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ABSTRACT 

A WIDEBAND ACOUSTIC METHOD FOR DIRECT ASSESSMENT OF BUBBLE-

MEDIATED METHANE FLUX 

By 

Elizabeth Weidner 

University of New Hampshire, May, 2018 

The bubble-mediated transport and eventual fate of methane escaping from the seafloor is of 

great interest to researchers in many fields. Acoustic systems are frequently used to study gas 

seep sites, as they provide broad synoptic observations of processes in the water column. 

However, the visualization and characterization of individual gas bubbles needed for quantitative 

studies has routinely required the use of optical sensors which offer a limited field of view and 

require extended amounts of time for deployment and data collection. In this paper, we present 

an innovative method for studying individual bubbles and estimating gas flux using a calibrated 

wideband split-beam echosounder. The extended bandwidth (16 – 26 kHz) affords vertical 

ranges resolution of approximately 7.5 cm, allowing for the differentiation of individual bubbles 

in acoustic data. Split-aperture processing provides phase-angle data used to compensate for 

transducer beam-pattern effects and to precisely locate bubbles in the transducer field of view. 

The target strength of individual bubbles is measured and compared to an analytical scattering 

model to estimate bubble radius, and bubbles are tracked through the water column to estimate 

rise velocity. The resulting range of bubble radii (0.68-8.40 mm in radius) agrees with those 

found in other investigations with optical measurements, and the rise velocities trends are 

consistent with published models. Together, the observations of bubble radius and rise velocity 
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offer a measure of gas flux, requiring nothing more than vessel transit over a seep site, bypassing 

the need to deploy time-consuming and expensive optical systems.
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1. INTRODUCTION 

On the continental shelves and slopes of the world’s oceans gas bubbles escape the seabed from 

subsurface methane reservoirs (Judd, 2004). In some regions the bubbles reach the sea surface 

injecting methane, a greenhouse gas, into the atmosphere where it directly influences climate 

(Ruppel and Kessler, 2016). Bubble-mediated methane transport is of particular concern in the 

climatically sensitive Arctic Ocean, where regional highs in atmospheric methane levels 

(AMAP, 2015) combined with reductions in ice cover (Maslanik et al., 2007), warm water influx 

from other ocean basins (Walczowski and Piechura, 2006; Woodgate et al., 2006), and high river 

runoff (Lammers et al., 2001) are accelerating the effects of climate change. Although the study 

of marine seeps goes back decades (e.g., Merewether et al., 1985), the methane flux from these 

systems remains unmeasured at the global level and poorly constrained on a basin or local scale 

(AMAP, 2015). 

The major challenge in calculating flux arises from the need to make time-consuming ground-

truth measurements of the number and size distribution of gas bubbles at individual seeps, 

combined with the ephemeral nature of seep activity and highly heterogeneous spatial 

distribution of seep systems on both basin and ocean scales (Greinert, 2008; Greinert et al., 2006; 

Römer et al., 2012a; Kannberg et al., 2013; Jerram et al., 2015; Römer et al., 2016). Furthermore, 

the fraction of the original methane released that reaches the atmosphere is a function of 

transport and consumption processes in the water column, which depend on local environmental 

conditions that are not fully constrained (Leifer and Patro, 2002; MacDonald et al., 2002; 

McGinnis et al., 2006; Reeburgh, 2007; Rehder et al., 2009; Ruppel and Kessler, 2016). Even 

when methane flux is successfully measured at seep sites, extrapolation of flux estimates to a 

larger area is difficult given the small data sets and variable environmental conditions (Weber et 
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al., 2014; Veloso et al., 2015); the result being flux estimates that vary widely between studies 

(Kirschke et al., 2013). In this work, we present an approach that uses ship-mounted acoustic 

remote sensing to determine bubble-size distribution and thus flux, and allows for more rapid 

coverage of large areas without the need for ground-truth measurement. 

Acoustic systems have long been utilized to precisely identify and locate marine seeps by 

exploiting the high acoustic impedance and strong scattering properties of gas bubbles 

(Merewether et al., 1985; MacDonald et al., 2002; Heeschen et al., 2003; Greinert et al., 2006; 

Schneider von Deimling et al., 2011; Römer et al., 2012b; Kannberg et al., 2013; Jerram et al., 

2015). These systems offer the potential for synoptic measurements of the water column, 

allowing for broad survey areas to be covered. However, the limited bandwidth (and thus 

resolution) of systems typically used for gas seep surveys cannot resolve individual bubbles, 

without knowledge of gas bubble size, bubble volume and consequently seep flux cannot be 

determined. In response, many gas flux estimation approaches have coupled acoustic mapping 

operations with optical point-source measurements, such as vehicle-mounted cameras, bubble 

traps (Nikolovska et al. 2008; Greinert et al. 2010; Römer et al. 2012a; Weber et al., 2014; Wang 

et al., 2016). However, point-source measurements require highly specialized gear and operators 

as well as long deployment durations, hours at a single seep site; coupled that with a small field 

of view, no more than a few tens of meters, and the logistics of combining acoustic and optical 

measurements and broad-spatial flux estimation becomes cost-prohibitive. 

The flux estimation method presented here circumvents the need for optical measurements, 

instead relying on newly available wideband technology to directly estimate bubble parameters. 

Acoustic systems have previously employed broadband pulses to classify targets by exploiting 

their unique frequency response (Stanton et al., 2010; Lavery et al., 2010a; Lavery et al., 2010b), 
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increase the detection range of targets (Stanton and Chu, 2008), and increase the range resolution 

of sonar pulses via match filtering (Turin, 1960). In this work, we employ the latter to break the 

ambiguity between the number and size of the bubbles. While this technique is not expected to 

work for very dense bubble seeps, it does work well for many seeps including for 70% of the 

seeps we examine in the work presented here. 

In this study, a Simrad EK80 wideband transceiver (WBT), operating from 16-26 kHz, with a 

nominal vertical range resolution of 7.5 cm, was utilized for the characterization of bubbles in 

marine seeps in the East Siberian Arctic Sea (ESAS) as part of the Swedish-Russian-US Arctic 

Ocean Investigation of Climate-Cryosphere-Carbon Interactions (SWERUS-C3) expedition 

(Jakobsson et al., 2015). The combination of frequency range and shallow water depths (<90 m) 

resulted in acoustic scattering by bubbles above resonance. The ESAS is an area of significant 

importance for climate change studies due to the unique combination of climatically sensitive 

Arctic Ocean, massive methane reservoir, and shallow water column (Romanovskii et al., 2005; 

Semiletov et al., 2012). Gaseous methane released from the shallow ESAS can facilitate the 

transport of methane directly to the atmosphere, resulting in direct climate forcing. Research 

dating back over nearly two decades has shown extensive biogenic methane gas release from 

inundated permafrost in the ESAS (Semiletov, 1999; Shakhova et al., 2005; Shakhova et al., 

2010; Shakhova et al., 2014; Sapart et al., 2017). 

2. WIDEBAND, SPLIT-BEAM ACOUSTIC OBSERVATIONS OF INDIVIDUAL 

BUBBLES 

The EK80 WBT produces a linear frequency modulated (LFM) acoustic signal; in the case of this 

research between 16 to 26 kHz. The broad bandwidth of the signal provides high vertical range 

resolution, improved signal to noise ratio (SNR) over similar length narrow-band pulses, and the 
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ability to examine the acoustic frequency modulated response of targets, all of which are used to 

facilitate measurement of individual bubble radius and rise velocity.  

The identification of individual bubbles in the acoustic data is made possible by the high vertical 

resolution achieved through a match filter signal processing procedure (Turin, 1960). The acoustic 

time-series (𝑣𝑟(𝑡)) collected at the receiver and recorded by the WBT is convolved with the 

complex conjugate of the time-reversed idealized replica (𝑣𝑡(𝑡)) of the original transmitted signal: 

𝑐𝑝𝑟(𝑡) = 𝑣𝑡(𝑡)∗ ⊗ 𝑣𝑟(𝑡)    (Eq. 1)  

The resulting match filtered signal (𝑐𝑝𝑟) has a vertical range resolution that is proportional to the 

inverse of the bandwidth, improved from the vertical range resolution of half the pulse length for 

narrow band signals. The increased vertical range resolution provides an increased ability to 

discriminate between individual targets in the water column, allowing for the identification of 

closely-spaced single bubbles which might not have been resolved by similar length narrow band 

pulses, and facilitating the extraction of bubble parameters through the direct study of acoustic 

scattering.  

The path of individual bubbles moving through the water column in the transducer field of view 

can be traced by employing the split-aperture correlation target-tracking techniques described in 

Burdic [1991]. These techniques are possible in the present work because the acoustic transducer 

(used for both transmit and receive) is split into four quadrants. Precisely locating individual 

bubbles in the transducer field of view enables direct measurements of in-situ bubble rise velocity. 

Additionally, split-aperture correlation enables the use of standard split-beam echo sounder 

(SBES) calibration techniques (Demer et al., 2015; Foote et al., 1987) which provide:  

1) estimation of frequency-dependent transducer beam pattern effects, and  
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2) the ability to measure target strength (TS) through removal of 1), as well as the 

frequency dependent effects of both the WBT and transducer on the recorded receive 

signal  

In the case of the beam pattern effects, acoustic scatterers located off the main response axis 

(MRA) of the transducer will have an apparently weaker response than those at the MRA. By 

estimating the position of a target relative to the MRA, and documenting the sonar’s beam pattern 

through calibration, the associated transducer beam pattern effects for that position can be removed 

and the TS can be calculated. 

The TS for a single target is defined as the logarithmic measure of the acoustic backscattering 

cross-section, 𝜎𝑏𝑠, i.e., the effectiveness with which a target re-radiates sound back in the direction 

of signal arrival (Clay and Medwin, 1977): 

𝑇𝑆 = 10 log10 𝜎𝑏𝑠     (Eq. 2) 

The backscattering cross-section of a single bubble of free gas at frequency (f) is defined as: 

𝜎𝑏𝑠 =
𝑎2

[(
𝑓𝑅
𝑓

)2−1]
2

+𝛿2
,     (Eq. 3) 

where a is the radius of the bubble, fR is the bubble’s resonance frequency, and δ is a damping 

constant which accounts for damping from thermal conductivity, re-radiation, and shear viscosity 

(Clay and Medwin, 1977). This definition of TS requires several assumptions about the nature of 

the individual bubble:  

1) the ensonifying wavelength is large compared to the bubble size (ka<<1); 

2) the only mode of pulsation considered is radial; 

3) the bubble is free from any coating (i.e. it is “clean”); and  
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4) the bubble is spherical in shape.  

TS measurements of individual bubbles can be compared to a well-known analytical model defined 

in Ainslie and Leighton (2011) to estimate bubble radius, examples of which are shown in Figure 

1 for pure methane bubbles at depths of 50 meters. The frequency response for bubble sizes of 

interest show distinct resonance peaks at low frequencies and relatively constant TS values at 

frequencies above resonance. The frequency range of the EK80 WBT used for this work (16-26 

kHz) combined with the depths in the survey area, would place the observed acoustic response of 

typically-sized marine seep bubbles above resonance, in the fairly constant (with frequency) TS 

response regime (Figure 1). 

 

Figure 1. Modeled frequency modulated TS curves for typical seep sized bubbles in typical Arctic Ocean conditions (temperature 

of 6º and salinity of 30 PSU) at 50 m depth, assuming bubble composition of 100% methane gas. Shaded box indicates the study 

frequency band (16-26 kHz). 

In addition to facilitating individual bubble TS measurements, the frequency content of 

broadband data provides the means to help identify cases where acoustic scattering is originating 

from unresolved targets. In acoustic time series data, it is often difficult to differentiate between 

the scattering from a single bubble and the scattering of multiple bubbles rising in close 

horizontal proximity or vertical proximity closer than the range resolution of the EK80 WBT. 

However, while the frequency-modulated (FM) modulated acoustic response of a single bubble 
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is characterized by fairly constant TS, the FM acoustic response of multiple bubble scatterers is 

defined by a nodal structure with a series of peaks and nulls indicative of deconstructive 

interference. Thus, by examining the FM acoustic response, it is possible to resolve the 

ambiguity between single and multiple bubble scatterers. See section 8.1 for additional 

discussion of this issue. 

3. DATA COLLECTION AND IDENTIFICATION OF GAS SEEPS 

Water column backscatter data were collected with a Simrad EK80 WBT transmitting through a 

Simrad ES18-11 scientific split-beam echosounder on the Icebreaker Oden during Leg 2 of the 

SWERUS-C3 2014 expedition (Jakobsson et al., 2015). The EK80 WBT system was run 

continuously over the 45-day cruise, which covered more than 10000 km across the ESAS 

(Figure 2). Seep features were detected solely in the shallow Herald Canyon region, which is 

found north of Wrangel Island on the western edge of the ESAS in the Russian Exclusive 

Economic Zone (EEZ). 

 

Figure 2. An overview of Icebreaker Oden’s vessel track (black line) through the Arctic Ocean during SWERUS-C3 Leg 2. Cut-out 

box shows the vessel track from August 24-26, 2014 during operations in the Herald Canyon region of the ESAS. All identified 89 

seep features are marked (blue markers), with areas of high seep density identified by additional boxes and total seep counts listed. 

IBCAO grid from: https://www.ngdc.noaa.gov/mgg/bathymetry/arctic/images/IBCAO_ver1map_letter.jpg. 
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The ES18-11 transducer is mounted on the hull of the Oden behind the “ice knife” at approximately 

9 m depth where it is protected by an ice window. Throughout survey operations the EK80 WBT 

was operated in fast-ramping LFM pulse. The transmission power was set to the maximum of 2000 

W for all survey operations. The LFM transmission pulse lengths were switched between 4.096 

ms and 8.192 ms using the Simrad user interface in response to changing depth conditions. Vessel 

attitude and position data were collected with a GNSS-enabled Seapath 330 vessel motion 

reference system, providing real-time corrections for the acoustic data.  

During survey operations, the EK80 WBT was synchronized with the Oden’s EM122 multibeam 

echosounder (operating at 12 kHz) and sub bottom profiler (operating between 2.5-7 kHz). System 

synchronization procedures triggered the EK80 WBT transmit-receive cycle immediately 

following the EM122 transmit-receive cycle, preventing acoustic interference from the other 

systems. Ship survey speed was kept below 8 knots to reduce noise from ship operations and 

bubble flow over the transducer face. Oden operated in open water during survey operations in 

Herald Canyon. On September 12, 2014 prior to survey operations, the EK80 WBT was calibrated 

for transducer sensitivity and beam pattern effects following the standardized method defined in 

Demer et al. (2015) and Foote et al. (1987).  

The EK80 dataset was parsed using a set of MATLAB software scripts provided by Simrad [Lars 

Anderson, personal communication]. Each EK80 file consists of a series of successive pings, made 

up of an acoustic amplitude time series for each of the transducer quadrants. Data were match-

filtered using an ideal replica signal, and a bandpass Butterworth filter with cut off frequencies of 

16 and 26 kHz was applied to remove transducer transit and receive effects and additional ship-

related noise. The filtered data has a useable bandwidth of 10 kHz with an approximate vertical 

resolution of 7.5 cm. Sample range from the transducer was calculated using sound speed data 
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from the nearest-in-time CTD cast. Range from the transducer was converted to absolute depth by 

adding the transducer vertical offset relative to the waterline on Oden. The acoustic intensity of 

each sample is determined from the summation of time series from the four transducer quadrants. 

Electrical phase angle information for individual targets was calculated by split-aperture 

processing (Burdic, 1991). 

Each EK80 file was visually scrutinized for seep features, characterized by vertically oriented 

regions of elevated acoustic scattering strength, to be marked for further processing. A total of 89 

seep features were identified in the Herald Canyon region of the ESAS (Figure 2). Seeps were 

observed in the canyon channel, on the relatively flat shelf to the east of the canyon, and on a local 

high immediately to the west of the canyon channel. Seafloor depths associated with seeps in 

Herald Canyon ranged from 50 to 95 m. The SWERUS-C3 survey track was defined by other data 

collection goals and the acoustic data coverage over the Herald Canyon region is sparse. As a 

result, the dataset provides a snapshot view (approximately 30 seconds per seep) of seep activity 

instead of a long-term record. Figure 3 depicts variation in the visual appearance of seep features 

due to a variety of survey-related factors (e.g. vessel speed and pulse length settings) and 

environmental factors (e.g. currents, seafloor morphology, and volumetric gas flow rate). 
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Figure 3. EK80 echograms showing acoustic anomalies associated with gas seep and other scatterers (e.g. fish and biological 

scattering). Each echogram is displayed as a series of vertical time series, colored by sound pressure moving forward in time and 

space from left to right. For visualization purposes data below -65 dB are filtered out (black background). 

4. INDIVIDUAL BUBBLE SAMPLING AND PARAMETER ESTIMATION 

Marked seep files went through additional visual scrutiny to identify all potential individual bubble 

scatterers. Individual bubbles were identified in the match filtered acoustic water column data by 

a peak in amplitude with a width of approximately 0.1 ms (the inverse of the bandwidth) within 

each ping time series, and by a rise in position at a nearly constant rate with a positive slope across 

pings (i.e. decreasing range as the bubble rises), as illustrated in Figure 4. Individual bubbles in 

EK80 datagrams were processed for analysis provided the potential target passed the following 

requirements: 

1) Acoustic intensity at least 10 dB above background noise level. The acoustic response of 

scatterers with an SNR <10 dB was ignored due to the increased possibility of interference 

in the acoustic scattering from background noise (see section 8.3 for calculation of acoustic 

background noise).  
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2) At least 10 cm of separation from other scatterers. Acoustic returns from scatterers closer 

than this cut-off could potentially cause signal interference, confounding the analysis of 

individual bubbles (see section 8.1). 

3) Identifiable acoustic response in at least three successive pings, which provides adequate 

data for in-situ bubble rise velocity calculation. 

4) Individual scatterers had to be part of a larger, vertically-oriented plume feature (Figure 3), 

to reduce the unintended sampling of fish or other targets.  

Of the original 80 seep features identified in the dataset, 49 seeps features contained resolvable 

individual scatterers fitting requirements 1-3. A total of 321 individual bubbles were identified to 

be part of a larger, vertically-oriented plume feature. Individual bubbles were sampled by 

identifying the point of maximum amplitude response in the acoustic time series in a succession 

of pings. From the point of maximum response, the data extracted for each bubble consisted of a 

position referenced to the transducer face, a range to bubble in meters, an acoustic time series of 

30 samples centered on the point of maximum amplitude response, and an electrical phase angle 

sampled at the point of maximum amplitude response (Figure 4). 
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Figure 4. Panel A shows the path of a single bubble through 23 pings with an inset showing bubble location in EK80 field of 

view. The crosses demarcate the center of the sampled data. Panel B plots the time elapsed since the first ping against the 

calculated bubble depth and the linear regression through the path of the bubble. Average rise velocity is the slope of the 

regression. Panel C plots the bubble location in the EK80 field of view as determined from the mechanical along and across 

track phase angle. Panel D shows TS curve data for the same single bubble plotted as a function of frequency. The black dashed 

line represents the average of all TS curves for this bubble, calculated from the mean of bubble TS curves across all pings at 

each frequency. 

The Fourier Transform of each bubble times series was taken to obtain the uncorrected frequency 

modulated acoustic response. The frequency modulated TS is then calculated by correcting for 

both beam pattern and transducer sensitivity by applying the appropriate correction factor, as 

determined by the electrical phase angle value of the bubble within each ping. The result is a set 

of N TS curves over the experimental frequency range, where N is equal to the number of 

observations of an individual bubble (Figure 4). Individual frequency-modulated TS curves were 

removed in instances where the electrical phase angle fell outside the limit of the correction factor 
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look-up table and when TS curves, upon visual scrutiny, indicated scattering did not originate from 

a single target (indications of scattering from multiple targets). For each record, an average TS 

curve was computed from all individual TS curves. 

To estimate the bubble radius, the average TS curve was compared against single bubble scattering 

model defined in section 2 and in Ainslie and Leighton [2009]. Acoustic scattering from a single 

spherical bubble is a function of bubble radius, temperature, salinity, pressure, ensonifying 

frequency, and gas composition.  Temperature and salinity values were taken from the CTD casts 

closest in time (see section 8.11), and pressure was determined from the observed depths in the 

acoustic data. Previous research in the ESAS region suggests that gas reservoirs are composed of 

biogenically-produced methane (Sapart et al., 2017); however, measurements made by Sapart et 

al. (2017) were from the Laptev Sea and maybe not be representative of study site in this research. 

There is a possibility that the gas source studied here contains additional higher-order hydrocarbon 

gases from a thermogenic gas source; however, given that bubble composition is difficult 

determine without addition data and thermogenic gas is primarily composed of methane (>99%), 

the composition of all bubbles was assumed to be 100% methane. The scattering model was run 

across the experimental frequency band (16-26 kHz) for bubble radii from 0.5 mm to 9 mm at 0.1 

mm increments. Using the method of least squares, the average TS curve was fitted to the model 

across the frequency band and the final bubble size was estimated from the mean of calculated 

bubble radii values across the frequency band (16-26 kHz).  

There is inherent bias in the bubble size calculation, stemming from the assumption that all bubbles 

are spherical. Marine seep bubbles have been observed to be increasingly non-spherical in shape 

with respect to increasing size (Ostrovsky et al. 2008; Leifer and Cullings, 2010; Wang and 

Socolofsky, 2015). However, the effects of bubble shape have not been quantified and so this bias 
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is left unaccounted for in the final bubble size estimation. The sources of quantified uncertainty in 

the bubble radius estimation include: error in the electrical phase angle calculation and the resulting 

uncertainty in applied beam pattern correction, acoustic scattering model sensitivity to real-time 

environmental conditions, poor spatial resolution of the CTD data, and surfactant coating. 

However, the magnitude of all these sources of error are dominated by the measurement error, 

stemming from the variability in the TS curves from ping to ping, which on average was measured 

at ±1.5 dB (Figure 4). This FM-TS variability would produce an expected uncertainty of 

approximately 0.33 mm radial uncertainty for a 1.5 mm bubble given the acoustic scattering 

definition in equation 2. A full derivation of the expected uncertainty, calculations of other 

uncertainty sources, and discussion of bubble radius uncertainty can be found in section 8.6.1.    

For this method, rise velocity is defined by the vertical component of the bubble motion through 

the water column. The path of every individual bubble observation was traced upwards through 

the water column in order to estimate the average bubble rise velocity over the short window of 

observation (<30 seconds at maximum). The bubble location in the water column was calculated 

by computing the bubble’s range from the transducer face, considering the bubble position in the 

transducer field of view and the vertical displacement of the vessel from resting conditions due to 

ship heave. Other sources of vessel motion during survey operations were minimal (typically <0.5º 

of pitch and roll); therefore, the effect of vessel attitude was disregarded in the bubble depth 

calculations. Bubble position in the transducer field of view, defined by mechanical angle off MRA 

(𝜃), is calculated from the electrical phase angle (𝜑) by account for transducer sensitivity:  

𝜃 =
𝑐

2𝜋𝑓𝑑
𝜑      (Eq. 4) 
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where c is the speed of sound, f is frequency, and d is the distance between the center of mass of 

the quadrants. The ES18-11 transducer sensitivity is defined by the manufacturer at the center 

frequency of 18 kHz. However, transducer sensitivity is a function of frequency, meaning the true 

sensitivity of the EK80 system is a weighted average of sensitivity values across the experimental 

frequency band (16-26 kHz) and without more information about the transducer design it is 

difficult to determine the correct weighting values for the frequency band. A sensitivity test was 

performed and the results indicate that the published transducer sensitivity can be used without 

adding a significant uncertainty to the final rise velocity calculations. See section 8.7 for full 

sensitivity test.  

The average bubble rise velocity across the observed time interval was computed from linear 

regression of the time and depth values extracted from pings for each bubble. For a given set of 

time and depth points the slope of the linear regression provides an estimate of rise velocity. 

Bubble rise velocity on a ping-to-ping basis shows variation from the regression due to physical 

processes associated with bubble rise (e.g. bubble wobble (Ostrovsky et al., 2008), shape (Padilla 

et al., 2017), and turbulence (Wang et al., 2016)). Other potential sources of error in the rise 

velocity estimate arise from survey equipment (e.g. split-aperture calculation, motion reference 

system, and computer time-stamp).  As with the bubble radius calculation, the magnitude of 

uncertainty from the measurement variation far exceeds any other source of uncertainty. A 

discussion of all the sources of uncertainty in rise velocity estimate can be found in section 8.6.2. 

5. BUBBLE PARAMETER MEASUREMENTS 

The final dataset consists of 321 individual bubbles (Figure 5). Bubbles were sampled throughout 

the water column in a variety of depths across the survey area; to facilitate comparison between 

data found at different depths all bubble data are plotted as altitude (height off bottom) rather than 
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depth. Bubble radii range from 0.68 mm to 8.14 mm with an average bubble radius of 2.58 mm 

and average uncertainty for each bubble-size measurement of 0.15 mm. The majority (>90%) of 

the sampled bubbles are between 1 to 5 mm in radius. The observed sizes are consistent with 

previously published bubble radii ranges from studies utilizing camera-based size estimation 

methods (Römer et al., 2012b; Leifer and MacDonald, 2013; Weber et al., 2014; Wang et al., 

2016).  

Uncertainty in estimates of bubble size increase with increasing bubble radius. When data are 

sorted into 1 mm wide bins the mean radial uncertainty nearly triples, from 0.12 to 0.34 mm, 

between the smallest and largest measured bubble radii, respectively. Variability of the frequency-

dependent TS does not appear to be a function of bubble radius (see Figure 4), mean variability 

across all bubble radii was estimated to be approximately 1.5 dB. The greater uncertainty 

associated with larger bubble radii resulted from the application of the acoustic scattering model. 

The backscattering cross-section of a single bubble is proportional to radius squared (Eq. 3); as 

radii increases, acoustic scattering values begin to converge (Figure 1) and there is a corresponding 

increase in uncertainty in the radius measurement for a fixed variability in TS.   

Measured bubble rise velocities range from 4.05 cm/s to 36.4 cm/s, with an overall average 

estimated uncertainty, for the rise velocity of any individual bubble, of 1.42 cm/s. To visualize the 

underlying distribution of rise velocity in the final dataset, the data were binned and averaged. 

Data were separated into 15 intervals with equal number of samples (N = 25), resulting in 

irregularly spaced bins, based on data density. Error values are estimated from the combined 

uncertainty of data falling in each interval. Figure 5 illustrates two trends in binned rise velocity:  

1) smallest bubble radii (<1.5 mm): rise velocity increases rapidly with increasing size, at 

approximately 20 cm/s*(mm)-1,  
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2) bubble radii >1.5 mm: the rate of increase in rise velocity with size is small, approximately 

1 cm/s*(mm)-1  

Additionally, Figure 5 shows the modeled predictions from Clift et al. (1978) of rise velocities of 

clean bubbles (with surfaces are free from surfactants) and dirty bubbles (with surfactants, surface 

impurities, which impede mass transfer rates) given the oceanographic parameters measured in the 

Herald Canyon region (see section 8.11). There is variability about the binned-average trend and 

deviation from the modeled rise velocity values, possibly due to differences in bubble shape or 

currents. Empirical rise velocities have similar trends to those measured in previous studies (Leifer 

and MacDonald, 2003; Sauter et al., 2006; Sahling et al., 2009; Romer et al., 2012; Wang et al., 

2016). The majority of measurements (> 75%) fall between modeled rise velocities of clean and 

dirty bubbles, suggesting that surfactants could be influencing bubble rise and fate in the water 

column.  
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Figure 5. The top panel shows the measured bubble radii and uncertainty values from Herald Canyon dataset and count of 

samples in radii bins centered at each mm. Bubble radii data are plotted against altitude (bubble height above the seafloor) in 

order to compare data from seeps with a wide range of seafloor depths Bubble altitude is calculated by subtracting bubble depth 

from the depth of the seafloor. The lower panel shows the measured bubble radii plotted against rise velocities and uncertainty 

values from Herald Canyon dataset. Binned averages are calculated from intervals of equal number of samples (N=25). Clean 

and dirty modeled rise velocities are based of Clift et al., 1978. 
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6. GAS FLUX ESTIMATION 

Given the high range resolution of the EK80 acoustic data individual bubbles were observed 

throughout the water column, providing a unique means to examine bubble fate and gas transport. 

Previously published studies (Weber et al., 2014; Wang et al. 2016) of seep gas flux have collected 

bubble data (bubble size distribution, rise velocity, bubble release rate/bubble density) via optical 

systems, sitting over a single seep for extended periods of time to accurately describe bubble 

parameters. This acoustic dataset provides snapshots, no longer than 45 seconds, of seep activity 

in a variety of geomorphological settings and depths across the study site (Figure 2). Here, we 

describe two methods to characterize gas flux from seeps in the survey area given the short duration 

of the acoustic records.  

6.1 Instantaneous gas flux estimation 

At any depth, we can calculate the instantaneous volumetric gas flux (𝑄𝑖𝑛𝑠𝑡) by multiplying the 

number of bubbles per unit depth by the average volume and the average rise velocity. 𝑄𝑖𝑛𝑠𝑡 

provides an integrated measurement of the gas transport in the water column during the short time 

of observation and, with the assumption that seep activity is constant, could be extrapolated to a 

longer time frame.  Because the observations of bubble size and rise velocity are matched, we 

calculate the average of the product of volume and rise rate, rather than the product of the averages, 

to account for the potential covariance in the two quantities. Due to the scarcity of the observations 

in this dataset, the average is computed over the entire vertical extent of the seep, resulting in 

𝑄𝑖𝑛𝑠𝑡 =
𝑁

𝑧
[

1

𝑁
∑ (

4

3
𝜋𝑎𝑖

3)𝑣𝑖
𝑁
𝑖 ]    (Eq. 5) 

where the bracketed quantity represents the average product of bubble volume (
4

3
𝜋𝑎𝑖

3) and rise 

velocity (𝑣𝑖) and N/z estimates of the number of bubbles per unit depth. 
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The uncertainty in 𝑄𝑖𝑛𝑠𝑡 is estimated directly from individual bubble measurement uncertainties 

in bubble radius and bubble rise velocity, as described in section 5. There is an unaccounted-for 

bias in 𝑄𝑖𝑛𝑠𝑡 given that flux can only be measured from observed individual bubbles. In many 

cases the bubble populations of seep features are not fully sampled when individual bubbles cannot 

by distinguished; this is most often in cases where bubble release rates are high and bubbles rise 

closer to each other than the vertical resolution of the EK80. In such cases the instantaneous 

observed gas flux provides an estimate of a lower bound of gas flux, rather than an estimate of the 

total volumetric gas flux. Additionally, there is a depth dependence to both bubble size and rise 

rate. In the case of bubbles decreasing in radius during ascent, averaging flux over the vertical 

extent of the seep biases the flux estimate at the top and bottom of the seep, high and low 

respectively. The opposite effect would be seen for bubbles growing with rise through the water 

column. 

The resulting volumetric flux measurements range from 3.3 × 10−10 𝑚3

𝑠
 to 2.5 × 10−7 𝑚3

𝑠
, with a 

mean volumetric flux of 2.8 × 10−8 𝑚3

𝑠
 (Figure 6., Table 1). The majority of the seeps (~85%) 

have a volumetric flux lower than 5.0 × 10−8 𝑚3

𝑠
, although in many cases low flux estimates are 

due to under sampling of bubble features in the water column. For example, seep features 

T063136_1 and_2 have reported volume flux estimates of 1.4 × 10−9 𝑚3

𝑠
 and 4.7 × 10−9 𝑚3

𝑠
 

respectively; however, investigation of the EK80 echogram clearly shows very high gas ebullition 

rates, where individual bubbles are not distinguishable. Of the 38 seep features with sampled 

individual bubbles approximately half seeps are under-sampled, resulting in low flux estimates 

(see section 8.4 for seep echograms).  
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Figure 6. Yearly volumetric gas flux estimates for all sampled seep in the Herald Canyon dataset. Black diamonds denote 

instantaneous observed gas flux estimates and red diamonds indicate gas flux estimates calculated from inferred seep parameters. 

Seeps are group by geomorphological clustering. 

Table 1. Estimated yearly volumetric gas flux rates and methane mass flux rates to atmosphere as derived from both flux 

methodologies. 

 Min Q (
𝑚3

𝑦𝑟
) Max Q (

𝑚3

𝑦𝑟
) Mean Q (

𝑚3

𝑦𝑟
) Total HC Q (

𝑚3

𝑦𝑟
) 

Direct estimate 0.010 ∓ 0.0072  7.7 ∓ 2.0 0.87 ∓ 0.19 33 ∓ 7.1 

Inferred parameter 

estimate 
0.11 ∓ 0.068 2.8 ∓ 2.0 0.70 ∓ 0.48 27 ∓ 18 
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6.2 Inferred parameter gas flux estimation 

For a given seep feature, the instantaneous observed volume flux provides a measure of flux over 

the period of observation into but likely does not capture a complete picture of flux as the 

distribution of bubble sizes emanating during the short time period may not fully sample the seep’s 

true distribution of bubble sizes. A well-defined seep bubble size distribution (BSD) provides a 

more complete estimate of gas flux over longer time frames. Volumetric gas flux can be estimated 

using parameterized values for both BSD and rise velocity as given by (Weber et al., 2014): 

𝑄𝑖.𝑝. =
𝑁

𝑧
∫

4

3
𝜋𝑎3𝜌(𝑎)𝑣(𝑎)𝑑𝑎

𝑎𝑚𝑎𝑥

0
   (Eq. 6) 

where the flux, referred to as the inferred parameter volume flux (𝑄𝑖.𝑝.), is calculated for a seep 

with total number of observed bubbles (N), water column depth (z), and a BSD (𝜌(𝑎)) and rise 

velocity (𝑣(𝑎)) defined as functions of bubble size. N and z are calculated identically to the 

instantaneous observed gas flux equation and the binned rise velocity data (Figure 5) was used to 

estimate the bubble size dependent rise velocity (v(a)). 

BSD reported in previous literature are derived from datasets containing between 200 to >700 

measurements (Römer et al., 2012b; Weber et al., 2014; Wang et al., 2016). Given the snapshot 

nature of the present dataset it is not possible to determine a BSD for a single seep with the data 

density quoted in previous literature; however, if bubble data from multiple seeps are grouped 

together higher data density can be established and a BSD for a general area could be estimated. 

By determining a regional BSD and employing the inferred parameter volume flux equation, a 

regionally generalized volume flux estimate can be employed for all sampled seep features. 

To increase bubble data density, seeps were grouped by morphological setting within the Herald 

Canyon survey site with the underlying assumption that these seeps should be occurring in a 
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similar morphological regime with analogous bubble release mechanism, gas reservoir, and 

environmental conditions. Three morphological regimes were identified: the shallowest, cluster 1 

seeps, are found in the shallow morphological high just west of the submarine canyon; cluster 2 

on the flat-lying shelf east of Herald Canyon; and cluster 3 along the canyon edges. The grouping 

resulted in three seep clusters (Figure 7). 
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Figure 7. Spatial distribution of seep clusters in Herald Canyon, water column bubble size distributions plotted against altitude of 

the seep clusters, distributions of binned bubble size data, and gas flux as a function of bubble size. Cluster 1 bin centered at 25.2 

m has an N = 180 and bubble water column density of 5.1 bubbles/m, Cluster 2 bin centered at 16.6 m has an N = 32 and bubble 

water column density of 1.1 bubbles/m; and Cluster 3 bin centered at 19 m has an N = 109 and bubble water column density of 2.1 

bubbles/m.  
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To estimate a BSD for each cluster, the bubble size data was grouped into bins of 5-meter 

thickness, starting at the altitude of the shallowest bubble sample. BSD are traditionally determined 

from data collected at a single altitude, most commonly the seafloor, but the data density available 

here makes this prohibitive. The altitude bin with the largest sample size was selected and the 

resulting bubble data was fitted to a Rayleigh distribution (Figure 7). Previous seep studies (Römer 

et al., 2012b; Weber et al., 2014; Wang et al., 2016) have suggested various distribution fittings to 

describe bubble size data including normal, lognormal, and Rayleigh.  

Figure 7 illustrates both the source data and the initial fitted Rayleigh distributions from the water 

column data for each cluster. The resulting Rayleigh distributions for cluster 1 and cluster 3 passed 

a KS test at a 95% confidence interval; cluster 2 distribution did not pass the KS test for lognormal, 

normal or Rayleigh distributions due to low data density, but for the sake of method consistency 

the Rayleigh distribution of cluster 2 was kept.  

The fitted distributions were projected down to the seafloor, where bubble composition is best 

defined, by employing the Texas A&M Oilspill Calculator (TAMOC) bubble dissolution and 

transport model published in Gros et al., (2016) and Gros et al. (2017). The TAMOC model 

computes the transport and fate (e.g. size and composition changes) of individual bubbles rising 

through the water column, given a set of source conditions (e.g. water column temperature and 

salinity profiles, dissolved gas concentrations, initial depth). Bubble composition exiting the 

seafloor was assumed to be pure methane, given Sapart et al. (2017) reported that gas bubbles in 

the ESAS are mainly composed of biogenic methane (>99%) from the breakdown of organic 

matter in the sediment; although, as noted in section 4 there is uncertainty in this assumption given 

the spatial separation between the Sapart et al. (2017) measurements and Herald Canyon methane 

reservior. Temperature, salinity, dissolved gas profiles from SWERUS cruise activities were input 
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to the TAMOC model. The model was run for bubbles radii from 0.375-8.0 mm at 0.125 mm 

intervals with the measured oceanographic parameters from Herald Canyon. A complete 

description of the TAMOC model input and output parameters and runtime information can be 

found in section 8.12. Using the fitted Rayleigh distributions from data in the water column (Figure 

7), a seafloor BSD was estimated for each cluster by accounting for the model-predicted change 

in bubble-size with depth (i.e., the model was used to back-project the BSD to its seafloor-source 

size distribution). The seafloor distributions are skewed to the right of the water column 

distribution (larger mean bubble size).  

The Qi.p. at the seafloor was evaluated by numerically integrating (Eq. 6), using the cluster-specific 

seafloor BSD (𝜌(𝑎)) and the binned rise velocity (𝑣(𝑎)) shown in Figure 5. The integration points 

were chosen to match the resolution of the rise velocity dataset, as it was the most coarsely 

sampled. The integrands of (Eq. 2) are depicted in Figure 7, illustrating the importance of large (a 

>3 mm) bubbles in the final volumetric gas flux estimates; while small (a <2.5 mm) bubbles 

contribute minimally to the overall volumetric flux and could be disregarded. The resulting volume 

flux measurements range from 3.5 × 10−9 𝑚3

𝑠
 to 8.8 × 10−8 𝑚3

𝑠
, with a mean volume flux of 2.2 ×

10−9 𝑚3

𝑠
 (Figure 6., Table 1). 

The standard error in fitting the Rayleigh parameter to the bubble data was propagated to an 

uncertainty in the  𝜌(𝑎) term, which was combined with the estimated rifse velocity uncertainty 

from the binned data (Figure 5) to generate an uncertainty in the flux estimates (Table 1). 

6.3 Methane mass flux estimation 

Many seep studies aim to quantify methane gas transport from a seep system to the upper ocean 

and/or atmosphere. Methane gas flux can be computed for a single seep system from the estimated 
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seafloor volumetric gas flux by determining the initial composition of gas in the bubble and 

incorporating a gas transport model (e.g. McGinnis et al., 2006; Socolofsky et al., 2015) to 

understand the fate of bubble-bound methane during transport. The volumetric flux as estimated 

by the inferred parameter method was incorporated into the methane gas flux estimate because it 

represents the gas flux from the seafloor; as opposed to the instantaneous observed gas flux 

estimate which measures gas flux throughout the water column where bubble composition is more 

difficult to estimate. 

Assuming the bubbles exit the seafloor as pure methane, the molar mass flux of methane can be 

computed by modifying the inferred parameter volumetric gas flux equation to the following: 

𝑄𝐶𝐻4 (
𝑔

𝑠
) =

𝑁

𝑧
∫ 𝑚(𝑎)𝜌(𝑎)𝑣(𝑎)𝑑𝑎

𝑎𝑚𝑎𝑥

0
   (Eq. 7) 

Where 𝑚(𝑎) denotes the number of grams of methane in a bubble of radius a, at a given depth as 

output from the TAMOC model. The mass flux of methane at the seafloor and at the sea surface, 

analogous to methane transport to the atmosphere, can be computed from the 𝑄𝐶𝐻4 estimation 

(Figure 8).  

Methane mass flux transported by individual seeps to the atmosphere was measured at a minimum 

of 2.1 × 10−6 g/s (67 g/year) and maximum of 6.3 × 10−5 g/s (2.0 × 103g/year). The mean 

methane mass flux for all observed seep features in the Herald Canyon area was estimated at 1.6 ×

10−5 g/s (500 g/year) and the combined methane flux to the atmosphere from all seeps is estimated 

to be 6.0 × 10−4 g/s (19 kg/year). This figure could be extrapolated to the larger survey area, by 

assuming the seep activity captured during survey operations is typical for the region. Given that 

the total area covered during the SWERUS-C3 survey of Herald Canyon was approximately 6 
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km2, for the total 9000 km2 region depicted in Figure 2, the yearly methane flux would be 

approximately 2.9 × 104 kg/year. 

 

Figure 8. Inferred seafloor bubble size distributions (blue squares), yearly seafloor methane mass flux (black diamonds), and yearly 

atmospheric methane mass flux (black circles) for seep clusters.  

7. DISCUSSION 

The high vertical resolution and frequency response of the wideband (16-26 kHz) acoustic 

measurements have allowed us to unambiguously identify individual gas bubbles rising through 

the water column data. Individual bubble radii and rise rates were estimated from the acoustic data 
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with the aid of well documented split-beam echosounder calibration and split-aperture processing 

techniques (Burdic, 1991; Demer et al., 2015). The measurements of bubble radii and rise velocity 

agree well with previous studies of seep systems in different environments (Leifer and MacDonald, 

2003; Sauter et al., 2006; Sahling et al., 2009; Romer et al., 2012; Weber et al., 2014; Wang et al., 

2016). In addition to the direct estimation of bubble parameters, the method outlined here provides 

several pathways to measurements of volumetric gas flux and methane mass flux, all of which are 

achievable without ground-truthing by optical data collection. 

The volumetric gas flux and methane mass flux estimated in this research are consistently lower 

than flux reported in previously published studies (Shakhova et al., 2010; Weber et al., 2014; Leifer 

et al., 2017). This is not surprising as both our estimates of volumetric gas flux and subsequent 

estimates of methane flux represent lower bounds of the true regional flux. This is because the 

fundamental measurement of bubble density (N/z, Eq. 5-7) was calculated from the sampled 

individual bubbles; however, in many seep features there are additional bubbles in the water 

column that were not sampled. These regions represent areas of higher bubble density, where the 

vertical resolution of the EK80 was not high enough to differentiate between bubbles. 

Additionally, more than half of all seep features identified in the survey region contained no 

distinguishable individual bubbles and were not sampled. These seeps likely represent higher flux 

rates than sampled seeps, given that individual bubbles were not identifiable in the seep plume. 

Both methods of regional volumetric gas flux used here, as well as corresponding estimates of 

methane flux assume that the SWERUS-C3 observations were representative of seep activity 

throughout the year, without considering any temporal or regional variability in seep activity 

(Greinert, 2008; Kannberg et al., 2013; Jerram et al., 2015). Repeat surveys of the region may 
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reveal continuation of seeping at some sites, cessation of seeping at other sites, and seeping at new 

sites.  

The transport of methane from the seafloor to the atmosphere has a strong dependence on bubble 

size; only larger bubbles (>3.0 mm radius) transport significant amounts of methane to the 

atmosphere, due to high volume-surface area ratios and high initial volume of methane gas upon 

release (Figure 8). Although there is low data density in our data at bubble radii above 3.5 mm, it 

is clear for clusters 1 and 2 (depths between 50-70 meters) that maximum methane transport arises 

from bubbles with radii between approximately 3.75 and 4.0 mm; while for cluster 3, methane 

transport increases with increasing radius to the largest radii sampled with no peak value. At all 

depth intervals bubbles smaller than 2.5 mm in radius transport no methane to the atmosphere, 

either due to complete dissolution in the water column or mass-transport and could be ignored 

from any methane flux estimation. However, the short-term data records used in this research are 

unlikely to fully describe the long-term ebullition nature of the seep systems. Given an unknown 

BSD, it is likely short acoustic records will only identify the most common bubble sizes, in the 

case of the seeps observed between 1.5-3.0 mm in radius. This leaves the tail ends of the 

distribution under-sampled, generally leading to an underestimation of volumetric gas flux, as the 

largest bubble radii have not been accounted for. In cases where large radii bubbles are identified 

in short records, they make up a larger proportion of the BSD then would be expected from 

previously published research (Weber et al., 2014; Wang et al., 2016). Increasing the observational 

period of specific seep feature, will better describe the BSD, as well as define the variability (if 

any) in flux. 

Within the larger framework of both the global estimation of bubble-mediated methane transport, 

this method will be an effective addition to research operations, as the majority of ocean research 
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vessel are equipped with acoustic equipment capable of producing wideband signals with only 

minor modifications or upgrades. Flux estimates can be made over large areas, requiring nothing 

more than vessel transit over a seep site, bypassing the need to deploy time-consuming and 

expensive optical systems. Wideband data would be most successful in regions where individual 

bubbles can be identified, characterized by environments where gas ebullition originates from 

individual point sources at a slow rate. In regions of rapid bubble ebullition, where the vertical 

distance between bubbles is minimal, or areas with multiple ebullition sites in close spatial 

proximity (e.g. seep fields), the vertical range resolution of the system we used may not be high 

enough to break the acoustic ambiguity between multiple scatterers; in these environments, 

broader band systems will be required. The acoustic identification of bubbles (e.g. successful 

identification of fish or other acoustic scatters) will always contain some measure of ambiguity 

without optical verification and the best practice to insure viable bubble parameter data is ergodic 

measurements.  

8. APPENDICES 

8.1 Acoustic scattering from single vs multiple bubble scatterers 

The fine vertical range resolution afforded by the approximately 10 kHz of bandwidth from the 

EK80 WBT allow for discrimination of single bubble targets in the echogram. The method 

presented here defined the bubble separation at a minimum of 18 cm to prevent signal interference 

from other scatterers. However, empirical data shows individual bubbles are identifiable at even 

closer vertical proximity. Figure 9 illustrates the acoustic response of two bubble scatterer in close 

vertical proximity, whose paths diverge due to different rise velocities.  

The initial acoustic response, when the bubbles positions are closer than to range resolution of the 

EK80 WBT, is indicative of deconstructive interference with a nodal structure of peaks and nulls. 
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As the bubbles rise, the vertical separation grows and the acoustic responses of the individual 

bubbles become clearly distinct. In this example, the bubbles were distinguishable at less than 9 

cm apart in ping 115.  

 

Figure 9. Acoustically tracking the ascent and separation of two bubble tracers. The top panel shows the zoomed view of the series 

of pings where the two bubbles separate. Target time series were sampled in a series of successive pings (point of maximum acoustic 

intensity is marked by cross). The first two samples time series (ping 113 and 114) include the additive acoustic response of multiple 

bubbles. The bottom panel shows the frequency modulated target strength of each sampled time series. 

To verify the differences in acoustic scattering response of individual gas bubbles vs multiple 

bubbles in close proximity, analytical modeling of a gas filled sphere was employed (Anderson, 

1950; Jech et al., 2015). A linear-frequency modulated signal was produced using the same signal 

configuration as EK80 field data. The signal was convolved with combined impulse response of 

ocean environment and target to predict the acoustic response. The ocean environment was defined 

by the CTD profile data taken during SWERUS C-3: 2ºC, 30 PSU, and 50 m depth. The bubbles 

were defined as 100% methane in composition and the mean bubble size of the EK80 dataset, 2.5 

mm, was utilized. Gaussian noise was added to the modeled system.  

Bubble scatterers were separated by varying distances and the FM acoustic response of the closer 

of the two bubbles was measured (Figure 10).  
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Figure 10. Locations and interactions between two bubble targets. First bubble (plotted in green) placed at 6.8 meters in range 

from transducer, second bubble placed at 5m (yellow), 3.75 m (magenta), 1.1 m (red), 20 cm (blue), and 3 cm (cyan). 

There is are two clear FM acoustic scattering patterns in Figure 9. The first, is a relatively constant 

scattering intensity across the frequency band, with an overall negative slope due to frequency 

dependent acoustic absorption; the second, is a nodal structure defined by peaks and nulls. The 

secondary structure occurs when the acoustic responses of the two bubbles interacting with 

constructive and deconstructive interference. 

8.2 Wideband split-beam echosounder calibration 

On September 12, 2014 prior to survey operations, the EK80 WBT was calibrated for transducer 

sensitivity and beam pattern effects following the standardized methodology defined in [Demer et 

al., 2015; Foote et al., 1987].  

A standard 64 mm copper calibration sphere was suspended in the transducer field of view (FOV) 

on a monofilament line (Figure 11). Calibration procedures were conducted while Oden drifted, 

with all propulsion systems secured, to minimize unnecessary ship noise in the data. A 
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conductivity-temperature-depth (CTD) profile was taken immediately before calibration 

procedures commenced to characterize the oceanographic and sphere conditions. Sphere location 

was controlled by manual operation of a series of reels on Oden’s lower deck while operators 

monitored the sphere location in the echosounder FOV through the Simrad EK80 acquisition 

software. Calibration data consisting of a time series of acoustic scattering by the calibration sphere 

were collected with the EK80 using the expected operational survey pulse length and power 

settings. 

 

Figure 11. Illustration of EK80 calibration procedure set up on the icebreaker Oden. 

A TS model for the calibration sphere was calculated with a MATLAB script provided by [D. Chu, 

personal communication] using water temperature of 6 C and salinity of 30 PSU from the CTD 

cast at the sphere depth of 26 m. Acoustic absorption was accounted for utilizing oceanographic 

data from the CTD cast and an absorption model from [Francois and Garrison, 1982].  
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Optimally data would have been collected at the echosounder MRA and throughout the FOV to 

completely characterize echosounder beam pattern. Unfortunately sphere positioning was 

complicated by local currents and sphere deployment procedures on a large vessel. These 

conditions reduced the coverage of calibration data to one quadrant of the echosounder FOV 

(Figure 12). The beam pattern of the ES18-11 transducer was assumed to be radially symmetric 

with electrical phase angles from 0-90º.  

The electrical phase angle data derived from split-aperture processing defined in [Burdic, 1991]. 

The measured acoustic response of the calibration sphere was observed as a function of electrical 

phase angle and frequency to characterize the echosounder beam pattern. For each frequency 

between 16-26 kHz the echosounder sensitivity was described with third-degree polynomial fit.  

Assuming radial symmetry, a TS correction factor look-up table was produced from the difference 

between the modeled TS of the sphere and field observations across the ranges of frequency and 

electrical phase angle (Figure 12). The limit of the correction factor look-up table is the two-way 

3 dB beam width corresponding to an electrical phase angle of 90º and a mechanical angle of 5.5º 

from the MRA. The derived offsets represent the difference between the sound pressure level (SP) 

observed at a location off the MRA in the SBES FOV and the TS of the sphere. The offset at each 

angle and frequency provides the necessary corrections for both beam pattern effects and 

transducer sensitivity in subsequent measurements of TS for targets throughout in the FOV. 
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Figure 12. The final calibration sphere location data is plotted in the left panel. The right panel shows the final calibration offset 

look-up table produced from field calibration activities. Offset value, given in decibels, were added to acoustic sound pressure data 

to account of beam pattern and transducer sensitivity effects.  

8.3 Acoustic background noise intensity 

The frequency-modulated acoustic background noise intensity was calculated for each EK80 file 

to determine SNR on a file-by-file basis. The noise was calculated from a Fourier transform of 

the average acoustic time series of 80 samples in three successive ping records. The frequency 

modulated noise for each file was saved for comparison against individual bubbles data (Figure 

13). 

The mean of the FM acoustic background noise TS and bubble TS was calculated over the 

experimental frequency band (16-26 kHz). The mean bubble TS must be at least 10 dB higher 

then mean background noise. 
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Figure 13. EK80 FM acoustic response of a single bubble (blue and black line) and acoustic background noise (red line). 
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8.4 Seep files: sampled 

 

 

Figure 14. Sampled seep files starting at top left: T000559, T010336, T014257, T042631_1 
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Figure 15. Sampled seeps: Sampled seep files starting at top left: T043037_1, T063136_1, T063136_2, T063136_3 
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Figure 16. Sampled seep files starting at top left: T063822, T065828_1, T065828_2, T071055 
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Figure 17. Sampled seep files starting at top left: T091020_1, T091020_3, T091439_1, T091439_3 
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Figure 18. Sampled seep files starting at top left:  T091439_7, T091439_9, T091439_13, T100624 
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Figure 19: Sampled seep files starting at top left: T171859, T172318_1, T172318_3, T172318_4 
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Figure 20. Sampled seep files starting at top left: T173156_1, T174032_1, T174032_2, T175325 
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Figure 21. Sampled seep files starting at top left: T222721_1, T222271_2, T223151_1, T223151_3 
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Figure 22. Sampled seep files starting at top left: T223151_5, T223620, T224048, T225859 
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Figure 23. Sampled seep files, starting at top left: T234343_2, T234343_3 
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8.5 Seep files: not sampled 

 

Figure 24. Seep files not sampled: T023550, T042631_2, T043037_2, T043037_3 
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Figure 25. Seep files not sampled: T043037_3, T04307_4, T043441, T063136_2 
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Figure 26. Seep files not sampled: T071455, T071903, T091020_2, T091439_2, T091439_4 
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Figure 27. Seep files not sampled: T091439_4, T091439_5, T091439_6, T091439_8 
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Figure 28. Seep files not sampled: T091439_10,  T091439_11, T091439_12, T095942 
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Figure 29. Seep files not sampled: T101306, T123404_1, T123404_2, T150133_1 
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Figure 30. Seep files not sampled: T150133_2, T150133_3, T150133_4, T150133_5 
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Figure 31. Seep files not sampled: T171445, T172318_2, T172318_5, T173156_2 
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Figure 32. Seep file not sampled: T174907_1, T174907_2, T174907_3, T223151_2 
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Figure 33. Seep files not sampled, starting at top left: T223151_4, T224955_1, T224955_2, T224955_3 
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Figure 34. Seep files not sampled, starting at top left: T234343_1, T234343_4 
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8.6 Uncertainty 

8.6.1 Bubble radius 

Expected uncertainty estimation derivation: 

𝜎𝑎 =
𝑑𝑎

𝑑𝜎𝑏𝑠
𝜎𝜎𝐵𝑆

    (Eq. 8) 

𝑇𝑆 = 10 log 𝜎𝐵𝑆   (Eq. 9)  

𝜎𝐵𝑆 =
𝑎2

[(
𝑓𝑟
𝑓

)
2

−1]+𝛿2
   (Eq. 10) 

Outside resonance𝑓𝑟 ≪ 𝑓: 

∴ (
𝑓𝑟

𝑓
)

2

= 𝑠𝑚𝑎𝑙𝑙   (Eq. 11) 

∴ [(
𝑓𝑟

𝑓
)

2

− 1] + 𝛿2 >>> 1 + 𝛿2  (Eq. 12) 

∴ 𝜎𝐵𝑆 =
𝑎2

1+𝛿2    (Eq. 13) 

𝑑𝜎𝑏𝑠

𝑑𝑎
=  

2𝑎

1+𝛿2    (Eq. 14) 

If 𝛿2is small: 

𝑑𝑎

𝑑𝜎𝑏𝑠
=  

1

2𝑎
    (Eq. 15) 

𝜎𝑎 =
𝑑𝑎

𝑑𝜎𝑏𝑠
𝜎𝜎𝐵𝑆

=
𝜎𝜎𝐵𝑆

2𝑎
    (Eq. 16) 

Nominal uncertainty estimate for 1.5 mm bubble with 1.5 dB variability about the average TS 

curve: 
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𝑇𝑆𝑎𝑣𝑒 =  −55 ∓ 1.5 𝑑𝐵, 𝜎𝜎𝐵𝑆
= 1 × 10−6 

𝜎𝑎 =
1 × 10−6

2 × 0.0015
= 0.33 𝑚𝑚 

The average estimated uncertainty in the bubble radius measurement, as determined from the ping-

to-ping variability in TS curve, is approximately 0.14 mm. The average estimated uncertainty 

generally increases with increasing bubble radius (Figure 37). The ping-to-ping variability in TS 

curves does not show any clear size dependence, but as bubble size increases there is increasingly 

smaller separation between TS curve magnitude. The result in an increased uncertainty at larger 

bubble sizes for a given amount of variability ping-to-ping in measured TS curves.  

 

Figure 35. Individual bubble samples sorted by radius and plotted with calculated uncertainty (red) and running average 

uncertainty (black). 
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Table 2. Estimated mean uncertainty in the bubble radius and rise velocity measurements for the binned dataset 

Bubble radius (mm) <1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0 5.0-6.0 6.0-7.0 >7.0 

N 15 109 97 63 20 9 7 1 

Radius: 𝜎𝑎  0.12 0.11 0.17 0.21 0.27 0.27 0.25 0.34 

Rise velocity: 𝜎𝑣  0.96 1.45 1.46 1.45 1.40 1.57 1.25 0.65 

As stated in section 5, the magnitude of the estimated uncertainty due to ping-to-ping variation far 

outweighs any other source of uncertainty in the bubble size calculation. However, there is 

unresolved bias in the estimation of bubble radius stemming from assumptions made in modeling 

the acoustic backscattering of a single bubble as mentioned in the introduction: 

1) the ensonifying wavelength is large compared to the bubble size (ka<<1); 

2) the only mode of bubble pulsation considered is radial; 

3) the bubble is spherical in shape; and  

4) the bubble is free from any coating (“clean”).  

Assumptions 1 and 2 do not introduce any major error in the estimation of bubble size. The shortest 

wavelength of the experimental frequency band (16-26 kHz) is approximately 60 mm, large 

compared to the largest bubble identified (7.8 mm) and the higher modes of bubble pulsation have 

an negligible effect on the re-radiation of sound when ka<< 1 (Strasberg, 1956). However, there 

is bias introduced by assuming all bubbles are spherical in shape. Marine seep bubbles have been 

observed to be increasingly non-spherical in shape with respect to increasing size (Ostrovsky et al. 

2008; Leifer and Cullings, 2010; Wang and Socolofsky, 2015). The magnitude of acoustic 

backscattering is likely dependent on the on angular position of bubble in reference to transducer 

face. As bubble orientation changes during rise acoustic scattering measurements will exhibit 
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natural variability. The effects of bubble shape have not been quantified and so this bias is left 

unaccounted for in the final bubble size estimation. 

In addition to unresolved bias introduced by assuming spherical bubble shape, the acoustic 

scattering model assumes all bubbles are “clean” (i.e. free from surface coating). Although the 

Herald Canyon region is too shallow for hydrate coating and there is no indication of oil in the 

region, biological surfactants could be present on some of the sampled bubbles. It is possible that 

the presence of surfactants on a bubble could influence the acoustic scattering intensity but without 

optical observations it is difficult even to verify the presence of surfactants and this bias is 

unaccounted for in bubble size estimations.    

The model for acoustic scattering from a bubble is some function oceanographic parameters 

(temperature and salinity) and bubble parameters (gas composition). Oceanographic parameters 

are defined by the nearest-in-time CTD profile. Although CTD profiles were taken at minimum 

every 12 hours, the variability in the watercolumn thermohaline structure cannot be completely 

defined and it is likely that for a given bubble location thermohaline structure is somewhat different 

than the closest-in-time CTD profile. Previous research in the ESAS has suggested that bubbles 

originate from a biogenic source of methane and when released from the seafloor should be nearly 

100% methane gas (Sapart et al, 2017). However, as bubbles rise through the watercolumn gas 

transfer across the bubble-water interface alters their composition based on the local 

concentrations of dissolved gases in the ocean. Bubble composition diverges from 100% methane 

with increasing altitude off the seafloor.  

Sensitivity tests of the acoustic model indicated that changes in gas composition has no discernable 

effect on expected TS values in the experimental frequency band at given study depths. Additional 

sensitivity testing for temperature and salinity changes up to 25% (+/-1.5°C and +/-7.5 PSU) 
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showed no appreciable changes in TS values in the experimental frequency band at given study 

depths.  

In the application of the EK80 WBT calibration, to account for beam pattern effects, the location 

of the bubble in the beam is determined via split-aperture phase differentiation. Any error in 

positioning the bubble would lead to an incorrect calibration offset value, resulting in some 

uncertainty in the TS measurement and subsequent uncertainty in the bubble size measurement. 

The estimated uncertainty of the split-aperture calculation of mechanical angle of a target from the 

MRA is given in [Burdic, 1991]: 

𝜎𝜃
2 =

𝜎𝜑
2

𝑘𝑑
,    (Eq. 17)  

where kd is the transducer sensitivity, defined by Simrad as 17.37 and 𝜎𝜑
2 is the uncertainty in the 

electrical phase angle calculation, given as: 

𝜎𝜑
2 =

𝐸[𝑁2]

𝐴2 ,    (Eq. 18)  

where E[N2] is an estimation of the background noise and A2 is the amplitude of the measured 

signal. The lower the SNR, the larger the error in the split-aperture calculation; low SNR can be a 

result of a weakly backscattering target and/or increased background noise. The minimum SNR 

for sampled bubbles was 10, as defined in section 4.1. This SNR gives an approximate estimated 

uncertainty of 0.8°, which corresponds to a change in calibration offset of less than 1 dB at 

maximum. 
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8.6.2 Rise velocity 

The average estimated uncertainty in the bubble rise velocity measurements is approximately 1.6 

cm/s. This value is determined from the variation of the ping-to-ping measurements of bubble 

vertical position and time from a linear regression.  

 

Figure 36. Individual bubble samples sorted by rise velocity and plotted with calculated uncertainty (red) and running average 

uncertainty (black). 

The estimated uncertainty in the split-aperture calculation, discussed in the section above, is 

approximately 0.8°. The position of the bubble in the transducer FOV, in degrees from the MRA, 

was used in the calculation of bubble depth. A small amount of uncertainty is introduced into the 

bubble depth value from uncertainty in the bubble position. However, after propagating this 

uncertainty through to the final bubble depth, it was found to be minor in comparison to other 

courses of uncertainty and was disregarded. 
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In addition to the uncertainty from the split-aperture calculation, there is ambiguity in range of the 

bubble from the transducer face. Bubble range is determined from the location of the maximum 

amplitude sample in the bubble record; however, the length of the acoustic response is a function 

of the EK80 WBT pulse length and bandwidth (match filtering process). The average bubble 

record is approximately 18 cm, which introduces a vertical ambiguity of +/- 9 cm into the bubble 

range measurement. All bubble scatterers are sampled in the same manner, providing a relative 

position ping-to-ping to reduce bias from this ambiguity. 

Vessel heave motion accuracy is defined by the manufacturer as 2 cm and time accuracy as 0.001 

s. Neither produced a meaningful source of uncertainty in final calculations.  

Rise velocity is dependent on the presence of surfactants on the bubble surface; a bubble without 

any surfactants will rise much faster than an equivalently sized dirty bubble (Leifer and Wilson, 

2004). Without visual observations it is difficult to verify the presence or absence of surfactants; 

however, the binned average rise velocity trends suggest bubbles are not entirely clean, as they fall 

between the clean and dirty modeled curves. 

8.6.3 Acoustic ambiguity 

In addition to the sources of uncertainty in the calculation of bubble size and bubble rise velocity, 

there will always be ambiguity in the acoustic identification of single bubble scatterers. In the 

watercolumn, there are many targets that scatter sound and certain targets can appear very similar 

to single bubbles. Some fish have swim bladders which are filled with gas and can be particularly 

challenging to differentiate acoustically from gas bubbles. 

Barring the effects of an underlying current gas bubbles will have an upward trajectory through 

the watercolumn. Fish were identified in the Herald Canyon dataset by their downward or 
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unmoving position with increasing ping number; this method does not account for fish moving 

upwards through the watercolumn at similar rates of gas bubbles. Over the short time-scales 

observed in this dataset gas bubbles are not changing dramatically in size or rise velocity. 

Variations in rise velocity can also be indicative of a fish target 

8.6.4 Bubble size distribution 

The bubble size distribution (BSD) was estimated from a Rayleigh distribution fitting of the binned 

data. Rayleigh distribution (𝜌(𝑎)) is defined by: 

𝜌(𝑎) =  
𝑎

𝛽2 𝑒−𝑎2 (2𝛽2)⁄     (Eq. 19) 

where a is the effective bubble radius and β is the Rayleigh parameter. For the calculation of flux 

(Q) the uncertainty in ρ(a) defined by the uncertainty in fitting of the distribution. Rayleigh 

distributions are defined by a single parameter, β for which a standard error (𝜎𝛽) is defined. Given 

the standard error in β, the uncertainty in 𝜌(𝑎) is defined as: 

𝜎𝜌(𝑎) = |
𝑑𝜌(𝑎)

𝑑𝛽
| 𝜎𝛽 = (−

2𝑎𝛽2−𝑎3

𝛽5 𝑒−𝑎2 2𝛽2⁄ ) 𝜎𝛽 (Eq. 20) 
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8.7 Transducer sensitivity 

Bubble rise velocity calculation requires a mechanical angle to calculation bubble location in 

beam ping-to-ping (Figure 37). The mechanical angle of the bubble in the beam (Ø) is calculated 

from the electrical phase angle (𝜑) and the transducer sensitivity with the equation: 

𝜑 = √𝜑𝑎𝑙𝑜𝑛𝑔
2 + 𝜑𝑎𝑐𝑟𝑜𝑠𝑠

2   (Eq. 21) 

𝜃 =
𝜑

(𝜑𝑠∗
𝑓𝑐

𝑓𝑛𝑜𝑚
)
     (Eq. 22) 

The electrical phase is calculated (Eq. 21) from the combination of the along and across track 

electrical phase angle as calculated from the split-aperture processing. The mechanical angle of 

the bubbles is calculated (Eq. 22) from the calculated electrical phase angle by taking into account 

the angle sensitivity (𝜑𝑠) as published by Simrad, the center frequency of the pulse (𝑓𝑐) and the 

starting frequency of the pulse (𝑓𝑛𝑜𝑚).  

 

Figure 37. Transducer geometry showing final mechanical angle (top panel) and plane-view transducer geometry for electrical 

phase angle calculation (bottom panel). 
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Given the published value for angle sensitivity and the survey pulse parameters the equation for 

mechanical angle can be simplified to: 

𝜃 =
𝜑

17.3750
     (Eq. 23) 

The published angle sensitivity value was calculated for the center frequency of the ES18-11 

transducer, 18 kHz. The survey pulse parameters define a frequency range of 15 to 30 kHz and the 

final frequency range in all bubble size calculations was reduced to 16-26 kHz. Regardless, 

changes in frequency over the pulse duration results in changes to the effective transducer beam 

angle (for an array of fixed length, increasing frequency decreases the beam angle) and the 

transducer sensitivity value becomes increasing unrealistic as the pulse frequency deviates from 

the published center frequency of 18 kHz. The magnitude of the error in the sensitivity value is 

unknown and the resulting error in the mechanical angle of the bubble has not been quantified or 

accounted for in final calculations.  

This sensitivity analysis aims to investigate the effects of pulse frequency content on calculated 

electrical phase angle in an effort to determine if the error introduced into the mechanical angle 

calculation can be ignored or if it is necessary to account for such error in final calculations. 

Split-aperture processing overview 
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Figure 38.  Left image depicts a transducer with split aperture array, with aperture centers separated by distance d, a target 

located in the beam of transducer θ degrees off center axis, and recorded signals Sl and Sr separated in space/time by δ, defined 

below. The right image depicts the complex plane of with amplitude of A and phase angle of φ. 

𝑆𝑙 = 𝐴𝑒−𝑗𝑘(𝑟+𝛿)   (Eq. 24) 

𝑆𝑟 = 𝐴𝑒−𝑗𝑘(𝑟−𝛿)   (Eq. 25) 

𝛿 =
𝑑

2
sin(𝜃) , 𝑘 =

𝜔

𝑐
=

2𝜋𝑓

𝑐
   (Eq. 26) 

𝑆𝑟𝑆𝑙
∗ = 𝐴𝑒−𝑗𝑘(𝑟−𝛿)𝐴𝑒𝑗𝑘(𝑟+𝛿) = 𝐴𝑒−𝑗𝑘𝑟+𝑗𝑘𝛿+𝑗𝑘𝑟+𝑗𝑘𝛿 = 𝐴𝑒2𝑗𝑘𝛿  (Eq. 27) 

𝑖𝑚(𝑆𝑟𝑆𝑙
∗)

𝑟𝑒𝑎𝑙(𝑆𝑟𝑆𝑙
∗)

=
sin (2𝑘𝛿)

cos (2𝑘𝛿)
= tan(2𝑘𝛿) = tan (𝜑)  (Eq. 28) 

tan (2𝑘
𝑑

2
sin(𝜃)) = tan (2

2𝜋𝑓

𝑐

𝑑

2
sin (𝜃))  (Eq. 29) 

tan(𝜑) = tan (
2𝜋𝑓𝑑

𝑐
sin (𝜃))   (Eq. 30) 

𝑠𝑚𝑎𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛: sin(𝑥) ≅ 𝑥, tan(𝑥) ≅ 𝑥    

𝜑 =
2𝜋𝑓𝑑

𝑐
(𝜃)    (Eq. 31) 
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 𝜽 =
𝒄

𝟐𝝅𝒇𝒅
(𝝋)     (Eq. 32) 

The result of the derivation is an expression relating the electrical phase angle (φ) to the mechanical 

angle (θ) of a single target off the MRA of the transducer. The mechanical angle can be determined 

with the electrical phase angle, signal frequencies, and transducer parameters. Furthermore, the 

frequency dependence of electrical phase angle should be linear (11 and 12). 

Analysis of original methodology 

The electrical phase angle of an individual bubble (Figure 39) was calculated from the match 

filtered broadband data using the methodology applied in the original SWERUS data processing.  

 

Figure 39. Acoustic response of an individual bubble in an EK80 WBT echogram. An acoustic time series was sampled in each 

ping over range indicated by the black lines and the electrical phase angle was sampled from the point of maximum amplitude (red 

marker). 

For each record of an individual bubble (series of pings) the electrical phase angle was calculated 

at the point of maximum acoustic intensity in the bubble’s acoustic response, which represents the 

point of maximum correlation in the match filtering process. The point maximum acoustic 
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intensity was identified from the sampled acoustic time series. The electrical phase angle, given 

by (Eq. 21), was estimated from: 

𝜑𝑎𝑙𝑜𝑛𝑔 = tan−1 𝑖𝑚(𝑆𝑓𝑆𝑎
∗)

𝑟𝑒𝑎𝑙(𝑆𝑓𝑆𝑎
∗)

   (Eq. 33) 

𝜑𝑎𝑐𝑟𝑜𝑠𝑠 = tan−1 𝑖𝑚(𝑆𝑠𝑆𝑝
∗)

𝑟𝑒𝑎𝑙(𝑆𝑠𝑆𝑝
∗)

   (Eq. 34) 

Where 𝑆𝑓 the summation of the acoustic is signal from quadrants 3 and 4; 𝑆𝑎 is the summation of 

the acoustic signal from quadrants 1 and 2; 𝑆𝑠 is the summation of the acoustic signal from 

quadrants 1 and 4; 𝑆𝑝 is the summation of the acoustic signal from quadrants 2 and 3. 

The estimated electrical phase angle varies between 20º and 90º (Figure 41). At 90º the data is cut 

due to electrical phase angle limitations in the calibration offset values (used for bubble size 

estimation). The electrical phase angle across the sampled bubble record shows variation on the 

order of ±10º (Figure 40 and Figure 41). It is possible that picking the electrical phase angle from 

a single point (maximum amplitude point) could introduce an error subsequent calculations given 

the variability in electrical phase angle throughout the bubble record. It is appropriate to use the 

point of maximum amplitude to define the location of the bubble given the variability of electrical 

phase angle across the bubble record? The electrical phase angle as determined from the point of 

maximum amplitude  
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Figure 40. Electrical phase angles of the bubble record calculated from the split aperture processing for an individual bubble 

record.  

 

Figure 41. Left panel shows estimated electrical phase angles for the individual bubble (in red), plotted with the electrical phase 

angles of the rest of the sampled acoustic time series (in black) for each ping. Right panel shows the bubble location (as determined 

from the maximum amplitude sample) in plane view through the series of pings. 

The uncertainty in the estimation of electrical phase angle is given by Burdic (1991) as: 

 𝜎𝜑
2 =

𝐸[𝑁2]

𝐴2 ,     (Eq. 35) 
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where E[N2] is an estimation of the background noise and A2 is the amplitude of the measured 

signal. Projecting uncertainty in electrical phase angle to uncertainty in mechanical angle is given 

by: 

𝜎𝜃
2 =

𝜎𝜑
2

𝑘𝑑
,    (Eq. 36) 

where kd is the transducer sensitivity, defined by Simrad as 17.37 and 𝜎𝜑
2 is the uncertainty in the 

electrical phase angle calculation. Defining electrical phase angle uncertainty by equations 35 and 

36 means the lower the SNR, the larger the error in the split-aperture calculation. Low SNR can 

be a result of a weakly backscattering target and/or increased background noise. The SWERUS 

methodology defines the minimum SNR to be no less than 10; propagating an SNR of 10 through 

equations 35 and 36 produces an approximate estimated uncertainty of 0.8°. 

The final calculation of bubble rise velocity is made via regression through a series of paired time 

and depth measurements (Figure 42). The estimation of a bubble’s mechanical angle is 

incorporated into the depth measure via the following equation: 

𝑑𝑒𝑝𝑡ℎ = 𝑟𝑎𝑛𝑔𝑒 ∗ cos(𝜃) + ℎ𝑒𝑎𝑣𝑒    (Eq. 37) 

Once uncertainity in the mechanical angle is projected through the equation for depth (taking into 

account cosine of the mechanical angle), the mechanical angle uncertainty is an order of magnitude 
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lower than the overall measurement uncertainty (variation ping to ping away from regression line) 

and is disregarded from the overall rise velocity uncertainty measurment.  

 

Figure 42. An example of the rise velocity derivation from the paired time and depth values for a bubble record. Average rise 

velocity is estimated from the slope of the regression and measurement uncertainty is calculated from the deviation of the 

measurement values from the regression. 

Frequency dependence of electrical phase angle 

The electrical phase angle of an object ensonified by a broadband signal should show a frequency 

dependence defined by the physical parameters of the transducer and the frequency range of the 

signal. This dependence is defined as: 

𝑑𝜃

𝑑𝑓
=  

2𝜋𝑓𝑑

𝑐
,    (Eq. 38) 

Where f is the frequency range of the signal, d is the distance between the centers of the individual 

apertures, and c is the speed of sound. If this dependence holds for the SWERUS data set the 

electrical phase angle should change linearly with increasing frequency. 

In order to explore this relationship, the electrical phase angles (along and across track) were 

calculated using equations 33 and 34. Unlike the SWERUS methodology where Sr and Sl are 

defined by a single peak amplitude value of each bubble record, Sr and Sl were defined by the entire 

bubble record as a frequency series. The acoustic time series of the bubble record (vertical black 
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line - Figure 39) was extracted for all four transducer quadrants and the aperture pairs were 

calculated by summing the appropriate quadrants: 

a. Along track – yf (Fore): quadrants 3 and 4  

b. Along track – ya (Aft): quadrants 1 and 2 

c. Across track – ys (Starboard): quadrants 1 and 4 

d. Across track – yp (Port): quadrants 2 and 3 

The Fourier transform of each time series were taken and the electrical phase angles were 

calculated from the frequency series: 

𝑌𝐹 = 𝑓𝑓𝑡(𝑦𝑓, 375);     (Eq. 39)  

𝑌𝐴 = 𝑓𝑓𝑡(𝑦𝑎, 375);     (Eq. 40) 

𝑝ℎ𝑖𝐴𝑙𝑜𝑛𝑔 = tan−1(𝑌𝐹 × 𝑌𝐴∗)    (Eq. 41) 

The resulting vector defines the electrical phase angle as a function of frequency for each record 

of the bubble as it rises through the watercolumn and moves through the beam of the transducer. 

The electrical phase angle data only has meaning within the frequency band of the signal 

(approximately 16-26 kHz), outside of this range there is just noise. Figure 43 shows the frequency 

dependence of the electrical phase angle for every bubble record (ping) for this individual bubble. 

There appears to be variation in the frequency dependence on a ping-to-ping basis. Some records 

(e.g. ping 3 and 10) show a constant linear frequency dependence for both the across and along 

track electrical phase angles. Other records (e.g. ping 8 and 12) show constant linear frequency 

dependence in either the along or across track electrical phase angles, but not both. There are also 

records (e.g. 9 and 14) where there does not appear to be any linear frequency dependence in either 

the along or across track electrical phase angles. 
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Figure 43. Frequency dependence of bubble electrical phase angle for each ping record. Along track angle is plotted by a dotted 

line, across track angle is plotted by a dashed ling, analysis angle is plotted by a solid line, and the measurement of electrical 

phase angle from the single amplitude measurement is plotted by a horizontal red line (no frequency dependence). The location 

where the amplitude measurement of phase angle crosses the frequency dependent phase angle is marked by a red circle. 
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The expected slope of the linear frequency dependence of the electrical phase angle is defined by 

(Eq. 38). The ES18-11 transducer has approximately 25 cm separation of the apertures (d). 

Assuming the speed of sound (c) is 1495 m/s and plugging in d to equation 38, the measured 

electrical phase angle can be compared to the theoretical frequency dependence (Figure 44 and 

Figure 45). 

In the majority of cases (55%) there is strong agreement between the theoretical model for 

frequency dependence and the combined along and across track electrical phase angles (referred 

to as the “analysis” electrical phase angle). When considering both the along and across track 

angles, 80% of the records showed agreement between the theoretical model for frequency 

dependence in at least one of the electrical phase angle measurements. When observing the 

combination of the along and across track electrical phase angles in plane-view (Figure 46) there 

does not appear to be a distinct spatial pattern to agreement between measurements and models. 

Overall there is a larger range of along track angles (-60º to 75º) then across track angles (-65º to 

10º), but the positions of the non-matching records are not clusters in any quadrant. Additionally, 

the records where there is strong agreement for both along and across track appear across a range 
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of angle values, from “near” to the MRA out to the “edges” of the beam (these measurements are 

technically measurements of difference in phase, not differences in position). 

 

Figure 44. Examples of acoustic records where the measured frequency dependence of electrical phase angle matches to theoretical 

model for sensitivity well (ping number in lower right corner).  
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Figure 45. Examples of acoustic records where the measured frequency dependence of electrical phase angle does not match the 

theoretical model for sensitivity (ping number in lower right corner). 

 

Figure 46. Spatial relationship between 18 kHz bubble phase angles and theoretical model trends. Left figure indicates the level of 

agreement only considering the final analysis angle (combination of across and along track angles), while the right figure considers 

the agreement of along and across track angle agreement with the model. Full agreement (left panel) indicates the measured 

frequency dependency matched the model across the whole frequency range (~16-26 kHz), partial agreement (both left and right 

panel) indicates at there was agreement between measurements and model for a portion of the frequency range, and no agreement 

indicates there was little to no agreement between measurements and model in any part of the frequency range.  
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Sensitivity test conclusions 

The overarching goal of this analysis has been to investigate the effects of frequency on electrical 

phase angle and determine if the error (if any) introduced into the mechanical angle calculation 

can be ignored or if it is necessary to account for such error in final calculations. In has been shown 

that the change in frequency of the EK80 signal does affect the electrical phase angle; however, 

the frequency dependence of the electrical phase angle is, at best, linear and, at worst, not existent. 

There is variability ping-to-ping in the agreement between the theoretical frequency dependence 

of the electrical phase angle (given by equation 38) and the measured values for electrical phase 

angle. No clear pattern was determined to explain the variability in agreement with the theoretical 

model. 

We can conclude that we could estimate the electrical phase angle as a function of frequency for 

some records (where is there good agreement between model and measurements); however, this 

method would not be acceptable for all bubble records. More investigation must be done into the 

underlying reasons for measurement deviation from the theoretical acoustic model. 

Instead, perhaps we can estimate a new transducer sensitivity value to apply to the SWERUS data 

to account for the effect of frequency on the electrical phase angle or we could take the electrical 

phase angle at a frequency of 18 kHz to correctly apply the published transducer sensitivity value. 

The electrical phase angle at 18 kHz can be directly pulled from the calculated frequency series, 

the new transducer sensitivity value needs to be estimated using a weighted mean frequency. The 

weighted mean frequency can be estimated by finding the average intersection point of the original 

amplitude-based electrical phase angle measurements verses the frequency dependent electrical 
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phase angle values (Figure 49, panel 1). The resulting frequency is approximately 18.8 kHz and 

the new transducer sensitivity value becomes 18.2. 

Comparing all three electrical phase angles (Figure 49, panel 2 and 3), there is overall general 

agreement in the trend of electrical phase angles from ping-to-ping. When a mechanical angle is 

estimated from the three electrical phase angles options and rise velocity is calculated (Figure 50), 

we can see that there is very little difference in the final average rise velocity. Maximum difference 

between the original SWERUS estimation and the 18 kHz-based estimation is 0.4 cm/s. This value 

is an order of magnitude lower than the overall uncertainty in rise velocity from the measurement 

variation, 1.6 cm/s and we can conclude that while the EK80 signal’s frequency range does have 

a measurable effect on the electrical phase angle, the overall error introduced into the final rise 

velocity measurement is small enough to be overlooked in the final calculation. Further tests 

should be done to investigate the deviation of the measurement from the theoretical model. 

 

Figure 47. Top left panel shows the frequency where the original electrical phase angle (measured from the max amplitude value) 

crosses the frequency dependent electrical phase angle measured from the full bubble record. The average frequency crossing 
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point is 18.8 kHz. The bottom left panel shows three different electrical phase angles calculated via different methodologies: red 

markers indicate the original electrical phase angle, black are the electrical phase angles at 18 kHz, and green are the electrical 

phase angles at 18.8 kHz (average cross point from first panel). The right panel show the plane view of the electrical phase angles 

calculated from the three different methods. 

 

Figure 48. Time and depth data pairs for each ping calculated from the three electrical phase angle options (same as figure 11). 

Rise velocity is estimated from the slope of the regression through the time and depth pairs. 
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8.8 Acoustic scattering model sensitivity test 

Overview 

This document outlines an investigation into the sensitivity of acoustic scattering of a single bubble 

to the gas composition of in the bubble, as modeled by the equations defined in Ainslie and 

Leighton (2009).  

Given the geophysical context and published literature bubble ebullating from the seafloor in the 

Herald Canyon region of the ESAS are likely nearly 100% methane, originating from a biogenic 

source. An initial bubble composition of 100% methane is an assumption made in this research 

project. During bubble ascent through the water column there is gas transfer between the bubble 

and the surrounding water. Methane flows out of the bubble and oxygen, nitrogen, and other minor 

gasses flow into the bubble. The rate of gas transfer is a function of aqueous gas concentrations, 

temperature, salinity, and pressure. The process of gas transfer results in changing composition of 

bubbles throughout the water column. 

In the calculation of a bubble’s equivalent radius the measured frequency modulated target strength 

is compared to modeled target strength values of bubbles of different sizes; however, the modeled 

values are calculated with a bubble composition of 100% methane gas, not a mixture of gas. It is 

feasible that error could be introduced into the bubble radius values if the modeled for acoustic 

scattering is sensitive to gas composition.  

Testing procedure 

To test the sensitivity of acoustic scattering of a bubble to the gas composition of that bubble the 

acoustic scattering model was altered to take in a variety of bubble gas compositions (mole fraction 
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of nitrogen, oxygen, carbon dioxide, and methane). In addition the code takes in environmental 

parameters (temperature, salinity, and depth), frequency range, and bubble radius. 

Several thermodynamic values must be defined for each gas (specific heat at constant 

volume/pressure, molar mass) and combined depending on the mixture of gases in the modeled 

bubble. Based on calculated bubble parameters bubble mass, density, thermal conductivity, and 

ratio of specific heats are calculated. All the information is fed into the single bubble scattering 

equations to calculate target strength.  

Environmental parameters matching the Arctic Ocean and Herald Canyon area were chosen: 

 Temperature = 6 C 

 Salinity = 30 PSU 

 Depth = 95 m (maximum SWERUS seep depth) 

 Bubble radius = 1-5 mm (typical SWERUS bubble radii) 

With these parameters set the model was run for three scenarios:  

1) A 100% methane bubble  

2) A bubble with a gas mixture of 25% oxygen, 25% nitrogen, 25% carbon dioxide, and 

25% methane 

3) A bubble with gas mixture of 20% oxygen, 70% nitrogen, 5% carbon dioxide 
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Figure 49. Modeled target strength for 100% methane bubble with parameters: z = 95 m, T = 6 C, S = 30 PSU. 

Sensitivity testing results  

Results of the sensitivity test show very minimal changes in TS curves in bubbles of different gas 

composition (Figure 52). There appears to be a small frequency dependence to composition 

sensitivity: TS responses at lower frequencies have larger differences then those at higher 

frequencies. Smaller bubbles appear to be more sensitive to changes in gas composition than larger 

bubbles; this is especially clear near resonance where the largest differences in TS are seen. In the 

target frequency range for this experiment, of approximately 15-30 kHz, there is no discernable 

difference in TS curves for bubbles of different compositions (Figure 53).  

The results of this sensitivity test show that the model for single bubble scattering of sound is not 

sensitive to the composition of bubble gas at the given temperature, pressure, and salinity 

conditions of the SWERUS seeps.  
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Figure 50. Comparison of modeled target strength of 1-5mm bubbles composed of 100% methane and two different 

gas combinations 

 

Figure 51. Zoomed view of a 3mm bubble target strength value at resonance peak (left) and research target frequency 

range (right). 
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Table 3. Constant parameters calculated in gas mixture function 

Constants (z = 95 m, T = 6 C, S = 30 PSU, f = 20 kHz, a = 0.003 m) 

Bubble surface tension (tau) 0.075 

Density of seawater (rhow) 1.0242e03 

Ambient pressure (Pa) 1.0558e06  

Sound speed (c)  1.4700e03 

Specific heat (constant pressure)   

 Oxygen (Cp_O2) 0.919 

 Nitrogen (Cp_N2) 1.040 

 Carbon dioxide (Cp_CO2) 0.844 

 Methane (Cp_CH4) 2.220 

Specific heat (constant volume)  

 Oxygen (Cp_O2) 0.659 

 Nitrogen (Cp_N2) 0.743 

 Carbon dioxide (Cp_CO2) 0.655 

 Methane (Cp_CH4) 1.700 

Molar mass  

 Oxygen (Cp_O2) 0.03199880 

 Nitrogen (Cp_N2) 0.02801340 

 Carbon dioxide (Cp_CO2) 0.04400954 

 Methane (Cp_CH4) 0.01604246 

Volume bubble (a = 0.003 m) 1.1310e-07 

Mu 0.0016 

 

Table 4. Bubble parameters calculated in gas mixture function. 

Calculated Bubble Parameters (z = 95 m, T = 6 C, S = 30 PSU, f = 20 kHz, a = 0.003 m) 

 100% CH4 25%/25%/25%/25% 

CH4/CO2/N2/O2 

5%/70%/25% 

CO2/N2/O2 

Bubble Mass (Mbub) 1.6042 3.0016 2.9810 

Specific heat constant 

pressure (Cp) 

2.2200 1.2558 1.0000 

Specific heat constant 

volume (Cv) 

1.7000 0.9393 0.7176 

Thermal conductivity 

(Kg) 

0.0309 0.0238 0.0239 

Ratio of specific 

heats (gamma) 

1.3059 1.3370 1.3935 

Density of gas (rhog) 1.4185e07 2.6540e07 2.6357e07 

Intensity (sigmaBS)  9.5336e-06 9.5468e-06 95710e-06 
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8.9 Distribution fitting 

To define a general bubble size distribution (BSD) for a given morphological area, defined by the 

seep clustering process, clustered bubble data was binned in 5-meter intervals (Figure 52, Figure 

53, Figure 54). The BSD of each cluster was defined at the bin of data with the highest N: 

 Cluster 1: centered at 25.2 meters 

 Cluster 2: centered at 16.2 meters 

 Cluster 3: centered at 19.0 meters 

Binned data were fit to a Rayleigh distribution using the MATLAB 2016a distribution fitting tool 

(Figure 55). Distribution fitting tool defines the Rayleigh parameter (β), the standard error (𝜎𝛽), 

distribution mean and standard deviation (Table 5). 

BSD were then projected down to the seafloor by applying the outputs of the TAMOC model, 

covered in section 12 (Figure 56). The seafloor distributions have a higher mean and lower 

standard deviation than the watercolumn distributions (Table 5), due to increase in bubble radius 

with increasing proximity to the seafloor and non-linear bubble dissolution rate with increasing 

radius. Mean (μ) and standard deviation (σ) of the seafloor BSD are determined by the following 

equations: 

𝜇 = ∫ 𝑎𝜌(𝑎)𝑑𝑎
𝑎𝑚𝑎𝑥

0
  𝜎 = ∫ 𝜌(𝑎)(𝑎 − 𝜇)2𝑑𝑎

𝑎𝑚𝑎𝑥

0
  (Eq. 42) 
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Figure 52. Cluster 1 bubble data binned at 5 m intervals. 

 

Figure 53. Cluster 2 bubble data binned at 5 m intervals. 
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Figure 54. Cluster 3 bubble data binned in 5 m intervals. 

 

Figure 55.Histograms and fitted Rayleigh PDF of the binned bubble data for cluster 1 (cyan), cluster 2 (red), and cluster 3 

(green). 
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Figure 56. BSD of each cluster in the watercolumn (solid line) and projected to the seafloor (dashed lines). Cluster 1 (left), 

cluster 2 (center), and cluster 3 (right). 

Table 5. Bubble size distribution parameters for the clustered data set. 

 Binned data Rayleigh parameters WC distribution Seafloor distribution 

 μ σ β σ μ σ μ σ 

Cluster 1 2.17 0.95 1.67 0.13 2.09 1.19 2.14 0.90 

Cluster 2 2.26 0.98 1.72 0.33 2.16 1.28 2.33 0.96 

Cluster 3 2.69 1.10 2.05 0.25 2.57 1.80 2.72 1.08 
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8.10 Individual seep flux estimates 

8.10.1 Instantaneous observed volumetric gas flux 

Table 6. Direct flux estimations of Cluster 1 seeps 

Cluster 1 (m3/s) 

Seep ID Q 𝜎𝑄 

T010336 3.68E-09 1.12E-09 

T014257 4.14E-09 5.94E-10 

T223620 9.02E-09 2.26E-09 

T224048 2.45E-07 6.40E-08 

T225859 1.97E-08 4.88E-09 

T222721_01 4.63E-08 1.10E-08 

T222721_02 7.45E-09 1.88E-09 

T223151_01 4.38E-08 8.37E-09 

T223151_03 2.45E-08 5.13E-09 

T223151_05 6.89E-09 1.49E-09 

T234343_02 1.53E-08 4.96E-09 

T234343_03 6.47E-08 1.06E-08 

 

Table 7. Direct flux estimations of Cluster 2 seeps 

Cluster 2 (m3/s) 

Seep ID Q 𝜎𝑄 

T000559 1.13E-08 1.78E-09 

T071055 4.34E-08 8.72E-09 

T091020_01 5.50E-09 5.82E-10 

T091020_03 3.47E-08 5.94E-09 

T091439_01 6.98E-10 1.78E-10 

T091439_03 2.13E-09 3.16E-10 

T091439_07 6.93E-10 2.85E-10 

T091439_09 1.98E-08 2.27E-09 

T091439_13 6.65E-09 1.34E-09 

 

Table 8. Direct flux estimations of Cluster 3 seeps 

Cluster 3 (m3/s) 
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Seep ID Q 𝜎𝑄 Seep ID Q 𝜎𝑄 

T042631_01 8.65E-08 1.92E-08 T063136_03 4.50E-09 1.24E-09 

T043037_01 1.04E-07 2.07E-08 T065828_01 1.68E-08 6.92E-09 

T063822 8.56E-08 1.74E-08 T065828_02 4.07E-09 9.21E-10 

T100624 6.78E-09 9.03E-10 T172318_01 1.90E-09 3.31E-10 

T171859 2.27E-10 6.80E-10 T172318_03 4.29E-09 6.01E-10 

T173156_01 3.30E-10 2.28E-10 T172318_04 6.26E-09 1.18E-09 

T175325 2.38E-09 4.03E-10 T174032_01 8.17E-08 1.32E-08 

T063136_01 1.43E-09 1.64E-09 T174032_02 1.62E-08 2.98E-09 

T063136_02 4.68E-09 4.35E-10    

 

Table 9. Direct flux estimations of all seeps from study region 

All data (m3/year) 

Maximum Q 7.7 ± 2.0 Survey area total Q 33 ± 7.1 

Minimum Q 0.010 ± 0.0072 HC total Q 5.0E04 ± 1.1E04 

Mean Q 0.87 ± 0.19   

 

8.10.2 Inferred parameter volumetric gas flux 

Table 10. Flux estimations of Cluster 1 seeps based on the inferred parameter method 

Cluster 1 (m3/s) 

Seep ID Q 𝜎𝑄 

T010336 8.88E-09 4.32E-09 

T014257 1.46E-08 7.10E-09 

T223620 1.83E-08 8.90E-09 

T224048 6.60E-08 3.21E-08 

T225859 1.76E-08 8.56E-09 

T222721_01 3.42E-08 1.66E-08 

T222721_02 8.85E-09 4.30E-09 

T223151_01 1.87E-08 9.10E-09 

T223151_03 2.02E-08 9.82E-09 

T223151_05 8.53E-09 4.14E-09 

T234343_02 1.01E-08 4.91E-09 

T234343_03 1.43E-08 6.97E-09 
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Table 11. Flux estimations of Cluster 2 seeps based on the inferred parameter method 

Cluster 2 (m3/s) 

Seep ID Q 𝜎𝑄 

T000559 2.37E-08 2.54E-08 

T071055 2.44E-08 2.62E-08 

T091020_01 3.80E-09 4.09E-09 

T091020_03 8.76E-08 9.42E-08 

T091439_01 6.46E-09 6.94E-09 

T091439_03 5.22E-09 5.61E-09 

T091439_07 9.24E-09 9.93E-09 

T091439_09 1.29E-08 1.39E-08 

T091439_13 9.24E-09 9.93E-09 

 

Table 12. Flux estimations of Cluster 3 seeps based on the inferred parameter method 

Cluster 3 (m3/s) 

Seep ID Q 𝜎𝑄 Seep ID Q 𝜎𝑄 

T042631_01 6.50E-08 4.07E-08 T063136_03 1.01E-08 6.33E-09 

T043037_01 3.26E-08 2.04E-08 T065828_01 1.40E-08 8.74E-09 

T063822 3.73E-08 2.34E-08 T065828_02 1.82E-08 1.14E-08 

T100624 2.27E-08 1.42E-08 T172318_01 6.58E-09 4.12E-09 

T171859 9.50E-09 5.94E-09 T172318_03 3.46E-09 2.17E-09 

T173156_01 2.21E-08 1.38E-08 T172318_04 1.03E-08 6.45E-09 

T175325 1.50E-08 9.39E-09 T174032_01 2.42E-08 1.51E-08 

T063136_01 5.09E-08 3.18E-08 T174032_02 3.02E-08 1.89E-08 

T063136_02 4.76E-08 2.98E-08    

 

Table 13. Flux estimations of all seeps based on the inferred parameter method 

All data (m3/year) 

Maximum Q  2.8 ± 2.0 Survey area total Q  27 ± 18 

Minimum Q 0.11 ± 0.0068 HC total Q 4.1E04 ± 290 

Mean Q 0.70 ± 0.48   
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8.10.3 Methane mass flux 

Table 14. Methane mass flux estimations of Cluster 1 seeps 

Cluster 1 Seafloor Sea surface 

Seep ID Q (g/s) Q (g/s) 

T010336 4.03E-05 7.72E-06 

T014257 6.63E-05 1.27E-05 

T223620 8.31E-05 1.59E-05 

T224048 3.00E-04 5.74E-05 

T225859 8.00E-05 1.53E-05 

T222721_01 1.55E-04 2.97E-05 

T222721_02 4.01E-05 7.69E-06 

T223151_01 8.50E-05 1.63E-05 

T223151_03 9.17E-05 1.76E-05 

T223151_05 3.87E-05 7.41E-06 

T234343_02 4.58E-05 8.78E-06 

T234343_03 6.51E-05 1.25E-05 

 

Table 15. Methane mass flux estimations of Cluster 2 seeps 

Cluster 2 Seafloor Sea surface 

Seep ID Q (g/s) Q (g/s) 

T000559 1.34E-04 1.70E-05 

T071055 1.38E-04 1.75E-05 

T091020_01 2.15E-05 2.73E-06 

T091020_03 4.96E-04 6.29E-05 

T091439_01 3.66E-05 4.64E-06 

T091439_03 2.96E-05 3.75E-06 

T091439_07 5.23E-05 6.64E-06 

T091439_09 7.31E-05 9.27E-06 

T091439_13 5.23E-05 6.63E-06 

 

Table 16. Methane mass flux estimations of Cluster 3 seeps 

Cluster 3 Seafloor Sea surface 

Seep ID Q (g/s) Q (g/s) 
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T042631_01 4.76E-04 3.97E-05 

T043037_01 2.39E-04 1.99E-05 

T063822 2.73E-04 2.28E-05 

T100624 1.67E-04 1.39E-05 

T171859 6.95E-05 5.80E-06 

T173156_01 1.62E-04 1.35E-05 

T175325 1.10E-04 9.17E-06 

T063136_01 3.73E-04 3.11E-05 

T063136_02 3.49E-04 2.91E-05 

T063136_03 7.40E-05 6.18E-06 

T065828_01 1.02E-04 8.54E-06 

T065828_02 1.33E-04 1.11E-05 

T172318_01 4.82E-05 4.03E-06 

T172318_03 2.54E-05 2.12E-06 

T172318_04 7.54E-05 6.30E-06 

T174032_01 1.77E-04 1.48E-05 

T174032_02 2.21E-04 1.85E-05 

 

Table 17. Methane mass flux estimations of all seeps 

Seafloor flux: all data (kg/year) 

Maximum Q  16.0 Survey area total Q  160 

Minimum Q 0.68 HC total Q 2.4E05 

Mean Q 4.3   

Sea surface flux: all data (kg/year) 

Maximum Q  2.0 Survey area total Q  19 

Minimum Q 0.067 HC total Q 2.9E04 

Mean Q 0.50   

 

  



 

97 

 

 

8.11 Herald Canyon oceanographic measurements 

Oceanographic parameters of temperature, salinity, and oxygen were defined by CTD casts taken 

during survey operations of SWERUS (Figure 57). Dissolved watercolumn methane 

concentrations were estimated during SWERUS-C3 onboard operations (Figure 58).  

 

Figure 57.CTD cast locations in Herald Canyon during SWERUS-C3 operations. 

 

Figure 58. Methane distribution in Herald Canyon - transects A, B (box 1). From SWERUS-C3 cruise report 
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The TAMOC model was seeded with oceanographic profiles from CTD station #74 (Figure 59). 

Station #74 was sampled from approximately the center of the Herald Canyon survey area, at 

depths as deep as the deepest seeps. 

 

Figure 59. Oceanography parameter profiles measured at CTD station #74 during SWERUS survey operations. 
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8.12 TAMOC model output 

The Texas A&M Oilspill Calculator (TAMOC) bubble dissolution and transport model published 

by [Socolofsky et al., 2015] was employed to quantify bubble fate and transport in Herald Canyon. 

The TAMOC model was run with oceanographic parameters measured at CTD station #74 (Figure 

57), bubble diameters of 0.75 to 16.0 mm at 0.25 mm increments, at three depths (as defined by 

the seep clusters): 52 m, 67 m, and 89 m. The model was run for clean bubbles with a composition 

of 100% methane gas at release. 

The TAMOC model output provides bubble size as a function of depth, as well as bubble 

composition as a function of depth. After release from the seafloor, bubble sizes generally 

decreased with increasing altitude until either full dissolution or a critical point in which they 

increased in size until they reached the sea surface (Figure 60). With deeper starting depth 

increasingly larger bubbles fully dissolved and there was a larger difference in size between 

bubbles released at the seafloor and those at the surface.   

 

Figure 60. TAMOC model output of bubble radius as a function of altitude for the seep cluster starting depths: cluster 1 @ 52 m, 

cluster 2 @ 67 m, and cluster 3 @ 89 m. 
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Methane mass transport is output in the form of moles of methane in each bubble as a function of 

bubble altitude (Figure 61). Bubbles are 100% methane at release and are assumed to be spherical 

in shape throughout their ascent. 

 

Figure 61. TAMOC model output of methane mass (moles) for each bubble size as a function of altitude: cluster 1 @ 52 m, 

cluster 2 @ 67 m, and cluster 3 @ 89 m. 
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