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NOMENCLATURE

a the damped natural frequency of compressional viscoelastic
wave system,

A the damped natural frequency of thermoviscoelastic medium,

b the temporal attenuation of compressional wave system,

B the temporal attenuation of thermoviscoelastic medium,

b-j the absorption coefficient of compressional wave system,

B-| the absorption coefficient of thermoviscoelastic medium,

c the natural frequency of compressional wave system,

C the natural frequency of thermoviscoelastic medium,

e (t) envelope function,

a (t) noise function,

•jj- compressional wave system damping factor,
D
^  thermoviscoelastic medium damping factor,

e/b is the relative comparison between the exponential decay
coefficient of the noise correlation function and the decay 
coefficient associated with the compressional wave system of 
the viscoelastic medium,

a/ft is the relative comparison between the natural damped frequency
of the compressional wave system and the frequency of the noise
correlation function,

ct number of response cycles of the compressional wave system of
a viscoelastic medium,

Q 2(b/c) is the quality factor of the compressional wave system,
*

p1 is the shear modulus of the viscoelastic medium (Lame parameter),

p" is the shear viscosity of the viscoelastic medium,

x



A 1 is the compressional modulus of the viscoelastic medium
(Lame parameter),

A" is the compressional viscosity of the viscoelastic medium,

p is the density of medium,

k is the Fourier transform parameter (wave number),

3 is the correlation function decay constant,

n is the harmonic frequency of the correlation function,

r ( t )  is the response of the compressional wave system of the visco­
elastic medium,

G (t - t ')  is the retarded response Green's function for the compressional 
wave system of the viscoelastic medium in time domain,

G '( t - t ' )  is the real part (even) of G ( t - t ') ,

G " (t-t ')  is the imaginary (odd) part of G ( t - t ') ,

G(co) is the Green's function for the compressional wave system of
the viscoelastic medium in frequency domain,

G 'U ) is the even (real) part of G(o)),

G"(u>) is the odd (imaginary) part of G(oj) ,

Subscripts

i Refers to in it ia l valued problem,

L Refers to longitudinal wave,

T Refers to transverse wave,

t  Refers to temperature dependent term,

ad Refers to adiabatic term (also superscript),

Superscripts

ad Refers to adiabatic term,

Refers to viscoelastic shear wave system.



ABSTRACT

ACOUSTIC IDENTIFICATION OF MARINE 
SEDIMENTS BY STOCHASTIC METHODS

by

HALIL TUGAL

An attempt is made to understand the behavior of the quality 

factor Q of a viscoelastic compressional wave system modeled as a lig h tly  

damped harmonic oscillator excited by random acoustic inputs in an 

ocean environment so that the ocean subbottom soil sediments can be 

identified and thus classified.

After the introduction of fundamental d ifferentia l equations 

of an elastic and viscoelastic medium with and without temperature 

effects the vector fie ld  equations are simplified by separating the 

fie ld  into longitudinal and transverse parts. The unit impulse response 

in the liquid is expressed as a Green's function due to point-source 

fie ld  excitation. Then the in it ia l valued Green's function is deter­

mined using Kubo's formula.

The mean-square response of a lig h tly  damped viscoelastic 

medium to a special type of non-stationary random excitation is deter­

mined. The excitation function is taken in the form of a product of 

a well-defined deterministic envelope function and a part which describes 

the statis tical characteristic of the excitation. The la tte r  is 

assumed white as well as correlated noise functions and both the unit 

step and rectangular step envelope functions are considered. By taking



into account this particular type of non-stationary input and the wave 

characteristics of the lig h tly  damped viscoelastic medium, the mean- 

square response for various types of excitation and damping parameters 

is evaluated. Then the m ulti-layer problem is solved and the mean- 

square response of double layered viscoelastic medium to the correlated 

noise modulated by a rectangular step envelope function is analytically  

determined. Also, the in it ia l value problem is solved and the mean- 

square response of the medium to non-stationary random inputs are also 

analytically determined.

To further understand the behavior of the quality factor in a 

viscoelastic medium, "Higher Order Autocorrelation" technique is 

introduced as a signal processing procedure. The f ir s t ,  second, th ird , 

and fourth order autocorrelations of the normalized rms of a visco­

elastic medium to non-stationary random inputs are determined using 

Fast Fourier transform technique on the computer. I t  is shown that 

the system with high quality factor has a f la t  Gaussian envelope and 

the system with lower quality factor has a sharper Gaussian envelope 

function. This is a very useful technique to estimate the quality 

factor of a system by comparing them when digitized remote data are 

available.

The temperature effects are included in the medium and the com­

pressional viscous Lame parameter is expressed in terms of a temperature 

independent and a temperature dependent expressions and other thermo­

dynamical and mechanical variables. Using this result the quality factor 

and thus damping of the medium and also bandwidth is expressed as a 

function of temperature.



The experimental data analysis shows that from the core data 

zones exist and for each zone there is a corresponding acoustical 

reflector peak in remotely obtained digitized data.

The extension of the single degree-of-freedom damped harmonic 

oscillator model of a single layer of viscoelastic medium in (l<*,t) and 

(it*,io) domains to a multi degree-of-freedom damped harmonic oscillator 

model which prescribes the characteristics of the viscoelastic re flec t­

ors is validated when the extended model showed the presence of a peak 

due to second layer.
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CHAPTER I

I .  INTRODUCTION

Acoustic sensing methods have been used to identify and 

classify the sediments on the ocean floor. Researchers have developed 

analytical models and improved them to better understand acoustical 

re fle c tiv ity  measurements from the ocean floor. The objective of this 

thesis w ill be to provide and develop an analytical model of the ocean 

subbottom which presents a deeper knowledge as well as a better under­

standing of acoustic reflections from the ocean floor in the form of 

digitized data. Furthermore, an appropriate acoustic signal process­

ing technique is presented to aid in the understanding and interpre­

tation of the acoustic data.

1-1 REVIEW OF PREVIOUS RESEARCH

In it ia l ly ,  extensive use of reflection profiling to study sub­

surface geology began in 1930's as a part of the search for petroleum 

(Dobrin, 1960). I t  should be noted that the low frequency seismic 

sources used in the exploration for o il have a wavelength of about 

300 feet in the earth. Ewing and Ewing (1970) identified , in their 

CPS records in the Atlantic, a zone of reflectors bounded above and 

below by acoustically transparent layers which they call Horizon.

The d rillin g  of the DSDP has been unable to unequivocably establish 

the significance of Horizon A (Ewing and H ollis ter, 1972).

Ryan, et a l. (1965) studied sediment cores in the Tyrrhenian 

plain. Correlations between layers of coarse grain, low porosity

1
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sediments embedded with finer grains and the seismic reflection  

records which were generated by both ship-mounted and near bottom 

12 kHz sources were established.

Siva and H ollister (1973) examined a core taken in the 

shallow waters o ff the Gulf of Maine and made a tentative correlation 

between a zone of higher water content and a reflection observed in 

the ir 3.5 kHz records.

Hamilton (1965, 1969, 1971, 1972) has employed a re la tive ly  

simple ray theory model for the identification of ocean subbottom 

soil sediments. This model was used to analyze the reflected acoustic 

pulses from the ocean subbottom. Here, the return signal is described 

by the Rayleigh reflection coefficient which has the acoustic impedence 

as the most important sediment parameter after accounting for the spher­

ical spreading and dissipation of the wave.

Using the above model, Breslau (1964) developed an empirical 

relation between the subbottom reflection coefficient and sediment 

porosity. He was then able to classify ocean sediment types directly  

from observations of the reflected pulse since each sediment type can 

be closely related to its  porosity.

Another important parameter of the subbottom soil is its  

r ig id ity  which has been identified by the presence of shear waves.

Taking this parameter into account the geometrical ray model of 

Breslau (1964) was modified to a fie ld  theoretical one. The ocean 

subbottom was then modeled as a Voigt viscoelastic solid. For a given 

acoustic inputs Magnuson (1972) analytically calculated the response 

for one subbottom soil layer. The computer results were obtained for 

grazing angles and a table for different material of subbottom



sediments were determined. This then increased the a b ility  to classify 

ocean sediment types from observations since each sediment type can be 

closely related to the magnitude of the return signal at each grazing 

angle.

Furthermore, since the ocean subbottom consists of more than 

one sediment layer, the model was extended to include multilayer effects 

by A. Y ild iz (1972), Magnuson (1972) and Stewart (1975). In this model, 

the boundary conditions, namely, the continuity of stress fie ld  as well 

as the displacements at the interfaces are d irectly  taken into consider­

ation and the analysis was done in (r*,co), space-frequency domain.

1-2 RESULTS PRESENTED IN THESIS

Without losing the general features of the above model, i t  is 

shown that the theoretical model can be modified to a damped harmonic 

oscillator model by taking the spatial Fourier transformation of the 

(Voigt) viscoelastic d ifferentia l equation.

Then the soil parameters, which are characterized by the visco­

elastic parameters y 1 , y " ,  A 1 , and A " ,  are expressed in terms of the 

damped harmonic oscillator parameters such as the natural and damped 

oscillation frequency, and damping factor.

The analytical solution of the d ifferentia l equation in wave- 

number and time domain, ( it ; t ) , which describes the non-equilibrium 

behavior of the viscoelastic medium is presented. The absolute value 

of the solution in wave-number and frequency domain is used to determine 

the quality factor of the medium. The quality factor is related to the 

damping which gives a measure of rig id ity  and dissipation of energy in 

the viscoelastic body.
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The quality factor becomes a very important parameter in the 

classification of ocean subbottom soil sediments since each sediment 

type can closely be related to its  damping parameter. This w ill then 

increase the a b ility  to classify ocean sediments since by comparing 

the quality factors of the input and reflected acoustic pulses an idea 

of the damping in the medium w ill be obtained. Thus, the subbottom soil 

can be classified according to their quality factors.

Furthermore, starting with the fundamental principles of e lastic - 

ity  and thermodynamics, the viscous Lame parameters A" and y "  are 

derived in terms of specific heat parameters and other relevant thermo­

dynamical and mechanical variables. This gives more detailed information 

on the quality factor parameter and also on the width of resonance of 

acoustic pulses in wave-number and frequency domain.

Also, since the ocean subbottom consists of more than one sediment 

layer (see Figure I 1-3) the damped harmonic oscillator model is expanded to 

multidegree freedom one. The multidegree model is important in in ter­

preting and understanding the peaks in the acoustic re fle c tiv ity  measure­

ments.

I f  these subbottom layers are assumed to be plane and thus forming 

zones, then they become simple set of reflectors to the acoustic input 

signals. This is indicated whenever a core measurement analysis indicates 

a presence of a zone there is a corresponding reflector peak in the return 

acoustic signal.

The input acoustic signals in the ocean are random. Hence, the 

acoustic response(s) of the ocean subbottom soil are theoretically cal­

culated from the analytical model as the mean-square response of a



viscoelastic medium to nonstationary random excitation (or random 

acoustic input).

Finally, the f ir s t ,  second, third and fourth order autocor­

relations of mean-square response of a viscoelastic medium to non­

stationary random inputs are determined. I t  is shown that the higher 

order autocorrelations of the response have an approximately a Gaussian , 

envelope function. The system with low damping values of higher quality 

factor has a f la t  Gaussian envelope and the system with higher damping 

values of lower quality factor has a sharper Gaussian envelope function. 

This is a useful c rite ria  to estimate the quality factor of a system by 

comparing them when digitized remote data are available.

All of the above w ill increase the present technology of ident­

ifying and classifying the ocean subbottom soil sediments by acoustic
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I I .  THEORETICAL MODEL

A theoretical model which represents the physical situation 

of the fie ld  of measurement in the language of d ifferentia l equations 

and their solutions both analytical and/or computer is the paramount 

need of the subbottom soil indentification for the following reasons:

1) To coordinate and exhange data and laboratory soil mechanics 

results with data and signal processing areas, and to adjust, readjust 

the model parameters of the system thus giving a more rea lis tic  system 

representation;

2) To assess and evaluate the results of both signal processors 

and soil mechanic investigators. The model of the sea and subbottom as a 

multi degree system is the only reference station where such assessments 

can be made;

3) To convey the necessary information to fie ld  measurement 

experimentalists in order that they may carry on the fie ld  experiments 

in the optimum way for the appropriate identification of subbottom so il. 

Examples of some v ita l information are:

a) The operation frequencies and acoustic power (and the wave­

length regime) of the acoustic input have to be suggested to the fie ld  

experimentalists,

b) The necessity of oblique incidence and the range of oblique 

reflection have to be suggested to the fie ld  experimentalists.

Furthermore, a theoretical model is also very important for the 

soil mechanics investigators:
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1) A very intensive and close information exchange between

the soil mechanics group and the model builders become obvious because

of the need to know the following properties:

Density of the subbottom material,

Porosity of the subbottom material,

Liquid content of the subbottom material,

Granular size of the subbottom material, and

Heterogeneity of the subbottom material.

Besides processing this v ita l information which the model builders w ill 

use to simulate computer results with given acoustic input, the comparison 

and correlation of simulated results based on the model with the model 

independent of data and signal analysis, i . e . ,  higher order autocor­

relation techniques, are very important.

2) Also, the dynamical parameters such as longitudinal and 

transverse viscoelastic wave propogation velocities need to be measured:

CL = J ~ I ” -1)

where A and y are the two essential Lame parameters of an isotropic 

viscoelastic medium. Furthermore, these parameters are complex functions 

(or numbers) in such a viscoelastic medium because of dissipative nature 

of the subbottom.

3) However, there exists with great certainty the need to know 

the following properties of the subbottom layers:
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The anisotropy of the subbottom,

The existence of the Cosserat type properties of the subbottom, and 

The degree of heterogeneity (or mixing) of the subbottom material.

4) The measurement of the viscoelastic parameters turn out to be

probably the most sensitive measurement for the identification problem.
^  9 9

Indeed, the Lame parameters X  =  x '  +  ̂ = + lJ" gt'

have operator forms in the time domain whereas they have x  =  x '  + iaiX",

v  = u' + iwy" complex forms in the frequency domain. These are further

discussed in la ter sections.

There is also a very important effect which is the non-linear

effects of the subbottom. However, this can be detected from frequency

doubling and/or frequency trip ling  of the output acoustic signals. The

cause of the nonlinearity is usually an interaction of the viscoelastic

waves which are converted from acoustic waves from the liquid (ocean) -

subbottom interface (boundary) couplings in the layer structure -  (see

Figure I I - l ) .

Acoustic Signal 
(ocean)

First Subbottom Layer

Figure I I - l

itP
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On the other hand, the origin of the non-linearities can be 

attributed to the geomorphological reasons of the layers such as clust­

ering of certain types of material such as clay in a random manner in 

the layer, (see Figure I 1-2)

Figure I I -2

Unless the frequency doubling and/or frequency trip ling  effects 

are observed in the output effects i t  can be concluded that the non- 

linearities  are weak and the linear model w ill not need modifications 

to include non-linear behavior. In this investigation the non-linear 

behavior is not taken into consideration.

After these preliminary remarks, the description of the theoret­

ical model of the ocean subbottom system is presented. The original 

model (Magnuson, 1972) was designed for the shallow water (up to 600 

feet) conditions and the acoustic probing could be achieved by surface 

vehicle(s) (ship(s)). I t  is mainly a one liquid layer plus layered 

subbottom structure (see Fiugre I 1-3).
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,2 .  1 _ £ _  
2 2 /  at*

<J> = 0
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Viscoelastic 
> Regime

Figure I 1-3

The acoustic response from such a system with given acoustic 

inputs were f i r s t  analytically calculated for one layer subbottom by 

A. Magnuson (1975) as mentioned e a rlie r.

This model was the fie ld  theoretical version of the original 

Hersey-Breslau (geometric ray theory) model. The Hersey-Breslau model 

did not contain shear effects of the subbottom and was taken after the 

Rayleigh ray theory.

The analytical model used in this investigation is a damped 

harmonic oscillator model. The model is introduced from the funda­

mental fie ld  equations simply f ir s t  going to the Fourier-domain in 

spatial coordinates. Briefly this w ill be shown.
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The isotropic  wave equation in one subbottom layer reads

p3t 2U -  yV2U - (y + A) V (v-u) = 0 (H .3 )

where x  = x '  + A"3t  and y = y 1 + y"3t  in the l in ea r  v iscoelastic

theory. The above equation then becomes

p3t 2U - y 'v 2u -  ( y 1 + X ' ) V (V*u) -  yM3t V2U -  (y" + A")3t v(v*u) = 0

( I I . 4)

where u = u ( r ; t )  and taking the spatia l Fourier transform of the above 

d if fe re n t ia l  equation leads to

p3t 2U + y"k23t U + (y" + A ")3 ^  (]<*u) +

+ y 'k 2U + (y ' + A ') £  (l<-u) .= 0 ( I I . 5)

where u = u(l<;t) which has e ssen tia lly  an analogous structure to

the

3̂ .2u + 2?o)n3̂ .it + = 0 ( I I . 6)

damped harmonic o s c i l la to r  model. Now, the system (theoretica l model) 

can be represented geometrically as in Figure I 1-4.
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Figure I 1-4

Here, the boundary conditions, namely, the continuity of the 

stress fie ld  as well as the displacement vectors at the interfaces now 

have been substituted by harmonic oscillator in it ia l conditions: x (t) -  

displacement and x (t) - velocity conditions. A. Y ild iz (1972),

A. Magnuson (1972) and Stewart (1975) have considered these boundary 

conditions and determined the response of such a system in space- 

frequency domain.

In this investigation, the geometrical effects that is the 

boundary effects are taken into consideration in a different manner.

In (l<;t) and (itju) domain the boundary effects are observed by noting 

changes in such parameters as the quality factor.

Continuing with the description of the theoretical model, i t  is 

important to note the advantages of this rather simple and effective  

model.



1) For one degree of freedom system one has a resonant 

frequency (see Figure I I - 5 ) .  This represents the most dominant 

frequency of the layer which also carries the characteristic in for­

mation of the layer, namely

The width of the peak is related to the imaginary parts of the Lame 

parameters, namely y "  and X " .

2) The two degree of freedom w ill be represented by two 

resonant frequencies - see Figure I 1-6. Once again, the f i r s t  

resonant frequency is the characteristic frequency

( I I .

A

n

Figure I 1-5

A

U)
w ,n

Figure I 1-6
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of the f ir s t  layer whereas the second resonant frequency is the 

characteristic frequency of the second layer. This can go on further 

for three, four degrees of freedom and determine their characteristic 

frequencies.

The motivation for choosing this model has come from the 

application of higher order correlation technique which the Theoretical 

and Applied Mechanics group has developed at the University of New 

Hampshire. Indeed, the raw acoustic data has been developed in the 

computer and the resonance peaks have been observed. The interpretation  

of the signal porcessing results leads one to adopt the damped harmonic 

oscillator model. As shall be discussed in the signal processing section, 

the virtue of the higher order autocorrelation technique is to make use 

of only the output signals with no reference or need of the input signals 

to the system whatsoever. This radical change from the usual signal 

processing is demanded because of considerable uncertainties in the 

input signals in the fie ld  experiments.

Again, one of the main contributions on the damped harmonic 

oscillator model is the determination of the width of the resonance 

peak in terms of thermodynamical and mechanical variables. Thus, the 

usual empirical description of the width now has given its  place to an 

analytical expression. Therefore, the damping parameters of the sub­

bottom soil can be determining independently by the model. The signal 

processing also yields an empirical width estimation. The comparison 

of these two values is the most sensitive probe for the general 

identification of the ocean subbottom soil.
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I I I .  LINEAR VISCOELASTIC THEORY

In this section, the general theory of viscoelasticity is 

presented. F irs t, the linear e las tic ity  theory is b rie fly  outlined 

with emphasis on physics. The viscoelasticity is introduced from the 

fundamental elastic relations by introducing viscosity or energy 

dissipation mechanism into an elastic body. The d ifferentia l equations 

which describes the elastic and viscoelastic compressional and shear 

wave mediums are obtained in ( r , t ) ,  (r,w ), (it, t ) , and (t.w) domains 

and their respective solutions are presented as a response to an unit 

impulse excitation, that is in terms of Green's functions. The dis­

sipative and reactive parts and causality effect of Green's function 

are also presented. Finally, the in it ia l value Green's function is 

evaluated using Kubo's formula.

I I I . l  LINEAR ELASTIC THEORY

The small deformation theory of e la s tic ity  has been established 

for many years and has been used for the solution of variety of problems 

(Love, 1927). The main concern here w ill be the mechanical aspects of 

the elastic medium which supports small deformations. The thermo­

dynamical conditions can and w ill be subsequently b u ilt into the theory. 

For the purpose of these studies the equations of motion (or dynamical 

equations) and equations of state (or stress-strain relations) are the 

two primary groups of formalism which describes the mechanical behavior 

of an elastic body. Compatibility relations are nothing but geometric 

continuity equations which can also be brought into the picture whenever 

such a need arises.



Omitting the usual preludes, the dynamical equation of motion 

for an elastic body can be written as:

with p is the density of the elastic body, û  is the displacement

For small deformations a general relation between stress and 

strain must be developed and understood. To do th is , a relation  

between the local strain at every point in an elastic body must be 

determined to the internal forces - the stresses in the body. For each 

small element of the body i t  is assumed that the Hooke's law holds 

true and the stresses are proportional to the strains. The stress tensor 

a ., is defined as the i th component of the force across a unit area* w
perpendicular to the j-a x is . Hooke's law states that each component of 

a.̂ . is related to each of the components of strain e ^ . Since a^. and 

e. each have nine components, there are eighty-one possible coefficients

which describe the elastic properties of the body. These coefficients

P ext ( i , j  = 1,2,3) ( I I I . 1-1)

£
where a ., is the stress tensor. 8. = -r—  is the derivative operator,dX •

i nt 2f .  is the internal force term or D'Alembertian and equals to -p8t  û .

3 p v t
vector, is the time derivative and F. is the external force

term. Thus, the equation of motion can be written as

( I I I . 1-2)

and can be defined by the equation

0i j  = Cijk& ekJt ( I I I . 1-3)

where C is called the "tensor of e las tic ity .



Before any further restrictions on the discussion of the 

stress-strain relations via tensor of e las tic ity  to those bodies which 

are homogeneous and isotropic, a b rie f outline considering only in- 

fetisimal theory of elastic bodies which are not necessarily isotropic 

shall be discussed. Without loss of generality, i t  is assumed that the 

stress a... and strain have the following symmetric properties:

ela “ e£k

( I I I . 1-4)

These dictate symmetry conditions on the C . ^  tensor*.

ci j l a  = cj i l a  ’ cijk£  = cij£k  ’ cijk£  = cjik£  ( I I I . 1-5)

Because of the symmetric properties described in Equation ( I I I . 1-5) the 

tensor of e la s tic ity  becomes

i jk£ Cjik£ (symmetry in i and j  indices) ( 111.1-6a)

ijk£ Ci jAk (symmetry in k and z  indices) ( I I I .1-6b)

ijk£ Cj i  Jik (symmetry in i and j ,  k and z

indices, simultaneously) ( I I I .1-6c)

and an additional property due to cartesian system of coordinates* is 

written as

ci3k« '  ckrij <I n -1-6d>

*Actually the cartesian coordinate system ignores the difference between 
covariant and contravariant indices, i . e . ,  = c!^.
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A propos, a few well known definitions can be made:

Elastically homogeneous: I f  the elastic coefficients

are constants, then the elastic body is homogeneous.

Isotropic: I f  the elastic coefficients do not depend on the

spatial orientation, then the elastic body is an isotropic body.

Otherwise, the body is said to be aelotropic or anisotropic.

I l l .1 .a ELASTIC COEFFICIENTS

In general, C . j f o r m s  a matrix of 9x9 with eighty-one 

coefficients. However, because of the symmetry of the stress (a .. = a . .)
I J  J  I

and the strain ( e^  = e ^ ) tensors the tensor of e las tic ity  w ill

be reduced to a 6x6 matrix or th irty -s ix  coefficients. Again the symmetry 

of the indices ( i j  and/or k£) forces these th irty -s ix  coefficients to be 

composed of twenty-one different coefficients. This is simply due to the 

symmetry of the off-diagonal terms in the coefficient matrix. Here the 

twenty-one elastic coefficients C -jj^  w ill describe an aelotropic body.

From this general situation higher order symmetries of special 

cases shall be brie fly  reviewed. [Green and Zerna, 1954]

Symmetry with respect to â plane, say x^-x2 plane in cartesian 

coordinates, reduces the elastic coefficients from twenty-one to thirteen 

coefficients.

Symmetry with respect to two orthogonal planes, say x-j = 0 and 

Xg = 0, reduces the elastic coefficients from thirteen to nine coefficients. 

This type of symmetry is called orthotropy.
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Symmetry with respect to rotation is obtained from an 

orthotropic body, say with rotation of axes in the form x-j cos e + 

x2 sin e , -x-| sin e + x2 cos e and third axis remaining the same, 

reduces the elastic coefficients from nine to five coefficients.

Symmetry with respect to a ll possible changes to other rect­

angular cartesian systems of axes reduces the elastic coefficients from 

five to two coefficients. This type of a body is called an isotropic 

body. These two coefficients are given by C-j-j-j-j and C-|i22 and the 

stress-strain relation can be written as

° n
f

°22

a33

a23

a32

a31
V

Cl l l l  C1122 C1122

Cl l l l  C1122 0

H i l l

1

0

0

2^cm r ci i 22  ̂ 0

1
2(cm r cii22^

1

0

0

2^cn n “cii22^

el l

e22

e33

e23

e32

J £31

( I I I . 1-7)

Now these coefficients can be written in an alternate notation

'1122 P = 2 (Cm i  '  C1122^ ( I I I . 1-8)
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where p and x  are Lame parameters.

Finally, from Equation ( I I I . 1-7) and from the symmetric 

properties shown in Equation ( I I I . 1-6) the elastic coefficients 

can be expressed in compact form as

Ci j la  = A6i j 6k£ + v(6ik 6j *  + 6i i 6jk ) ( H I . 1-9)

Now, the d ifferentia l equation and its  solution for an isotropic 

and homogeneous elastic body can be presented.

Using Equations ( I I I . 1-9) and ( I I I . 1-3) the stress relation

0 . .  =  A 6 • . e „ „ +  y ( e • • +  £ • • )1J 1J n  1J Jl'

or

° i j  = x<si j eju  + 2pei j  (III.1-10)

since e . .  = e . . .
I J  J  I

The d i f fe r e n t ia l  equation becomes

+ A3j e£* + 2y8i Ei j  = FJ ( I I I . 1-11)

where the s tra in  tensor is defined as

E z z  = V s ,  ' ei j  = 2 ^9i uj  + 9j ui^ ( I I I . 1-12)

Hence, Equation (111 .1-11) becomes

p 8t 2Uj -  ( A + u)9J-3i ui -  ji32u . = F. ( I I I . 1-13)



^ -----

____
8'

21

in tensor notation; in vector notation i t  becomes

p3t 2U -  (A + y )  V ( V U )  - y V 2U = 0 ( I I I . 1-14)

for no external force. This gives the d ifferentia l equation for an 

homogeneous and isotropic elastic bodies. Noting that this is a vector 

equation which combines three types of polarizations: longitudinal -L,

vertical shear -VS and horizontal shear -HS (modes), the equation can 

be separated into longitudinal or shear (transverse) parts with the 

following definitions:

u L + T

„  - y  
V • u.

0

0

( I I I . 1-15)

Thus, the equation results in the well-known wave equation form

J -  8 2, 2 9t
- y
UT = 0 ( 111.1 -16a)

u, = 0 ( I I I . 1- 16b)

where = / y / p  and = / ( a  + 2 y ) / p  are the transverse and 

longitudinal velocities, respectively. (Landau, L ifsh itz , 1970)
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The above set of equations can be appropriately solved by 

the Green's function method. In Green's function formalism the 

equations become

v2 - - 1 — 8 2 „ 2 3t
T ,L

Gj L( r - r ' ; t - t ' )  = < S (r-r ')f i(t-t ') ( I I I . 1-17)

where Cy  ̂ and Gy  ̂ are the appropriate velocity and Green's function 

for the desired polarization, respectively. Using the Fourier trans- 

formations

GyjL(r-r';t-t') = d id

2tt
d3k
(2ir)

6(^ . ) = [ f f  d!k e- r f . (?-?•)
J "  (2tt)

( I I I . 1- 18b)

6(t - t ') da) ia )(t-t ' ) 
2tr e ( I I I . 1- 18c )

Equation ( I I I . 1-17) becomes in (lt;co) domain

■k2 + ^
JT,L J

GyjL (l<ia)) = 1 ; ( I I I . l -1 9 a )

in (l<*,t) domain

- ke 2 °t
JT,L

or
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3t  + C T,L k Gy L( l t , t - t ' ) = - 6 ( t - t ' ) ( I I I .

which is in the undamped harmonic oscillator form; 

in (r;w) domain

v2 + —
2

"TjL
GTjL( r - r '  ;<d ) 6 ( r - r ' ) ( I I I . '

which is in the Helmholtz equation form. The solutions to these set oi 

equations are well-known and are given by: 

in (r;w) domain

4Tr|r-r‘
( I I I .  i

where ky  ̂ = w/Cy  ̂ ; 

in ( it ; t ) domain

GTjL( k ; t - t ' )  = k c
ikCT , ( t - t 1)

T,L
( I I I . l

in (£;u)) domain

GTjL(k;ti)) = - ------

'T»L

( I I I . l

-19b)

-19c)

-20a)

-20b)

-20c)

and f in a lly , in ( r ; t )  domain



GTjL( r - r ' ; t - t ' )

r - r '
T ,L

4-it | r - r '
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( I I I . l - 2 0 d )

Thus, the solution to the d ifferentia l equation of an isotropic 

and homogeneous elastic body in Green's function formalism was presented.

I I I . 2. LINEAR VISCOELASTICITY THEORY

In discussion of motion in elastic bodies, i t  was assumed 

that the deformation, that is the exhibition of solid bodies to change 

in shape and volume due to external applied forces, is reversible. In 

re a lity , i f  the motion occurs with infitesimal speed only then the 

process is thermodynamically reversible. However, an actual motion 

has f in ite  velocities, hence the body is not in equilibrium at every 

instant and therefore processes w ill take place in i t  which tend to 

return i t  to the equilibrium position. These processes has the result 

that the motion is irreversible and the mechanical energy, which is 

the sum of the kinetic energy of the macroscopic motion in the elastic  

body and its  elastic potential energy arising from the deformation, is 

dissipated as heat.

There are two types of dissipation of energy which may occur. 

First, i f  the temperature at d ifferent points in the body is d ifferent, 

then irreversible processes of thermal conduction can take place in 

i t .  Second, i f  any internal motion occurs in the body, then there are 

irreversible processes arising from the f in ite  velocity of the applied 

motion. This type of energy dissipation is referred to as viscosity.
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Elastic bodies possessing these mechanical properties are called 

(damped) viscoelastic solids.

In many cases the velocity of macroscopic motions in the 

body is so small that the energy dissipation is not considerable. 

Hence, a state of "almost irreversible" processes exist. I f  a mechan­

ical system whose motion involves the dissipation of energy, then this 

motion can be described by the ordinary equations of motion (see 

Equation ( I I I . 1-14)) with the external forces acting on the system 

increased by the dissipative forces or fric tional forces, which are 

linear functions of the velocities of the applied motion. Hence, 

for viscoelastic bodies the f ir s t  time derivitive of the strain w ill 

give rise to fric tional forces which is linear function of velocity.

In general, therefore, the modified Hooke's law can be written as

For a body of this type, which is known as a Voigt solid, the stress 

is the sum of two terms, one proportional to the strain and the other 

proportional to the rate of strain. Hence, stress can be expressed in 

the following form:

( I I I .2 - la )

or

( I I I .2 - lb )

( I I I . 2-2)
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where

( I I I .2 -2 a )

the stress Is proportional to the strain, and

( I I I .2 -2 b )

the stress is proportional to the rate of strain. In other words, 

this expression takes into consideration the dissipation of energy in 

the elastic body. I t  should be noted that the equation of motion 

for a viscoelastic medium can be obtained from relations similar to
a

those obtained for an elastic body, but the Lame parameters are modified 

to become operators in the following manner:

where y 1 , y "  are the shear modulus and shear viscosity, and A ' ,  A" are 

the compressional modulus and compressional viscosity of the viscoelastic 

medium.

A A' + A" f t ( I I I .2 -3 a )

( I I I .2 -3 b )



Hence, the d ifferentia l equation for a viscoelastic medium can 

be written as

V i j  + 31 ”10 -  = 0 ( I I I .2 - 4 . )

or

X'3jE«  + 2"'Vij + 1,,3t3oeu  + 2“"3t31eij

or using Equation ( I I I . 2-3) and ( I I I . 1-14)

p3t 2U -  (A' + A"3t  + l i1 + y"3t )v (v*u) -  (V ' +  li"3t )V2U = 0

( I I I .2 -4 c )

Once again, the Green's function appropriate for viscoelastic 

compressional and shear waves shall be developed,

i )  Green's Function for Viscoelastic 

Compressional Waves 

The Green's function for compressional waves can be obtained 

according to the procedures outlined in Section ( I I I . l ) .  Thus, the 

Green's function for u  ̂ is obtained in ( r ; t )  domain as
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Using time and space Fourier transformation Equation ( I I I . 2-5)

becomes:

in (Itjio) domain

C-OJ2 + X 1 + 2u‘ k2 + i X" + 2y" k io]G(k;oi) = 1 ( II I .2 -6 a )

in (l<;t) domain

C’ t  + [
X" + 2y" k^]3t  + f- - - + 2 —̂ k2]G (k ;t- t ‘ ) s ( t - t ' )  ;

( I I I .2 -6 b )

which is in the damped harmonic oscillator form

(3t 2 + 2?(onat  + wn2) f ( t )  = 0 ( I I I .2 -6 c )

where wn and ? are the natural frequency and damping factor of the 

system. Equation ( I I I .2 -6 b ) states that G(k;t - t 1) is the Green's 

function for the ordinary d ifferentia l equation describing the non­

equilibrium behavior of the system. Specifically, i t  gives the response 

to a unit impulsive external force at time t 1.

In (r;a>) domain

2 r X' + 2u1 ,
-<*> - [—  i

X" + 2yi" G(r-r';o)) = < 5 ( r - r1) ( I I I .  2-6d)

The Fourier transformation of G (k ;t-t ')  can be written in 

the following manner.
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G(k;t - t ') doj - iu ) ( t - t ‘ ) 
2tt e G(k;io)

and

G(k;u>) = [ d ( t - t ' )  G (k-,t-t')
J  . ( »

0

where the last transformation reflects the causal nature of G (k ;t-t ') .

The solution to the above equations are given below. In 

(£;(!)) domain

G(k;aj) 1
2 2 -a) + c + iu)2b

( I I I .2 -7 a )

where

x1 + 2yi11 1/2 ( I I I .2 -7 b )

is the natural frequency of the viscoelastic body,

_ (A" + 2u")k2
2P ( I I I .2 -7 c )

is the temporal attenuation of the viscoelastic body,

k  = r = (A" + 2u")k
c 2p1 / 2 (x* + 2 p ’ ) 1 /2

( I I I.2 -7 d )

is the damping factor of the viscoelastic body; in (l<;t) domain



G ( k j t - t ' )  = n ( t - t ' )  e " ^ " 1̂  s in ^ -t---t- ^ I  (111 - 2 - 8 a )

where

a -  to * = to v i - c  d n s.X ^ r2 X' + 2u'
1/2

kn .  O" *  2 v " ) 2 f l
KU 4p(A' + 2 y ' )  J

( I I I - 2 - 8 b )

is the damped natural frequency of the viscoelastic body;

in (r;to) domain

G (r-r ' ;oj) 1
4Tr|r-r'

-b - jlr -r 1 1 +ib2 |r - r '
e e ( I I I . 2 - 9 a )

where

D (a»r -  l j l / 25 = r _______
1 CL 2 D(to)4

( II I.2 -9 b )

is the absorption coefficient for viscoelastic compressional waves,

2 CL '

D(to) + 1 

2 D(to)4

1/2 ( I I I . 2 - 9 c )

r>/ \  _ r i I f  ^/^D(to) -  L 1 + (0 b r - r j  J

C • = / E U Z
L p

( I I I . 2 - 9 d ) 

( I I I . 2 - 9 e )

is the compressional wave velocity,
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( I I I . 2 - 9 f )

For real co, the Green's function is usually divided into two 

parts: a dissipative and a reactive part. In this case, these are
i

given respectively by the real and imaginary parts of G(oj), and are 

denoted as G"(a>) and G1 (tu) as illustrated in Figures I I I - 2  and I I 1-3. 

Defining G(w) = G'(ai) + i G"(a)), then

2 2
G'(k-,a>) = 9 ■ ;  o-------------o ( I I I . 2-1 Oa)

[c^ -  / r  + [tu2b]

is the dissipative part and

G"(k;u») =  9 ( I I I .  2-1 la )
[c^ - a) ] + [ 2ub]

as the reactive part. Taking the Fourier transformation of the above 

equations, the real even and imaginary odd functions of time are 

obtained as

G '(k ; t - t ')  = e“bIt_ t ' 1 S1n ^  (III.2 -1 0 b )

G " (k ;t- t ') = e“bIt - t ' I .sin.-Laj t - t l ) ],, ( I I I . 2 - l lb )

which are illustrated in Figures 111-4 and I I 1-5.

Since the response is causal, the real and imaginary parts of 

G(k;oj) are related by Hilbert transform according to the relations
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G'(k;u)

G"(k;a>)

= P doj' G"(k;o>)
to -to

= P fdoLl G1 (k;<o) J IT t o' “(0

( 111.2-12a) 

( I I I .  2-12b)

where "P" implies principal value integral, that is , an integral 

symmetrical with respect to the singularity.

Keeping in mind that the Green's functions obtained above 

already contain the in it ia l conditions, that is the system is in i t ia l ­

ly at rest in its  equilibrium position, an in it ia l value Green's 

function shall now be presented where the in it ia l displacement is not 

equal to zero.

In order to achieve this the viscoelastic compressional wave 

system is written for vL via Equation ( I I I .2 -4 c ).

P9t 2 vL f A "  +  2y " )  2 ? [ V  + 2y ' l
p J v °t VL I  P v2 vL = 0

( I I I . 2-13)

Noting that here v̂  represents a deviation of the velocity from the 

uniform time independent equilibrium value, the relaxation of a de­

viation v ^ (r;t) can be computed in terms of the in it ia l value of the 

displacement and its  deriv itive .

In order to accomplish this a Fourier transformation

vL(k;u)) = 

is used to obtain

dt e- i  tot d3r e1* ’* vL( n t ) ( I I I . 2-14)
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(-to2 + c2 + ito2b) vL (kjto) = ( - i to + 2b)  vL ( k ; t = 0 )  + 3t  vL ( k ; t = 0 )

( I I I . 2-15)

“>/Using the relationship between 3t v^(k;t=0) and v*a(k;t=0) the previous 

equation becomes (see Appendix-2)

v, (k;<o) -1
ito v^ k^O ) + c u^(k;t=0) -to2 + c2 — ito2b

( I I I . 2-16)

The in it ia l valued Green's function can be obtained by using Kubo's 

formula

R(k;to)
F ( k ; t = 0 )

to be

G-(k;oo)

= G .(k> ) - G.(k;0)

c -  i to2b
2 2 •to + c -  ito2b

( I I I . 2-17)

( I I I . 2-18a)

Gi ( k ; 0 )  = 1 . ( I I I . 2-18b)

In (k ;t) domain

G1( k ; t - t ' )  = n ( t - t ' )  [c^ G (k ; t - f )  + 2b 3t  G (k ;t - t ') ]  ( III.2 -1 9 a )

= n ( t - t ' ) e -b [ t - t '] c2 - 2b2

+ 2b cos

-j sin [a( t - t 1)]

[ a ( t - t ' ) ]  |  ( I I I . 2-19b)

and in (r;to) domain

Gi ( r - r 1;«) = \  (b9 + ib1)2 e 1
b J r - r ' I  ib J r - r '

4 ir|r-r
( I I I .2 -2 0 a )
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are the appropriate in it ia l valued Green's functions. Here, the 

subscript i indicates in it ia l value is being considered.

i i )  Green's Function Appropriate for Viscoelastic Shear

The Green's function for viscoelastic shear wave system can 

be obtained by taking the curl of Equation ( I I I .2 -4 c ) . Hence, for 

uT the d ifferentia l equation in ( r ; t )  domain is obtained as

This equation is in the form as the one for the compressional waves.

The mathematical form of the d ifferentia l equations and their solutions 

of the shear waves are identical for the compressional waves except now 

the compressional modulus A'  and viscosity A" are neglected. Hence, 

the solutions for the viscoelastic shear wave system is given by: 

in (foto) domain

Wave System

( I I I . 2-21)

G(k;<o) ( I I I . 2-21)

where

(III-2 -2 1 a )

( I I I . 2-21b)

b u" k ( I I I . 2 -21c )
c 2 p 1 / 2 ( w ' ) 1 / 2
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are the natural frequency, the temporal attenuation and the damping 

factor for the viscoelastic shear wave system, respectively; 

in (it;t) domain

G(k

where

a = c / l -?J v ?

is the damped natural frequency of the viscoelastic shear wave system;

in (r;oi) domain

G(r-r';<o)
■b,\ r - r \ ib2 |r - r '

4tt r - r '
( I I I . 2-23)

where

D(oj) -  1

c~r  T

il/2
2 D(u>)

( II I .2 -2 3 a )

is the absorption coefficient for transverse waves,

r ' UT
[

D(<jj)  +  1 1/2

2 D(ui)

(r
6(„) .  [  , + „2

(CT' ) 4

( II I.2 -2 3 b )

( II I .2 -2 3 c )
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CT' = / f -  (H I-2 -23d )

is the transverse wave velocity,

CT" = / f  . (111 - 2-23e)

The in it ia l valued Green's function for viscoelastic shear wave 

system can be determined analogous to that of compressional waves. The 

results can be immediately written as

G,(k;<o) =    ; ( I I I . 2-24)
-w + c -  ioi2b

G ^.(k;t-t') = n ( t - t ' )  e"btt_ t^ j  [c - I - -2b j  sin [ a ( t - t ' ) ]

+ 2b cos [ a ( t - t ' ) ]  |  ; ( I I I . 2-25)

G .(r-r ' ;to) = ■ (b + ib )
1 4tt | r - r ' 1 1 L

1 .- ,2 "bi l ^ ' l  ib2 |r - r '
' ’ u e e

( I I I . 2-26)
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IV. LINEAR VISCOELASTIC THEORY WITH TEMPERATURE EFFECTS

In this section, the linear viscoelastic system with temper­

ature effects are presented. The d ifferentia l equations for the system 

are developed and their solutions are again presented in terms of 

Green's functions. The compressional viscous parameter expression is 

obtained in terms of thermodynamical and mechanical variables. This 

result is fin a lly  related to the resonance peak width in a damped 

harmonic oscillator model.

IV .1 DEFORMATIONS IN VISCOELASTIC MEDIUM WITH 
TEMPERATURE EFFECTS

In this section, the deformations which are accompanied by 

a change in the temperature of the viscoelastic body w ill be considered. 

This change in the body can be the result of the deformation process 

its e lf  or from external causes.

Let the undeformed state of the body in the absence of external 

forces be at some given temperature T0. I f  the body is at a temperature 

T different from T0, then, even i f  there are no external forces, due 

to thermal expansion, i t  w ill be deformed. Since only the sum of the 

diagonal terms of the strain tensor is the relative volume change of 

the body, the thermal expansion due to temperature difference w ill 

only affect the coefficient of u££ in the stress tensor given in
A

Equation ( I I I . 1-10). Hence, of the Lame parameters only the compres-
A

sional modulus A w ill be altered. On the other hand, the Lame shear 

parameter y w ill not be affected by temperature.
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In order to present the affects of temperature change on a 

body i t  w ill be useful to rewrite the strain tensor in an appropriate 

fashion. Since any deformation can be represented as a sum of a pure 

shear and a hydrostatic compression, the strain can be written as

eik = (eik " J 6ik e u )  + I 6ik (IV .1-1)

and hence, the stress tensor is

aik = K Eu  6ik + 2y(Eik “ T  6ik z m )  ( iv -1“2)

for an elastic homogeneous isotropic body. Here, K is modulus of
*

compression and is related to the Lame coefficients by

K = x + |  y . ( IV .1-3)

The above expressions can be easily extended to viscoelastic body by 

using Equations ( I I I .2 -3 a ) and ( I I I .2 -3 b ). The stress tensor then 

becomes

aik “ K e z z  6ik + 2p'^Eik - 3 6ik E£^

+ K" 5ik 3t + V' V Eik - J s1k E«)

where

K' = A' + |  y'

K" = A" + f y "  (IV. 1-5)
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Now, among various types of thermodynamic deformations, 

isothermal and adiabatic deformations are very important. In iso­

thermal deformations, the temperature of the body does not change. 

Therefore, expression T = T0 is valid and Equations ( IV .1-4) and 

( IV .1-5) hold true for isothermal deformations. The coefficients 

K1, K", y 1, and y" can then be called isothermal moduli.

I f  an adiabatic deformation occurs, then there is no exchange 

of heat between the various parts of the body. In this case the 

entropy S remains constant and the change of temperature T-T0 due 

to deformation is proportional to . An expression for the stress 

tensor is obtained in the usual manner as

° ik ad = Kad 6ik + 2y(eik '  I  6ik ( IV J ' 6)

for an isotropic homogeneous elastic body.

From now on an elastic body possessing energy dissipation 

mechanism and adiabatic thermal properties shall be referred to as a 

thermo-viscoelastic body (or medium).

The relation between the adiabatic modulus Kad and the ordinary 

isothermal modulus K can be found for an elastic and homogeneous body 

by using the Maxwell relation with the appropriate Jacobian transforma­

tions. Since deformations due to temperature change results in volume 

change of the body, the derivitives 9V/3T and 9V/9P which give the 

relative volume changes in heating and compression respectively, become 

important. Therefore, the thermodynamic definitions
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3V
3P ad

(IV .1-7)

which is the adiabatic compressibility coefficient,

3V
3T

is the coefficient of thermal expansion,

( IV .1-8)

3S)
3T (IV .1-9a)

is the specific heat per unit volume at constant pressure, and

3V.
3P ( IV .1-9b)

is the isothermal compressibility coefficient, are used to find a 

relationship between Kacj and K. Using the Jacobian transformations

on Kad as

■ - f ) s ■ - M  ■ t g #

and since the changes in temperature are desired, the above expression 

can be written as

1 _ . 3(V,S) 3(T,P
Kad " 3(STP) atTTP
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1as
3T . p

'ayl  fas).3Tjp l^Pjj
fas
9T ) r ] ( I V . 1—10b)

which results in

_L_ - L “ fli <ad ~ CP M (IV .l-lO c)

from the thermodynamic definitions. But from Maxwell's relation

as
aP

av
aT

(IV .l-lO d)

the final form of the relation between Kacj and K can now be written 

down as

ad

ad

= 1  
K

T a ( IV . l - l la )

( IV . l - l lb )

IV .2 ELASTIC WAVES IN THERMOVISCOELASTIC MEDIUM

In this section the d ifferentia l equation appropriate for a 

thermoviscoelastic medium shall be determined.

In general, when motion occurs in a deformed body, then its  

temperature w ill vary in both time and space. This obviously w ill
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complicate the exact equations of motion in the general case of 

arbitary motions.

However, the situation can be simplified i f  the assumption is  

made in the transfer of heat from one part of the body to another, 

by thermal conduction, occurs very slowly. Also, i f  the heat exchange 

in the body during the period of the oscillatory motions is negligible, 

then any part of the body can be regarded as insulated, that is , the 

motion is adiabatic. Therefore, the stress tensor is the equation 

of motion w ill be simply given in its  adiabatic form. The equation 

of motion is then

and using Equation ( IV .1-4) and the definition of the strain tensor 

i t  becomes

t. 9t 2 u, -  („' + u"9t )32 U, - [K'a(| + i  + (K"ad + 1  V *  ■ f

(IV .2 -lb )

and in vector form i t  becomes

p 9t 2 U -  ( y 1 + y"3t )v2 U -  [K 'ad + 1  y 1 + (K"ad + j  y " ) 3t ]v(V-u) = f

( IV .2-1c)

Noting that K"ad + y" = A"ad + y" the final form of the equation 

of motion for a thermoviscoelastic medium with an external forcing term
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can be written as

p9t 2 U - ( y '  + y"3t )v2u - [K'ad + j  p' + U"ad + p")8t ]v(v-u) = ?•

( IV .2-2)

The compressional and transverse wave equations for a thermovisco­

elastic medium can be obtained in the same manner outlined in Section-I. 

Thus, the compressional wave equation becomes

which is same as Equation ( I I I . 2-21), that is the isothermal case.

Since the solution of this equation was already presented i t  shall 

not be further discussed.

i )  Green's Function for Thermoviscoelastic Compressional Waves 

The Green's function for Equation ( IV .2-3) can be obtained by 

applying the appropriate Fourier transformations. In (it;u)) domain the 

expression

(IV .2-3)

and the transverse wave equation becomes

(p3t 2 - y"3tv2 - y'v2)uT = 0 ( IV .2-4)

( IV .2-5)

is obtained; and in (lt-,0)) the expression is
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Gad(k;a)) = -a)2 + C2 + i 2aiB
(IV .2-6)

where

C = ad fK'ad + 4y'/3] 1/2
( IV .2-7)

is the natural frequency,

B = '*"ad + 2p"
2p

is the temporal attenuation of the system, and

(IV .2-8)

B
C

(X"ad + 2p-)k

’ad (IV .2-9)

is the damping factor of the thermoviscoelastic compressional wave 

system, respectively.

I t  should be noted that the above two equations once again are 

in the form of damped harmonic oscillator model in (l<‘, t )  and (itju)) 

domains.

The solutions to the above equations are the following: 

in (£ ;t)  domain

Gad( k ; t - f )  = s1n [M X -tl )] ( IV .2-10)

where

A -  M  r  2 \l/2A .  „d »„ (1 -  Cad ) ( IV .2-11)
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is the damped natural frequency of the system; in (r;ui) domain

1 -B -Jr-r' | iB J r - r '  |
Gad(r - r ' ;") = 7 -F T 7 7  e 6 <IV -2- ' 2)4it  r - r

where

D(oj) .2 -  1 ,  /9
B1 = 7 r V ~  [ ------ ^ ------ a-------------] V  ( IV .2-13)
1 L 'ad 2 D(o>)ad

is the absorption coefficient for thermoviscoelastic compressional 

waves;

D(io) + 1
B2 = I A  V E   -----5------------- 1  > ( IV .2-14)
2 ' L 'ad 2 D(a))ad

° (“ )ad = C 1 + “2 ^ a d ^ 74 ; ( IV .2-15)

/K '  d + 4y'/3
(CL^ad   ( IV -2' 16)

is the adiabatic wave speed for an elastic body; and

A 7 d  + 2tJ"
<CL">ad ’ <IV' 2- 17>

A relationship between the viscous compressional Lame para­

meter A" d and temperature for an isotropic viscoelastic body can be 

determined by using the definition of temporal attenuation

B " Z E u T ^  = %  ( i ”ad + 2 v '"> ( IV .2-18)
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where is the mechanical energy of the body and time rate of change 

of that energy, respectively. Here, E[ ] is the expected value or 

the mean value of the function in [ ] .

Expressing the thermal conduction part of the energy dis­

sipation as

K
T (vT)2dV (IV .2-19)

and on account of viscosity, the energy viscosity term as

*v = -2y" ("ik -  I  6ik h f ®  ~

-  (A" + f  v") h i  dv

( IV .2-20)

the total energy dissipation term can be written as

S’ h = 4>+ + $mech t  v ( IV .2.21)

Using the definition of temporal attenuation in Equation ( IV .2-18) - 

see Appendix I -  the following relation is obtained

2 2
B = I j -  [A" + 2ti" + K T ” p (CL*) ad 1 -

W - r ' I a / l

3<clVJ ]  ( IV .2-22)

where k is thermal conductivity. Rewriting this in a compact form

B = ^  [  A" + At " + 2y"] ( IV .2-23)
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where

( IV .2-24)

a relationship between x"  ̂ and T can now be written as

( IV .2-25)

Thus, an exp lic it expression for the Lame compressional parameter 

has been obtained in terms of specific heat parameter Cp and other

relevant thermodynamical and mechanical variables.

Using the above result an analytical expression for the 

resonance peak width can be shown. In forced vibration the quality 

factor Q of the system is related to damping which is a measure of 

the sharpness of resonance. The relation between the quality factor 

and the damping factor is given by

(IV .2-26)

and to the resonance width as

ad

Q
n ( IV .2-27)

where Au> is the bandwidth. See Figure IV-1.
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Figure IV -l

Using Equations ( IV .2-26), ( IV .2-27), ( IV .2-7) and ( IV .2-9) the 

resonance width expression becomes

Aw = A d  ?ad 
“n

(IV.

, *"ad + 2 "̂Ao) -  ------
K'ad+ T “'

30

2-27)

I
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where X"ad and K'ad are given by Equations ( IV .2-25) and (IV .1 -H a ), 

respectively.
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Figure V-l Acoustic Reflection Signatures from Ocean Subbottom Soil
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V. RANDOM EXCITATION OF VISCOELASTIC MEDIUM

A typical set of acoustic input to the ocean and output 

(reflection) from the ocean subbottom are exhibited by Figure V -l.

This set of acoustic signatures were remotely obtained by the Raytheon 

Company, 1972. I t  is observed from these signatures that the sub­

bottom soil behaves as a vibrating mechanical system since its  parts 

fluctuate in time. In studying such time series records i t  is natural 

to look for some kind of regularity in order to characterize the 

vibration in a simple manner. When there is no obvious pattern in a 

vibration record i t  is sometimes called a random vibration. The char­

acteristic  of such random function is that its  instantaneous value 

cannot be predicted in a deterministic manner. Randomness involves 

the notion that in addition to the given record one should consider the 

to ta lity  of possible records that might equally well have been produced 

under the same conditions. I f  the identical experiment is performed 

many times and the records obtained are always a like , the process is 

said to be deterministic. However, i f  a ll the conditions (under the 

control of experimenter) are maintained to be same, the records contin­

ually d iffe r from each other, the process is said to be random. In this 

case, a single record is not as meaningful as a s ta tis tica l description 

of to ta lity  of possible records. [Crandall, Mark, 1963].

The fie ld  of probability and statistics must be utilized to 

acquire sediment parameters and is a convenience which cannot be over­

looked. The sta tis tica l analysis of the return echoes gives results 

which predict the soil characteristics in a consistent manner.
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The vibration record as seen in Figure V-l is characterized 

by its  amplitude and frequency. In random vibrations, the in it ia l  

conditions and the phase have l i t t l e  meaning, and are therefore 

ignored. The main concern is with the average energy, which can be 

associated with the mean-square value of the response of the system.

Here, the response of the system is the amplitude of the reflected 

acoustic signal from the ocean floor. This vibration record can be 

sufficiently described by an average amplitude and by a decomposition 

in frequency. The average amplitude can be determined by the calculation 

of root-mean square value. The frequency decomposition is indicated by 

the mean square spectral density. Another s ta tis tica l parameter, the 

quality factor Q, can be obtained to provide a more complete picture 

of the record. I t  is the la tte r  parameter Q which is the most important 

to obtain from the analysis. From Q the attenuation constant for the 

ocean subbottom soil can easily be determined.

V-l NONSTATIONARY RANDOM PROCESSES

This is a very important section in analyzing the acoustic 

response signatures from the ocean floor. The data obtained from the 

experiment indicates that the process is non-stationary since the 

statistical properties of the data change with time. The time varying 

properties of the data can be determined only by performing instanteous 

averages over the ensemble of sample responses forming the process. In 

actual analysis, i t  is sometimes not necessary to obtain a huge number 

of sample records to allow an accurate measurement of soil properties
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by ensemble averaging. The non-stationary random data produced by 

this actual physical phenomena can be classified into a special 

category of non-stationarity. This particular experiment results 

in a random data which is a result of a non-stationary random process 

input {s (t )} where each sample input function is given by s (t) = e ( t )a ( t ) .  

Here, e (t)  is well-defined, deterministic envelope function and a (t)  is 

a Gaussian broadband noise function from a stationary random process 

{ a ( t ) }. This excitation is a nonstationary processes created by the 

multiplication of sample functions from a stationary process and the 

deterministic function e ( t ) .  Since the nonstationary random data from 

the experiment is a result of this particular input, ensemble averaging 

is not always needed to describe the data. The various desired pro­

perties can then be estimated from a single sample signature, as is 

valid for ergodic stationary data.

An adequate methodology does not seem to exist for the analysis 

of a ll types of stationary data. This is mainly due to the fact that 

a non-stationary conclusion is generally a negative statement stating 

the lack of stationarity properties, rather than a positive statement 

defining the precise nature of nonstationarity. Hence, i t  follows that 

special techniques must be developed for non-stationary data which 

only apply to limited classes of data. Some examples of d ifferent types 

of non-stationary data are: (1) time-varying mean value, (2) time-

varying mean square value, and (3) time-varying frequency value. (Carrier, 

Tugal, and Y ild iz , 1974).
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V.2 INPUT-OUTPUT RELATIONS FOR NONSTATIONARY DATA

Assume a sample input function s (t) belonging to a non­

stationary random process {s (t)}  excites a constant parameter linear 

system with Green's function G(t) and frequency response function G(ui). 

For an arbitary input sample s ( t ) ,  the sample response (output) function 

r ( t )  belonging to { r ( t ) l  is given by

where S(ui) is a Fourier transform of s (t) .

The autocorrelation function of the system to nonstationary 

input excitation is given by

r ( t ) G ( t ')s ( t - t ')d t (V.2-1)

or

oo

G M S M e 1"* %r ( t ) (V.2-2)
—oo

Rr (t-j »t2) = E [r (t1 ) r ( t 2)] (V .2-3)

Upon substitution of Equation (V.2-2) into Equation (V .2-3)

— l  ( t i l l  t * i  — u i p t p )1 1 "  2 2 (V. 2-4)

where

Pr (w-],to2 ) = G*((jj-|) G(oi2) Ps(to-j,a>2) (V.2-5 )



with the spectrum of the input excitation given by

Ps(^i ,o>2) = — —̂2" E[S*(o>-| )S(oj2)]
(2t t )

Now the mean-square response is
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(V.2-6)

E[r ( t ) ]  = Rr ( t , t ) (V.2-7)

and from Equation (V.2-4)

E[r ( t )]
1 (tlJ-i “Clip )t

G *( oi-j) G(u>2) P g C u - j ,^ )  e dto-jd^ ( V . 2 -8 )

Since the generalized spectrum of the input excitation can be written as

i (tjo-jt-j -ajgtg) dt-| dtg

(27T Y
(V .2-9)

where

(V.2-10)

and R ( t )  has the Fourier transform P ( w ) ,  the final form of Equationa a
(V.2-9) becomes

dw
( 2 t t )

2 Se (a)-(u1 ) Se (cj2“ to) (V.2-11)

with the envelope transformation functions given by

dtn “i (oj- oj-j
se (“ " wi )  = -% T e ( t | )  e
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dtg
(V.2-12)

Noting the functions in (V.2-12) to be conjugate pairs when u>-j = uig » 

the substitution of Equation (V.2-11) into Equation (V.2-8) gives the 

mean-square response of the system

The desired general information for inputs of amplitude modulated 

stationary noise is given by Equation (V.2-13).

Finally, the in it ia l or non-initial Green's functions of visco­

used in Equations (V.2-13) and (V.2-14) to obtain the mean-square 

response of viscoelastic and even thermoviscoelastic mediums to this 

particular type of non-stationary random input.

V.3 MEAN SQUARE RESPONSE OF VISCOELASTIC 
COMPRESSIONAL WAVE SYSTEM TO NONSTATIONARY RANDOM EXCITATION

In this section, the mean square response of viscoelastic com- 

pressional wave medium to a nonstationary random process input sample 

given by s (t) = e (t) a (t)  is determined. The Green's function is 

non-initial valued

E[r2( t ) ]
•OO

Pa(u) JA(t , ai) |2 da) (V.2-13)

where

(V.2-14)

elastic compressional (or shear) wave systems in (lt;u>) domain can be

(NON-INITIAL VALUED)
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G(«) = — *----- 1 ------------  (V.3-1)
-oo + c + i2wb

where the parameter k is suppressed. I t  should be noted that the cal­

culations and the results obtained here can easily be applied to 

viscoelastic shear wave medium as well as to thermoviscoelastic mediums 

with the appropriate modifications of the damped harmonic oscillator 

parameters.
2The mean-square response E[r ( t ) ]  of the system when e (t) is a 

unit and a rectangular step function and a (t)  has the correlation 

functions

Ra (x) = 2ttKq6 ( t ) ( V. 3-2)

for white noise, and

R ( t )  = KQ e-e lTl cos a  x  (V.3-3)

for the correlated noise are determined. The t is the time difference

V.3 .a UNIT STEP ENVELOPE FUNCTION

I f  a unit step envelope function e (t)  = n (t) = 1, t  >_ 0 and 

zero elsewhere then the frequency shifted unit step envelope transforma­

tion function becomes
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Sg(u)2-w) =
“ 1 0>ot i j.

e 2 n(t)e dt , (V.3-3)

Se(a.2-a,) = 716(0,2- 0,) + l_ - j  .

Substitution of Equation (V.3-3) into Equation (V.2-14) and the evaluation 

of the resultant integral gives

| A(t,oi) |2 = |G(o>) |2 M(t,o,) (V .3-4)

where

2 2 2
M (t,u) = 1 + r , ( t )  + r J t )  [b '  a2 + ^  ] 

1 a

- 2r3 ( t )  cos o,t -  2r4 ( t )  —  sin o,t (V.3-5)

with

r ^ t )  = e_2bt [1 + ^  sin 2a t] ,

r 9 ( t )  = e"2bt sin2 at ,

r , ( t )  = e~bt [cos at + ■g- sin a t] ,J a

r^ (t) = e"bt sin at (V.3-6)
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Hence, the mean-square response via Equation (V.2-13) becomes

|G(io)|2 M(t,u) Po(») dm (V.3-7)

I t  should be noted that in Equation (V .3-7), in the lim it as t  -* °°, 

M(t,oj) 1, so the last expression reduces to the mean- square response 

formulation for stationary inputs.

V.2 .a( i ) WHITE NOISE INPUTS

I f  the input n o i s e  is assumed white, then the spectral density 

function Pa(<*>) becomes a constant Pg. So, the mean-square response 

becomes

E[r2( t ) ]  = P0 j°°|G(w) |2 M(t,oi) dm (V.3-8)
— co

The result of the last expression is:

E[r2( t ) ]  = [1 - e '2bt x
2bc

2
1 + -  sin 2 at + 2 K ?  sin2 at ] (V.3-9)

a a

A normalized plot of Equation (V.3-9) is shown in Figure (V-2).
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V.3 .a (i i ) CORRELATED INPUT EXCITATION

I f  the input excitation is assumed correlated as stated in 

Equation (V .3-3), then the spectral density becomes, Figure (V-3),

where u>3 = fi + is and = -fi + i3 . I t  should be noted that for white noise 

Pg = lim 3 Pa(“ ) = Kq/ tt and this expression is useful for checking the
3-*»

consistency of results, as i t  w ill be shown la ter.

Upon substitution of the spectral density for correlated noise 

in Equation (V.3-10) into expression (V .3-7), the mean square becomes

E[r2( t ) ]  = KgCR^tt) + IiT 2(t )  + R3T3( t )  -  I 3T4( t ) ]  (V.3-11)

where

T-j(t) = fb  [1 -  rn (t )3 , T2( t )  = r2( t ) ,

x

x r2( t )  - 2 [ r 3( t ) + r4( t ) ]  e”et cos fit -
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T4(t) = {2  •£§ r2(t) - 2 [r3(t) + f- r4(t) ]  x

x e~pt sin fit + 2 r4( t )  e"et cos fit j (V.3-12)

and

fi2 + 32 + u>,2
R1 = Re  ̂ , 2 2 w 2 2T] 72\ ■* ** ^2 / ci

R3 = Re  ̂ 2 2w 2 2\(io3 - a)-| j(oi3 -  w2 )

I-, = Im [•
2 2 2fi£ + 3 +  ̂ e
2 27; 2 27] 7203*1 ■” /\^ i """ 0>2 / ^

*3 Im 2 2w 2 2v(w3 -  oj-| Mu3 - “2 '
(V.3-13)

With l i t t l e  algebra, i t  can be shown from the lim iting process
p

1im 3 E[r ( t ) ]  the mean-square response for a correlated noise given
3-*»

in Equation (V.3-11) reduces to the one for a white noise expression 

given in Equation (V .3-9).

The above expression, (V.3-11), indicates the compressional wave 

system's response is dependent upon variables which involve a Lame
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parameter x ,  that is x' and x", the shear modulus y ',  the shear velocity 

y", the viscoelastic soil medium density p, the wave number k, the 

correlation function decay constant 3 , and the correlation frequency n. 

Further note that for a large number of response cycles ct the exponent­

ia l decay terms in the correlated noise in Equation (V.3-11) tend to zero 

and the mean-square response reduces to the stationary value

V.3.b RECTANGULAR STEP ENVELOPE FUNCTION 

For a rectangular step envelope function of duration t ' ,

e (t)  = n (t) -  n ( t - t ')

and upon substitution into Equation (V.2-12) the rectangular step envelope 

transformation function becomes

E[r2( t ) ]  | = K(J[(a/2b)R1 + Rg]

Se(a>2 -  to) = [1 - e ] X

X [tt6(io (V.3-14)

Substitution of the last expression into Equation (V.2-14) one obtains
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+ ( r 1 ( t ) -  M(t,u) + r ^ t - t ' )  +

+ [b2 -  [ r 2( t )  + r2( t - f ) ]  -

- 2 [ r 3( t )  r 3( t - t ' )  + ^  r4( t )  r4( t - t ' ) ]  x
cl

x cos ait' + 2 j  [ r 4( t - t ' )  r 3( t )

r3( t - t ‘ ) r4( t ) ]  sin ait1) n ( t - t ' ) j (V.3-15)

Hence, from Equation (V.2-14) the mean-square response becomes

E[r ( t ) ]  = |G(co) | P (oi) M(t,oi) for 0 < t  < t 1

E[r ( t ) ]  = |G (u)rP (u) M (t,u ) for t > t ' (V.3-16)

where M(t,to) is given by Equation (V.3-5) and

Mr (t,u ) = r ^ t )  + r ] ( t - t ')  +

+ b2 -  a2 +,/  E ( t )  + T  
a
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-  r 3( t - t ' ) r4( t ) ]  sin wt1 (V.3-17)

V.3 .b( i ) WHITE NOISE INPUT

I f  input excitation is assumed white, then

E[r2( t ) ]  = PQ |G(»)| M(t,o))do) for 0 < t  < t 1

E[r2( t ) ]  = PQ |G(to) | Mr (t,u ) for t  > t ' (V .3-18)

The f ir s t  integral is exactly Equation (V .3-9) and the second integral

is

E[r2( t ) ]  = — jr-i ( t )  + r , ( t - f  ) + 
2bc *• 1 1

+ 2 ^  Cr2( t )  - r2( t - t * )] - 2 [ r 3( t )  r3( t ' )  +

+ r4 (t )  r4 ( t ) ]  r3( t - t 1) +

+ 2 [2 ^  r4(t )  r4( f )  - r4(t )  r3( f )  +
d
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+ r3( t )  r4( t ' )  ] r4( t - f )  } for t> f  (V.3-19)

No plots are done for the f i r s t  integral in Equation (V.3-18), 

since i t  is exactly the same as that for a unit step envelope function.

A normalized plot of Equation (V.3-19) is shown in Figure (V-6). In the

graph, the duration of the rectangular step function t 1 was taken to be

10/c. I t  is observed from the graphs, that the response is a square of an

exponentially decaying harmonic function.

V .3 .b (ii)  CORRELATED NOISE INPUT

I f  the unput excitation is assumed correlated as in Equation 

(V .3-3), then Pa(<u) is given by Equation (V.3-10). Upon substitution of

Equation (V.3-10) into Equation (V.3-16) and the evaluation of the

resultant integral, the mean-square response is obtained

E[r2( t ) ]  = KqE R ^ U )  + I-,T2( t )  +

+ R3T3( t )  - I 3T4( t ) ]  for 0 < t  < t '

E[r2( t ) ]  = KqCR-jT-j -j ( t )  - I ^ t )  +

+ R3T33( t )  - I 3T44( t ) ]  for t  > t ' (V.3-20)



X
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V.4 MEAN-SQUARE RESPONSE OF COMPRESSIONAL 
VISCOELASTIC SYSTEM TO NONSTATIONARY RANDOM 

EXCITATION. (INITIAL VALUED)

The in it ia l valued Green's function was derived to be, in 

(It*,u) domain

G,(co) = f  " ^ ----------  • (V .4-1)
-to -  c + ito2b

Thus, Equation (V.2-14) becomes 

A(t,<o) =
d t l l n  1  ( O r t t

2 ^ ~  ^ i(a)2^e^U)2 ~ (V.4-2)

or

A(t,to)
0 . r“ dtOo ito0t
c + 2b ft

I n  I a i n i

Z f -  G(to2)Se(to2 - to)e L  (V.4-3)

where G(to) is given by (V.3-1). To determine the mean-square response 

of this particular system the same procedure as in the previous section 

is followed. The results are given in Appendix 3.

V.5 MEAN-SQUARE RESPONSE OF MULTILAYERED VISCOELASTIC 
COMPRESSIONAL WAVE SYSTEM TO NONSTATIONARY RANDOM EXCITATION

Here, the single damped harmonic oscillator model of a visco­

elastic medium in (l<;t) and .(lt;u)) domain representations is extended 

to a multi degree freedom damped harmonic oscillator model which pre­

scribes the characteristics of viscoelastic reflectors in the ocean 

subbottom.
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The equation of motion for the j  th viscoelastic layer is

given by

^  V  3j - + + (J" j + -'V3^ 7 S

(V.5-1)

and the compressional viscoelastic layer equation in terms of Green's 

function formalism is given by

r ' . i + ^ \ i i 2 r 1 ” , - +
p j  j V “ - J  J v ^ t ^ C r - r ^ t - t ' )

= 6( t —t * ) 6 (r -r ')«

For the j  th layer the Green's function is

(V.5-2)

Gj (w) = T ~-01 + c. + i2wb.
J  J

- b . ( t - t ' )  sin [ a . ( t - t ' ) ]  
G ,( t - t ')  = n( t - t ' ) e  J  J------------

J aj

(V.5-2a)

(V.5-2b)

Defining the input excitation as in the previous sections, then 

the j  th viscoelastic compressional wave medium layer response can be 

written as

r j l t )  . s ( t ' )  G . ( t - t ' )d t '
vJ

S(to) Gj (w)e1wt (V.5-3)
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and the total response of n-layers is given by

n
r ( t )  = I  r , ( t )  .

j= l J
(V.5-4)

Here the mean-square response of two layers to correlated 

noise modulated by a rectangular step envelope function shall be 

presented in order to present the procedures to determine the total 

response from n-layers.

The autocorrelation function for n-layers when the input force 

is nonstationary is expressed as

where P is given by Equation (V .2-9). Using the same procedure

as in Section (V .2), the total mean-square response with Equation (V.5-5) 

is given to be

The analytical results for two viscoelastic compressional wave 

mediums are obtained by letting n = 2 in Equation (V.5-6).

r r  n n —i ((i)*jt^— du)*! (1̂ 2'1 **1 "“2 u2
2 i r  2 tt

(V.5-5)

n
P (w) I  A*.(t,io) A (t,io)dw
“ j,A=l J

(V.5-6)

A.(t,ui) =
J  J

(V .5-7)
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E[r2 ( t ) ]  = |  Po (u) C|A1(t,io) |2 + |A2 ( t , W) | 2 + A i* ( t ,a ))  A2 (t,a))

+ A-j (t,ui) A2*(t,u))]du (V.5-8)

where the f i r s t  two expressions on the right hand side represents the 

response of f i r s t  and second mediums acting as in fin ite  mediums and the 

last two represents the cross-terms between the layers.

The total mean-square response of two layers to correlated 

noise modulated by a rectangular step envelope function is given in 

.Appendix 4.

V.6 SUMMARY

The mean-square response of ocean subbottom modeled as a linear 

single and multi-degree-of-freedom damped harmonic oscillator to a 

particular nonstationary input is calculated. The general response 

formulation is presented in terms of the Green's function of the visco­

elastic compressional wave medium and the spectrum of the input excitation. 

A unit step modulation and a rectangular step modulation are considered 

in conjunction with both correlated and uncorrelated noise of zero 

mean.

This time-varying response is dependent upon the viscoelastic 

medium damping and natural frequency, the shape of the modulation 

function, and the parameters of the noise correlation function. For 

white noise modulated by a unit step function the time-varying mean- 

square response does not exceed the stationary mean-square response
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to white noise (see Figure (V-2 )). For a correlated noise modulated 

by a unit step function the mean-square response shows how the quality 

factors influence the magnitude of the stationary value and affect how 

quickly the stationarity is achieved. The lower quality factors of 

larger damping values result in lower stationary values and the response 

becomes stationary in a shorter duration.See Figures (V-4) and (V-5). For 

a white noise modulated by a rectangular step function as the quality  

factor decreases, the mean-square response increases. See Figure (V-6). 

For a correlated noise modulated by a rectangular step function as the 

quality factor decreases the mean-square response damps out quicker. See 

Figures (V-7) and (V-8). This is also true for the mean-square response 

of two layered medium for a given pair of quality factors. See Figures 

(V-9) and (V-10).

Furthermore, i t  should be noted that the cross-terms of the 

mean-square response of two layered medium are the terms that give rise 

to the second peak due to the second layer. Compare Figures (V - ll)  and 

(V-12).
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VI. ESTIMATION OF THE QUALITY FACTOR 
BY HIGHER-ORDER CORRELATIONS

In the previous section i t  was shown that for a given quality 

factor of the system and holding other system parameters constant a 

specific mean-square response was obtained. However, the quality 

factor is the desired parameter to investigate from the acoustic 

re fle c tiv ity  measurements of the ocean floor in order to identify and 

classify ocean subbottom so il.

Therefore, keeping in tune with the theme of the thesis, that 

is to obtain an understanding of the behavior of the quality factor of 

a viscoelastic compressional wave system modeled as a ligh tly  damped 

harmonic oscillator excited by random acoustic inputs in an ocean 

environment so the ocean subbottom soil sediments can be identified and 

thus classified, a procedure must be developed to acquire a behavior of 

the quality factor of acoustic return signals from the ocean floor. 

Thus, in this section the fundamental ideas behind the "Higher Order 

Autocorrelations" technique shall be presented.

V I.1 HIGHER ORDER AUTOCORRELATION FUNCTIONS

The f ir s t  autocorrelation of the time-varying mean-square
p

response, E[r ( t )] = F (t) , is

R-,(t ) = E[F(t)F(t+-r)] (V I.1-1)
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Taking the Fourier transformation of r ( t )  and r (t+ r ) and sub­

stituting into Equation (V I-1 ), remembering the Fourier transform 

of the delta function and r(-oj) = r(w)* Equation (V .l-1 ) becomes

i c / > 12 — i tot da) (V I.1-2)

The second-order autocorrelation function F ^ t )  is determined from 

Rj ( t )  and is given by

R2(t ) = E[R-| (t)R-j (t+x)] (V I.1-3)

Using Equation (V I-2 ), i t  becomes

R2(t ) = |F(oj)| e4 _-io)t dai
2tt

(V I.1-4)

Following the same procedure the third-order autocorrelation function 

is given by

R 3 ( t )  =  f  [F(„)|8 | f (V I.1-5)

and in general, the n th order autocorrelation function is given by

R„(t ) = |  |F („ )|2" e‘ 1“T | f (V I.1-6)
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In normalized form, Equation (VI-6) can be written as

|F(oi) e 1tl)T dio
(V I.1-7)

|F(w)|^ du)

In order to estimate the quality factor of a lig h tly  damped 

viscoelastic compressional wave system via higher order autocorrelations 

the following procedures are employed.

(1) The mean-square response of the system to a specific 

non-stationary random input is analytically determined. The input is 

taken to be correlated noise modulated by a rectangular step envelope 

function. See Equation (V .3-20).

(2) For d ifferent values of Q and for specific values of 

a/ft and e/b the normalized root-mean-square response of the system is 

plotted. See Figure (V I-1 ).

(3) The higher order autocorrelation functions are plotted from 

the results of procedures (1) and (2) by using the Fast Fourier transform 

technique.

These plots, Figures (V I-2 ), (V I-3 ), (V I-4 ), and (V I-5 ), indicates 

how the higher order autocorrelation functions effect the behavior of 

the quality factor of the system.

V I.2 SUMMARY

The f ir s t ,  second, third , and fourth order autocorrelation 

functions of a response of a ligh tly  damped viscoelastic compressional
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wave system is determined. I t  is found that the higher order auto­

correlations of the response have an approximately Gaussian envelope 

function. The system with low damping values of higher quality factor 

has a f la t  Gaussian envelope and the system with higher damping values 

of lower quality factor has a sharper Gaussian envelope function. This 

would be a very useful c rite ria  to estimate the parameter Q of the system 

by comparing them when digitized remote data are available.

The higher order autocorrelation procedures seem to provide the 

necessary means to distinguish between the lig h tly  and highly damped 

systems. Indeed, the f ir s t  autocorrelation function does not distinguish 

clearly between lig h tly  and highly damped systems. See Figure (V I-2 ).

The distinction between lig h tly  and highly damped systems becomes 

clearly identifiable when the order of autocorrelation function is 

increased as shown sequentially in Figures (V I-3 ), (V I-4 ), and (V I-5 ).
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V II. SIGNAL PROCESSING

In this section the importance of higher order autocor­

relation technique developed in the previous section shall be further 

discussed in relation to standard fie ld  theory methods. Before this 

is done, i t  is appropriate to describe the standard fie ld  theory 

methods.

V I I .1 FILTER THEORIES

In this approach, the signal processing consists of finding the 

third unknown when two of the total three parts of a system are given 

by successive methods. See Figure (V II-1 ). In the present experimental

INPUT OUTPUT
SYSTEM

Figure (V II-1 )

situation, the input s (t) is simply the acoustic signal generated by 

the fie ld  experimentalists and the system is the liquid and the sub­

bottom layers.

Usually, one assumes a model and then describes a transfer 

function or Green's function - G(t) for the system, thus, being able
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to write the fam iliar response relation

r ( t )  = I  G ( t , t ’ ) s ( t ' ) d t ’ .

For such an expression s ta tis tica l data can be used as inputs to obtain 

again output informations. From this form the autocorrelation techniques 

and s ta tis tica l procedures are derivable as have been presented in the 

previous section.

I t  must be remembered that the identification problem is to find 

the system describing the Green's function G ( t , t ')  when the input s (t)  

and the output r ( t )  signals are known.

The damped harmonic oscillator model is simple, easy to work 

with and has the proper generalities of the fie ld  theoretical model 

introduced e a rlie r. Using a model-based approach with given input 

signals in the fie ld  measurement to determine output signals, have 

already been presented analytically in previous sections.

V I I .2 SIGNAL PROCESSING METHOD-I 
(HIGHER ORDER AUTOCORRELATION TECHNIQUES)

One of the best descriptions of higher order autocorrelation 

techniques would be the situation where only the output signal r ( t )  

and no, or very l i t t l e ,  information of the input and the system G (t , t1) 

is known. Although this is stretching the situation in the present 

fie ld  experimental conditions, knowing that the input signal informa­

tion in the ocean is rather hazy and claiming no knowledge to the sub­

bottom structure with this method one can start with known to discover 

the unknowns. When the fie ld  experimental situation improves and becomes
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controllable and the f ir s t  generation of core analysis provides some 

information of the subbottom geology, then the results of higher auto 

correlation techniques w ill be very rewarding.

Nevertheless, the technique its e lf  requires several outputs 

^ ( t ) ,  r2( t ) ,  rg (t ) , . . .  in the same area and constructing autocorrel 

ation techniques of the individual signals from these outputs:

E[rn(t )  rn(t  + x)] = Rnn^  ( t )  ; n = 1 ,2 ,3 , . . .

I f  the f ir s t  autocorrelation results are not satisfactory or 

clear, then i t  is necessary to take higher order autocorrelations

E[Rn(2 )( t )  Rn(2) ( t  + t ) ]  -  Rnn(4) ( t )

I f  again the results cannot be interpreted, then the same 

operation is repeated once more

E[Rn(4) ( t )  R„(4) ( t  + t ) ]  = Rnn(8) ( t )

and so on. Actual calculations and estimations are done in the fre ­

quency domain by using the Fast Fourier transform (FFT) procedures.

Finally, a spectrum which clearly looks like (Figure V I1-2) 

where the individual peaks represent the characteristic frequency 

responses of the f ir s t  u)-|, second uig, third Wg layers and so on.



Figure - (V I1-2)

Categorically, the advantages of this method are the following:

1. Only output signals are effectively used.

2. There is no need for modeling or input signals for the f ir s t  

round estimations.

3. Autocorrelations or cross-correlation procedures w ill e ffect­

ively eliminate s ta tis tica l fluctuations and noise background.

4. I t  is a method which provides the f i r s t  hand information for 

the subbottom structure and is the starting method which dictates stra­

tegies for the signal processing Method I I  (with model description 

included) with the help of soil mechanices results.

5. I f  the results of the autocorrelation procedures do not give 

clear signals (output frequencies) due to ambient and other noise back­

ground, then cross-correlation techniques are to be used,
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instead of ( t )  estimations. Here, r-j(t) and r2( t )  are frequency

modulated output signals in the same location.

V I I .3 SIGNAL PROCESSING METHOD-II 
(FILTER THEORIES)

This is a well understood method provided that a knowledge of 

the two parts of the entire system are known:

1) Input signals;

2) A rea lis tic  theoretical model of the system. Since the 

experimental measurements ** ( t )  for a reliab le and a rea lis tic  theo­

retical model of the system must satisfy the condition

k ( t )  - rexp(t)1 2 £  e

and assuming that the input signals are controllable

|  d t '[G ( t - t ' )  -  G6( t - t ‘ ) ] s ( t , ) | 2 £  e

where e is an arbitary small number which sets the scale for percentage 

of accuracy desired in the model. I t  should be remembered that G (t - t ')  

is the response function which contains the parameters such as damping, 

Lame parameters, density, and others in the subbottom so il. Thus, 

G5( t - t ' )  is the desired and parameter corrected response function. For 

instance, in the harmonic oscillator model
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G g(t-t1) = n ( t - t ' )  exp {—t (t —t ' )[A" + 6X" + 2(y" + 6y")]k2/p+6p

-in  r I f  1l-rA' + 6X' + 2(y'+Xy')-,l/2 ri k2U+S£)-,l/2, 
{ ( t - r )k [ -------- (p+6pj^ J L1 p+6p J }

..rA1 + 6A + 2(yi1 + 6y ')1l/2  n  k2U+6&)-,l/2  
L p+6p J L p+Sp J

where , 2 = ( ) ”  + 2y")^ wnere a 4(x' + 2y') *

The small variations w ill provide the adjustments in the parameters. To 

do this i t  is also stated that

3 G .(t-t ')  3G ( t - t 1)
G . ( t - f )  = G (t - t ')  + — fp   | ax' + — ~ p   | ay'

6 3 A1 =0 dy 3 y '= 0

• 3G.(t-t')
+  r - -------  | <Sp + . . .

3p 6p=0

is the rea lis tic  Taylor series expansion and the adjustments and re­

adjustments can be made accordingly with the help of soil mechanices 

results and the information from Method-I results.

The Method-II provides the following advantageous properties:

1. I t  suggests improvements in the theoretical model (para­

meter corrections);

2. I t  coordinates the soil mechanices results with the Method- 

I results;
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3. I t  provides the necessary suggestions to the fie ld  exper­

imentalists; such as location of acoustic receivers in order to get 

shear deformation information of the subbottom soil sediments.
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V I I I .  APPLICATION TO FIELD EXPERIMENTAL RESULTS

The previously developed procedures, "Higher Order Autocor­

relation" techniques and signal processing, are applied in the analysis 

of acoustic re fle c tiv ity  measurements in the form of digitized data 

and are compared with the core measurement analysis.

V I I I . 1 EXPERIMENTAL DATA ANALYSIS

Here the data obtained by core measurements and by analyzing 

remotely obtained digitized data in time series shall be presented. In 

order to determine any correlations between the core measurements and 

digitized data three assumptions are made: (1) the ocean subbottom

soil is made up of a system of horizontal layers (see Figure V II I-1 ) ;

(2) each layer is a simple reflector to acoustic pulses; and (3) the 

cross-core reflection coefficients predict the presence of a zone rather 

than the axial reflection coefficients. Since digitized data is obtained 

by u tiliz in g  the normal incident acoustical signals, the axial velocity 

of the core measurements are used in the analysis.

V I I I . la  CORE MEASUREMENT ANALYSIS

The core measurement analysis is done according to the informa­

tion given by Woods Hole Oceanographic Institute as shown in Table (V II I-1 ) .  

From the core measurements, the positions of the second and thrid zones, 

indicated by an order-of-magnitude change in the cross-core reflection  

coefficients, can easily be determined as shown in Table (VI11-2). In 

these measurements
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Ocean

— -̂---------  1st zone

3,, v,

— I  2nd zone

^2» ^2

—  ̂  3rd zone

Figure (V III-1 )

i d.(m) 7- (m/sec) t.(sec) (kHz)

1 4.1 ± .2 1513 ± 9 0.00027 0.37 ± .01

2 4.2 ± .4 1502 ± 18 0.000279 0.36 ± .02

Table (V III-2 )

the soil density is taken to be a constant. In Table (V II I -2 ) ,  d.. is 

the distance between the core zones, 7. is the core axial velocity 

between the zones, t .  is the time i t  takes for an acoustic signal to 

travel between a given set of zones and v.. = (t^ )”"*.

The core measurement analysis predicts the acoustical signature 

due to the second zone to be 0.37 + .01 kHz la ter than the f ir s t  zone 

signature in the frequency domain.

V II I . lb  DIGITIZED DATA ANALYSIS

Figure (V III-2 )  shows remotely obtained digitized data in time 

series. Figures (V II1-3), (V II1-4) and (V III-5 )  represent the normalized
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f ir s t ,  second, and third higher order power spectrum of the digitized  

data in frequency domain. From the second order power spectrum, Figure 

(V II1-4), note that the highest amplitude peaks at 11.20 + .08 kHz, the 

second highest amplitude peaks at 11.55 + .05 kHz and the third amplitude 

which can correspond to the third zone peaks at 11.88 +_ -0? kHz.

Therefore, the digitized data analysis predicts the f ir s t  

reflector to be at 11.20 + .08 kHz, the second reflector to be at

11.55 + _ .05 kHz, and the third reflector to be at 11.88 + .07 kHz.

V III.1 c  SUMMARY

From the above results i t  is concluded that i f  the digitized  

data indicates the f ir s t  reflector to be at 11.20 + .08 kHz, then the 

core measurement analysis predicts the second zone to be at 0.37 + .01 kHz 

later than the f i r s t ,  i . e . ,  a peak at 11.57 +_ .08 kHz. Furthermore, the 

core measurement analysis predicts the third zone to be at 0.36 + .02 kHz 

later than the second, i.e . a peak at 11.93 + .08 kHz. Thus, when a core 

measurement analysis indicates a presence of a zone there is a correspond­

ing reflector peak in digitized data.

V I I I . 2 CONCLUSIONS

The experimental data analysis shows that from core data zones 

exist and for each zone there is a corresponding acoustical reflector 

peak in digitized data in frequency domain.
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The extension of the single damped harmonic oscillator model of 

a thermoviscoelastic medium in (Tc;t) and (Tc;to) domains, to a multi-degree 

freedom damped harmonic oscillator model which prescribes the character­

istics of the viscoelastic reflectors is a valid one since the extended 

model shows the presence of peaks due to second layer. See Figure (V-12).
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KNORR = 51-3 GPC - 19 OCT., 1975

TABLE V III-1

(AXIAL) (CROSS-*
DEPTH VELOCITY VELOCITY REFL REFL

CM LONG TRANS COEF COEF
41 1509.6 1472.7 .003 -.009
51 1518 8 1508 2 -  003 012
61 1497 4 1481 4 -  007 - 009
71 1506 5 1485 8 003 001
81 1488 5 1508 2 - 006 007
98 1590 1 1468 4 033 - 013

107 1600 4 1620 7 003 049
117 1479 6 1459 8 - 039 - 052
126 1494 4 1526 7 005 022
137 1485 5 1459 9 - 003 - 022
147 1491 4 1472 7 002 004
157 1497 4 1472 7 002 000
167 1497 4 1451 3 000 - 007
177 1500 5 1472 7 001 007
182 0 1468 4 -1 000 - 001
205 1509 6 1464 1 1 000 -  001
215 1503 5 1472 7 - 002 003
225 1503 5 1464 1 000 - 003
235 1503 5 1472 7 000 003
245 1509 6 1490 3 002 006
255 1512 6 1464 1 001 - 009
265 1506 5 1468 3 - 002 ' 001
275 1497 4 1459 8 - 003 - 003
340 1500 5 1481 4 001 007
350 1512 6 1464 1 004 - 006
360 1515 7 1459 9 001 - 001
370 1525 0 1459 8 003 - 000
303 1512 6 1508 2 - 004 016
308 1503 5 1451 3 - 003 - 019
408 1521 9 1499 2 006 016
432 1521 9 1540 8 000 014
442 1503 5 1455 6 -  006 - 028
452 1509 6 1472 7 002 006
477 1624 8 0 037 -1 000
487 1485 8 1477 1 - 045 1 000
497 1491 6 1451 3 002 - 009
510 1591 6 0 032 -1 000
520 1471 4 1464 1 - 039 1 000
530 1471 4 1468 4 000 001
540 1497 5 1512 8 009 015
550 1480 0 1517 4 - 006 002
560 1491 0 1438 8 004 - 027

1st. ZONE

2nd. ZONE



no

560 1491.6 1438.8 .004 -.027
570 1457 3 1430 6 - 012 - 003
580 1491 6 1443 1 012 004
635 1509 4 1373 0 006 - 025
644 1479 2 1451 3 - 010 028
659 1471 4 1438 8 - 003 - 004
675 1494 5 1439 7 008 000
685 1512 4 1443 0 006 001
785 1488 7 1469 1 - 008 009
715 1506 9 1477 1 006 003
725 1482 9 1455 6 - 008 - 007
750 1494 5 1451 3 004 - 001
760 1491 6 1490 3 - 001 013
776 1500 4 1503 7 003 004
791 1549 4 1564 9 016 020
801 1477 1 1438 8 - 024 - 042
816 1512 4 1485 8 012 016
826 1500 4 1536 0 - 004 017
836 1503 4 1430 6 001 - 036
848 1497 5 1536 0 . -  002 036
858 1491 6 1598 2 - 002 - 009
885 1494 5 1438 8 001 - 024
895 1508 9 1476 5 005 013
905 1494 7 1455 6 -  005 - 007
915 1488 7 1451 3 - 002 - 001
925 1488 7 1468 9 000 006
935 1506 4 1455 6 006 - 005
945 1491 6 1447 1 - 005 - 003
935 1497 5 1455 6 002 003
970 1555 7 1531 3 019 025
981 1500 4 1517 4 - 018 - 005
993 1509 4 1443 0 003 - 025

1005 1468 5 1438 8 - 014 - 001
1034 1522 8 1430 6 018 - 003
1044 1426 6 1410 4 - 012 - 007
1054 1550 8 1434 7 024 009
1064 1504 5 1438 8 - 018 001
1074 1543 5 1430 6 003 - 003
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IX. SUMMARY AND RECOMMENDATIONS

IX .1 SUMMARY

After an introduction to the thesis problem in Chapter I ,  a 

theoretical model of the ocean subbottom as a viscoelastic medium 

is presented in Chapter I I .  The fundamental idea of this chapter is 

that the viscoelastic medium has a damped harmonic oscillator structure 

in spatial coordinates introduced by the Fourier transformation. This 

gives simple resonant peaks of each subbottom layer modeled as a 

multi-degree freedom damped harmonic oscillator system. These peaks 

have been observed in acoustic reflections from the ocean floor. The 

determination of the height and width of the resonance peaks becomes 

paramount in the identification of subbottom soil sediments. These 

quantities which are related to the quality factor must be therefore 

determined analytically to understand the nature of acoustic reflection  

peaks from the ocean floor.

The understanding of the quality factor and thus the damping 

of a system is begun in Chapter I I I  by presenting the viscoelastic 

theory from the elastic one by introducing Voigt type of damping.

In Chapter IV, the thermodynamics are introduced into the

viscoelastic medium and i t  is shown that the viscous compressional 
*

Lame parameter A" is made up of two parts - temperature independent 

and temperature dependent terms:
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where

The temporal attenuation then becomes appropriately

and hence the resonance peak given by the quality factor becomes

Thus, an analytical expressions are obtained for temporal attenuation 

constant, the quality factor and the resonance width in terms of 

thermodynamical and mechanical variables.

Furthermore, the solution to the d ifferentia l equations of 

elastic , viscoelastic and thermoviscoelastic medium is given in terms of 

Green's functions. This type of solution becomes very useful in 

obtaining the mean-square response of (continuous) viscoelastic medium

_ c (a 1 + 2u' ) ^ 2 J v  
2b " U ad" + 2y") k

and the width of the resonance peak, Au>, becomes

Aw = 2b

p
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to non-stationary random excitation which is discussed in Chapter V.

The non-stationary random processes become important in analyzing the 

acoustic reflections from the ocean floor since its  parts fluctuate in 

time. The normalized rms response of the system in terms of system 

parameters are shown graphically and the behavior of the system to 

different quality factor values are observed. These results are obtain­

ed for single layer medium and later are extended to multi-layered medium.

In Chapters VI and V II,  higher order autocorrelation technique 

is introduced to further understand the behavior of the quality factor 

in a viscoelastic medium. This technique is able to distinguish between 

a lig h tly  and highly damped system, and thus, increases the a b ility  

of researchers to estimate the quality factor of the system by compar­

ing them when digitized remote data is available from the ocean floor.

Finally, in Chapter V III the above technique is applied to 

acoustic reflections from ocean floor in digitized data form. A direct 

relation between the reflected peaks and zones predicted by core analysis 

is obtained.

IX .2 RECOMMENDATIONS

Obviously, the activ ities  of soil mechanics, model building, 

signal processing, and fie ld  experimental activ ities  must be coordinated 

to identify and classify ocean subbottom sediments. Some of these 

activ ities  can be stated as follows:

1) The output data should be processed according to Method-I
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at the computer center by the signal processing group. Main purpose 

of this e ffo rt should be to measure the width of the resonance peaks.

2) The soil mechanics instrumentation presently does not have 

the capability to measure accurately the value of Aon An attenuameter 

should be bu ilt to measure the width value from the core samples. 

Although the output signals are frequency modulated, the signal envelope 

does not necessarily give the correct damping parameter information of 

the subbottom sediment.

3) Meanwhile, the theoretical estimations of the imaginary 

parts of the Lame parameters w ill be extremely helpful to check the 

width values obtained by Method-I. This is approximately possible 

since other relevant information from soil mechanics results can be 

obtained, namely

Aw = Ao)(X' ,  y '  , X " ,  y " )

4) After the comparison and the exchange of results obtained 

from the signal processing, Method-II should provide suggestions to the 

fie ld  experimentalists.

5) Finally, some theoretical soil mechanics efforts such as the 

estimation of the effective stress distribution in the subbottom, an 

isotropy and heterogeneity of the subbottom should prove to be very 

important.
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APPENDIX-1

The derivation of the attenuation constant, b, for a thermo­

viscoelastic medium shall be outlined. [Y ild iz , 1974]

Using the definition of attenuation constant

b = (A.1-1)
2E[»]

the terms S’ . and $ must be determined, mech

Now, $mech = -Tq § = -TQ ps dV where s is entropy S

per unit mass and Tq is the undeformed state temperature. The rate of 

increase of entropy is given by [Landau, L ifsh itz , 1959]

where k is thermal conductivity and

“i k = ui + uk - !  4ik 3k uk > + <x + 1  >*>6ik \  uk

*

For the viscoelastic medium the Lame parameters become, in the f irs t  

order approximation, y = y 1 + y" 8^ and \  = A' + A" Substituting 

the la tte r expressions into Equation (A.1-3) and la ter in to Equation 

(A.1-2) with temperature gradient given by [Landau, L ifsh itz , 1970]
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(A .1 -4 )

the rate of entropy increase for a thermoviscoelastic medium becomes

d_
dt ps dV = k

'Tq a p' 2

CP
( r  ' )  2 _ 1  (c 1) 2] 2(vu )2 —  Jad 3 ;ad v̂ui i J T

8kuk8kuk dV

< V i V i  + 8i V k di - 1 8k V k uk>dv

+ \  ( * '  * I  v ‘ )

t<3kdi>2 + 8i W i  - !  (8k“k)2]dV 

( ak“ k>2 dV

For longitudinal sound wave one can assume

+ T y"

+ y  (x" + f  w") (A.1-5)

ux = Uq cos (kx-wt) , uy = uz = 0

uxx “ 8x“x = ‘ ku0 sin (kx- “t )

Uxx = 3xux = k 0) u0 cos (kx-ut) (A.1-6)

and also that the temperature varies slightly in the medium and differs  

from Tq s lightly then T can be substituted for Tq and taken to be a

constant.
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Substituting expression (A.1-6) into (A.1-5) and taking its  

expected value one obtains

2 2
ad

, 4 ^T^ad
1 " 3 /„ n  2

ĈL^ad -

1 . 2  2 v0 2
0 2 ^

-  (X" + 2w")k2 u02 2^ O)2 (A.1-7)

and for the total energy one obtains

E[*] = 1 2 2 
2 p u0 “ V0

(A.1-8)

Finally, the attenuation constant for the thermoviscoelastic 

medium becomes via (A.1-1)

2-, 2

(A.1-9)
2 2 2 f 4 (C ' ) :.2 f  K T a  P  ( c L ' h d  ' a db = 4 -  U" + 2y" + ------ 7  i  L_ao.

I r Tfr 11LP ' L 'ad

The last expression in the parantheses can be re-written using the 

definitions

(CL,}ad2 = (p ( l+ i) ( l-2 a )]ad ; ^T^ad “

as

k T a p (3Kacj ‘ + 4p‘ ) (1 + o )

27 Cr (1 " cr)
ad~r
ad
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o
where Kad' = âd' + §  u' and E and a  are the Young's modulus 

and Poisson's ra tio , respectively.
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APPENDIX-2

The compressional waves obey the following expression given 

in (A.2-1). By using Kubo's formula the Green's function appropriate 

to the compressional propogation in an isotropic viscoelastic medium 

is derived.

The equation is

A" + 2u")„2;) _ [ A 1 + 2y'
P J t  p

(A.2-1)

Apply Laplace in time and Fourier in space transform

L [F (t)] = -cu2 L [F (t)] + iaiF(O) - f(0 ) (A.2-2a)

L [ f ( t ) ]  = -ito L [F (t)] - F(0) (A.2-2b)

to obtain

vL(k;0) [ia) - A" + 2y" k2k2] " f t  v(k*,0) = 0 (A.2-3)
p

Using the continuity equation |^- p - v*p v = 0 the relationship 

between v(k;0) and v(k;0) is determined.
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Equation of motion is given by

P Kt  v, -  3j = 0 (A.2-4)

where

° j i  = Cijk l  3k U1 + Cijk l  3t  3k U1 (A.2-5a)

Cijk l  " X 6i j  6kl + p(<Sik 6j l  + 6i l  6jk^ (A.2-5b)

Substituting the last expression into (A.2-4) and using the fact that 

p is a constant thus v*v = 0 by the continuity equation, at t  = 0 the 

relation

f t  v(k;0) = - k2 (A‘ p V ) u(k;0) -  k2 (x"-±  2 ~̂) v(k;0) (A.2-6)

is obtained. The substitution of this expression into (A.2-3) results 

in

[ —to2 + c2 - i 2tob]v(k ;to) + iuiv(k;0) + c2u(k;0) = 0

where the Lame parameters are substituted by letters defined earlie r. 

This can be re-written in Kubo's formula form
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as

p
v(k;gj)_______  _ c -  i 2oob _ -j

v (k;0) + u(k;0) -to2 + c2 - i2wb

Thus, the in it ia l valued Green's function is given by

G(k;») -  ° 2 -  12“b?  ?  c - to -  i2tob

(A .2 -7 )

(A.2-8)

(A.2-9a)

G(k*,0) = (A .2 -9 b )
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APPENDIX-3

The mean-square response of in it ia l valued viscoelastic com­

pressional wave system is determined. The in it ia l valued Green's 

function is given by Equation (V.4-1) and A(t,to) by Equation (V .4-3).

3.1 UNIT STEP ENVELOPE FUNCTION

The substitution of equation (V.3-3) into equation (V.2-14) 

and the evaluation of the resultant integral gives for the in it ia l value 

problem

|A(t,to)|2 = c4 |G(k;to)|2 M.j(t,oj) (A.3-1)

where

2 2 2
M.(t,w) = 1 + r ] (t) + b "a2+t0 r2(t) -  2r3 cos tot

d

-  2 H sin „t r.(t) - 4 “2 [2 4  r3(t) -  (1-4 4 > F  r.(t)]
c c c

h h2
+ 4 — r^ (t) cos tot + 4 ~ 2  r^ (t) ^  sin tot

c

+ 4 4  r 4  r i ( t > + 2 4 (s 4  -  2 ) r 2 ( t )  +c c a c

+ |  (1 - 4 4 )  r.(t) r,(t)] + 4 4  M t )  - 4 |  r4(t) r3(t )
c c

(A .3 -1 )



132

Hence, the mean-square response via equation (V.2-13) becomes

E[r2 ( t ) ]  = j  |G(k;o, ) | 2 PaM [M . ( t , w)] da> (A.3-2)

White Noise Input: I f  the input noise is assumed white, then the

spectral density function Pa(“ ) becomes a constant Pg. So, the mean- 

square response for the in it ia l value problem becomes

E[r2 ( t )] = jl -e ~ 2b t[l+4 4  + if O " 4 4 *  s in2 at “ 2 ( | ) 2 (3~44 )s i n 2

(A.3-3)

Correlated Noise Input Excitation: Upon substitution of the spectral

density for correlated noise into expression (A.3-2) the mean-square 

response for in itia l-v a lv e  problem becomes

E[r2 ( t ) ]  = c4 K0 [F1L1i ( t )  + G ^ t )  + FgLg^t) + G gL^ft)] (A.3-4) 

where

2 . 2  . 2
Ll 1 (t) = fb  f l - e"2btl > 4 ^2 ( 1 “ 2 V  + if[ > 2 ( 5 - 4 \ ) ]  sin2 atc c c

- 4 4  [2- 4  <5" 4 4 )] s i n 2  a t] }
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L ^ t ) = e •2bt L  a b  + ab ^3_4 b  ̂ s i n 2 gt + 
( c  c c

2 2 
+ [ 1-2  ^ 2  (3-4 ^g)] sin2 a t j

L31 (* ) = 1+4 4  r2 (t )  " 4 a r4 ( t ) r 3 ( t )  + [1+4 4  £T §" ] r l ( t )c c c

+ + 8 4 4 r "  (7 4  ■ 2 ) ] r 2 ( t )
a c a c

+ 4 k - 4 4") r4(t)r3(t)
c c

2  | [ 2  £ ( 1  -  ( 1 - 4  \ ) )  -  f -  ( 1 - 2

-  ( 1  +  4  4  ^  ~i ~ ) r 3 ( t ^ }  e _ 0 t  c o s  f i t  
c c ’

2 2 

2 { [4 * 7  a (1 “ 4 V  ‘  a (1 " 2 V ] r 4 ( t )

+  8 i | 4 r 3 < t ) }  c c J
e“et sin fit

2 2 2 
l j ( t )  = -2 S i r ?( t ) - 8  S i M t )  + 2 ^  (3 ^  - 2 )r2 (t )  
H a c c c c

2 2 2 2
+ j  (1-4 t ) r 4 ( t ) r 3 ( t ) ]  + |2 (l+4  ^  ^ - ) r 3 (t )
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-  m  |  D -  ^  d -4  4 ) ]  -  f  (1 -  2 4 > ] r 4( t ) }  x
r r r J

2
x e"et sin fit + 2 js  r 3 ( t )  -  

 ̂ c c

-  2 [  f  ( 1 - 2  4 )  “ 4 a T  ( 1 " 4 4 ) ] r 4 ( t ) l  e _ P t  cos
r c c *

nt

(A.3-5)

3.2 RECTANGULAR STEP ENVELOPE FUNCTION

Substituting the Equation (V.3-14) into equation (V.2-14), we 

obtain for the in it ia l value problem

|A(t,u ,)|2 = c4 |G0 (k;a) ) | 2 {M .(t,a))n(t) + [-Mi (t , to) + M ^ t .o O M t - t ' ) }

(A.3-6)

where

2
M 1 (t,a>) = M (t,(jj) + 7  |2b2(o2 + ^  [c2 (3b2-a2) + a)2 (a2-b2)] x 

r r <T >• a

x [ r 2 ( t )  + r2 ( t - t ' ) ]  + £  [to2 (a2-b2 ) - 2b2c2] [ r 4 ( t ) r 3 (t )

+ r4 ( t - t ' ) r 3 ( t - f ) ]  + [jj- [c4 + u.2 (3b2-a2 ) ] [ r 4 ( t ) r 3 ( t - t ' )
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+ r3( t ) r 4( t - t ' ) ]  - 2 ^  [c4 -  2(a2-b2)o,2] r 4( t ) r 4( t - t ' )  

-  2b2u>2 r3( t )  r 3( t - t ' ) ]  cos ait' j (A.3-7)

Hence, from Equation (V.2-13) the mean-square response becomes

E[r ( t ) ]

E[r ( t ) ] =

|60(k;ai)|Z Pa(ai) {M^t.ai)} dai for 0 £  t  £  t '

|G0(k,*ai)|2 Pa(ai) {M^Ct.ai)} dai for t  > t '

(A.3-8)

White Noise Input: I f  the input excitation is assumed white, then

o f00 o
E[r ( t ) ]  = Pg |Gg(k;oi)| {M̂  (t,oi) or M(t,oi)} dai for 0 £ t £ t '

E[r2( t ) ]  = P0 |G0(k;ai)|2 {M^Ct.ai) or Mr (t,a>)} d&> for t  > t '

(A.3-9)

The f ir s t  integrals are given by Equation (A.3-3) and the second 

integral for the in ita l value problem is given by

o 7rPnC r .2
E[r ( t ) ]  = 8 \  + r] ( t )  + r2( t - t ' )

 ̂ c
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. 2  , 2 , r .  2  0 . 2  2

+ 2 ĝ- [ a *5b r2(t) + 31b-2“a-  r2( t - t ' ) ]  +
3 C C

( t )a 2 r3w  ■ c
a ■+f b- ] r4(t) r4( t ' ) ] r 3( t - t l )

+ 2 [ * a  ^  r3Ct)]r3( * ' )

+ ( [4bV - 3b2) t g j r 3 ( t )  + 2k  (b3t 3b^ ? ^ a3{a-2b ) ) r 4(t ) ] r 4 (t . )3

X r4( t - t ' ) + ^  (a2-3b2)[r1( t ) r3(t) + r4( t - t ' ) r 3( t - t ' ) ] j  for t  >_ t 1 
c2 

(A.3-10)

Correlated Input Excitation: For correlateid input excitation, the

mean-square response is:

E[r2( t ) ]  = c4K0CF1L1i ( t )  - G ^ t )  + FgLg1 ( t )  + G ^ t ) ]  for 0 < t  < t '

E[r2( t ) ]  = c4K0[F1L11i ( t )  - G ^ f t )  + F g L ^ f t )  - G g L ^ t ) ]  for t  > f

(A.3-11)
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where the f ir s t  expression is given by Equation (A.3-4) and the 

second expression is given by

2 2 2 C. Cm Cm
Ll l i ( t )  = lb { 8 \  ^   ̂ + r l ( t )  + r l ( t “t ' )  + 4 \  ^  2'3b'~^ r 2 ( t ) + r 2( t ~t l ) ]

2 / 2

c c

2 - . 2
+ 8 [ r , ( t ) r A(t )  + r . ( t - t '  ) r „ ( t - t ' )]2 2 L 3 4c c

+ 2 r , ( t ' ) [ [ b + 4b2(3a2-b2) L  ( t )  _ fa'f(at:-3b^+btt(23a^-5b^)'
a c4

ro (t)
4 ,2  ou2xlU4/oo.2 c.2 ,

a2c2
r4( t ) ] r 4( t - t ' )

La
_ 4b2(2a2-b2)

r 4 ( t )  +
\  + 4b2(a2-b2)

a2c2
r3( t ) ] r 3( t - t 1)]

+2r4( t ' ) [ [  b4(5b2-23a2)+a4(a2+2b2), r 4(t )+ £  1 + 4b .(| i .  ~b- l  r 3( t ) ] r 3( t - t ’ )
c4a2

2/0-2 .2 ,

+r4( t - t ' ) [ £ fa4(b2+3a2),5b4(5a2, ,b i l j r ( t ) Ja^ (a g-4bg) ^ ( 3 b g-17a;)] ( t ) ] |
r S * J  V. r  A j  Jc4a2

4/_2 /lu2 ^ u4/ou2 ,0-2,

c4a2

L221 ( t ) = l { 8 l r  + ¥ (1 + 4b2| a" 'b2)) ( r 2(t )  + r2(t - t ' ) )

2 2 2
+ i bJ a l i b_ I ( r 3( t ) r 4(t )  + r3( t - t ' ) r 4( t - t ' ))

+ r3( f ) [ [ ( l  + 8b2(f 2~a2))r4 (t )  -  16 ^ r 3( t ) ] r 3( t - t ' )

fesriini
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2 ,.2  l2,

+ r4( t ' ) [ t I ! 4 ^ r4(t ) + n rd.
\  + 16b2(a2-b2)'

-D
2b ! _ 16b2(a2-b2) r4( t )  + 1 + 8b3(a2-3b ). r 3( t ) ] r 3( t - t ' ) ] }

L331( t )  = 8b2( ^ - eZ) + r , ( t )  + + %
r~2 _2 / „ 2 , 0i 2\ o l 4

c a c

x [r2( t )  + r 2( t - t 1)]+ ^  (a2- b̂ -(^ -g 2-)- .  ^  [ r^ ( t ) r ?( t )  + r4 ( t - t ' ) r ;
a c4

2/„2 „2>
♦ 2 e - « '  cos <*■{ [ p a U 4b ( f - »  ) ] r4(t )

3/^2 „2,
+ [ ( 2k t 3 + 4b ! i ^ = L l ] r  ( t )

 ̂ ac

'4b2-(02- e2). , 4b3.( |V )]r (t)]r (t. t .) I
a ac ;

-2 e- ^  sin fit 8fi3b fi 
.4 ” a r4 ( t )  _ 8sj|b_ r3( t ) ] r 3( t - f )

X

( t - t 1) ]
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APPENDIX-4

The mean-square response of two viscoelastic compressional wave 

mediums to the correlated noise modulated by a rectangular step envelope 

function is:

2 • r1' (tj+ r1' ( t—t 1)
E[r2(t)]=K0 y H j ( t ) ( F ] - F p  +-------------- ----------  (F]h. (1 )-G]h. (2)+Fjh3(l )-G^h2(2))

- 2 r | ( t ) r j ( t - f  )(F^Si ( f ) - G]T.(t) + Fjs3( t ' )  - G13T3( f ) )  

2r ( t )r  ( t - t 1)
" —  " T *   C(F>i ( l )  - G11h .(2 ) )S .( t ')  - (F11h.(2) + G11hi ( l ) ) T . ( t ' )

hn- (7)

+ (F|h3( l )  -  G13h3(2))S3( f )  -  (F|h3(2) + Gjh3( l) )T 3( t ' ) ]

+ 2H^(t)[(F^h-(6) + Ĝ hi (7))Si ( t i ) + (F^hi (7) -  G]h.(6 )) T . ( f )

+ (F^h3(6) + Gjh3(7))S3( f )  + (F3h3(7) - G’ h3(6))T3( t ' )]}

+ 2K I  [U•l9 (t ) + V.M^(t)] (A.4-1)
i =1 11  11

where

L?(t) =.NH] ( t )  + hi ( l) [N 1H1(t )  - 2N2H4(t)  + H2(t)(N  + h?(l) -  3h?(2))]

+ (h -( l)  -  h?(2))[H1(t )  + N ^ t )  + 2N3Hg( t ) ]

+ {h7- (1 )C2N2H10( t )  - N ^ t )  - Hs( t ) (h f ( l )  + 2N7H4(t )

- 2N2H6(t )  - N3Hg(t)) + 2h?(6)h.(4)]
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- (h f( l)  - h?(2))[Hg(t) + N.,H8(t )  + 2N3H10( t ) ]  - NHj(t)} S . ( f )

+ hi (2)[2(N3h1( l )  - N2)H1(J( t )  + (N-, + 2h.(1))Hg(t)

+ (3h f(l) - hf(2) - N + 2N1hi (l))H g (t) + h.(5)(2NH4( t )  + NgH^t)) 

+{h.(6)[h.(4)[2H4(t)(N 1 + h . ( l ) )  + 2Hg(t)(N3hi (1) - Ng) - N3H“ ( t ) ]

- 4hf(5)hi (3)(H4( t )  + N3Hg( t ) ) ] }  T ^ t ' )  ; (A.4-2a)

M^(t) = -h i (2)[2H9(t)(N 2 + N3h .( l ) )  + (N, + 2h .(l))H 1(t )

+ (N + N ^ C t)  - 2^.(2) + 3hi (l))H 2( t ) ]

+ {hi (2)[4(N2 + h .( l) )H 10( t )  + 2(h.(1) -

+ (2N1h.(1) - 2N + 3h?(l) - h?(2))H8( t ) ]

+ 2h .(6 )[h .(4 )[(N 1 + hi ( l) )H 4(t )  + (h .(l)N 3 - N2)Hg(t )  - N3H '(t)J  

- 2hf(5)hi (3)(H4( t )  + N3H6( t ) ) ] } S . ( f )

+ {(h?(1) - h?(2))(Hg(t) + N-jHg(t) + 2N3H1Q( t ) )  - h .(1 )[2NzH10(t)

- + (h f(1) - 3h?(2) - N)Kg(t)] + h.(5)[2NH4( t )  +

+ N2H"(t) - h1(3)C2H4(t)(N T + h . ( l ) )  + 2 ( ^ ( 1 )  - N3H "(t))]}  T . ( t ' )  (A.4-2b)

where

H-j ( t )  = r ^ ( t - t ' ) r ^ ( t - f )  + r ^ ( t ) r ^ ( t ) ;

H2( t )  = [ r ^ C  t - t ' ) r ( 2 ) ( t - f )  + rJ1 )(t )rJ 2 )( t ) ] /A 1A2 

H j(t) = [ r | i > (t)r^ i ) ( t - f )  -  r ^ U - t ' J r ^ U J j / h ^ e ) ;
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H4( t )  =

+ [ r ^ ( t - t ' ) r ^ 2^(t) - r | 1^ ( t ) r |1^ ( t - t , )] /A 1;

Hj:(t) = r ^ ( t ) r ^ ( t - t ' ) ± r ^ ^ t - t ' J r ^ ^ t ) ;

H6(t )  = [ 4 2 )( t - f ) r J 1}( t )  - rJ2 )( t ) r J 1 )( t - t ' ) ] /A 1A2 

Hy (t ) = r j^ C t)  + r j^ C t - t ' )  + ( r ^ C t )  + 4 i ) ( t - t ') )h .(1 ) /h ? (6 );  

H8( t )  = [ r ^ ( t ) r ^ ( t - t ' ) +

Hg(t )  = [ r ( 2 )( t ) r ( 1}( t )  + Y ^ h t - V ^ h t - V ) ! / ^

-  [r^2 ) (t)r^ 1 )( t - t l ) + 4 2 )( t - t , ) r | 1 )( t ) ] /A 2;

H10( t )  = + r ^ ( t ) r ^ 2^ ( t - t ' ) ]/A-j

- CrJ2)( t ) 4 1)( t - f )  + r ^ t - t ' J r ^ t t t / A g ;

^ ( D  = A? - B2; h .(2) = 2A.B.; ^.(3) = 3 A 2. =  B2; ^.(4) = A? = 3B?; h.(5)

~B•t 1 /•%
^•(6) = A., Si ( t ' )  = e 1 cos A .t' T . ( t ' ) = r j 1 ;( t ' ); f o r i  = 1 , 2 ;

h3( l )  = ft2 -  32, h3(2) = 2ft3, h3(3) = 3ft2 -  32, h3(4) = ft2 -  332,

h3(5) = 3, h3 (6) = ft, S3( t ' )  = e"3t cosftt1, T3( t ' )  = e“3t s inftt', for i

r i n rAi 5(32 + ° 2 + “ i^ n 1
F1 = Re^2B7 n2 i  2 2772 27* 5 R1 = ^ 7 1  2 u  2 27̂1 A -u^u)^ - o>3Hu).j -  u^j lu-j - a)2i ” u2'

ni x„rAi 3^ 2 + + wf)  n T 1

G1 = Im^2B7 .2 , 2 2772 27^ T1 = Im[7 ^  2 w 2 27̂1 A-u)-(w- -  u>3;(o).j - o)4; (o>i - o)2iMo)i -  o>2;
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F3 ’
1

, 2  2 u  2 2 n
(w3 - o>i gM^3 -  “-j;

■ ]>  R2 = ReC 2 2 2 2  ̂*
(^2 “ a)i2 ^ a)2 "

G3 Im^  2 2  s t  2 2 ^  * l 2  = In̂ ,  2 2 u  2 2 ^ ’
(0)2 -  to-j 2 ''^2 ~

G3 = ^  2 ! ,  2 27];
( 0)3  -  0)2 1 1 1 ^ 3  ~ w 2

/ i .  t w 2  2\(0)3 - ~ wi )

F3 ~ Rê / 2 2 ! ,  2 2,
(u)q -  a)2 ]) (u3 "

-];

ui -  Fi Ri " * iGi> Vi " Gi Ri + lA for i = 1, 2;

U3 F3F3 " G3G3’ V3 = G3F3 + G3F3 for i = 3;

ui = Ai + iB ., o)12 == -A, + i B-j, W21 = -A2 + i B2,

N =: C2C2, N1 = 4B-jB2 ■- C2 - C2 1 23 n2 = C2B2 - CgBp V : B2 “ Bl*

m  -2B.t B,
r] ' ( t )  = e [1 + sin 2 A^t],

r ( i ) ( t )  = e"B it Ĉ0S Ai t  + A1  sin Ai t ^s

f i l  -2B-t 2
ig ( t )  = e sin A^t,

M l ~Gi^I 4 ( t )  = e sin A..t.



"Better is the end of a thing than the beginning thereof."

Ecclesiastes
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