowance. In addition, housing has less impact in the WFSDS index. The only major variations with other respondents also occur with the WFSDS index, with children's allowance for wives and vacation for children. Perhaps these deviations are due in part to the students' weights being a little less accurate indicators of the importance of items than respondent weights.
Across respondents a few consistent differences in relative impact are evident as well. Children's discipline has more impact for wives and children than for husbands, while children's allowance has more impact for husbands and wives than for children. Doctor has more impact for wives than for either husbands or children. Though less obvious, several other items in children's reports tend, in their relative impact on the reliability of the final say measures, to fall between the relative impact of these items for husbands and wives. For children, only vacation and food money fall outside these boundaries.

Summary. As in previous samples, wives' reports for the final say measure are more reliable than husbands' reports, with children's reports being most reliable of all. Furthermore, weighting the final say index either by importance or amount of conflict does not improve the internal consistency of the measure.

The differences between spouses do not seem to form a general pattern. A weak tendency exits, however for the relative impact of children's items on reliability to fall between the relative impact of items for husbands and wives. Due to the narrow range of item-removed alphas of each respondent this trend is more difficult to see than was the case with the VV sample. Because of the atypical nature of the TG sample, even this slight tendency gives some support to the explanation that children may be less biased reporters of their parents relationships than parents are of
themselves. Since children also have the highest levels of internal consistency, it may well be that children are the best choice of respondents for the final say decision measure.

As a final point, items referring to children seemed to have moderately stronger impact upon the reliability of children's reports than upon the reliabilities of husbands' and wives' reports. Thus, even the children may have a tendency to be biased in their observations, in that they report as items with more impact those which tend to concern them directly. However, evidence for this bias will need to be provided through further research, because the differences among respondents in the TG sample may only be a reflection of its atypical nature.

**Internal Consistency of Husbands', Wives', and Children's Reports of the FSD, WFSD, and CFSD Indices: General Trends**

Children's reports most reliable, husbands' least. Although only two samples, VV and TG, contained reports on the final say decision indices from children, in both samples children's reports had the highest levels of internal consistency. Furthermore, in each sample containing reports from both spouses, wives' reports had higher levels of internal consistency than husbands' reports for all three indices. The pattern of relative contributions of items to reliability is the most consistent across samples for children. Additionally, item-removed alphas for children tend to have narrower ranges than
item-removed alphas for husbands and wives, indicating greater uniformity among children's items in their contribution to the final say measure's reliability.

These findings, coupled with the observation that relative item contributions to reliability of indices for children tend to fall between the relative contributions of the same items for husbands and wives, suggest that children may be less biased in their reports than their parents. This supports the position that children are more objective observers of their parents' relationships than are the parents themselves.

Unweighted FSD index most reliable for all family members. Consistently, even when examined by respondent, the reliability of the unweighted final say measure remained the same or was actually lowered by more complex conflict or importance weighting methods, with the exception of the VA sample where reliability of the CFSD index was higher than that of the FSD index. Even though part of the lower reliability of the WFSD index may be attributable to measurement error introduced through assignment of importance weights by outsiders, in the TG sample the internal consistency of the final say measure also remains the same or is lowered when respondents provide the importance weights. Similar findings are also observed with conflict weighting, another procedure which did not raise the level of internal consistency of the final say instrument.
Although it is possible that weighting schemas other than those used in this study may increase the reliability of the final say measure, on the basis of the findings in this chapter the more simply computed unweighted version of the final say decision index, the FSD index, is the more reliable instrument.

**Norms may influence impact of decision items.** Though patterns among the relative contributions of decision items to the reliability of the final say measure remains essentially unchanged across the FSD, CFSD and WFSD indices when these are examined by respondent, these patterns do exhibit variation in some instance when compared between spouses. It may be that normative influences upon and degree of joint participation of family members in decision areas play a large part in these differences, suggesting that careful selection of items is necessary. Items to be included in the measure could be those which required the continued participation of both spouses after decisions are made, and those areas in which a priori norms do not favor the participation of one spouse over the other. Although this certainly cannot be taken as a hard and fast rule, items which meet these requirements to some degree, such as housing, having children and interacting with children and budgeting income, seem to have more impact in this study on the reliability of the final say measure.
SUMMARY

Internal Consistency of the FSD, WFSD and CFSD Indices

Item weighting does not improve reliability. The more simply computed unweighted version of the final say decision measure, the FSD index, has a higher level of internal consistency than either the importance weighted version of the final say measure (WFSD) or the conflict weighted version (CFSD). In fact, weighting seemed to lower reliability, especially so for importance weighting.

Content area determines item's contribution to internal consistency. The patterns of relative contributions of items to the final say measure are very similar across the FSD, WFSD and CFSD indices. With few exceptions it appears that the content of the item, not the manner in which items are weighted, is the major factor in determining the impact of an item on the overall reliability of the final say decision measure.

The final say decision instrument is reliable. The internal consistency of the final say decision measure is quite stable across the US and Indian samples, although in a few cases reliability was quite low. However, because patterns of relationships are so remarkably similar across indices within samples, and across the sample in general, it is very likely that these dips in reliability are due to sampling problems rather than fluctuations in internal consistency.
Internal Consistency of Husband's, Wives' and Children's Reports of the Final Say Decision Measure

Internal consistency highest for children, lowest for husbands. Although children's reports are available only for the FSD and WFSD indices, in every case the internal consistency for the children's reports is higher than the internal consistency for either husbands or wives. Furthermore, wives' reports in every sample where spouses reports are available have higher levels of internal consistency than husbands' reports, for all three indices.

Additionally, the patterns among item contributions to the reliability of the indices is most consistent across samples for children. Coupled with the observation that the relative impact of children's items seems to fall between the relative impact of husbands' and wives' items, these findings suggest that children may be more objective observers of marital decision making processes than parents.

FSD most reliable measure for all family member respondents. For each respondent the internal consistency of the final say decision measure remained the same or was actually lowered by weighting decision items by amount of conflict or the relative importance of the items. The findings of this chapter suggest that the relatively straightforward unweighted FSD index is the most reliable final say decision measure. Although other weighting schemas may produce different results, the failure of the conflict and importance weighting in this study is
especially highlighted in those samples where responses are available from all three family members. The pattern of relative item impact is very similar across the three indices for each respondent in turn, but this general pattern varies from respondent to respondent.

Norms may lead to differential impact of items for spouses. Though the pattern of relative impact of decision items to reliability is very similar for the FSD, WFSD and CFSD indices by respondent, some variation exists when comparisons are made among the family members. It is possible that normative influences play an important part in these differences, suggesting careful selection of items. Decision items tapping areas which traditionally have been associated with one of the respondents, or in which only one of the respondents is primarily involved, have more weight for that respondent than for the others.

In Conclusion

Chapter IV ended with the tentative hypothesis that the best choice of instrument appeared to be the WFSD index, although this index was only a slight improvement over the FSD index. The best choice of respondent seemed to be children. The results of Chapter V have shown that as far as internal consistency is concerned, the WFSD index is least desired, with the FSD index being the most preferred measure. However, again children appear to be the best choice as observers, having the most consistent and uniform responses among those of the family members. The
examination of the validity of the FSD, WFSD and CFSD indices and of the reports of family members in the chapter that follow will show if these trends continue.
CHAPTER VI

CONSTRUCT VALIDITY OF DECISION POWER SCORES
BY TYPE OF INDEX AND RESPONDENT

Even more important than the internal consistency of a measure is its validity—the degree to which it measures what it is supposed to. One procedure which is often used to establish the validity of a measure is to correlate it with a different measure of the same phenomenon which has had its validity established previously, essentially a test of concurrent validity. This procedure was used in several of the studies reviewed in Chapter I with the intention of assessing the validity of the final say measure. However, because none of the marital power measures in these studies were actually known to be valid, at best it is difficult to interpret the findings.

With the concurrent validity approach, high inter-correlations among measures could be taken as an indication of high validity, but this could be a mistake. These high correlations could also indicate that the indices are all measuring the same wrong thing! (Nunnally, 1967:82-83). Low correlations, on the other hand, leave the researcher at a loss to sort out valid indices, if any, from those which are invalid. In sum, unless the validity of at least one of the indices has been established, the correlations cannot be taken as evidence of either validity or lack of validity.
In this study a different approach is therefore taken, essentially an examination of construct validity. Evidence of construct validity can be obtained by correlating the measure with other variables which are theoretically predicted to be related to the construct in question. It is through this means that the relative validity of the FSD, WFSD and CFSD indices, and that of the family members' responses as well, will be examined and compared in this chapter.

CRITERION VARIABLES OF THE FINAL SAY MEASURE

Resource theory postulates that a number of variables are related to marital decision power. This theory, first suggested by Blood and Wolfe (1960) and later modified by Rodman (1972), predicts that as a spouse provides valued or needed resources to the marital relationship to his or her power in that relationship increases. The influence of these resources is relative as well, with the spouse having greater resources also having greater decision power. Several of these variables will be included in the analysis in this chapter.

Variables whose increases are expected on the basis of this theory to be related to increases in husbands' decision power include husband's occupation, income, education, and number of children (Blood and Wolfe, 1960; Centers, Raven and Rodrigues, 1971) Variables expected to be associated with increases in wife's power are wife's occupational
prestige, income and education as well as variables related to the reduction of wife's child rearing responsibilities, such as family life cycle stage and age of youngest child (Bahr, 1974; Centers et al., 1971). Also contributing to wife's decision power are variables associated with the length of the marital relationship, such as number of years married, husband's age and wife's age (Jenkins, 1976). The influence of these latter variables occurs as a result of the shifting of the bases of decision power away from normative influences towards competency and skill, a process which might be expected to occur gradually over a marriage.

Four relative resource variables, relative occupational prestige, relative income, relative education and relative age, will also be included in the analysis. Increases in these variables are predicted to be associated with increases in husbands' decision power. A final variable to be included is marital satisfaction, which Jenkins (1976) found to be positively related to marital power. This may reflect a relationship between marital satisfaction and degree of complexity in decision making, which would be expected to increase the greater the mutual involvement of spouses in decision making. The more influence a spouse has in a relationship the more this spouse will be able to contribute to his or her desired outcome.
CONSTRUCT VALIDITY OF THE FSD, WFSD AND CFSD INDICES

The procedure which will be used to examine the construct validity of the final say decision measure is similar to the procedure used in Chapter V to examine its content validity. The indices will be examined by sample, followed by a summary of general trends across samples.

VC Sample:

The criterion variables of the VC sample are (1) husband's occupational prestige, (2) wife's occupational prestige, (3) relative occupational status, (4) husband's income, (5) wife's income, (6) relative income, (7) husband's education, (8) wife's education, (9) relative education, (10) husband's age, (11) wife's age, (12) relative age, (13) wife's employment status and (14) number of children.

FSD index. Overall, the magnitude of the Pearson correlation coefficients (validity coefficients) for the FSD index (see Table 6.1) is not very high. However, because many factors are assumed to have an influence on decision power of which the criterion variables above form only a subset, the level of these correlations is not surprising.*1

---

1. A question that comes to mind is, "How high should a validity coefficient be to indicate that a measure has construct validity?" Cronbach states that a coefficient of only .20 may make an appreciable practical contribution in establishing the validity of a measure (1970:135). A series of low correlations in the predicted direction may be stronger evidence for the validity of a measure than a single high correlation.
TABLE 6.1

Validity Coefficients Of The FSD and WFSD Indices: VC Sample

<table>
<thead>
<tr>
<th>Criterion Variables</th>
<th>FSD</th>
<th>WFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husband's Occupational Status (n=506)</td>
<td>.13</td>
<td>.15</td>
</tr>
<tr>
<td>Wife's Occupational Status (n=313)</td>
<td>-.06</td>
<td>-.05</td>
</tr>
<tr>
<td>Relative Occupational Status (n=311)</td>
<td>.08</td>
<td>.10</td>
</tr>
<tr>
<td>Husband's Income (n=448)</td>
<td>.15</td>
<td>.17</td>
</tr>
<tr>
<td>Wife's Income (n=246)</td>
<td>-.08</td>
<td>-.06</td>
</tr>
<tr>
<td>Relative Income (n=232)</td>
<td>.09</td>
<td>.09</td>
</tr>
<tr>
<td>Husband's Education (n=507)</td>
<td>.05</td>
<td>.06</td>
</tr>
<tr>
<td>Wife's Education (n=509)</td>
<td>-.10</td>
<td>-.10</td>
</tr>
<tr>
<td>Relative Education (n=504)</td>
<td>.14</td>
<td>.16</td>
</tr>
<tr>
<td>Husband's Age (n=495)</td>
<td>-.17</td>
<td>-.16</td>
</tr>
<tr>
<td>Wife's Age (n=503)</td>
<td>-.13</td>
<td>-.15</td>
</tr>
<tr>
<td>Relative Age (n=490)</td>
<td>-.06</td>
<td>-.04</td>
</tr>
<tr>
<td>Wife's Work Status (n=470)</td>
<td>-.10</td>
<td>-.10</td>
</tr>
<tr>
<td>Number of Children (n=456)</td>
<td>.14</td>
<td>.12</td>
</tr>
</tbody>
</table>
A much more important aspect of the correlations is their consistency, and with respect to predictions of resource theory their consistency is striking.

Every resource variable with the exception of relative age correlates in the expected direction. Increases in husband's occupational prestige, income and education all are associated with increases in husbands' decision power and increases in these same resources for the wife are associated with increases in wives' decision power. Also, increases in relative occupational prestige, income, or education are associated with increases in decision power of the spouse with the greater resources. It appears that income and occupational prestige carry more weight for husbands than for wives, as evidenced by correlations for husbands which are twice as large as those for wives. However, for education the reverse is true, education having the greatest impact for wives.

Validity coefficients of variables related to length of marriage and number of children also fall in the predicted direction, with exception of relative age. Relative age has a rather homogeneous distribution, perhaps because ages of both spouses fall between 45 and 55 years of age. It may be that by the time spouses have been married 20 years or so
the age difference is irrelevant with respect to decision power.*2

Comparison of FSD and WFSD indices. As with the FSD index, magnitudes of the validity coefficients of the WFSD index are low. However, patterns of correlations match very well the predictions of resource theory. Increases in husband's occupational prestige, education and income are accompanied by an increase in his power whereas increases in wife's occupational prestige, education and income are accompanied by an increase in her power. Also, as relative occupational prestige, relative income and relative education increase so does the relative decision power of the spouse with the greater resources. Employed wives have greater power than non-employed wives and wives with more children have less power than those with fewer children. Lastly, as the ages of both the wife and husband increase, so does wives' decision power.

In sum, other than variation of .01 or .02 degrees of magnitude for some of the criterion variables, the pattern of validity coefficients of the FSD and WFSD indices are identical. It appears that weighting the decision items of the final say measure by their relative importance does not increase its validity.

--------

2. The respondents in the VC sample are primarily freshman and sophomore college college students. It is assumed that their parents would necessarily have been married 19 or 20 years or more, even though no information is available about the actual length of their marriages.
Summary. Although the validity coefficients are not high for either the FSD or the WFSD indices, correlation patterns indicate that as far as predictions from resource theory are concerned, both measures seem to be quite valid. Only relative age produced a correlation in a direction opposite to that predicted by resource theory. Furthermore, with respect to relative validity the FSD and WFSD indices are practically identical with only .01 or .02 degrees difference at most in the magnitudes of the validity coefficients of the two indices. Thus it appears that weighting decision items does not improve the validity of the measure. Because of its relatively higher level of internal consistency the FSD index is the stronger measure of the two.

SMF Sample

The criterion variables for the FSD and WFSD indices of this sample are: (1) husband's occupational prestige, (2) wife's occupational prestige, (3) relative occupational prestige, (4) husband's education, (5) wife's education, (6) relative education, (7) husband's age, (8) wife's age, (9) relative age, (10) wife's employment status and (11) number of children.

FSD index. The magnitudes of the validity coefficients for the FSD index are noticeably lower than those of the FSD index in the VC sample. (See Table 6.2). In spite of the low magnitudes however, correlations tend to fall in the predicted directions. Husband's decision power appears to
<table>
<thead>
<tr>
<th>Criterion Variables</th>
<th>FSD</th>
<th>WFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husband's Occupational Status (n=528)</td>
<td>.02</td>
<td>.02</td>
</tr>
<tr>
<td>Wife's Occupational Status (n=152)</td>
<td>.04</td>
<td>.08</td>
</tr>
<tr>
<td>Relative Occupation Status (n=152)</td>
<td>-.06</td>
<td>-.08</td>
</tr>
<tr>
<td>Husband's Education (n=525)</td>
<td>.05</td>
<td>.06</td>
</tr>
<tr>
<td>Wife's Education (n=525)</td>
<td>-.01</td>
<td>.01</td>
</tr>
<tr>
<td>Relative Education (n=528)</td>
<td>.07</td>
<td>.07</td>
</tr>
<tr>
<td>Husband's Age (n=528)</td>
<td>.00</td>
<td>-.01</td>
</tr>
<tr>
<td>Wife's Age (n=528)</td>
<td>.01</td>
<td>.00</td>
</tr>
<tr>
<td>Relative Age (n=528)</td>
<td>.03</td>
<td>.03</td>
</tr>
<tr>
<td>Wife's Employment Status (n=527)</td>
<td>-.05</td>
<td>-.08</td>
</tr>
<tr>
<td>Number of Children (n=528)</td>
<td>.03</td>
<td>.05</td>
</tr>
</tbody>
</table>
increase as husband's occupational prestige, husband's education, relative education and number of children increase. At the same time, wife's decision power increases for employed wives and as wife's education increases, though the validity coefficient for wife's education is so low that wife's education can be considered not related to decision power.

Interestingly, neither husband's age nor wife's age seems to be associated with decision power, although as relative age increases so does wife's power, the same pattern observed with the FSD index in the VC sample. The only other difference between the two samples is that in the SHF sample increases in wife's occupational status are associated with increases in husband's decision power and increases in relative occupational prestige are associated with increases in wives' FSD decision power.

It is difficult to explain the occupational prestige reversals. Perhaps part of the problem is the heavily skewed distribution for wife's occupational prestige. Over half of the wives were not employed when this sample was gathered, and of those remaining nearly 80 percent were in blue collar occupations. On the other hand, the correlation for wife's employment status, a variable which is simply a dichotomy of employed vs. non-employed wives, does fall in the predicted direction. Employed wives having more decision power.
Comparison of FSD and WFSD indices. In no instance do the validity coefficients of the WFSD index fall in the opposite direction from those of the FSD index. Furthermore, the magnitude of the WFSD validity coefficients is higher without exception than the magnitude of the FSD counterparts. These findings suggest that in the SMF sample weighting the final say measure by the importance of the decision items produces an index that is slightly more valid. However, the validity of both indices taken together is not as strong as it was in the VC sample.

Summary. Both the FSD and WFSD indices appear to be valid instruments in the SMF sample, though the validity of the WFSD index appears to be slightly stronger. Interestingly, the validity of both instruments is weaker in the SMF sample than in the VC sample, the same pattern that occurs with their reliability as well. It may be that the younger children of the SMF sample are less aware of the resources of their parents and other aspects of their parents' relationships than are the older college-aged children in the VC sample. Their responses would result in a larger random error being introduced into the SMF sample than into the VC sample.

SIF Sample

Only the FSD index is available for the SIF sample, which has the following criterion variables: (1) husband's occupational prestige, (2) wife's occupational prestige, (3) relative occupational prestige, (4) husband's education, (5)
wife's education, (6) relative education, (7) husband's age, (8) wife's age, (9) relative age, (10) wife's employment status and (11) number of children.

**FSD index.** Similar to findings in the previous samples, in the SIF sample the magnitude of the validity coefficients is low. (See Table 6.3) This is further evidence of the complexity of the factors which influence marital power. Nevertheless with the exception of husband's occupational prestige, and wife's age, all the correlations fall in the predicted direction. This is especially significant in that the respondents in the SIF sample are from a country (India) in which traditional norms relegating marital power to husbands have much more of an influence than they do in the United States.

However, even though validity coefficients are in the predicted direction, patriarchal norms may be interacting with the criterion variables to some degree. For instance, wife's occupational prestige has one of the strongest impacts on wives' decision power of any of the criterion variables, but in previous samples its impact has been relatively weak. Rodman (1972) explains this in his modification of resource theory by stating that in those countries undergoing a transition from traditional to more liberal norms about marital relationships, the change does not occur at all levels of the society simultaneously. Rather, the change-over will be evident first in the more privileged classes characterized by higher levels of
<table>
<thead>
<tr>
<th>Criterion Variables</th>
<th>FSD INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husband's Occupational Prestige (n=1022)</td>
<td>-.05</td>
</tr>
<tr>
<td>Wife's Occupational Prestige (n=123)</td>
<td>-.11</td>
</tr>
<tr>
<td>Relative Occupational Prestige (n=123)</td>
<td>.16</td>
</tr>
<tr>
<td>Husband's Education (n=1022)</td>
<td>.02</td>
</tr>
<tr>
<td>Wife's Education (n=1022)</td>
<td>-.03</td>
</tr>
<tr>
<td>Relative Education (n=1022)</td>
<td>.06</td>
</tr>
<tr>
<td>Husband's Age (n=1022)</td>
<td>.05</td>
</tr>
<tr>
<td>Wife's Age (n=1022)</td>
<td>.01</td>
</tr>
<tr>
<td>Relative Age (n=1022)</td>
<td>-.07</td>
</tr>
<tr>
<td>Wife's Employment Status (n=1022)</td>
<td>-.02</td>
</tr>
<tr>
<td>Number of Children (n=1022)</td>
<td>.07</td>
</tr>
</tbody>
</table>
education and socio-economic status, followed by changes filtering down through the less privileged sectors of the society in turn.

It may be that employed wives in this sample come from a small number of marriages reflecting a more equalitarian ideology, contrasting with the majority of marriages in this country which tend to more traditional. In these more liberal marriages, the relative increase in wife's involvement in decision making due solely to the more liberal ideology the spouses would enhance the impact of wife's employment on her decision power. This interaction of norms with resources could also account for the pattern of the occupational prestige correlations as well as the very low impact of husband's education.

As a final comment, it is of interest that an increase in husband's age is associated with an increase in wife's decision power, a pattern seen previously. This may indicate that even in a society where patriarchal norms are stronger, the bases of power gradually shift away from normative determinants to competency based determinants, although, surprisingly, wife's age does not show this same relationship. Again, relative age is negatively related to decision power, even though in the SIF sample it appears to have a less homogeneous distribution pattern than in the previous samples.
Summary. The findings with the SIF sample support the cross-cultural validity of the FSD index, indicating the strength of the final say decision measure. The anomalous negative correlation with husband's occupational prestige is a result, perhaps, of the more liberal norms of couples in higher socio-economic positions relative to more traditional couples who may not have had similar educational and occupational opportunities.

VA Sample

In addition to the FSD and WFSD indices the VA sample also contains the CFSD index as well. The criterion variables in this data set are: (1) husband's occupational prestige, (2) wife's occupational prestige, (3) relative occupational prestige, (4) husband's income, (5) wife's income, (6) relative income, (7) husband's education, (8) wife's education, (9) relative education, (10) husband's age, (11) wife's age, (12) relative age, (13) wife's employment status, (14) number of years married and (15) number of children.

FSD index. Overall, the level of magnitude of the validity coefficients of the FSD index, shown in Table 6.4, is about the same as those in the VC sample. The correlations in both samples are higher than in the SMF and SIF samples. The most striking aspect of the validity coefficients in the VA sample is that they indicate increases in husband's resources (occupational prestige, income and education) are associated with increases in
TABLE 6.4

Validity Coefficients of the FSD, WFSD, and CFSD Indices: VA Sample

<table>
<thead>
<tr>
<th>CRITERION VARIABLES</th>
<th>FSD</th>
<th>WFSD</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husband's Occupational Prestige (N=2049, 2049, 2014)</td>
<td>-.06</td>
<td>-.06</td>
<td>-.04</td>
</tr>
<tr>
<td>Wife's Occupational Prestige (N=1841, 1841, 1819)</td>
<td>-.07</td>
<td>-.07</td>
<td>-.05</td>
</tr>
<tr>
<td>Relative Occupational Prestige (N=1806, 1806, 1785)</td>
<td>.01</td>
<td>.02</td>
<td>.01</td>
</tr>
<tr>
<td>Husband's Income (N=1913, 1913, 1883)</td>
<td>-.05</td>
<td>-.05</td>
<td>-.01</td>
</tr>
<tr>
<td>Wife's Income (N=1889, 1889, 1859)</td>
<td>-.16</td>
<td>-.15</td>
<td>-.10</td>
</tr>
<tr>
<td>Relative Income (N=1828, 1828, 1801)</td>
<td>.15</td>
<td>.14</td>
<td>.11</td>
</tr>
<tr>
<td>Husband's Education (N=2084, 2084, 2050)</td>
<td>-.09</td>
<td>-.09</td>
<td>-.06</td>
</tr>
<tr>
<td>Wife's Education (N=2078, 2078, 2045)</td>
<td>-.08</td>
<td>-.08</td>
<td>-.05</td>
</tr>
<tr>
<td>Relative Education (N=2078, 2078, 2045)</td>
<td>-.01</td>
<td>-.01</td>
<td>.00</td>
</tr>
<tr>
<td>Husband's Age (N=2092, 2092, 2056)</td>
<td>-.06</td>
<td>-.06</td>
<td>-.08</td>
</tr>
<tr>
<td>Wife's Age (N=2088, 2088, 2054)</td>
<td>-.05</td>
<td>-.05</td>
<td>-.07</td>
</tr>
<tr>
<td>Relative Age (N=2081, 2081, 2048)</td>
<td>.00</td>
<td>-.01</td>
<td>-.01</td>
</tr>
<tr>
<td>Wife's Employment Status (N=2046, 2046, 2012)</td>
<td>-.17</td>
<td>-.17</td>
<td>-.11</td>
</tr>
<tr>
<td>Number of Years Married (N=2096, 2096, 2060)</td>
<td>-.03</td>
<td>-.04</td>
<td>-.06</td>
</tr>
<tr>
<td>Number of Children (N=2099, 2099, 2063)</td>
<td>.05</td>
<td>.05</td>
<td>.02</td>
</tr>
</tbody>
</table>

a. N's for FSD, WFSD and CFSD indices, respectively.
wife's power, a finding directly contrary to that predicted by resource theory. Coefficients for wife's resources, however, fall in the predicted direction. In fact, other than with husband's resources, validity coefficients fall in the predicted direction with all other variables except relative age, which seems to have no influence on decision power.

Why should increases in husband's resources be related to increases in wife's decision power? One possible explanation stems from the fact that the VA sample is a nationally representative sample and thus contains families occupying every social strata. Consequently, it may be that, since the VA sample contains a large proportion of blue collar families, the sample is dominated by spouses who adhere more to traditional patriarchal norms than in those samples centered around college students and their families.*3 If this is so, perhaps the negative correlations of husband's resources with the FSD index indicate that patriarchal norms are still an important aspect in marital relationships in the United States. As in the SIF sample, it may be that for husbands the impact of the socio-economic resource variables on decision power reflects more the relaxation of traditional norms than any other factor.

3. Nearly 60 percent of the husbands and over 65 percent of the wives have had no further education beyond high school; 30 percent of the husbands in the VA sample have not even finished high school.
Another more direct explanation for the anomalous correlations is that they might be masking differences between husbands' and wives' responses to the final say decision measure. This possibility will be examined in the section comparing the relative validity of the family members' responses.

**Comparison of the WFSD and FSD indices.** For all practical purposes, the validity coefficients of the FSD and WFSD indices are identical. Patterns of correlations fall in the same direction for both indices and only 5 of the 15 validity coefficients differ, the difference in magnitude in each case being only .01.

It appears, therefore, that weighting the decision items in the final say measure by their importance does not improve the validity of the index and, in the VA sample at least, appears to make no difference at all. However, even though the FSE and WFSD indices are equivalent in their validity, because of a higher level of internal consistency the FSD index is the stronger measure of the two, a pattern seen in previous samples. Overall, though, because of the problem of negative correlations of husband's resources, the validity of the FSD and WFSD indices is weaker in the VA sample than in other samples seen previously.

**Comparison of the CFSD with the WFSD and FSD indices.** The direction of validity coefficients for the CFSD index is very similar to their directions for the FSD and WFSD index. With the exception of the husband's socio-economic resource
variables (occupational prestige, income and education) all correlations are in the predicted direction, although relative education appears not to be related to the contested final say measure. However, the magnitudes of the correlations present an interesting pattern.

In Chapter IV the severely truncated range of scores for the CFSD measure was hypothesized to be a result of the very homogeneous distributions of the norms about decision making incorporated into the items of the CFSD index. It was suggested that the truncated distribution of scores would reduce the capability of the CFSD index to differentiate among the levels of final say power. This lack of discriminatory power would be evidenced by the relatively lower validity coefficients of this index compared with those of the FSD and WFSD indices.

The relative lack of discriminating power of the CFSD index seems to be evidenced in Table 6.4. The validity coefficients of the CFSD index are lower than corresponding correlations for the FSD and WFSD indices in every instance, regardless of sign. Thus it appears that the CFSD index is less valid than either the FSD or the WFSD indices, hampered by the great homogeneity of its scores.

Summary. The FSD index appears to be the strongest measure in the VA sample. Although its validity coefficients are almost identical to those of the FSD index, the WFSD index has a lower level of internal consistency. The CFSD index is the weakest measure of the three, its
lower validity coefficients hypothesized as being due to the extremely truncated distribution of its decision power scores.

With respect to the validity of the final say measures overall, the VA sample presents some interesting findings. All validity coefficients are in the predicted direction, with the exception of husband's occupational prestige, income and education. A large proportion of the VA sample is comprised of blue collar families who may adhere more strongly to patriarchal norms than families which are predominantly white collar. It may be, therefore, that the negative correlations of husband's socio-economic resources represent a relaxation of patriarchal norms as socio-economic status increases. Perhaps American families hold to traditional norms more strongly than studies based on college student samples might suggest.

MC Sample

The criterion variables for this sample are: (1) husband's occupational prestige, (2) wife's occupational prestige, (3) relative occupational prestige, (4) husband's income, (5) wife's income, (6) relative income, (7) husband's education, (8) wife's education, (9) relative education, (10) husband's age, (11) wife's age, (12) relative age, (13) wife's employment status, (14) number of years married, (15) family life cycle stage, (16) number of children and (17) age of youngest child.
Validity coefficients of the MC sample appear in general to be at the same level of magnitude as those of the VA sample, perhaps being slightly smaller overall. (See Table 6.5). As in VA sample, some of the correlations fall in directions opposite those predicted. Interestingly, though, the deviant validity coefficients are not the same for both samples.

In the VA sample increases in the resources of either spouse were associated with increases in wife's decision power. However, the opposite pattern is evident in the MC sample. Increases in the resources of both spouses are associated with increased husbands' decision power. Furthermore, in the MC sample, increases in relative occupational prestige and relative education are associated with increases in wives' decision power instead of with husbands' decision power.

An initial attempt to explain these deviant validity coefficients might single out the influence of the liberal norms of this sample, with its disproportionate number of college professors and their spouses. According to Rodman's (1972) modification of resource theory liberalism should result in increased wives' decision power as husband's and wife's resources increase. In the MC sample, however, the increases in resources of both spouses are accompanied by increases in husbands' decision power.
TABLE 6.5
Validity Coefficients of the FSD, WFSD, and CFSD Indices: MC Sample

<table>
<thead>
<tr>
<th>CRITERION VARIABLES</th>
<th>FSD</th>
<th>WFSD</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husband's Occupational Prestige (n=153)</td>
<td>.03</td>
<td>-.03</td>
<td>.02</td>
</tr>
<tr>
<td>Wife's Occupational Prestige (n=139)</td>
<td>.09</td>
<td>.07</td>
<td>.05</td>
</tr>
<tr>
<td>Relative Occupational Prestige (n=139)</td>
<td>-.05</td>
<td>-.09</td>
<td>-.01</td>
</tr>
<tr>
<td>Husband's Income (n=149)</td>
<td>.11</td>
<td>.04</td>
<td>.11</td>
</tr>
<tr>
<td>Wife's Income (n=145)</td>
<td>.02</td>
<td>.04</td>
<td>.00</td>
</tr>
<tr>
<td>Relative Income (n=141)</td>
<td>.10</td>
<td>.07</td>
<td>.10</td>
</tr>
<tr>
<td>Husband's Education (n=153)</td>
<td>.01</td>
<td>-.03</td>
<td>-.04</td>
</tr>
<tr>
<td>Wife's Education (n=153)</td>
<td>.12</td>
<td>.06</td>
<td>.08</td>
</tr>
<tr>
<td>Relative Education (n=153)</td>
<td>-.07</td>
<td>-.04</td>
<td>-.10</td>
</tr>
<tr>
<td>Husband's Age (n=147)</td>
<td>-.02</td>
<td>-.07</td>
<td>.00</td>
</tr>
<tr>
<td>Wife's Age (n=147)</td>
<td>-.02</td>
<td>-.07</td>
<td>.00</td>
</tr>
<tr>
<td>Relative Age (n=147)</td>
<td>-.02</td>
<td>-.01</td>
<td>-.01</td>
</tr>
<tr>
<td>Wife's Employment Status (n=129)</td>
<td>.00</td>
<td>.05</td>
<td>-.01</td>
</tr>
<tr>
<td>Number of Years Married (n=145)</td>
<td>-.02</td>
<td>-.07</td>
<td>.00</td>
</tr>
<tr>
<td>Family Life Cycle Stage (n=142)</td>
<td>.06</td>
<td>.01</td>
<td>.07</td>
</tr>
<tr>
<td>Number of Children (n=151)</td>
<td>.04</td>
<td>.04</td>
<td>.06</td>
</tr>
<tr>
<td>Age of Youngest Child (n=131)</td>
<td>-.05</td>
<td>-.12</td>
<td>-.05</td>
</tr>
</tbody>
</table>
A more likely explanation for the errant correlations is that they are a reflection of the severely skewed and truncated distribution of the resource variables of the MC sample, the smallest of this study. Seventy percent of the husbands occupy the first 3 categories of the Hollingshead 7-factor occupational scale, with 35 percent in the first category alone. Wife's occupational prestige is even more severely truncated, with nearly 70 percent of the wives being grouped into just two categories. Wife's income and education are also much more truncated than husband's income and education as well. This homogeneous pattern in which a large proportion of cases occupy only a few categories is much more susceptible to the influence of random error (Cronbach, 1970:430-432) and thus may explain in part the deviant correlations associated with wife's resources.

A final explanation should also be mentioned. In Chapter V substantial differences were noted in the responses of the two spouses in the MC sample. It may be that combining the responses of husbands and wives produces relationships between the FSD index and the criterion variables which represent the responses of neither spouse. This possibility will be examined in the next section, where the relative validity of responses of husbands and wives will be compared.

Comparisons of the FSD and WFSD indices. Although in previous samples the patterns and magnitude of the validity coefficients have been almost identical for the FSD and WFSD
indices, in this sample there are some differences. Variables theoretically predicted to favor the wife seem to increase in strength in the WFSD measure while variables favoring the husband lose strength. For instance, the influence of husband's income is lowered and signs of the correlations for husband's occupational prestige and education are now reversed. On the other hand, husband's and wife's age, number of years married and age of youngest child show an increased impact on wives' decision power.

Even with this apparent improvement in the direction and strength of some of the variables predicted to increase wife's decision, it is still difficult to determine which of the two indices is more valid. Because none of the signs of the deviant correlations of the WFSD index change direction, but instead, two additional deviant correlations are added, it may be that the FSD measure is slightly more valid. However, a more correct interpretation of the findings might be that neither index is very valid with the MC sample.

**Comparison of the CFSD with the FSD and WFSD indices.** Reflecting the same pattern observed in the VA sample, the magnitudes of correlations of the criterion variables for the CFSD index are generally lower than those of either the FSD or the WFSD indices. For nine variables the validity coefficients of the CFSD index are the lowest of the three indices while in only three instances are they the highest. In general, validity coefficients of the CFSD index are more similar to those of the FSD index than to those of the WFSD
Thus, even though correlations are weakest for the CFSD index, when direction of correlations is taken into account it appears that the validity of the CFSD index falls between that of the FSD and WFSD indices.

**Summary.** With the exception of correlations of a few criterion variables, validity coefficients are in the same direction for each of the indices, indicating their relative similarity. However, magnitudes of correlations are lowest for the CFSD index and patterns of validity coefficients deviate furthest from predicted patterns for the WFSD index, leaving the FSD index to be the most valid of the three, but only by a slight degree. Overall, evidence for the validity of the final say indices in the MC sample is the weakest encountered so far. These anomalies may be due to severely skewed distributions of some of the criterion variables, the relatively small size of this sample and different response patterns of husbands and wives.

**VV Sample**

The VV sample is also a relatively small sample, being only slightly larger than the MC sample. The criterion variables of this sample are: (1) husband's occupational prestige, (2) wife's occupational prestige, (3) relative occupational prestige, (4) husband's income, (5) wife's income, (6) relative income, (7) husband's education, (8) wife's education, (9) relative education, (10) husband's age, (11) wife's age, (12) relative age, (13) wife's employment status and (14) number of children.
FSD index. The validity coefficients of the FSD index in the VV sample are for the most part among the lowest of this study. (See Table 6.6) Furthermore, a larger proportion of these correlations deviate from predicted patterns than have been seen in any of the previous samples. Increases in wife's education, wife's age and husband's age seem to be associated with increases in husbands' decision power whereas an increase in relative education is associated with increased wives' decision power. Husband's occupational prestige does not seem to contribute to his decision power and in fact has a slightly negative correlation.

Why are there so many deviant validity coefficients for the FSD index in this sample? Perhaps the relatively small sample size contributes to more unstable correlations. Also, it may be that the lack of reliability of the final say decision indices in the VV sample is contributing in some way. The overall alpha for husbands' FSD reports is only .23. of the FSD index of the VV sample was very low (alpha=.23). Although low internal consistency does not necessarily indicate invalidity, it is interesting that the three samples in which the FSD index has the lowest level of internal consistency, the VA, MC, and VV samples, are also the samples with the greatest number of deviant validity coefficients.
### Table 6.6

Validity Coefficients for the FSD, WFSD and CFSD Indices: VV Sample

<table>
<thead>
<tr>
<th>CRITERION VARIABLES</th>
<th>FSD</th>
<th>WFSD</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husband's Occupational Prestige (n=150, 150, 100)</td>
<td>-.01</td>
<td>-.04</td>
<td>-.12</td>
</tr>
<tr>
<td>Wife's Occupational Prestige (n=75, 75, 50)</td>
<td>-.02</td>
<td>-.10</td>
<td>.02</td>
</tr>
<tr>
<td>Relative Occupational Prestige (n=72, 72, 50)</td>
<td>.01</td>
<td>.06</td>
<td>-.05</td>
</tr>
<tr>
<td>Husband's Income (n=153, 102, 153)</td>
<td>.02</td>
<td>-.01</td>
<td>-.05</td>
</tr>
<tr>
<td>Wife's Income (n=150, 150, 100)</td>
<td>-.03</td>
<td>-.07</td>
<td>.01</td>
</tr>
<tr>
<td>Relative Income (n=150, 150, 100)</td>
<td>.08</td>
<td>.12</td>
<td>.09</td>
</tr>
<tr>
<td>Husband's Education (n=153, 153, 102)</td>
<td>.03</td>
<td>-.01</td>
<td>-.03</td>
</tr>
<tr>
<td>Wife's Education (n=153, 153, 102)</td>
<td>.07</td>
<td>-.01</td>
<td>-.01</td>
</tr>
<tr>
<td>Relative Education (n=153, 153, 102)</td>
<td>-.04</td>
<td>.00</td>
<td>-.04</td>
</tr>
<tr>
<td>Husband's Age (n=153, 153, 102)</td>
<td>.03</td>
<td>.00</td>
<td>.09</td>
</tr>
<tr>
<td>Wife's Age (n=153, 153, 102)</td>
<td>.07</td>
<td>.07</td>
<td>.10</td>
</tr>
<tr>
<td>Relative Age (n=153, 153, 102)</td>
<td>-.09</td>
<td>-.13</td>
<td>-.03</td>
</tr>
<tr>
<td>Wife's Work Status (n=150, 150, 100)</td>
<td>-.11</td>
<td>-.15</td>
<td>-.10</td>
</tr>
<tr>
<td>Number of Children (n=153, 153, 102)</td>
<td>.10</td>
<td>.11</td>
<td>.03</td>
</tr>
</tbody>
</table>

*a.* N's for FSD, WFSD and CFSD
In any event, the validity of the FSD index in the VV sample is relatively weaker than it has been previously, with the possible exception of in the MC sample. Even so, validity coefficients of several variables including wife's employment status, number of children, the income variables, wife's occupational prestige and husband's education, all fall in the predicted direction. It may be that the mixed pattern of supportive and disconfirming correlations are really only a reflection of differences in the responses of the husbands, wives and children of this sample, a possibility that will be considered in another part of this chapter.

**Comparisons of the FSD and WFSD indices, VV sample.**

The WFSD index differs more from the FSD index in this sample than in any sample seen previously, both in magnitude of validity coefficients and in reversals of correlation signs. However, it is difficult to discern any pattern among the differences. Although several validity coefficients falling in the predicted direction are strengthened in the WFSD index, such as wife's occupational prestige, relative occupational prestige, relative income and wife's employment status, other relationships are weakened, such as relative education. Furthermore, directions of correlations are reversed away from the predicted direction for husband's income and education.
In sum, it is difficult to determine which index is more valid. Perhaps a better statement would be that neither index appears to be very valid in the VV sample, although some validity coefficients seem to indicate greater strength for the WFSD index.

Comparisons of the CFSD index with the WFSD and FSD indices. The size of the validity coefficients of the CFSD index tend to fall in-between those of the FSD and WFSD indices. However, the patterns of these correlations shows the CFSD index to be the most deviant of the three indices, with 9 out of the 14 validity coefficients falling in in this sample is the least valid decision power index encountered so far. It appears that conflict weighting does not help the validity of the final say decision measure in this sample either.

Summary. The performance of the final say decision indices in the VV sample is the weakest so far, perhaps because of low levels of internal consistency or problems of sampling. It appears that weighting does not contribute to the validity of the final say indices, although it is difficult to determine if the FSD or the WFSD index is the stronger measure. Both have relatively weak validity. The least valid measure, however, is the CFSD index, with the majority of validity coefficients falling in the opposite direction from that predicted.
TG Sample

The criterion variables of the TG sample are: (1) husband's occupational prestige, (2) wife's occupation prestige, (3) relative occupational prestige, (4) husband's income, (5) wife's income, (6) relative income, (7) husband's education, (8) wife's education, (9) relative education, (10) husband's age, (11) wife's age, (12) relative age, (13) wife's employment status, (14) number of years married, (15) family life cycle stage, (16) number of children and (17) age of youngest child.

FSD index. Validity coefficients of the FSD index are presented in Table 6.7. Their patterns are even more striking than they were for the VC sample. With the exception of wife's education which shows no association with the FSD index scores, every one of the validity coefficients falls in the predicted direction. The pattern is even more significant given the atypical nature of the TG sample, with its large proportion of families involved in marriage counseling. Interestingly, the reliability of the FSD index in the TG sample is one of the highest in this study, sharing this position with the VC and SIF sample, two samples which also have very few deviant validity coefficients.

This sample is the only one in which husbands' decision power increases as relative age increases, the direction of variation predicted. Because negative correlations between relative age and husbands' decision power have been obtained
<table>
<thead>
<tr>
<th>CRITERION VARIABLES</th>
<th>FSD</th>
<th>WFSDS</th>
<th>WFSDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husband's Occupational Prestige (n=225, 225, 218)</td>
<td>.13</td>
<td>.12</td>
<td>.13</td>
</tr>
<tr>
<td>Wife's Occupational Prestige (n=166, 166, 161)</td>
<td>-.08</td>
<td>-.10</td>
<td>.03</td>
</tr>
<tr>
<td>Relative Occupational Prestige (n=163, 163, 158)</td>
<td>.15</td>
<td>.17</td>
<td>.13</td>
</tr>
<tr>
<td>Husband's Income (n=193, 193, 187)</td>
<td>.09</td>
<td>.07</td>
<td>.13</td>
</tr>
<tr>
<td>Wife's Income (n=206, 206, 200)</td>
<td>-.06</td>
<td>-.08</td>
<td>-.05</td>
</tr>
<tr>
<td>Relative Income (n=179, 179, 174)</td>
<td>.10</td>
<td>.12</td>
<td>.09</td>
</tr>
<tr>
<td>Husband's Education (n=226, 226, 219)</td>
<td>.08</td>
<td>.07</td>
<td>.12</td>
</tr>
<tr>
<td>Wife's Education (n=227, 227, 221)</td>
<td>.00</td>
<td>-.04</td>
<td>.02</td>
</tr>
<tr>
<td>Husband's Age (n=226, 226, 219)</td>
<td>-.01</td>
<td>-.01</td>
<td>.02</td>
</tr>
<tr>
<td>Wife's Age (n=225, 225, 218)</td>
<td>-.02</td>
<td>-.02</td>
<td>.03</td>
</tr>
<tr>
<td>Relative Age (n=225, 225, 218)</td>
<td>.05</td>
<td>.05</td>
<td>.00</td>
</tr>
<tr>
<td>Wife's Employment Status (n=224, 224, 217)</td>
<td>-.05</td>
<td>-.08</td>
<td>-.08</td>
</tr>
<tr>
<td>Number of Years Married (n=212, 212, 207)</td>
<td>-.02</td>
<td>-.01</td>
<td>.03</td>
</tr>
<tr>
<td>Family Life Cycle Stage (n=226, 226, 219)</td>
<td>-.04</td>
<td>-.03</td>
<td>-.01</td>
</tr>
<tr>
<td>Number of Children (n=230, 230, 223)</td>
<td>.10</td>
<td>.08</td>
<td>.05</td>
</tr>
<tr>
<td>Age of Youngest Child (n=226, 226, 219)</td>
<td>-.03</td>
<td>-.02</td>
<td>.05</td>
</tr>
</tbody>
</table>

a. N's for FSD, WFSDS and WFSDR indices, respectively
in every other sample, it is difficult to determine if the validity coefficient for relative age in this sample evidences a theoretical prediction or not. It could be that the prediction of resource theory for relative age is incorrect, making the relative age correlation in the TG sample the deviant case.

The correlations of family life cycle and age of youngest child indicate that as these variables increase, so does wife's decision power. In the MC sample family life cycle stage increases were associated with increases in husbands' decision power. However, increases in age of youngest child were associated with increase in wives' decision power as predicted, indicating perhaps that the validity coefficient of the family life cycle variable in the MC sample was a deviant finding.

As in the VC sample, husband's income, education and occupational prestige have more of an impact on decision power than wife's income, education and occupational prestige. This may be an indication that in these samples husband's resources have more of an impact on the marital power balance than do wife's resources.

Comparisons of the WFSDS and FSD indices. As has been the case in almost every other sample, the validity coefficients of the FSD and WFSDS (WFSD) indices are very similar. Every correlation of the WFSDS index falls in the predicted direction, even the wife's education coefficient. Differences in the validity coefficients between the two
indices are by only .01 or .02 with the slightly larger exception of wife's education. Thus it appears that the FSD and WFSD indices are equivalent in of validity.

One interesting difference between the FSD and WFSD indices is that the impact of husband's resources is reduced slightly for the WFSD index while the impact of wife's resources is slightly increased. As a consequence, the relative impact of husband's and wife's resources on decision power is more nearly equal for the WFSD index. Interestingly, the opposite pattern was observed in the VC sample. There, the impact of husband's resources was increased while those of the wife were reduced leading to an even greater differentiation in the contribution of husband's and wife's resources in the WFSD index than was evident in the FSD index.

Comparison of the WFSDR with the WFSDS and FSD indices. Although there are no major reversals, several validity coefficients of the WFSDR index do fall contrary to the patterns predicted. Several variables related to the length of the marital relationship, such as wife's age, husband's age, number of years married and age of youngest child show positive correlations, indicating that as they increase so does husbands' decision power. However, the coefficient for family life cycle does fall in the predicted direction, though its strength is weakened.
It appears that the variables fall into two general groups, with the the coefficients of the age variables tending to disconfirm the validity of the WFSDR index while the resource variables tend to confirm it. Because correlations are about the same magnitude and they all fall in the predicted direction, either the FSD or the WFSD index is the more valid instrument in this sample. Interestingly, the differential impact of husband's and wife's resources is enhanced in the WFSDR index, in contrast to the diminishing of these differences evident among the WFSDS index correlations.

**Summary.** The FSD and WFSDS (WFSD) indices have the strongest evidence of validity in the TG sample. This is especially significant because of the atypical nature of the sample, composed in part of couples involved with marital counseling. No validity coefficients fell contrary to the pattern predicted, although wife's education shows no relationship to decision power in the FSD index. Because of the strength of these correlations another more subtle pattern is also evident. It appears that husband's resources have greater impact on decision power than wife's resources.

The performance of the respondent weighted WFSDR index was not quite as strong as the other two indices. Variables associated with the length of the marriage relationship, as they increased, favored husbands' decision power and not wives', a pattern contrary to predictions. In conclusion,
it appears that weighting by importance does not improve the validity of the final say measure for either respondent or student weighted decision items. Because the FSD index has a higher level of internal consistency than the other two indices it seems to be the better choice of decision measure.

**Construct Validity: General Trends Among the FSD, WFSD and CFSD Indices**

**Final say decision measure a valid instrument.** In all but two samples the pattern of correlations between the final say indices and the criterion variables was as predicted. The fact that the FSD index appears to be valid for the SIF (India) sample is significant because it supports the cross-cultural validity of the decision power index.

However, the final say indices did not fare so well in the MC and VV samples, where a large proportion of the validity coefficients fell in directions contrary to those predicted. These deviant patterns of correlations were explained as a result of the skewed and truncated distributions of the criterion variables coupled with the unrepresentativeness of the two samples, and for the VV sample in particular, lack of internal consistency among the decision items.

**Resources and ideology may produce an interaction effect.** It also appears that a normative influence may contaminate the relationship between the final say measure
and the resource variables in the VA and SIF samples. In these two samples, increases in husband's resources are associated with increases in wives' decision power instead of husbands' decision power, as predicted. It may be that in those samples ranging widely from very traditional to very liberal, increases in wives' decision power may be partly a result of changes in ideology. Those in higher socio-economic positions would be more likely to follow an equalitarian ethic than those in lower brackets, this contrast in ideology suppressing somewhat the relationship between resources and decision power.

**Weighting decision items does not improve validity.** In every sample the pattern of validity coefficients for the FSD and WFSD indices is very similar. With the exceptions of the SMF and TG samples, where they are slightly higher for the WFSD index, magnitudes are similar as well.*4 The CFSD index tends to be the least valid of the three indices, with more deviant correlations which are also smaller in some instances.

In sum, weighting the decision items by their importance does not seem to improve the validity of the final say measure, and weighting by amount of conflict actually lowers it. Although validity levels of the FSD and WFSD indices appear to be equivalent, because of the

---

*4. Interestingly, though, in the TG sample the validity of the respondent weighted WFSDR index is noticeably lower than the validity of the student weighted WFSDS index, and the FSD index as well.
generally higher levels of internal consistency of the FSD index, this unweighted version of the final say measure seems to be the better choice. However, it remains to be seen if this conclusion also holds when the responses of the family members are examined separately, which will be done in the next section.

Construct Validity of Husbands', Wives', and Children's Responses for the FSD, WPFD and CFSD Indices

Four samples will provide information in this section. They will be used to compare the relative validity of the family members' responses to the final say decision indices. Husband's and wives' responses are available for the VA, MC, VV and TG samples and additionally, children's responses are available for the VV sample as well.*5 Responses of the family members will be presented for each sample in turn, following the pattern of presentation of this chapter.

VA Sample

Husbands and wives: FSD index. In the preceding section suggestions offered to explain the increase in wives' decision power as husband's resources increased included (1) the transition from the traditional norms to

5. Because so few cases are available for children of the TG sample (as low as 9 or 10 in some instances) and because their validity coefficients fluctuate greatly, the reports of children will not be included in this section. (See Chapter IV for additional information about the very atypical nature of the children's portion of the TG sample.)
the more liberal norm characteristic of couples with higher levels of education and occupational prestige and/or (2) differences in the responses of husbands and wives. The data in Table 6.8 rule out the second possibility, because the magnitude and direction of the validity coefficients of the FSD index are quite similar for both spouses.

In general, it appears that husbands' and wives' reports have about the same level of validity, though their strengths and weaknesses seem to lie in different areas. However, wives' reports do seem to have fewer deviant correlations. On the other hand, for wives the age-related variables show little if no relationship to the FSD measure whereas for husbands' FSD reports there are relatively strong relationships. Overall, because of the deviant validity coefficients associated with husband's resources, for both spouses the validity of the FSD index in the VA sample is not as strong as in other samples.

**Husbands and wives: Comparisons of the FSD and WFSD indices.** The patterns of validity coefficients of the WFSD and FSD indices are very similar for husbands, and for wives as well. In only one case is there a difference in magnitude greater than .01. This occurs with husbands' reports of marital satisfaction, but the difference here is only .02. Interestingly, even though these differences are very small, in almost every case the smaller coefficient is with the WFSD index.
TABLE 6.6
Validity Coefficients of the FSD, CFSD, and CFSD Indices by Husbands and Wives; VA Sample

<table>
<thead>
<tr>
<th>CRITERION VARIABLES</th>
<th>HUSBANDS FSD</th>
<th>FSD</th>
<th>WFS</th>
<th>WFS</th>
<th>CFSD</th>
<th>CFSD</th>
<th>WIVES FSD</th>
<th>FSD</th>
<th>WFS</th>
<th>WFS</th>
<th>CFSD</th>
<th>CFSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husband's Occupational Prestige</td>
<td>-.06</td>
<td>-.05</td>
<td>-.07</td>
<td>-.06</td>
<td>-.07</td>
<td>-.02</td>
<td>Wife's Occupational Prestige</td>
<td>-.07</td>
<td>-.06</td>
<td>-.06</td>
<td>-.08</td>
<td>-.08</td>
</tr>
<tr>
<td>(H=922, 904; W=1127, 1110)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H=809, 798; W=1032, 1027)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Occupational Prestige</td>
<td>.01</td>
<td>.02</td>
<td>.00</td>
<td>.02</td>
<td>.02</td>
<td>.02</td>
<td>Relative Income</td>
<td>-.08</td>
<td>-.07</td>
<td>-.07</td>
<td>-.03</td>
<td>-.03</td>
</tr>
<tr>
<td>(H=799, 788; W=926, 910)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H=879, 862; W=1034, 1021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Husband's Income</td>
<td>-.15</td>
<td>-.14</td>
<td>-.11</td>
<td>-.16</td>
<td>-.15</td>
<td>-.10</td>
<td>Wife's Income</td>
<td>-.15</td>
<td>-.14</td>
<td>-.11</td>
<td>-.16</td>
<td>-.15</td>
</tr>
<tr>
<td>(H=858, 843; W=1031, 1016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H=846, 831; W=982, 970)</td>
<td>.14</td>
<td>.13</td>
<td>.12</td>
<td>.16</td>
<td>.15</td>
</tr>
<tr>
<td>Relative Income</td>
<td>-.09</td>
<td>-.08</td>
<td>-.08</td>
<td>-.10</td>
<td>-.09</td>
<td>-.04</td>
<td>Relative Education</td>
<td>-.05</td>
<td>.05</td>
<td>.05</td>
<td>-.11</td>
<td>-.11</td>
</tr>
<tr>
<td>(H=933, 915; W=1151, 1135)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H=928, 911; W=1161, 1143)</td>
<td></td>
<td></td>
<td></td>
<td>.02</td>
<td>.02</td>
</tr>
<tr>
<td>Husband's Age</td>
<td>-.11</td>
<td>-.11</td>
<td>-.15</td>
<td>-.02</td>
<td>-.02</td>
<td>-.02</td>
<td>Wife's Age</td>
<td>-.10</td>
<td>-.11</td>
<td>-.14</td>
<td>-.02</td>
<td>-.01</td>
</tr>
<tr>
<td>(H=934, 916; W=1158, 140)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H=926, 910; W=1155, 1138)</td>
<td>-.01</td>
<td>.00</td>
<td>-.01</td>
<td>.02</td>
<td>-.01</td>
</tr>
<tr>
<td>Relative Age</td>
<td>-.15</td>
<td>-.15</td>
<td>-.12</td>
<td>-.18</td>
<td>-.18</td>
<td>-.12</td>
<td>Wife's Employment Status</td>
<td>-.08</td>
<td>-.06</td>
<td>-.11</td>
<td>-.01</td>
<td>.00</td>
</tr>
<tr>
<td>(H=914, 897; W=1132, 1115)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H=927, 911; W=1148, 1132)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Years Married</td>
<td>-.08</td>
<td>-.09</td>
<td>-.12</td>
<td>.00</td>
<td>.00</td>
<td>-.01</td>
<td>Number of Children</td>
<td>.02</td>
<td>.01</td>
<td>.03</td>
<td>.08</td>
<td>.08</td>
</tr>
<tr>
<td>(H=937, 919; W=1162, 1144)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(H=934, 916; W=1162, 1142)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. H=husbands' reports and W=wives' reports. For both spouses first N is for the FSD, WFSD indices and second N for the CFSD index.
Because of the close similarity of the two indices, the same differences existing between the spouses for the FSD index exist for the WFSD index as well. Thus, it seems that the FSD and WFSD indices have equivalent levels of validity, with the validity of the FSD index being very slightly more. Apparently, weighting by the importance of the decision items does not improve the validity of the final say measure for either spouse.

Husbands and wives: Comparisons of the CFSD with the FSD and WFSD indices. For husbands, the majority of validity coefficients of the CFSD index are similar to those of the FSD and WFSD indices. Number of children does show a reversal, however, with the correlation reversing from the predicted direction and decreasing the validity of the CFSD index as a consequence. Other minor differences are the age-related variables husband's age, wife's age and number of years married which, along with marital satisfaction, have an increased impact on wives' decision power. Interestingly, the truncated distribution of the CFSD index does not manifest itself very clearly with husbands' reports.

For wives' reports, however, the differences between the magnitudes of the CFSD and the magnitudes of the other indices is more easily discerned. CFSD magnitudes are generally lower as predicted, a consequence of the homogeneous distribution of scores of the index. The pattern of correlations of the wives' CFSD index is mixed.
Its validity is strengthened slightly in that husband's income and to a lesser degree number of years married now fall in the predicted direction. However, it is weakened by the reversal of marital satisfaction from its predicted direction.

It should be noted that these differences between the CFSE and other indices which have been highlighted for husbands and wives are relatively small in general. With the exception of the possibly greater influence of traditional norms on husbands' reports, the results for both spouses are basically similar. Apparently, weighting by conflict or importance does not improve the validity of the final say measure for either spouse.

**Summary.** Overall, the indices appear quite similar, with the FSD index for both spouses having slightly greater magnitude than the WFSD index and fewer deviant coefficients than the CFSE index. Sex of spouse seems to lead to only a few difference, primarily with variables related to length of and satisfaction with marriage. If one were forced to choose an instrument it appears that either the husbands' or the wives' FSD reports would be the best selection.

**MC Sample**

**Husbands' and wives' reports: FSD index.** The validity coefficients for husbands' FSD reports are relatively higher than those encountered previously. (See Table 6.9). However, although increases in husband's resources are associated with increases in husbands' FSD decision power, so are increases in wife's resources and variables related
TABLE 6.9
Validity Coefficients of the FSD, WFSD and CFSD Indices by Husbands and Wives; MC Sample

| CRITERION VARIABLES | HUSBANDS |_| WIVES |
|---------------------|----------|----------|
|                     | FSD | WFSD | CFSD | FSD | WFSD | CFSD |
| aHusband's Occupational Prestige (H=77; W=76) | .17 | .07 | .15 | -.10 | -.12 | -.09 |
| Wife's Occupational Prestige (H=70; W=69) | .21 | .17 | .13 | 0.00 | -.02 | -.02 |
| Relative Occupational Prestige (H=70; W=69) | -.01 | -.09 | .05 | -.10 | -.10 | -.06 |
| Husband's Income (H=75; W=74) | .25 | .17 | .24 | -.01 | -.06 | .01 |
| Wife's Income (H=73; W=72) | .06 | .09 | .03 | 0.00 | 0.00 | -.02 |
| Relative Income (H=77; W=76) | .10 | .03 | .10 | .10 | .11 | .10 |
| Husband's Education (H=77; W=76) | .03 | -.05 | -.05 | -.01 | -.01 | -.02 |
| Wife's Education (H=77; W=76) | .16 | .07 | .09 | .10 | .05 | .09 |
| Relative Education (H=77; W=76) | -.10 | -.08 | -.14 | -.05 | -.01 | -.07 |
| Husband's Age (H=74; W=73) | .08 | .00 | .13 | -.11 | -.14 | -.11 |
| Wife's Age (H=74; W=73) | .03 | -.05 | .05 | -.05 | -.09 | -.04 |
| Relative Age (H=74; W=73) | .13 | .15 | .20 | -.15 | -.14 | -.19 |
| Wife's Work Status (H=74; W=64) | .13 | .13 | .20 | -.12 | -.14 | -.07 |
| Number of Year Married (H=73; W=72) | .10 | .02 | .15 | -.13 | -.14 | -.13 |
| Family Life Cycle Stage (H=71; W=71) | .12 | .06 | .07 | .00 | -.03 | .00 |
| Number of Children (H=76; W=75) | .08 | .09 | .15 | .01 | -.01 | -.01 |
| Age of Youngest Child (H=66; W=65) | .01 | -.12 | .03 | -.10 | -.12 | -.11 |

a. First N is for husbands, second N for wives.
to length of marriage. These patterns seem to indicate that husbands have more power regardless of which spouse possesses the resource.

Why should so many criterion variables contribute to husbands' decision power? In the MC sample husbands' mean FSD score, one of the lowest of this study, indicates that wives have greater decision power than husbands (see Table 4.4). It does not seem correct to explain the findings of the liberal MC sample in terms of the influence of patriarchal norms. Instead, it may be that the correlation patterns reflect the distributions of the criterion variables themselves.

For instance, rather than being normally distributed, husband's occupational prestige, income and education are all bunched at the upper end of their respective scales. Wives' occupational prestige, income and education are also clustered into only a few categories. This lack of variation may reduce the differentiating power of these scales, leading to correlations that are somewhat artifactual. The deviant pattern of their validity coefficients may also stem from distribution problems. However, the deviant coefficients for wives are in the opposite direction from those of husbands. Increases in almost every criterion variable are associated with increases in wives' decision power. Husband's occupational prestige and income makes more of a contribution than the wife's own resources. It appears that the validity of
wives' FSD reports is as weak as that of husbands' FSD reports, even though directions of the deviant coefficients for wives are opposite those of husbands' reports.

**Husbands' and wives' reports: Comparison of WFSD and FSD indices.** For husbands, the direction of validity coefficients is basically the same for the WFSD and FSD indices. The few reversals appear to be random, falling into the predicted direction as often as falling away. However, the correlations are smaller for the WFSD index.

If all correlations fell in the predicted direction, the smaller correlations with the WFSD index would infer that it was slightly less valid than the FSD index. Unfortunately, because these reductions occur with both deviant and non-deviant correlations, it is difficult to determine if either index is more valid. A safer statement might be that they are both invalid.

For wives, similar variations in magnitudes occur between the FSD and WFSD indices as occurred for husbands. Interestingly, the correlations with the wives' WFSD reports are generally higher than with wives' FSD reports (husband's WFSD magnitudes were generally lower than husbands' FSD reports). However, higher correlations with the wives' WFSD reports seem to favor deviant and non-deviant validity coefficients indiscriminantly.

Thus, it appears that regardless of spouse, weighting the final say measure by the importance of the decision items does not improve its validity. However, as with the
FSD index, there is a strong sex of spouse difference with the WFSD index, although it is difficult to interpret its meaning. Correlations for husbands are predominantly positive while those for wives are predominantly negative. These differences may be due more to problems of sampling, or they might reflect conflicts between the spouses which characterized the fifth of the sample who were marriage counseling clients.

Husbands' and wives' reports: Comparisons of CFSD with WFSD and FSD indices. Although detailed comparisons could be made of the CFSD index with the other two indices within and across spouse categories, little will be gained beyond noting that patterns and magnitudes of validity coefficients are equivalent in all three indices. All three seem equally invalid for either spouse in the MC sample. Any real differences or similarities are most likely masked by the influences of the skewed, truncated and homogeneous distributions of many of this sample's criterion variables.

Summary. It appears that weighting the final say measure decision items by conflict or their importance in the MC sample does not improve its validity. All three indices appear to be equally invalid. These results seem to be due to a lack of variation in many of the criterion variables of this sample, contributing a large artifactual component to the validity coefficients, or due to the fact that a fifth of the couples were marriage counseling clients.
**VV Sample**

**Husbands and wives: FSD index.** The FSD index validity coefficients for husbands are among the highest of the study. (See Table 6.10) Unfortunately, most of them fall in the wrong direction, as was the case with husband's FSD validity coefficients in the MC sample. In fact, only wife's occupational prestige, relative income and wife's work status fall in the predicted direction. It appears, then, that for the VV sample husband's FSD reports are invalid.

Interestingly, in the MC sample husbands' FSD reports the deviant validity coefficients all had positive correlations. In the VV sample, however, the deviant validity coefficients are all negative, except those of husband's and wife's age. Coefficients which were valid in the MC sample are invalid in the VV sample and coefficients which were invalid in the MC sample are now valid in the VV sample. It is difficult to determine what is causing this reversal, beyond the possibility of the operation of some selection factor when respondents were gathered for the two samples. Both samples are quite unrepresentative.

Surprisingly, almost all the correlations for wives' FSD validity coefficients are positive, just opposite the pattern observed for husbands. All of the correlations with wives' FSD reports fall in the predicted direction but two: wife's occupational prestige and wife's education (and wife's education is only slightly deviant). Thus, wives'
TABLE 6.10

Validity Coefficients for the FSD, WFSD, and CFSD Indices by Husbands, Wives and Children: VV Sample

<table>
<thead>
<tr>
<th>CRITERION VARIABLES</th>
<th>HUSBANDS</th>
<th>WIVES</th>
<th>CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD</td>
<td>WFSD</td>
<td>CFSD</td>
</tr>
<tr>
<td>Husband's Occupational Prestige (H=50; W=50; C=50)</td>
<td>-.25</td>
<td>-.29</td>
<td>-.32</td>
</tr>
<tr>
<td>Wife's Occupational Prestige (H=25; W=25; C=25)</td>
<td>-.06</td>
<td>-.15</td>
<td>-.10</td>
</tr>
<tr>
<td>Relative Occupational Prestige (H=24; W=24; C=24)</td>
<td>-.20</td>
<td>-.12</td>
<td>-.16</td>
</tr>
<tr>
<td>Husband's Income (H=51; W=51; C=51)</td>
<td>.01</td>
<td>-.06</td>
<td>-.08</td>
</tr>
<tr>
<td>Wife's Income (H=50; W=50; C=50)</td>
<td>.00</td>
<td>-.01</td>
<td>.05</td>
</tr>
<tr>
<td>Relative Income (H=50; W=50; C=50)</td>
<td>.17</td>
<td>.16</td>
<td>.07</td>
</tr>
<tr>
<td>Husband's Education (H=51; W=51; C=51)</td>
<td>-.11</td>
<td>-.12</td>
<td>-.18</td>
</tr>
<tr>
<td>Wife's Education (H=51; W=51; C=51)</td>
<td>-.02</td>
<td>-.11</td>
<td>-.04</td>
</tr>
<tr>
<td>Relative Education (H=51; W=51; C=51)</td>
<td>-.15</td>
<td>-.07</td>
<td>-.22</td>
</tr>
<tr>
<td>Husband's Age (H=51; W=51; C=51)</td>
<td>.10</td>
<td>.08</td>
<td>.20</td>
</tr>
<tr>
<td>Wife's Age (H=51; W=51; C=51)</td>
<td>.15</td>
<td>.15</td>
<td>.27</td>
</tr>
<tr>
<td>Relative Age (H=51; W=51; C=51)</td>
<td>-.11</td>
<td>-.12</td>
<td>-.13</td>
</tr>
<tr>
<td>Wife's Work Status (H=50; W=50; C=50)</td>
<td>-.28</td>
<td>-.32</td>
<td>-.18</td>
</tr>
<tr>
<td>Number of Children (H=51; W=51; C=51)</td>
<td>.00</td>
<td>.06</td>
<td>.04</td>
</tr>
</tbody>
</table>

a. For N's, H=Husband's reports, W=Wives' reports and C=children's reports.
FSD reports are substantially more valid than husbands' FSD reports in the VV sample. However, because of the unreliable nature of wives' FSD reports, the lowest in this study (alpha = .13), it is difficult to determine if wives' FSD reports are truly far more valid than husbands' FSD reports, or if the difference between the two spouses is just a happenstance finding. Because husbands' and wives' responses are so similar for the large nationally representative VA sample, and also because in the VV sample wives' FSD responses have such a suspiciously perfect negative match with those of husbands, a spurious finding seems to be a more likely explanation.*6

Children's FSD reports compared with those of parents. For children's FSD reports, findings are as disappointing as they were for their parents. Although the occupational criterion variables have their best patterns for children's reports, all but three of the other coefficients fall contrary to their predicted direction. This includes wife's employment status which, till this point, has had one of the most consistent relationships in the predicted direction with decision power. Furthermore, the correlation for husband's income is so low as to be considered an indication of no relationship.

6. The negative match of validity coefficients of husbands and wives in the VV sample is analogous to the match observed for husbands and wives in the MC sample. However, in the MC sample validity coefficients for the FSD index are positive for husbands and negative for wives whereas in the VV sample they are positive for wives and negative for husbands.
Interestingly, correlations of children's FSD reports do not appear to be similar to those of either parent, showing instead a mixed pattern. Some correlations for children, such as those for relative education and the age-related variables, are similar to corresponding correlations of their fathers' reports. Others, such as the correlations for husband's and wife's education, are more similar to those of their mothers' reports. Still others, such as those for wife's work status, differ from correlations of both parents. Essentially, these patterns indicate that the validity of children's reports is a little stronger than the validity of their fathers' FSD reports but less than the validity of their mother's FSD reports.

Earlier in this study, it was hypothesized that children's reports would be more valid than the reports of either parent because the children's reports would not be contaminated by their mothers' and fathers' self-report biases. Unfortunately this pattern was not observed in the VV sample, where children's reports were only slightly less valid than those of their fathers. If the VV sample had been larger and more representative, perhaps a pattern closer to that predicted would have emerged. It would be interesting to compare the validity of the responses of the parents to the validity of responses of their children in the larger VC, SMF and SIF samples, where the children's FSD reports showed much more validity than they did in the VV sample. In sum, it appears that a comparison of the
validity of the FSD reports of children with those of their mothers and fathers awaits another study.

**Husbands, wives and children: Comparison of CFSD and WFSD to FSD indices.** Basically, the pattern of validity coefficients for husbands' CFSD and WFSD reports is very similar to patterns for husbands' FSD reports. The same statement can be made about the relationships between the FSD, WFSD and CFSD reports of wives, and the FSD, WFSD and CFSD reports of children. For each respondent, even though the size of the correlations fluctuate somewhat, the patterns of correlations remain nearly the same.

Comparing first the FSD and WFSD indices, only a few differences are noted. For husbands and children, an increase in wife's income is now associated with an increase in wives' decision power, but so is an increase in husband's income. For wives' reports, the validity coefficient of wife's education now falls in the predicted direction, but that of relative age does not.

When the CFSD index is compared with the FSD and WFSD indices, for husbands the CFSD index has even less validity than the other two. In addition to having the same deviant coefficients as the FSD and WFSD indices, husbands' CFSD reports also show deviant correlations for wife's income and number of children as well. For wives' CFSD reports the deviant correlation for husband's income is now added to the other two deviant correlations of wives' WFSD reports. Overall, it appears that the CFSD index is least valid and
the PSD the most valid of the indices, for each family member.

Summary. In sum, within each family member category the PSD, WFSD and CFSD indices are quite similar. As in the samples reviewed previously, it appears that weighting the decision items by amount of conflict or by their importance makes no difference in the validity of the final say decision measure. However, there is a difference according to the family member which serves as respondent. Husbands' reports appear to have the most invalidity and wives the least. Children's reports present an interesting pattern of validity coefficients. When compared to the validity coefficients of their parents, some of the children's validity coefficients are similar to those of their fathers' reports, others are similar to those of their mothers' reports and some similar to correlations of neither parent. However, the meaning of these differences is very difficult to determine. Thus, a comparison of the relative validity of children's responses with those of their parents will have to await future research.

It seems that the inconclusive findings of the VV sample, and the MC sample preceding it, highlight a potential weakness of the final say decision measure. Because the final say measure accounts for only a small portion of the total variance of decision power, it may be that large samples are required for correlation patterns to be stabilized. They may fluctuate too much for the
relationships between the final say measure and its criterion variables to emerge in such small samples as the VV or MC data sets. In essence, the final say measure may be vulnerable to sampling deviations whether in terms of size or of normality. Because of this possible lack of robustness of the final say measure, samples on which the final say measure is to be used would need to be very carefully selected, a requirement which may reduce the utility of this measure.

**TG Sample**

**Husbands and wives: FSD index.** For husbands' FSD reports, the most noticeable aspect of the validity coefficients is that there are so few that are deviant. (See Table 6.11). Even the strongest exceptions, wife's income and age of youngest child, have low correlations relative to the other criterion variables. The other deviant correlation, for wife's education, is so low as to be considered an indication of no relationship, as is the correlation for husband's age. All other coefficients fall in the predicted direction. This pattern is especially significant considering the relatively small size of the husbands' portion of the TG sample, and its large component of couples who have been involved with marriage counseling.

Why should husbands' FSD reports in this sample have such a strong level of validity? Although this question is difficult to answer, one contributing factor could be the distribution pattern of the criterion variables. With the
Table 6.11
Validity Coefficients of the FSD, WFSDS and WFSDR Indices by Husbands and Wives: TG Sample

<table>
<thead>
<tr>
<th>CRITERION VARIABLES</th>
<th>HUSBANDS</th>
<th>WIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FSD</td>
<td>WFSDS</td>
</tr>
<tr>
<td>Husband's Occupational Prestige (H=59, 57; W=148, 145)</td>
<td>.12</td>
<td>.11</td>
</tr>
<tr>
<td>Wife's Occupational Prestige (H=37, 35; W=118, 116)</td>
<td>-.21</td>
<td>-.25</td>
</tr>
<tr>
<td>Relative Occupational Prestige (H=55, 53; W=123, 121)</td>
<td>.06</td>
<td>.09</td>
</tr>
<tr>
<td>Husband's Income (H=55, 53; W=123, 121)</td>
<td>.20</td>
<td>.20</td>
</tr>
<tr>
<td>Wife's Income (H=50, 48; W=142, 139)</td>
<td>.03</td>
<td>-.04</td>
</tr>
<tr>
<td>Relative Income (H=47, 45; W=120, 118)</td>
<td>.13</td>
<td>.22</td>
</tr>
<tr>
<td>Husband's Education (H=59, 57; W=149, 146)</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>Wife's Education (H=57, 55; W=152, 150)</td>
<td>.01</td>
<td>-.08</td>
</tr>
<tr>
<td>Relative Education (H=57, 55; W=148, 146)</td>
<td>.12</td>
<td>.24</td>
</tr>
<tr>
<td>Husband's Age (H=57, 55; W=151, 148)</td>
<td>.00</td>
<td>-.02</td>
</tr>
<tr>
<td>Wife's Age (H=57, 55; W=151, 148)</td>
<td>-.06</td>
<td>-.06</td>
</tr>
<tr>
<td>Relative Age (H=57, 55; W=151, 148)</td>
<td>.20</td>
<td>.15</td>
</tr>
<tr>
<td>Wife's Employment Status (H=55, 53; W=153, 150)</td>
<td>-.19</td>
<td>-.26</td>
</tr>
<tr>
<td>Marital Satisfaction (H=57, 55; W=150, 148)</td>
<td>.15</td>
<td>.17</td>
</tr>
<tr>
<td>Number of Years Married (H=59, 57; W=153, 150)</td>
<td>-.03</td>
<td>-.06</td>
</tr>
<tr>
<td>Family Life Cycle Stage (H=58, 56; W=151, 148)</td>
<td>-.04</td>
<td>-.02</td>
</tr>
<tr>
<td>Number of Children (H=59, 57; W=153, 150)</td>
<td>-.01</td>
<td>-.03</td>
</tr>
<tr>
<td>Age of Youngest Child (H=58, 56; W=151, 148)</td>
<td>.05</td>
<td>.03</td>
</tr>
</tbody>
</table>

Note: H=husbands' reports and W=wives' reports. For both spouses, first N is for the FSD and WFSDS indices and second N for the WFSDR index.
exception of wife's education and wife's income, two criterion variables with deviant coefficients, the criterion variables tend to have a wide dispersion with very little truncation or clustering of cases into just a few categories. Furthermore, the decision items for husbands' FSD reports have a higher level of internal consistency in the TG sample than in any other. Although validity could be high even if reliability were low, previous samples have shown a slight tendency for the association of higher levels of validity and reliability for the final say indices.

With respect to the direction of the relationships, increases in husband's occupational prestige, income and education are associated with increases in husbands' decision power, with income having the most and education the least impact. Increases in the relative resources are also associated with increases in husbands' decision power, including relative age which in most other samples has been negatively correlated with husbands' decision power. Associated with increases in wives' decision power are increases in wife's employment status and most of the age-related variables. The exceptions are husband's age, which shows no relationship, and age of youngest child. Lastly, according to husbands' FSD reports, as his decision power increases so does his marital satisfaction.
For wives, the validity of the FSD reports is even stronger than it is for husbands. Although the magnitude of the correlations is about the same for both spouses' FSD reports, fewer are deviant for wives' reports. In fact, except for the deviant correlations for wife's education and husband's age, which are very low, and that for wife's age, which shows no relationship, all other correlations are in the predicted direction.

Besides showing the higher level of validity of wives' FSD reports, a comparison of the FSD reports of husbands and wives reveals other interesting differences. For instance, according to wives' reports, her employment increases her decision power only a little, whereas according to husbands' reports it increases her power noticeably. On the other hand, according to husbands' reports there is almost no relationship between number of children and decision power whereas wives' reports show husbands' decision power to increase significantly as number of children increase. Other criterion variables show similar patterns between husbands and wives such as husband's occupational prestige, wife's occupational prestige, and wife's age. The basic pattern seems to be that the resources of one spouse have greatest impact on the decision power of the other spouse.

Perhaps a bias is operating for some resources such that each spouse sees the resources of their partner contributing more to their partner's decision power than they see their own resources contributing to their own
decision power. Each spouse might be overvaluing the contribution of the partner's resources to the partner's decision power and undervaluing the contribution of their own resources to their own decision power. However, this is not the case for all resources. For instance, husband's income has more influence for husbands' FSD reports while wife's income has more influence for wives' FSD reports. Again, though, the pattern with husbands' and wife's income shows the overvaluation of one spouse's resources and the undervaluation of the other spouse's resources. It is lamentable that a large and sufficiently representative sample of children is not available in the TG sample, for it would be interesting to see if the validity coefficients of their FSD reports tended to fall in between those of their parents.

**Husbands and wives: Comparison of the FSD and WFSDS indices.** In most every other sample, validity coefficients for each criterion variable have differed only slightly across the FSD and WFSDS (WFSD) indices. However, though the patterns of validity coefficients are basically similar for husbands' FSD and WFSD reports in the TG sample, there are noticeable differences between the two indices. For instance, three of the validity coefficients which were deviant for the FSD index fall as predicted for the WFSD index: wife's income, wife's education and husband's age. Only one correlation deviates from the predicted pattern, age of youngest child, and it deviated as well for the FSD
Thus, it appears that for husbands in this sample the WFSDS index is more valid than the FSD index. The validity of the WFSD index is further strengthened by the fact that the majority of its validity coefficients are also greater in magnitude than their FSD counterparts.

For wives, the difference between the FSD and WFSD indices is not as clear as it was for husbands, perhaps because wives' FSD reports had such a high level of validity to begin with. Only one correlation changes across the two indices, that of wife's age, and that the change is extremely small. Furthermore, the correlations for the two indices are very similar as well, and, in fact, tend to be slightly lower in magnitude for wives' WFSD reports.

Beyond these differences in validity, the relationship between the WFSDS indices of husbands and wives is similar to the relationship between husbands' and wives' FSD indices. Increases in socio-economic resources of each spouse are associated with increases in his or her decision power. Increases in the age related variables are less strongly associated with increases in wives' decision power and each partner is more satisfied with their marital relationship as their decision power increases. Furthermore, the pattern in which resources may be undervalued for one spouse and overvalued for the other is also evident.
Husbands and wives: Comparison of WFSDR with WFSDS and FSD indices. For husbands, the WFSDR index is less valid than the other two indices of this sample. This is surprising, considering that the WFSDR index is comprised of decision items which have been assigned importance weights given by the respondents themselves. The majority of the validity coefficients are lower in magnitude than those of the WFSDS and FSD indices, and more of the WFSDR correlations have signs contrary to the predicted direction than either of the other two indices. For instance, increases in wife's income, wife's education, number of years married and age of youngest child are all associated with increased husbands' decision power. Also, as husband's relative occupational prestige increases so does wives' decision power.

For wives, the relationship between the WFSDR and the other two indices is somewhat analogous to their relationship for husbands. However, more deviant validity coefficients are found with the WFSDR than with the WFSDS or the FSD indices. These include the correlations of wife's occupational prestige, wife's education, wife's age and relative age. Another dissimilarity is that differences among the correlations of the indices is smaller for wives than for husbands.

However, in spite of the differences discussed above, the level of validity of the three indices of the TG sample is quite similar, with the WFSDS index having higher
validity than the other two indices. This is the first sample in which one of the weighted indices, in this case the WFSDS index, has had more validity than the FSD index. For husbands the difference in validity between the WFSDS and the other two indices is noticeable, but for wives the improvement in validity is very slight. Surprisingly, the respondent-weighted WFSDR index has less validity than either of the other two indices.

Summary. The TG sample is the first (and only) sample in which the FSD index has not been the most valid. Instead, the WFSDS index has the highest level of validity, noticeably so for husbands. Interestingly, the respondent-weighted WFSDR measure has the lowest level of validity for both spouses. Even with these differences, however, the level of validity in general for indices in the TG sample is quite high, with relatively few deviant validity coefficients compared to indices of other samples. There are a few sex of spouse differences, however. One of the more noticeable differences of a possible tendency for resources to be overvalued by one spouse and undervalued by the other. It is unfortunate that an adequate sample of children's reports is not available for the TG data set, for it would be interesting to see if the magnitude of coefficients of their reports fell in-between those of their parents. This findings would be a strong indication of both
the biased reporting of parents and less biased reporting of their children for the final say decision measure of marital power.

Construct Validity of Husbands', Wives', and Children's Reports of the FSD, WFSD and CFSD Indices: General Trends

Final say decision measure valid for both spouses, though not robust. In the TG sample, and to a lesser degree in the VA sample, validity coefficients for the final say indices consistently fell in the predicted direction for the majority of the criterion variables. Unfortunately, this was not true for the MC and VV samples. A meaningful explanation for the patterns of correlations in these two samples is difficult to find, perhaps because of the deviant characteristics of these samples such as their unrepresentativeness, small size and homogeneity.

These findings point to a potential weakness of the final say measure, in that it seems vulnerable to deviations of the criterion variables from normal distribution patterns. Because of this potential lack of robustness, samples may need to be large and carefully selected, a requirement which may limit the use of this measure.

Weighting does not improve validity for either spouse. With respect to relative validity, the CFSD index tends to be the least valid of the indices for both husbands and wives even in the MC and VV samples. The FSD and WFSD
indices seem to have equivalent levels of validity except in the TG sample where the WFSDS (WFSD) index clearly has more validity than the FSD index. Surprisingly, the repondent weighted WFSDR measure has the lowest level of validity in the TG sample. In sum, other than in the TG sample, weighting by amount of conflict or by importance does not seem to increase the validity of the final say decision measure for either spouse.

**Husbands' and wives' reports have equivalent levels of validity.** In the VA sample levels of validity for husbands' and wives' reports are very similar for each index. Although there is some relatively minor fluctuation in the magnitude of correlations, the signs of the correlations are almost identical for each pair of husband's and wife's indices. In the MC sample the measures of both spouses appear equally invalid, though patterns of validity coefficients differ.

In the TG sample, however, wives' FSD reports as well as wives' WFSDS reports have slightly more validity than the corresponding indices for husbands. Lastly, the sample with the greatest contrast between spouses is the VV sample. It shows wives to have a near perfect pattern of validity (i.e., coefficients falling in predicted directions) while husbands' reports are equally as invalid. It is tempting to state that wives' reports have more validity on the basis of
these last two samples. However, because of sampling problems, little credence can be placed in the VV sample findings.

A sex of spouse bias affects responses. In every sample their were differences in responses of husbands and wives. In the MC and VV samples, validity signs tended to have opposite signs for spouses. Although striking, it is difficult to find a meaningful explanation for this pattern beyond suspicions of sampling homogeneity and unrepresentativeness. However, the more valid findings of the TG sample show some interesting patterns of correlations for husbands' and wives'.

There seems to be a tendency for spouses to overvalue the influence of some of their partners' resources on their partners' decision power, and a tendency to undervalue the influence of their own resources on their own decision power. For other variables this over/under valuation pattern is reversed. If self-report bias is indeed present in the response of parents, perhaps the validity coefficients of the children would fall in between those of their parents, for those criterion variables on which their parents' coefficients differed. Unfortunately, the children's portion of the TG sample was too small and atypical to produce anything but a few erratic correlations and consequently could not be used to test this hypothesis.
Because children's reports were also invalid for the VV sample as well, the test of this hypothesis awaits another study.

SUMMARY

In this chapter, the relative validity of the FSD, WFSD and CFSD indices was compared across seven samples. Additionally, in four samples the relative validity of husbands', wives' and children's responses was also examined. The criterion variables used in the assessment of validity were selected on the basis of relationships predicted between them and the final say decision measures by resource theory. A summary of the findings is presented below.

Construct Validity of the FSD, WFSD and CFSD Indices

Final say decision measure has construct validity. Although in general the validity coefficients were low, in five of the samples the patterns of correlations between the criterion variables and the final say indices was strikingly consistent with predictions based upon resource theory. In the other two samples (MC and VV), the deviant correlations were explained as a consequence of skewed and truncated distributions of the criterion variables, the unrepresentativeness of the two samples in general, and for
the VV sample particularly, the lack of internal consistency among the decision items.

Possible interaction between resources and traditional power norms. In the VA and SIF samples, a trend exists for wives' relative power to increase rather than decrease as husband's socio-economic resources increase. It may be that in those samples which range widely from very traditional to very liberal, increases in wives' decision power may be partly a result of changes in ideology. An equalitarian ethic would more likely be characteristic of those in higher socio-economic positions and a traditional ethic by those in lower brackets. The increase in wives' decision power due to an increasingly liberal ideology may offset or even suppress the relationship between resources and decision power as socio-economic position increases.

Validity not improved by item weighting. In every sample the FSD and WFSD indices have very similar patterns of validity coefficients. Magnitudes tend to be similar as well, though in the SMF and TG samples they are slightly higher for the WFSD index. The CFSD index seems to be the least valid of the indices, with more deviant correlations. In sum, weighting decision items by their importance does not seem to improve the validity of the final say measure.
Construct Validity of Husbands', Wives' and Children's Reports of the Final Say Decision Measure

Final say decision measure valid for both spouses. For the TG and VA samples, the patterns of validity coefficients for both spouses were consistent with predictions from resource theory. However, this was not the case with correlation patterns in the MC and VV samples.

In the MC sample, measure for both spouses appeared to be equally invalid. Only in the VV sample were there differences between the spouses. However, because of sampling problems little credence can be placed in either the MC or VV sample findings.

Validity of husbands' and wives' reports remains unimproved by weighting. Other than in the TG sample, weighting by amount of conflict or by importance does not increase the validity of the final say measure for either spouse. In the TG sample the WFSDS (WFSD) index clearly has more validity the FSD index.*7 However, in the VA, MC and VV samples levels of validity for the WFSD and FSD indices are equivalent for either spouse. In those samples where present, the CFSD index tends to be the least valid of the measures for husbands and wives. Sex of spouse bias may be present. In every sample there were differences in magnitudes of corresponding validity coefficients of

7. Surprisingly, in the TG sample the respondent weighted WFSDR index has the lowest level validity of the measures.
husbands and wives, although these differences were slight in the VA sample. In addition, in the MC and VV samples, reversals in the sign of the coefficients between husbands and wives were also noted, but the meaning of these patterns is difficult to determine because of severe sampling problems.

Interestingly, in the TG sample, where the general level of validity is relatively high with very few deviant correlations, there appears to be a tendency for resources to be over-valued by one spouse and under-valued by the other. It may be that the validity coefficients of children's reports would fall in-between those of their parents if indeed self-report bias is influencing the responses of parents for those criterion variables on which their parents' validity coefficients differed. Because the children's sample in the TG data set was too small and atypical to produce anything but a few erratic correlations, it could not be used to test the hypothesis. Unfortunately, because children's reports are invalid for the VV sample also, the test of this hypothesis awaits another study.

In Conclusion

In Chapter V it was concluded that the FSD index was more reliable than either the WFSD or CFSD indices, and that children appear to have the most reliable responses of the
family members. In this chapter the evidence seems to show that the FSD and WFSD indices are equivalent in validity. Because of simpler computation and higher reliability, however, the FSD index would be the preferred measure. Unfortunately, because of severe sampling problems, the validity of children's responses remains unstested. Thus, it is impossible to determine if responses of husbands and wives (which have equivalent levels of validity) done in a study with a large number of families, each of which consists of both parents and at least one child.
CHAPTER VII

SUMMARY

The primary objective of this study has been to test the strength of the final say decision index of marital power. In this chapter, the findings of the study will be summarized in terms of the major criticisms of the measure, followed by a discussion of the limitations of the study and suggestions for future research.

REFLECTIONS ON THE PERFORMANCE OF THE FINAL SAY DECISION MEASURE

In her review of marital power research, Safilios-Rothschild (1970) strongly criticized the final say decision measure. As a consequence, during the decade which has followed her report, an aura of doubt has surrounded the measure and its efficacy. Unfortunately, her major criticisms were not backed by empirical data, but should instead be regarded as hypotheses. The findings of this study represent evidence which can be used to test some of her claims:

1. Item composition of the final say measure is arbitrary. Consequently, comparison of findings within or across cultures is neither meaningful nor valid [p. 542].
2. The internal consistency of the final say decision index has never been assessed, implying that there may be serious problems with the reliability of the measure [p. 543].

3. Giving all decisions equal weight "is methodologically questionable" since some decisions are more important than others. Incorporating item "importance might greatly refine the measurement of decision-making patterns." In addition, importance weights should be obtained from the respondents themselves and not from the investigator [p. 543].

4. Husbands' and wives' perceptions of decision-making differ considerably and "by relying on one set of answers, one cannot describe the entire picture of the familial power structure; the results reflect only how that particular family member perceives it [p. 542].

5. Relying solely upon children's responses "is an incorrect and and misleading procedure" [p. 543].

1. **Item composition.** With respect to the first criticism, Safilios-Rothschild (1970) is partly correct in that researchers using the final say measure have tended to use unsystematic "grab-bag" techniques of item selection for the index. In the previous section, this problem was noted and suggestions for more thorough procedures of item selection were offered.
However, her contention that the various combinations of items in the final say measures of different studies make comparison of results in the different samples meaningless and invalid seems unsupported. The final say measures of the VC, SMF, SIF, TG and to a lesser degree the VA samples, each of which has a different combination of decision items, produces remarkably similar patterns of validity coefficients, with relatively few correlations which deviated from directions predicted by resource theory. The differences between the mean scores of the different samples seemed to reflect differences in the educational levels of the different samples more than any other factor. Furthermore, the contributions of the items across samples to the reliability of the index was relatively consistent regardless of their combination with other items. Thus, patterns of the final say measure are consistent within and across cultures even with varying item compositions, insofar as this study is concerned.

2. Internal consistency. The patterns of reliability also seem to satisfy Safilios-Rothschilds (1970) second concern. In four of the samples the internal consistency reliability indicated by overall alphas fell into the .60's and .70's. In only one sample, the unrepresentative VV sample, did alpha fall below a moderately high level of .40. Thus, it can be safely concluded if a representative sample is drawn, the final say decision measure will in all likelihood have a high degree of reliability even if content of the decision item areas is varied somewhat.
3. **Weighting of decision items.** With respect to the third hypothesis, weighting decision items by importance and also by conflict did not improve the measure. In fact, in almost every instance the reliability of the unweighted version was noticeably higher than the reliability of either of the weighted versions. Additionally, the validity of the measure was not improved by weighting. Importance weighting producing about the same level or very slightly less validity across samples than leaving the items unweighted. Conflict weighting tending to result in the lowest levels of validity of all three versions of the final say measure. Furthermore, in the TG sample, where both student-assigned and respondent-assigned importance weights were incorporated into the final say measure, the respondent-weighted version was less valid than either the student-weighted or unweighted version. However, it remains to be seen if the poor performance of the respondent weighted version is found in other samples, and is not just a characteristic of the TG sample.

4. **Husband and wife differences.** Safilios-Rothschild's (1970) statement that husbands and wives differ considerably in their perceptions (and consequently their reports) of decision-making seems too strong. In the nationally representative VA sample only 3 of the 16 validity coefficients were reversed for husbands and wives. For the majority of the correlations, husbands and wives differed .03 or less. In the TG sample there were also only 3 reversals among 18 validity coefficients.
Even though the responses were generally quite similar, there are a few differences. In the TG sample for instance, there appears a tendency for spouses to overvalue or undervalue the impact of some resources on decision power relative to the valuation of these resources by their partner. Even so, the directions of the correlations for both spouses are as predicted.

To sum it up, though there are differences in the responses of the spouses, it is the similarities of their response patterns that are the more noticeable, and these do not seem to justify a conclusion of considerable differences. As a final point, differences between spouses may reflect more differences in educational levels than any other factor, and if responses of husbands and wives with the same levels of education were compared perhaps their differences would not be very noticeable.

5. Children's reports. The evidence also does not support Safilios-Rothschild's (1970) hypothesis that children do not provide an adequate description of their parent's relationship. Children were the respondents in the VC, SMF and the SIF (India) sample, the three samples with

--------------------
1. However, with respect to reliability, wives tend to have higher overall alphas than husbands, indicating perhaps that wives' reporting is more consistent than reporting of husbands. Ironically, the similarity of the validities of the husband and wife versions of the final say measure, coupled with the higher degree of reliability of wives' reports, suggests that if investigators are forced to choose one spouse as respondent, wives make better choices. Thus Blood and Wolfe's (1960) original choice of wives as respondents may not have been such a bad choice after all.
the highest levels of internal consistency. Furthermore, validity coefficients in all three samples were remarkably consistent with only a few correlations in directions opposite those predicted. This is evidence of both the intra- and cross-cultural strength of children's reports of the final say decision measure.

Interestingly, as Safilios-Rothschild (1970) suggests, there is a difference in the findings obtained with the college-aged respondents of the VC sample and the junior-high students of the SMF and SIF sample. The validity coefficients for the VC sample are noticeably higher than those of the other two samples. This may be due to a larger random error component of the responses of the younger children who are perhaps less accurate perceivers of their parents' relationship than are the older children. However, this difference does not necessarily mean that the younger children's reports are less valid, because the pattern of validity coefficients is in the predicted direction for both younger and older children.

Lastly, in the VV and TG sample, an interesting trend was noted with respect to the contribution of the decision items to the reliability of the final say measure among husbands, wives and children. Where the relative impact of a decision item differed for husbands and wives, the relative impact of the item on the children's reports fell in-between the impact of the item for the parents. Although this is not very strong evidence, due to sampling problems
with children in these two samples, the pattern does seem to suggest that children may moderate differences between their parents' reports should a difference be present. Exploration of this possibility will need to await another study.

LIMITATIONS OF STUDY AND SUGGESTIONS FOR FUTURE RESEARCH

Because alternative approaches are often suggested by the limitations of a research project, both will be presented together in this section. Beginning first with the final say decision index itself, the discussion will gradually broaden in scope as it touches upon resource variables, sampling and responses of family members, analytical techniques and the measurement of marital power in general.

Final Say Decision Index

Scaling of decision items. One possible limitation of the final say measure is the decision item scale itself. Each item forms a 5-point scale with vaguely defined intervals between points. The respondents are allowed broad latitude to determine just exactly what "husband more that wife" or "wife more than husband" means. These two categories lie somewhere between the category of "husband always" or "wife always." Moreover, midpoint is the highly improbable category "husband and wife exactly the same" in all but the VA sample, where the middle category was
labelled, "husband and wife same". Even though the average size of a given interval for a decision item may equal the average size of the other intervals of that item, the variation in interval size from respondent to respondent may be substantial. Thus, a large amount of unwanted random error could be built into the response categories.

Jenkins (1976) presents an interesting alternative to the 5-point scale. His study of family decisions about vacations asked respondents (husbands and wives) to assume they had 100 points which they were to allocate to each family member according to their relative contribution in the decision making process.*2 Such a procedure in this study estimates of relative influence and also (2) provided a better reflection of the balance of power in families by including the influence of children, whose contribution to decision making has been neglected for the most part in studies of decision power.

Choice of Decision Items. Although 20 decision items were included in this study, only one appeared in all seven samples, the "wife should work" item. Some items, such as having children, occurred in only one or two samples. Lack of a systematic procedure of item selection makes it

---

2. A typical question would be the following: "When considering whether to take the children on your last vacation, please allocate 100 percentage points among the family members according to the relative influence of each." These points then were distributed among husband, wife and up to five children.
difficult to collect those items which have maximum impact on the reliability of the measure.

A procedure which would assist in the development of a more refined version of the final say measure would be the generation of a comprehensive list of areas of marital responsibilities, from which a broad sample of items could be generated. Of particular interest would be sub-groups of items referring to areas in which respondents have ongoing joint interaction following decisions, or areas which are not the traditional realm of one spouse or the other. This large sample of items could then be administered to a representative sample of families, subjected to an alpha analysis and, after poor items have been culled, readministered to other samples where the items could be analyzed further. This procedure would result in an optimum selection of decision items for the final say measure.

Index weighting. Problems were evident with both weighting schemas used in this study. In six of the samples, importance weights were available only from the rankings of the decision areas by a separate sample of introductory sociology students. In only one sample, the TG sample, were weights available from the respondents themselves. It would have been helpful to see if the respondent weighted version of the final say measure was less valid than the unweighted version in the other samples as well.
Another type of problem affected the conflict weighted decision index. It was assumed in the construction of the CFSD index that one spouse's gain was the other spouse's loss. For example, if wife reported that she should have all the say but the actual decision making index indicated that husband had all the say, the husband was given credit for the conflict outcome. Although it seems unlikely, if the norms of the husband also indicated that wife should have the final say, a different interpretation is required for the conflict outcome.

However, a more serious problem is encountered with the use of the decision norms themselves to construct a conflict weighted index, a problem which seems to invalidate the use of norms altogether. This is the extremely truncated distributions and lack of variation of the norms themselves, leading to great homogeneity and very little variance among the CFSD scores. Another method of conflict weighting which may prove more fruitful could be the incorporation of a measure of satisfaction with partner's contribution/participation in the decision making process into the conflict weighted measure.

Resource Variables

Additional resources. Although a number of indicators of resources were used as criterion variables in this study, by no means is the list complete. The resources used were primarily socio-economic, only one category of attributes which spouses contribute to their marital relationships.
Other categories of resources include those reflecting interpersonal skills and ability such as competency, dependability, communication skills, supportiveness, and so forth. Such intrinsic resources as supportiveness and personal attractiveness could also be important contributors to the decision power balance of a couple.

**An index of resources.** Perhaps an additional step should be taken beyond accumulation of more resource variables to be included in studies of marital power. It may be that the best procedure would be to create a resource index, in much the same manner suggested for creation of the final say index. A pool of resource items could be generated and administered to an appropriate sample. These items could then be subjected to an alpha analysis to identify a group of relatively reliable items which could then be administered to other samples for further refinement and validation.

**Validation of resource theory.** The process through which a resource index could be validated would also serve to test the validity of resource theory itself. A careful separation of the influence of resources on marital power from the influence of marital power norms would be required in this step. In this way the relative influence of resources, norms and their interaction upon the distribution of marital power could be more clearly delineated. Evidence suggesting the necessity of careful validation of resource theory is provided in one study (Burr, Ahern and Knowles,
1977) where a single resource, income, was found to be related to marital power for traditional families but not for liberal families, a finding contrary to that predicted by Rodman's (1972) modification of resource theory.

Responses of Family Members

Adequate samples. One of the greatest limitations of this study was the unrepresentativeness of the MC and VV samples, and the children's portion of the TG sample. In the VV and TG samples children were few in number, unrepresentative and atypical in their response patterns to such a degree that their reports were of little use. Consequently, one of the major objectives of the study, to determine if children's reports were more or less valid than those of husbands and wives, remains unfulfilled.

Large amounts of error are present even in very representative samples such as the VA sample. It may be that samples of 200 or more families, each with husband, wife and children may be required before relationships between decision power and resources can be teased out in sufficient strength to allow comparison among the family members.

The decision measure and sub-categories of samples. One aspect of the decision measure which should be explored further is its performance in the sub-samples when the general sample is broken down by the various socio-demographic variables such as income, occupation, and so forth. For instance, older children may be more accurate
in their perceptions of the marital power structure than younger children, and age differences between younger spouses may be associated with greater differences in relative power than age differences between older spouses. The responses of spouses who have the same level of education need to be compared to see if the husband-wife difference disappears. Examining responses to the final say measure in various sub-samples will not only provide information about the stability of responses of the various family members but will provide as well an estimate of the vulnerability of the final say measure to changes in sampling characteristics in general.

**Analytical Techniques**

Further investigation is required of the relative performance of nominal, ordinal and interval level statistical procedures in the analysis of responses to the decision power index. This study was based on the assumption that interval level statistics are more effective tools in the analysis of quasi-interval variables than ordinal or nominal level statistics. However empirical support of this assumption is needed. Perhaps a study could be designed which would include a comparison of results from the analysis of a data set which employed analytic procedures at all three levels.
Measurement of Marital Power

The strategy outlined in Chapter I suggested that ants of each measure of marital power be developed, compared and combined in such a way as to produce an instrument in which validity and reliability are maximized. This study has focused on the comparison of variations of the self-report final say decision measure.

The next step in the measurement of marital power would be to develop another closely related measure, such as one based on Jenkin's (1976) approach to the allocation of relative influence among family members (a technique referred to above). This could occur with or be followed by a comparison of the reliability and validity of Jenkin's (1976) influence allocation measure and the final say index.

Ultimately, a comparison between the optimal self-report measures and observational measures of marital power would be in order. Criterion variables from resource theory or some other source could serve as points of comparison of the relative construct validity of the measures. If this strategy of refinement and comparison were followed, the final outcome, hopefully, would be an index or battery of indices which would provide dependable measurements of marital power.
IN CONCLUSION

More optimism should be expressed about the performance of the final say decision measure than previous researchers have suggested. Perhaps future research will discover other major flaws in the measure, or other measures which do a better job of tapping marital power. But in the meantime, the results of this study suggest that the final say decision index can be considered a dependable measure of marital power, particularly for that dimension reflected in the decisions couples make in the various areas of their marital responsibilities.
APPENDIX A

USING ITEM PRODUCTS TO CREATE WEIGHTED MEASURES OF FINAL SAY DECISION POWER

Problems With Item Raw Score Product Values

The "Contested Final Say Decision Power Index" proved a bit more difficult to form than was initially anticipated. Originally each final say decision item raw score (ranging from 1 to 5) was to be multiplied by the conflict item raw score (ranging from 0 to 4). The CFSD index score for each respondent would have been computed by averaging the item products. However, several difficulties were encountered that cast a shadow over this method of constructing conflict weighted final say decision measures of marital power.

Preservation of item characteristics in product scales. If one of the cardinal rules in the creation of a weighted scale is that the characteristics of the original items being weighted be preserved, then the item product scale should preserve such characteristics of the decision power scale as (1) the value indicating equal say in decision making occurring at the mid-point of the scale, (2) maximum power for either husband or wife represented by the end-points of the scale and (3) increases in magnitudes of power represented by orderly increases or decreases in values away from the mid-point towards the extreme values. The products created through multiplication of the two raw score items fail to meet any of these conditions.
Asymmetrical distribution of values. First, the distribution of values for the CFSD index computed by multiplying power items by conflict items is not symmetrical. For instance, when husband's power is maximum the range of the conflict weighted index is from 0 (maximum power score 5 times no conflict score 0) to 20 (maximum power score 5 times maximum conflict score 4). However, the corresponding range of scores for wife, only 0 to 5, is very much narrower. The effect of such an asymmetrical distribution of scores is to assign heavy weights to husband scores while only light weights are given to those of the wife. This leads to a distribution of scores that may artifactually appear to be predominantly husband dominant.

Erroneous range direction for wife's values. A second problem with the multiplicative index is that the wife's score ranges exactly opposite from the direction this score should range. Theoretically, wife's power should be maximum for a decision area when she has all the say in spite of maximum conflict. Yet her scores show just the opposite. When there is no conflict the wife's score is 0 (maximum power item score 1 times no conflict score 0) and when conflict is at a maximum her CFSD score is 4 (maximum power item score 1 times maximum conflict score 4). When the wife is having all the say under conditions of maximum conflict this CFSD index assigns her less power, a score of 4, than when there is no conflict, indicated by a score of 0.
Perhaps more graphic would be the example where wife has most of the say, a decision power item score of 2. In situations of no conflict the CFSD score for the wife is 0, indicating maximum power for the wife, whereas in situations of maximum conflict her score is 8, almost the level of equal say power.

The generation of false values. A third problem with the item product scores is that false values are sometimes created. Whether a couple's power level is 5, indicating husband has all the say, or 3, indicating equal say, or any other level of power, when there is no conflict the item product score is 0. Thus, when there is no conflict, all item products indicate maximum power for wife.

Another example of false values is evident when power is held constant at a level of 3 (equal say power) and conflict is varied from 0 to 4. The CFSD index scores are respectively 0, 3, 6, 9, 12. In four out of the five products created by weighting the equal say category by the amount of conflict, the scores favor the wife, giving her increasing power as the level of conflict decreases.

Linear transformation of item raw scores prior to creation of item product scale. One possible way of rectifying these problems is through a linear transformation of the conflict and decision power item raw scores before these two variables are combined as item products. Therefore, a constant value of 3 was subtracted from the decision power item scores, resulting in a transformed range
of -2 to +2, and the constant value of 1 was added to the conflict item raw scores, creating a transformed range of 1 to 5 for conflict. These transformations retained the symmetry of the decision power item scale, the proper direction of the ranges of scores for husband and wife, and supposedly eliminated the problem of erroneous values.

Conflict Scores and Their Meaning

Interpretation of conflict scores. However, after the creation of the item products from the transformed item scores another problem became apparent, the meaning of the conflict scores themselves. For instance, if the decision power level is -1, indicating wife has most of the say, and the conflict level is 2, indicating some conflict, a product score of -2 is obtained. Does this mean that husband has obtained a little power from a wife who would like to make all the decisions in a particular area, or does it mean that wife has obtained a little more power for herself against her husband's wishes to have an equal say situation?

Each of these situations would lead to a different attribution of power. Just knowing the amount of conflict engendered in making final say decision is not enough. Also required is information about which spouse is favored in the decision in spite of conflict.

Creation of conflict scores incorporating direction of conflict outcome. Information which allows the direction of the power outcome to be considered is available from the question on normative preferences in those sets where
husbands and wives are respondents (VA, MC and VV samples). Remember that the indicators of conflict were obtained by subtracting the score of an item reflecting who makes the decision in a particular area from the score of the item reflecting who should make the decision in that area. The sign of the difference reflects the marital partner favored in the decision making in light of the conflict.

For example (using raw scores), suppose a decision power score for a given item were 2, indicating that the wife makes most of the decisions, and power norms for that same item were 4, indicating that the reported preference is that husband should make most of the decisions in that area. Subtracting the power norm score from the power score produces a -2, indicating that there is a moderate amount of conflict, and the actual decision making pattern favors the wife.

Problems in Creating Item Product Scales From Transformed Items

Transforming conflict scores which incorporate direction of conflict outcome: A quandary. If the sign of the difference is incorporated into the conflict scores as an indicator of the direction of conflict outcomes, the raw conflict scores now range from -4 to +4, instead of from 0 to 4. How are these conflict item scores to be transformed to eliminate the zero value, and yet at the same time preserve the symmetry required for the creation of a symmetrical item product scale? The scale could be split at
the mid-point, and 1 subtracted from all negative conflict scores and added to positive conflict scores. Two transformed conflict item ranges would then be created: -1 to -5, and +1 to +5. However, where shall the no conflict raw scores of 0 go? *1

Even if a satisfactory solution could be worked out for allocating conflict scores of zero, multiplying the transformed power item scale by the twin-ranged conflict item would, in the end, still produce erroneous item product scores.

**False values for the transformed item product scale.** The linear transformations do not eliminate the problem of false values. For instance, a decision power item score of -2 times a difference score of -5, occurring when wife makes all the decisions in the face of maximum conflict, produces a value of +10, which indicates maximum power for husband! This occurs because the product of two negative values is always positive. This problem produces a distribution of wife's scores ranging in the opposite direction from what they should. About the only way to deal with this problem is to hand-code each item product in terms of whether the conflict outcome favors the wife or the husband.

---

1. All cases for which there is no conflict for a particular item could be dropped for that item, but what of the external validity of the findings if there were a substantial number of cases with no conflict?
the equal say level. Before these cumbersome numerical adjustments are made to rectify the difficulties of the item product scale, there is one final problem that also must be resolved. This is the problem of weighting the decision power item scores which indicate equal say decision power. When raw scores are used, the values of the item products for varying levels of conflict at the level of equal power favored the wife's power. The transformed items, on the other hand, result in item products which collapse all levels of conflict to zero at the equal say level of power. Equal power levels where conflict is -3, indicating some degree of conflict and a conflict outcome that favors the wife, are assigned the same score as equal power levels where conflict is +3, indicating some degree of conflict and a conflict outcome that favors the husband. Both are assigned the score of zero, which theoretically should occur only when there is no conflict.

Only if all of the combinations of item values which produce a product of 0 have the same meaning could the use of item products be justified.

Problem of curvilinearity. Even if all of the conditions for a weighted index produced through item products have been met so that there are no artifactual errors, the distribution of values is curvilinear to some degree. Analyses of these indices may produce distorted results, depending on the actual empirical values obtained
through item product weighting, the degree of curvilinearity present, and the extent to which linear analytical procedures are used to produce correlations between such weighted indices and other variables.

An Alternative Method of Weighting: The Property Space Technique

Because of the many problems of product weighted indices, and the complex procedures required to avoid them, researchers should give the property space technique close examination as an alternate method of weighting. Relative to the number of steps required to preserve the characteristics of the variable being weighted in the item product scale, only a few steps are needed with the property space technique. The basic procedure is to select values to represent increases or decreases across combinations of levels of the weighting variable and the variable being weighted. (More information about the property space technique is found in Chapter III.)

2. In the creation of the item product scale, the property space technique is already being approached when item products are hand-coded to reflect direction of outcomes.
APPENDIX B

COEFFICIENT ALPHA

Alpha: An Indicator of Internal Consistency

Among the most widely used coefficients of reliability determined from relationships among index items is coefficient alpha, developed by Cronbach (1951). Coefficient alpha, or alpha, is an estimate of reliability "based on the average correlation among items within a test..." (Nunnally, 1967:210).

Alpha: a conservative estimate of reliability. Basically, alpha estimates the proportion of variance in a measure due to all common factors among the items. Although alpha is the upper bound to the first common factor shared among the items of a measure, when all common factors are taken into consideration alpha is the lower bound to the true reliability of the measure (Green, Lissitz and Muliak, 1977). Therefore, alpha is a stringent or conservative estimate of the reliability of a measure. Although the true reliability of a measure most likely is somewhat higher than alpha (Armor, 1974), theoretically it will not be any lower. Thus alpha can be considered a safe estimate, and a high alpha a very good indication that a measure has a high degree of reliability.
Alpha and item contributions to reliability. Not only can alpha be used to provide an estimate of the reliability of a measure but it can also be used to provide an estimate of the relative contributions of each item to the overall reliability. By comparing the alpha of a measure with the alpha of the measure from which the item has been deleted an indication can be obtained of the impact of the item on the internal consistency of the index. The lower the item-removed alpha relative to the overall alpha, the greater the item's contribution to the measure's reliability beyond that already made by other items. Conversely, smaller differences indicate that items make less contributions. If item-removed alphas are higher than the overall alpha, items are actually reducing the internal consistency of the index.

Alpha and item total correlations. Coefficient alpha is related to item-total correlations, which have been used more often to assess the internal consistency of a measure.1 However, item-total correlations lack several advantages of the item-removed and overall alpha comparisons. The most important advantage is that alphas

---

1. At a more technical level alpha is actually the average of all possible split-half correlations (Baggaley, 1964). In other words, if every possible way of dividing the items of a measure into two groups were exhausted, and a correlation coefficient obtained between the divisions of each combination, their average would be coefficient alpha. Item-total correlations can be considered a type of split-half coefficient, if the item score is correlated with the total score of the measure minus the item which is being correlated.
provide precise estimates of the relative contribution of items to the reliability of a measure whereas only rough inferences about reliability can be made from item-total correlations. Furthermore, the overall alpha serves as a reference point against which the relative contribution of each item can be gauged, an advantage which item-total correlations, lacking a reference point, do not have. As a consequence, more direct interpretations can be made about the impact of items on the internal consistency with alpha comparisons than with item-total correlations. Lastly, the patterns of relationships among items is much more easily seen with item-removed and overall alphas than with item-total correlations, when this information is presented in tables.

Alpha: An Unreliable Indicator of Validity

High alphas are possible with multidimensional measures. Green et al. (1977) point out that alpha is designed to assess only the internal consistency of a measure and not its construct validity. Because alpha accounts for all factors shared by the items of a measure and not just the principle factor or construct, it is conceivable that alpha could be high if items tap more than one construct. They point out that although alpha is indeed an upper limit for the first factor, alpha accounts for other factors as well if they are present among the items.
Low alphas do not necessarily indicate lack of validity. Furthermore, low alphas do not necessarily mean that items are invalid. Even though items may be valid indicators of some variable, it does not necessarily follow that their inter-relationships need be very strong. Additionally, while the theoretical relationship between indicators and some variable may be quite valid, their empirical relationships may appear to be very weak. Vagaries of observation and operationalization can introduce random error into the measure, and large amounts or random error variance could drop inter-item correlations substantially without affecting construct validity.

2. An example of an index which has very high validity and almost no internal consistency is the following measure of amount of cash on hand possessed by an individual. Items could follow the same format, each item tapping a different dimension of cash as follows: (1) How many dimes do you have?, (2) How many fifty-dollar bills do you have?, and so forth until an item had been provided for each kind of coin and each denomination of bill. Item responses would be weighted to reflect the contribution of each to the total score, expressed in dollars and dollar fractions. Although the measure would most likely assess well the amount of cash possessed by each respondent, inter-item correlations among the number of each kind of coin or bill would probably be quite low.

3. High levels of random error can be introduced if responses represent only a narrow band of the range of a measure (Cronbach, 1970:430-432). For instance, sampling procedures might produce a homogeneous set of respondents on the variable being measured. Error would also be introduced if items failed to discriminate among respondents to begin with. Though it may be a valid indicator, little would be gained from an item on which everyone tended to give the same answer. A third source of error is error built into a measure beforehand by allowing only a few response categories per item. Yet another reason for low inter-item correlations is that some valid items may account for less of the variable being measured than other valid items.
APPENDIX C

Selected Items from the
VC Study Questionnaire
IMPORTANT: Since this questionnaire will have questions which refer to your father and mother and to your interaction with them, please answer all questions which refer to your family situation as it was DURING YOUR LAST YEAR IN HIGH SCHOOL.

1. Now circle one of the following numbers to describe your family situation at that time and the people you will refer to in this questionnaire:
   1. If you were living with both of your own parents, answer with information based on them.
   2. If you had lived with a stepparent for one year or more, answer questions about your father or mother with information about the stepparent rather than your own parent.
   3. If one of your parents had been gone for less than one year, answer all questions about that parent with information about him, even if you have a stepparent now.
   4. If there was no natural parent and no stepparent about whom you can answer, leave all questions about that parent blank.
   5. Other (please explain) __________________

2. At the time you finished high school, were your parents: (circle one number)
   0. Both living together
   1. Divorced
   2. Separated
   3. Father was dead
   4. Mother was dead
   5. Temporarily living apart, for reasons other than marital problems (only if this situation had existed for one year or less).

3. Have your parents ever been divorced?
   1. Father has
   2. Mother has
   3. Both have
   0. Neither has

4. How old were the following people: June of your last year in high school?
   a. Your father ________
   b. Your mother ________
   c. You ________________

5. What is the highest level of education attained by your FATHER?
   0. Some grade school
   1. Completed grade school
   2. Some high school
   3. Completed high school
   4. Completed high school and also had other training, but not college, e.g. technical
   5. Some college
   6. Completed college
   7. Some graduate work
   8. Graduate degree (M.D., M.A., Ph.D., et

6. What is the highest level of education attained by your MOTHER?
   0. Some grade school
   1. Completed grade school
   2. Some high school
   3. Completed high school
   4. Completed high school and also had other training, but not college, e.g. nursing, business
   5. Some college
   6. Completed college
   7. Some graduate work
   8. Graduate degree (M.D., M.A., Ph.D., et
The following questions about your father's occupation all should be answered in relation to what your father did during your last year in high school. But if he was retired or dead at that time (and if you are not answering the questionnaire about a step father) answer for what he did before retirement or death.

7. First, give a brief name or title for his work, i.e., electrician, store owner, doctor, etc.:

8. In a sentence or two, please explain what your father did in his job, his responsibilities, etc.:

3. In addition please circle the answer category which best fits his occupation.
   1. Semiskilled or unskilled workman (truck driver, factory worker, etc.)
   2. Skilled workman or foreman (machinist, carpenter, etc.)
   3. Farmer (owner-operator or renter)
   4. Clerical or sales position
   5. Proprietor, except farm (i.e., owner of a business)
   6. Professional (architect, chemist, doctor, etc.) or managerial position (department head, postmaster, police chief, etc.)
   7. Don't know

10. For whom did your father work?
   1. Self-employed (own business or professional practice)
   2. Private business or industry
   3. Government or school
   4. Non-profit private organization (church foundation, etc.)

11. Does your father supervise others as part of his job?
   0. No
   1. One or two people
   2. Three or four
   3. Five to nine
   4. Ten to 19
   5. Twenty to 29
   6. Thirty to 49
   7. Fifty to 99
   8. One hundred or more

12. About how many people are employed in the place your father works?
   0. 1-4
   1. 5-9
   2. 10-19
   3. 20-49
   4. 50-99
   5. 100-199
   6. 200-499
   7. 500-999
   8. 1,000 or more

13. How much would you say your father liked his work?
   0. Disliked his work a great deal
   1. " " " considerably
   2. " " " somewhat
   3. " " " a little
   4. Liked his work a little
   5. " " " somewhat
   6. " " " considerably
   7. " " " extremely well

14. About how many hours a week did your father spend on his work during your last year in high school?
   0. Ten to 19
   1. Twenty to 29
   2. Thirty to 34
   3. Thirty five to 39 (for example, 7½ hours a day for 5 days)
   4. Forty to 44 (for example, 3 hours a day for five days)
   5. Forty five to 49
   6. Fifty to 54
   7. Fifty five to 59
   8. Sixty and over
15. Which of the following groups comes closest to your parents’ annual income before taxes during your last year in high school? Circle one number for your FATHER’s income and one for your MOTHER’s income.

<table>
<thead>
<tr>
<th>FATHER</th>
<th>MOTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

16. How satisfied would you say your FATHER was with this level of income?
0. Not at all satisfied
1. Slightly
2. Moderately
3. Almost completely
4. Completely

17. How satisfied would you say your MOTHER was with this level of income?
0. Not at all satisfied
1. Slightly
2. Moderately
3. Almost completely
4. Completely

18. At what periods in your life was your mother employed FULL TIME for wages for one year or more (circle an answer for each period)?

<table>
<thead>
<tr>
<th>A. Preschool age</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Elementary school age</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C. Junior high school age</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D. Senior high school age</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

19. At what periods in your life was your mother employed PART TIME for wages for one year or more (circle an answer for each period)?

<table>
<thead>
<tr>
<th>A. Preschool age</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Elementary school age</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C. Junior high school age</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D. Senior high school age</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

20.a What kind of work did your mother do outside the home for the longest period during the time you were a senior in high school?
0. Not employed outside the home
1. Semi-skilled or unskilled worker (hospital aide, factory worker, etc.)
2. Skilled worker or foreman (hair stylist, cook, etc.)
3. Farmer (she herself operated a farm)
4. Clerical or sales position
5. Proprietor, except farm (i.e., owner of a business)
6. Professional (teacher, registered nurse, doctor, etc.) or managerial position (department head, store manager, etc.)
7. Don’t know

20.b In addition please circle the answer category which best fits this occupation.

21. How much would you say your mother liked her work?
0. Disliked working a great deal
1. " considerably
2. " somewhat
3. " a little
4. Liked working a little
5. " somewhat
6. " considerably
7. " extremely well

22. How much would you say your mother likes being a homemaker (please answer, even if your mother was also employed outside the home)?
0. Dislikes homemaking a great deal
1. " considerably
2. " somewhat
3. " a little
4. Likes homemaking a little
5. " somewhat
6. " considerably
7. " extremely well

23. Were your parents fearful about their economic security i.e., such things as loss of a job, fear of a depression, worry about how they will make out in old age, etc.
0. Not at all worried during your
1. A little worried last year in
2. Somewhat worried high school?
3. Considerably worried
4. Extremely worried
DECISIONS AND DISAGreements

With regard to the following decisions, which of your parents had the final say in your family during your last year in high school (if the problem never came up, guess which parent would have had the final say)?

For each question, be sure to circle three answer numbers: one for which parent had the final say; one for your parents' disagreement; and one for whether you helped to decide.

24. WHO HAD THE FINAL SAY?
   1 = Mother always
   2 = Mother more than father
   3 = Father and mother exactly the same
   4 = Father more than mother
   5 = Father always

25. YOUR INFLUENCE
   0 = Never
   1 = Sometimes
   2 = Half the time
   3 = Usually
   4 = Always

26. DISAGREED?
   0 = Never
   1 = Sometimes
   2 = Half the time
   3 = Usually
   4 = Always

1. What car to get?
   1. Which parent had the final say? 1 2 3 4 5
   2. My parents disagreed about this....0 1 2 3 4
   3. I helped decide this.................................0 1 2 3 4

3. How the family income is spent in general?
   1. Which parent had the final say? 1 2 3 4 5
   2. My parents disagreed about this.................0 1 2 3 4
   3. I helped decide this.................................0 1 2 3 4

C. Where to go on a vacation?
   1. Which parent had the final say? 1 2 3 4 5
   2. My parents disagreed about this...............0 1 2 3 4
   3. I helped decide this.................................0 1 2 3 4

D. What house or apartment to take?
   1. Which parent had the final say? 1 2 3 4 5
   2. My parents disagreed about this...............0 1 2 3 4
   3. I helped decide this.................................0 1 2 3 4

E. Whether mother should go to work or quit working?
   1. Which parent had the final say? 1 2 3 4 5
   2. My parents disagreed about this...............0 1 2 3 4
   3. I helped decide this.................................0 1 2 3 4

F. Things concerning the children's activities
   (getting special privileges, discipline, etc.)?
   1. Which parent had the final say? 1 2 3 4 5
   2. My parents disagreed about this...............0 1 2 3 4
   3. I helped decide this.................................0 1 2 3 4
APPENDIX D

Selected Items from the
SMF Study Questionnaire
I. MY FAMILY AND I

1. Sex (check one box):
   1( ) Male
   2( ) Female

2. Age at last birthday:

3. I make my regular home with:
   1( ) My own parents
   2( ) Mother and a step-father
   3( ) Mother only
   4( ) Father and a step-mother
   5( ) Father only
   6( ) My grandparents
   7( ) A foster home
   8( ) Other,____________________

4. My parents are:
   1( ) Both living together
   2( ) Divorced
   3( ) Separated
   4( ) Father is dead
   5( ) Mother is dead
   6( ) Temporarily living apart
   for reasons other than marital problems, if for longer than 1 year.

5. Besides your parents and brothers and sisters, is there anyone else who now lives regularly with your family, and shares in family meals and activities? (Check all that apply.)
   1( ) No one else
   2( ) Grandfather
   3( ) Grandmother
   4( ) Uncle
   5( ) Aunt
   6( ) Some other relatives
   7( ) Someone who is not related to my family

NOTE: Most of the questions in this questionnaire ask about your Mother or Father. Please check to show how you are answering these questions:

1( ) If you are living with both your own parents, answer for them.
2( ) If you have lived with a step-parent for a year or more, answer questions about father or mother with information about the step-parent rather than your real parent.
3( ) If one of your parents has been gone for less than a year, answer all questions for that parent even if you now have a step-parent.
4( ) If there is no natural parent and no step parent for whom you can answer, leave all questions about that parent blank.
5( ) Other, please explain____________________

6. My father's age is:
   1( ) 25-29
   2( ) 30-34
   3( ) 35-39
   4( ) 40-44
   5( ) 45-49
   6( ) 50-54
   7( ) 55-59
   8( ) 60 or over.

7. My mother's age is:
   1( ) 25-29
   2( ) 30-34
   3( ) 35-39
   4( ) 40-44
   5( ) 45-49
   6( ) 50-54
   7( ) 55-59
   8( ) 60 or over.

8. How many living BROTHERS do you have?____________________

9. Give ages of each one / / / / / / /

10. How many living SISTERS do you have?____________________

11. Give ages of each one / / / / / / /
12. Please check the HIGHEST LEVEL of education completed by your FATHER.
1( ) Some grade school
2( ) Completed grade school
3( ) Some high school
4( ) Completed high school
5( ) Completed high school and also had other training, but not college, e.g. technical, trade, etc.
6( ) Some college
7( ) Completed college
8( ) Some graduate work
9( ) Graduate degree, M.D., M.A., Ph.D., etc.

13. Please check the HIGHEST LEVEL of education completed by your MOTHER.
1( ) Some grade school
2( ) Completed grade school
3( ) Some high school
4( ) Completed high school
5( ) Completed high school and also had some other training, but not college, e.g. nursing, secretarial, technical, trade, etc.
6( ) Some college
7( ) Completed college
8( ) Some graduate work
9( ) Graduate degree, M.D., M.A., Ph.D., etc.

14. How many different cities or towns have you lived in since you were born?
1( ) Only this one
2( ) Two
3( ) Three or four
4( ) Five or six
5( ) Seven or eight
6( ) Nine or ten
7( ) Eleven or more

15. I have lived in the Twin Cities:
1( ) Less than a year
2( ) One year
3( ) Two years
4( ) Three or four years
5( ) Since I started school
6( ) All or almost all of my life
7( ) A little
8( ) A little
9( ) A little
10( ) A little
11( ) A little
12( ) A little
13( ) A little
14( ) A little
15( ) A little
16. My father's job is: (Give the name of his job such as "auto mechanic", or tell what kind of work he does - not where he works.)

17. Who does your Father work for?
1( ) Himself (i.e. his own business or professional office)
2( ) A private company or organization
3( ) The Government
4( ) A school or college

18. Does your father have a second job in addition to his regular one?
1( ) Yes
2( ) No

19. Does your mother now have a paid job?
1( ) No
2( ) Yes, part-time
3( ) Yes, full-time

20. What kind of work does your mother do? (Tell what her job is and not where she works.)

21. How much would you say your mother likes her job?
X( ) Doesn't apply, she isn't working.
1( ) Dislikes working a great deal
2( ) " considerably
3( ) " somewhat
4( ) " a little
5( ) Likes working a little
6( ) " considerably
7( ) " somewhat
8( ) " extremely well.
VIII. THE LAST WORD

The following questions are about WHICH PARENT HAD THE FINAL SAY in your family during the past year. (If the problem has never come up, guess which parent would have the final say.)

For each question, be sure to circle three answers: A. One for who had the final say, B. one for parents' disagreement, and C. one for whether you help decide.

A. WHICH OF YOUR PARENTS HAD THE FINAL SAY?

1. Mother always----------------
2. Mother more than Father----------
3. Mother and Father exactly the same
4. Father more than Mother——
5. Father always

B. PARENTS DISAGREE:

1. Never
2. Sometimes
3. Half the time
4. Usually
5. Always

C. I HELP DECIDE:

1. Never
2. Sometimes
3. Half the time
4. Usually
5. Always

1. What car to get? .......................... 1 2 3 4 5
   My parents disagree about this ............................. 0 1 2 3 4
   I help decide this ........................................

2. Whether or not, or how much life insurance to buy? .......................... 1 2 3 4 5
   My parents disagree about this ............................. 0 1 2 3 4
   I help decide this ........................................

3. Where to go on a vacation? .................. 1 2 3 4 5
   My parents disagree about this ............................. 0 1 2 3 4
   I help decide this ........................................

4. What house or apartment to take? .................. 1 2 3 4 5
   My parents disagree about this ............................. 0 1 2 3 4
   I help decide this ........................................

5. Whether Mother should go to work or quit work? .................. 1 2 3 4 5
   My parents disagree about this ............................. 0 1 2 3 4
   I help decide this ........................................
VIII. THE LAST WORD (Continued)

A. WHICH OF YOUR PARENTS HAD THE FINAL SAY?

1. Mother always.

2. Father and Mother exactly the same

3. Father more than Mother

4. Mother more than Father

5. Father always.

How much money the family can afford to spend per week for food?

1. My parents disagree about this

2. I help decide this

3. I help decide this

THANK YOU FOR YOUR HELP WITH THIS IMPORTANT RESEARCH
APPENDIX E

Selected Items from the
VA Study Questionnaire
Hello, my name is ___ and I work for Response Analysis Corporation in Princeton, New Jersey. We are conducting a study for the University of New Hampshire about the American family.

First, I'd like to find out about your family composition. Could you tell me how many people live here who are age 18 and older? NUMBER: ___________

A. LIST ALL RESIDENTS, AGE 18 OR OLDER, ACCORDING TO RELATIONSHIP TO HEAD OF HOUSEHOLD.

<table>
<thead>
<tr>
<th>RELATIONSHIP (OR CONNECTION) TO HEAD OF HOUSEHOLD</th>
<th>SEX</th>
<th>AGE</th>
<th>MARITAL STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD OF HOUSEHOLD</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. USE THESE CODES TO SHOW MARITAL STATUS OF EACH RESIDENT: M=Married, S=Single, D=Divorced, W=Widowed, SP=Separated

People generally think of the family as a group that usually gets along together, even though there are lots of exceptions. These days we are finding more and more that the family is also a group which has disagreements and conflicts. The purpose of this study is to find out some of these conflicts. We are especially interested in learning about the way these conflicts are settled -- or not settled. This is important information which will be helpful in understanding modern American families and in providing information which may be useful to us all.

I want to assure you that your name will not appear anywhere on the questionnaire, so your answers cannot be connected with you in any way. You are one of a large cross-section of people we will be talking with around the country, and your answers are necessary and representative of other people.
First, I'd like to ask you some general questions about you and your (husband/partner).

1. How long have you been married or living together? (IF LESS THAN ONE YEAR, RECORD MONTHS.)
   YEARS MONTHS

2. Have you been married or lived with someone else before?  1 YES  2 NO  X NO ANSWER
   IF "YES," ASK:
   3. How did the relationship end?  1 SEPARATION  4 DESERTION
      2 DIVORCE  5 OTHER: (specify)
      3 DEATH  X NO ANSWER

4. Has your (husband/partner) been married or lived with someone else before?  1 YES  2 NO  X NO ANSWER
   IF "YES," ASK:
   5. How did the relationship end?  1 SEPARATION  4 DESERTION
      2 DIGRACE  5 OTHER: (specify)
      3 DEATH  X NO ANSWER

6. Are you a student or taking any courses this year in a college or other kind of school?  1 YES  2 NO

7. How about your (husband/partner)? Is he taking any courses this year in a college or other kind of school?  1 YES  2 NO

8. What is the highest grade or year you completed in school?  

   SOME GRADE SCHOOL ............................................ 1 1
   COMPLETED GRADE SCHOOL (8TH GRADE) .......................... 2 2
   SOME HIGH SCHOOL ............................................. 3 3
   COMPLETED HIGH SCHOOL ........................................ 4 4
   COMPLETED HIGH SCHOOL AND ALSO HAD OTHER TRAINING, BUT NOT COLLEGE (TECHNICAL, NURSING, BUSINESS, ETC.).  5 5
   SOME COLLEGE .................................................. 6 6
   COMPLETED COLLEGE ............................................. 7 7
   SOME GRADUATE WORK ............................................ 8 8
   GRADUATE DEGREE ................................................ 9 9
   DON'T KNOW .................................................... X X

9. How about your (husband/partner)? What is the highest grade or year he completed in school?
The next few questions are about your job and that of your (husband/partner).

10. Are you employed at the present time, either full-time or part-time for pay?

   1  YES, FULL-TIME
   2  YES, PART-TIME
   3  NO [X] NO ANSWER
      (GO TO Q. 22)

IF "YES," ON Q. 10 OR 12, ASK:

11. Which of the following best describes what you do? Are you (READ PRECODES)
    1  Unemployed
    2  Retired
    3  Disabled
    4  Housewife

IF "NO," ASK:

13. About how many hours a week (do/did) you work?

   NUMBER OF HOURS: [X] DON'T KNOW

12. Have you ever held a job for pay?

   1  YES (ASK RESPONDENT TO THINK ABOUT HER BEST PAYING JOB, AND ASK SERIES BEGINNING WITH Q. 13)
   2  NO (GO TO Q. 22)

14. Could you please tell me what kind of work you (do/did)? (INTERVIEWER:
     GET ENOUGH DETAIL SO WE CAN CLASSIFY JOB.)

15. What kind of business (is/was) that? What do they make or do where you (work/worked)?

INTERVIEWER: IF NOT CLEAR FROM ABOVE RESPONSES, ASK:

16. (Does/Did) your job have a name or title? (What title was that?)

17. (Are/Were) you self-employed? 1  YES

   2  NO

RESPONDENT OCCUPATION IS CONTINUED ON NEXT PAGE.
22. Is your (husband/partner) employed at the present time, either full-time or part-time, for pay?

1  YES, FULL-TIME
2  YES, PART-TIME
3  NO
X NO ANSWER  (GO TO Q. 34.)

IF "YES," ON Q. 22 OR 24, ASK:

23. Which of the following best describes what he does? Is he (READ PRECODES)

1 Unemployed
2 Retired
3 Disabled
4 Housekeeper

24. Has he ever held a job for pay?

1 YES (ASK RESPONDENT TO THINK ABOUT HIS BEST PAYING JOB, AND ASK SERIES BEGINNING WITH Q. 25.)
2 NO (GO TO Q. 34.)

25. About how many hours a week (does/did) he work?

NUMBER OF HOURS:________
X DON'T KNOW

26. Could you please tell me what kind of work he (does/did)? (INTERVIEWER: GET ENOUGH DETAIL SO WE CAN CLASSIFY JOB.)

27. What kind of business (is/was) that? What do they make or do where he (works/worked)?

INTERVIEWER: IF NOT CLEAR FROM ABOVE RESPONSES, ASK:

28. (Does/Did) his job have a name or title? (What title was that?)

29. (Is/Was) he self-employed? 1 YES
2 NO
X DON'T KNOW

30. (Does/Did) he supervise others as part of his job? 1 YES
2 NO
X DON'T KNOW

IF "YES," ASK:

31. How many people (does/did) he supervise?

Please include those people directly supervised by him, and those he indirectly (supervised/ supervised) through others.

1 ONE OR TWO PEOPLE
2 THREE OR FOUR
3 FIVE TO NINE
4 TEN TO NINETEEN
5 TWENTY OR MORE
X DON'T KNOW
Now, I'd like to ask you about the children in your family.

41. First, how many children do you have in all, counting children who are living here, and those who are not living here?
   NUMBER: 
   0 NONE -- GO TO PAGE 13, Q. 60

42. How many of these children are not living here?
   NUMBER: 
   0 NONE

Now, I'd like to ask just about those children who are living here. Your own children as well as any other children who might be living here.

43. In all, how many children are living here?
   (IF ONE CHILD IS LIVING HERE, ASK Q. 44;
   IF MORE THAN ONE CHILD LIVING HERE, GO TO Q. 47.)
   NUMBER: 
   0 NONE -- GO TO PAGE 13, Q. 60

   IF ONE CHILD IS LIVING HERE, ASK:

44. Please tell me his or her name, age, and sex.

<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
<th>SEX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 BOY 2 GIRL</td>
</tr>
</tbody>
</table>

45. Is this child from your present (marriage/relationship), or from another marriage (or relationship) of yours or your (husband/partner)?
   1 PRESENT RELATIONSHIP 2 ANOTHER RELATIONSHIP

46. Is this child your natural child, an adopted or foster child, or is (he/she) related to you in some other way?
   1 NATURAL CHILD 2 ADOPTED CHILD 3 FOSTER CHILD 4 RELATED ANOTHER WAY
IF MORE THAN ONE CHILD IN HOUSEHOLD, ASK:

47. I'd like to ask about all the children who are living here. Let's start with the children who are under age three. Starting with the oldest child who is under age three, please tell me his or her name, age, and sex.

<p>| Q. 47 | Q. 48 | Q. 49 |</p>
<table>
<thead>
<tr>
<th>NAME</th>
<th>AGE</th>
<th>BOY</th>
<th>GIRL</th>
<th>ANOTHER MARRIAGE</th>
<th>ADOPTED</th>
<th>FOSTER</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

48. Are any of these children from another marriage (or relationship) of yours or your (husband/partner)?

1. YES (which ones?)
2. NO

49. Are these children all your natural children, or are any of them adopted or foster children, or related to you in some other way?

1. ALL NATURAL
2. OTHER (which ones?)
IF MORE THAN ONE CHILD IN HOUSEHOLD, ASK:

50. Now, let's talk about the children who are age 0 to 17. Starting with the oldest child in that age range, please tell me his or her name, age, and sex.

<table>
<thead>
<tr>
<th>Q. 50 Name</th>
<th>Q. 51 Age</th>
<th>Boy</th>
<th>Girl</th>
<th>Another Marriage</th>
<th>Adopted</th>
<th>Foster</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

51. Are any of these children from another marriage (or relationship) of yours or your (spouse/partner)?
   1. YES (which ones?)
   2. NO

52. Are these children all your natural children, or are any of them adopted or foster children, or related to you in some other way?
   1. ALL NATURAL
   2. OTHER (which ones?)
Every family has decisions to make — such as where to live, whether or not to buy a car, and so on. We would like to find out how you and your (husband/partner) make some of these kinds of decisions.

65. Let's start with buying a car. Who do you think should have the final say on buying a car?

<table>
<thead>
<tr>
<th>RESPONDENT OPINION</th>
<th>HUSBAND/PARTNER OPINION</th>
<th>WHO HAS FINAL SAY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Buying a car</td>
<td>1 2 3 4 5 X</td>
<td>1 2 3 4 5 X</td>
</tr>
<tr>
<td>2. Having children</td>
<td>1 2 3 4 5 X</td>
<td>1 2 3 4 5 X</td>
</tr>
<tr>
<td>3. What house or apartment to take</td>
<td>1 2 3 4 5 X</td>
<td>1 2 3 4 5 X</td>
</tr>
<tr>
<td>4. What job your (husband/partner) should take</td>
<td>1 2 3 4 5 X</td>
<td>1 2 3 4 5 X</td>
</tr>
<tr>
<td>5. Whether you should go to work or quit work</td>
<td>1 2 3 4 5 X</td>
<td>1 2 3 4 5 X</td>
</tr>
<tr>
<td>6. How much money to spend on food per week</td>
<td>1 2 3 4 5 X</td>
<td>1 2 3 4 5 X</td>
</tr>
</tbody>
</table>

66. How about your (husband/partner)? Who does he think should have the final say on buying a car?

67. Now, in your family, who actually does have the final say?
73. Some people tell their (husband/partner) about their deepest feelings -- both happy and sad feelings. But others keep their thoughts and feelings to themselves. What about in your case? Which of these statements best describes you?

1. I NEVER LET ON WHAT I AM FEELING
2. I SELDOM DO
3. I DO OCCASIONALLY
4. I DO ABOUT HALF THE TIME
5. I OFTEN TELL MY THOUGHTS AND FEELINGS
6. I USUALLY DO
7. I ALWAYS TELL MY THOUGHTS AND FEELINGS
X NO OPINION

74. Couples relate to each other in many different ways. Thinking just about this past week, how did you feel about your (marriage/relationship)?

1. VERY NEGATIVE
2. FAIRLY NEGATIVE
3. A LITTLE NEGATIVE
4. NEITHER NEGATIVE NOR POSITIVE
5. A LITTLE POSITIVE
6. FAIRLY POSITIVE
7. VERY POSITIVE
X NO OPINION

75. Now, overall, how do you feel about your (marriage/relationship)?

1. VERY NEGATIVE
2. FAIRLY NEGATIVE
3. A LITTLE NEGATIVE
4. NEITHER NEGATIVE NOR POSITIVE
5. A LITTLE POSITIVE
6. FAIRLY POSITIVE
7. VERY POSITIVE
X NO OPINION

76. In comparison with other things, like a job or friends, how important a part of your life would you say your (marriage/relationship) is for you?

Q. 76 RESPONSE HUSBAND/PARTNER

NOT IMPORTANT 1 1
SOMewhat IMPORTANT 2 2
IMPORTANT 3 3
VERY IMPORTANT 4 4
THE CENTRAL THING IN MY LIFE 5 5
DON'T KNOW X X

77. How about your (husband/partner)? What is your guess about how important the (marriage/relationship) is for him?
109. At your last birthday, how old were you? ___________________________ YEARS

X NO ANSWER

119. For statistical purposes, we need to know which of these groups your total family income before taxes for 1975 was in. Please include your own income and that of all members of your immediate family who are living with you, and any other sources of income you may have. (INTERVIEWER: INCLUDE WELFARE PAYMENTS, SOCIAL SECURITY, INCOME FROM STOCKS, ETC.)

<table>
<thead>
<tr>
<th>Q. 119 FAMILY</th>
<th>Q. 120 RESPONDENT</th>
<th>Q. 121 HUSBAND/PARTNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LESS THAN $1,000</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>$1,000 TO $2,499</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$2,500 TO $3,999</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$4,000 TO $5,999</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>$6,000 TO $7,999</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>$8,000 TO $9,999</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>$10,000 TO $11,999</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$12,000 TO $14,999</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>$15,000 TO $19,999</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>$20,000 TO $24,999</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>$25,000 TO $29,999</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>$30,000 TO $34,999</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>$35,000 AND OVER</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>DON'T KNOW</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NO ANSWER</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

120. Which of the groups on the card comes closest to your own annual income before taxes for 1975? Just what you, yourself, made last year.

121. What about your (husband's/partner's) income? Which group comes closest to his annual income before taxes for 1975?
APPENDIX F

Selected Items from the
MC Study Questionnaire
1. What is your sex? 1 = Male  2 = Female

2. What is your birthdate?  Month ___  Day ___  Year ___

3. Where were you born?  City or Town ________________  State ___

4. I have ___ brothers and ___ sisters.
   4a. I was the ___________ born child. (first, second, etc.)

10. How much education have you completed?
    1  Less than seven years of school
    2  Junior high school (grades 7-9)
    3  Partial high school (10th or 11th grade, but not graduation from high school)
    4  High school graduation
    5  Partial college training (completion of at least one year, but not full college course)
    6  Standard college or university program (completed a four-year college or university course leading to a recognized college degree)
    7  Graduate professional training

10a. Are you now going to school?  1 Yes  2 No

10b. If yes  1 Part time  2 Full time

10c. If yes, specify what type of course or program:

__________________________________________________________________________

15. What is the date of your present marriage?  Month ___  Day ___  Year ___
16. How many children do you have from your present marriage? 

FOR EACH CHILD OF THIS MARRIAGE PLEASE LIST THEIR SEX AND AGE

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td></td>
</tr>
</tbody>
</table>

17. For each of your children not of this marriage please list their sex and age.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

18. Which of the following categories indicates your personal income in the past year?

| 0 Less than $1000 | 6 $10,000 - $14,999 |
| 1 $1000 - $1999 | 7 $15,000 - $19,999 |
| 2 $2000 - $3999 | 8 $20,000 - $24,999 |
| 3 $4000 - $5999 | 9 $25,000 and over |
| 4 $6000 - $7999 |               |
| 5 $8000 - $9999 |               |

19. Which of the following categories indicates your total family income for the past year?

| 0 Less than $1000 | 6 $10,000 - $14,999 |
| 1 $1000 - $1999 | 7 $15,000 - $19,999 |
| 2 $2000 - $3999 | 8 $20,000 - $24,999 |
| 3 $4000 - $5999 | 9 $25,000 and over |
| 4 $6000 - $7999 |               |
| 5 $8000 - $9999 |               |
20. What jobs have you had since the time you first married your present spouse?

<table>
<thead>
<tr>
<th>A Dates From</th>
<th>To Mo/Yr</th>
<th>Mo/Yr</th>
<th>B Work Status (circle answer number on each line)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = Full time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Part time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 = Student</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 = Housewife</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 = Unemployed, looking for a job</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 = Unemployed, not looking for a job</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 = Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 = Retired</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C Occupation(s) (please specify type of job not type of employer)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
### DECISIONS

<table>
<thead>
<tr>
<th>Decision</th>
<th>Who SHOULD have the final say*</th>
<th>Who REALLY has the final say*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. What car to buy...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>B. Whether or not to buy some life insurance...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>C. What house or apartment to take...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>D. What job you should take...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>E. Whether or not your wife should go to work or quit work...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>F. What job your wife should take...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>(If your wife doesn't have a paid job now, answer in terms of who should, and then who would decide this if she took such a job.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. How much money your family can afford to spend per week on food...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>H. What doctor to have when someone is sick...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>I. Where to go on a vacation...</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

*Circle a number using these categories:*

1 = The wife only  
2 = The wife more  
3 = Husband and wife exactly the same  
4 = The husband more  
5 = The husband only
APPENDIX G

Selected Items from the
VV Study Questionnaire
I. GENERAL INFORMATION

1. What is your age? __________

2. How many children do you have? __________

3. Thinking back to your son's/daughter's last year in high school:
   a. Give a brief name or title for your work that year, i.e., electrician, store owner, doctor, etc.:

   b. In addition, please circle the answer number for the occupational group which best fits the job you had that year:

   1 = Semiskilled or unskilled workman (truck driver, factory worker, etc.)
   2 = Skilled workman or foreman (machinist, carpenter, etc.)
   3 = Farmer (owner-operator or renter)
   4 = Clerical or sales position
   5 = Proprietor, except farm (i.e., owner of a business)
   6 = Professional (architect, chemist, doctor, etc.) or managerial position (department head, postmaster, police chief, etc.)
   7 = Don't know

4. Which of the following was closest to your own individual income (i.e., not total family income) BEFORE taxes during your son's/daughter's last year in high school? (circle one of the answer numbers)

   0 = No personal income that year
   1 = Less than $4,000
   2 = $4,000 - $5,999
   3 = $6,000 - $7,999
   4 = $8,000 - $9,999
   5 = $10,000 - $11,999
   6 = $12,000 - $14,999
   7 = $15,000 - $19,999
   8 = $20,000 - $29,999
   9 = $30,000 and over

5. What is the highest level of education you have completed?

   0 = Some grade school
   1 = Completed grade school
   2 = Some high school
   3 = Completed high school
   4 = Completed high school and also had other training, but not college, e.g., technical school
   5 = Some college
   6 = Completed college
   7 = Some graduate work
   8 = Graduate degree (Ph.D., M.D., etc.)
II. DECISIONS

Every family has to decide about such things as where to live, whether they should buy a car and so on. We would like to find out how you and your wife make some of these decisions and how you feel they should be decided.

For example, line A is about deciding what car to get (or whether to get one). Please circle a number for who you think should have the final say on this, and then in the second column of numbers, circle one for who actually has the final say.

<table>
<thead>
<tr>
<th></th>
<th>Who SHOULD have the final say</th>
<th>Who REALLY has the final say</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The wife only</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>2</td>
<td>The wife more</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>3</td>
<td>Husband and wife exactly the same</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>4</td>
<td>Husband more</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>5</td>
<td>The husband only</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

A. What car to buy ........................................ 1 2 3 4 5
B. Whether or not to buy some life insurance .......... 1 2 3 4 5
C. What house or apartment to take .................... 1 2 3 4 5
D. About what job you should take ..................... 1 2 3 4 5
E. Whether or not your wife should go to work or quit work 1 2 3 4 5
F. How much money your family can afford to spend per week on food ........................................ 1 2 3 4 5
G. What doctor to have when someone is sick .......... 1 2 3 4 5
H. Where to go on a vacation ............................ 1 2 3 4 5
III. OPINIONS ABOUT A WIFE'S ROLE

The questions below were designed to get your opinions about the roles a woman should play in the family.

3. Thinking about couples your age: How much education do you think a wife should have?
   1 = Grade school
   2 = Some high school
   3 = High school diploma
   4 = High school and other training, but not college, e.g. technical school
   5 = Some college
   6 = College degree
   7 = Some graduate work
   8 = Graduate degree (M.D., M.A., Ph.D., etc.)

9. Please indicate the degree to which you approve or disapprove of a wife having a PART-TIME job.
   1 = Strongly disapprove
   2 = Disapprove
   3 = Approve
   4 = Strongly approve

10. Please indicate the degree to which you approve or disapprove of a wife having a FULL-TIME job.
    1 = Strongly disapprove
    2 = Disapprove
    3 = Approve
    4 = Strongly approve

11. What is your opinion about a wife having more income than her husband.
    1 = It would bother me a lot
    2 = It would bother me a little
    3 = It would make no difference
    4 = It would please me a little
    5 = It would please me a lot
I. GENERAL INFORMATION

1. What is your age? ____________

2. How many children do you have? ____________

3. Thinking back to your son's/daughter's last year in high school:

a. Please give a brief title or name to your work that year, i.e., factory worker, housewife, secretary, doctor:

b. In addition, please circle the answer number for the occupational group which best fits the job you had that year:

1. Semi-skilled or unskilled worker (hospital aide, factory worker, etc.)
2. Skilled worker or foreman (hair stylist, cook, etc.)
3. Farmer (I myself operated a farm)
4. Clerical or sales position
5. Proprietor, except farm (i.e., owner of a business)
6. Professional (teacher, registered nurse, doctor, etc.) or managerial position (department head, store manager, etc.)
7. Not applicable, not employed for wages or salary

4. Which of the following was closest to your own individual income (i.e., not total family income) BEFORE taxes during your son's/daughter's last year in high school? (circle one of the answer numbers)

0. No personal income that year
1. Less than $4,000
2. $4,000 - $5,999
3. $6,000 - $7,999
4. $8,000 - $9,999
5. $10,000 - $11,999
6. $12,000 - $14,999
7. $15,000 - $19,999
8. $20,000 - $29,999
9. $30,000 and over

5. What is the highest level of education you have completed?

0. Some grade school
1. Completed grade school
2. Some high school
3. Completed high school
4. Completed high school and also had other training, but not college, e.g., technical school
5. Some college
6. Completed college
7. Some graduate work
8. Graduate degree (J.D., M.A., Ph.D., etc.)
II. DECISIONS

Every family has to decide about such things as where to live, whether they should buy a car and so on. We would like to find out how you and your husband make some of these decisions and how you feel they should be decided.

For example, line A is about deciding what car to get (or whether to get one). Please circle a number for who you think should have the final say on this, and then in the second column of numbers, circle one for who actually has the final say.

<table>
<thead>
<tr>
<th>Decision</th>
<th>Should</th>
<th>Really</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. What car to buy</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>B. Whether or not to buy some life insurance</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>C. What house or apartment to take</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>D. About what job your husband should take</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>E. Whether or not you should go to work or quit work</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>F. How much money your family can afford to spend per week on food</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>G. What doctor to have when someone is sick</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>H. Where to go on a vacation</td>
<td>1 2 3 4 5</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>
1. GENERAL INFORMATION

1. What year of college are you in? (circle answer number)
   1 = Freshman
   2 = Sophomore
   3 = Junior
   4 = Senior
   5 = Graduate
   6 = Other

2. Were both of your parents (or step-parents) living at home during your last year in high school?
   0 = No
   1 = Yes

3. Are your parents now living together?
   0 = No
   1 = Yes

4. Thinking back to your last year in high school:
   a. Give a brief name or title for your father's work that year, i.e., electrician, store owner, doctor, etc.:

5. In addition, please circle the answer number for the occupational group which best fits the job he had that year:
   1 = Semiskilled or unskilled workman (truck driver, factory worker, etc.)
   2 = Skilled workman or foreman (machinist, carpenter, etc.)
   3 = Farmer (owner-operator or renter)
   4 = Clerical or sales position
   5 = Proprietor, except farm (i.e., owner of a business)
   6 = Professional (architect, chemist, doctor, etc.) or managerial position (department head, postmaster, police chief, etc.)
   7 = Don't know

6. What is the highest level of education your parents have completed? (circle one number in each column)

   Father
   0 = Some grade school
   1 = Completed grade school
   2 = Some high school
   3 = Completed high school
   4 = Completed high school and also had other training, but not college, e.g., technical school
   5 = Some college
   6 = Completed college
   7 = Some graduate work
   8 = Graduate degree (M.D., Ph.D., etc.)
II. DECISIONS

Every family has to decide about such things as where to live, whether they should buy a car and so on. We would like to find out how your parents make some of these decisions.

For each question, be sure to circle two answer numbers: one for which parent had the final say; one for how often your parents disagreed.

6. WHO HAD THE FINAL SAY?
   1 =Mother always
   2 =Mother more than father
   3 =Father and mother exactly the same
   4 =Father more than mother
   5 =Father always

7. MY PARENTS DISAGREED?
   0 =Never
   1 =Sometimes
   2 =Half the time
   3 =Usually
   4 =Always

A. What car to buy?
   1. Which parent had the final say? .............. 1 2 3 4 5
   2. My parents disagreed about this .................. 0 1 2 3 4

B. Whether or not to buy some life insurance?
   1. Which parent had the final say? .............. 1 2 3 4 5
   2. My parents disagreed about this .................. 0 1 2 3 4

C. What house or apartment to take?
   1. Which parent had the final say? .............. 1 2 3 4 5
   2. My parents disagreed about this .................. 0 1 2 3 4

D. About what job your father should take?
   1. Which parent had the final say? .............. 1 2 3 4 5
   2. My parents disagreed about this .................. 0 1 2 3 4

E. Whether or not your mother should go to work or quit work?
   1. Which parent had the final say? .............. 1 2 3 4 5
   2. My parents disagreed about this .................. 0 1 2 3 4

F. How much money your family can afford to spend per week on food?
   1. Which parent had the final say? .............. 1 2 3 4 5
   2. My parents disagreed about this .................. 0 1 2 3 4

G. What doctor to have when someone is sick?
   1. Which parent had the final say? .............. 1 2 3 4 5
   2. My parents disagreed about this .................. 0 1 2 3 4

H. Where to go on a vacation?
   1. Which parent had the final say? .............. 1 2 3 4 5
   2. My parents disagreed about this .................. 0 1 2 3 4
APPENDIX H

Selected Items from the
TG Study Questionnaire
A. FULL INVENTORY (RESPONDENT, SPOUSE, PARENTS)

First, we would like to have some information about you.

1. Sex of respondent (circle number)
   1 Male
   2 Female

2. At the present time, are you single, married, separated, divorced, widowed, or living with someone (of the opposite sex)?
   1 Single
   2 Married
   3 Separated
   4 Divorced
   5 Widowed
   6 Living together
   7 Other (specify) __________________
   b No response

3. What year were you born? What Month? What Day?
   ( )( )( )  ( )< )  < )( )

4. How much education did you finish?
   1 Less than seven years of school
   2 Junior high school (grades 7-9)
   3 Partial high school (10th or 11th grade, but not graduation from high school)
   4 High school graduation
   5 Partial college training (completion of at least one year, but not full college course)
   6 Standard college or university program (completed a four-year college or university course leading to a recognized college degree)
   7 Graduate professional training
   b No response

RECORD UNUSUAL CIRCUMSTANCES (TECHNICAL TRAINING, JUNIOR COLLEGE, ETC.)

5. What is your religion?
   1 Protestant SPECIFY DENOMINATION __________________
   2 Catholic
   3 Jewish
   4 Greek Orthodox
   5 Other SPECIFY __________________
   6 None
   b No response
Now I need to ask some similar questions about other members of your family. First we will start with your husband (wife). IF RESPONDENT IS NOT MARRIED, BEGIN WITH RESPONDENT'S MOTHER.

ASK QUESTIONS 8 - 14 FOR EACH PERSON AND ENTER IN CHART (ON FACING PAGE). ASK QUESTIONS ACROSS CHART FOR EACH PERSON, AND THEN GO ON TO NEXT PERSON.

8. What year was he (she) born?

9. Is _____________ living?
   1 Yes
   0 No  FILL IN QUESTION 10 AND GO TO NEXT PERSON.
   b No response/ don't know

---10. In what year did he (she) die?

11. Does he (she) live here in this house with you?
   1 Yes  GO TO Q14
   0 No
   b No response

---12. Does he (she) live in the same town/city with you?
   1 Yes
   0 No
   2 I don't know
   b No response

---13. How far away does he (she) live?
   ENTER NUMBER OF MILES.
   0 = LESS THAN ONE MILE
   b Don't know

14. What is his (her) marital status? OMIT FOR SPOUSE
   1 Married (to respondent's or spouse's original father/mother)
   2 Married (to someone other than original father/mother)
   3 Separated
   4 Divorced
   5 Widowed
   6 Single
   7 Living with someone of the opposite sex
   8 Other (specify) ___________________________
   b No response/don't know
** CHART A-I **

<table>
<thead>
<tr>
<th></th>
<th>Year Born</th>
<th>Presently Living?</th>
<th>Year Died</th>
<th>Lives With Rspndnt?</th>
<th>Resides In Same Town?</th>
<th>Miles Away</th>
<th>Marital Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIFE</td>
<td>_ _ _ _ _</td>
<td>1 0 b _ _ _ _</td>
<td>1 0 b</td>
<td>1 0 2 b _ _ _ _ _</td>
<td>XXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUSBAND</td>
<td>_ _ _ _ _</td>
<td>1 0 b _ _ _ _</td>
<td>1 0 b</td>
<td>1 0 2 b _ _ _ _ _</td>
<td>XXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPONDENT'S MOTHER**</td>
<td>_ _ _ _ _</td>
<td>1 0 b _ _ _ _</td>
<td>1 0 b</td>
<td>1 0 2 b _ _ _ _ _</td>
<td>( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPONDENT'S FATHER**</td>
<td>_ _ _ _ _</td>
<td>1 0 b _ _ _ _</td>
<td>1 0 b</td>
<td>1 0 2 b _ _ _ _ _</td>
<td>( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPOUSE'S MOTHER**</td>
<td>_ _ _ _ _</td>
<td>1 0 b _ _ _ _</td>
<td>1 0 b</td>
<td>1 0 2 b _ _ _ _ _</td>
<td>( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPOUSE'S FATHER**</td>
<td>_ _ _ _ _</td>
<td>1 0 b _ _ _ _</td>
<td>1 0 b</td>
<td>1 0 2 b _ _ _ _ _</td>
<td>( )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** IF THERE WAS MORE THAN ONE, THE ONE RESPONDENT OR SPOUSE SPENT THE MOST TIME WITH OR FEELS WAS MOST IMPORTANT.**
15. How much education did he (she) finish?
1 Less than seven years of school
2 Junior high school (grades 7-9)
3 Partial high school (10th or 11th grade, but not graduation from high school)
4 High school graduation
5 Partial college training (completion of at least one year, but not full college course)
6 Standard college or university program (completed a four-year college or university course leading to a recognized college degree).
7 Graduate professional training
b No response/don't know
RECORD UNUSUAL CIRCUMSTANCES (TECHNICAL TRAINING, JUNIOR COLLEGE, ETC.)

16. What is (was) his (her) religion?
1 Protestant SPECIFY DENOMINATION
2 Catholic
3 Jewish
4 Greek Orthodox
5 Other SPECIFY
6 None
b No response/don't know

17. What is (was) his (her) nationality?
RECORD UP TO TWO
01 Yankee 09 Italian 17 Austrian
02 English 10 Polish 18 Hungarian
03 Canadian 11 Swedish 19 Czechoslovakian
04 French Canadian 12 German 20 Lebanese
05 Irish 13 Russian 21 Scotch
06 French 14 Puerto Rican 22 American
07 Greek 15 Mexican 23 Other (specify)
08 African 16 Cuban
bb No response/don't know

18. Did he (she) live with his (her) mother and father all the time he (she) was growing up?
1 Yes b No response/don't know
0 No EXPLAIN
<table>
<thead>
<tr>
<th>CHART A-2</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>15. Education</strong></td>
</tr>
<tr>
<td>WIFE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HUSBAND</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RESPONDENT'S MOTHER**</td>
</tr>
<tr>
<td>RESPONDENT'S FATHER**</td>
</tr>
<tr>
<td>SPOUSE'S MOTHER**</td>
</tr>
<tr>
<td>SPOUSE'S FATHER**</td>
</tr>
</tbody>
</table>

**IF THERE WAS MORE THAN ONE, THE ONE RESPONDENT OR SPOUSE SPENT THE MOST TIME WITH OR FEELS WAS MOST IMPORTANT.
ASK Q19–24 IN SEQUENCE FOR ALL PERSONS ON CHART. ANSWER ON CHART A-3.

Now we have some questions about your job and the jobs of the other members of your family we have been talking about. First,

19. Are you (he/she) employed... Please answer using one of the categories on this card. (CARD #1)
   1 Full time
   2 Part time
   3 Student
   4 Unemployed, looking for a job
   5 Housewife
   6 Unemployed, not looking for a job
   7 Disabled
   8 Retired
   9 Deceased
   b No response/ don't know

20. What is(was) your (his/her) occupation or job? (IF RETIRED, BEFORE RETIREMENT. IF DECEASED, LAST JOB).

21. What do(did) you (he/she) do on this job?

22. Who is(was) your (his/her) employer?
   1 Self-employed (own business or professional practice)
   2 Private business or industry
   3 Government or school
   4 Non-profit private organization
   5 No response/don't know

IF SELF EMPLOYED:

23. How much would it cost to buy a business like yours (his/ hers)?
   You can use the categories on this card. (CARD #2).
   (a) 1 Less than $3000
   (b) 2 $3000 - $5999
   (c) 3 $6000 - $9999
   (d) 4 $10,000 - $19,999
   (e) 5 $20,000 - $34,999
   (f) 6 $35,000 - $99,999
   (g) 7 More than $100,000
   (h) 8 Business is rented
   b No response/don't know

24. Which of the groups on this card (CARD #3) comes closest to your (his/her) own individual income in the last year? Include all sources of income last year; such as social security, retirement pension, etc.
   (a) 0 Less than $1000
   (b) 1 $1000 - $1999
   (c) 2 $2000 - $3999
   (d) 3 $4000 - $5999
   (e) 4 $6000 - $7999
   (f) 5 $8000 - $9999
   (g) 6 $10,000 - $14,999
   (h) 7 $15,000 - $19,999
   (i) 8 $20,000 - $24,999
   (j) 9 $25,000 and over
   b No response/don't know
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPONDENT</td>
<td>( )</td>
<td></td>
<td></td>
<td>( ) ( ) ( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIFE</td>
<td>( )</td>
<td></td>
<td></td>
<td>( ) ( ) ( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUSBAND</td>
<td>( )</td>
<td></td>
<td></td>
<td>( ) ( ) ( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPONDENT'S MOTHER</td>
<td>( )</td>
<td></td>
<td></td>
<td>( ) ( ) ( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPONDENT'S FATHER</td>
<td>( )</td>
<td></td>
<td></td>
<td>( ) ( ) ( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPOUSE'S MOTHER</td>
<td>( )</td>
<td></td>
<td></td>
<td>( ) ( ) ( )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPOUSE'S FATHER</td>
<td>( )</td>
<td></td>
<td></td>
<td>( ) ( ) ( )</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. MARITAL HISTORY - RESPONDENT

1. What year were you married?
   19( ) ( )
   99 not applicable
   bb no response

D. PARTIAL INVENTORY (OTHER HOUSEHOLD AND FAMILY MEMBERS)

Now we would like a little information about some other members of your family.

1. How many children do (or did) you have?
   ( ) ( ) RECORD HERE
   What are their first names? (from oldest to youngest) WRITE NAMES IN CHART. IF NONE, GO TO QUESTION 7
   ASK QUESTIONS #2-6 FOR EACH PERSON MENTIONED IN QUESTION #1. THEN GO TO QUESTION 8.

2. His/her relation to you is...
   08 Daughter 09 Son 28 Stepdaughter 29 Stepson

3. What year was [he/she] born in?
   ENTER YEAR. USE "bbb" FOR "No response/don't know."

7. How many brothers or sisters do (or did) you have?
   ( ) ( ) RECORD HERE
   What are their names? WRITE NAMES IN CHART. IF NONE, GO TO QUESTION #8.
   ASK QUESTIONS #2-6 FOR EACH PERSON MENTIONED. THEN GO TO QUESTION 9.

8. Besides those people we have already talked about, how many other people live here?
   ( ) ( ) RECORD HERE
   08 Daughter 19 Grandson 30 Stepsister
   09 Son 20 Cousin (female) 31 Stepbrother
   10 Sister 21 Cousin (male) 32 Girlfriend
   11 Brother 22 Sister-in-law 33 Boyfriend
   12 Aunt 23 Brother-in-law 34 Friend (female)
   13 Uncle 24 Niece 35 Friend (male)
   14 Grandmother 25 Nephew 36 Boarder (female)
   15 Grandfather 26 Stepmother 37 Boarder (male)
   16 Daughter-in-law 27 Stepfather 38 Other (specify)
   17 Son-in-law 28 Stepdaughter bb No response
   18 Granddaughter 29 Stepson

   What are their first names? WRITE NAMES IN CHART.
   ASK QUESTIONS #2-3 FOR EACH PERSON MENTIONED. THEN GO TO QUESTION #9.
<table>
<thead>
<tr>
<th>First Name</th>
<th>Relation</th>
<th>Year of Birth</th>
<th>Household Member?</th>
<th>Year Died</th>
<th>Place of Residence</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>( ) ( )</td>
<td>1 __ 102 b</td>
<td></td>
<td></td>
<td>102 b</td>
<td>b</td>
</tr>
</tbody>
</table>
J. RESPONDENT'S OCCUPATIONAL HISTORY

We would like to know about the regular jobs that you have held.

INTERVIEWER: IF MARRIED AND NO OTHER OCCUPATION, LIST HOUSEWIFE. IF HOLDING TWO JOBS AT ONCE, LIST MOST IMPORTANT FIRST AND GIVE DETAILS ON THAT JOB ONLY. WRITE RETIRED IF APPLICABLE.

1. Your present job is... __________________________________________

2. Is it part-time or full-time? 1 Part-time 2 Full-time

3. How long have you worked at this job? ( )() yrs (UNDER 1 = 0)

4. What job did you have before that? __________________________________________

5. Was it part-time or full-time? 1 Part-time 2 Full-time

6. How long did you work at that job? ( )() yrs

7. What job did you have before that? __________________________________________

8. Was it part-time or full-time? 1 Part-time 2 Full-time

9. How long did you work at that job? ( )() yrs.

10. What job did you have five years ago? (ANSWER ONLY IF Q1-9 DO NOT COVER 5 YRS):

11. Was it part-time or full-time? 1 Part-time 2 Full-time

12. How long did you work at that job? ( )() yrs

13. What was the first full-time year-round job you had? __________________________________________

14. What year did this job start? 19

15. How long did you work at that job? ( )() yrs.

16. Were there any times when you were out of a job and not in school? 1 No 2 Yes

17. When was the last time you were out of a job?
   a. _______ TO _________
   b. _______ TO _________
   c. _______ TO _________

18. What was the reason for not working: 0 1 2 3 4 5 6 7 8
   a. _______ TO _________
   b. _______ TO _________
   c. _______ TO _________

RESPONSES: 0 retired 1 couldn't find a job 2 physical illness or injury 3 mental illness 4 prison
   5 having children 6 pre-school children at home 7 preferred not to work 8 other (specify) 9 no response
X. SPOUSE’S OCCUPATIONAL HISTORY (PRESENT OR MOST RECENT SPOUSE)

Next, we would like to know about the regular jobs that your (husband/wife) has held. Write retired if applicable.

CHECK HERE [ ] IF NO SPOUSE. → GO TO SECTION M

1. (His/her) present job is ...

2. Is it part-time or full-time? 1 Part-time 2 Full-time

3. How long has (he/she) worked at this job? ( ) yrs (UNDER 1 = 0)

4. What job did (he/she) have before that?

5. Was it part-time or full-time? 1 Part-time 2 Full-time

6. How long did (he/she) work at that job? ( ) yrs

7. What job did (he/she) have before that?

8. Was it part-time or full-time? 1 Part-time 2 Full-time

9. How long did (he/she) work at that job? ( ) yrs

10. What job did (he/she) have five years ago? (ANS. ONLY IF Q1-9 DO NOT COVER FIVE YRS.)

11. Was it part-time or full-time? 1 Part-time 2 Full-time

12. How long did (he/she) work at that job? ( ) yrs

13. What was the first full-time year round job (he/she) had?

14. What year did this job start? __________

15. How long did (he/she) work at that job? ( ) yrs

16. Were there any times when (he/she) was out of a job and not in school?
   1. No __________ IF NO GO TO SECTION L
   2. Yes

17. When was the last time you were out of a job?
   a. _______ TO _________
   b. _______ TO _________
   c. _______ TO _________

18. What was the reason for not working?
   1. Couldn’t find a job
   2. Physical illness or injury
   3. Mental illness
   4. Prison
   5. Having children
   6. Pre-school children at home
   7. Preferred not to work
   8. Other (specify)
   9. No response
M. MARITAL ADJUSTMENT

4. There are a few people who are very happy in marriage and a few people who are very unhappy. Which category on this card (CARD #8) best describes the degree of happiness, everything considered, of your marriage?

1 very unhappy
2 unhappy
3 not too happy
4 just about average
5 a little happier than average
6 very happy
7 extremely happy
b no response

5. (There are a few people who are very happy in marriage and a few people who are very unhappy) (Response CARD #8). Which category best describes the degree of happiness, everything considered, of your parent's marriage when you were living with them. (IF REMARRIED, ANSWER FOR PARENTS LIVED WITH WHEN RESPONDENT WAS GROWING UP)

1 very unhappy
2 unhappy
3 not too happy
4 just about average
5 a little happier than average
6 very happy
7 extremely happy
b no response
HUSBAND-WIFE DECISIONS

A. IF DIVORCED, SEPARATED OR WIDOWED IN THE LAST FIVE YEARS, COMPLETE FOR PREVIOUS FAMILY OF PROCREATION.
B. IF NEVER MARRIED, COMPLETE FOR PARENTS IF RESPONDENT HAS LIVED AT HOME WITHIN THE LAST FIVE YEARS.
C. IF THE RESPONDENT DOES NOT MEET THESE REQUIREMENTS, CHECK HERE | ] AND OMIT THIS PAGE.

1. WHO IS RESPONDING? (CIRCLE ONE): 1 HUSBAND; 2 WIFE; 3 CHILD FOR PARENTS

In every family somebody has to decide such things as where the family will live and so on. Many couples talk such things over first, but the final decision often has to be made by the husband or the wife. Using the categories on this card (CARD 09) tell me who usually makes the final decision and how important this decision is for each of the following questions.

2. Who makes the final decision? How important for:

<table>
<thead>
<tr>
<th>Decision</th>
<th>Husb.</th>
<th>Wife</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What job the husband should take</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>2. What car to buy</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>3. Whether or not to buy life insurance</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>4. Where to go on family vacation</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>5. What house or apartment to take</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>6. Whether the wife should go to work or quit work</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>7. What doctor to have</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>8. How much money to spend on food</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>9. What time the children should be in at night</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>10. How much spending money children should have</td>
<td>12345</td>
<td>0123b</td>
</tr>
<tr>
<td>11. What kind of discipline should be used when children misbehave</td>
<td>12345</td>
<td>0123b</td>
</tr>
</tbody>
</table>

12. Who really has the most say in important decisions in your household?

<table>
<thead>
<tr>
<th>Importance</th>
<th>0 not at all important</th>
<th>1 slightly important</th>
<th>2 very important</th>
<th>3 extremely important</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPONSES: (CARD 09), 1 husband always, 2 husband more than wife, 3 husband and wife exactly the same, 4 wife more than husband, 5 wife always, b no response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. Who do you think should have the most say?

RESPONSES: (CARD 09), 1 husband always, 2 husband more than wife, 3 husband and wife exactly the same, 4 wife more than husband, 5 wife always, b no response

14. In general, how often do you and your wife disagree over these types of decisions? (CARD 10)

RESPONSES: 1 never, 2 sometimes, 3 frequently, 4 usually, 5 almost always or always
REFERENCES

Aldous, Joan  

Allen, Craig M. and Murray A. Straus  


Armor, David J.  

Baggaley, Andrew R.  

Bahr, Stephen J.  
1974 "Effects on Power and Division of Labor in the Family." In F. Ivan Nye and Lois W. Hoffman (Eds.), Employed Mother in America. 2nd Ed.

Bahr, Stephen J., Charles E. Bowerman, and Viktor Gecas  

Benson, Elizabeth E.  

Blalock, Hubert M.  

Blood, Robert O. and Robert L. Hamblin  
Blood, Robert O. and Donald M. Wolfe

Bulcroft, Richard and Murray A. Straus

Burr, Wesley, Louise Ahern and Elmer Knowles

Centers, Richard, Bertram H. Raven and Arolfo Rodrigues

Cowan, Donna I.

Cromwell, Ronald E. and David H. Olson

Cromwell, Ronald E. and Stephen G. Wieting

Cromwell, Ronald E., David M. Klein, and Stephen G. Wieting

Cronbach, Lee J.

Cronbach, Lee J.

Douglas, Suzan P. and Yoram Wind
Edwards, Allen I.

Ferreira, Antônio J.

Foss, Joyce

Giles, Jean

Green, Samuel B., Robert W. Lissitz and Stanley A. Mulaik

Hadley, Trevor R. and Theodore Jacob

Hadley, Trevor R. and Theodore Jacob

Heer, David M.

Heer, David M.
Herbst, P. G.  

Herbst, P. G.  

Hull, C. Badlai and Norman H. Nie  

Jenkins, Roger L.  

Johnson, Colleen L.  

Kenkel, William F.  

Kumagai, Fumi and Gerald O'Donoghue  

Kerlinger, Fred N. and Elazar J. Pedhazur  

Labovitz, Sanford  

Labovitz, Sanford  
Labovitz, Sanford

Larson, Lyle E.

McDonald, Gerald

Meyer, R. and Robert A. Lewis

Miller, Delbert C.

Morris, Earl W.

Mueller, John H., Karl F. Schuessler, and Herbert L. Costner

Nie, Norman H., C. Hadlai Hull, Jean G. Jenkins, Karen Steinbrenner and Dale H. Bent

Nunnally, Jum C.

Olson, David H.

Olson, David H. and Ronald E. Cromwell
Olson, David H. and Carolyn Rabunsky

Price-Bonham, Sharon

Quarm, Daisy E. A.

Safilios-Rothschild, Constantina

Safilios-Rothschild, Constantina

Safilios-Rothschild, Constantina

Sprey, Jetse

Straus, Murray A.

Straus, Murray A.

Straus, M. and Murray A. Vasques
1978 "Adolescent-Parent Conflict in Bombay and Minneapolis in Relation to Social Class and Family Roles." Sociologica Internationalis
Straus, Murray A., Richard J. Gelles, and Suzanne K. Steinmetz

Strodbeck, Fred L.

Szinovacz, Maximiliane

Thomas, Darwin L., David D. Franks, and James M. Calonico

Thomas, Darwin L., Viktor Gecas, Andrew J. Weigart, and Elizabeth Rooney

Turk, James I. and Norman W. Bell

Wolfe, Donald M.