Macroalgae and Eelgrass Mapping in Great Bay Estuary Using AISA Hyperspectral Imagery.

Shachak Pe’eri
University of New Hampshire, Durham, shachak.peeri@unh.edu

John RU Morrison
University of New Hampshire, Durham

Frederick T. Short
University of New Hampshire, Jackson Estuarine Laboratory

Arthur C. Mathieson
University of New Hampshire

Phil Trowbridge
New Hampshire Department of Environmental Services

Follow this and additional works at: https://scholars.unh.edu/ccom

Part of the [Oceanography and Atmospheric Sciences and Meteorology Commons](https://scholars.unh.edu/ccom)

Recommended Citation

https://scholars.unh.edu/ccom/1231

'This Poster is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.'
Macroalgae and Eelgrass Mapping in Great Bay Estuary Using AISA Hyperspectral Imagery.

This poster is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/ccom/1231
Macroalgae and eelgrass mapping in Great Bay Estuary using AISA hyperspectral imagery

Shachak Pe’eri1 (shachak@ccom.unh.edu), John R. Morrison2, Frederick Short3, Arthur Mathieson3, Philip Trowbridge4

1Center for Coastal and Ocean Mapping, University of New Hampshire
2Ocean Process Analysis Laboratory, University of New Hampshire
3Jackson Estuary Laboratory, University of New Hampshire, Durham, NH 03824
4N.H. Dept. of Environmental Services, Concord, NH 03302

Abstract

Results Increases in nitrogen concentration and declining eelgrass beds in Great Bay Estuary have been observed in the last decades. These two parameters are clear indicators of the impending eutrophication for New Hampshire’s estuaries. The NH Department of Environmental Services (DES) in collaboration with the Piscataqua Region Estuaries Partnership adopted the assumption that eelgrass survival can be used as the target for establishing numeric water quality criteria for nutrients in NH’s estuaries. One of the hypotheses put forward regarding eelgrass decline is that an eutrophication response to nutrient increases in the Great Bay Estuary has been the proliferation of nuisance macroalgae, which has reduced eelgrass area in Great Bay Estuary. To determine the extent of this effect, mapping of eelgrass and nuisance macroalgae beds using hyperspectral imagery was suggested. A hyperspectral image was made by SpecTIR in August 2007 using an AISA Eagle sensor. The collected dataset was then used to map eelgrass and nuisance macroalgae throughout the Great Bay Estuary. Here we outline the procedure for mapping the macroalgae and eelgrass beds. Hyperspectral imagery was effective where known spectral signatures could be easily identified. Comprehensive eelgrass and macroalgae maps of the estuary could only be produced by combining hyperspectral imagery with ground-truth information and expert opinion. Macroalgae was predominantly located in areas where eelgrass formerly existed. Macroalgae mats have now replaced nearly 9% of the area formerly occupied by eelgrass in Great Bay.

Flow Chart of the Mapping Procedure

End-members

Vegetation types: eelgrass, macroalgae, and wetland vegetation

Eelgrass in GBE

The eelgrass (Zostera marina) in GBE is an essential habitat because it provides food for wintering waterfowl and habitat for juvenile fish and shellfish. The eelgrass beds in Great Bay serve as sediment traps and help stabilize bottom sediments. Additionally, eelgrass helps stabilize the overlying mud layers and helps restrict nutrient enrichment from the water column. Recent decline of eelgrass biomass in the intertidal portions of the estuary has also been linked to nitrogen enrichment and proliferation of nuisance macroalgae.

GBE Hyperspectral Survey 2007

An hyperspectral mission using a AISA Eagle sensor. The survey was conducted by SpecTIR and was flown on August 29 from 08:00 to 09:30 local time (12:00 to 13:30 GMT) over GBE. Eight lines oriented approximately north-south with a 30% overlap were collected in each survey with a ground resolution of 2.5 m.

Water attenuation

In natural environments the spectral signature from the seafloor is often complicated due to the water-column attenuation. Both the water column and bottom contribute to the water-leaving radiance with their relative contributions being modulated by water depth. The attenuation changes as a function of wavelength.

ACKNOWLEDGEMENT

This project was funded in part by a grant from the New Hampshire Estuaries Project as authorized by the U.S. Environmental Protection Agency’s National Estuary Program and UNH/NOAA Joint Hydrographic Center grant NA06NOS401153.