
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Master's Theses and Capstones Student Scholarship 

Fall 2018 

ASSESSING THE EFFECTS OF HABITAT RESTORATION ON ASSESSING THE EFFECTS OF HABITAT RESTORATION ON 

SHRUBLAND SPECIALISTS: CASE STUDY ON THE NEW ENGLAND SHRUBLAND SPECIALISTS: CASE STUDY ON THE NEW ENGLAND 

COTTONTAIL AND SHRUBLAND BIRDS COTTONTAIL AND SHRUBLAND BIRDS 

Melissa Lyn Bauer 
University of New Hampshire, Durham 

Follow this and additional works at: https://scholars.unh.edu/thesis 

Recommended Citation Recommended Citation 
Bauer, Melissa Lyn, "ASSESSING THE EFFECTS OF HABITAT RESTORATION ON SHRUBLAND 
SPECIALISTS: CASE STUDY ON THE NEW ENGLAND COTTONTAIL AND SHRUBLAND BIRDS" (2018). 
Master's Theses and Capstones. 1219. 
https://scholars.unh.edu/thesis/1219 

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire 
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized 
administrator of University of New Hampshire Scholars' Repository. For more information, please contact 
Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/1219?utm_source=scholars.unh.edu%2Fthesis%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


 

 

ASSESSING THE EFFECTS OF HABITAT RESTORATION ON SHRUBLAND 

SPECIALISTS: CASE STUDY ON THE NEW ENGLAND COTTONTAIL  

AND SHRUBLAND BIRDS 

 

 

BY 

 

 

MELISSA L. BAUER 

 

 

Environmental Science and Policy, B.S., Wildlife Ecology and Management Concentration 

University of Maryland, 2013 

 

 

 

THESIS 

 

 

Submitted to the University of New Hampshire 

in Partial Fulfillment of 

the Requirements for the Degree of 

 

 

Master of Science 

in 

Natural Resources: 

Wildlife and Conservation Biology 

 

September, 2018 

  



ii 

 

This thesis/dissertation has been examined and approved in partial fulfillment of the 

requirements for the degree of Master of Science in Natural Resources: Wildlife and 

Conservation Biology by: 

 

 

 

Thesis/Dissertation Director, Adrienne I. Kovach, Assistant Professor, Natural Resources 

 

 

 

Heidi Holman, Wildlife Diversity Biologist, New Hampshire Fish and Game 

 

 

 

Michael Palace, Associate Professor, Earth Sciences; Institute for the Study of Earth, 

Oceans, and Space 

 

 

 

Jenica M. Allen, Assistant Professor, Natural Resources 

 

 

 

On July 30, 2018 

 

 

 

 

Original approval signatures are on file with the University of New Hampshire Graduate School 

  



iii 

 

 

ACKNOWLEDGEMENTS 

 

Funding for this research was provided by New Hampshire Fish and Game; the United 

States Fish and Wildlife Service, Region 5, National Wildlife Refuge System; the National Fish 

and Wildlife Foundation, New England Forests and Rivers grant program; the New Hampshire 

Agricultural Experiment Station, through a USDA National Institute of Food and Agriculture 

McIntire-Stennis Project #1006964; and the University of New Hampshire Graduate School.  

First and foremost, I would like to thank my advisor, Adrienne Kovach, who provided me 

with this amazing opportunity for graduate research. Adrienne has played a major role in my 

academic and professional development, provided me with insightful feedback, guidance, and 

encouragement through every stage of the research process, and been supportive of all my 

research interests providing opportunities for me to gain experience with a diversity of ongoing 

projects in her lab. 

I would like to thank my committee members Heidi Holman, Michael Palace, and Jenica 

Allen for their insight and suggestions, especially during the planning and proposal stages of this 

research, input on GIS and statistical methods, and for feedback on an earlier draft of this thesis. 

I greatly appreciated their enthusiasm and encouragement. Heidi Holman was instrumental in 

planning and completing research presented in Chapters 1 and 2. 

Special thanks to Kate O’Brien for contributions in planning and orchestrating research 

presented in Chapter 3, and for feedback on an earlier version of that chapter. I would also like to 

extend a special thanks to Brett Ferry for his work with the Londonderry and Bellamy New 

England cottontail populations. Kris Wojtusik and Katie Shink provided amazing support in the 



iv 

 

lab, and I would like to thank Thea Kristensen and Katrina Amaral for work on early samples 

from the Bellamy release. Additional thanks to Katrina Amaral for support with landscape 

genetics statistical code. I greatly appreciated all help in the lab and field from dedicated 

undergraduates including: Steph Copeland, Sarah Clements, and Owen Brennick. I would like to 

thank past and present members of the Kovach Lab for their encouragement, support, and 

feedback on presentations and the proposal for this thesis, including: Gemma Clucas, Logan 

Maxwell, Brett Ferry, Erica Holm, Kris Wojtusik, Isaac Kozukhin, and Bri Benvenuti. 

Additional thanks to Logan Maxwell for her work on 2015 point counts contributing to research 

presented in Chapter 3. I would also like to thank Matt Tarr for helpful comments on an initial 

draft of Chapter 3.  

Finally, I would like to acknowledge and thank my family for their support throughout all 

my academic and research pursuits. I would especially like to thank my husband, John Bauer, for 

his support and encouragement.  



v 

 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS  …………………………………………………………………. iii 

LIST OF TABLES  …………………………………………………………………..……...  vii 

LIST OF FIGURES  …………………………………………………………………….…….  x 

ABSTRACT  …………………………………………………………………..……………  xiv 

INTRODUCTION  …………………………………………………………………….……...  1 

 

I. GENETIC STRUCTURE, CONNECTIVITY, AND PREDICTED RESPONSE TO 

RESTORATION OF AN ISOLATED NEW ENGLAND COTTONTAIL 

POPULATION IN AN URBAN LANDSCAPE  …………………………………...   12 

 

Abstract  ………………………………………………………………..…………....   12 

Introduction  ………………………………………………………………………….  14 

Methods  ……………………………………………………………………………...  17 

Results  …………………………………………………………………….………….  31 

Discussion  ……………………………………………………………………………  54 

Conclusion  …………………………………………………………….……...……....  61 

References  ……………………………………………………………………………  62 

 

II. TRACKING THE SUCCESS OF A NEW ENGLAND COTTONTAIL POPULATION 

REINTRODUCTION WITH GENETIC MONITORING  …………………………..  70 

 

Abstract  ………………………………………………………………………………  70 

Introduction  …………………………………………………………………………..  71 

Methods  ………………………………………………………………………………  75 



vi 

 

Results  ……………………………………………………………………………….  80 

Discussion  ……………………………………………………………………….…...  88 

References  ……………………………………………………………………………  98 

 

 

 

III. SHRUBLAND BIRD OCCUPANCY ON NEW ENGLAND COTTONTAIL 

MANAGED SITES: EXPLORING THE REPRESENTATIVE SPECIES  

CONCEPT  …………………………………………………………………………...  104 

 

Abstract  ………………………………………………………………………………  104 

Introduction  …………………………………………………………………….…….  105 

Methods  ……………………………………………………………………….……...  108 

Results  …………………………………………………………………………..……. 118 

Discussion  …………………………………………………….……………………… 133 

Conclusion  …………………………………………………………………………… 142 

References  …………………………………………………………………………… 144 

 

 

 

CONCLUSION  ……………………………………………………………………………… 149 

 

 

APPENDIX A: MICROSATELLITE PRIMERS AND MULTIPLEX PCR CONDITIONS  

FOR THE ANALYSIS OF NEW ENGLAND COTTONTAIL PELLET AND TISSUE 

SAMPLES  …………………………………………………………………………………… 154 

 

APPENDIX B: INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) 

APPROVAL  …………………………………………………………………………………  155 

 

APPENDIX C: POINT COUNT DETECTIONS OF SHRUBLAND BIRD SPECIALISTS IN 

ME, NH, AND MA IN 2015 AND 2016  ……………………………………………………. 156 

 

  



vii 

 

 

LIST OF TABLES 

 

 

Table 1.1 Facilitator and barrier landscape variables tested in univariate resistance surface 

optimization for New England cottontail population in Londonderry, New Hampshire.  

………………………………………………………………………………………………...  23 

 

Table 1.2 CDPOP input parameters for the modeled New England cottontail population in 

Londonderry, New Hampshire, including vital rates, demographic information, and  

movement functions.  ...……………………………………………………………………….  28 

 

Table 1.3 Number of tissue samples collected from trapped rabbits each year in Londonderry, 

New Hampshire, number of fecal pellet samples collected during winter surveys, percent 

genotyping success for pellets, number of unique individuals identified, and range of  

number of samples collected (i.e. captures) per individual.  …………………………………  31 

 

Table 1.4 Genetic diversity metrics for New England cottontails in each geographic patch in 

Londonderry, New Hampshire, and for the population as a whole. …………………………  36 

 

Table 1.5 New England cottontail population size estimates for patches in Londonderry, New 

Hampshire and for the population as a whole, calculated in capwire for years with sufficient 

capture history data (2016-2018).  ...…………………………………………………………  36 

 

Table 1.6 Comparison of the best supported Londonderry cost values to optimized values from 

previous landscape genetic research for New England cottontail populations in Maine and Cape 

Cod landscapes (Papanastassiou 2015, Amaral et al. 2016), and consensus values used for 

connectivity mapping in the Londonderry landscape.  ………………………………………  40 

 

Table 2.1 Number of founder New England cottontails released at Bellamy River WMA  

each year, and month of release.  .…………………………………………………………....  77 

 

Table 2.2 Number of New England cottontail fecal pellet samples collected during winter 

surveys at Bellamy River WMA each year of the reintroduction, number of pellets successfully 

genotyped, percent genotyping success, number of unique individuals identified, and range  

of number of samples collected (i.e. captures) per individual.  .……………………………..  81 

 

Table 2.3 Number of founder New England cottontails released each year at Bellamy River 

WMA, number of mortalities within a month of the release date, number of founders detected 

surviving through the winter survey period or identified as breeders, percent apparent annual 

survival, and percent of founders known to be on the site through telemetry or parentage  

analyses that were detected in winter pellet surveys.  ..………………………………...…….  82 

 

Table 2.4 Population size estimates of the reintroduced Bellamy River WMA population 

calculated in capwire for years with sufficient capture history data.  ………………………..  83 



viii 

 

 

Table 2.5 Genetic diversity metrics of the reintroduced Bellamy River WMA population 

including individuals detected as breeders or alive on the patch during winter pellet surveys. 

Metrics for the Londonderry, New Hampshire population are provided for comparison. 

……………………………………………………………………………………………..…..  84 

 

Table 2.6 Number of offspring identified in the reintroduced Bellamy River WMA population 

each winter survey season, number of males and females identified as parents, number of 

breeding founders, number of parents identified that were not detected in pellet surveys, and 

number of offspring with full and half sib relationships.  ….………………………..………..  85 

 

Table 3.1 Covariates considered in occupancy models for five shrubland specialist bird  

species, covariate descriptions, and modeling stage at which covariates were assessed.  …..  115 

 

Table 3.2 Habitat groupings assessed in indicator species analyses for shrubland specialist bird 

species. Habitat groups considered characteristic of conditions suitable for New England 

cottontails (NEC) that were the focus of indicator species analyses are indicated in bold.  

……………………………………………………………………………….……….……….. 117 

 

Table 3.3 Chestnut-sided Warbler occupancy models after completing the multi-stage  

modeling with vegetation structure + patch-level + non-living structure covariate groups.   

…………………………………………………………………………………………….…... 119 

 

Table 3.4 Covariate summary data for the best supported occupancy model for  

Chestnut-sided Warblers.  ………………………………………………………………...…... 120 

 

Table 3.5 Chestnut-sided Warbler detection and occupancy estimates. Models produced an 

overall estimate for detection, and yearly estimates for occupancy.  ...………………….…… 120 

 

Table 3.6 Yellow Warbler occupancy models after completing the multi-stage modeling  

with vegetation structure + patch-level + non-living structure covariate groups.  ……….…... 121 

 

Table 3.7 Covariate summary data for the best supported occupancy model for Yellow  

Warblers.  …..………………………………………………………………………...…….…. 122 

 

Table 3.8 Yellow Warbler occupancy and detection estimates. Models produced an overall 

estimate for detection, and yearly estimates for occupancy.  ……….………………………... 122 

 

Table 3.9 Black-and-white Warbler occupancy models after the final step of multi-stage 

modeling with vegetation structure + patch-level + non-living structure covariate groups.  

………………………………………………………………………………………….……... 123 

 

Table 3.10 Covariate summary data for the best supported occupancy model for Black-and-

white Warblers..  …………………………………………………………………….……….. 124 

 



ix 

 

Table 3.11 Black-and-white Warbler occupancy and detection estimates. Models produced  

an overall estimate for detection, and yearly estimates for occupancy.  ..…………………… 124 

 

Table 3.12 Prairie Warbler occupancy models after completing the multi-stage modeling  

with vegetation structure + patch-level + non-living structure covariate groups.  ……...…… 125 

 

Table 3.13 Covariate summary data for the best supported occupancy model for Prairie 

Warblers.  ……………………………………………………………………...…………….. 126 

 

Table 3.14 Prairie Warbler model-averaged occupancy and detection estimates. Models 

produced an overall estimate for detection, and yearly estimates for occupancy.  ...…….….. 126 

 

Table 3.15 Eastern Towhee occupancy models after completing the multi-stage modeling  

with vegetation structure + patch-level + non-living structure covariate groups.  ………..…. 127 

 

Table 3.16 Covariate summary data for the best supported occupancy model for Eastern 

Towhees.  ……………………………………………………………………………..……… 128 

 

Table 3.17 Eastern Towhee model-averaged occupancy and detection estimates. Models 

produced an overall estimate for detection, and yearly estimates for occupancy.  …...……… 128 

 

Table 3.18 Results of GLM Poisson regression models assessing relationships between 

measured covariates and shrubland bird specialist richness.  ………………………….…….. 129 

 

Table 3.19 Results of indicator species analyses identifying shrubland specialist birds identified 

with high frequency and exclusivity in habitat suitable for New England cottontails (NEC) 

(p<0.05). Habitat groups suitable for New England cottontails are listed, along with indicator 

bird species for each habitat group, indicator values for the species (100 meaning a species is a 

perfect indicator of a habitat group), and p-values. FISP Field Sparrow, BRTH Brown Thrasher, 

YEWA Yellow Warbler, BAWW Black-and-white Warbler, BWWA Blue-winged Warbler, 

ALFL Alder Flycatcher, GRCA Gray Catbird, SOSP Song Sparrow, INBU Indigo Bunting, 

PRAW Prairie Warbler, AMGO American Goldfinch.  ……...……………………………… 132 

 

Table 3.20 Results of indicator species analyses identifying shrubland specialist birds associated 

with habitat suitable for New England cottontails (p<0.1). Habitat groups suitable for New 

England cottontails are listed, along with indicator bird species for each habitat group, indicator 

values for the species (100 meaning a species is a perfect indicator of a habitat group), and p-

values. AMGO American Goldfinch, BAWW Black-and-White Warbler, CEDW Cedar 

Waxwing, SOSP Song Sparrow, INBU Indigo Bunting, BWWA Blue-winged Warbler, NOCA 

Northern Cardinal, FISP Field Sparrow.  ………………………………………………...…... 133 

  



x 

 

 

LIST OF FIGURES 

 

 

Fig. 1.1 The Londonderry, New Hampshire landscape consisting of a high proportion of forested 

and developed land, including industrial facilities just south of the Manchester-Boston Regional 

Airport. Highlighted patches indicate shrubland habitat occupied by New England cottontails 

from 2015-2017.  …………………………………………………………………………...…  18 

 

Fig. 1.2 Managed patches reflected as restored habitat suitable for New England cottontail 

occupancy in a CDPOP restoration scenario simulation are outlined and indicated in tan in the 

Londonderry, New Hampshire landscape. The current distribution of New England cottontails is 

indicated on the map as black points where individual cottontails were sampled through  

pellet surveys or live-trapping from 2015-2017.  ……………………………………………..  30 

 

Fig. 1.3 a) Plot of the plateau of the average LnPD and b) peak ∆K at K=3 indicating the best 

supported number of genetic clusters of New England cottontails in Londonderry, New 

Hampshire from STRUCTURE analyses.  ……………………………………………………  33 

 

Fig. 1.4 Visualization of the results of STRUCTURE analyses for New England cottontails in 

Londonderry, New Hampshire showing three distinct genetic clusters. Each vertical bar is a 

cottontail individual and represents the proportion of the individual’s ancestry corresponding to 

the three genetically distinct clusters, represented by the blue, orange, and green colors.  

…………………………………………………………………………………………………  34 

 

Fig. 1.5 New England cottontail individuals in Londonderry, New Hampshire color-coded by 

their assignment to one of three genetic groups identified in STRUCTURE analyses. Ancestry 

indicates three genetic groups segregated geographically, with admixture in the central 

Stonyfield patch.  ………………………………………………………………….…………..  35 

 

Fig. 1.6 Spatial autocorrelation for New England cottontail individuals in Londonderry, New 

Hampshire indicating fine-scale spatial structure and relatedness extending over a short distance 

on the landscape; a) spatial autocorrelation of all Londonderry individuals, b) spatial 

autocorrelation of females, c) spatial autocorrelation of males. r indicates relatedness and U and 

L bound the confidence interval for the null hypothesis of no population structure. 

…………………………………………………………………………………………….……  37 

 

Fig. 1.7 Connectivity mapped with a resistance surface between sampled cottontail individuals 

and completed habitat projects within a larger restoration landscape in Londonderry; a) 

connectivity with high cost values at the smaller spatial extent of the occupied Londonderry 

patches, b) connectivity given conservative cost values, c) connectivity given high cost 

values.…………………………………………………………………………………..………  41 

 

Fig. 1.8 Fig. 1.8 Projected New England cottontail population size in Londonderry, New 

Hampshire over 70 simulated generations in CDPOP. Blue lines indicate the average values over 



xi 

 

10 Monte Carlo replicates for the following scenarios: a) baseline model input; b) 0.80 juvenile 

mortality (recruitment 3 offspring/female); c) 0.73 juvenile mortality (recruitment 4.05 

offspring/female); d) 0.70 adult mortality; e) 0.23 adult mortality; f) initial population size at 

carrying capacity of 65 individuals; g) initial population size of 50 individuals; h) baseline  

model input with 500 m average dispersal distance.  ………………………………………...  46 

 

Fig 1.8i CDPOP model averages for cottontail population size over 10 Monte Carlo replicates 

for models: a) RED, baseline model input; b) ORANGE, 0.80 juvenile mortality (recruitment 3 

offspring/female); c) YELLOW, 0.73 juvenile mortality (recruitment 4.05 offspring/female); d) 

GREEN, 0.70 adult mortality; e) BLUE, 0.23 adult mortality; f) PURPLE, initial population size 

at carrying capacity of 65 individuals; g) BLACK initial population size of 50 individuals; h) 

BROWN baseline model input with 500 m average dispersal distance.  ……….……………  47 

 

Fig. 1.9 Projected number of alleles in the simulated New England cottontail population in 

Londonderry, New Hampshire over 70 generations in CDPOP. Blue lines indicate the average 

values over 10 Monte Carlo replicates for the following scenarios: a) baseline model input; b) 

0.80 juvenile mortality (recruitment 3 offspring/female); c) 0.73 juvenile mortality (recruitment 

4.05 offspring/female); d) 0.70 adult mortality; e) 0.23 adult mortality; f) initial population size 

at carrying capacity of 65 individuals; g) initial population size of 50 individuals; h) baseline 

model input with 500 m average dispersal distance.  …………………………………………  48 

 

Fig 1.9i CDPOP model averages for number of alleles in the simulated Londonderry, New 

Hampshire New England cottontail population over 10 Monte Carlo replicates for models: a) 

RED, baseline model input; b) ORANGE, 0.80 juvenile mortality (recruitment 3 

offspring/female); c) YELLOW, 0.73 juvenile mortality (recruitment 4.05 offspring/female); d) 

GREEN, 0.70 adult mortality; e) BLUE, 0.23 adult mortality; f) PURPLE, initial population size 

at carrying capacity of 65 individuals; g) BLACK initial population size of 50 individuals; h) 

BROWN baseline model input with 500 m average dispersal distance.  ……………………..  49 

 

Fig. 1.10 Projected observed heterozygosity (HO) in the simulated New England cottontail 

population in Londonderry, New Hampshire over 70 generations in CDPOP. Blue lines indicate 

the average values over 10 Monte Carlo replicates for the following scenarios: a) baseline model 

input; b) 0.80 juvenile mortality (recruitment 3 offspring/female); c) 0.73 juvenile mortality 

(recruitment 4.05 offspring/female); d) 0.70 adult mortality; e) 0.23 adult mortality; f) initial 

population size at carrying capacity of 65 individuals; g) initial population size of 50 individuals; 

h) baseline model input with 500 m average dispersal distance.  ……………………………..  50 

 

Fig 1.10i CDPOP averages for observed heterozygosity (HO) in the simulated Londonderry, New 

Hampshire New England cottontail population over 10 Monte Carlo replicates for models: a) 

RED, baseline model input; b) ORANGE, 0.80 juvenile mortality (recruitment 3 

offspring/female); c) YELLOW, 0.73 juvenile mortality (recruitment 4.05 offspring/female); d) 

GREEN, 0.70 adult mortality; e) BLUE, 0.23 adult mortality; f) PURPLE, initial population size 

at carrying capacity of 65 individuals; g) BLACK initial population size of 50 individuals; h) 

BROWN baseline model input with 500 m average dispersal distance.  ……………….……..  51 

 



xii 

 

Fig. 1.11 a) Projected population size in the simulated New England cottontail population in 

Londonderry, NH on a restoration landscape over 70 generations in CDPOP. The restoration 

landscape includes managed habitat parcels reflected as suitable habitat for cottontail occupancy 

(see Fig. 1.2); b) projected number of alleles in the simulated New England cottontail population 

under the restoration scenario; c) projected observed heterozygosity (HO) in the simulated New 

England cottontail population under the restoration scenario. Blue lines indicate the average 

value over 10 Monte Carlo replicates. Red lines provide a comparison to baseline averages  

over 10 Monte Carlo replicates.  ………………………………………………………………  53 

 

Fig. 2.1 Five geographically and genetically distinct New England cottontail  

populations.  ………………………………………………………………………….………..  73 

 

Fig. 2.2 Bellamy River Wildlife Management Area. Release patch for founder New England 

cottontails is outlined in yellow and a second large managed shrubland patch south of the release 

patch is highlighted..  ……………………………………..…………………………………...  76 

 

Fig. 2.3 Number of individuals known to be present in the release site and surrounding patches 

on Bellamy River WMA during each spring through fall release period or winter monitoring 

period.   ………………………………………………………………………………………..  83 

 

Fig. 2.4 Individual New England cottontail adults and presumed offspring (M=male, F=female) 

identified in pellet surveys at the Bellamy River WMA release site and surrounding locations 

during the winter 2015-2016 survey period showing dispersal from the release site (outlined in 

yellow) to another managed shrubland patch to the southwest. Adults were present on the patch 

in summer 2015 and survived to be detected in winter 2016, and presumed offspring were  

born in summer 2015 and first detected in winter 2016..  ………………………………..…...  86 

 

Fig. 2.5 Individual New England cottontail adults and presumed offspring (M=male, F=female) 

identified in pellet surveys at the Bellamy River WMA release site and surrounding locations 

during the winter 2016-2017 survey period showing a decline in the population from the 

previous winter survey period (winter 2015-2016). Adults were present on the patch in summer 

2016 and survived to be detected in winter 2017, and presumed offspring were born in  

summer 2016 and first detected in winter 2017.  ...……………………………………………  87 

 

Fig. 2.6 Individual New England cottontail adults and presumed offspring (M=male, F=female) 

identified in pellet surveys at the Bellamy River WMA release site and surrounding locations 

during the winter 2017-2018 survey period showing an increase in population size following the 

decline of the previous year. Adults were present on the patch in summer 2017 and survived to 

be detected in winter 2018, and presumed offspring were born in summer 2017 and first detected 

in winter 2018. Founders were released in fall of 2017, after the breeding season. All offspring 

are full siblings from a male and female present on the patch prior to 2017 founder releases.  

………………………………………………………………………………………………….  88 

 

Fig. 3.1 Locations where point counts were conducted for shrubland bird occupancy in 2015 and 

2016 in a) southern Maine and seacoast New Hampshire, and b) in 2016 in Massachusetts on 

Cape Cod.  ………………………………………………………..…………………………..  109 



xiii 

 

 

Fig. 3.2 Plot layout for 20 vegetation survey points and four 1x2 m stem count plots surrounding 

each bird point count location.  …………………………………………………....……...….  110 

 

Fig. 3.3 Median species richness for shrubland specialist birds at point count locations with low, 

moderate, and high proportion of woody invasive shrubs. The lower third of points surveyed 

ranged from 0-0.13 proportion invasives, the moderately invaded points ranged from 0.18-0.53 

proportion invasives, and the upper third of points contained 0.55 to 0.93 proportion  

invasives.  ………………………………………………………………………….……....…  129 

 

Fig. 3.4 Canonical correspondence analysis of abundance (number of detections per visit) of 

shrubland bird specialist species and measured habitat.  ………………………….…………  131 
 

 

 

 

 

 

  



xiv 

 

 

ABSTRACT 

 

ASSESSING THE EFFECTS OF HABITAT RESTORATION ON SHRUBLAND 

SPECIALISTS: CASE STUDY ON THE NEW ENGLAND COTTONTAIL  

AND SHRUBLAND BIRDS 

 

by 

 

Melissa L. Bauer 

 

University of New Hampshire, September, 2018 

 

 Loss and fragmentation of shrubland habitat in the northeastern United States due to 

succession, suppression of natural disturbance regimes, and development (Cronon 1983, Litvaitis 

1993) have resulted in declines of populations of shrubland specialist species, including the New 

England cottontail (Sylvilagus transitionalis) and shrubland birds (Litvaitis et al. 2006, 

Schlossberg & King 2007).  The New England cottontail’s range has declined by over 86% 

(Litvaitis et al. 2006, Fenderson et al. 2014, Brubaker et al. 2014) and remaining populations are 

small and exhibit fine-scale structure, limited dispersal, and loss of metapopulation function 

(Fenderson 2011, 2014, Cheeseman 2017, Chapter 1). In the Northeast, declining species of 

shrubland birds outnumber increasing species three to one (Schlossberg & King 2007). In 

response to these losses, active management is ongoing to maintain and create shrubland habitat 

on the landscape to restore populations of specialists dependent on this habitat type. Given the 

extensive investments and collaboration focused on restoring shrubland habitats in New England, 

research is needed to monitor the effects of habitat creation on populations of shrubland 

specialists. Understanding how shrubland specialists are responding to ongoing habitat creation 

will inform additional restoration strategies in an adaptive management context, an iterative 
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process of incorporating new information into management practices and learning from previous 

management outcomes.  

Shrubland habitat creation and management in New England is largely focused on 

restoring habitat for the New England cottontail, with the idea that other species will also benefit. 

The New England cottontail is a highly threatened shrubland obligate requiring multiple patches 

of shrubland habitat within a short dispersal distance to support viable metapopulations long-

term. Much of this management has been initiated by the New England Cottontail Conservation 

Initiative in response to the cottontail’s nine-year candidate listing status under the Endangered 

Species Act, and the National Fish and Wildlife Foundation Keystone Initiative. Conservation 

efforts implemented for the New England cottontail have included the development of a range-

wide inter-agency conservation strategy, designation of focal habitat restoration areas and habitat 

acreage and cottontail population recovery goals, engagement with private organizations and 

landowners to create shrubland habitat, implementation of a range-wide cottontail occupancy 

monitoring protocol, and public outreach and education (Fuller & Tur 2012). Habitat 

management underway incorporates techniques to set back forest succession, including 

harvesting trees, cutting and mowing to promote shrub regrowth, planting to improve old field 

habitat, and controlled burning on fire-maintained habitats like pitch pine-scrub oak. Landscape-

level conservation design has been initiated to identify best parcels in terms of vegetation type 

and patch size that can be targeted for restoration (Tash & Litvaitis 2007, Fuller et al. 2011).  

Knowing how other species respond to widespread habitat management for cottontails is 

important to understand the full impacts and benefits of currently implemented management and 

to inform future management strategies. Given the resources invested in restoring shrubland 

habitat for cottontail populations, and the potential for other shrubland specialist species to 
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benefit from this restoration, designating the New England cottontail a representative species 

could benefit strategic management for multiple species by the United States Fish and Wildlife 

Service. Representative species designations are a tool for strategic management to provide the 

greatest benefit for the most species with available resources. Research is needed to identify 

which additional species would benefit most from restoration to create habitat for cottontails. I 

investigated shrubland specialist birds as a suite of species that could benefit from habitat 

management for cottontails, given declining population trends for shrubland birds and their high 

conservation need in the Northeast. 

 

In this thesis, I investigated the effects of habitat restoration on shrubland specialists in three case 

studies focused on New England cottontails and shrubland birds.  

 In Chapter 1, I used genetic tools to assess the population structure, genetic diversity, 

effective population size, and census population size of an isolated New England cottontail 

population in an urban landscape in Londonderry, New Hampshire. I documented attributes of 

small populations that pose conservation challenges, including limited dispersal and loss of 

metapopulation function (Chandler et al. 2015), low genetic diversity, high relatedness (Brook et 

al. 2002, O’Grady et al. 2006), skewed sex ratios (Tella 2001, Clout et al. 2002), and stochastic 

decline on isolated patches (Stacey & Taper 1992). I used a resistance surface approach to 

highlight areas of potential connectivity in the landscape, including powerlines, a shrub wetland, 

and rail corridor. I parameterized a spatially explicit individual-based simulation model that 

serves as a proof-of-concept for future work to compare the outcomes of alternate restoration 

scenarios on cottontail population size, genetic diversity, connectivity, and ability to persist in 

fragmented landscapes given best-case restoration scenarios. 
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 In Chapter 2, I tracked the success of the first reintroduction effort for New England 

cottontails which has been ongoing at Bellamy River Wildlife Management Area since 2013. 

Using genetic analysis of fecal pellets collected in intensive winter surveys, I monitored survival 

and reproduction of founder cottontails and quantified changes in population size and genetic 

diversity following releases. Results indicate that reintroductions of New England cottontails can 

be successful. I documented successful breeding by both founders and wild-born cottontails, with 

some individuals reproducing and surviving over multiple years. Genetic diversity increased with 

the addition of breeding founders. However, I also found high post-release mortality following 

the first year of the reintroduction and variable survival that may be related to stochastic events, 

heavy snowfall, predator response, or competition for territory with established individuals. A 

population decline and skewed sex ratio, four years post-reintroduction, highlights the 

vulnerability of small reintroduced populations to stochastic decline. Key recommendations for a 

successful reintroduction of a small cottontail population include: 1) importantly, restoring a 

functional metapopulation that includes multiple occupied patches within dispersal distance and 

shrubland corridors connecting patches; 2) annual monitoring to track population size, sex ratios, 

number of breeders, and genetic diversity; and 3) repeated reintroductions over time and 

reintroducing large numbers of individuals, distributed spatially to avoid exceeding carrying 

capacity and to combat high post-release mortality (Armstrong & Seddon 2008, Hamilton et al. 

2010). Additional research is needed to improve our understanding of the factors influencing 

founder survival and how best to supplement reintroductions after the initial release to prevent 

collapse of a small population. 

 In Chapter 3, I conducted point counts and vegetation surveys and modeled shrubland 

bird occupancy to determine habitat and patch-level influences on shrubland bird presence at 
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sites occupied by or managed for New England cottontails. Of the five species of shrubland birds 

for which I modeled occupancy in relation to habitat covariates, Yellow Warbler and Prairie 

Warbler showed higher occupancy in microhabitat conditions suitable for New England 

cottontails. Yellow Warblers occupied wet sites with high stem densities and Prairie Warblers 

occupied sites with dense vegetation between 2-3 m. I also conducted indicator species analyses 

to identify shrubland bird specialists detected with high frequency at sites occupied by New 

England cottontails within the past five years and in microhabitat conditions associated with  

New England cottontail occupancy. Indicator species analyses identified 11 shrubland birds 

detected with high frequency in microhabitat conditions suitable for New England cottontail 

occupancy. In addition to Yellow Warbler and Prairie Warbler, which were associated with 

habitat covariates pertinent to New England cottontails in occupancy models, indicator species 

analyses identified Brown Thrasher, Field Sparrow, Blue-winged Warbler, Alder Flycatcher, 

Gray Catbird, Song Sparrow, Indigo Bunting, American Goldfinch, and Black-and-white 

Warbler as species sharing certain specific habitat requirements of New England cottontails or 

frequently detected on sites occupied by cottontails. Designating the New England cottontail a 

representative species would be an effective conservation strategy. Multiple shrubland specialist 

birds listed as Species of Greatest Conservation Need are associated with microhabitat conditions 

suitable for New England cottontail occupancy, and a suite of shrubland birds that use more open 

shrub habitats would benefit from habitat management before sites become suitable for 

cottontails. 
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INTRODUCTION 

 

History of shrubland habitats in the Northeast 

 Changes in land use patterns have dramatic impacts on the amount and distribution of 

habitat types on the landscape. In the Northeast, landscape changes over the past several 

centuries have been complex, with concomitant consequences for wildlife species. Prior to 

colonial settlement, the landscape was a complex patchwork of multiple-aged forests, thickets, 

and wetlands (Cronon 1983). Native American agriculture and natural disturbances from fire, 

wind, flooding, and beavers maintained early successional habitat (DeGraff & Yamasaki 2003). 

The arrival of colonists imposed a more regular pattern on this diverse patchwork of ecological 

communities. Colonial deforestation began in the early seventeenth century and peaked by the 

mid-nineteenth century, by which time over 75% of the arable land had been cleared (Whitney 

1994, Foster et al. 2002, Hall et al. 2002). Additionally, beaver populations had severely declined 

with the fur trade, reducing ephemeral wetlands and shrublands as a result (Cronon 1983).  

In the mid-nineteenth century widespread farm abandonment in the Northeast, associated 

with competition with more productive agriculture in the Midwest (Black 1950, Irland 1982), 

resulted in an increase in early successional habitat. Shrubland habitats and abundances of 

species dependent on these habitats peaked in the early twentieth century (Litvaitis 1993, Foster 

2002). However, due to succession, development, and suppression of natural disturbance regimes 

(Cronon 1983, Litvaitis 1993) shrubland habitats began declining in the mid and late 1900s, with 

marked declines in populations of shrubland species such as the New England cottontail noted 

during that period (Jackson 1973, Brooks & Birch 1988, Litvaitis et al. 1999). By the early 2000s 
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over 80% of the combined land area of New Hampshire, Vermont, and Maine was dominated by 

second growth forests (Brooks 2003). 

Today, natural scrub-shrub habitats persist on the landscape in poor or hydric soils, 

including pitch pine-scrub oak (Little & Garrett 1990), shrub wetlands (Cowardin et al. 1979), 

and coastal scrub-shrub, and due to natural disturbances including those from beavers and wind 

and ice storms (Askins 2000, Lorimer & White 2003, DeGraaf & Yamasaki 2003, Schlossberg & 

King 2007). Today, anthropogenic scrub-shrub habitats comprise a large portion of the early 

successional habitat in the Northeast, and include habitats resulting from silviculture, utility 

rights-of-way, succession of abandoned fields, and forest edges (Thompson & DeGraaf 2001, 

DeGraaf & Yamasaki 2003, Schlossberg & King 2007). Shrublands and young forests have a 

large variety of fruiting shrubs and herbaceous vegetation in comparison to mature forests 

(MacArthur & MacArthur 1961, Conner et al. 1983, Rice et al. 1984, Schulte & Niemi 1998, 

Keller et al. 2003), have high structural diversity, and provide protective cover (Gilbart 2012). 

Due to the ephemeral nature of these habitats, active management is essential for the persistence 

of shrublands and young forests on the landscape to maintain populations of specialist species 

(Litvaitis 1993, DeGraaf & Yamasaki 2003, Schlossberg & King 2007), as well as generalists 

and forest species that utilize these productive habitats during part or all of their life cycle 

(Anders et al. 1998, Vega Rivera et al. 1998, Askins 2001, Litvaitis 2001, Vitz & Rodewald 

2006, 2007). There are extensive conservation efforts ongoing in the Northeast to create and 

maintain habitat for shrubland species. 
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Shrubland specialist species 

 Populations of a variety of taxa that rely on shrublands have been in decline in recent 

decades including birds (Dettmers 2003, Schlossberg & King 2007), mammals (Litvaitis 2001, 

Fuller 2003), pollinators (Wagner & Nelson 2003), reptiles (Kjoss & Litvaitis 2000), and plants 

(Latham 2003). There are 52s species of birds, mammals, and reptiles listed as Species of 

Greatest Conservation Need in the Northeast and additional species of rare invertebrates and 

pollinators that that rely on shrubland or young forest habitats for cover, nesting, and forage 

during part or all of their life cycle (Gilbart 2012). Some such species include the Blue-winged 

Warbler (Vermivora cyanoptera), American Woodcock (Scolopax minor), New England 

cottontail (Sylvilagus transitionalis), woodland jumping mouse (Napaeozapus insignis), frosted 

elfin butterfly (Callophrys irus), wood turtle (Glyptemys insculpta), spotted turtle (Clemmys 

guttata), northern black racer (Coluber constrictor constrictor), and timber rattlesnake (Crotalus 

horridus) (Gilbart 2012).  

A focal species for shrubland restoration in the Northeast is the New England cottontail. 

The New England cottontail is a shrubland obligate that requires dense thicket habitat for forage, 

thermoregulation, and cover from predators, both within its home range (Barbour & Litvaitis 

1993, Litvaitis 2003) and during dispersal (Fenderson et al. 2014, Amaral et al. 2016). New 

England cottontails have experienced extensive range contraction of >86% due to loss and 

fragmentation of shrubland habitat (Litvaitis et al. 2006, Fenderson et al. 2014, Brubaker et al. 

2014, Fig. 2.1). Today, New England cottontails are isolated into five geographically (Litvaitis et 

al. 2006) and genetically (Fenderson et al. 2011) distinct regional populations. Further 

subdivisions occur within each of these geographic areas, resulting in small, local 

metapopulations, in which extinctions and recolonizations occur independently from each other 
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due to extremely limited dispersal in fragmented landscapes (Fenderson 2011, 2014, Cheeseman 

2017; B. Ferry, H. Holman, A. Kovach unpublished data). Research is needed on the response of 

cottontail populations to ongoing management to effectively implement habitat restoration and 

other management actions such as reintroductions. Understanding whether cottontail populations 

are growing or declining, identifying dispersal distances and patterns in managed landscapes, and 

tracking stochastic changes in cottontail abundance, relatedness, and sex ratios on isolated 

patches provides instrumental knowledge on where habitat connectivity can be improved or 

augmenting populations would be valuable. 

 Though a majority of shrubland habitat restoration projects in the Northeast are focused 

on the New England cottontail, the goal is that other species will also benefit. In addition to the 

New England cottontail, species of particular conservation concern that could benefit from this 

restoration are shrubland specialist birds. There are 41 species of birds that regularly breed in 

shrubland habitats in New England (Schlossberg & King 2007). Of those species, 21 have shown 

short or long-term declines (Askins 1993, Brawn et al. 2001, Dettmers 2003, Schlossberg & 

King 2007) and 12 additional species are of conservation concern locally or nationally, leaving 

only eight shrubland specialist bird species that are not declining or of conservation concern 

(Schlossberg & King 2007). Habitat use by shrubland specialist birds varies by species (DeGraaf 

& Yamasaki 2001, Schlossberg & King 2007). There are multiple management strategies for 

maintaining and creating shrubland habitat for birds (Askins 2001, Lorimer 2001, Thompson & 

DeGraaf 2001, DeGraaf & Yamasaki 2003), and no one strategy can accommodate all the 

region’s specialist birds (Schlossberg & King 2007). Given the efforts in place to create the 

specific shrubland habitat conditions required by New England cottontails, research is needed on 

how other shrubland specialists will respond to this management. Certain species of shrubland 
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birds are likely to benefit more than others from the dense, tall shrublands required by New 

England cottontails. Other species will benefit from more open shrublands, and species with 

particular conservation needs such as game birds or shrubland birds wintering in habitat in the 

Neotropics may require additional management outside the umbrella of cottontail habitat 

restoration. One goal of this study was to determine if habitat management focused on the 

specific requirements of New England cottontails will also benefit shrubland specialist birds, and 

which bird species will benefit most from that specific habitat restoration. Management that 

benefits multiple species is an efficient use of limited conservation resources. 

 

Shrubland habitat restoration in New England 

Extensive resources and collaboration between federal, state, and private organizations 

and landowners have been invested in creating and restoring shrubland and young forest habitats 

in the Northeast (Fuller & Tur 2012, NFWF Early Successional Forest Keystone Initiative 

Report 2015, Fuller et al. 2016). These shrubland restoration projects are focused primarily on 

restoring habitat for the New England cottontail (Fuller et al. 2016, NFWF Early Successional 

Forest Keystone Initiative Report 2015) and also for shrubland birds with a focus on the 

American Woodcock and Golden-winged Warbler (NFWF Early Successional Forest Keystone 

Initiative Report 2015). The New England Cottontail Conservation Initiative is pursuing a habitat 

restoration goal of 27,000 acres of shrubland and young forest. Nearly 18,700 acres were 

maintained or restored as of 2017, including 10,000 acres of self-sustaining habitat (New 

England Cottontail Executive Committee 2018). The focus of this thesis is to understand how 

both New England cottontails and shrubland specialist birds are responding to management to 
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inform restoration that will generate New England cottontail responses at the population level 

and benefit shrubland specialist birds. 

 

Research objectives 

The objectives of this research were to investigate the effects of habitat restoration on shrubland 

specialist species in three case studies, with a focus on the New England cottontail and shrubland 

specialist birds.  

The research objectives of this thesis, by chapter, were: 

1. Quantify the genetic structure and diversity of an isolated New England cottontail 

population in an urban landscape where management was implemented to restore 

young forest. Parameterize a spatially-explicit model to compare the effects of 

alternate restoration scenarios on cottontail population size, persistence, genetic 

diversity, and connectivity; demonstrate this model as a proof-of-concept for 

applications to range-wide cottontail conservation scenarios.  

2. Track the survival and breeding contributions of founder rabbits and the population 

growth of the first reintroduced New England cottontail population to identify trends 

and inform future reintroductions.  

3. Evaluate the benefit of habitat management for the New England cottontail for 

multiple shrubland specialist species in a representative species context. Identify 

habitat influences on shrubland bird occupancy at sites occupied by or managed for 

New England cottontails. Identify shrubland bird specialists that are indicative of the 

specific habitats required by New England cottontails. 
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CHAPTER 1 

 

GENETIC STRUCTURE, CONNECTIVITY, AND PREDICTED RESPONSE TO 

RESTORATION OF AN ISOLATED NEW ENGLAND COTTONTAIL POPULATION IN 

AN URBAN LANDSCAPE 

 

Abstract 

Habitat loss and fragmentation from land use change reduce connectivity and dispersal of 

wildlife populations. Isolated populations are at greater risk of extinction due to small population 

sizes and decreased genetic diversity. These issues are germane to the conservation of the New 

England cottontail (Sylvilagus transitionalis), which has experienced extensive loss of 

population connectivity due to loss and fragmentation of shrubland habitat. New England 

cottontails in the highly developed landscape of Londonderry, New Hampshire were sampled for 

genetic monitoring with intensive winter fecal pellet surveys from 2016-2018 and live-trapping 

from 2015-2017. I used STRUCTURE to identify the number of distinct genetic groups in this 

population and tracked genetic diversity, relatedness, and population size on occupied patches 

across years. In this small population, I identified fine-scale population structure, low genetic 

diversity, high relatedness, and limited dispersal. I identified three distinct genetic groups in this 

population over a small extent of only 4 km of occupied habitat. Cottontails on a central patch 

that was restored as young forest 10 years ago showed the highest genetic diversity, lowest 

relatedness, and had the highest abundance until 2018 when abundance declined on that patch 

because the habitat had undergone succession to the point that it no longer provided ideal cover. 

Cottontails on isolated patches exhibited low genetic diversity and high relatedness. 

Hybridization between New England cottontails and an eastern cottontail was detected on an 
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isolated patch that was declining in abundance as eastern cottontails were expanding their range 

into Londonderry. I used a resistance surface approach in CIRCUITSCAPE to map and highlight 

areas of connectivity and barriers between groups of cottontails in the Londonderry landscape. 

Connectivity maps corroborated genetic data, indicating isolated patches on the landscape. 

Utility rights-of-ways, a shrub wetland, and rail corridor were highlighted as areas of potential 

connectivity. With an understanding of connectivity in this landscape, I developed a model to 

simulate the effects of restoration scenarios on cottontail population connectivity and persistence. 

I parameterized a spatially explicit individual-based model in CDPOP that incorporated the 

resistance surface landscape to simulate changes in cottontail population size, persistence, 

genetic diversity, and connectivity through 70 generations. This predictive framework will be 

used to evaluate the outcomes of planned restoration activities on cottontail populations to 

identify scenarios that will best restore metapopulation connectivity. The parameterized 

simulation model effectively projected cottontail population size, persistence, and genetic 

diversity given inputs based on the best available knowledge of New England cottontail vital 

rates. Sensitivity analyses identified dispersal as a key factor for New England cottontail 

population persistence in fragmented landscapes. High recruitment increased population 

stability, and high adult mortality within the range of mortality observed in empirical populations 

caused populations to crash. High adult mortality in consecutive years, for example due to a 

harsh winter, could be a concern for population persistence on isolated patches. Simulated 

restoration of multiple habitat patches in the Londonderry landscape increased population 

stability. This predictive model serves as a proof-of-concept for comparing restoration scenarios 

in managed cottontail populations range-wide. Predictive models are a potentially valuable tool 

to evaluate the effectiveness of alternate management strategies and determine whether small 
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cottontail populations in fragmented landscapes can be self-sustaining given best-case restoration 

scenarios.  

 

Key Words:  

New England cottontail, habitat fragmentation, landscape genetics, CDPOP, simulations 

 

Introduction 

Habitat loss and fragmentation influence biodiversity through altering multiple processes, 

including reproduction, mortality, dispersal, species interactions, and ecosystem functions 

(Addicott et al. 1987, Haddad et al. 2015). Fragmented populations persisting on small, isolated 

patches are at risk of extinction due to demographic processes including small effective 

population sizes and decreased mate choice (Bohonak 1999, Keyghobadi 2007); genetic 

processes such as reduced influx of new genetic variation (Bohonak 1999, Keyghobadi 2007), 

genetic drift (Hanski & Gilpin 1997, Keyghobadi 2007, Allendorf et al. 2012), inbreeding 

depression (Brook et al. 2002, O’Grady et al. 2006), and decreased adaptive potential (Lacy 

1997); and stochastic processes including weather events, fire, and flooding (Stacey & Taper 

1992).  

Habitat loss and fragmentation have particularly detrimental impacts on species that are 

structured as metapopulations (Hanski & Gilpin 1997), such as the New England cottontail 

(Sylvilagus transitionalis). The New England cottontail is a shrubland obligate that has 

experienced extensive contraction over greater than 86% of its historical range (ca. 1960) 

(Litvaitis et al. 2006, Fenderson et al. 2014, Brubaker et al. 2014) due to habitat loss from 

widespread development, succession, and suppression of natural disturbance regimes that 
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maintain early successional habitat (Litvaitis 1993, Litvaitis 2003, Schlossberg & King 2007). 

Today, New England cottontails persist in small, local metapopulations, in which extinctions and 

recolonizations occur independently from each other (Fenderson 2011, 2014, Cheeseman 2017), 

and dispersal is extremely limited (Cheeseman 2017, B. Ferry, unpublished data). 

Classical metapopulations, disjunct but interacting populations prone to local extinction 

and recolonization, persist regionally when individuals dispersing from their natal patches create 

an extinction-recolonization balance (Levins 1969, Hanski & Gilpin 1997). By disrupting 

landscape connectivity, habitat loss and fragmentation create nonequilibrium metapopulations in 

which recolonizations are infrequent or absent. Disruption of landscape connectivity also creates 

source-sink metapopulation dynamics, whereby low dispersal rates between patches result in 

negative population growth in sink populations and may ultimately affect the persistence of these 

spatially structured populations (Hanski & Gilpin 1997). Dispersal is essential for rescuing sink 

populations, establishing new populations in unoccupied patches, and sustaining genetic 

diversity (Lande 1988, Gulve 1994, Stevens et al. 2006, Allendorf et al. 2012). 

Despite its importance in maintaining metapopulations, dispersal is a difficult and 

understudied component of connectivity research and is a priority research area for conservation 

management (Lindenmayer et al. 2008, Jaquiéry et al. 2011). Genetic data provide a means to 

understand dispersal to enact effective restoration. The interdisciplinary field of landscape 

genetics provides tools to quantify successful dispersal as a measure of gene flow and uses 

spatial statistics to relate gene flow to specific features in complex, heterogeneous landscapes 

(Manel et al. 2003). Habitat of varying quality and the landscape matrix between habitat patches 

influence the ability of individuals to move and disperse through the landscape. Landscape 

genetics aims to understand the functional connectivity of populations, considering the effects of 
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a variably permeable matrix on the dispersal or movement abilities of organisms (Taylor et al. 

1993, With et al. 1997). One method to evaluate functional connectivity is to relate gene flow to 

specific landscape features in resistance surfaces built in a raster Geographic Information System 

(GIS) environment. Resistance surfaces are spatial layers that assign a cost value (representing 

landscape resistance to dispersal)  to each raster cell based on the extent to which the underlying 

landscape feature is hypothesized to facilitate or impede gene flow in a species of interest (Spear 

et al. 2010). The effective distance between sampling sites or individuals can then be calculated 

as a cost distance through the resistance surface as opposed to Euclidean distance. 

Landscape genetic studies have been conducted to identify landscape influences on 

dispersal in New England cottontail populations in southern Maine, seacoast New Hampshire, 

and Massachusetts on Cape Cod (Fenderson et al. 2014, Papanastassiou 2015, Amaral et al. 

2016). Barrier features such as highways and large waterbodies limit dispersal and separate 

populations in southern Maine and seacoast New Hampshire (Fenderson et al. 2014). Linear 

shrubland habitat along roadsides, railroad beds, and utility corridors facilitates gene flow among 

patches in those populations (Fenderson et al. 2014, Amaral et al. 2016). Roads act as both 

barriers and facilitators (Fenderson et al. 2014, Amaral et al. 2016), due to the shrubby nature of 

roadsides and the risk that roads themselves pose in terms of vehicle collisions and lack of cover. 

Corridor analyses have emphasized the importance of linear anthropogenic features such as 

roadsides and utility rights-of-ways for restoring connectivity between focal sites (Amaral et al. 

2016). The relative influence of barrier and facilitating features on gene flow varies among 

populations in relation to landscape composition (Fenderson et al. 2014, Amaral et al. 2016) and 

along a fragmentation gradient (Amaral et al. 2016). Previous research emphasizes the need to 
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consider not only the amount of habitat created or restored, but the configuration of habitat 

patches to promote gene flow in restoration landscapes (Fenderson et al. 2014). 

Simulation modeling is an additional advancement in the field of landscape genetics that 

enhances the power to investigate patterns of landscape influence on gene flow under a 

controlled, replicated design (Epperson et al. 2010, Manel & Holderegger 2013, Balkenhol et al. 

2016). Simulations are a valuable tool for predicting population responses to restoration and 

landscape change (Wasserman et al. 2012, Van Strein et al. 2014, Hoban 2014, Cushman et al. 

2015, Balkenhol et al. 2016). Landscape genetic simulations offer a means to predict how New 

England cottontail populations will respond to habitat creation given the extensive restoration 

efforts in place, and can be used to compare the effects of alternate restored landscapes on 

cottontail population connectivity, persistence, and genetic diversity.  

The objectives of this study were to 1) quantify the population genetic structure, genetic 

diversity, effective population size, and estimated census population size of an isolated New 

England cottontail population in an urban landscape, 2) use a resistance surface approach to map 

areas of potential connectivity to planned habitat management projects surrounding a fragmented 

cottontail population, and 3) parameterize a spatially explicit individual-based model for future 

use in comparing the effects of alternate restoration scenarios on cottontail population size, 

persistence, genetic diversity, and connectivity. 

 

Methods 

Study area 

The Londonderry, New Hampshire population of New England cottontails is the largest 

remnant metapopulation of New England cottontails in New Hampshire. This population 
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occupies shrubland habitat in a highly industrial landscape just south of the Manchester-Boston 

Regional Airport and east of the Merrimack River. Over 50% of the landscape is forested, and 

over 30% of the landscape is developed, including the airport, urban areas extending south of 

Manchester, industrial parks, and quarries. A 20-acre restoration site managed for New England 

cottontails on Stonyfield Yogurt property represents a stronghold for the species in this part of 

New Hampshire (New England Cottontail Conservation Initiative 2013). New England 

cottontails occupy additional shrubland patches within this complex industrial landscape matrix, 

and all occupied patches are within a 4 km geographic extent (Fig 1.1). 

 

 
Fig. 1.1 The Londonderry, New Hampshire landscape consisting of a high proportion of forested and 

developed land, including industrial facilities just south of the Manchester-Boston Regional Airport. 

Highlighted patches indicate shrubland habitat occupied by New England cottontails from 2015-2017. 
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Sampling and genetic data 

Spatially referenced (Garmin GPSMAP 64s, Olathe, KS) fecal samples were collected 

during winter pellet surveys conducted from 2016 through 2018 as part of an effort to monitor 

New England cottontail occupancy and abundance. Surveys were focused on known occupied 

cottontail patches, and additional shrubland habitat in the surrounding area. Pellet samples were 

collected under optimal survey conditions to detect New England cottontails (Brubaker et al. 

2014) in a fine-scale sampling scheme, following the methods of Kristensen & Kovach (2018). 

Spatially referenced tissue samples were collected from cottontails captured in single-door box 

traps (Barbour & Litvaitis 1993) from 2015 through 2017 as part of a study to track individual 

dispersal and survival to assess population viability (B. Ferry, unpublished data). Methods of 

handling cottontails were approved by the Institutional Animal Care and Use Committee, 

IACUC #160609 (Appendix B), and consistent with standards maintained by New Hampshire 

Fish and Game. Fecal pellets were stored in 15-mL conical tubes at -20 ºC and tissue samples 

were stored in 100% ethanol until DNA extraction.  

I extracted DNA from pellets with the QIAamp® DNA Stool Kit (Qiagen, Valencia, CA, 

USA) according to the manufacturer’s instructions with minor modifications (Kovach et al. 

2003) and from tissue samples with the Qiagen DNeasy® Blood and Tissue Kit (Qiagen, 

Valencia, CA, USA). DNA was amplified in three multiplex polymerase chain reactions (PCR) 

(see Appendix A for protocols) with a panel of 16 microsatellite markers, including 14 loci 

developed for the New England cottontail (King et al. 2017), 1 locus developed for the eastern 

cottontail (Berkman et al. 2009), and 1 Y-chromosome locus developed for sex identification in 

the European rabbit (Vašíček et al. 2011). PCR products were electrophoresed on a 3730xl 96-
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capillary DNA Analyzer at the Yale DNA Analysis Facility (New Haven, CT, USA). Alleles 

were manually scored in PeakScanner (Applied Biosystems, Foster City, CA, USA).  

To increase amplification success rates, I used a high-fidelity hot-start technique in PCR 

reactions (AmpliTaq Gold® 360 DNA Polymerase, Applied Biosystems, Foster City, CA, USA) 

and a Solid Phase Reverse Immobilization Paramagnetic bead purification on PCR products 

when needed. For quality control of low copy DNA, I used a multiple tubes approach (Frantz et 

al. 2003, Waits & Paetkau 2005). I required two replicate allele observations for heterozygous 

loci, and three replicate observations for homozygous loci to determine a consensus genotype 

(Frantz et al. 2003). I quantified the per allele and per locus genotyping error by comparing the 

genotypes of all replicates to the consensus genotype (Pompanon et al. 2005). Samples missing 

data at three or more loci were excluded from analyses. To check for null alleles, I used MICRO-

CHECKER (Van Oosterhout et al. 2004). To identify samples collected from the same or unique 

individuals, I used the multi-locus matches option in GenAlEx 6.5 (Peakall & Smouse 2006, 

2012). I re-evaluated samples differing at only one to two loci and considered samples with 

mismatches that appeared to be due to allelic dropout the same individual. I calculated the 

probability of identity of siblings (PID-SIBs), the probability that 2 siblings drawn at random from 

a population will have the same genotype (Waits et al. 2001), and retained unique genotypes (i.e. 

individuals) for further analyses. 

 

Population genetic analyses and spatial autocorrelation 

 To identify the number of genetically distinct groups of cottontail individuals in 

Londonderry, I used a Bayesian approach in the program STRUCTURE 2.3.4 (Pritchard et al. 

2000). I ran STRUCTURE 10 times at each K (the number of putative genetic groups), from 
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K=1-5, with a burn-in of 100,000 iterations and run-length of 500,000 iterations. I used the 

admixture model with correlated allele frequencies, which is appropriate for populations that 

exchange migrants (Pritchard et al. 2000). The best supported number of groups (K) was 

identified by the plateau of the average LnPD (Pritchard et al. 2000), the ∆K method (Evanno et 

al. 2005), and the evaluation of bar plots. Results were compiled with Structure Harvester 0.6.94 

(Earl & vonHoldt 2012), averaged in CLUMPP 1.1.2 (Jakobsson & Rosenberg 2007), and 

visualized in DISTRUCT 1.1 (Rosenberg 2004).  

To compare genetic diversity among geographically segregated cottontail groups, I 

calculated heterozygosity metrics and number of alleles in GenAlEx 6.5 (Peakall & Smouse 

2006, 2012). I calculated allelic richness corrected for sample size in FSTAT 2.9.3.2 (Goudet 

1999, 2002). I estimated average pairwise relatedness by patch and for the overall population in 

ML-Relate (Kalinowski et al. 2006). I estimated census population size from 2016-2018 (years 

with sufficient recapture data) using a single session mark-recapture method in the R package 

capwire 1.1.4 (Pennell & Miller 2015) for the Londonderry population as a whole and for each 

geographically distinct patch. I estimated effective population size, the number of breeding 

individuals in a population, in NeEstimator 2.01 (Do et al. 2014) using the linkage disequilibrium 

method, with data from 2015-2017 combined. 

To assess dispersal patterns and fine-scale genetic structure, I calculated spatial 

autocorrelation in GenAlEx. This technique compares genetic similarity of individuals as a 

function of geographic distance to identify the spatial extent over which individuals are highly 

related (Legendre 1993, Epperson 1993, Sokal et al. 1997). I assessed spatial autocorrelation for 

the population as a whole and for males and females separately. I used variable distance classes 
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to maintain a sufficient number of pairwise comparisons in each distance class. Analyses were 

run with 9,999 permutations and 9,999 bootstraps to test for significance. 

 

Landscape variables and univariate resistance surface modeling 

 I used a resistance surface approach to optimize cost values that different landscape 

features pose to cottontail movement in the Londonderry, New Hampshire landscape. This was a 

first step in developing connectivity maps for the Londonderry cottontail population. I mapped 

landscape variables identified as important to New England cottontail dispersal in previous 

landscape genetic studies (Fenderson et al. 2014, Amaral et al. 2016; Table 1.1). Landscape 

variables were mapped in ArcGIS 10.5 (Esri, Redlands, CA). To build a more comprehensive 

shrub and shrub wetland layer, data was combined from a 2011 National Land Cover Database 

(NLCD) layer (Homer et al. 2015) and 2012 LANDFIRE layer (LANDFIRE 2012) at 30 m 

resolution (EPSG 102003). Additional land cover variables (Table 1.1) were derived from 

LANDFIRE data layers, roads were derived from a New Hampshire Department of 

Transportation shapefile (NHDOT Bureau of Planning and Community Assistance 2018), rails 

from a U.S. rails TIGER/Line shapefile (U.S. Census Bureau 2015), and powerline rights-of-

ways from a New England electrical transmission shapefile (NOAA 2013). In cases where land 

cover was misclassified in the immediate vicinity of patches occupied by cottontails (i.e. part of 

a shrubland patch occupied by a cottontail was misclassified as development), I digitized the 

misclassified area to the correct land cover type. The 2011 and 2012 land cover layers also did 

not account for a large industrial facility that had been constructed between two cottontail 

patches. To account for this, I digitized and reclassified that area as development based on 2015 

aerial photography (NH GRANIT 2015).  
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Table 1.1 Facilitator and barrier landscape variables tested in univariate resistance surface optimization 

for New England cottontail population in Londonderry, New Hampshire.  

Variable Hypothesized effect on gene flow 

Shrub Facilitator 

Shrub wetland Facilitator 

Herbaceous wetland Facilitator 

Linear facilitators (powerlines and buffered railroads) Facilitator 

Development Barrier 

Forested wetland Barrier 

Forest Barrier 

Fields/agriculture Barrier 

Water Barrier 

High-volume roads (multi-lane highways and statewide corridors) Barrier 

Moderate-volume roads (secondary and improved roads) Barrier 

Low-volume roads (trails and private roads) Barrier 

 

 

I completed univariate modeling to identify optimal cost values for landscape variables 

using two resistance surfaces, one based on the 2011/2012 landscape, and a second based on the 

2015 landscape with additional digitized development. To identify the optimal cost value for a 

landscape variable in a resistance surface, each cell in a raster GIS surface is assigned a cost 

value based on the underlying land cover type or landscape feature, and pairwise genetic 

distances between sampled individuals on the landscape are compared to pairwise cost distance 

values. Cost values are then varied and the test repeated for each alternative cost. Model 

selection criteria such as AICC are used to identify the resistance surface parameterization for 

which cost values are best supported by genetic data. To test multiple cost values for each 

landscape variable, I systematically varied the cost value for each variable in separate resistance 

surfaces (e.g. Hohnen et al. 2016). Hypothesized facilitating features were assigned a reduced 

cost value of 1 relative to a background value of 100. Hypothesized barrier features were 

assigned elevated cost values of 2, 5, 10, 25, 50, 100, 250, 500, 750, and 1000 relative to a 

background value of 1. I also tested a null model of Euclidean distance in which every raster cell 

was assigned a value of 1. 
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I then calculated cost distances between all pairs of individuals in each surface using 

CIRCUITSCAPE 4.0 (McRae et al. 2013) and averaging resistances from an eight-neighbor 

connection scheme (e.g. Peterman et al. 2014). There are two common approaches to calculating 

cost distance from resistance surfaces: using the resistance surface to identify a single least-cost 

path through the landscape (Adriaensen et al. 2003) or representing the resistance surface as an 

electrical circuit to identify multiple paths of least resistance (McRae 2006). The latter approach 

is employed in CIRCUITSCAPE, a method that incorporates circuit and random walk theories to 

measure connectivity between sampling locations and identifies all possible pathways between 

individuals on the landscape. Identifying multiple paths is ecologically relevant because it does 

not assume that organisms have a complete knowledge of the landscape and would use an 

identified single path of least resistance. This approach is also advantageous if there are several 

potential paths of similar total cost (Balkenhol et al. 2016) and may better represent gene flow 

that occurs over multiple generations (McRae 2006). For these reasons, I used CIRCUITSCAPE 

analyses, rather than least cost path approaches. CIRCUITSCAPE provides valuable 

visualizations of habitat connectivity to aid in management planning (e.g. Emel & Storfer 2015, 

Warren et al. 2016, Alego et al. 2017). 

To determine which parameterization for each variable was best supported by the genetic 

data, I built linear mixed effects models with a pairwise genetic distance matrix as the dependent 

variable, and a pairwise cost distance matrix as the independent variable. Genetic distance was 

calculated as the proportion of shared alleles between individual cottontails (Dps, Bowcock et al. 

1994) in the R package adegenet (Jombart 2008). Cost distance was calculated in 

CIRCUITSCAPE. I used a maximum-likelihood population effects (MLPE) approach to account 

for the non-independence of pairwise comparisons (Clarke et al. 2002, Van Strein et al. 2012). In 
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these models, explanatory variables (i.e. cost distances) are the fixed effect terms and sampling 

locations are included as a random effect to account for the proportion of the total variance 

related to non-independent sample locations that are incorporated in many sample pairs (Clarke 

et al. 2002). MLPE models were estimated with the lmer function in the lme4 package (Bates et 

al. 2016) in R using a residual maximum likelihood approach (REML). REML is desirable for 

unbiased estimates of the variance components of mixed models (Clarke et al. 2002, Gurka 

2006). To compare models with different fixed effects (i.e. cost distance) and to select the best 

fitting model, I used AICC. AIC has been demonstrated to be the best model selection index for 

linear mixed models in landscape genetics through simulations (Gurka 2006, Row et al. 2017). 

After identifying the best supported cost value for each landscape variable in the Londonderry 

landscape with mixed models and AICC, optimized cost values from Londonderry were 

compared to cost values optimized in previous research for landscapes in southern Maine and 

Cape Cod (Papanastassiou 2015, Amaral et al. 2016), and integrated with expert opinion. By 

comparing cost values from the small geographic extent of the Londonderry landscape to larger 

previously studied landscapes and expert opinion, I arrived at one cost value for each landscape 

variable and combined all landscape variables into a multivariate resistance surface for 

connectivity mapping. 

 

Connectivity mapping 

Next, I used a multivariate resistance surface and CIRCUITSCAPE to map connectivity 

in the Londonderry landscape to highlight corridors (i.e. regions of low resistance) for cottontail 

dispersal between both currently occupied patches and completed New Hampshire Fish and 

Game restoration sites in the larger landscape. CIRCUITSCAPE identifies all possible pathways 
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between individuals or sites based on the resistance values of the underlying landscape. 

Corridors were identified as regions where the most pathways were concentrated. Analyses were 

run in the “all-to-one” mode, which is ideal for identifying areas of connectivity while 

minimizing run-time and memory usage (McRae & Shaw 2009). Identifying corridors of high 

connectivity between occupied and managed patches can provide insight for planning future 

landscape restoration that will support connected metapopulations. 

 

Parameterization of a spatially explicit, individual-based framework to simulate the effects of 

restoration landscapes on population viability 

I parameterized a spatially explicit, individual-based model, CDPOP, to simulate the 

effects of alternate restoration scenarios on cottontail population size, connectivity, and genetic 

diversity. For this project, I developed a proof-of-concept that can be pursued further for 

modeling the effects of restoration scenarios on the Londonderry, New Hampshire population, 

and in other parts of the New England cottontail’s range. CDPOP is an individual-based 

simulator of gene flow in complex landscapes (Landguth & Cushman 2010). CDPOP tracks 

alleles across individuals over time, with dispersal and mating governed by pairwise landscape 

distances between individuals on a continuous cost surface. Input parameters include vital rates 

(age-specific reproduction and mortality), demographic information (sex and age distributions), 

initial allele frequencies based on the empirical population, and a resistance surface and 

movement functions. Coordinates are input to indicate locations for individuals in the initial 

population and open coordinate locations in suitable habitat where individuals can move to, with 

the total number of coordinate locations totaling the carrying capacity of the landscape.  
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In the model, individuals move to mate based on the user-specified function and cost of 

the underlying landscape. Offspring are initialized in their mother’s location, then mortality 

occurs for all age groups based on the user-specified probabilities. After mortality, offspring 

disperse to vacant locations according to the input dispersal function and cost distance threshold. 

If all locations are occupied (i.e. the population is at carrying capacity), remaining offspring are 

removed from the model. For each generation, the model outputs the number of individuals in 

the population, number of births and deaths, number of dispersers, number of breeding age 

individuals, heterozygosity and inbreeding coefficients, and average mating and dispersal 

distances. At specified time units, the model outputs the genotype and location of each 

individual. 

Using the optimized multivariate resistance surface for the Londonderry landscape, I 

generated a pairwise cost distance matrix for input into CDPOP. Baseline parameters were 

selected using the best available knowledge of cottontail vital rates, demography, and movement 

from a literature review (Table 1.2). The baseline initial population size was 38 individuals, the 

maximum abundance estimate from the Londonderry population using recapture data from 2017. 

Simulated individuals were placed in starting locations corresponding to sampled individuals and 

additional individuals were randomly added to the surrounding landscape in suitable patches >2 

ha in size to equal the initial population size. The first generation was randomly assigned 15 loci 

with alleles following the input allele frequency file based on sampled Londonderry cottontails. 

Loci followed a k-allele mutation model with a mutation rate of 0.0005 per locus per generation.  
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Table 1.2 CDPOP input parameters for the modeled New England cottontail population in Londonderry, 

New Hampshire, including vital rates, demographic information, and movement functions. 

Parameter Model value Source 

Carrying capacity 65 individuals 2 rabbits/ha ~32.55 ha on patches > 2 ha 

(Barbour & Litvaitis 1993, Litvaitis & 

Villafuerte 1996) 

*Initial population size 38 individuals 

 

Maximum abundance estimate based on 

recapture data in Londonderry, NH in 2017 

 50 individuals  

 65 individuals Estimated carrying capacity in the 

Londonderry restoration landscape based on 

a density of 2 rabbits/ha and ~32.55 ha of 

shrubland habitat 

Female fecundity  5/litter, 3 litters/yr USDOI 2009 

Offspring sex ratio Equal Chapman & Morgan 1973 

Multiple paternity option Yes M. Bauer & A. Kovach, unpublished data 

Philopatry (strict) No  

Population growth model Exponential  

*Mortality, age 0 0.85 (recruitment 

2.25/female) 

 

Mortality: Litvaitis & Villafuerte 1996 

Recruitment: Chapman & Litvaitis 2003, L. 

Perotti (unpublished report), Barbour & 

Litvaitis 1993, Warren 2017 

 0.80 (recruitment 3/female) 

0.73 (recruitment 4.05/female) 

 

Recruitment: Chapman and Litvaitis (2003), 

L. Perrotti (unpublished report), Warren 

2017 

*Mortality, adult 0.70 Brown & Litvaitis 1995, Litvaitis & 

Villafuerte 1996, Warren 2017 

 0.40 0.60 approximate maximum observed 

survival over a 3-year period in NY (A. 

Cheeseman, personal communication) 

 0.23 0.77 maximum observed survival over a 4-

year period in Londonderry, NH (B. Ferry, 

unpublished data) 

Maximum age 3 years Maximum observed age (i.e. individual was 

sampled over 3 winter seasons) in 

Londonderry, NH (Ch. 1) and Bellamy River 

WMA, NH (Ch. 2) 

Age distribution Even distribution  

Mate movement 

probability function 

Gaussian  

     Mean distance 
 

50 m Mean movement distance for New England 

and eastern cottontails from a telemetry 

study in NY (Cheeseman 2017) 

Natal dispersal 

probability function 

Negative exponential  

     Mean distance 250 m Minimum distance exceeding within-home-

range movements from a telemetry study in 

NY (Cheeseman 2017) 

*Alternate values for these parameters were evaluated in a sensitivity analysis. Bold values were used in 

the baseline scenario. 
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I simulated 70 overlapping generations on the cost surface landscape, with 10 Monte 

Carlo iterations per simulation. I evaluated model performance and the outcome of the baseline 

scenario on cottontail population size, persistence, observed heterozygosity, and allelic richness. 

I also conducted sensitivity analyses to evaluate the influence of three model parameters on 

model performance: mortality of age 0 individuals (i.e. recruitment, when combined with the 

female fecundity parameter), mortality of adults, and the initial population size (see Table 1.2 for 

values evaluated). These three parameters were evaluated with sensitivity analyses because they 

are likely to have a strong influence on cottontail population size and persistence, there is limited 

empirical data on recruitment and mortality, and mortality is highly variable annually.  

 

Tracking predicted population response to a restoration scenario 

After conducting sensitivity analyses, I used baseline model input and a resistance 

surface reflecting restored habitat patches to track predicted changes in cottontail population 

size, persistence, and genetic diversity under a restoration scenario. Shrubland restoration 

projects completed by New Hampshire Fish and Game that could undergo succession to become 

dense enough habitat to support New England cottontails were reflected as suitable habitat in a 

new resistance surface. For example, if a habitat project parcel was previously unsuitable habitat 

such as forest or field, the cost value of the raster cells underlying that parcel were reduced to a 

value of 1 (low cost to cottontail movement, i.e. suitable habitat) to reflect a restoration scenario 

in which that parcel had become suitable shrubland habitat. Managed habitat patches reflected as 

suitable habitat in the restoration scenario are outlined in Figure 1.2. CDPOP simulations were 

conducted with this new restoration resistance surface, and cottontail population size, 
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persistence, number of alleles, and observed heterozygosity were tracked over 70 generations. 

Locations for every cottontail in the population were output at generations 10, 25, 50, and 70. 

 

 
Fig. 1.2 Managed patches reflected as restored habitat suitable for New England cottontail occupancy in a 

CDPOP restoration scenario simulation are outlined and indicated in tan in the Londonderry, New 

Hampshire landscape. The current distribution of New England cottontails is indicated on the map as 

black points where individual cottontails were sampled through pellet surveys or live-trapping from 2015-

2017. 
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Results 

Survey results and genotyping success 

Wildlife biologists at New Hampshire Fish and Game collected a total of 182 pellet 

samples over three winter survey seasons (2015-2017) and 33 tissue samples over three trapping 

seasons. I successfully genotyped 202 samples and identified 57 unique individuals over the 

three-year period (Table 1.3). Three individuals were detected in both 2016 and 2017, and one 

female was detected in both 2015 and 2017, surviving for three years. Pellet genotyping success 

varied across years from 86.1 to 100.0 percent, and a range of 1-16 samples were collected per 

individual (Table 1.3). The probability of identity for siblings was 1.1 x 10-4 for this population, 

meaning that there was a 1 in 9,090 probability that two siblings share the same genotype with 

these genetic markers. Molecular sex identification agreed with field sex for all trapped rabbits. 

 

Table 1.3 Number of tissue samples collected from trapped rabbits each year in Londonderry, New 

Hampshire, number of fecal pellet samples collected during winter surveys, percent genotyping success 

for pellets, number of unique individuals identified, and range of number of samples collected (i.e. 

captures) per individual. NEC = New England cottontail. A portion of samples collected in 2018 were 

snowshoe hare and an eastern cottontail samples. 

Year No. tissue samples 

collected 

No. pellet samples 

collected 

Pellet genotyping 

success (%)* 

No. unique 

individuals 

Range of 

captures 

2015 9 3 100.0 12 1 

2016 12 51 100.0 16 1-16 

2017 12 125 86.1 34 1-11 

2018 NA 107 (76 NEC) 100.0 21 1-14 

TOTAL: 33 255   AVG: 96.5 20.8 3.3 

*Tissue genotyping success was 100% each year. 

 

 

Population genetic analyses and spatial autocorrelation 

 Analyses in STRUCTURE indicated the presence of three distinct genetic groups (K=3; 

Fig. 1.4). Geographically, these groups correspond to the Charlotte Street, Cohas Brook, and 

Buckthorn Street patches, with admixture in the Stonyfield patch (Fig. 1.5). Allelic richness and 
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observed heterozygosity calculated by patch and averaged over 2015-2017 were highest for the 

central Stonyfield patch and lower in the other three patches. Relatedness was high in each patch, 

ranging from 0.080 in Stonyfield to 0.136 in Cohas Brook, and 0.098 for the population overall 

(Table 1.4). Capwire abundance estimates varied by patch and by year, with Charlotte Street 

having the lowest abundance estimates, Stonyfield having the highest estimate in 2016 and 2017, 

and Buckthorn Street having the highest estimate in 2018 (Table 1.5). Abundance estimates for 

the entire study area (across all sampled patches) ranged from 18 (95%CI 16-24) in 2016 to 36 

(95% CI 35-38) in 2017, though no samples were collected from Charlotte Street in 2016 

contributing to the lower estimate that year. There was a marked decline in abundance on three 

of the four patches in 2018 (Table 1.5). The effective population size of the Londonderry 

population, the number of breeding individuals, was estimated to be 10.5 (95% CI 8.1-13.2). 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

 

 

 
 

 

 
Fig. 1.3 a) Plot of the plateau of the average LnPD and b) peak ∆K at K=3 indicating the best supported 

number of genetic clusters of New England cottontails in Londonderry, New Hampshire from 

STRUCTURE analyses. 

 

a) 

b) 
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Fig. 1.4 Visualization of the results of STRUCTURE analyses for New England cottontails in 

Londonderry, New Hampshire showing three distinct genetic clusters. Each vertical bar is a cottontail 

individual and represents the proportion of the individual’s ancestry corresponding to the three genetically 

distinct clusters, represented by the blue, orange, and green colors. 
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Fig. 1.5 New England cottontail individuals in Londonderry, New Hampshire color-coded by their 

assignment to one of three genetic groups identified in STRUCTURE analyses. Ancestry indicates three 

genetic groups segregated geographically, with admixture in the central Stonyfield patch. Shapes indicate 

the year the individual was sampled (circle=2017, square=2016, triangle=2015). Individuals sampled 

multiple times are mapped with polygons surrounding their detected movement range (note one 

individual dispersed 2.2 km northeast of Stonyfield in 2016). 
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Table 1.4 Genetic diversity metrics for New England cottontails in each geographic patch in 

Londonderry, New Hampshire, and for the population as a whole. Samples were collected from the 

Londonderry patches in the following years: Stonyfield 2015-2017, Buckthorn Street 2016-2017, Cohas 

Brook 2015-2017, Charlotte Street 2017. No. individuals: number of unique individuals detected, HO: 

observed heterozygosity, r: relatedness calculated in ML-Relate.  

Population Patch size 

(acres) 

No. individuals No. of 

alleles 

Allelic 

richness 

HO r 

Stonyfield 21 21 3.3 3.2 0.549 0.080 

Buckthorn St. 14 11 3.3 2.6 0.524 0.122 

Cohas Brook 20 16 3.0 2.9 0.453 0.136 

Charlotte St. 11 8* 2.9 2.7 0.450 0.127 

TOTAL: 66 57** 3.7 3.7 0.503 0.098 

*Charlotte Street metrics include data for two F1 hybrid New England cottontail-eastern cottontail 

individuals from tissue samples collected in 2017. 

**TOTAL includes one additional sampled individual from a location outside of these four patches, north 

of Charlotte Street. 

 

 

Table 1.5 New England cottontail population size estimates for patches in Londonderry, New Hampshire 

and for the population as a whole, calculated in capwire for years with sufficient capture history data 

(2016-2018). 

Patch Year No. pellet 

samples 

(No. NEC 

samples) 

No. individuals 

(Additional individuals 

identified only through 

tissue samples) 

Capwire 

abundance 

estimate 

(95% CI) 

Avg. pellet 

captures 

per 

individual 

Range of 

captures 

per 

individual 

Stonyfield 2016 15 8 10 (8-16) 1.9 1-3 

 2017 22 4 (4) 13 3.6 1-10 

 2018 52 (25*) 2 2 11.0 8-14 

Cohas Brook 2016 21 2 (2) 4 5.3 1-16 

 2017 29 8 (1) 10 (9-12) 3.7 1-7 

 2018 8 3 3 2.7 1-4 

Charlotte St. 2017 25 5 (3**) 5 4.0 1-11 

 2018 20 (16***) 3*** 3 5.0 4-8 

Buckthorn St. 2016 15 4 4 3.8 1-9 

 2017 26 8 8 3.3 2-5 

 2018 32 13 14 (13-16) 2.5 1-6 

TOTAL: 2016 51 16 18 (16-24)   

 2017 104 33**** 36 (35-38)   

 2018 112 (81) 21 22 (21-24)   

*2018 samples from Stonyfield included 25 New England cottontail samples and 27 snowshoe hare 

samples. 

**2017 individuals identified through tissue samples included two New England cottontail-eastern 

cottontail F1 hybrids. 

***2018 samples from Charlotte St. included four samples from a female New England cottontail, four 

samples from a male eastern cottontail, and 12 samples from two F1 hybrid individuals. 

****TOTAL for 2017 excludes one additional sampled individual from a location outside of these four 

patches, north of Charlotte Street. 
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 Spatial autocorrelation analyses identified fine scale genetic structure and limited 

dispersal in the Londonderry population. All individuals were highly related to a distance of 400 

m (Fig. 1.6a) indicating restricted dispersal, females were related to a distance of 500 m (Fig. 

1.6b), and males were related to a distance of 75 m (Fig. 1.6c). The shorter distance to which 

males were highly related in this population compared to females indicates male-biased dispersal 

(i.e. males are more connected with local relatedness extending to a shorter geographic distance). 

 

a) 

 

b) 
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c) 

 
 

Fig. 1.6 Spatial autocorrelation for New England cottontail individuals in Londonderry, New Hampshire 

indicating fine-scale spatial structure and relatedness extending over a short distance on the landscape; a) 

spatial autocorrelation of all Londonderry individuals, b) spatial autocorrelation of females, c) spatial 

autocorrelation of males. r indicates relatedness and U and L bound the confidence interval for the null 

hypothesis of no population structure.  

 

 

 

Univariate resistance surface modeling 

 In the optimization of cost values for landscape features in Londonderry, models trialing 

different cost values produced results within 10 ∆AICC for most landscape variables in both the 

2012 landscape and 2015 landscape with additional digitized development. Beta coefficients 

were significant for the cost values with the lowest AICC (95% CIs excluded 0). However, given 

the small extent over which pairwise genetic distances and pairwise geographic distances were 

compared in these models (all occupied patches are within less than 4 km in Londonderry), I 

determined there was insufficient power to identify exact cost values with empirical data. To 

determine cost values for use in a multivariate surface for connectivity mapping, I compared 

values with the lowest AICC from empirical Londonderry data to optimized cost values from 

previous landscape genetic research in southern Maine and Cape Cod (Papanastassiou 2015, 
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Amaral et al. 2016; Table 1.6). Where there was disagreement among studies, or where the 

landscape in Londonderry warranted a different consideration, I incorporated expert opinion (H. 

Holman, B. Ferry, NHFG; A. Kovach UNH) to assign cost values that ranked landscape 

variables in terms of their relative barrier values, or as facilitators. For example, given expert 

opinion, I did not buffer roadsides as facilitators in this landscape due to the minimal shrubby 

habitat along small residential roads and mowed roadsides along interstates. To address 

uncertainty in cost values for the small geographic extent of the Londonderry landscape, I 

evaluated a set of conservative barrier values and high barrier values in connectivity maps (Table 

1.6, Figs. 1.7b, 1.7c). 
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Table 1.6 Comparison of the best supported Londonderry cost values (lowest AICC) to optimized values 

from previous landscape genetic research for New England cottontail populations in Maine and Cape Cod 

landscapes (Papanastassiou 2015, Amaral et al. 2016), and consensus values used for connectivity 

mapping in the Londonderry landscape. Kittery is a more fragmented landscape with a high proportion of 

forest and roads, and Cape Elizabeth is a less fragmented landscape but with a high proportion of forest 

and development. The Cape Cod landscape has a low proportion of development and has a high 

proportion of a unique habitat feature – pitch pine-scrub oak. NA: not applicable in the study area, NS: 

not significant in the study area. 

Landscape 

variable 

Londonderry, 

NH  

Kittery, ME  Cape Elizabeth, 

ME  

Cape Cod, 

MA 

Consensus cost values 

for connectivity 

mapping 

     Conservative High 

Shrub* 1 1 1 1 (NS) 1 1 

Shrub wetland 2 (2012), 

25 (2015) 

1 1 NA 1 1 

Herbaceous 

wetland 

750** 1 1 1 1 1 

Linear 

facilitators* 

1 1 1 1 1 1 

Development 2 2 50 500 (NS) 50 500 

Forested 

wetland 

1,000*** 100 250 NS 100 250 

Forest 2 2 5 25 5 25 

Fields/ 

agriculture 

2 10 2 NS 5 5 

Water 50 10 2 NS 50 500 

High-volume 

roads† 

2 10 NA 50, 25 100 500, 

100 

Moderate-

volume roads‡ 

2 10, 5, 5 50, 25, 25 10, 5, 2 5 25 

Low-volume 

roads 

2 2 NA NA 5 5 

*Shrub and linear facilitators not modeled as barriers in Londonderry. 

**Small amount of herbaceous wetland land cover on the landscape. 

***10 cost models within 2 ∆AICC for forested wetland. 

† Multi-lane highways, statewide corridors. 

‡ Secondary roads, improved roads, unimproved roads. 

 

 

Connectivity mapping 

 CIRCUITSCAPE analyses corroborated STRUCTURE and genetic diversity analyses, 

highlighting the isolation of the Charlotte Street patch and also the potential connectivity 

between Stonyfield and nearby patches on the landscape. Given the high barrier values of forest 

and development and their extent on the landscape, CIRCUITSCAPE models highlighted 
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powerline rights-of-ways, the shrub wetland near the Cohas Brook patch, and a railway between 

Cohas Brook and Buckthorn Street as potential areas of connectivity (Fig. 1.7a). Current flow 

outside of the landscape immediately surrounding occupied patches was low and was 

concentrated in powerline rights-of-ways (Figs. 1.7b, 1.7c). There were minimal differences 

between maps generated with conservative versus high barrier values for Londonderry. The 

higher barrier values (Fig. 1.7c) indicated slightly lower connectivity in the landscape 

immediately surrounding occupied patches, and placed greater emphasis on powerline corridors 

as facilitators. 

 

a) 
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b) 
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c)  

 
 
Fig. 1.7 Connectivity mapped with a resistance surface between sampled cottontail individuals and 

completed habitat projects within a larger restoration landscape in Londonderry. Red indicates high 

connectivity through the landscape and cooler colors indicate limited connectivity through the landscape; 

black polygons outline completed habitat projects in the larger restoration landscape; a) connectivity with 

high cost values at the smaller spatial extent of the occupied Londonderry patches, b) connectivity given 

conservative cost values (Table 1.6), c) connectivity given high cost values. 
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Parameterization of a spatially explicit, individual-based simulation framework 

 CDPOP model performance was highly sensitive to the amount of dispersal specified in 

the model. When parameterized such that average dispersal distances were set to reflect the low 

rate of realized dispersal events observed in recent studies (250 m, a distance threshold 

exceeding home range sizes and considered the minimum movement distance for cottontail 

dispersal in a telemetry study in New York; Cheeseman 2017), baseline model input generated 

simulated cottontail populations persisting at an average of 20 individuals for 70 generations 

after an initial decline from the starting population size of 38 individuals during the first ~7 

generations (Fig. 1.8a). This parameterization, however, produced ~30% individuals dispersing 

in the model, a higher percentage of individuals dispersing than observed in empirical 

populations (Cheeseman 2017, B. Ferry unpublished data). When the model was parameterized 

with a higher average dispersal distance of 500 m, cottontail populations grew from the initial 

size of 38 for ~5 generations and persisted at an average of 50 individuals over 70 generations 

(Fig. 1.8h). Populations were highly stable with few fluctuations over Monte Carlo replicates 

given the larger 500 m average dispersal distance (Fig 1.8h). This also produced a greater 

frequency of dispersal than observed in empirical populations, with ~40% individuals dispersing 

in the modeled population. Population size was sensitive to both recruitment and adult mortality, 

with populations stabilizing at a greater size of 36 individuals with a higher recruitment input of 

4.05 offspring/female (Fig. 1.8c) compared to the baseline input of 2.25 offspring/female, and 

populations declining and becoming extinct after 50 generations given a higher adult mortality of 

0.70 (Fig. 1.8d) compared to the baseline mortality of 0.40. Higher initial population sizes did 

not produce larger stable population sizes, given the limited area of suitable habitat surrounding 

currently occupied patches (Figs. 1.8f, 1.8g).  
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 The number of alleles in the population and observed heterozygosity declined in all 

model parameterizations from the initial values of 43.9 alleles and 0.49 observed heterozygosity, 

which were based on observed allele frequencies in the sampled Londonderry population. In the 

baseline model, the average number of alleles declined to 18.0 and observed heterozygosity 

declined to 0.03 (excluding Monte Carlo replicates where populations went extinct and number 

of alleles and heterozygosity were 0; Figs. 1.9a, 1.10a) as populations declined from 38 to 20 

individuals. This indicates a projected severe decline in genetic diversity in this small modeled 

population. The sharpest decline in number of alleles and observed heterozygosity corresponded 

to the model parameterization with a high adult mortality of 0.70 that produced the sharpest 

population decline (Figs. 1.9i, 1.10i, green projection line).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 

 

 
 

 

 

 

 

 

 

a) b) 

c) d) 

e) f) 
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Fig. 1.8 Projected New England cottontail population size in Londonderry, New Hampshire over 70 

simulated generations in CDPOP. Blue lines indicate the average values over 10 Monte Carlo replicates 

for the following scenarios: a) baseline model input; b) 0.80 juvenile mortality (recruitment 3 

offspring/female); c) 0.73 juvenile mortality (recruitment 4.05 offspring/female); d) 0.70 adult mortality; 

e) 0.23 adult mortality; f) initial population size at carrying capacity of 65 individuals; g) initial 

population size of 50 individuals; h) baseline model input with 500 m average dispersal distance. 

 
Fig 1.8i CDPOP model averages for cottontail population size over 10 Monte Carlo replicates for models: 

a) RED, baseline model input; b) ORANGE, 0.80 juvenile mortality (recruitment 3 offspring/female); c) 

YELLOW, 0.73 juvenile mortality (recruitment 4.05 offspring/female); d) GREEN, 0.70 adult mortality; 

e) BLUE, 0.23 adult mortality; f) PURPLE, initial population size at carrying capacity of 65 individuals; 

g) BLACK initial population size of 50 individuals; h) BROWN baseline model input with 500 m 

average dispersal distance. 

 

g) h) 

i) 
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a) b) 

c) d) 

e) f) 
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Fig. 1.9 Projected number of alleles in the simulated New England cottontail population in Londonderry, 

New Hampshire over 70 generations in CDPOP. Blue lines indicate the average values over 10 Monte 

Carlo replicates for the following scenarios: a) baseline model input; b) 0.80 juvenile mortality 

(recruitment 3 offspring/female); c) 0.73 juvenile mortality (recruitment 4.05 offspring/female); d) 0.70 

adult mortality; e) 0.23 adult mortality; f) initial population size at carrying capacity of 65 individuals; g) 

initial population size of 50 individuals; h) baseline model input with 500 m average dispersal distance. 

 

 
Fig 1.9i CDPOP model averages for number of alleles in the simulated Londonderry, New Hampshire 

New England cottontail population over 10 Monte Carlo replicates for models: a) RED, baseline model 

input; b) ORANGE, 0.80 juvenile mortality (recruitment 3 offspring/female); c) YELLOW, 0.73 juvenile 

mortality (recruitment 4.05 offspring/female); d) GREEN, 0.70 adult mortality; e) BLUE, 0.23 adult 

mortality; f) PURPLE, initial population size at carrying capacity of 65 individuals; g) BLACK initial 

population size of 50 individuals; h) BROWN baseline model input with 500 m average dispersal 

distance. 

 

 

g) h) 

i) 
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c) d) 

e) f) 

a) b) 
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Fig. 1.10 Projected observed heterozygosity (HO) in the simulated New England cottontail population in 

Londonderry, New Hampshire over 70 generations in CDPOP. Blue lines indicate the average values over 

10 Monte Carlo replicates for the following scenarios: a) baseline model input; b) 0.80 juvenile mortality 

(recruitment 3 offspring/female); c) 0.73 juvenile mortality (recruitment 4.05 offspring/female); d) 0.70 

adult mortality; e) 0.23 adult mortality; f) initial population size at carrying capacity of 65 individuals; g) 

initial population size of 50 individuals; h) baseline model input with 500 m average dispersal distance. 

 

 

 
Fig 1.10i CDPOP averages for observed heterozygosity (HO) in the simulated Londonderry, New 

Hampshire New England cottontail population over 10 Monte Carlo replicates for models: a) RED, 

baseline model input; b) ORANGE, 0.80 juvenile mortality (recruitment 3 offspring/female); c) 

YELLOW, 0.73 juvenile mortality (recruitment 4.05 offspring/female); d) GREEN, 0.70 adult mortality; 

e) BLUE, 0.23 adult mortality; f) PURPLE, initial population size at carrying capacity of 65 individuals; 

g) BLACK initial population size of 50 individuals; h) BROWN baseline model input with 500 m 

average dispersal distance. 

 

g) h) 

i) 
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Tracking predicted population response to a restoration scenario 

 When the Londonderry, New Hampshire New England cottontail population was 

simulated across 70 generations in a landscape reflecting restored habitat on managed parcels, 

population size and stability increased from the baseline scenario (Fig. 1.11i). The population 

size fluctuated between 35 and 40 individuals compared to a baseline scenario where populations 

persisted at about 20 individuals. Cottontail locations output at generations 10, 25, 50, and 70 

indicated that individuals dispersed into restored parcels within the immediate vicinity of 

occupied patches to a distance of about 500 m, but did not disperse to restored parcels that were 

farther away from occupied patches (parcels that were >1200 m from occupied patches) given 

the high cost of the underlying landscape. Genetic diversity metrics remained low in this small 

projected population, with number of alleles and observed heterozygosity only slightly higher 

than the baseline projections (Figs. 1.11b, 1.11c). 
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Fig. 1.11 a) Projected population size in the simulated New England cottontail population in 

Londonderry, NH on a restoration landscape over 70 generations in CDPOP. The restoration landscape 

includes managed habitat parcels reflected as suitable habitat for cottontail occupancy (see Fig. 1.2); b) 

projected number of alleles in the simulated New England cottontail population under the restoration 

scenario; c) projected observed heterozygosity (HO) in the simulated New England cottontail population 

under the restoration scenario. Blue lines indicate the average value over 10 Monte Carlo replicates. Red 

lines provide a comparison to baseline averages over 10 Monte Carlo replicates. 

 

 

 

 

a) 

b) c) 



54 

 

Discussion 

 The effects of isolation due to habitat loss and fragmentation were evident for this 

population of New England cottontails in Londonderry, New Hampshire, including small 

effective population sizes (Bohonak 1999, Keyghobadi 2007), low genetic diversity (Brook et al. 

2002, O’Grady et al. 2006), stochastic decline on certain patches (Stacey & Taper 1992), and 

break down of metapopulation function (Chandler et al. 2015). I observed three genetically 

distinct groups through STRUCTURE analyses over a small geographic extent of only 4 km, 

indicating limited connectivity among patches in this developed landscape. The three genetic 

groups were isolated on separate patches, with admixture in the central Stonyfield patch. The 

isolation of genetically distinct groups in separate patches reflects a history of low dispersal and 

barriers to gene flow in the landscape. For example, construction of a large industrial facility 

between the Stonyfield and Charlotte Street patches in 2013 likely isolated the Charlotte Street 

patch from the nearest source of potential immigrants in the metapopulation. Patterns of genetic 

structure that show multiple genetic groups on the central Stonyfield patch indicate that this 

patch may have historically served as a source patch for this metapopulation and exhibited some 

connectivity with surrounding patches. Management to restore young forest on the large, 20-acre 

Stonyfield patch took place in 2008, creating high quality habitat several years later that 

supported a greater abundance of cottontails than other patches in the metapopulation. Though 

the Stonyfield patch historically may have been more connected with surrounding patches 

reflecting a genetic signature of a source patch, I only detected one dispersal event out of 

Stonyfield during this three-year study.  

Abundance on the Stonyfield patch declined in 2018, indicating the habitat may be aging 

to the point where it no longer provides ideal cover, and management is needed to restore the 
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patch as a stronghold in this metapopulation. In 2018, abundance declined on the Cohas Brook 

patch, likely due to recent cutting that will ultimately create higher quality habitat, and 

abundance also declined severely on the Charlotte Street patch. Genetic diversity was low across 

all patches in the Londonderry metapopulation, but higher in the central Stonyfield patch and 

lower on isolated peripheral patches. Relatedness was high in each patch and for the 

metapopulation as a whole. Relatedness was lowest at 0.08 in the central Stonyfield patch where 

admixture had taken place and the population size was larger than on other patches. Relatedness 

was relatively high on more isolated patches, ranging from 0.122 to 0.136 (relatedness in the 

range of cousins). 

Charlotte Street had the lowest observed number of alleles and heterozygosity, and high 

relatedness. Allelic richness would have been lower and relatedness higher on this patch prior to 

colonization by a male eastern cottontail and the production of hybrid offspring in 2017 by two 

female New England cottontails with this male (A. Kovach, M. Bauer in prep.). This 

documented hybridization was an apparently rare event resulting from recent expansion of the 

eastern cottontail range into parts of Londonderry, and the small and isolated New England 

cottontail populations persisting in this landscape. It was likely that there were no surviving adult 

males on the Charlotte Street patch in the summer of 2017 when the hybridization took place (A. 

Kovach, M. Bauer, H. Holman, B. Ferry unpublished data).  

Spatial autocorrelation indicating low dispersal and fine-scale relatedness over a small 

distance of 400 m adds to the picture of isolated patches that have lost metapopulation function. 

Low dispersal rates in this population were further supported by the detection of only one 

dispersal event through pellet surveys, and one additional dispersal event out of 37 collared 

rabbits through a telemetry study (B. Ferry, NHFG, personal communication). In such a 
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fragmented landscape, when dispersal does occur, it may not contribute toward sustaining 

populations or increasing gene flow if the dispersing individual moves to an unoccupied patch 

and cannot breed, as was the case with the dispersers detected in this study. For the Londonderry 

New England cottontail population, low dispersal rates between populations isolated by 

development indicate that, in the current landscape, populations are likely to remain small, 

isolated, and at risk of stochastic decline. Low dispersal in fragmented landscapes and resulting 

fine-scale population structure are significant challenges to New England cottontail population 

restoration range-wide (Fenderson et al. 2014, Amaral et al. 2016, Cheeseman 2017). The low 

dispersal capabilities of New England cottontails in fragmented landscapes emphasize the 

importance of restoring corridors to promote connectivity between occupied patches. Because 

the New England cottontail is a shrubland obligate, both within its home range (Barbour & 

Litvaitis 1993, Litvaitis 2003) and during dispersal (Amaral et al. 2016), linear corridors and 

large persistent patches (whether managed or natural shrublands such as wetlands), could be key 

in promoting dispersal to maintain metapopulations. Additional strategies such as reintroductions 

may also be necessary to create functional metapopulations (Chapter 2, Fischer & Lindenmayer 

2000, DeMay et al. 2017). 

 Given the small geographic extent (4 km) of the occupied Londonderry patches, I lacked 

statistical power to robustly optimize cost values for a resistance surface reflecting landscape 

influences on gene flow in this population. Empirically optimized cost values in Londonderry 

were higher than in other previously studied landscapes for shrub wetlands, herbaceous wetlands, 

and forested wetlands. These values could have been an artefact of the complex history of 

isolation and admixture that formed the genetic structure of this metapopulation, related to 

factors such as development between patches. Therefore, I compared our empirical results from 
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univariate resistance surface modeling with previously optimized values from landscapes in 

Maine and on Cape Cod, incorporated expert opinion, and used both a set of conservative and 

high cost values in multivariate resistance surfaces for connectivity mapping. CIRCUITSCAPE 

output highlighted the current isolation of occupied patches, with few paths of connectivity 

between Stonyfield and Charlotte Street, and few direct paths between Stonyfield and Buckthorn 

Street, other than the shrub wetland corridor passing through the Cohas Brook patch. 

CIRCUITSCAPE maps highlighted powerline rights-of-ways as the most prominent connecting 

feature in the Londonderry landscape, a feature which has also been highlighted as a potential 

focal point for restoration to connect cottontail populations across larger landscapes (Amaral et 

al. 2016). Powerline rights-of-ways have also been noted as potentially important movement 

corridors for other shrubland wildlife, such as shrubland specialist birds (M. Tarr, R. Shoe, 

unpublished data). Additional connectivity was highlighted through a shrub wetland area near 

the Cohas Brook patch, and along a railway between the Cohas Brook and Buckthorn Street 

patches that continues along the eastern edge of the landscape. Connectivity maps are a valuable 

tool to highlight potential focal areas for restoration to connect occupied patches or create habitat 

within the dispersal capabilities of the species. Patches or corridors identified as potentially 

valuable restoration sites can be explored further in simulations to predict the effect of 

restoration on population connectivity and persistence. 

Simulation modeling of populations with CDPOP revealed that dispersal had a strong 

influence on population size and persistence. This insight highlighted the importance of restoring 

patches and corridors within the dispersal distance of sites occupied by New England cottontails. 

In the current baseline parameterization of the model, the frequency of dispersal is greater than is 

observed in empirical populations. With the input of a baseline average dispersal distance of 250 
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m (the minimum dispersal distance found to exceed within-home-range movements in empirical 

studies), ~30% of simulated cottontails were dispersing. This rate of dispersal is much higher 

than observed dispersal frequencies, with one dispersal event out of 37 collared New England 

cottontails observed in a telemetry study in Londonderry, NH (2.7% dispersal, B. Ferry, NHFG, 

personal communication) and 19 dispersal events observed out of 204 collared eastern and New 

England cottontails in a telemetry study in New York (9.3% dispersal, Cheeseman 2017). The 

high proportion of individuals dispersing in the current parameterization of the model is likely 

the factor that enables small populations of ~20 individuals to persist for a simulated 70 

generations. However, long-term persistence of a population of 20 individuals is unrealistic. 

Populations this small will exhibit low genetic diversity, high relatedness, and be vulnerable to 

stochastic decline from sources such as severe winters, predation, skewed sex ratios that decrease 

mating opportunities, and declines in habitat quality over time. The low dispersal rates exhibited 

in natural populations could not be modeled with the dispersal functions available in the current 

CDPOP framework. Future research will evaluate outcomes with more realistic dispersal rates, 

however, this will require parameterizing a new version of CDPOP that allows users to input 

probability surfaces that provide more control over specifying dispersal (E. Landguth, personal 

communication).  

The sensitivity of the model to high adult mortality was also an important finding. 

Survival is highly variable annually in New England cottontail populations, ranging from 

approximately 15-77% annual survival in New York and New Hampshire (A. Cheeseman, B. 

Ferry, personal communication). The impact of high mortality on modeled populations and 

variable empirical survival estimates highlight the vulnerability of small populations to 

stochastic decline given years of high mortality. Recruitment was also an influential parameter. 
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The highest recruitment tested (4.05 offspring per female) increased the size at which the 

population could persist. However, there is high uncertainty regarding recruitment values in wild 

populations and recruitment as high as 4 surviving offspring for every female in a population is 

likely higher than rates that would occur in natural populations. As such, a high adult mortality, 

within the range of values observed in empirical populations, is a more influential parameter than 

high recruitment to explore with future modeling. Overall, this model shows that dispersal is key 

to maintaining small populations in fragmented landscapes, high mortality such as that from 

stochastic events can threaten small populations, and genetic diversity declines dramatically in 

critically small populations. 

The restoration scenario I simulated in Londonderry with restored management parcels 

did allow the population to persist at a higher size of between 35-40 individuals compared to the 

baseline outcome of a population of about 20 persisting in the landscape. Restoration of habitat 

patches within the immediate vicinity of occupied patches allowed the population to persist at a 

higher size than the baseline scenario. However, individuals did not disperse to restored patches 

farther from occupied patches given the high cost of forest and development between occupied 

and restored patches in the larger landscape. This indicates that translocations may be necessary 

to facilitate dispersal to restored patches to rebuild a metapopulation on a larger geographic 

scale.  

Given the small abundance estimates fluctuating at and below 38 individuals in the 

Londonderry population, and observed declines on three of four patches in 2018, the population 

may be declining too quickly to respond to habitat restoration scenarios alone. To maintain this 

population, reintroductions could be needed to bolster and maintain populations on currently 

occupied patches while habitat patches are restored, starting with habitat restoration close to 
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occupied patches and then restoring patches in the larger landscape. The Stonyfield patch will be 

managed in the near future to set back succession and restore shrubland habitat. Restoring 

parcels adjacent to a powerline corridor near occupied habitat could also provide a promising 

means to increase connectivity in this population. If natural dispersal does not occur from 

occupied patches to newly created habitat in the larger restoration landscape, for example if 

rights-of-ways are mowed too frequently to provide suitable dispersal habitat, reintroductions or 

translocations may be needed to initiate populations on restored patches. 

Spatially explicit simulation modeling with a resistance surface approach provides a 

powerful means to compare the effects of alternate restoration scenarios on cottontail population 

size, population persistence, genetic diversity, and connectivity. By altering the underlying 

resistance surface to reflect changes in connectivity from the addition of habitat patches or 

restoration of corridors, managers can investigate the outcomes of alternate scenarios on 

cottontail population growth and dispersal. Managers can also use this simulation framework to 

investigate the outcomes of restoration strategies such as population reintroductions or 

augmentations. This modeling framework will be used to investigate management scenarios to 

determine the configuration and acreage of natural and managed habitat needed to sustain New 

England cottontail metapopulations in Londonderry, New Hampshire, and is a proof-of-concept 

which can be implemented in other parts of the species’ range. Spatially-explicit simulations will 

provide insight to guide restoration efforts, e.g., if a particular management scenario is revealed 

to be substantially more successful than others, or if given the best-case restoration scenario, a 

population is unlikely to persist in a given landscape. This predictive knowledge will help 

managers balance competing management priorities and make justifiable decisions if triage is 

necessary to maintain a population.  
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Conclusion 

 I documented three distinct genetic groups in the Londonderry, New Hampshire New 

England cottontail population over a small geographic extent of only 4 km indicating limited 

dispersal and a loss of metapopulation function in this population. Spatial autocorrelation 

analyses, genetic diversity and relatedness metrics for isolated patches, and connectivity maps 

corroborated the finding of limited dispersal and gene flow in this highly developed landscape. 

Loss of metapopulation function has resulted in cottontails in the Londonderry population being 

isolated on certain patches. Cottontails persist at low abundances on isolated patches, and are at 

risk of decline from stochastic and demographic processes. Without connectivity between 

patches in this metapopulation, the population is unlikely to persist long-term. These findings 

highlight the importance of dispersal for maintaining New England cottontail populations in 

fragmented landscapes. The simulation framework I applied for this cottontail population serves 

as a proof-of-concept to compare alternate restoration strategies that aim to increase dispersal 

and rebuild a functioning metapopulation through the restoration of managed shrubland in 

combination with persistent shrublands such as shrub wetlands and powerline rights-of-ways. 

This modeling framework will allow managers to project population size and genetic diversity to 

identify restoration scenarios that best promote connectivity, and to predict the ability of 

cottontail populations to persist in a developed landscape with a mosaic of natural and managed 

shrub habitats. 
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CHAPTER 2 

 

TRACKING THE SUCCESS OF A NEW ENGLAND COTTONTAIL POPULATION 

REINTRODUCTION WITH GENETIC MONITORING1 

 

Abstract 

Intensive monitoring of reintroduced threatened species is essential for informing 

conservation strategies and evaluating reintroduction efforts in an adaptive management context. 

We used noninvasive genetic sampling to monitor a reintroduction of a threatened shrubland 

habitat specialist, the New England cottontail, in southeastern New Hampshire. We monitored 

the apparent survival and breeding success of founder individuals and tracked changes in 

population size and genetic diversity for five years following an initial reintroduction in 2013. 

We released 42 rabbits, documented 30 unique offspring in years following releases through 

noninvasive surveys, identified 6 founder individuals that bred, and documented variable 

apparent survival of founders from the release period to the winter survey period ranging from 0 

to 62.5 percent. The population size remained relatively stable during the first three years of the 

introduction, declined in 2017, and rebounded slightly in 2018. Genetic diversity increased as 

population size increased and additional founders with diverse genetic backgrounds were 

released and bred. Newly recruited juveniles were identified each year, and dispersal of juveniles 

to a restored patch 700 m from the release site was documented.  Genetic diversity declined after 

the population declined in 2017 and remaining individuals on the patch were highly related. For 

New England cottontail reintroductions to be successful in the long term, releases will be needed 

                                                           
1 Melissa L. Bauer, Brett Ferry, Heidi Holman, Adrienne I. Kovach. Manuscript in preparation for the 

Wildlife Society Bulletin. 
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at multiple patches within dispersal distance, and habitat corridors need to be created or restored 

between patches to create a functioning metapopulation. For small or isolated reintroduced 

populations that are not yet functioning as metapopulations, continued intensive monitoring is 

needed to detect stochastic declines in population size or changes in sex ratios and react 

accordingly with subsequent reintroductions. Noninvasive genetic sampling is a valuable tool to 

monitor reintroductions of the New England cottontail and other threatened species and provide 

managers with detailed information to inform decision-making in an adaptive management 

framework. 

 

Key Words: reintroduction, monitoring, New England cottontail, noninvasive genetic sampling 

 

Introduction 

 Reintroductions are an important strategy to conserve small and endangered wildlife 

populations (Fischer & Lindenmayer 2000, Fritz et al. 2001, Whittaker et al. 2004, Seddon et al. 

2007, Jachowski & Lockhart 2009). There are many challenges to consider when recovering 

small populations. Successful reintroductions must overcome obstacles such as unstable 

demographics (Murrow et al. 2009), skewed sex ratios (Tella 2001, Clout et al. 2002), disease 

(Viggers et al. 1993), inbreeding depression (Brook et al. 2002, O’Grady et al. 2006), stochastic 

events related to weather or predation (Stacey & Taper 1992), and limited habitat or population 

connectivity in metapopulation systems (Chandler et al. 2015). Genetic monitoring is a valuable 

tool to evaluate the success of reintroductions and facilitate decision-making in an adaptive 

management context (Schwartz et al. 2007, DeMay et al. 2017).  
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 We used noninvasive genetic monitoring to track a local reintroduction of a threatened 

habitat specialist, the New England cottontail (Sylvilagus transitionalis). The New England 

cottontail, New England’s only native rabbit, requires dense thicket habitat (shrubland, early 

successional forest, or dense understory underneath forest edge canopy) for forage, 

thermoregulation, and cover from predators, both within its home range (Barbour & Litvaitis 

1993, Litvaitis 2003), and during dispersal (Fenderson et al. 2014, Amaral et al. 2016). Although 

patchy and ephemeral by nature, these shrubland habitats have declined in area and experienced 

extensive fragmentation in the northeastern United States due to forest maturation, widespread 

development, and suppression of natural disturbance regimes that maintain early successional 

habitat (Litvaitis 1993, Litvaitis 2003, Schlossberg & King 2007). Today, New England 

cottontails are isolated into five geographically (Litvaitis et al. 2006) and genetically (Fenderson 

et al. 2011) distinct regional populations (Fig. 2.1). Further subdivisions occur within each of 

these geographic areas, resulting in small, local metapopulations, in which extinctions and 

recolonizations occur independently from each other (Fenderson 2011, 2014, Cheeseman 2017).  
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Fig. 2.1 Five geographically and genetically distinct New England cottontail populations, following 

Fenderson et al. (2011): MENH – southern Maine and seacoast New Hampshire; NH-MV – Merrimack 

River Valley region of New Hampshire; NYCT – southeastern New York, western Connecticut, and 

southwestern Massachusetts; CC – Cape Cod, Massachusetts; ECT – eastern Connecticut; with remnant 

and reintroduced populations in Rhode Island, including a captive island colony. Samples in the figure 

indicate New England cottontails detected from 2011 through 2017 (locations obtained from New 

England Cottontail Technical Committee regional monitoring data, unpublished). 

 

 

 

Loss and fragmentation of shrubland habitat have impeded dispersal within New England 

cottontail metapopulations; historically dispersal movements would have offset patch extinctions 

in stably persisting metapopulations. Within each metapopulation, cottontails persist on remnant 

patches of shrubland habitat surrounded by an inhospitable landscape matrix, with roads, 

development, and mature forest serving as dispersal barriers (Amaral et al. 2016). New England 

cottontails exhibit low dispersal capabilities in these landscapes. A telemetry study in New York 

documented a median movement distance of approximately 50 m. Movements greater than 250 
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m were exceedingly rare, and for New England cottontails that did disperse, the median dispersal 

distance was 512 m (Cheeseman 2017). Further, New England cottontails in that study made 

nearly 10 times as many exploratory movements as dispersal movements, suggesting a natural 

propensity for dispersal impeded by an impermeable matrix in a fragmented landscape. 

Similarly, a telemetry study in the Merrimack Valley region of New Hampshire documented 1 

dispersal event out of 37 collared New England cottontails, and the dispersing cottontail moved 

900 m before being predated (B. Ferry, NHFG, personal communication). 

In response to declining New England cottontail populations and their nine-year (2006-

2015) candidate listing status under the Endangered Species Act, conservation efforts on behalf 

of the species have been underway since 2008 via a collaborative, range-wide New England 

Cottontail Conservation Initiative. Efforts to restore habitat and population connectivity have 

included widespread creation and restoration of shrubland habitat, with approximately 8,600 

acres restored or maintained across the range of the New England cottontail as of 2017 (New 

England Cottontail Technical Committee 2018), and the development of a captive breeding 

program. These collaborative conservation efforts among federal, state, and private organizations 

and landowners were deemed sufficient to preclude federal listing of the species in 2015 

(USFWS 2015). Captive breeding efforts have progressed from rearing individuals at the Roger 

Williams Park and Queens Zoos to the establishment of an island breeding colony in Rhode 

Island and an outdoor breeding pen in New Hampshire. Releases of captively-reared individuals 

from zoos, the island colony, and outdoor breeding pen were initiated at Bellamy River Wildlife 

Management Area (WMA) in New Hampshire in 2013, at Great Swamp WMA in Rhode Island 

in 2016, and at Wells National Estuarine Research Reserve in Maine in 2017. The goal of this 

study was to use noninvasive genetic sampling to monitor the success of the first reintroduction 
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at Bellamy River WMA from 2013-2018. Specifically, our objectives were to 1) track the 

survival and reproduction of founder cottontails across multiple releases at Bellamy River 

WMA, and 2) quantify changes in population size and genetic diversity following releases. We 

use our results to evaluate factors that contribute to successful reintroduction and monitoring and 

make suggestions to aid ongoing and future efforts at additional reintroduction sites. Successful 

reintroductions in the short term should produce high survival of released individuals, 

reproduction by both founders and wild-born individuals, and dispersal into additional patches of 

suitable habitat nearby in the landscape. In the long-term, successful reintroductions should 

produce a self-sustaining metapopulation (i.e. multiple occupied patches within dispersal 

distance) that can persist without additional input from the captive breeding program. 

 

Methods 

Study area 

 Bellamy River WMA (43.156030, -70.857880) is a 400-acre property in Dover, New 

Hampshire comprised of a variety of habitats including mature forest, wetlands, fields, and 

shrublands. Approximately 113 acres of habitat projects have been completed to create shrubland 

habitat on this property, and about half of those acres have grown into the dense shrub habitat 

required by New England cottontails. Two key shrubland patches include a 25-acre release site 

on the northern portion of the property, and an additional 25-acre patch of dense shrub habitat 

700 m southwest of the release site. Remnant New England cottontail individuals were present 

on the site until 2012, after which winter surveys did not identify any individuals remaining on 

the patch. Bellamy River WMA and the surrounding landscape is a focal area for New England 

cottontail conservation in the New Hampshire seacoast region, with the goal of restoring a 
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functional landscape for cottontail metapopulations. Bellamy was selected as a reintroduction 

site because of its large size and ongoing habitat restoration work at the site including large-scale 

volunteer shrub planting projects since 2010. Additional habitat management projects totaling 

~156 acres have been completed at nearby sites within a 3 km distance from Bellamy, and of that 

23 acres of dense shrubland habitat have been restored that could support cottontails. 

 

 
Fig. 2.2 Bellamy River Wildlife Management Area. Release patch for founder New England cottontails is 

outlined in yellow and a second large managed shrubland patch south of the release patch is highlighted.  

 

 

 

 Founder individuals were released in 2013, 2014, 2015, and 2017 from Roger Williams 

Park Zoo (Providence, RI, USA), Queens Zoo (Queens, NY, USA) and outdoor breeding 

enclosures at Great Bay National Wildlife Refuge (Newington, NH, USA) and Ninigret National 
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Wildlife Refuge (Charlestown, RI, USA). Founders were released in the center of the release 

patch (Fig. 2.2) primarily in the fall, but some were released in the spring and late summer 

(Table 2.1). Pellet surveys were conducted in the winter. 

 

Table 2.1 Number of founder New England cottontails released at Bellamy River WMA each year, and 

month of release. 

Year Month No. founders released 

2013 July 5 

2013 Oct. 3 

2014 Apr. 2 

2014 Sept. 5 

2014 Oct. 8 

2014 Nov. 3 

2015 July 2 

2015 Oct. 5 

2017 Aug. 4 

2017 Oct. 2 

2017 Nov. 3 

 

 

 

Winter pellet surveys and samples from founders 

Spatially referenced (Garmin GPSMAP 64s, Olathe, KS) cottontail fecal pellet samples 

were collected during winter surveys conducted from 2014 through 2018 under optimal survey 

conditions to detect New England cottontails (snow depth <30.5 cm, wind speed <40 km/h; 

Brubaker et al. 2014) in a fine-scale sampling scheme, following the methods of Kristensen & 

Kovach (2018) (two independent surveys 3-5 d after snowfall, with 30 m spacing between search 

transects). Prior to release, a tissue biopsy was collected from the ear of founder individuals. 

Fecal pellets were stored in 15-mL conical tubes at -20 ºC and tissue samples were stored in 

100% ethanol until DNA extraction. Founder individuals were outfitted with radio-collars 

(Advanced Telemetry Systems M1555, Isanti, MN) with a mortality signal to track survival and 

monitored 1-5 times weekly. For all mortalities, date and cause of mortality were recorded. 
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Methods of rearing and handling cottontails were consistent with the Association of Zoos and 

Aquariums code of ethics and standards maintained by the U.S. Fish and Wildlife Service and 

New Hampshire Fish and Game. 

 

Molecular methods and data analyses 

We extracted DNA from pellets with the QIAamp® DNA Stool Kit (Qiagen, Valencia, 

CA, USA) according to the manufacturer’s instructions with minor modifications (Kovach et al. 

2003) and from tissue samples with the Qiagen DNeasy® Blood and Tissue Kit (Qiagen, 

Valencia, CA, USA). DNA was amplified in three multiplex polymerase chain reactions (PCR) 

(see Appendix A for protocols) with a panel of 16 microsatellite markers, including 14 loci 

developed for the New England cottontail (King et al. 2017), 1 locus developed for the eastern 

cottontail (Berkman et al. 2009), and 1 Y-chromosome locus developed for sex identification in 

the European rabbit (Vašíček et al. 2011). PCR products were electrophoresed on a 3730xl 96-

capillary DNA Analyzer at the Yale DNA Analysis Facility (New Haven, CT, USA). Alleles 

were manually scored in PeakScanner (Applied Biosystems, Foster City, CA, USA).  

To increase amplification success rates, we used a high-fidelity hot-start technique in 

PCR reactions (AmpliTaq Gold® 360 DNA Polymerase, Applied Biosystems, Foster City, CA, 

USA) and a Solid Phase Reverse Immobilization Paramagnetic bead purification on PCR 

products when needed. For quality control of low copy DNA, we used a multiple tubes approach 

(Frantz et al. 2003, Waits & Paetkau 2005). We required two replicate allele observations for 

heterozygous loci, and three replicate observations for homozygous loci to determine a 

consensus genotype (Frantz et al. 2003). We quantified the per allele and per locus genotyping 

error by comparing the genotypes of all replicates to the consensus genotype (Pompanon et al. 
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2005). Samples missing data at three or more loci were excluded from analyses. To check for 

null alleles, we used MICRO-CHECKER (Van Oosterhout et al. 2004). To identify samples 

collected from the same or unique individuals, we used the multi-locus matches option in 

GenAlEx 6.5 (Peakall & Smouse 2006, 2012). We re-evaluated samples differing at only one to 

two loci and considered samples with mismatches that appeared to be due to allelic dropout the 

same individual. We calculated the probability of identity of siblings (PID-SIBs), the probability 

that two siblings drawn at random from a population will have the same genotype (Waits et al. 

2001), and retained unique genotypes (i.e. individuals) for further analyses. 

To identify founders and offspring that were present each year, we tracked individual 

genotypes detected through successive survey years. We used COLONY 2.0 (Jones & Wang 

2010) to identify parent-offspring and sibling relationships on an annual basis and across years, 

when appropriate (considering individuals potentially alive in each year’s sampling period, 

excluding known mortality events). COLONY settings included male and female polygamy, 

inbreeding, very long run length, full-likelihood analysis, high likelihood precision, no allele 

frequency updates, and no sibship prior. Apparent survival was calculated on an annual basis as 

the percent of released individuals surviving through the winter, including founders detected 

during winter pellet surveys and those identified as parents of wild-born offspring. 

To compare genetic diversity over time following the release of founder rabbits into the 

population, we calculated heterozygosity metrics and number of alleles for each yearly collection 

of samples in GenAlEx 6.5 (Peakall & Smouse 2006, 2012). We calculated allelic richness 

corrected for sample size in FSTAT 2.9.3.2 (Goudet 1999, 2002). We estimated average pairwise 

relatedness each year in ML-Relate (Kalinowski et al. 2006). For comparison, we also calculated 

genetic diversity metrics for a remnant New England cottontail population in the urbanized 
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landscape of Londonderry, New Hampshire and separately for each of four patches in the 

Londonderry population (Chapter 1). We estimated census population size using a single session 

mark-recapture method in the R package capwire 1.1.4 (Pennell & Miller 2015) for years with 

sufficient recapture data. We estimated effective population size, the number of breeding 

individuals in a population, in NeEstimator 2.01 (Do et al. 2014) using the linkage 

disequilibrium method, with the combined data from all years of the study.  

 

Results 

Survey detection and founder survival 

 We surveyed 50 acres with intensive annual fecal pellet surveys in suitable habitat 

surrounding the release site. We collected a total of 191 pellet samples during the five winter 

survey seasons (2014-2018), successfully genotyped 175 samples, and identified 36 unique 

individuals, 5 of which were detected over multiple years (Table 2.2). Of the unique individuals 

detected, 6 were released founders and 30 were offspring recruited into the population. 

Genotyping success varied across years from 87.2 to 100.0 percent, and a range of 1 to 21 

samples were collected per individual (Table 2.2). The probability of identity for siblings was 3.5 

x 10-5 for this population, meaning that there was a one in 28,571 chance that two siblings share 

the same genotype at these genetic markers. Molecular sex identification agreed with field sex 

for all founder individuals. 

Of the 42 founders that were released overall, 9 survived long enough to breed or until at 

least the following winter (detected through telemetry, in winter fecal pellet surveys, or as 

breeders through parentage analyses), including 5 of 8 released in 2013, 0 of 18 released in 2014, 
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1 of 7 released in 2015, and 3 of 9 released in 2017 (Table 2.3). Apparent annual survival of 

founders ranged from 62.5 percent in 2013 to 0 percent in 2014 (Table 2.3). 

Detection of surviving founders was high overall, but imperfect and varied by year. Of 

the founders known to be present on the site during winter pellet surveys (i.e. known from 

telemetry observations to have survived or detected via parentage analyses that identified 

individuals breeding the summer following winter surveys), one founder was not detected each 

year from the 2013, 2015, and 2017 releases. Parentage analyses were useful in identifying 

individuals that were not detected in pellet surveys. One founder from the 2013 release was not 

detected in the winter but identified as a breeder the following summer. One adult present during 

the 2017 winter surveys (offspring of founder reproduction in prior years), but not detected, was 

identified as a parent of offspring born the following summer and was subsequently detected in 

2018 winter surveys.  

 

Table 2.2 Number of New England cottontail fecal pellet samples collected during winter surveys at 

Bellamy River WMA each year of the reintroduction, number of pellets successfully genotyped, percent 

genotyping success, number of unique individuals identified, and range of number of samples collected 

(i.e. captures) per individual.  

Year 

(winter 

surveys) 

No. pellet samples 

collected 

No. pellet samples 

genotyped 

Genotyping success 

(%) 

No. unique 

individuals 

Range of 

captures 

2014 20 18 90.0 10 1-5 

2015 23 21 91.3 8 1-8 

2016 78 68 87.2 12 1-21 

2017 18 18 100.0 4 2-8 

2018 52 50 96.2 7* 1-15 

TOTAL: 191 175   AVG: 92.9 8.2 4.1 

*This does not account for the few cases in which founders were known not to be detected (see text). 
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Table 2.3 Number of founder New England cottontails released each year at Bellamy River WMA, 

number of mortalities within a month of the release date, number of founders detected surviving through 

the winter survey period or identified as breeders, percent apparent annual survival, and percent of 

founders known to be on the site through telemetry or parentage analyses that were detected in winter 

pellet surveys. 

Year 

(release 

period) 

No. founders 

released 

No. mortalities 

within 1 month 

No. survived (detected 

through telemetry, 

winter surveys, or 

breeding) 

Apparent 

survival (%) 

Founder 

detection (%) 

2013 8 0 5 62.5 80.0 

2014 18 5 0 0 NA 

2015 7 3 1 14.3 0 

2017 9 5 3 33.3 66.6 

 

 

 

Population size and genetic diversity 

 The population remained relatively stable for the first three years after the initial 

reintroduction in 2013, experienced a decline in 2017 (Fig. 2.3, Fig. 2.5), and began to stabilize 

again in 2018 (Fig. 2.3, Fig. 2.6). For years where capture histories were sufficient to produce 

population size estimates, abundance ranged from 8-13 individuals, largely consistent with the 

number of unique individuals detected (Table 2.4). The effective population size estimate was 

3.7 breeding individuals (95% CI 3.3-5.1) across all years. This estimate is slightly lower than 

the average of 5.4 breeding individuals identified each year through parentage analyses in 

COLONY (range 2-7 breeding individuals per year). Allelic richness and heterozygosity of the 

population increased as founder alleles were incorporated into the population. Allelic richness 

decreased with a population decline from 12 in the winter of 2016 to 5 in the winter of 2017. 

Allelic richness and heterozygosity continued to decrease following the decline in 2017, at which 

point individuals detected on the patch were highly related. In years when the population 

increased at Bellamy, allelic richness and heterozygosity were higher than the only other remnant 

population in New Hampshire, located in Londonderry (M. Bauer and A. Kovach, unpublished 
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data, Chapter 1). Table 2.5 shows genetic diversity metrics for the remnant Londonderry 

population for comparison to the reintroduced Bellamy population.  

 

 
Fig. 2.3 Number of individuals known to be present in the release site and surrounding patches on 

Bellamy River WMA during each spring through fall release period or winter monitoring period. Number 

of individuals (black line) was calculated from number of founders released and surviving longer than one 

month, number of individuals detected during winter pellet surveys, and number of individuals known to 

be present through parentage analyses. Gray circles indicate the number of founders released each year. 

*All founders released in 2014 had confirmed mortality through telemetry prior to winter pellet surveys.  

 

 

 
Table 2.4 Population size estimates of the reintroduced Bellamy River WMA population calculated in 

capwire for years with sufficient capture history data. 

Year 

(winter 

surveys) 

No. pellet 

samples 

collected 

No. unique 

individuals 

Capwire abundance 

estimate (95% CI) 

Avg. pellet captures 

per individual 

Range of 

captures per 

individual 

2014 20 10 11 (10-13) 2.2 1-5 

2016 78 12 12 (12-14) 5.6 1-21 

2018 52 8 8 6.3 1-15 
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Table 2.5 Genetic diversity metrics of the reintroduced Bellamy River WMA population including 

individuals detected as breeders or alive on the patch during winter pellet surveys. Metrics for the 

Londonderry, New Hampshire population are provided for comparison. In Londonderry, the Stonyfield 

patch is a source patch, Buckthorn Street and Cohas Brook are patches close to the source patch, and 

Charlotte Street is a more isolated patch with lower genetic diversity. Samples were collected from the 

Londonderry patches in the following years: Stonyfield 2015-2017, Buckthorn Street 2016-2017, Cohas 

Brook 2015-2017, Charlotte Street 2017. No. individuals: number of individuals identified as breeders 

plus offspring for Bellamy, and number of individuals detected for Londonderry; HO: observed 

heterozygosity; r: relatedness calculated in ML-Relate.  

Year or 

population 

Patch size 

(acres) 

No. individuals No. of 

alleles 

Allelic 

richness 

HO r 

Bellamy      

2014 50 10 2.7 2.8 0.514 0.134 

2015 50 14 3.1 3.0 0.567 0.143 

2016 50 14 3.5 3.4 0.569 0.170 

2017 50 6 2.7 2.6 0.569 0.083 

2018 50 6 2.0 2.0 0.400 0.147 

Londonderry patches 

Stonyfield 21 21 3.3 3.2 0.549 0.080 

Buckthorn St. 14 11 3.3 2.6 0.524 0.122 

Cohas Brook 20 16 3.0 2.9 0.453 0.136 

Charlotte St. 11 8 2.9 2.7 0.450 0.127 

Londonderry 

TOTAL: 

66 57* 3.7 3.7 0.503 0.098 

*Londonderry TOTAL includes 1 additional isolated individual not grouped with any of the 4 patches. 

 

 

 

Founder reproduction and dispersal 

 The number of recruited offspring detected during each year’s winter surveys ranged 

from three to nine. During each of the first three years of the reintroduction, there were seven 

breeding individuals, but only one breeding pair following the population decline in 2017 (Table 

2.6). Two males and one female were detected breeding over two consecutive years. One male 

successfully sired offspring with four different females in 2013 and three different females in 

2014. Females often bore offspring with two separate males during a season, but not with more 

than two males. Females produced as many as four surviving offspring per season (i.e. the 

offspring were born in the preceding summer and to be detected had to survive at least ~6 

months until the following winter), with an average of 2.1 recruited offspring per season. 
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Individuals born in the wild were also documented breeding, producing second generation wild-

born individuals. Four individuals were detected surviving through two winter survey seasons, 

and one male was detected in pellet surveys for three consecutive years. In the second winter 

survey season, individuals were detected 700 m southwest of the release site in another 25-acre 

patch of shrubland, indicating that dispersal occurred (Figs. 2.4-2.6). 

 

 
Table 2.6 Number of offspring identified in the reintroduced Bellamy River WMA population each 

winter survey season, number of males and females identified as parents, number of breeding founders, 

number of parents identified that were not detected in pellet surveys, and number of offspring with full 

and half sib relationships. 

Year 

(winter 

surveys) 

No. 

offspring 

No. males 

breeding 

No. females 

breeding 

No. founders 

breeding 

No. unsampled 

parents 

No. full 

sibs 

No. half 

sibs 

2014 6 3 4 3 4 0 6 

2015 8 4 3 4 1 4 8 

2016 9 3 4 2 3 4 10 

2017 3 2 2 0 1 0 2 

2018 4 1 1 0 0 4 0 
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Fig. 2.4 Individual New England cottontail adults and presumed offspring (M=male, F=female) identified 

in pellet surveys at the Bellamy River WMA release site and surrounding locations during the winter 

2015-2016 survey period showing dispersal from the release site (outlined in yellow) to another managed 

shrubland patch to the southwest. Adults were present on the patch in summer 2015 and survived to be 

detected in winter 2016, and presumed offspring were born in summer 2015 and first detected in winter 

2016.  
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Fig. 2.5 Individual New England cottontail adults and presumed offspring (M=male, F=female) identified 

in pellet surveys at the Bellamy River WMA release site and surrounding locations during the winter 

2016-2017 survey period showing a decline in the population from the previous winter survey period 

(winter 2015-2016). Adults were present on the patch in summer 2016 and survived to be detected in 

winter 2017, and presumed offspring were born in summer 2016 and first detected in winter 2017.  
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Fig. 2.6 Individual New England cottontail adults and presumed offspring (M=male, F=female) identified 

in pellet surveys at the Bellamy River WMA release site and surrounding locations during the winter 

2017-2018 survey period showing an increase in population size following the decline of the previous 

year. Adults were present on the patch in summer 2017 and survived to be detected in winter 2018, and 

presumed offspring were born in summer 2017 and first detected in winter 2018. Founders were released 

in fall of 2017, after the breeding season. All offspring are full siblings from a male and female present on 

the patch prior to 2017 founder releases. 

 

 

 

Discussion 

 Genetic monitoring is a valuable tool to evaluate the success of population 

reintroductions (Schwartz et al. 2007, Johnson et al. 2010, Olson et al. 2013). Noninvasive 

genetic sampling provides critical insight into the viability and recovery of populations of rare or 

cryptic species (Waits & Paetkau 2005, DeMay et al. 2017). In this study, we showed the value 

of noninvasive genetic sampling to monitor a population of a threatened habitat specialist, the 

New England cottontail, for five years post-reintroduction. We tracked the survival and 
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reproduction of founder rabbits and quantified changes in population size and genetic diversity 

following releases. Annual monitoring revealed changes in the population status that influenced 

the subsequent management response, allowing for adaptive reactions in this conservation effort.   

 Apparent survival of founder individuals was variable annually, ranging from 0 percent 

of founders surviving through the winter survey period to 62.5 percent surviving. In winter 2015, 

the 0 percent apparent survival of founders was due to extensive deep snowfall. There were three 

two-foot snowstorms over a less than two-month period between the end of January 2015 and 

March 2015, and starvation and predation were causes of mortality. Other recent studies 

incorporating information on New England cottontail survival indicate extremely variable 

survival annually, with estimates ranging from approximately 10 to 75% survival (A. 

Cheeseman, B. Ferry, unpublished data). New England cottontail survival has been found to be 

lower on small patches (Barbour & Litvaitis 1993, Litvaitis & Villafuerte 1996) with estimates 

of 23% survival on sink patches and 45% survival on source patches (Litvaitis & Villafuerte 

1996). Of all individuals detected, including wild-born offspring, only four of the 36 were 

detected surviving through two winter survey periods, and one male was detected in pellet 

surveys for three years, indicating low survival past age one. It is thought that New England 

cottontails generally don’t live longer than two to three years (Fuller & Tur 2012). 

Predation was the most common source of mortality for New England cottontails in this 

reintroduction based on recovered collared carcasses. Mortality from predation was generally 

high in the first month following release, and also high following severe winter snowfall events. 

Mortality during the first few weeks following release could be due to increased movement in a 

novel environment, and concomitant increase in predation risk (Metzgar 1967, Ambrose 1972, 

Snyder et al. 1976, Sievert & Keith 1985, Ebenhard 1987). High mortality in the first weeks 
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following release has also been noted as a major obstacle in restocking efforts for the European 

rabbit (Oryctolagus cuniculus) (Calvete et al. 1997, Letty 1998, Letty et al. 2002) and 

documented in translocations of swamp rabbits (Sylvilagus aquaticus) (Watland et al. 2007). 

Letty et al. (2008) note mortality rates of European rabbits as high as 50% in the first two days 

following release, and 69% within the first month due to predation by mammalian predators. 

Mortality following heavy snowfall was documented in 2015 both directly from predation, and 

with predation resulting following a decline in body condition of individuals. In 2016 a mortality 

was documented five days after a 6-inch snow event and in 2018 a mortality was documented 

two days after an 11-inch snow event. This trend has been noted in other studies, with increased 

mortality from predation documented with an increase in the number of days of snow cover for 

New England cottontails (Brown & Litvaitis 1995), and increased predation documented with an 

increase in both snow depth and persistence for eastern cottontails (Boland & Litvaitis 2008). As 

has been suggested with other lagomorph reintroductions with high post-release mortality, 

releasing larger groups of individuals simultaneously may be necessary to ensure stable breeding 

populations following the acclimation period (Armstrong & Seddon 2008, Hamilton et al. 2010). 

More research is needed on the number of individuals that need to be released to combat post-

release mortality, but decisions should take into consideration both mortality rates of released 

individuals and the carrying capacity of the reintroduction landscape. For example, presuming a 

density of 2 cottontails/ha and ~10 ha of habitat in each of the two patches at Bellamy WMA, 

and the survival we observed for the first year of the release of 62.5%, 64 cottontails would need 

to be released to fill the estimated carrying capacity of this landscape of 40 cottontails. 

Additional releases in subsequent years would need to take into account the number of 

individuals detected on the patch and higher mortality rates exhibited after the first year of a 
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release to determine the number of individuals to release. Reintroductions of other lagomorphs 

have required releasing a large number of individuals, for example 100-800 individuals per year 

for a reintroduction of pygmy rabbits with survival rates ranging from 39% in the first year to 

10% in the third year of the release (DeMay et al. 2017). 

Apparent survival was highest in the first year of the reintroduction, a trend which has 

also been noted in reintroductions of pygmy rabbits (Brachylagus idahoensis) (DeMay et al. 

2017) and riparian brush rabbits (Sylvilagus bachmani riparius) (Hamilton et al. 2010). This 

trend could be due to an increased predator response (O’Donoghue et al. 1997, Sinclair et al. 

1998, Stoddart et al. 2001), stochastic environmental and demographic processes (Crawford et al. 

2010; Price et al. 2010), competition with established rabbits, or differences in release 

methodology between years (Hamilton et al. 2010). Competition could have been a factor in this 

reintroduction as aggressive interactions between males have been documented in New England 

cottontails (Tefft & Chapman 1987) and eastern cottontails (Sylvilagus floridanus; McKinney 

1970, Brenner & Flemming 1979). Individuals released after the first year may have had to 

search farther for an open territory, increasing vulnerability to predation. For example, when 

founders were released in 2015, there were up to 8 individuals on the patch from the previous 

winter and survival was 14.3%, and when founders were released in 2017 there were only 5 

individuals on the patch from the previous winter, and survival was slightly higher at 33.3%. 

 Successful breeding was documented for founder individuals as well as wild-born 

offspring. Parentage analyses support a promiscuous breeding strategy. Males produced 

offspring with one to four females per season, and females often produced offspring sired by two 

different males in a season. Not all contributing breeders were sampled in each year (i.e. in some 

years, unsampled individuals had the highest parentage probability in COLONY analyses). This 
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led to gaps in the pedigree in later years of the study. Similarly, in a study that used winter fecal 

pellet surveys to monitor the reintroduction of a pygmy rabbit population, DeMay et al. (2017) 

did not sample all parents leading to gaps in the pedigree later in the study. Conducting two 

independent surveys (Kristensen & Kovach 2018) with closer spacing than the currently 

implemented 30 m between transects, and avoiding surveying after heavy snowfall events could 

increase detection and improve the ability to track founder survival and reproduction in cottontail 

reintroductions.  

  Population size remained relatively constant for the first three years of the 

reintroduction, declined substantially in 2017, and rebounded slightly in 2018. Estimated 

effective population size over all years combined was low (mean 3.7 breeding individuals, 95% 

CI 3.3-5.1), and slightly lower than the average number of breeding individuals identified 

through parentage analyses (5.4 individuals, range 2-7). Given the extremely small population 

size, without further monitoring and possible additional reintroductions, this population remains 

at high risk of decline due to stochastic events, skewed sex ratios, or inbreeding depression. 

Populations with such a low number of breeding individuals are extremely susceptible to 

stochastic decline and could be extirpated given a year with heavy storms, high predation, an 

absence of either males or females, or isolation of a male and female on different patches within 

a site preventing breeding. Following the 2017 decline, we observed effects of such stochasticity, 

resulting in a skewed sex ratio, with four males and one female in the population. In 2018, 

remaining individuals were highly related, including the 2017 female and her offspring, plus two 

unrelated surviving founder males released in fall of 2017 that had not yet bred. The release of 

founder rabbits over several years successfully bolstered genetic diversity in this population, but 

genetic diversity markedly declined following the 2017 population decline. After only two 
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breeding seasons, the observed heterozygosity in this reintroduced population surpassed that of 

the largest remnant population in New Hampshire (Londonderry, NH population). After three 

breeding seasons, allelic richness surpassed that of the Londonderry population as additional 

founder alleles were incorporated into offspring in the reintroduced Bellamy population. To 

buffer the potential impacts of stochasticity, continued monitoring is needed, with additional 

reintroductions following population declines. For reintroductions to be effective and maintain 

increased population sizes and genetic diversity into the long term, a functioning metapopulation 

(i.e. multiple occupied patches within dispersal distance) is needed that can provide dispersers to 

offset patch extinctions, maintain sufficient population sizes, and prevent bottlenecks. 

  Dispersal was documented from the release site to another high quality shrubland patch 

700 m away within the wildlife management area, exemplifying the potential for a reintroduced 

population to occupy a landscape in a metapopulation context through reproduction and 

dispersal. That patch remained occupied each year after the initial dispersal event. This location 

in the Bellamy WMA is conducive to relatively long cottontail dispersal movements, with 

shrubby field-forest edges to act as corridors, and no major barriers (e.g. roads and development; 

Fenderson et al. 2014, Amaral et al. 2016). In addition, during the first year of the study, one 

female dispersed 2.4 km south to another property, but there were no rabbits present on patches 

surrounding the release site to breed with.  

Detection of New England cottontails varies with survey conditions such as number of 

days after a snowfall event, days with high wind before a survey, and snow depth (Brubaker et 

al. 2014). In this reintroduction, one collared founder that was known to be on the site was not 

detected in pellet surveys in each of three of the four years that individuals were released. 

Parentage analyses identified one founder and one wild-born individual that were present at the 
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time of pellet surveys, not detected, but identified breeding the summer after winter surveys. 

Similar detection results were documented for a reintroduction at Wells National Estuarine 

Research Reserve in Wells, Maine. Two intensive winter pellet surveys were conducted, and of 

the seven radio-collared rabbits known to be on the site at the time, only six were detected (M. 

Bauer and A. Kovach, unpublished data). A collared rabbit known to be on the site was not 

detected during surveys at Bellamy in 2018 following heavy snowfall. Decreased detection 

following heavy snow events could be due to subnivean behavior (Katzner & Parker 1997, 

Brubaker et al. 2014), decreased cottontail movement, or snow falling off branches and covering 

pellets following a heavy storm (J. Tash, C. Stearns, personal communication). Surveys 

conducted at Wells in 2018, however, were not following heavy snow events, indicating that 

variation in individual cottontail movement ranges or other factors may require more intensive 

surveying to detect all rabbits on a patch, for example by decreasing the spacing between search 

transects. Multiple surveys per patch within a window of population closure is also necessary to 

improve detection given varying environmental conditions (Kristensen & Kovach 2018). 

 Tracking this reintroduction with genetic monitoring has produced insights to guide 

future reintroductions of New England cottontails. First, importantly, our findings show that 

reintroductions of New England cottontails can be successful. We documented successful 

breeding by both founder individuals and wild-born individuals, with some individuals 

reproducing and surviving over multiple years. Genetic diversity increased with the addition of 

breeding founders. However, we found that survival was variable, and may be related to 

stochastic events, predator response, or competition for territory with established individuals.  A 

population decline and skewed sex ratio four years post-reintroduction highlighted that stochastic 

events can have dramatic implications for both demography and genetic diversity. To address 
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concerns about low survival, more research is needed on methods to increase survival following 

a release (e.g. season of release, hard versus soft release methods, or age at which individuals are 

released). Current timing of releases are based on availability of cottontails from the captive 

breeding program. Releasing juveniles from the breeding program earlier in the season may 

correlate to increased survival (H. Holman, personal communication), and could give founders 

released as juveniles a better opportunity to breed in their first summer. If adults are available for 

release, releasing them earlier in the season would allow time for multiple breeding attempts and 

litters. Additional research is also needed on methods to increase productivity in the captive 

breeding program and recently piloted outdoor breeding pens. This will allow for larger numbers 

of individuals to be released to combat high post-release mortality.  

Trends identified by studying the first New England cottontail reintroduction at Bellamy 

WMA can inform management for successful cottontail reintroductions. Successful 

reintroductions in the short term would produce high survival of released individuals, 

reproduction by both founders and wild-born individuals, and dispersal into additional patches of 

suitable habitat nearby in the landscape. In the long-term, successful reintroductions should 

produce a self-sustaining metapopulation (i.e. multiple occupied patches within dispersal 

distance) that can persist without additional input from the captive breeding program. Key 

recommendations for a successful reintroduction of a small cottontail population vulnerable to 

stochastic decline include: 1) restoring a self-sustaining metapopulation that includes multiple 

occupied patches within dispersal distance and shrubland corridors connecting patches; 2) annual 

monitoring to track population size, sex ratios, number of breeders, and genetic diversity; and 3) 

repeated reintroductions over time and reintroducing larger numbers of individuals, distributed 

spatially (i.e. releasing individuals throughout the patch instead of at one location) to avoid 
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exceeding carrying capacity and to combat high post-release mortality (Armstrong & Seddon 

2008, Hamilton et al. 2010). Additional research is needed to improve our understanding of the 

factors influencing founder survival and how best to supplement reintroductions after the initial 

release to prevent collapse of a small population. Releasing founders early in the season could 

increase survival and reproduction. Strategically supplementing populations after the initial 

reintroduction may require releasing rabbits into unoccupied habitat in the patch (as determined 

by telemetry and genetic monitoring), determining how many individuals need to be released 

accounting for mortality and the size of the existing population, and tracking sex ratios to release 

more individuals of the rarer sex if necessary. 

Restoring multiple connected and occupied patches is the key for successful 

reintroductions of New England cottontails, which historically persisted in a metapopulation 

system. With a limited number of cottontails available for release from the captive breeding 

program, the most feasible way to establish introduced rabbits within a functioning 

metapopulation is to release rabbits into restored patches within dispersal distance from currently 

occupied patches. With the low dispersal rates documented in studied populations (Cheeseman 

2017, B. Ferry unpublished data, Chapter 1), and the importance of dispersal for maintaining 

cottontail populations, especially small populations, expanding existing metapopulations will 

likely be more successful than establishing new populations. If reintroducing populations to 

areas where cottontail populations have recently become extirpated is a goal, a large number of 

individuals will need to be released into multiple patches within dispersal distance to restore a 

metapopulation, and additional releases will likely be needed for years after the initial 

reintroduction. Reintroducing individuals to additional patches within dispersal distance will 

provide colonists that can bolster populations in years of stochastic decline and counteract 
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potential negative demographic effects. Ensuring sufficient habitat connectivity between 

occupied patches will promote dispersal and help limit negative population growth and sink 

patches (Hanski & Gilpin 1997). The current challenge with releasing additional individuals into 

satellite populations to rebuild a metapopulation is the low number of New England cottontails 

available for release. Until more individuals are available for release and functioning landscapes 

are restored, continued monitoring and annual augmentation of reintroduced populations are 

needed. Genetic monitoring through intensive noninvasive pellet surveys is a valuable tool for 

making decisions about New England cottontail reintroductions in an adaptive management 

framework. 
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CHAPTER 3 

 

SHRUBLAND BIRD OCCUPANCY ON NEW ENGLAND COTTONTAIL MANAGED 

SITES: EXPLORING THE REPRESENTATIVE SPECIES CONCEPT2 

 

Abstract 

Species that rely on shrubland habitat are declining throughout the Northeast due to 

habitat loss from development, succession, and restriction of natural disturbances. Species of 

particular conservation concern include shrubland birds and the New England cottontail. Though 

these species all require shrubland habitat types, each species’ specific habitat associations 

influence how they will fit into landscape-level management in the Northeast. The goal of this 

study was to assess the value of habitat management for the New England cottontail as 

representative of conservation design for shrubland bird specialists. The specific objectives were 

to 1) determine microhabitat and patch-level influences on shrubland bird occupancy at sites 

occupied by or managed for New England cottontails; and 2) identify shrubland bird specialists 

that are indicative of the specific habitats required by New England cottontails. Point counts 

were conducted at 44 survey points in 2015 and 66 survey points in 2016 on sites in thicket, 

coastal and wetland shrub, young forest, pitch pine-scrub oak, edge, and old field habitats in 

southern Maine, coastal New Hampshire, and on Cape Cod in eastern Massachusetts. We 

developed occupancy models for Chestnut-sided Warblers, Yellow Warblers, Black-and-white 

Warblers, Prairie Warblers, and Eastern Towhees and identified Yellow Warblers and Prairie 

Warblers as species that would benefit most from management that creates microhabitat 

                                                           
2 Melissa L. Bauer, Kathleen M. O’Brien, Adrienne I. Kovach. Manuscript in preparation for Forest 

Ecology and Management. 
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conditions suitable for cottontails. Through indicator species analyses, we identified 11 

shrubland specialist bird species detected frequently either on sites occupied by cottontails or in 

microhabitat conditions associated with cottontail occupancy, including: Prairie Warblers, 

Yellow Warblers, Brown Thrashers, Field Sparrows, Blue-winged Warblers, Alder Flycatchers, 

Gray Catbirds, Song Sparrows, Indigo Buntings, American Goldfinches, and Black-and-white 

Warblers. Additional associations between certain shrubland bird species and herbaceous 

vegetation and low shrubs indicates that shrubland habitat managed for cottontails, but not yet 

dense enough to provide suitable cover for cottontails, will benefit an additional suite of 

shrubland birds. Our findings support the notion that the New England cottontail serves an 

indicator species role for shrubland habitat management and provides managers with information 

on bird species that will benefit from restoration aimed at improving and increasing habitat for 

cottontails. 

 

Key Words: New England cottontail, shrubland birds, occupancy modeling, representative 

species 

 

Introduction 

Species that rely on shrubland habitat are declining throughout the Northeast, including 

52 birds, mammals, and reptiles listed as Species of Greatest Conservation Need (Gilbart 2012). 

Species of particular management interest include shrubland birds, for which declining species 

outnumber increasing species three to one (Schlossberg & King 2007), and the New England 

cottontail, which is absent from over 86% of its historical range (Litvaitis et al. 2006, Fenderson 

et al. 2014, Brubaker et al. 2014) and persists on remnant, isolated patches. Declines in 
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populations of shrubland species in New England are primarily due to habitat loss from 

development, restriction of natural disturbances that maintain early successional habitat, 

succession of abandoned farmlands, and reductions in even-aged silviculture (Cronon 1983, 

Litvaitis 1993, Trani et al. 2001). As such, active habitat management is essential to restore 

populations of specialist species in these ephemeral habitats. 

Extensive resources and collaboration between federal, state, and private organizations 

and landowners have been invested in creating and restoring shrubland and young forest habitats 

in the Northeast (Fuller & Tur 2012, NFWF Early Successional Forest Keystone Initiative 

Report 2015, Fuller et al. 2016). Many of these shrubland restoration projects are focused on 

restoring habitat for the New England cottontail in response to its nine-year (2006-2015) 

candidate listing status under the Endangered Species Act. The New England Cottontail 

Conservation Initiative is pursuing a habitat restoration goal of 27,000 acres of shrubland and 

young forest. Nearly 18,700 acres were maintained or restored as of 2017, including 10,000 acres 

of self-sustaining habitat (New England Cottontail Executive Committee 2018). 

To manage habitat to provide the greatest benefit for the most species with available 

resources, the U.S. Fish and Wildlife Service relies on representative species designations for 

part of its strategic planning process. A representative species is one that, because of its habitat 

use, ecosystem function, or management response, typifies life cycle or habitat requirements for 

a larger group of species (USFWS 2012). The USFWS is responsible for the management of 

Federal trust species, including migratory birds, threatened and endangered species, and 

interjurisdictional species of conservation concern. With limited resources, higher priority is 

often given to one or more trust species due to management need or vulnerability. The primary 

objective of this study was to assess the feasibility of designating the New England cottontail a 
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representative species for shrubland habitat management and planning purposes, with a focus on 

shrubland specialist birds. 

The New England cottontail is a shrubland obligate, requiring dense thicket habitat for 

cover, forage, and thermoregulation, both within its home range (Barbour & Litvaitis 1993, 

Litvaitis 2003), and during dispersal (Fenderson et al. 2014, Amaral et al. 2016). Recent studies 

comparing bird abundances across shrubland habitat types have documented that many species 

show distinct habitat preferences (Bulluck & Buehler 2006, Fink et al. 2006, King et al. 2009). 

Associations have been identified between shrubland specialist birds and vegetation structure 

and succession post-harvest (DeGraaf & Yamasaki 2001, Schlossberg et al. 2007, Grodsky et al. 

2016), forage and nesting substrate (DeGraaf & Yamasaki 2001), and specific plant species 

(Schlossberg et al. 2010). Given the specific habitat preferences of New England cottontails, and 

the extensive management underway to create and maintain shrubland habitat with a focus on 

cottontails, it is likely that certain species of shrubland specialist birds with similar microhabitat 

associations will benefit from shrubland management focused on the New England cottontail as 

a representative species. 

The specific objectives of this study were to 1) determine microhabitat and patch-level 

influences on shrubland bird occupancy at sites occupied by or managed for New England 

cottontails; and 2) identify shrubland specialist birds that are indicative of the specific 

microhabitats required by New England cottontails. We conducted point counts three times 

during the breeding season in 2015 and 2016 on sites in thicket, coastal and wetland shrub, old 

field, edge, young forest, and pitch pine-scrub oak habitats in southern Maine, coastal New 

Hampshire, and on Cape Cod in eastern Massachusetts. We modeled shrubland bird occupancy 

in relation to habitat covariates, related shrubland bird specialist richness across sites to 
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microhabitat conditions, identified multivariate influences structuring the shrubland specialist 

bird community, and conducted indicator species analyses to identify shrubland birds detected 

with high frequency in microhabitat conditions that are associated with New England cottontail 

occupancy. 

 

Methods 

Study area 

In 2015, we surveyed 44 point count locations on 18 sites in southern Maine and seacoast 

New Hampshire. Additional sites were added in 2016, for a total of 66 point count locations on 

28 sites in Maine, New Hampshire, and Massachusetts on Cape Cod. Point counts were 

conducted on sites occupied by New England cottontails, sites managed for New England 

cottontails with microhabitat conditions capable of supporting cottontails, and on sites managed 

for New England cottontails but not yet capable of supporting cottontails. Surveyed patches 

ranged from 2.3 to 98.0 ha on a variety of shrubland habitat types including thicket, coastal and 

wetland shrub, old field, edge habitat, young forest, and pitch pine-scrub oak barrens. 
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Fig. 3.1 Locations where point counts were conducted for shrubland bird occupancy in 2015 and 2016 in 

a) southern Maine and seacoast New Hampshire, and b) in 2016 in Massachusetts on Cape Cod. 

 

 

 

Point counts 

 We conducted 10-minute point counts on three separate visits during the breeding season 

(late May to early July) following U.S. Fish and Wildlife Service landbird monitoring standard 

operating procedures (Knutson et al. 2008). Surveys were conducted by an experienced observer 

between 0.5 hr before sunrise and 6 hr after sunrise and efforts were made to rotate the order of 

points surveyed so as not to bias detection rates at any survey point due to time of day. Point 

counts were not conducted under conditions of high wind, rain, or excessive background noise. 

During each point count, the observer recorded all birds detected at distance bins of 0-25 m, 26-

50 m, 51-100 m, and >100 m. The type of detection (auditory, visual, both, or flyover) was also 

recorded. 
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Habitat surveys 

 In 2017, we collected habitat data at each point count location for three categories of 

covariates (vegetation structure, patch-level characteristics, and non-living structure) pertinent to 

both New England cottontail and shrubland bird habitat suitability. Data were collected at two 

spatial scales: vegetation structure and non-living structure covariates were collected within 50 m 

of the point count location to assess the microhabitat in which birds were detected, and patch-

level covariates were recorded reflecting characteristics that could influence cottontail occupancy 

on a larger scale, including patch area, plant species richness, and proportion of invasive shrubs. 

Habitat data was collected every 10 m in each cardinal direction from the bird point count 

location to a distance of 50 m, for a total of 20 vegetation sampling points surrounding each 

point count location (Fig. 3.2). Stem count data was collected from a 1x2 m plot (Brubaker et al. 

2014) in the center of each 50 m cardinal direction transect, for a total of four stem density plots 

for each bird point count location. 

 
Fig. 3.2 Plot layout for 20 vegetation survey points and four 1x2 m stem count plots surrounding each 

bird point count location. 
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The vegetation structure category consisted of measurements of vegetation density, 

understory height, stem density, and canopy cover. Understory vegetation density at various 

heights is an important factor in habitat selection for different species of shrubland birds (Keller 

et al. 2003, Schlossberg et al. 2010). Vegetation density was quantified by recording the number 

of stem and leaf hits on a 3.0 m telescoping pole in 0.2 m height increments (Vitz & Rodewald 

2006, 2007). The species of each stem or leaf hit was recorded, as were hits for categories of 

grass, ferns, forbs, and herbaceous vegetation. In addition to recording vegetation density at 

height categories on the telescoping pole, we also recorded the representative understory height 

within 1 m2 of the telescoping pole. Understory height is an important habitat feature for New 

England cottontail escape cover from aerial and terrestrial predators (Litvaitis & Jakubas 2004, 

Arbuthnot 2008), and for certain shrubland bird species that prefer taller understory vegetation 

for nesting substrate, foraging, and protective cover (Nolan 1978, Schlossberg & King 2007, 

Schlossberg et al. 2010). Stem density, a key metric for assessing habitat suitability and escape 

cover for New England cottontails (Barbour & Litvaitis 1993, Fuller & Tur 2012, NEC Regional 

Technical Committee 2013, Warren et al. 2016), was collected by recording the species and 

number of woody stems ≥0.5 m tall and ≤7.5 cm diameter at breast height (dbh) (New England 

Cottontail Conservation Initiative 2009). Canopy cover has also been found to be an important 

metric for both New England cottontails (Buffum et al. 2015) and shrubland bird species (King 

& DeGraaf 2000, Schlossberg et al. 2010). We recorded canopy cover at each site using a 

concave spherical densiometer. Measured habitat variables were averaged over the 20 sampling 

points. 

Patch-level covariates included area of the management unit patch, woody vegetation 

species richness, and proportion of woody invasives. Species richness and proportion of 
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invasives were determined from species data and number of hits collected using the telescoping 

pole. Non-living structure covariates included woody debris and snags weighted by size, and 

number of brushpiles. Species-specific relationships between shrubland birds and coarse woody 

debris (Lanham & Guynn 1996, Lohr et al. 2002, Grodsky et al. 2016) and snags (Lohr et al. 

2002, Johnson 2014) have been documented, and may be important for communication, cover, 

foraging, and nesting in regenerating stands. At each habitat sampling point, we recorded the 

number of small (dbh ≥7.5 cm to 30 cm), medium (dbh >30 cm to 60 cm), and large (dbh >60 

cm) pieces of woody debris and snags ≥ 1 m in length or height. Number of brushpiles was 

recorded because brushpiles may be important for New England cottontail cover (Warren et al. 

2016), and are an emphasized habitat component for land management for cottontails (NEC 

Regional Technical Committee 2013). 

 

Data preparation 

We retained point count data from the 0-25 m and 26-50 m distance bins to correspond to 

the distance surveyed for microhabitat covariate data, and excluded flyover detections. We 

modeled occupancy for species detected at a moderate number of points, because these species 

showed variation in occupancy that could be related to surveyed habitat covariates. The five 

shrubland specialist species for which we modeled occupancy included: Chestnut-sided Warbler, 

Yellow Warbler, Black-and-white Warbler, Prairie Warbler, and Eastern Towhee. Continuous 

habitat variables were z-transformed and patch area was log-transformed in order to improve 

normality and equality of variances, and to improve performance with the PRESENCE 

occupancy modeling software (MacKenzie 2012). 
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Shrubland bird occupancy models 

 We identified relationships between shrubland bird specialist species and habitat 

covariates with single-species, multi-season implicit dynamics occupancy models (MacKenzie et 

al. 2006) using Program PRESENCE (version 12.7, http:// www.mbr-

pwrc.usgs.gov/software/presence.html, accessed 1 Nov. 2017). While accounting for imperfect 

detection, implicit dynamics models effectively apply a single-season model to data collected in 

each season (i.e. year), while allowing occupancy to change at a site between, but not within, 

seasons (MacKenzie et al. 2006).  

 Using a multi-stage approach, we first modeled detection (p) for each species while 

holding occupancy covariates at a global structure (MacKenzie 2012). For detection, we 

considered linear models for the covariates time of survey, temperature, cloud cover, wind speed, 

background noise level, and survey day (i.e. days since the start of the survey season), plus a null 

model. We also considered quadratic models for temperature and survey day because it was 

possible that birds were detected with greater frequency at moderate temperatures and that 

detection might vary non-linearly throughout the breeding season with different breeding 

activities such as territory establishment, incubation, and feeding nestlings. Model fit was 

assessed by AICC and model weight (Burnham & Anderson 2002). Model selection under an 

AICC framework makes retention of covariates based on 85% confidence intervals more 

appropriate than 95% confidence intervals (Arnold 2010). We therefore considered models 

within 2 AICC competitive (Burnham & Anderson 2002), and parameters informative for 

inference if 85% confidence intervals of covariate coefficient estimates excluded 0 (Arnold 

2010). The best supported detection model was retained for modeling occupancy covariates.  



114 

 

 In modeling occupancy (Ψ) covariates, we followed a multi-stage approach (Olson et al. 

2005, Dugger et al. 2011) to retain informative parameters from each of the three habitat 

covariate groups. We first retained the best supported model (lowest AICC) from the vegetation 

structure group. Covariates were only retained if they were informative based on 85% confidence 

intervals of the coefficient estimates. We then modeled the covariate(s) retained from the 

vegetation structure stage, adding each covariate in the patch-level group. Similarly, we retained 

the best model from the vegetation structure + patch-level stage and assessed additive models 

including covariates from the non-living structure stage. Again, model selection was based on 

AICC and model weights and additive models of covariates at each stage were considered 

competitive if the addition of a covariate improved model fit by >2 AICC or the model with the 

additional covariate was within 2 AICC and the additional covariate was informative based on 

85% confidence intervals of the coefficient estimates. Detection and yearly occupancy estimates 

were obtained by model-averaging within 2 AICC. 
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Table 3.1 Covariates considered in occupancy models for five shrubland specialist bird species, covariate 

descriptions, and modeling stage at which covariates were assessed. 

Covariate Description Modeling stage 

. Null model p and Ψ 

TIME Continuous; survey end time p 

TEMP Continuous; temperature at survey start p 

TEMP2 Continuous; quadratic form of TEMP p 

SKY Categorical; cloud cover and precipitation p 

WIND Categorical; wind speed p 

NOISE Categorical; background noise p 

SURVEYDAY Continuous; day within survey period on which point 

count was conducted 

p 

SURVEYDAY2 Continuous; quadratic form of SURVEYDAY p 

HITS0TO1 Continuous; average number of stem and leaf hits from 0 

to 1 m 

Ψ, Vegetation structure 

HITS1TO2 Continuous; average number of stem and leaf hits from 

>1 to 2 m 

Ψ, Vegetation structure 

HITS2TO3 Continuous; average number of stem and leaf hits from 

>2 to 3 m 

Ψ, Vegetation structure 

UNDERSTORYHT Continuous; representative understory height within 1 m2 

of the telescoping pole 

Ψ, Vegetation structure 

STEMDENSITY Continuous; average number of stems in a 1x2 m plot Ψ, Vegetation structure 

CANOPYCOVER Proportion; proportion of overstory canopy Ψ, Vegetation structure 

RICHNESS Continuous; Number of woody species Ψ, Patch-level 

PATCHAREA Continuous; Area (ha) of management unit patch Ψ, Patch-level 

PROPORTIONINVASIVES Proportion; proportion of woody vegetation classified as 

invasive 

Ψ, Patch-level 

DEBRIS Continuous; (avg. # small pieces debris * 1) + (avg. # med. 

pieces debris * 2) + (avg. # large pieces debris * 3) 

Ψ, Non-living structure 

SNAGS Continuous; (avg. # small pieces debris * 1) + (avg. # med. 

pieces debris * 2) + (avg. # large pieces debris * 3) 

Ψ, Non-living structure 

BRUSHPILES Continuous; average number of brushpiles Ψ, Non-living structure 

 

 

 

Shrubland bird specialist richness 

 For richness and multivariate analyses, we included only species designated as shrubland 

specialists following Schlossberg and King (2007). Analyses were conducted using R 3.4.3 (R 

Core Team 2017). We tested for differences in shrubland bird specialist richness, the number of 

shrubland specialist bird species detected at a point, across point count locations in relation to 
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sampled habitat covariates using Poisson generalized linear models and the glm function in R 

base software.  

 

Multivariate indicator species analyses 

 We used canonical correlation analysis in PC-ORD v.7 (McCune & Mefford 2016) to 

identify multivariate relationships between shrubland specialist bird species and habitat 

conditions (McGarigal et al. 2000, King et al. 2009). Only species detected at ≥15% of sites were 

retained for canonical correlation analysis to improve skewness and kurtosis of the data and 

ability to detect effects of habitat variables.  

We used indicator species analyses (Dufrêne & Legendre 1997) in PC-ORD to identify 

shrubland specialist birds that were detected with high frequency and exclusivity in microhabitat 

conditions characteristic of sites occupied by New England cottontails. An indicator species 

analysis identifies species that are indicative of a particular habitat type or group based on the 

frequency and exclusivity with which the species occurs at surveyed points in the habitat group. 

We classified point count locations into habitat groups with microhabitat conditions suitable for 

cottontails (Table 3.2) and identified indicator species for each defined habitat group. 

Microhabitat conditions we considered suitable for cottontail occupancy included: points with 

high stem density, tall understory height, dense vegetation between 1-2 or 2-3 m, large number 

of brushpiles present, and moderate canopy cover. We also conducted indicator species analyses 

for shrubland habitat types characteristic of cottontail occupancy including thickets and coastal 

and wetland shrub, and for points where cottontails had been detected within 50 m of the bird 

point count location in the past five years or on the surveyed patch within 200 m of the point 

count location. Cottontail occupancy was determined using winter fecal pellet detections from 
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range-wide monitoring efforts. All shrubland specialist bird species were retained for indicator 

species analyses except Ruby-throated Hummingbird and Ruffed Grouse which had a lower 

probability of detection because they did not vocalize. 

 

Table 3.2 Habitat groupings assessed in indicator species analyses for shrubland specialist bird species. 

Habitat groups considered characteristic of conditions suitable for New England cottontails (NEC) that 

were the focus of indicator species analyses are indicated in bold. 

Habitat group Description 

NEC present/absent 

within 50 m 

NEC present: NEC have been detected within 50 m of the point count location 

within the past five years (winter 2012/2013 – winter 2016/2017) 

NEC absent: NEC have not been detected within 50 m of the point count location in 

the past five years 

NEC present/absent on 

patch 

NEC present: NEC have been detected on the patch within 200 m of the point count 

location within the past five years 

NEC absent: NEC have not  been detected on the patch within 200 m of the point 

count location within the past five years 

Habitat 1) Thicket, 2) coastal/wetland shrub, 3) old field,  

4) edge, 5) young forest, 6) pitch pine-scrub oak 

Stem density Low: <15,000 stems/acre 

Moderate: 15,000 to <20,000 stems/acre 

High: ≥20,000 stems per acre (NEC Regional Technical Committee 2013) 

Understory height Low: <1 m 

Moderate: 1 to <1.5 m 

High: ≥1.5 m (Schlossberg et al. 2010) 

Stem and leaf hits 

between 1-2 m 

Lower third of vegetation density at point count locations, middle third of 

vegetation density at point count locations, upper third of vegetation density at 

point count locations 

Stem and leaf hits 

between 2-3 m 

Lower third of vegetation density at point count locations, middle third of 

vegetation density at point count locations, upper third of vegetation density at 

point count locations 

Brushpiles Lower third of brushpiles at point count locations, middle third of brushpiles at 

point count locations, upper third of brushpiles at point count locations 

Canopy cover Low: 0 to 0.33 canopy cover 

Moderate: >0.33 to 0.66 canopy cover 

High: >0.66 canopy cover 
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Results 

 We detected 19 shrubland bird specialist species on the 44 points surveyed in 2015 and 

22 shrubland bird specialist species on the 66 points surveyed in 2016 (range 1-17 shrubland 

specialist species per point count location, median 9 shrubland specialist species per point count 

location) (Appendix C, Table C.1). 

 

Shrubland bird occupancy models 

 

Chestnut-sided Warbler 

 We detected Chestnut-sided Warblers (CSWA) on 16 of 44 point count locations in 2015 

and 16 of 66 point count locations in 2016. CSWA occupancy probability was estimated to be 

0.35 (95% CI 0.20 – 0.54) in 2015 and 0.27 (95% CI 0.17 – 0.40) in 2016 with an overall 

detection rate of 0.64 (95% CI 0.48 – 0.77). The best supported detection model indicated that 

CSWA detection decreased with SURVEYDAY throughout the breeding season. The best supported 

occupancy model indicated that CSWA occupancy decreased with an increase in UNDERSTORYHT. 

No other habitat covariates were informative in explaining occupancy. Although in subsequent 

steps of the multi-stage modeling approach, the STEMDENSITY, HITS0TO1, and PATCHAREA 

variables appeared in models with delta AICC<2 from the best supported model, the covariate 

estimates were uninformative based on 85% confidence intervals (i.e. confidence intervals of the 

estimates spanned zero).  
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Table 3.3 Chestnut-sided Warbler occupancy models after completing the multi-stage modeling with 

vegetation structure + patch-level + non-living structure covariate groups. UNDERSTORYHT was the only 

informative vegetation covariate; no covariates in the patch-level and non-living structure group were 

within 2 AICC of the top model while also having coefficient estimates with 85% confidence intervals that 

did not span zero. Informative parameters (85% CI does not span 0) are shown in bold. 

DETECTION      

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY) 277.98 0.00 0.2577 16 234.88 

Ψ (global), gam(.), eps=1-gam, p(.) 278.27 0.29 0.2229 15 238.67 

Ψ (global), gam(.), eps=1-gam, p(TIME) 278.82 0.84 0.1693 16 235.72 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY+SURVEYDAY2) 279.58 1.60 0.1158 17 232.83 

Ψ (global), gam(.), eps=1-gam, p(NOISE) 281.28 3.30 0.0495 16 238.18 

Ψ (global), gam(.), eps=1-gam, p(TEMP+TEMP2) 281.32 3.34 0.0485 17 234.57 

Ψ (global), gam(.), eps=1-gam, p(TEMP) 281.33 3.35 0.0483 16 238.23 

Ψ (global), gam(.), eps=1-gam, p(WIND) 281.35 3.37 0.0478 16 238.25 

Ψ (global), gam(.), eps=1-gam, p(SKY) 281.69 3.71 0.0403 16 238.59 

VEGETATION STRUCTURE 
Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (UNDERSTORYHT), gam(.), eps=1-gam, p(SURVEYDAY) 259.08 0.00 0.2383 5 248.08 

Ψ (.), gam(.), eps=1-gam, p(SURVEYDAY) 259.28 0.20 0.2156 4 250.62 

Ψ (STEMDENSITY), gam(.), eps=1-gam, p(SURVEYDAY) 259.78 0.70 0.1679 5 248.78 

Ψ (HITS0TO1), gam(.), eps=1-gam, p(SURVEYDAY) 259.86 0.78 0.1613 5 248.86 

Ψ (HITS2TO3), gam(.), eps=1-gam, p(SURVEYDAY) 261.32 2.24 0.0778 5 250.32 

Ψ (HITS1TO2), gam(.), eps=1-gam, p(SURVEYDAY) 261.47 2.39 0.0721 5 250.47 

Ψ (CANOPYCOVER), gam(.), eps=1-gam, p(SURVEYDAY) 261.62 2.54 0.0669 5 250.62 

VEGETATION STRUCTURE + PATCH-LEVEL 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (UNDERSTORYHT), gam(.), eps=1-gam, p(SURVEYDAY) 259.08 0.00 0.3340 5 248.08 

Ψ (.), gam(.), eps=1-gam, p(SURVEYDAY) 259.28 0.20 0.3023 4 250.62 

Ψ (UNDERSTORYHT+PATCHAREA), 

 gam(.), eps=1-gam, p(SURVEYDAY) 

260.60 1.52 0.1562 6 247.18 

Ψ (UNDERSTORYHT+RICHNESS), 

 gam(.), eps=1-gam, p(SURVEYDAY) 

261.35 2.27 0.1074 6 247.93 

Ψ (UNDERSTORYHT+PROPORTIONINVASIVES), 

 gam(.), eps=1-gam, p(SURVEYDAY) 

261.49 2.41 0.1001 6 248.07 

VEGETATION STRUCTURE + PATCH-LEVEL + NON-LIVING STRUCTURE 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (UNDERSTORYHT), gam(.), eps=1-gam, p(SURVEYDAY) 259.08 0.00 0.3541 5 248.08 

Ψ (.), gam(.), eps=1-gam, p(SURVEYDAY) 259.28 0.20 0.3204 4 250.62 

Ψ (UNDERSTORYHT+DEBRIS), gam(.), eps=1-gam, p(SURVEYDAY) 261.40 2.32 0.1110 6 247.98 

Ψ (UNDERSTORYHT+BRUSHPILES), gam(.), eps=1-gam, 

p(SURVEYDAY) 

261.47 2.39 0.1072 6 248.05 

Ψ (UNDERSTORYHT+SNAGS), gam(.), eps=1-gam, p(SURVEYDAY) 261.47 2.39 0.1072 6 248.05 
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Table 3.4 Covariate summary data for the best supported occupancy model for Chestnut-sided Warblers.  

Covariate 
Estimated 

coefficient 
SE 

85% CI 

Lower Upper 

SURVEYDAY -0.39 0.20 -0.67 -0.10 

UNDERSTORYHT -0.53 0.34 -1.02 -0.03 

 

 

 
Table 3.5 Chestnut-sided Warbler detection and occupancy estimates. Models produced an overall 

estimate for detection, and yearly estimates for occupancy. 95% confidence intervals were calculated 

using the delta method. 

Parameter Estimate  SE 
95% CI 

Lower Upper 

p 0.64 0.08 0.48 0.77 

Ψ 2015 0.35 0.09 0.20 0.54 

Ψ 2016 0.27 0.06 0.17 0.40 

 

 

 

Yellow Warbler 

We detected Yellow Warblers (YEWA) on 34 of 44 point count locations in 2015 and 41 

of 66 point count locations in 2016. YEWA occupancy was estimated to be 0.96 (95% CI 0.60 – 

0.99) in 2015 and 0.67(95% CI 0.53 – 0.78) in 2016 with an overall detection rate of 0.76 (95% 

CI 0.66 – 0.84). The best supported detection model indicated that YEWA detection decreased 

with SURVEYDAY throughout the breeding season. The best supported occupancy model indicated 

that YEWA occupancy increased with an increase in STEMDENSITY. Models including 

PATCHAREA, PROPRTIONINVASIVES, and SNAGS were within 2 AICC of the best supported model 

during the multi-stage process, but were uninformative because the 85% confidence intervals of 

the coefficient estimates spanned zero.  
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Table 3.6 Yellow Warbler occupancy models after completing the multi-stage modeling with vegetation 

structure + patch-level + non-living structure covariate groups. STEMDENSITY was the only informative 

covariate from the vegetation structure group and no patch-level covariates were found to be informative 

by AICC and coefficient estimates. In this final modeling stage, an additive model including SNAGS was 

within 2 AICC of the top model, but was uninformative based on the 85% CI of the estimate 1.06 (-0.23 – 

2.35). 

DETECTION      

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY) 403.06 0.00 0.8501 16 359.96 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY+SURVEYDAY2) 406.66 3.60 0.1405 17 359.91 

Ψ (global), gam(.), eps=1-gam, p(TEMP) 413.00 9.94 0.0059 16 369.90 

Ψ (global), gam(.), eps=1-gam, p(.) 415.97 12.91 0.0013 15 376.37 

Ψ (global), gam(.), eps=1-gam, p(TEMP+TEMP2) 416.33 13.27 0.0011 17 369.58 

Ψ (global), gam(.), eps=1-gam, p(SKY) 419.05 15.99 0.0003 16 375.95 

Ψ (global), gam(.), eps=1-gam, p(WIND) 419.15 16.09 0.0003 16 376.05 

Ψ (global), gam(.), eps=1-gam, p(NOISE) 419.18 16.12 0.0003 16 376.08 

Ψ (global), gam(.), eps=1-gam, p(TIME) 419.37 16.31 0.0002 16 376.27 

VEGETATION STRUCTURE 
Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (STEMDENSITY), gam(.), eps=1-gam, p(SURVEYDAY) 392.25 0.00 0.9980 5 381.25 

Ψ (UNDERSTORYHT), gam(.), eps=1-gam, p(SURVEYDAY) 406.33 14.08 0.0009 5 395.33 

Ψ (HITS0TO1), gam(.), eps=1-gam, p(SURVEYDAY) 407.04 14.79 0.0006 5 396.04 

Ψ (CANOPYCOVER), gam(.), eps=1-gam, p(SURVEYDAY) 408.49 16.24 0.0003 5 397.49 

Ψ (HITS1TO2), gam(.), eps=1-gam, p(SURVEYDAY) 410.53 18.28 0.0001 5 399.53 

Ψ (.), gam(.), eps=1-gam, p(SURVEYDAY) 412.11 19.86 0.0000 4 403.45 

Ψ (HITS2TO3), gam(.), eps=1-gam, p(SURVEYDAY) 414.45 22.20 0.0000 5 403.45 

VEGETATION STRUCTURE + PATCH-LEVEL 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (STEMDENSITY), gam(.), eps=1-gam, p(SURVEYDAY) 392.25 0.00 0.4192 5 381.25 

Ψ (STEMDENSITY+PATCHAREA), gam(.), eps=1-gam, 

p(SURVEYDAY) 

393.14 0.89 0.2686 6 379.72 

Ψ (STEMDENSITY+PROPORTIONINVASIVES), gam(.), eps=1-gam, 

p(SURVEYDAY) 

393.97 1.72 0.1774 6 380.55 

Ψ (STEMDENSITY+RICHNESS), gam(.), eps=1-gam, p(SURVEYDAY) 394.52 2.27 0.1347 6 381.10 

Ψ (.), gam(.), eps=1-gam, p(SURVEYDAY) 412.11 19.86 0.0000 4 403.45 

VEGETATION STRUCTURE + PATCH-LEVEL + NON-LIVING STRUCTURE 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (STEMDENSITY), gam(.), eps=1-gam, p(SURVEYDAY) 392.25 0.00 0.4312 5 381.25 

Ψ (STEMDENSITY+SNAGS), gam(.), eps=1-gam, p(SURVEYDAY) 393.00 0.75 0.2963 6 379.58 

Ψ (STEMDENSITY+DEBRIS), gam(.), eps=1-gam, p(SURVEYDAY) 394.51 2.26 0.1393 6 381.09 

Ψ (STEMDENSITY+BRUSHPILES), gam(.), eps=1-gam, 

p(SURVEYDAY) 

394.60 2.35 0.1332 6 381.18 

Ψ (.), gam(.), eps=1-gam, p(SURVEYDAY) 412.11 19.86 0.0000 4 403.45 
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Table 3.7 Covariate summary data for the best supported occupancy model for Yellow Warblers.  

Covariate 
Estimated 

coefficient 
SE 

85% CI 

Lower Upper 

SURVEYDAY -0.57 0.15 -0.78 -0.36 

STEMDENSITY 5.74 2.38 2.32 9.17 

 

 

 
Table 3.8 Yellow Warbler occupancy and detection estimates. Models produced an overall estimate for 

detection, and yearly estimates for occupancy. 95% confidence intervals were calculated using the delta 

method. 

Parameter Estimate  SE 
95% CI 

Lower Upper 

p 0.76 0.044 0.66 0.84 

Ψ 2015 0.96 0.058 0.60 0.99 

Ψ 2016 0.67 0.066 0.53 0.78 

 

 

 

Black-and-white Warbler 

We detected Black-and-white Warblers (BAWW) on 15 of 44 point count locations in 

2015 and 23 of 66 point count locations in 2016. BAWW occupancy was estimated to be 0.22 

(95% CI 0.06 – 0.57) in 2015 and 0.54 (95% CI 0.34 – 0.73) in 2016 with an overall detection 

rate of 0.33 (95% CI 0.23 – 0.45). The best supported detection model was a null model 

(suggesting that detection was not influenced by any measured variable), and the best supported 

occupancy model indicated that BAWW occupancy increased with a decrease in HITS0TO1. 

During the multi-stage modeling process, HITS0TO1 was the only informative vegetation 

structure covariate. Patch-level covariates of PROPORTIONINVASIVES and PATCHAREA as well as 

the non-living vegetation covariate of DEBRIS were within 2 AICC of the top model, but the 85% 

confidence intervals of the coefficient estimates spanned zero, suggesting they were not 

informative variables for BAWW occupancy.  
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Table 3.9 Black-and-white Warbler occupancy models after the final step of multi-stage modeling with 

vegetation structure + patch-level + non-living structure covariate groups. HITS0TO1 was the only 

informative vegetation structure covariate and no patch-level covariates were found to be informative by 

AICC and examination of 85% confidence intervals of the coefficient estimates. In the final modeling 

step, an additive model including DEBRIS was within 2 AICC of the top model, but was uninformative 

based on the 85% CI of the estimate 0.31 (-0.38 – 0.99). 

DETECTION      

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (global), gam(.), eps=1-gam, p(.) 303.74 0.00 0.3506 15 264.14 

Ψ (global), gam(.), eps=1-gam, p(TEMP+TEMP2) 304.00 0.26 0.3078 17 257.25 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY) 306.81 3.07 0.0755 16 263.71 

Ψ (global), gam(.), eps=1-gam, p(SKY) 306.99 3.25 0.0690 16 263.89 

Ψ (global), gam(.), eps=1-gam, p(TEMP) 307.10 3.36 0.0653 16 264.00 

Ψ (global), gam(.), eps=1-gam, p(NOISE) 307.12 3.38 0.0647 16 264.02 

Ψ (global), gam(.), eps=1-gam, p(WIND) 308.64 4.90 0.0303 16 265.54 

Ψ (global), gam(.), eps=1-gam, p(TIME) 309.23 5.49 0.0225 16 266.13 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY+SURVEYDAY2) 310.15 6.41 0.0142 17 263.40 

VEGETATION STRUCTURE 
Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (HITS0TO1), gam(.), eps=1-gam, p(.) 293.96 0.00 0.4967 4 285.30 

Ψ (CANOPYCOVER), gam(.), eps=1-gam, p(.) 296.12 2.16 0.1687 4 287.46 

Ψ (.), gam(.), eps=1-gam, p(.) 297.21 3.25 0.0978 3 290.82 

Ψ (STEMDENSITY), gam(.), eps=1-gam, p(.) 297.56 3.60 0.0821 4 288.90 

Ψ (HITS2TO3), gam(.), eps=1-gam, p(.) 297.69 3.73 0.0769 4 289.03 

Ψ (HITS1TO2), gam(.), eps=1-gam, p(.) 298.77 4.81 0.0448 4 290.11 

Ψ (UNDERSTORYHT), gam(.), eps=1-gam, p(.) 299.39 5.43 0.0329 4 290.73 

VEGETATION STRUCTURE + PATCH-LEVEL 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (HITS0TO1), gam(.), eps=1-gam, p(.) 293.96 0.00 0.3609 4 285.30 

Ψ (HITS0TO1+ PROPORTIONINVASIVES), gam(.), eps=1-gam, p(.) 994.87 0.91 0.2290 5 283.87 

Ψ (HITS0TO1+ PATCHAREA), gam(.), eps=1-gam, p(.) 294.96 1.00 0.2189 5 283.96 

Ψ (HITS0TO1+ RICHNESS), gam(.), eps=1-gam, p(.) 296.16 2.20 0.1201 5 285.16 

Ψ (.), gam(.), eps=1-gam, p(.) 297.21 3.25 0.0711 3 290.82 

VEGETATION STRUCTURE + PATCH-LEVEL + NON-LIVING STRUCTURE 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (HITS0TO1), gam(.), eps=1-gam, p(.) 293.96 0.00 0.4511 4 285.30 

Ψ (HITS0TO1+ DEBRIS), gam(.), eps=1-gam, p(.) 295.87 1.91 0.1736 5 284.87 

Ψ (HITS0TO1+ BRUSHPILES), gam(.), eps=1-gam, p(.) 296.22 2.26 0.1457 5 285.22 

Ψ (HITS0TO1+ SNAGS), gam(.), eps=1-gam, p(.) 296.29 2.33 0.1407 5 285.29 

Ψ (.), gam(.), eps=1-gam, p(.) 297.21 3.25 0.1245 3 290.82 
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Table 3.10 Covariate summary data for the best supported occupancy model for Black-and-white 

Warblers.  

Covariate 
Estimated 

coefficient 
SE 

85% CI 

Lower Upper 

HITS0TO1 -1.10 0.55 -1.89 -0.31 

 

 

 
Table 3.11 Black-and-white Warbler occupancy and detection estimates. Models produced an overall 

estimate for detection, and yearly estimates for occupancy. 95% confidence intervals were calculated 

using the delta method. 

Parameter Estimate  SE 
95% CI 

Lower Upper 

p 0.33 0.06 0.23 0.45 

Ψ 2015 0.22 0.14 0.06 0.57 

Ψ 2016 0.54 0.10 0.34 0.73 

 

 

 

Prairie Warbler 

We detected Prairie Warblers (PRAW) on 8 of 44 point count locations in 2015 and 6 of 

66 point count locations in 2016. PRAW occupancy was estimated to be 0.11 (95% CI 0.03 – 

0.34) in 2015 and 0.09 (95% CI 0.04 – 0.19) in 2016 with an overall detection rate of 0.76 (95% 

CI 0.47 – 0.92). The best supported detection model indicated that detection increased with an 

increase in NOISE. This was likely an artefact of the fact that PRAW were most commonly 

detected in a transmission line right-of-way near a major road. Accordingly, and because our 

study did not include additional rights-of-ways, we retained a null model of detection for 

occupancy modeling stages. The best supported occupancy model indicated that PRAW 

occupancy increased with an increase in HITS2TO3, decreased with an increase in PATCHAREA, 

and decreased with an increase in BRUSHPILES.  
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Table 3.12 Prairie Warbler occupancy models after completing the multi-stage modeling with vegetation 

structure + patch-level + non-living structure covariate groups. 

DETECTION      

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (global), gam(.), eps=1-gam, p(NOISE) 127.56 0.00 0.5300 16 84.46 

Ψ (global), gam(.), eps=1-gam, p(.) 129.77 2.21 0.1756 15 90.17 

Ψ (global), gam(.), eps=1-gam, p(TEMP) 131.54 3.98 0.0725 16 88.44 

Ψ (global), gam(.), eps=1-gam, p(WIND) 132.03 4.47 0.0567 16 88.93 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY+SURVEYDAY2) 132.03 4.47 0.0567 17 85.28 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY) 132.41 4.85 0.0469 16 89.31 

Ψ (global), gam(.), eps=1-gam, p(SKY) 132.71 5.15 0.0404 16 89.61 

Ψ (global), gam(.), eps=1-gam, p(TEMP+TEMP2) 134.73 7.17 0.0147 17 87.98 

Ψ (global), gam(.), eps=1-gam, p(TIME) 136.34 8.78 0.0066 16 93.24 

VEGETATION STRUCTURE 
Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (HITS2TO3), gam(.), eps=1-gam, p(.) 136.22 0.00 0.4069 4 127.56 

Ψ (.), gam(.), eps=1-gam, p(.) 137.85 1.63 0.1801 3 131.46 

Ψ (HITS1TO2), gam(.), eps=1-gam, p(.) 138.92 2.70 0.1055 4 130.26 

Ψ (CANOPYCOVER), gam(.), eps=1-gam, p(.) 138.93 2.71 0.1050 4 130.27 

Ψ (HITS0TO1), gam(.), eps=1-gam, p(.) 139.33 3.11 0.0859 4 130.67 

Ψ (UNDERSTORYHT), gam(.), eps=1-gam, p(.) 140.10 3.88 0.0585 4 131.44 

Ψ (STEMDENSITY), gam(.), eps=1-gam, p(.) 140.11 3.89 0.0582 4 131.45 

VEGETATION STRUCTURE + PATCH-LEVEL 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (HITS2TO3+PATCHAREA), gam(.), eps=1-gam, p(.) 132.54 0.00 0.7338 5 121.54 

Ψ (HITS2TO3), gam(.), eps=1-gam, p(.) 136.22 3.68 0.1165 4 127.56 

Ψ (HITS2TO3+PROPORTIONINVASIVES), gam(.), eps=1-gam, p(.) 137.49 4.95 0.0618 5 126.49 

Ψ (.), gam(.), eps=1-gam, p(.) 137.85 5.31 0.0516 3 131.46 

Ψ (HITS2TO3+RICHNESS), gam(.), eps=1-gam, p(.) 138.55 6.01 0.0364 5 127.55 

VEGETATION STRUCTURE + PATCH-LEVEL + NON-LIVING STRUCTURE 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (HITS2TO3+PATCHAREA+BRUSHPILES), gam(.), eps=1-gam, p(.) 131.65 0.00 0.4062 6 118.23 

Ψ (HITS2TO3+PATCHAREA), gam(.), eps=1-gam, p(.) 132.54 0.89 0.2603 5 121.54 

Ψ (HITS2TO3+PATCHAREA+DEBRIS), gam(.), eps=1-gam, p(.) 133.78 2.13 0.1400 6 120.36 

Ψ (HITS2TO3+PATCHAREA+SNAGS), gam(.), eps=1-gam, p(.) 133.87 2.22 0.1339 6 120.45 

Ψ (HITS2TO3), gam(.), eps=1-gam, p(.) 136.22 4.57 0.0413 4 127.56 

Ψ (.), gam(.), eps=1-gam, p(.) 137.85 6.20 0.0183 3 131.46 
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Table 3.13 Covariate summary data for the best supported occupancy model for Prairie Warblers.  

Covariate 
Estimated 

coefficient 
SE 

85% CI 

Lower Upper 

HITS2TO3 1.12 0.65 0.18 2.05 

PATCHAREA -2.72 1.29 -4.58 -0.87 

BRUSHPILES -0.89 0.53 -1.65 -0.12 

 

 

 

Table 3.14 Prairie Warbler model-averaged occupancy and detection estimates. Models produced an 

overall estimate for detection, and yearly estimates for occupancy. 95% confidence intervals were 

calculated using the delta method. 

Parameter Estimate  SE 
95% CI 

Lower Upper 

p 0.76 0.12 0.47 0.92 

Ψ 2015 0.11 0.07 0.03 0.34 

Ψ 2016 0.09 0.04 0.04 0.19 

 

 

 

Eastern Towhee 

We detected Eastern Towhees (EATO) on 14 of 44 point count locations in 2015 and 18 

of 66 point count locations in 2016. EATO occupancy was estimated to be 0.48 (95% CI 0.28 – 

0.68) in 2015 and 0.30 (95% CI 0.20 – 0.43) in 2016 with an overall detection rate of 0.48 (95% 

CI 0.13 – 0.85). The best supported detection model indicated that EATO detection decreased 

with an increase in TIME, suggesting that EATO were more likely to be detected earlier in the 

morning. The best supported occupancy model indicated that EATO occupancy increased with 

an increase in PATCHAREA, decreased with an increase in SNAGS, and decreased with an increase 

in DEBRIS. During the modeling process, the additional vegetation covariates HITS0TO1, 

HITS1TO2, HITS2TO3, CANOPYCOVER, and UNDERSTORYHT, and the patch-level covariate 

PROPORTIONINVASIVES were in models with ∆AICC<2 but were uninformative based on 85% 

confidence intervals.  
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Table 3.15 Eastern Towhee occupancy models after completing the multi-stage modeling with vegetation 

structure + patch-level + non-living structure covariate groups. 

DETECTION      

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (global), gam(.), eps=1-gam, p(TIME) 287.49 0.00 0.5702 16 247.88 

Ψ (global), gam(.), eps=1-gam, p(.) 289.86 2.37 0.1743 15 250.26 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY) 291.43 3.94 0.0795 16 248.33 

Ψ (global), gam(.), eps=1-gam, p(WIND) 292.04 4.55 0.0586 16 248.94 

Ψ (global), gam(.), eps=1-gam, p(NOISE) 293.04 5.55 0.0355 16 249.94 

Ψ (global), gam(.), eps=1-gam, p(TEMP) 293.35 5.86 0.0304 16 250.25 

Ψ (global), gam(.), eps=1-gam, p(SKY) 293.36 5.87 0.0303 16 250.26 

Ψ (global), gam(.), eps=1-gam, p(SURVEYDAY+SURVEYDAY2) 295.08 7.59 0.0128 17 248.33 

Ψ (global), gam(.), eps=1-gam, p(TEMP+TEMP2) 295.95 8.46 0.0083 17 249.20 

VEGETATION STRUCTURE 
Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (.), gam(.), eps=1-gam, p(TIME) 267.51 0.00 0.2661 4 258.85 

Ψ (HITS2TO3), gam(.), eps=1-gam, p(TIME) 268.66 1.15 0.1497 5 257.66 

Ψ (HITS0TO1), gam(.), eps=1-gam, p(TIME) 268.81 1.30 0.1389 5 257.81 

Ψ (CANOPYCOVER), gam(.), eps=1-gam, p(TIME) 268.92 1.41 0.1315 5 257.92 

Ψ (HITS1TO2), gam(.), eps=1-gam, p(TIME) 269.03 1.52 0.1244 5 258.03 

Ψ (UNDERSTORYHT), gam(.), eps=1-gam, p(TIME) 269.39 1.88 0.1039 5 258.39 

Ψ (STEMDENSITY), gam(.), eps=1-gam, p(TIME) 269.78 2.27 0.0855 5 258.78 

 VEGETATION STRUCTURE + PATCH-LEVEL 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (PATCHAREA), gam(.), eps=1-gam, p(TIME) 266.78 0.00 0.4335 5 255.78 

Ψ (.), gam(.), eps=1-gam, p(TIME) 267.51 0.73 0.3010 4 258.85 

Ψ (PROPORTIONINVASIVES), gam(.), eps=1-gam, p(TIME) 268.72 1.94 0.1643 5 257.72 

Ψ (RICHNESS), gam(.), eps=1-gam, p(TIME) 269.69 2.91 0.1012 5 258.69 

VEGETATION STRUCTURE + PATCH-LEVEL + NON-LIVING STRUCTURE 

Model AICC ΔAICC ωi K -2 log (ѣ) 

Ψ (PATCHAREA+SNAGS), gam(.), eps=1-gam, p(TIME) 265.48 0.00 0.3565 6 252.06 

Ψ (PATCHAREA+DEBRIS), gam(.), eps=1-gam, p(TIME) 266.25 0.77 0.2425 6 252.83 

Ψ (PATCHAREA), gam(.), eps=1-gam, p(TIME) 266.78 1.30 0.1861 5 255.78 

Ψ (.), gam(.), eps=1-gam, p(TIME) 267.51 2.03 0.1292 4 258.85 

Ψ (PATCHAREA+BRUSHPILES), gam(.), eps=1-gam, p(TIME) 268.33 2.85 0.0857 6 254.91 
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Table 3.16 Covariate summary data for the best supported occupancy model for Eastern Towhees.  

Covariate 
Estimated 

coefficient 
SE 

85% CI 

Lower Upper 

TIME -0.37 0.24 -0.71 -0.02 

PATCHAREA 1.39 0.78 0.26 2.51 

SNAGS -0.76 0.43 -1.38 -0.15 

DEBRIS -0.78 0.49 -1.49 -0.06 

 

 

 
Table 3.17 Eastern Towhee model-averaged occupancy and detection estimates. Models produced an 

overall estimate for detection, and yearly estimates for occupancy. 95% confidence intervals were 

calculated using the delta method. 

Parameter Estimate  SE 
95% CI 

Lower Upper 

p 0.48 0.23 0.13 0.85 

Ψ 2015 0.48 0.11 0.28 0.68 

Ψ 2016 0.30 0.06 0.20 0.43 

 

 

Shrubland bird specialist richness 

 Several measured microhabitat and patch-level variables were associated with the species 

richness of shrubland specialist birds (Table 3.18). The strongest relationship identified with 

shrubland bird specialist richness was a positive association with the proportion of woody 

invasives (χ2=16.42, GLM, p<0.0001). Shrubland bird richness was highest at points with a 

moderate proportion of woody invasives, and lower at points with few invasives and heavily 

invaded points (Fig. 3.3). 
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Fig. 3.3 Median species richness for shrubland specialist birds at point count locations with low, 

moderate, and high proportion of woody invasive shrubs. The lower third of points surveyed ranged from 

0-0.13 proportion invasives, the moderately invaded points ranged from 0.18-0.53 proportion invasives, 

and the upper third of points contained 0.55 to 0.93 proportion invasives. 
 

 

 

Specialist richness was positively associated with the number of vegetation hits from 0-1 

m (χ2=8.46, GLM, p<0.01), and negatively associated with number of snags (χ2=9.32, GLM, 

p<0.01), and number of pieces of woody debris (χ2=5.56, GLM, p<0.05) (Table 3.18). Canopy 

cover showed a marginal negative trend with shrubland specialist richness (χ2=3.16, GLM, 

p<0.1). 

 

Table 3.18 Results of GLM Poisson regression models assessing relationships between measured 

covariates and shrubland bird specialist richness. 

Covariate χ2 p-value Estimate  SE 
95% CI 

Lower Upper 

PROPORTIONINVASIVES 16.42 <0.0001 0.59 0.15 0.31 0.88 

SNAGS 9.32 <0.01 -0.028 0.0093 -0.046 -0.010 

HITS0TO1 8.46 <0.01 0.024 0.0082 0.0083 0.040 

DEBRIS 5.56 <0.05 -0.017 0.0075 -0.032 -0.0027 

CANOPYCOVER 3.16 0.075 -0.28 0.16 -0.60 0.029 
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Multivariate analyses  

 Canonical correspondence analysis of shrubland specialist bird species with measured 

habitat variables showed strong relationships between certain species (e.g. Yellow Warbler, Song 

Sparrow, and Black-and-White Warbler) and habitat covariates (Fig. 3.4). Other species did not 

show strong habitat associations, either because they were not sufficiently abundant to detect 

effects of measured habitat covariates, or because they are associated with covariates that were 

not measured (e.g. forage availability). The proportion of invasives, presence of brushpiles, 

snags, canopy cover, and patch area were the most informative of the habitat and patch-level 

variables (Fig. 3.4). Yellow Warbler, Gray Catbird, Northern Cardinal, and Chestnut-sided 

Warbler showed positive relationships with invasives, Black-and-white Warbler showed a 

positive relationship with canopy cover, Yellow Warbler showed a positive relationship with 

vegetation height, and Indigo Bunting and American Goldfinch showed negative relationships 

with brushpiles. Vegetation density at 0-1 m and 2-3 m were also informative, albeit to a lesser 

degree, in this analysis, with Song Sparrow showing a positive relationship with vegetation 

density at both 0-1 m and 2-3 m. These findings reflect the sampled variables that structure the 

shrubland specialist bird community and the variation in fine-scale habitat preferences among 

species. 
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Fig. 3.4 Canonical correspondence analysis of abundance (number of detections per visit) of shrubland 

bird specialist species and measured habitat variables with R2 ≥ 0.1. Data were combined from 2015 and 

2016 and species represented were detected on at least 15% of points sampled. Species close together 

occur in similar habitat conditions. Length of lines corresponding to habitat variables indicates the 

importance of each variable in influencing shrubland bird community structure. Location of each species 

point along habitat lines indicates the relative importance of the habitat variable on abundance of the 

species. Triangles indicate point count locations that were sampled. ALFL Alder Flycatcher, AMGO 

American Goldfinch, BAWW Black-and-white Warbler, CEDW Cedar Waxwing, CSWA Chestnut-sided 

Warbler, COYE Common Yellowthroat, EATO Eastern Towhee, GRCA Gray Catbird, INBU Indigo 

Bunting, NOCA Northern Cardinal, PRAW Prairie Warbler, SOSP Song Sparrow, YEWA Yellow 

Warbler. 
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Indicator species analyses identified 11 species (p<0.05) that occurred with high 

frequency in microhabitat conditions suitable for New England cottontail occupancy (Table 

3.19). These 11 species include: Brown Thrasher (Toxostoma rufum), Field Sparrow (Spizella 

pusilla), Blue-winged Warbler (Vermivora cyanoptera), Alder Flycatcher (Empidonax alnorum), 

Gray Catbird (Dumetella carolinensis), Yellow Warbler (Setophaga petechia), Prairie Warbler 

(Setophaga discolor), Song Sparrow (Melospiza melodia), Indigo Bunting (Passerina cyanea), 

American Goldfinch (Spinus tristis), and Black-and-White Warbler (Mniotilta varia). In 

addition, a number of species were associated with microhabitat conditions suitable for New 

England cottontails at a p-value of <0.1 (Table 3.20).  

 

Table 3.19 Results of indicator species analyses identifying shrubland specialist birds identified with high 

frequency and exclusivity in habitat suitable for New England cottontails (NEC) (p<0.05). Habitat groups 

suitable for New England cottontails are listed, along with indicator bird species for each habitat group, 

indicator values for the species (100 meaning a species is a perfect indicator of a habitat group), and p-

values. FISP Field Sparrow, BRTH Brown Thrasher, YEWA Yellow Warbler, BAWW Black-and-white 

Warbler, BWWA Blue-winged Warbler, ALFL Alder Flycatcher, GRCA Gray Catbird, SOSP Song 

Sparrow, INBU Indigo Bunting, PRAW Prairie Warbler, AMGO American Goldfinch. 

Indicator habitat group Indicator species Indicator values p-values 

NEC present at point count location FISP, BRTH 22.0, 15.0 <0.05, <0.05 

NEC present on patch YEWA, BAWW 53.2, 42.6,  <0.05, <0.05 

Thicket/shrub habitat BWWA 25.0 <0.05 

Coastal/wetland shrub habitat YEWA, ALFL, GRCA 43.0, 26.7, 25.2  <0.001, <0.05, <0.05  

Stem density ≥ 20,000 stems per acre SOSP, INBU, PRAW 41.1, 36.3, 24.3 <0.05, <0.05, <0.05 

Understory height ≥ 1.5 m YEWA, GRCA, AMGO 

SOSP, FISP 

48.8, 45.9, 41.7, 

41.4, 30.2 

<0.01, <0.01, <0.05, 

<0.05, <0.01 

Vegetation density between 1-2 m, 

upper third of sites 
YEWA, GRCA, PRAW 44.7, 41.4, 21.7 <0.05, <0.05, <0.05 

Vegetation density between 2-3 m,  

upper third of sites 
GRCA 41.4 <0.05 

Brushpiles, upper third of sites GRCA 45.4 <0.01 
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Table 3.20 Results of indicator species analyses identifying shrubland specialist birds associated with 

habitat suitable for New England cottontails (p<0.1). Habitat groups suitable for New England cottontails 

are listed, along with indicator bird species for each habitat group, indicator values for the species (100 

meaning a species is a perfect indicator of a habitat group), and p-values. AMGO American Goldfinch, 

BAWW Black-and-White Warbler, CEDW Cedar Waxwing, SOSP Song Sparrow, INBU Indigo Bunting, 

BWWA Blue-winged Warbler, NOCA Northern Cardinal, FISP Field Sparrow. 

Indicator habitat group Indicator species Indicator values p-values 

NEC present at point count location AMGO, BAWW 54.6, 37.8 0.090, 0.094 

NEC present on patch AMGO 54.6 0.066 

Coastal/wetland shrub habitat CEDW, SOSP, AMGO 28.2, 24.1, 23.3 0.080, 0.084, 0.065 

Edge habitat INBU 24.1 0.062 

Vegetation density between 2-3 m,  

upper third of sites 
BWWA 17.3 0.067 

Brushpiles, upper third of sites NOCA 36.4 0.091 

Moderate canopy cover, 0.33 – 0.66 AMGO, FISP 39.5, 15.5 0.064, 0.081 

 

 

 

Discussion 

We found significant relationships between species of shrubland specialist birds and 

vegetation structure, patch-level habitat attributes, and non-living structure habitat attributes. For 

each of the five focal species modeled, different habitat and patch-level covariates were found to 

influence occupancy, reflecting the variation in fine-scale habitat preferences of these shrubland 

species. Of the shrubland bird species for which we modeled occupancy in relation to habitat 

covariates, Yellow Warbler and Prairie Warbler showed higher occupancy at sites with 

microhabitat conditions associated with New England cottontail occupancy. Yellow Warblers 

occupied sites with high stem densities and Prairie Warblers occupied sites with dense vegetation 

between 2-3 m.  

The associations that we observed between Yellow Warblers and Prairie Warblers and 

microhabitat conditions typical of occupied cottontail sites are supported by prior studies relating 

these bird species to vegetation characteristics. In addition to the association of Yellow Warblers 

with stem density in occupancy models, canonical correlation analysis showed that Yellow 
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Warblers were also associated with tall understory height and proportion of invasive vegetation, 

and indicator species analyses showed that Yellow Warblers were often found in coastal and 

wetland shrub habitat, at points with an understory height ≥1.5 m, at points with a high 

vegetation density between 1-2 m, and at sites with New England cottontails present on the 

patch. Yellow Warblers breed most commonly in wet, deciduous thickets (Lowther et al. 1999, 

Schlossberg & King 2007) and build nests at a mean height of 1.2 to 2.8 m (Graber et al. 1983, 

Peck & James 1987, Campbell et al. 2001). Yellow Warblers forage between heights of 1.2 to 

4.9 m (Hutto 1981), with males foraging at greater heights and more conspicuously than females 

during territory establishment (Busby & Sealy 1979). Cottontail management on wet sites that 

increases stem and vegetation density and height will likely benefit Yellow Warblers. 

The association we found between Prairie Warbler occupancy and vegetation density 

between 2-3 m is also supported by other research on the species. Prairie Warblers exhibit a 

preference for areas with low trees and shrubs (DeGraaf & Yamasaki 2001). They have been 

documented nesting at a mean height of 2.3 m and the heights of successful nests increase 

throughout the breeding season (Nolan 1978). Indicator species analyses further support the 

association between Prairie Warblers and vegetation density, with Prairie Warblers frequently 

detected at points with stem densities ≥20,000 stems per acre, and at points with dense 

vegetation between 1-2 m. The negative association we found with patch area in Prairie Warbler 

occupancy models is likely an artefact of our sampling regime and the low occupancy rate of 

Prairie Warblers on our sites. Prairie Warblers were detected most frequently on a 6.4 ha site in a 

transmission line right-of-way in Maine, near the northern extent of the species’ breeding range. 

This was a small site in our study area, with surveyed patches ranging from 2.3-98.0 ha. In a 

study on area requirements for shrubland birds, Roberts and King (2017) found that Prairie 
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Warblers frequently occupied openings close to large patches of habitat, even if those openings 

were small in size including rights-of-ways. In the southern portion of our study area on Cape 

Cod, we detected Prairie Warblers on large patches of pine barrens habitat. This species is 

commonly associated with xeric upland habitat and conifers in much of its range (Nolan 1978, 

King et al. 2009). The negative association we detected between Prairie Warbler occupancy and 

brushpiles and the species’ outlier position in canonical correspondence ordination may be 

artefacts of the small number of sites at which Prairie Warblers were detected at in our study 

area. Alternatively, the negative relationship with brushpiles may be due to the fact that 

brushpiles were not common in the pitch pine scrub-oak and right-of-way habitats in which 

Prairie Warblers were detected. It is also possible that brushpiles could provide refuge for nest 

predators that may negatively impact Prairie Warbler occupancy. A camera study of Common 

Yellowthroat and Prairie Warbler nests in New Hampshire found that the primary predators of 

nestlings were eastern chipmunks and garter snakes (M. Tarr, personal communication), species 

which could be more abundant in the vicinity of brushpiles. Sperry and Weatherhead (2010) 

documented radio-tracked snakes using brushpiles during 10% of their study period despite 

brushpiles comprising less than 0.2% of the study habitat, presumably because of increased small 

mammal abundances documented at brushpiles. Sperry and Weatherhead (2010) did not 

document increased avian nest predation in the first year following brushpile creation, but 

caution that brushpiles should be created away from avian nesting habitat due to their use by 

snakes and small mammals. 

Through occupancy modeling, we found that Chestnut-sided Warblers were negatively 

associated with understory height. Roberts and King (2017) also found a negative association 

between Chestnut-sided Warbler occupancy and median vegetation height in forest openings. 
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This relationship is indicative of the Chestnut-sided Warbler’s preference for complex vegetation 

structure for nesting substrate. Chestnut-sided Warblers have been documented nesting in shrubs 

at heights between 0.3 to 1.2 m (DeGraff & Yamasaki 2001). The complex vegetation structure 

preferred by this species is found in regenerating stands 3 to 10 years post-harvest, and 

occupancy declines steadily as stand development reduces available nesting habitat (DeGraff & 

Yamasaki 2003). 

Occupancy models showed that Black-and-white Warblers were negatively associated 

with vegetation density between 0-1 m. Black-and-white Warblers are found in later successional 

habitats such as young forests, and abundance of the species has been found to increase linearly 

on a site up to 20 years after a clearcut (Schlossberg & King 2009). Black-and-white Warblers 

will use habitat with dense sapling to pole sized trees in semi-open and mature deciduous and 

mixed forests with shrubby understories (DeGraaf & Yamasaki 2001, Schlossberg & King 

2007). The negative association we found with vegetation density at low heights could indicate 

selection against habitat in the early stages of shrubland succession, and is corroborated by an 

association with increased canopy cover in canonical correspondence analysis.  

We found Eastern Towhee occupancy increased with an increase in patch area, and 

decreased with an increase in snags and woody debris. Canonical correspondence analysis also 

showed a negative association with snags. In our study area, snags and woody debris were more 

abundant on older successional sites or on sites that had recently been clearcut. Eastern Towhee 

abundances are low in years immediately following logging, increase for approximately 10 years 

post-logging, and then decline (Schlossberg & King 2009). We hypothesize the negative 

association between Eastern Towhee occupancy and sites with high numbers of snags and debris 

in our study area is indicative of Eastern Towhees selecting against recently clearcut and older 
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successional sites. In a study on shrubland bird response to removal of harvest residues (i.e. 

coarse woody debris) from plots, Grodsky et al. (2016) found that Eastern Towhees did not 

frequently use coarse woody debris for foraging or cover and that successional trajectory rather 

than availability of harvest residues primarily influenced use of regenerating stands for most 

shrubland bird species. In contrast, Lohr et al. (2002) found that Eastern Towhees had fewer 

breeding territories on plots where downed wood had been experimentally removed in pine 

forests in the southeastern United States. The positive relationship between Eastern Towhee 

occupancy and patch area in our study area reflects the fact that Towhees were frequently 

detected at larger management sites ranging from 40 to 90 ha in Maine and New Hampshire, and 

in large pitch pine-scrub oak sites on Cape Cod. These sites were also typical of the relatively 

dry, open shrubby habitats with few trees associated with Eastern Towhee occupancy 

(Schlossberg & King 2007).  

Collectively, findings from occupancy modeling inform us about the fine-scale habitat 

preferences of these five avian specialists and provide insights into their likely overlap with 

habitats managed for New England cottontails.  Habitat management that creates dense, tall 

vegetation suitable for cottontail cover will provide valuable nesting and foraging substrate for 

Prairie Warblers and, on wet sites, Yellow Warblers. Complex vegetation structure lower to the 

ground that is not yet tall enough for cottontail cover will provide valuable nesting substrate for 

Chestnut-sided Warblers. Managing for young forest, which can provide suitable habitat for 

cottontails in some areas, for example dense alder stands under moderate canopy in coastal 

Maine, could provide valuable habitat for Black-and-white Warblers. Restoring pitch pine scrub-

oak habitats characteristic of occupied cottontail habitat on Cape Cod will increase the amount of 

drier open habitat preferred by Eastern Towhees. 
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Poisson regression identified a strong positive relationship between the number of 

shrubland specialist bird species detected at a point and the proportion of woody invasive shrubs. 

This trend was also shown through the positive association of several species with proportion 

invasive vegetation in canonical correspondence analysis. However, notably, shrubland bird 

species richness was highest at sites with a moderate proportion of invasive shrubs and began to 

decline in heavily invaded sites with 55-93% invasive shrubs. This specific trend of higher 

shrubland bird richness in moderately invaded sites was documented in a recent study of native, 

mixed, and invaded sites in transmission line rights-of-ways in southeastern New Hampshire 

(Tarr 2017), suggesting there is a threshold at which a high proportion of invasive shrubs reduces 

available resources that can increase bird species richness. Other recent studies of shrubland 

birds in New England have also shown positive associations with invasive vegetation (King et al. 

2009, Schlossberg et al. 2010), though negative impacts of invasive vegetation have been 

documented for shrubland birds, including a decline in forage resources (Tarr 2017) and an 

increase in nest predation (Borgmann & Rodewald 2004). 

In a synthesis of shrubland bird habitat associations from recent studies across New 

England, Schlossberg et al. (2010) found that different suites of shrubland birds select for two 

distinct shrubland habitat types. Some shrubland birds prefer areas of tall (>1.5 m) vegetation 

with dense shrub cover, and other species prefer lower vegetation, fewer shrubs, and habitat with 

more abundant forbs and herbaceous vegetation. Our regression analyses showed that shrubland 

bird richness was positively associated with vegetation density between 0-1 m. High vegetation 

density between 0-1 m indicates suitable habitat for the suite of birds needing younger shrubland 

habitat or persistent shrublands with low vegetation and open areas with grasses and forbs, such 

as coastal shrublands or shrub habitats on dry or wet soils that impede forest succession. Hence, 
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management that creates shrub habitats that are open and lack the cover needed by cottontails 

will benefit a different suite of shrubland birds such as ground nesters and foragers that require 

abundant grass and forb cover. Poisson regression showed a negative relationship between 

shrubland specialist richness and snags and woody debris. Sites in our study area that had a high 

number of snags and woody debris included recently clearcut sites, young forest sites, and pitch 

pine-scrub oak sites maintained with fire. The negative relationship between shrubland bird 

richness and snags and woody debris may be indicative of relationships with these specific 

habitat types rather than snags and woody debris specifically. In other words, in our study area 

richness was lower on young sites such as recent clearcuts, later successional habitats like young 

forest, and habitats with specific plant assemblages such as pitch pine-scrub oak. 

Specialist birds requiring dense shrub cover and taller vegetation typical of habitats 

suitable for New England cottontails, were identified through indicator species analyses. 

Indicator species analyses identified 11 shrubland birds that were detected with high frequency 

in microhabitat conditions associated with New England cottontail occupancy. In addition to 

Yellow Warbler and Prairie Warbler, which were associated with habitat covariates pertinent to 

New England cottontails in occupancy models, indicator species analyses identified Brown 

Thrasher, Field Sparrow, Blue-winged Warbler, Alder Flycatcher, Gray Catbird, Song Sparrow, 

Indigo Bunting, American Goldfinch, and Black-and-white Warbler as species characteristic of 

microhabitat conditions suitable for New England cottontails.  

Field Sparrows and Brown Thrashers were identified at points where New England 

cottontails had been detected within 50 m of the bird point count location (the area surveyed for 

vegetation structure and microhabitat conditions) within the past five years (winter 2012-2013 

through winter 2016-2017). In our study area, Field Sparrows and Brown Thrashers were 
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detected primarily on coastal shrubland sites that had areas of dense shrubs and interspersed open 

areas with grasses and forbs. The dense shrubs on these sites provide important cottontail cover. 

The open areas with grasses and forbs are important resources for Field Sparrows and Brown 

Thrashers which are ground foragers, and also provide nesting substrate for the ground nesting 

Field Sparrow. Herbaceous forage is also important for New England cottontails during the 

growing season (Dalke and Sime  1941, Smith and Litvaitis 2000), but dense escape cover must 

be present nearby. With New England cottontail occupancy considered as a patch-level metric, 

Yellow Warblers and Black-and-white Warblers were detected frequently at point count 

locations where cottontails were present within the larger patch (within 200 m of the point count 

location). These patches occupied by cottontails included wet coastal or riparian sites suitable for 

Yellow Warblers and young forests such as alder stands under a moderate canopy suitable for 

Black-and-white Warblers.  

Yellow Warblers, Alder Flycatchers, and Gray Catbirds were detected at wet coastal sites 

and wetland thickets, habitat types associated with New England cottontail occupancy in Maine 

and seacoast New Hampshire. The Blue-winged Warbler was an indicator species of shrubland 

and thicket habitat not designated as coastal or wetland shrub. Yellow Warblers, American 

Goldfinches, Song Sparrows, and Field Sparrows were detected frequently on sites with an 

understory height of >1.5 m and would benefit from habitat management that increases 

vegetation height. These species have all been documented nesting in shrubs, besides the Field 

Sparrow which is a ground nester, and Yellow Warblers and American Goldfinches nest 

particularly high in shrubs at about 3.0 m (Lowther et al. 1999). Field Sparrows were detected at 

sites with complex vegetation structure including both areas of tall shrubs and open areas with 

herbaceous vegetation. Song Sparrows, Indigo Buntings, and Prairie Warblers were detected 
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frequently on sites with stem densities >20,000 stems per acre, densities capable of providing 

escape cover for cottontails (NEC Regional Technical Committee 2013). Occupancy models 

showed that in addition to these species, Yellow Warblers could also benefit from management 

to increase stem densities on wet sites. Yellow Warblers, Gray Catbirds, and Prairie Warblers 

were detected frequently at points with high vegetation density between 1-2 m which provides 

suitable nesting substrate and tall enough cover for cottontails. Gray Catbirds were also an 

indicator species for dense vegetation between 2-3 m, and brushpiles, and as such would benefit 

from New England cottontail habitat management aimed at a number of microhabitat metrics. 

Gray Catbirds have shown increased abundances with increased vegetation height (Schlossberg 

et al. 2010), and nest in shrubs at least 1.2 m off the ground (Smith et al. 2011). Because Gray 

Catbirds forage for insects on the ground, brushpiles could increase forage resources for this 

species.  

In addition to these 11 species that were significant indicators of habitat attributes related 

to New England cottontail occupancy (p<0.05), several species were also associated with these 

habitat attributes (p<0.1). Black-and-white Warblers were detected frequently at points with 

cottontails detected within 50 m, American Goldfinches were detected frequently on sites with 

cottontails present in the larger patch, Cedar Waxwings were detected in coastal and wetland 

shrub habitats, and Northern Cardinals were detected frequently at sites with a large number of 

brushpiles. 
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Conclusion 

Efforts to restore New England cottontail populations in fragmented landscapes face 

many challenges, including the extremely limited dispersal exhibited by New England cottontails 

(Cheeseman 2017; M. Bauer, A. Kovach, B. Ferry, H. Holman, Chapter 1), and lack of corridors 

with dense cover connecting shrubland patches. However, given the extensive habitat 

management efforts underway to create and restore shrubland habitat for cottontails, there are a 

number of species that will likely benefit from this management before cottontail populations 

respond. Through occupancy modeling for shrubland specialist species and regression analyses 

relating shrubland bird richness to habitat covariates, we determined that shrubland birds 

associated with dense herbaceous vegetation and low shrubs will benefit from shrubland habitat 

management that creates microhabitat conditions that are not yet dense enough to provide cover 

for cottontails. Through occupancy modeling and indicator species analyses, we identified 

shrubland bird specialists that are indicative of the specific microhabitats required by New 

England cottontails and would benefit from shrubland habitat management focused on increasing 

vegetation density and height for cottontails. Eleven species of shrubland specialist birds are 

associated with sites that have been occupied by New England cottontails within the past five 

years, or sites with microhabitat conditions associated with New England cottontail occupancy. 

Of these 11 specialist birds, 9 are listed as Species of Greatest Conservation Need by at least one 

New England state (Gilbart 2012). We recommend that designating the New England cottontail 

an indicator species for shrubland habitat management would be a valuable classification. 

Significant resources are currently invested in New England cottontail management and outreach 

to create habitat for cottontails. These efforts will also benefit Prairie Warblers, Yellow 

Warblers, Brown Thrashers, Field Sparrows, Blue-winged Warblers, Alder Flycatchers, Gray 
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Catbirds, Song Sparrows, Indigo Buntings, American Goldfinches, and Black-and-white 

Warblers. Designating the New England cottontail a representative species would be an efficient 

conservation strategy for the management of multiple shrubland habitat specialists. Younger 

shrublands not yet suitable for New England cottontails or the shrubland birds associated with 

cottontail habitat would likely benefit an additional suite of shrubland birds requiring more open 

habitats. Shrubland bird species that are particularly rare, or experience unique management 

issues will require individual conservation planning. 
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CONCLUSION 

 

 Shrubland and young forest habitats have declined in New England as a result of 

succession, suppression of natural disturbance regimes, and development (Cronon 1983, Litvaitis 

1993), with concomitant declines in populations of shrubland specialist species, including the 

New England cottontail and shrubland birds (Litvaitis et al. 2006, Schlossberg & King 2007). 

Significant conservation efforts have been implemented to create and restore shrubland habitat 

with a focus on the New England cottontail, but with the goal that other species will also benefit 

(National Fish and Wildlife Foundation Keystone Initiative, Fuller & Tur 2012). Additional 

conservation efforts have been implemented to increase monitoring efforts for New England 

cottontail populations and increase reproduction in the captive breeding program to support 

ongoing reintroduction efforts (Fuller & Tur 2012, New England Cottontail Technical 

Committee 2018). Evaluation of shrubland specialist populations is needed to guide adaptive 

management and evaluate implemented restoration efforts. I used genetic monitoring to assess 

the connectivity of a small, isolated New England cottontail population in an urban landscape, 

and to track the success of a New England cottontail reintroduction. I modeled shrubland bird 

occupancy and frequency of detection in microhabitat conditions suitable for New England 

cottontails to determine if designating the New England cottontail a representative species as part 

of strategy to manage for multiple species would benefit shrubland birds, and which bird species 

would benefit most from management aimed at creating habitat for cottontails. 

I demonstrated that genetic monitoring is a valuable tool to track the response of small 

New England cottontail populations to management. In the urban landscape of Londonderry, 
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New Hampshire, I documented attributes of small populations that pose conservation challenges, 

including loss of metapopulation function, low genetic diversity, high relatedness, stochastic 

decline on isolated patches, skewed sex ratios on patches that had declined to a few individuals, 

and limited dispersal in a fragmented landscape. Genetic monitoring of a reintroduced population 

at Bellamy River Wildlife Management Area indicated that reintroductions can be successful and 

can bolster population sizes and genetic diversity. However, isolated reintroduced populations 

lacking connectivity to occupied patches within dispersal distance face the same threats as other 

small populations, including unstable demographics (Murrow et al. 2009), skewed sex ratios 

(Tella 2001, Clout et al. 2002), inbreeding depression (Brook et al. 2002, O’Grady et al. 2006), 

stochastic decline (Stacey & Taper 1992), and loss or lack of metapopulation function (Chandler 

et al. 2015). Populations of New England cottontails range-wide are experiencing similar 

conservation challenges, exhibiting fine-scale population structure and limited dispersal in 

fragmented landscapes (Fenderson et al. 2011, 2014, Cheeseman 2017).  

Restoring multiple connected and occupied patches is key for successful reintroductions 

and restoration of existing populations of New England cottontails, which historically persisted 

in a metapopulation system. The importance of restoring multiple patches that facilitate dispersal 

indicates that expanding existing metapopulations will likely be more successful than restoring a 

new metapopulation isolated from existing populations in the landscape. Additional 

recommendations for a successful reintroduction of a small cottontail population vulnerable to 

stochastic decline include: annual monitoring to track population size, sex ratios, number of 

breeders, and genetic diversity; repeated reintroductions over time; and reintroducing a large 

number of individuals, distributed spatially to avoid exceeding carrying capacity and to combat 

high post-release mortality (Armstrong & Seddon 2008, Hamilton et al. 2010). 
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I also demonstrated that  spatially explicit predictive modeling is a valuable tool for 

guiding restoration of cottontail populations. I parameterized a framework to simulate the effects 

of alternate restoration scenarios on cottontail population size, persistence, genetic diversity, and 

connectivity by reflecting restoration scenarios on a cost surface. For example, this model can 

predict how a population will respond to a particular management scenario, such as adding 

additional habitat patches or augmenting the population through translocations. This modeling 

framework will provide valuable information if a management scenario is revealed to be 

substantially more successful than others, or if given the best-case restoration scenario, a 

population is unlikely to persist in a given landscape. This predictive knowledge will help 

managers balance competing management priorities and make justifiable decisions if triage is 

necessary to maintain a population. In addition to providing a proof-of-concept for using 

predictive modeling as a management tool, the model I parameterized clearly shows the 

importance of dispersal for maintaining small cottontail populations in fragmented landscapes. 

Successful conservation will incorporate a focus on dispersal and functioning metapopulations. 

Given the habitat creation efforts underway, information was needed on what other 

species benefit from the specific habitats managed for cottontails. I modeled shrubland specialist 

bird occupancy, assessed shrubland bird richness, and conducted indicator species analyses for 

birds detected on multiple shrubland habitat types in southern Maine, seacoast New Hampshire, 

and Massachusetts on Cape Cod. I identified 11 species of shrubland specialist birds associated 

with sites that have been occupied by New England cottontails within the past five years, or sites 

with habitat that could support, and is being managed for, New England cottontails. These 

include: Prairie Warblers, Yellow Warblers, Brown Thrashers, Field Sparrows, Blue-winged 

Warblers, Alder Flycatchers, Gray Catbirds, Song Sparrows, Indigo Buntings, American 
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Goldfinches, and Black-and-white Warblers. Of these 11 specialist birds, nine are listed as 

Species of Greatest Conservation Need by at least one New England state (Gilbart 2012). 

Designating the New England cottontail a representative species would be an efficient 

conservation strategy for the management of multiple shrubland habitat specialists. 

Insights gained from studying the New England cottontail populations in Londonderry, 

New Hampshire and at the first reintroduction site on Bellamy River Wildlife Management Area 

highlight the challenges of restoring small populations in fragmented landscapes. Creating 

landscapes that facilitate dispersal between multiple patches in close proximity to one another is 

critical to restoring metapopulations that can persist long-term in stochastic environments. 

Ongoing restoration efforts focused on restoring habitat for New England cottontails will benefit 

a suite of shrubland specialist birds with similar habitat requirements and could effectively 

support populations of multiple declining specialist species. 
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APPENDIX A: 

MICROSATELLITE PRIMERS AND MULTIPLEX PCR CONDITIONS FOR THE 

ANALYSIS OF NEW ENGLAND COTTONTAIL PELLET AND TISSUE SAMPLES 

 

 
Table A.1 Microsatellite primers and multiplex PCR conditions for three multiplexes used in the analysis 

of New England cottontail pellet and tissue samples. 

 

Primer Multiplex 

StrQ25 A 

StrQ41 A 

StrQ43 A 

StrQ49 A 

StrQ08 A 

StrQ46 B 

StrQ18 B 

StrQ02 B 

StrQ32 B 

StrQ15 B 

StrQ30 C 

StrQ10 C 

StrQ24 C 

StrQ26 C 

Sfl014 C 

OcSRY21-F/ 

OcSRY23-R 

C 

 

Multiplex A and B PCR conditions included an initial denaturation at 95 °C for 10 min; 35 

cycles of 30-s denaturation at 94 °C, 30-s annealing at 58 °C for Multiplex A and 59 °C for 

Multiplex B, and 30-s extension at 72 °C; and a final extension at 72 °C for 7 min. We used 25 

uL reactions with 4 uL of DNA for pellet samples and 3 uL of DNA for tissue samples. 

Multiplex A and B PCRs contained primers (between 0.16 and 0.52 μM each), 1x buffer, 2.0 

mM MgCl2, 0.2 mg/mL of BSA, 200 μM DNTPs, and 1 unit of AmpliTaq Gold® 360 DNA 

polymerase from Applied Biosystems.  

 

Multiplex C PCR conditions included an initial denaturation at 95 °C for 15 min; 35 cycles of 

30-s denaturation at 95 °C, 90-s annealing at 58 °C, and 60-s extension at 72 °C; and a final 

extension at 60 °C for 30 min. We used 16 uL reactions with 4 uL of DNA for pellet samples and 

3 uL of DNA for tissue samples. Multiplex C PCRs contained primers (between 0.07 and 0.2 μM 

each), and Qiagen Type-it Multiplex PCR Master Mix 1x.  
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APPENDIX B: 

INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE (IACUC) APPROVAL 
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APPENDIX C: POINT COUNT DETECTIONS OF SHRUBLAND BIRD SPECIALISTS IN ME, NH, AND MA IN 2015 AND 2016 

Table C.1 Shrubland bird specialists detected within 50 m of the survey point by site in 2015 and 2016. Sites surveyed only in 2016 are listed in italics. 

Region Site ALFL AMGO BAWW BRTH BWWA CEDW COYE CSWA EATO FISP GRCA HOWR INBU 

Cape Elizabeth, ME Crescent East ‘16 ‘15, ‘16 ‘15, ‘16   ‘15, ‘16 ‘15, ‘16   ‘15 ‘15, ‘16  ‘16 

Cape Elizabeth, ME Crescent West ‘16 ‘15, ‘16 ‘16   ‘15, ‘16 ‘15, ‘16 ‘15, ‘16   ‘15, ‘16   

Cape Elizabeth, ME Gull Crest ‘16 ‘15, ‘16 ‘15, ‘16   ‘15, ‘16 ‘15, ‘16 ‘15, ‘16 ‘16 ‘15 ‘15, ‘16  ‘16 

Cape Elizabeth, ME Kettle Cove ‘16 ‘15, ‘16 ‘15, ‘16 ‘16  ‘15, ‘16 ‘15, ‘16  ‘15 ‘15 ‘15, ‘16 ‘16 ‘16 

Cape Elizabeth, ME Libby Field ‘16 ‘15, ‘16 ‘15   ‘15, ‘16 ‘15, ‘16 ‘16 ‘15  ‘15, ‘16 ‘16 ‘16 

Cape Elizabeth, ME Barber Easement ‘16 ‘15, ‘16 ‘15, ‘16   ‘15, ‘16 ‘15, ‘16 ‘15   ‘15   

Cape Elizabeth, ME Kelly Field ‘16 ‘16 ‘16   ‘16 ‘16    ‘16  ‘16 

Cape Elizabeth, ME Willey Field ‘16 ‘16 ‘16   ‘16 ‘16    ‘16   

Cape Elizabeth, ME Scarborough Marsh ‘16 ‘16    ‘16 ‘16    ‘16  ‘16 

Wells, ME Perkinstown Clearcut  ‘16 ‘16   ‘16 ‘16  ‘16  ‘16  ‘16 

Wells, ME Foss Property  ‘15, ‘16 ‘15, ‘16   ‘15, ‘16 ‘15, ‘16 ‘16 ‘15 ‘15 ‘16   

Wells, ME Litchfield  ‘15, ‘16 ‘15, ‘16   ‘16 ‘15, ‘16 ‘15, ‘16   ‘16   

Wells, ME Spiller ‘16 ‘15, ‘16 ‘15, ‘16   ‘15, ‘16 ‘15, ‘16    ‘16  ‘16 

Wells, ME Wells Reserve  ‘15, ‘16 ‘15, ‘16 ‘16  ‘15, ‘16 ‘15, ‘16 ‘15, ‘16 ‘15, ‘16  ‘15, ‘16 ‘16 ‘16 

Kittery/York/Eliot, ME Cutts Island  ‘15, ‘16    ‘15, ‘16 ‘15, ‘16 ‘15   ‘15, ‘16  ‘16 

Kittery/York/Eliot, ME Fort Foster  ‘15, ‘16    ‘15, ‘16 ‘15, ‘16    ‘15, ‘16 ‘15  

Kittery/York/Eliot, ME Highland Farm ‘16 ‘15, ‘16 ‘15, ‘16  ‘16 ‘15, ‘16 ‘15, ‘16 ‘15, ‘16 ‘15  ‘15, ‘16   

Kittery/York/Eliot, ME Houde Powerlines  ‘15, ‘16   ‘16 ‘15, ‘16 ‘15, ‘16 ‘15, ‘16 ‘15, ‘16 ‘16 ‘15, ‘16 ‘16 ‘16 

Kittery/York/Eliot, ME Savage Preserve  ‘15, ‘16 ‘15   ‘16 ‘15, ‘16    ‘16   

New Hampshire Bellamy ‘16 ‘15, ‘16 ‘15, ‘16  ‘16 ‘15, ‘16 ‘15, ‘16 ‘15, ‘16 ‘16  ’15, ‘16  ‘16 

New Hampshire Bunker Lane  ‘15, ‘16 ‘15  ‘15, ‘16 ‘15, ‘16 ‘15, ‘16 ‘15, ‘16   ‘15, ‘16  ‘16 

New Hampshire Great Bay ‘16 ‘16 ‘16 ‘16 ‘16 ‘16 ‘16  ‘16 ‘16 ‘16 ‘16 ‘16 

Cape Cod, MA Childs River  ‘16    ‘16 ‘16  ‘16  ‘16   

Cape Cod, MA Gravel Pit  ‘16     ‘16  ‘16     

Cape Cod, MA Orenda Land Trust  ‘16     ‘16  ‘16     

Cape Cod, MA Pine Barrens  ‘16    ‘16 ‘16  ‘16  ‘16   

Cape Cod, MA Quashnet River  ‘16     ‘16  ‘16  ‘16   

Cape Cod, MA South Cape Beach  ‘16    ‘16 ‘16  ‘16  ‘16   

 1
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Region Site MAWA NOCA NOMO PRAW RTHU RUGR SOSP WIFL WTSP YEWA TOTAL Specialists 

Cape Elizabeth, ME Crescent East  ‘15, ‘16     ‘15, ‘16   ‘15, ‘16 11 

Cape Elizabeth, ME Crescent West ‘16 ‘15, ‘16   ‘15 ‘16 ‘15, ‘16   ‘15, ‘16 13 

Cape Elizabeth, ME Gull Crest ‘15 ‘15, ‘16    ’15, ‘16 ‘15, ‘16   ‘15, ‘16 15 

Cape Elizabeth, ME Kettle Cove  ‘15, ‘16     ‘15, ‘16   ‘15, ‘16 14 

Cape Elizabeth, ME Libby Field  ‘15, ‘16     ‘15, ‘16   ‘15, ‘16 13 

Cape Elizabeth, ME Barber Easement   ‘15    ‘15, ‘16   ‘15, ‘16 10 

Cape Elizabeth, ME Kelly Field  ‘16         8 

Cape Elizabeth, ME Willey Field       ‘16   ‘16 8 

Cape Elizabeth, ME Scarborough Marsh  ‘16     ‘16   ‘16 9 

Wells, ME Perkinstown Clearcut    ‘16   ‘16    9 

Wells, ME Foss Property  ‘15, ‘16     ‘15, ‘16   ‘16 11 

Wells, ME Litchfield  ‘15, ‘16        ‘16 8 

Wells, ME Spiller  ‘15     ‘15, ‘16   ‘15 10 

Wells, ME Wells Reserve  ‘15, ‘16 ‘15, ‘16  ‘16  ‘15, ‘16  ‘15 ‘15, ‘16 16 

Kittery/York/Eliot, ME Cutts Island  ‘15, ‘16 ‘15 ‘15   ‘15, ‘16   ‘15, ‘16 11 

Kittery/York/Eliot, ME Fort Foster ‘16 ‘15, ‘16 ‘15 ‘15 ‘16  ‘15, ‘16   ‘15, ‘16 12 

Kittery/York/Eliot, ME Highland Farm  ‘15  ‘15   ‘15, ‘16 ‘16  ‘16 14 

Kittery/York/Eliot, ME Houde Powerlines  ‘15, ‘16  ‘15, ‘16   ‘15, ‘16   ‘15, ‘16 14 

Kittery/York/Eliot, ME Savage Preserve  ‘15, ‘16     ‘15, ‘16    7 

New Hampshire Bellamy ‘15 ’15, ‘16     ’15, ‘16   ’15, ‘16 14 

New Hampshire Bunker Lane  ‘16     ‘16   ’15, ‘16 11 

New Hampshire Great Bay  ‘16   ‘16  ‘16   ‘16 16 

Cape Cod, MA Childs River  ‘16   ‘16  ‘16    8 

Cape Cod, MA Gravel Pit           3 

Cape Cod, MA Orenda Land Trust     ‘16      4 

Cape Cod, MA Pine Barrens  ‘16     ‘16    7 

Cape Cod, MA Quashnet River    ‘16       5 

Cape Cod, MA South Cape Beach  ‘16         6 
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Table C.2 Four-letter American Ornithological Union Alpha codes for shrubland bird specialists  

detected in Maine, New Hampshire, and Massachusetts at 66 point count locations from 2015-2016. 
 

Alpha code Shrubland bird specialist species 

ALFL Alder Flycatcher 
AMGO American Goldfinch 
BAWW Black-and-white Warbler 
BRTH Brown Thrasher 
BWWA Blue-winged Warbler 
CEDW Cedar Waxwing 
COYE Common Yellowthroat 
CSWA Chestnut-sided Warbler 
EATO Eastern Towhee 
FISP Field Sparrow 
GRCA Gray Catbird 
HOWR House Wren 
INBU Indigo Bunting 
MAWA Magnolia Warbler 
NOCA Northern Cardinal 
NOMO Northern Mockingbird 
PRAW Prairie Warbler 
RTHU Ruby-throated Hummingbird 
RUGR Ruffed Grouse 
SOSP Song Sparrow 
WIFL Willow Flycatcher 
WTSP White-throated Sparrow 
YEWA Yellow Warbler 
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