
University of New Hampshire University of New Hampshire 

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository 

Master's Theses and Capstones Student Scholarship 

Winter 2017 

Comparative Spectral Analysis of Flexible Structure Models: the Comparative Spectral Analysis of Flexible Structure Models: the 

Euler-Bernoulli Beam model, the Rayleigh Beam model, and the Euler-Bernoulli Beam model, the Rayleigh Beam model, and the 

Timoshenko Beam Model Timoshenko Beam Model 

Anhhong Rose Nguyen 
University of New Hampshire, Durham 

Follow this and additional works at: https://scholars.unh.edu/thesis 

Recommended Citation Recommended Citation 
Nguyen, Anhhong Rose, "Comparative Spectral Analysis of Flexible Structure Models: the Euler-Bernoulli 
Beam model, the Rayleigh Beam model, and the Timoshenko Beam Model" (2017). Master's Theses and 
Capstones. 1160. 
https://scholars.unh.edu/thesis/1160 

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire 
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized 
administrator of University of New Hampshire Scholars' Repository. For more information, please contact 
Scholarly.Communication@unh.edu. 

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F1160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/1160?utm_source=scholars.unh.edu%2Fthesis%2F1160&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu


Comparative Spectral Analysis of Flexible Structure Models:

the Euler-Bernoulli Beam model, the Rayleigh Beam model,

and the Timoshenko Beam Model

By

Anhhong Rose Nguyen

BS, University of New Hampshire (2014)

THESIS

Submitted to the University of New Hampshire

In Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Applied Mathematics

December, 2017



ii



ALL RIGHTS RESERVED

c© 2018

Anhhong Rose Nguyen

iii



iv



THESIS COMMITTEE PAGE

This thesis has been examined and approved in partial fulfillment of the requirements for

the degree of Master of Science in Applied Mathematics by:

Thesis Director, Marianna A. Shubov, Professor
of Mathematics.

Mark Lyon, Associate Professor of Mathematics.

Rita Hibschweiler, Professor of Mathematics.

On December 18, 2017

Original approval signatures are on file with the University of New Hampshire Graduate

School.

v



vi



Contents

Contents vii

List of Figures ix

List of Tables xi

Abstract xiii

Introduction 1

Derivation Of The Spectral Equations For Three Beam Models 3

1 The Euler-Bernoulli Beam Model . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Rayleigh Beam Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 The Timoshenko Beam Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Asymptotic Approximations for the Eigenvalues 45

4 Euler-Bernoulli Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Rayleigh Beam Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Timoshenko Beam Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 61

vii



viii



List of Figures

1 The Euler-Bernoulli beam model, where the it is fixed at one end and acted

upon by load L at other, and P1 is perpendicular plane to the neutral axis. . 4

2 Bending deformation of Rayleigh beam model, where M is the bending mo-

ment, ρ is the local bending radius, h is the height, y is the position along the

y-axis, and σ is the bending stress. . . . . . . . . . . . . . . . . . . . . . . . 14

3 Bending deformation of the Timoshenko beam model, where h is the length

of the beam, w is the displacement, M is the bending moment, and Q is the

shear force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 The triangle induced by (5.23) and (5.24). . . . . . . . . . . . . . . . . . . . 54

ix



x



List of Tables

1 Spectral equations of different combinations of the boundary conditions for

the Euler-Bernoulli model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Spectral equations of different combinations of the boundary conditions for

the Rayleigh beam model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Spectral equations of different combinations of the boundary conditions for

the Timoshenko model for case 1 where ω > ωc. . . . . . . . . . . . . . . . . 38

4 Spectral equations of different combinations of the boundary conditions for

the Timoshenko model for case 2 where ω < ωc. . . . . . . . . . . . . . . . . 43

xi



xii



ABSTRACT

COMPARATIVE SPECTRAL ANALYSIS OF FLEXIBLE STRUCTURE MODELS:

THE EULER-BERNOULLI BEAM MODEL, THE RAYLEIGH BEAM MODEL,

AND THE TIMOSHENKO BEAM MODEL

By

Anhhong Rose Nguyen

University of New Hampshire, December, 2017

We derive herein approximate spectra for three different models of transversely vibrating

beams. Each model consists of a system of partial differential equations (PDEs) with various

boundary conditions. The three models that we consider are the Euler-Bernoulli model, the

Rayleigh model, and the Timoshenko model. We first discuss a brief history of the models

before delving into obtaining the spectral equations for each beam model under different

boundary conditions. Lastly, we present asymptotic approximations of some of the various

spectral equations we found from each model.
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Introduction

We consider three models for a vibrating beam, all of which were developed by the mid-

twentieth century. The Euler-Bernoulli beam model is one of the first mathematical de-

scriptions of the motion of a vibrating beam; it was discovered by Jacob Bernoulli c. 1700.

Attempting to improve upon the Euler-Bernoulli model, Lord Rayleigh introduced his model

in 1877. Stephen Timoshenko developed the Timoshenko beam model in the early twenti-

eth century, which added more observed physical effects to the Rayleigh model. Each of

the beam models have four different boundary conditions depending on how the beam is

attached (or not) to a boundary surface. These are hinged end, clamped end, free end, and

sliding end conditions.

During the mid-1700s, there was considerable doubt among engineers regarding how

applied mathematics presented in their field. During this time, the Euler-Bernoulli model

(also know as classical beam theory) was developed. Thus, Leonhard Euler and Daniel

Bernoulli formulated a useful and applicable theory. Daniel Bernoulli derived the differential

equation governing the motion of a vibrating beam, while Leonhard Euler studied the shape

of elastic beams under differential boundary conditions.

The Euler-Bernoulli beam model normally produces an overestimate of the natural fre-

quencies of a vibrating beam. In 1877, in order to improve the model, Lord Rayleigh added

the effect of rotational inertia of the cross-sectional area. This provides some improvement
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to the Euler-Bernoulli beam model, however, the natural frequencies are still overestimated.

The Timoshenko beam model was developed in the early 20th century by Stephen Tim-

oshenko. Unlike the Euler-Bernoulli model, the Timoshenko Beam Model accounts for the

effects of shear distortion and rotational inertia. In other words, the Timoshenko model adds

rotational inertia to the shear model or adds the shear distortion to the Rayleigh model. Us-

ing the Timoshenko model, many authors have achieved the frequency equations and the

mode shapes for different boundary conditions of a beam (see [1–5] and references therein.)

We present the results in two parts. The first part, which consists of Sections 2–4, contains

the derivation of the so-called spectral equations for each beam model. To this end, we study

the corresponding partial differential equation equipped with specific boundary conditions.

In doing so, we consider different combinations of the standard boundary conditions for each

model. The result being that we obtain a polynomial-exponential equation with respect

to the spectral parameter, which is specific for each model. In some cases, the spectral

equations are relatively simple, while in other cases these equations are quite complicated.

This depends on the beam model and the choice of the end conditions. In the second part,

we derive the solutions to the spectral equations. In some cases, such solutions can be given

in closed form, while in other cases (when closed form solutions do not exist) we derive

asymptotic approximations to the eigenvalues as the index of the set of eigenvalues tends to

infinity (see [6-8] and references therein).
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Derivation of the Spectral Equations for Three Beam

Models

We now endeavor to find the spectral equations for various boundary conditions for the

Euler-Bernoulli model, the Rayleigh model, and the Timoshenko model. For the Euler-

Bernoulli model, we consider the four examples where (at least) one side is hinged. The

remaining 12 scenarios are presented in Table 1. For the Rayleigh model, we derived the

general solution. We then go on to consider symmetric conditions (e.g., clamped-clamped

ends) explicitly. Lastly, for the Timoshenko model, we derive the general solution, which,

along with it, comes a critical conditions that doubles our field of solutions. Like the Euler-

Bernoulli model, we consider the four examples where (at least) one side is hinged. Thus,

including the critical condition, we consider eight specific examples.

1 The Euler-Bernoulli Beam Model

In this section, we consider the sixteen combinations of the boundary conditions. However,

only four pairs of different boundary conditions are presented in detail. Namely, these are

hinged-hinged, hinged-clamped, hinged-free, and hinged-sliding boundary conditions [1,3,5].

The non-homogeneous partial differential equation for the Euler-Bernoulli beam model
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Figure 1: The Euler-Bernoulli beam model, where the it is fixed at one end and acted upon
by load L at other, and P1 is perpendicular plane to the neutral axis.

is

ρA
∂2v(x, t)

∂t2
+
∂4v(x, t)

∂x4
= f(x, t), (1.1)

where 0 ≤ x ≤ L < ∞ and t ≥ 0, for some finite maximum beam length L, v(x, t) is the

vertical displacement at position x and time moment t, ρ is the density, A is the cross-

sectional area, and f(x, t) is the non-homogeneous forcing function of both space and time.

The following four boundary conditions are considered, where a is either 0 or L:

(a) Hinged end (b) Clamped end (c) Free end (d) Sliding end

(a) Hinged-end:

∂2v(a, t)

∂x2
= 0 v(a, t) = 0; (1.2)

(b) Clamped-end:

∂v(a, t)

∂x
= 0 v(a, t) = 0; (1.3)
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(c) Free-end:

∂2v(a, t)

∂x2
= 0

∂3v(a, t)

∂x3
= 0; (1.4)

(d) Sliding-end:

∂v(a, t)

∂x
= 0

∂3v(a, t)

∂x3
= 0. (1.5)

In the above, we have the second derivative ∂2v/∂x2, which represents the moment of the

beam, and the third derivative ∂3v/∂x3, which represents the shear of the beam.

In order to find eigenvalues and eigenfunctions, let us consider the homogeneous equation

ρA
∂2v(x, t)

∂t2
+
∂4v(x, t)

∂x4
= 0. (1.6)

By applying separation of variables[1,2,6], we assume that v(x, t) = W (x)T (t). We find the

second derivative in time

∂2v(x, t)

∂t2
= W (x)

d2T (t)

dt2
(1.7)

and the fourth derivative in space

∂4v(x, t)

∂x4
=
d4W (x)

dx4
T (t). (1.8)

Substitute (1.7) and (1.8) into the homogeneous equation, and we achieve

ρA
T ′′(t)

T (t)
= −W

(4)(x)

W (x)
= λ4, (1.9)

where λ is the variable of separation. This is justified as equal functions of derivatives of

distinct variables must equal a constant value. Since we are dealing with a conservative
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system, we assume that the variable of separation is real[2,3,4]. By separation of variables,

(1.9) can be rewritten as two ordinary differential equations,

ρAT ′′(t)− λ4T (t) = 0, (1.10)

and

W (4)(x) + λ4W (x) = 0. (1.11)

To solve (1.11), we let W (x) = erx, which give us the characteristic equation,

r4 + λ4 = 0. (1.12)

This equation has four different solutions. They are: r1 = λ, r2 = −λ, r3 = iλ, and r4 = −iλ.

The general solution for W (x) can be represented by the following linear combination:

W (x) = A(λ) sin(λx) +B(λ) cos(λx) + C(λ) sinh(λx) +D(λ) cosh(λx), (1.13)

where A(λ), B(λ), C(λ), and D(λ) are arbitrary functions of λ .

Our goal is to find these values of the arbitrary parameters for which the function (1.13)

satisfies the boundary conditions. To this end, we derive the spectral equation for each set

of boundary conditions.

Remark 1. In what follows, we will derive the spectral equations for the different

combinations of the boundary conditions. For the Euler-Bernoulli beam model some of the

spectral equations are well-known and can be found in the literature (see, e.g.,[1,2,3]). For

the Rayleigh and Timoshenko beam models, some spectral equations are well-known as well,

while the others have been derived in the present work. The necessary remarks will appear
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in Sections 2 and 3 below. To keep the paper self-contained, we present the derivation of

the spectral equations for all considered cases.

Let us differentiate W (x):

W ′(x) = A(λ)λ cos(λx)−B(λ)λ sin(λx) + C(λ)λ cosh(λx) +D(λ)λ sinh(λx) (1.14)

W ′′(x) = −A(λ)λ2 sin(λx)−B(λ)λ2 cos(λx) + C(λ)λ2 sinh(λx) +D(λ)λ2 cosh(λx) (1.15)

W ′′′(x) = −A(λ)λ3 cos(λx) +B(λ)λ3 sin(λx) + C(λ)λ3 cosh(λx) +D(λ)λ3 sinh(λx) (1.16)

By applying all combinations of the boundary conditions, we obtain the spectral equations

represented in Table 1. Here, let us consider the four cases where one end is hinged.

Hinged-Hinged Boundary Conditions

There are two sets of boundary conditions: At x = 0 we have

W ′′(0) = W (0) = 0; (1.17)

and, at x = L, we have

W ′′(L) = W (L) = 0. (1.18)

From the first set of boundary conditions (1.17), we notice that

W ′′(0) = −B(λ) +D(λ) = 0, (1.19)

and

W (0) = B(λ) +D(λ) = 0. (1.20)
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Thus B(λ) = D(λ) = 0. The general solution reduces to the form

W (x) = A(λ) sin(λx) + C(λ) sinh(λx). (1.21)

Let us apply the second set of boundary conditions (1.18):

W (L) = A(λ) sin(λL) + C(λ) sinh(λL) = 0, (1.22)

and

W ′′(L) = −A(λ)λ2 sin(λL) + C(λ)λ2 sinh(λL) = 0. (1.23)

where A(λ) and C(λ) are unknown functions. The homogeneous system has a solution if

and only if its determinant is equal to zero, i.e.,

det

 sin(λL) sinh(λL)

− sin(λL) sinh(λL)

 = 0. (1.24)

Thus, the spectral equation for the hinged-hinged boundary conditions is

sin(λL) sinh(λL) = 0. (1.25)

Hinged-Clamped Boundary Conditions

The two sets of boundary conditions in this case are:

W ′′(0) = W (0) = 0, (1.26)
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and

W ′(L) = W (L) = 0. (1.27)

Similar to the hinged-hinged case, W ′′(0) = W (0) = 0 implies B(λ) = D(λ) = 0, and our

general solution simplifies to

W (x) = A(λ) sin(λx) + C(λ) sinh(λx). (1.28)

Our second set of the boundary conditions yields

W ′(L) = A(λ)λ cos(λL) + C(λ)λ cosh(λL) = 0, (1.29)

and

W (L) = A(λ) sin(λL) + C(λ) sinh(λL) = 0. (1.30)

To find the solution for the homogeneous system we set its determinant equal to zero,

det

cos(λL) cosh(λL)

sin(λL) sinh(λL)

 = 0. (1.31)

Thus, the spectral equation for the hinged-clamped boundary condition is

cos(λL) sinh(λL)− sin(λL) cosh(λL) = 0. (1.32)
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Hinged-Free Boundary Conditions

The boundary conditions in this case are:

W ′′(0) = W (0) = 0, (1.33)

and

W ′′(L) = W ′′′(L) = 0. (1.34)

Again, B(λ) = D(λ) = 0 from the first set of boundary conditions, as in the previous cases.

The general solution reduces to

W (x) = A(λ) sin(λx) + C(λ) sinh(λx). (1.35)

Applying the second set of boundary conditions (1.34) yields

W ′′(L) = −A(λ)λ2 sin(λL) + C(λ)λ2 sinh(λL) = 0, (1.36)

and

W ′′′(L) = −A(λ)λ3 cos(λL) + C(λ)λ3 cosh(λL) = 0. (1.37)

The system has a solution if and only if its determinant is zero, i.e.,

det

− sin(λL) sinh(λL)

− cos(λL) cosh(λL)

 = 0. (1.38)
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Thus, the spectral equation is

sinh(λL) cos(λL)− sin(λL) cosh(λL) = 0. (1.39)

Hinged-Sliding Boundary Conditions

The two sets of boundary conditions in this case are:

W ′′(0) = W (0) = 0 (1.40)

and

W ′(L) = W ′′′(L) = 0. (1.41)

As in the previous cases, after the first set of boundary conditions is applied, the general

solution takes the form:

W (x) = A(λ) sin(λx) + C(λ) sinh(λx). (1.42)

Applying the second set of boundary conditions, we have

W ′(L) = A(λ)λ cos(λL) + C(λ)λ cosh(λL) = 0, (1.43)

and

W ′′′(L) = −A(λ)λ3 cos(λx) + C(λ)λ3 cosh(λx) = 0. (1.44)
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The homogeneous system has a solution if and only if its determinant is zero, i.e.,

det

 cos(λL) cosh(λL)

− cos(λL) cosh(λL)

 = 0. (1.45)

Thus, the spectral equation is

cos(λL) cosh(λL) = 0. (1.46)

These four results, along with the twelve more options, are all collected in Table 1.

12



H
in

ge
d

en
d

C
la

m
p

ed
en

d
F

re
e

en
d

S
li

d
in

g
en

d

H
in

ge
d

en
d

si
n

(λ
L

)
si

n
h

(λ
L

)
=

0
co

s(
λ
L

)
si

n
h

(λ
L

)

−
si

n
(λ
L

)
co

sh
(λ
L

)
=

0

si
n

h
(λ
L

)
co

s(
λ
L

)

−
si

n
(λ
L

)
co

sh
(λ
L

)
=

0
co

sh
(λ
L

)
co

s(
λ
L

)
=

0

C
la

m
p

ed
en

d
co

s(
λ
L

)
si

n
h

(λ
L

)

−
si

n
(λ
L

)
co

sh
(λ
L

)
=

0
co

sh
(λ
L

)
co

s(
λ
L

)
=

1
co

sh
(λ
L

)
co

s(
λ
L

)
=
−

1
co

s(
λ
L

)
si

n
h

(λ
L

)

+
si

n
(λ
L

)
co

sh
(λ
L

)
=

0

F
re

e
en

d
si

n
h

(λ
L

)
co

s(
λ
L

)

−
si

n
(λ
L

)
co

sh
(λ
L

)
=

0
co

sh
(λ
L

)
co

s(
λ
L

)
=
−

1
co

sh
(λ
L

)
co

s(
λ
L

)
=

1
si

n
(λ
L

)
co

sh
(λ
L

)

+
si

n
h

(λ
L

)
co

s(
λ
L

)
=

0

S
li

d
in

g
en

d
co

s(
λ
L

)
co

sh
(λ
L

)
=

0
co

s(
λ
L

)
si

n
h

(λ
L

)

+
si

n
(λ
L

)
co

sh
(λ
L

)
=

0

si
n

(λ
L

)
co

sh
(λ
L

)

+
si

n
h

(λ
L

)
co

s(
λ
L

)
=

0
si

n
(λ
L

)
si

n
h

(λ
L

)
=

0

T
ab

le
1:

S
p

ec
tr

al
eq

u
at

io
n
s

of
d
iff

er
en

t
co

m
b
in

at
io

n
s

of
th

e
b

ou
n
d
ar

y
co

n
d
it

io
n
s

fo
r

th
e

E
u
le

r-
B

er
n
ou

ll
i

m
o
d
el

.

13



Figure 2: Bending deformation of Rayleigh beam model, where M is the bending moment,
ρ is the local bending radius, h is the height, y is the position along the y-axis, and σ is the
bending stress.

2 The Rayleigh Beam Model

In this section, we consider three different combinations of the boundary-value problem for

the Rayleigh beam model. They are clamped-clamped boundary conditions, hinged-hinged

boundary conditions, and free-free boundary conditions. For each set of boundary conditions

we will show in detail the derivation of the spectral equation [1, 2, 5].

The Rayleigh beam model is governed by the partial differential equation.

ρA
∂2v(x, t)

∂t2
+
∂4v(x, t)

∂x4
− ρI ∂

4v(x, t)

∂x2∂t2
= f(x, t), (2.1)

where 0 ≤ x ≤ L <∞ and t ≥ 0, for a beam of length L, v(x, t) is the vertical displacement

at position x and time moment t, ρ is the density, A is the cross-sectional area, I is the

moment of inertia, and f(x, t) is the non-homogeneous forcing function of both space and

time.

The following boundary conditions will be considered, where a is at 0 or L:

14



(a) Hinged end (b) Clamped end (c) Free end (d) Sliding end

(a) Hinged-end:

∂2v(a, t)

∂x2
= 0 v(a, t) = 0; (2.2)

(b) Clamped-end:

∂v(a, t)

∂x
= 0 v(a, t) = 0; (2.3)

(c) Free-end:

∂2v(a, t)

∂x2
= 0

∂3v(a, t)

∂x3
− ρI ∂

3v(a, t)

∂x∂t2
= 0; (2.4)

(d) Sliding-end:

∂v(a, t)

∂x
= 0

∂3v(a, t)

∂x3
− ρI ∂

3v(a, t)

∂x∂t2
= 0. (2.5)

In order to find eigenvalues and eigenfunctions, let us consider the homogeneous equation:

ρA
∂2v(x, t)

∂t2
+
∂4v(x, t)

∂x4
− ρI ∂

4v(x, t)

∂x2∂t2
= 0. (2.6)

First, let us rescale our equation by letting x̃ = kx for some k. For any function f we

have

∂f

∂x
= k

∂f

∂x̃
,

∂2f

∂x2
= k2

∂2f

∂x̃2
.

15



Rewriting (2.6) in term of x̃, we have

∂2v(x̃, t)

∂t2
+

(
k4

ρA

)
∂4v(x̃, t)

∂x̃4
−
(
Ik2

A

)
∂2v(x̃, t)

∂x̃2∂t2
= 0. (2.7)

We choose k = 4
√
ρA, then

I

A
k2 =

I

A

√
ρA = I

√
ρ

A
. (2.8)

Letting c2 = I
√

ρ
A

and omitting the tildes from (2.7), we derive:

∂2v(x, t)

∂t2
+
∂4v(x, t)

∂x4
− c2∂

4v(x, t)

∂x2∂t2
= 0. (2.9)

Solving (2.9) by separation of variables, we assume that v(x, t) = W (x)T (t). Substituting

v(x, t) into the homogeneous equation, we attain

T ′′(t)W (x) + T (t)W (4)(x)− c2T ′′(t)W ′′(x) = 0, (2.10)

which simplifies to

W (4)(x)T (t) +
(
W (x)− c2W ′′(x)

)
T ′′(t) = 0. (2.11)

Assuming that W (4)(x) 6= 0, we can rewrite (2.11) in the form

−
(
c2W ′′(x)−W (x)

)
W (4)(x)

= − T (t)

T ′′(t)
=

1

λ
. (2.12)

The left-hand side of (2.12) is a function of space and the middle is a function of time. This

means, as before, that each function must be a constant, which we have denoted by λ−1. As
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such, we obtain the following system of two coupled ordinary differential equations:

T ′′(t) + λT (t) = 0 (2.13)

and

W (4)(x) + λ
(
c2W ′′(x)−W (x)

)
= 0. (2.14)

Remark 2. We will derive the spectral equations for the Rayleigh beam model with the fol-

lowing sets of the boundary conditions: (i) clamped-clamped conditions, (ii) hinged-hinged

conditions, which are the same as for the model with the sliding-sliding conditions, (iii)

free-free conditions. The spectral equations corresponding to different sets of the boundary

conditions can be obtained using similar agreement. The results obtained follow are consis-

tent with the results of [1], where some of the spectral equations are presented without any

derivations.

We will now consider (2.14) with the clamped-clamped, hinged-hinged and free-free

boundary conditions. First, we derive the basis for the linear space of solutions to (2.14).

The characteristic equation is

r4 + r2c2λ− λ = 0. (2.15)

Substituting r2 = y, we obtain the quadratic equation for y: y2 + λc2y− λ = 0, whose roots

are

y1,2 =
−λc2 ±

√
λ2c4 + 4λ

2
. (2.16)

Assuming that λ > 0, we get

y1 =
−λc2 −

√
λ2c4 + 4λ

2
< 0, y2 =

−λc2 +
√
λ2c4 + 4λ

2
> 0. (2.17)
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Let us introduce the following notation:

r1,2 = ±i
√
|y1| ≡ ±iα, r3,4 = ±√y2 ≡ ±β, (2.18)

where

α2 =
λc2 +

√
λ2c4 + 4λ

2
and β2 =

√
λ2c4 + 4λ− λc2

2
. (2.19)

The basis for the space of solutions to (2.14) is {sin(αx), cos(αx), sinh(βx), cosh(βx)}. Thus

the general solution of (2.14) can be written as

W (x) = A(λ) cos(αx) +B(λ) sin(αx) + C(λ) cosh(βx) +D(λ) sinh(βx), (2.20)

where A(λ), B(λ), C(λ) and D(λ) are arbitrary function of λ. Without misunderstanding,

we use the same notation for the coefficients (A(λ), B(λ), C(λ), D(λ)) as we have used for

the Euler-Bernoulli model in (1.13).

Clamped-Clamped Boundary Conditions

Let us consider the case when both ends are clamped. We have to find the solution to (2.14),

that satisfies the following boundary conditions:

W ′(0) = W (0) = 0, (2.21)

and

W ′(L) = W (L) = 0. (2.22)
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Without loss of generality for the rest of this section, we assume that L = 1. Applying the

conditions (2.21) to to the function from (2.20), we get

A(λ) + C(λ) = 0, αB(λ) + βD(λ) = 0. (2.23)

The condition W (1) = 0 yields

A(λ) cos(α) +B(λ) sin(α) + C(λ) cosh(β) +D(λ) sinh(β) = 0. (2.24)

The condition W ′(1) = 0 yields

−αA sin(α) + αB cos(α) + βC sinh(β) + βD cosh(β) = 0. (2.25)

Taking into account (2.23), we rewrite (2.24) and (2.25) in the form

A(λ) (cos(α)− cosh(β)) +B(λ)

(
sin(α)− α

β
sinh(β)

)
= 0, (2.26)

−A(λ)
(
α sin(α) + β sinh(β)

)
+B(λ)

(
α cos(α)− α cosh(β)

)
= 0. (2.27)

This homogeneous system has a non-trivial solution if and only if it determinant is zero, i.e.,

det

 cos(α)− cosh(β) sin(α)− α
β

sinh(β)

−(α sin(α) + β sinh(β)) α cos(α)− α cosh(β)

 = 0. (2.28)
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This is equivalent to

(
cos(α)− cosh(β)

)(
α cos(α)− α cosh(β)

)
+

(
sin(α)− α

β
sinh(β)

)(
α sin(α) + β sinh(β)

)
= 0.

Simplifying this equation we obtain the spectral equation for clamped-clamped model

2αβ + (β2 − α2) sin(α) sinh(β)− 2αβ cos(α) cosh(β) = 0. (2.29)

Hinged-Hinged Boundary Conditions

We have to find the spectral equation corresponding to the following boundary conditions:

W ′′(0) = W (0) = 0, (2.30)

and

W ′′(L) = W (L) = 0. (2.31)

Applying (2.30) to (2.20), we obtain

A(λ) = C(λ) = 0, (2.32)

thus

W (x) = B(λ) sin(αx) +D(λ) sinh(βx). (2.33)
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From W ′′(1) = 0, we have

−B(λ)α2 sin(α) +D(λ)β2 sinh(β) = 0. (2.34)

From W (1) = 0, we have

B(λ)α2 sin(α) +D(λ)β2 sinh(β) = 0. (2.35)

There exists a non-trivial solution for the system if and only if its determinant is zero, i.e.,

det

 sin (α) sinh (β)

−α2 sin (α) β2 sinh (β)

 = 0, (2.36)

which is equivalent to

(β2 + α2) sinα sinh β = 0. (2.37)

Since α2 + β2 6= 0, we obtain the spectral equation for hinged-hinged model

sinα sinh β = 0. (2.38)

Free-Free Boundary Conditons

The boundary conditions for the free-free case are

W ′′′(0) + ηW ′(0) = 0, W ′′(0) = 0, (2.39)
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and

W ′′′(1) + ηW ′(1) = 0, W ′′(1) = 0, (2.40)

where η = λc2, since we let x̃ = kx and k = 4
√
ρA, where the differentiation is taken with

respect to x̃. Applying the first set of the boundary conditions to (2.20) we obtain that

D(λ) =
α(α2 − η)

β(β2 + η)
B(λ) and C(λ) =

α2

β2
A(λ). (2.41)

The second set of the boundary condition yields

A(λ)α3 sin(α) +B(λ)α3 cos(α) + C(λ)β3 sinh(β) +D(λ)β3 cosh(β)

+ η
(
− A(λ)α sin(α) +B(λ)α cos(α) + C(λ)β sinh(β) +D(λ)β cosh(β)

)
= 0, (2.42)

and

−A(λ)α2 cos(α)−B(λ)α2 sin(α) + C(λ)β2 cosh(β) +D(λ)β2 sinh(β) = 0. (2.43)

These two equations can also be rewritten as the following system:

A(λ)α(α2 − η) sin(α)−B(λ)α(α2 − η) cos(α)

+ C(λ)β(β2 + η) sinh(β) +D(λ)β(β2 + η) cosh(β) = 0, (2.44)

A(λ)α2 cos(α) +B(λ)α2 sin(α)− C(λ)β2 cosh(β)−D(λ)β2 sinh(β) = 0. (2.45)

Where A(λ), B(λ), C(λ), and D(λ) are functions of λ. Let us denote T = (α2 − η) and

κ = (β2 + η). Taking into account (2.41), we eliminate C(λ) and D(λ) from the system to
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obtain

A(λ)

(
αT sin(α) +

α2

β
κ sinh(β)

)
−B(λ) (αT cos(α)− αT cosh(β)) = 0, (2.46)

A(λ)
(
α2 cos(β)− α2 cosh(α)

)
−B(λ)

(
α2 sin(α) + αβ

T
κ

sinh(β)

)
= 0. (2.47)

The system is solvable if and only if

det

αT sin(α) +
α2

β
κ sinh(β) − (αT cos(α)− αT cosh(β))

α2 cos(β)− α2 cosh(α) α2 sin(α) + αβ
T
κ

sinh(β)

 = 0, (2.48)

which is equivalent to

αT sin2(α)− αT sinh2(β)− βT
2

κ
sin(α) sinh(β) + κ

α2

β
sin(α) sinh(β)

+ αT cos2(α) + αT cosh2(β)− 2αT cos(α) cosh(β) = 0. (2.49)

Simplifying this equation, we obtain

2αβT κ− 2αβT κ cos(α) cosh(β) +
(
α2κ2 − β2T 2

)
sin(α) sinh(β) = 0. (2.50)

Taking into account that α2 − η = β2 and β2 + η = α2, we obtain the spectral equation for

free-free model

2α3β3 − 2α3β3 cos(α) cosh(β) + (α6 − β6) sin(α) sinh(β) = 0. (2.51)

The spectral equations we have derive for Rayleigh Beam model are collected in Table 2.
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Figure 3: Bending deformation of the Timoshenko beam model, where h is the length of the
beam, w is the displacement, M is the bending moment, and Q is the shear force.

3 The Timoshenko Beam Model

We consider the same four different pairs of boundary conditions as we did for the Euler-

Bernoulli model: hinged-hinged, hinged-clamped, hinged-sliding, and hinged-free boundary

condition [1, 2, 4].

The equations of the Timoshenko beam model are given by

ρA
∂2v(x, t)

∂t2
− k′GA

(
∂2v(x, t)

∂x2
− ∂α(x, t)

∂x

)
= f(x, t), (3.1)

and

ρI
∂2α(x, t)

∂t2
− ∂2α(x, t)

∂x2
− k′GA

(
∂v(x, t)

∂x
− α(x, t)

)
= 0, (3.2)

where 0 ≤ x ≤ L < ∞ and t ≥ 0, for some finite maximum beam length L, v(x, t) is the

transverse displacement at position x and time moment t, ρ is the density, A is the cross-

sectional area, I is the moment of inertia, f(x, t) is the non-homogeneous forcing function of

both space and time, α(x, t) is the angle of rotation of the cross-section due to the bending

moment at position x and at time t, and G and k′ are miscellaneous physical quantities.
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The boundary conditions are given by, where a is either 0 or L:

(a) Hinged end (b) Clamped end (c) Free end (d) Sliding end

(a) Hinged-end:

∂α(a, t)

∂x
= 0 v(a, t) = 0; (3.3)

(b) Clamped-end:

α(a, t) = 0 v(a, t) = 0; (3.4)

(c) Free-end:

∂α(a, t)

∂x
= 0 k′GA

(
∂v(a, t)

∂x
− α(a, t)

)
= 0; (3.5)

(d) Sliding-end:

α(a, t) = 0

(
∂v(a, t)

∂x
− α(a, t)

)
= 0. (3.6)

Remark 3. We will derive the spectral equations for the Timoshenko beam model with the

following sets of the boundary conditions: (i) hinged-hinged conditions, (ii) hinged-clamped

conditions, (iii) hinged-sliding conditions, (iv) hinged-free conditions. Any other combination

of the boundary conditions can be treated in a similar fashion. In our approach below we

rewrite the Timoshenko system (see (3.7) and (3.8) below) as a matrix equation (see (3.9)

below) and study the spectral properties of the matrix differential operator A appearing at

the right-hand side of (3.9) as shown below, the spectral equations for A depend whether the

spectral parameter less than the critical value denoted by ωc or greater than ωc. We derive

the spectral equations corresponding to both cases. One case (the hinged-hinged problem)
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coincides with the result found in the literature (see [1,2,3]) and the other cases have been

derived in the present work. The method used here is a modification of the method used in

paper [7].

Let us consider the homogeneous problem by setting the forcing function f(x, t) in (3.1)

to zero, and we assume that the cross-sectional area A = 1. Thus,

vtt(x, t)−
k′G

ρ
(vxx(xt)− αx(x, t)) = 0, (3.7)

and

αtt(x, t)−
1

ρI
αxx(x, t)−

Gk′

ρI
(vx(x, t)− α(x, t)) = 0. (3.8)

The corresponding homogeneous problem is

Wtt(x, t) = (AW )(x, t), (3.9)

where

W (x, t) =

v(x, t)

α(x, t)

 , (3.10)

and

A =

k′G
ρ

d2

dx2
−k′G

ρ
d
dx

k′G
ρI

d
dx

1
ρI

d2

dx2
− k′G

ρI

 . (3.11)

The eigenvalue-eigenfunction equation for the operator A can be presented as

AW = λW, (3.12)

where, W (x) is given in (3.10). Applying the method of separation of variables, we obtain
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the system of spatial equations

k′G

ρ
v′′(x)− k′G

ρ
α′(x) = λv(x), (3.13)

1

ρI
α′′(x) +

k′G

ρI
v′(x)− k′G

ρI
α(x) = λα(x). (3.14)

Let us eliminate α(x) from the system by differentiating (3.14) once with respect to x:

1

ρI
α′′′(x) +

k′G

ρI
v′′(x)− k′G

ρI
α′(x) = λα′(x). (3.15)

From (3.13) we get

α′(x) = v′′(x)− λρ

k′G
v(x). (3.16)

Let us differentiate (3.16) two more times to get

α′′′(x) = v(4)(x)− λρ

k′G
v′′(x). (3.17)

Substituting (3.16) and (3.17) into (3.15), we obtain

1

ρI
v(4)(x)−

(
λ

Ik′G
+ λ

)
v′′(x) +

(
λ

I
+
λ2ρ

k′G

)
v(x) = 0. (3.18)

Now, we derive a basis for the linear space of solutions of (3.18). The characteristic equation

can be written as

1

ρI
r4 −

(
λ

Ik′G
+ λ

)
r2 +

(
λ

I
+
λ2ρ

k′G

)
= 0. (3.19)
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Substituting r2 = y, we obtain a quadratic equation for y:

y2 −
(
λρ

k′G
+ λρI

)
y +

(
λρ+

λ2ρ2I

k′G

)
= 0. (3.20)

The solutions of this quadratic equation are given by

y1,2 =
1

2

(
λρ

k′G
+ λρI

)
±

√
1

4

(
λρ

k′G
+ λρI

)2

−
(
λρ+

λ2ρ2I

k′G

)
, (3.21)

which implies

r1,2 = ±√y1,2 = ±

√√√√λρ

2

(
1

k′G
+ I

)
±

√
λ2ρ2

4

(
I − 1

k′G

)2

− λρ. (3.22)

Let us introduce a new variable ω where λ = −ω2. Substituting ω into (3.22), we obtain

r1,2 = ±

√√√√−ω2ρ

2

(
1

k′G
+ I

)
±

√
ω4ρ2

4

(
I − 1

k′G

)2

+ ω2ρ. (3.23)

There exist four different roots to (3.23). The two purely imaginary roots are given by

r1,2 = ±i

√√√√ω2ρ

2

(
1

k′G
+ I

)
+

√
ω4ρ2

4

(
I − 1

k′G

)2

+ ω2ρ. (3.24)

Let us denote r1,2= ±iγ. The other two roots are given by

r3,4 = ±

√√√√−ω2ρ

2

(
1

k′G
+ I

)
+

√
ω4ρ2

4

(
I − 1

k′G

)2

+ ω2ρ. (3.25)

These two roots are either both real or both imaginary depending on ω. If ω is such that
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r23,4 ≥ 0, then r3,4 are real. However, if ω is such that r23,4 < 0, then r3,4 are purely imaginary.

Let us find ωc (the critical value of ω) for which expression (3.25) is equal to zero. We

have (
I +

1

k′G

)
ρω2

2
=

√(
I − 1

k′G

)2
ρ2ω4

4
+ ρω2, (3.26)

which yields

ωc =

√
k′G

ρI
. (3.27)

If ω > ωc, then

0 > −
(
I +

1

kG

)
ρω2

2
+

√(
I − 1

k′G

)2
ρ2ω4

4
+ ρω2. (3.28)

This implies that

r3,4 = ±i

√√√√(I +
1

kG

)
ρω2

2
−

√(
I − 1

kG

)
ρ2ω4

4
+ ρω2. (3.29)

Let us denote r3,4 = ±iβ̃. However, if ω < ωc, then

0 < −
(
I +

1

kG

)
ρω2

2
+

√(
I − 1

k′G

)2
ρ2ω4

4
+ ρω2. (3.30)

In other words,

r3,4 = ±

√√√√−(I +
1

kG

)
ρω2

2
+

√(
I − 1

k′G

)2
ρ2ω4

4
+ ρω2. (3.31)

In this scenario, r3,4 = ±β. Then the general solutions for the two spatial equation cases

can be written in the following form:
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1. For ω > ωc, we have

v(x) = Ã(ω) sin(γx) + B̃(ω) cos(γx) + C̃(ω) sin(β̃x) + D̃(ω) cos(β̃x). (3.32)

2. For ω < ωc, we have

v(x) = A(ω) sin(γx) +B(ω) cos(γx) + C(ω) sinh(βx) +D(ω) cosh(βx). (3.33)

The Boundary Condition

Let us rewrite the boundary condition for the Timoshenko model in terms of v(x) only. From

(3.16), we know

α′(x) = v′′(x) +
ρω2

k′G
v(x), (3.34)

thus,

α′′(x) = v′′′(x) +
ρω2

k′G
v′(x). (3.35)

By substituting α′′(x) into (3.14), we can represent α as

α′′(x) + k′Gv′(x)− k′Gα(x) = −ω2ρIα(x), (3.36)

and obtain a formula for α in terms of v(x)

α(x) =
1

k′G− ω2ρI
v′′′(x) +

k2G2 + ω2ρ

k′G(k′G− ω2ρI)
v′(x). (3.37)
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Let us assume the left end of beam model is hinged, and use different boundary conditions

for the right end. Using (3.3), we represent the left end conditions in terms of v

v′′(0)− ρω2

k′G
v(0) = 0, v(0) = 0. (3.38)

Case 1: ω > ωc

The general solution is given in the form (3.32)

v(x) = Ã(ω) sin(γx) + B̃(ω) cos(γx) + C̃(ω) sin(β̃x) + D̃(ω) cos(β̃x). (3.39)

where from (3.24)

γ =

√√√√ω2ρ

2

(
1

k′G
+ I

)
+

√
ω4ρ2

4

(
I − 1

k′G

)2

+ ω2ρ, (3.40)

and from (3.29)

β̃ =

√√√√(
I +

1

k′G

)
ρω2

2
−

√(
I − 1

k′G

)2
ρ2ω4

4
+ ρω2. (3.41)

Applying the boundary conditions, we get

B̃(ω) + C̃(ω) = 0, γ2B̃(ω) + β̃2D̃(ω) = 0. (3.42)
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The determinant of the system is

β̃2 − γ2 =
ω2ρ

2

(
1

k′G
+ I

)
−

√
ω4ρ2

4

(
I − 1

k′G

)2

+ ω2ρ

− ω2ρ

2

(
1

k′G
+ I

)
−

√
ω4ρ2

4

(
I − 1

k′G

)2

+ ω2ρ (3.43)

= 2

√
ω4ρ2

4

(
I − 1

k′G

)2

+ ω2ρ 6= 0.

Thus, B̃(ω) = D̃(ω) = 0. Therefore, the general solution is

v(x) = Ã(ω) sin(γx) + C̃(ω) sin(β̃x). (3.44)

Hinged-Hinged Boundary Conditions

Applying the hinged conditions at the right end, we obtain a system for the coefficients:

Ã(ω) sin(γ) + C̃(ω) sin(β̃) = 0, (3.45)

γ2Ã(ω) sin(γx) + β2C̃(ω) sin(β̃x) = 0. (3.46)

This system is solvable if and only if its determinant is zero, i.e.,

det

 sin(γ) sin(β̃)

γ2 sin(γ) β̃2 sin(β̃)

 = (β̃2 − γ2) sin(β̃) sin(α) = 0. (3.47)
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Since (β2 − γ2) is non-zero, the spectral equation for hinged-hinged model is

sin(β̃) sin(γ) = 0. (3.48)

Hinged-Clamped Boundary Conditions

The clamped-end conditions are given by (3.4).

Eliminating α, we obtain the following conditions:

v′′′(1) +
k2G2 + ω2ρ

k′G
v′(1) = 0, v(1) = 0. (3.49)

From the hinged-end conditions, we have the general solution in the form (3.44). Applying

the clamped end boundary conditions to the right hand side we get

Ã(ω) sin(γ) + C̃(ω) sin(β̃) = 0, (3.50)

Ã(ω)γζ cos(γ) + C̃(ω)β̃℘̃ cos(β̃) = 0. (3.51)

where

℘̃ =

(
−β̃2 + k′G+

ρω2

k′G

)
and ζ =

(
−γ2 + k′G+

ρω2

k′G

)
. (3.52)

System (3.50) and (3.51) is solvable if and only if its determinant is zero, i.e.,

det

 sin(γ) sin(β̃)

γζ cos(γ) β̃℘̃ cos(β̃)

 = β̃℘̃ cos(β̃) sin(γ)− γζ cos(γ) sin(β̃) = 0. (3.53)
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Therefore, we can conclude that the spectral equation for the hinged-clamped model is

β̃℘̃ cos(β̃) sin(γ)− γζ cos(γ) sin(β̃) = 0. (3.54)

Hinged-Sliding Boundary Conditions

The general solution is given by (3.4), and

the sliding boundary condition can be written as:

α(1) = 0, v′(1) = 0. (3.55)

Let us rewrite these boundary conditions in term of v(x):

v′′′(1) +
k2G2 + ω2ρ

k′G
v′(1) = 0, v′(1) = 0. (3.56)

Applying the boundary conditions, we obtain the following system:

γζÃ(ω) cos(γ) + β̃℘̃C̃(ω) cos(β̃) = 0, (3.57)

γÃ(ω) cos(γ) + β̃C̃(ω) cos(β̃) = 0, (3.58)

where ζ and ℘̃ are defined in (3.52). The determinant for the system is:

det

γζ cos(γ) β̃℘̃ cos(β̃)

γ cos(γ) β̃ cos(β̃)

 = β̃γζ cos(γ) cos(β̃)− β̃γ℘̃ cos(γ) cos(β̃) = 0. (3.59)
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Therefore the spectral equation for the hinged-sliding beam model is

cos(β̃) cos(γ) = 0. (3.60)

Hinged-Free Boundary Conditions

Finally, we consider the hinged-free model and derive the spectral equation for this case.

The conditions are given by

α′(1) = 0 k′G(v′(1)− α(1)) = 0. (3.61)

These conditions can be written in terms of v(x) as follows:

v′′(1) +
ω2ρ

k′G
v(1) = 0,

1

k′G− ω2ρI
v′′′(1) +

(
k2G2 + ω2ρ

k′G
− 1

)
v′(1) = 0.

(3.62)

The general solution is given by (3.4). Applying the free end conditions, we obtain the

system whose determinant can be presented as:

det


(
ρω2

k′G
− γ2

)
sin(γ)

(
ρω2

k′G
− β̃2

)
sin(β̃)

γΥ cos(γ) β̃Ψ̃ cos(β̃)

 , (3.63)
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where

Υ =

(
−γ2

k′G− ω2ρI
+ k′G+

ρω2

k′G
− 1

)
Ψ̃ =

(
−β̃2

k′G− ω2ρI
+ k′G+

ρω2

k′G
− 1

)
.

(3.64)

The spectral equation for the hinged-free beam model can be represented in the form:

β̃Ψ̃

(
ρω2

k′G
− γ2

)
sin(γ) cos(β̃)− γΥ

(
ρω2

k′G
− β̃2

)
sin(β̃) cos(γ) = 0. (3.65)

All of the result for this case are collected in Table 3.
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Case 2 : ω < ωc

We will find the spectral equations for the boundary conditions when ω < ωc. In this case,

the general solution is presented as in (3.33), i.e.,

v(x) = A(ω) sin(γx) +B(ω) cos(γx) + C(ω) sinh(βx) +D(ω) cosh(βx),

where

β =

√√√√−(I +
1

kG

)
ρω2

2
+

√(
I − 1

k′G

)2
ρ2ω4

4
+ ρω2, (3.66)

and γ are defined in (3.40). We study the same four sets of the boundary conditions: hinged-

hinged, hinged-clamped, hinged-sliding, and hinged-free. Using (3.34) and (3.37), in (3.38),

we rewrite the left end (hinged-end) boundary conditions in term of v(x), and have

v′′(0)− ρω2

k′G
v(0) = 0 v(0) = 0. (3.67)

Applying the boundary conditions we get

B(ω) +D(ω) = 0, −B(ω)γ2 +D(ω)β2 = 0. (3.68)

Which implied that B(ω) = 0 and D(ω) = 0. Therefore, the general solution is

v(x) = A(ω) sin(γx) + C(ω) sinh(βx). (3.69)

39



Hinged-Hinged Boundary Conditions

Applying the hinged conditions at the right end, we obtain a system for the coefficients:

A(ω) sin(γ) + C(ω) sinh(β) = 0, (3.70)

−A(ω)

(
γ2 − ρω2

k′G

)
sin(γ) + C(ω)

(
β2 − ρω2

k′G

)
sinh(β) = 0. (3.71)

This system is solvable if and only if it determinant is equal to zero, i.e.,

det

 sin(γ) sinh(β)(
−γ2 − ρω2

k′G

)
sin(γ)

(
β2 − ρω2

k′G

)
sinh(β)

 = (β2 + γ2) sin(γ) sinh(β) = 0. (3.72)

Thus, the spectral equation for the hinged-hinged model is

sin(γ) sinh(β) = 0. (3.73)

Hinged-Clamped Boundary Conditions

The clamped-end conditions are given in (3.49). From the hinged-end conditions, we have

the general solution in the form (3.69). Applying the clamped-end boundary conditions, we

obtain the system

A(ω) sin(γ) + C(ω) sinh(β) = 0, (3.74)

A(ω)γ

(
−γ2 + k′g +

ρω2

k′G

)
cos(γ) + C(ω)β

(
β2 + k′g +

ρω2

k′G

)
cosh(β) = 0. (3.75)
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The system is solvable if and only if its determinant is equal to zero, i.e.,

det

 sin(γ) sinh(β)

γζ cos(γ) β℘ cosh(β)

 = β℘ sin(γ) cosh(β)− γζ cos(γ) sinh(β) = 0, (3.76)

where ζ is the same as in (3.52) and repeated here,

ζ =

(
−γ2 + k′g +

ρω2

k′G

)
, ℘ =

(
β2 + k′g +

ρω2

k′G

)
. (3.77)

Thus, the spectral equation for the hinged-clamped boundary conditions model is

β℘ sin(γ) cosh(β)− γζ cos(γ) sinh(β) = 0. (3.78)

Hinged-Sliding Boundary Conditions

The general solution is given in (3.69). The sliding boundary conditions written in term of

v(x) are given by (3.56). Applying the boundary conditions, we obtain the following system

of equations:

A(ω)γζ cos(γ) + C(ω)β℘ cosh(β) = 0, (3.79)

A(ω)γ cos(γ) + C(ω)β cosh(β) = 0, (3.80)

where ζ and ℘ are defined in (3.77). The determinant for the system is.

det

γζ cos(γ) β℘ cosh(β)

γ cos(γ) β cosh(β)

 = βγζ cos(γ) cosh(β)− β℘γ cos(γ) cosh(β) = 0. (3.81)
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Therefore the spectral equation for the hinged-clamped beam model is

cosh(β) cos(γ) = 0. (3.82)

Hinged-Free Boundary Conditions

Finally, we consider the hinged-free model. The conditions are given by (3.62). The general

solution is given by (3.69). Applying the free-end conditions, we obtain the system which

has the determinant

det


(
−γ2 + ρω2

k′G

)
sin(γ)

(
β2 + ω2ρ

k′G

)
sinh(β)

γΥ cos(γ) βΨ cosh(β)

 = 0, (3.83)

where Υ is the same as in (3.64), and

Ψ =

(
β2

k′G− ω2ρI
+ k′G+

ω2ρ

k′G
− 1

)
.

The spectral equation for the hinged-free beam model can be given as follows:

βΨ

(
−γ2 +

ρω2

k′G

)
sin(γ) cosh(β)− γΥ

(
β2 +

ω2ρ

k′G

)
sinh(β) cos(γ) = 0. (3.84)

All of the result for when ωc < ω are collected in Table 4.
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Asymptotic Approximations for the Eigenvalues of the

Boundary Value Problems

In this section, we derive the asymptotic approximations [6 - 8] for the eigenvalues of the beam

models. These beam models include the Euler-Bernoulli beam model, the Rayleigh beam

model, and the Timoshenko beam model. For the Euler-Bernoulli beam model, we obtain

the formulas for the eigenvalues corresponding to hinged-hinged, hinged-sliding and clamped-

clamped boundary conditions. For the Rayleigh beam model, we obtain the formulas for the

eigenvalues corresponding to the hinged-hinged and clamped-clamped boundary conditions.

For the Timoshenko beam model, we obtain the formulas for the eigenvalues corresponding

to hinged-hinged and hinged-sliding boundary conditions for the two different cases, i.e.,

ω > ωc and ω < ωc.

4 Euler-Bernoulli Model

Since we consider only conservative boundary conditions, the variable of separation in (1.9)

must be real and positive.
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Spectral Asymptotics for Hinged-Hinged Conditions

The spectral equation corresponding to (1.25) is given by

sin(λL) sinh(λL) = 0.

This equation means that either sin(λL) = 0 or sinh(λL) = 0. Since sinh(λL) = 0 at

only one point, when λ = 0, then sin(λL) = 0. This implies the following formula for the

eigenvalues:

λn =
nπ

L
, n = 1, 2, . . . (4.1)

Spectral Asymptotics for Hinged-Sliding Conditions

The spectral equation for the hinged-sliding conditions (1.46) can be represented as

cosh(λL) cos(λL) = 0.

This equation means that either cosh(λL) = 0 or cos(λL) = 0. However, cosh(λL) can never

be equal to zero; therefore, the solutions for (1.46) is given by cos(λL) = 0, which yields

λn =
(2n+ 1)π

2L
, n = 1, 2, . . . (4.2)

Remark 4. As it can be easily seem from Tables 1 - 4, there are two spectral equations in

Table 1 and one spectral equation in Table 2 that allows closed from solution since in each

case, the spectrum coincides with the set of roots of a certain trigonometric function. In

the remaining cases of Tables 1 and 2 and in all cases of Tables 3 and 4, we have to use the

46



methods of asymptotic analysis (see, e.g.[8]) to derive the asymptotic approximations of the

eigenvalues as the number of an eigenvalue tends to ∞,

Spectral Asymptotics for Clamped-Free Conditions

Let us consider the spectral equation for the clamped-free boundary conditions. The spectral

equation is as shown in Table 1:

cosh(λL) cos(λL) = −1. (4.3)

Let us find the asymptotic distribution of the roots of (4.3). Let λ > 0, then using the

following definitions, we have

cosh(λL) =
1

2

(
eλL + e−λL

)
, cos(λL) =

1

2

(
eiλL + e−iλL

)
. (4.4)

When λ→∞, we have

cosh(λL) =
1

2
eλL +O(e−λL), (4.5)

where O(e−λL) is the remainder term, which decays exponentially fast as λ → ∞. Let us

rewrite (4.3) using the above definitions:

cos(λL) = − 1

cosh(λL)

= − 1
1
2
eλL (1 +O(e−2λL))

= − 2e−λL

1 +O(e−2λL)
. (4.6)
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Consider the term 1
1+O(e−2λL)

; using the formula for geometric series we can represent it as

1

1 +O(e−2λL)
= 1 +O(e−2λL) +O(e−4λL) + · · ·

= 1 +O(e−2λL). (4.7)

Therefore,

cosλL = −2(e−2λL)
(
1 +O(e−2λL)

)
. (4.8)

We can see that cos(λL) will approach zero as λ→∞. Therefore, we can model this behavior

using the model equation, defined as

cos(λL) = 0, (4.9)

whose solutions, denoted as λ0n, are

λ0n =
(2n+ 1)π

2L
, n = 0, 1, . . . (4.10)

The solution of (4.8) can be given in the form

λn =
(2n+ 1)π

2L
+O

(
e−2λnL

)
. (4.11)

Notice,

e−2λnL ≈ e−
(2n+1)π

2 = e−ne−
π
2 .
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The final formula for the asymptotic approximations of the eigenvalues as n→∞ is

λn =
(2n+ 1)π

2L
+O

(
e−n
)
. (4.12)

5 Rayleigh Beam Model

Spectral Asymptotic for Hinged-Hinged Condition

Let us derive the asymptotic approximations for the eigenvalues corresponding to hinged-

hinged condition (2.38). The spectral equation is

sinα sinh β = 0, (5.1)

where α and β are given by

α2 =
λc2 +

√
λ2c4 + 4λ

2
and β2 =

√
λ2c4 + 4λ− λc2

2
. (5.2)

This implies that either sinh(β) = 0, or sin(α) = 0. For the former, sinh β = 0 if and only

if β = 0, and we obtain λ = 0. For the latter, sin(α) = 0 we obtain the infinite sequence of

solutions.

αn = nπ, n = 1, 2, 3 · · · . (5.3)

Let us solve for λn by substituting (5.3) into α in (5.2). We obtain

2(nπ)2 = λnc
2 +

√
λ2nc

4 + 4λn,
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which reduces to

λ2nc
4 =

(
2(nπ)2 − λnc2

)2
.

The solutions to which are

λn =
(nπ)4

1 + (nπc)2
; n = 1, 2, . . . (5.4)

Spectral Asymptotics for Clamped-Clamped Conditions

Let us derive the spectral asymptotics for the clamped-clamped model. The spectral equation

from (2.29) is

2αβ + (β2 − α2) sin(α) sinh(β)− 2αβ cos(α) cosh(β) = 0, (5.5)

where α and β are given in (5.2). Let λ→∞. Using the binomial formula, we have

√
λ2c4 + 4λ = λc2

(
1 +

4

λc4

) 1
2

= λc2

(
1 +

2

λc4
− 1

8

(
4

λc4

)2
)

+O
(

1

λ3

)
= λc2 +

2

c2
− 2λc2

λ2c8
+O

(
1

λ

)
= λc2 +

2

c2
+O

(
1

λ

)
. (5.6)

From (5.2) we get

β2 − α2 = −λc2. (5.7)

50



Using (5.6) we obtain

β2 =
1

c2
+O

(
1

λ

)
, (5.8)

α2 = λc2 +
1

c2
+O

(
1

λ

)
, (5.9)

By (5.8), we have

β =
1

c
+O

(
1

λ

)
. (5.10)

By (5.9), we have

α =

(
λc2 +

1

c2
+O

(
1

λ

)) 1
2

=
√
λc

(
1 +

1

λc4
+O

(
1

λ2

)) 1
2

=
√
λc+O

(
1√
λ

)
. (5.11)

Thus, (5.10) and (5.11) yield,

αβ =
√
λ. (5.12)

Next, let us evaluate the asymptotic approximation for sin(α), cos(α), sinh(β), and cosh(β).

By using the approximation for α from (5.11), we obtain

sin(α) = sin

(√
λc+O

(
1√
λ

))
= sin(

√
λc) cos

(
O
(

1√
λ

))
+ cos(

√
λc) sin

(
O
(

1√
λ

))
, (5.13)
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and

cos(α) = cos

(√
λc+O

(
1√
λ

))
= cos(

√
λc) cos

(
O
(

1√
λ

))
− sin(

√
λc) sin

(
O
(

1√
λ

))
. (5.14)

When λ→∞, we can use the Taylor series to obtain

sin

(
O
(

1√
λ

))
= O

(
1√
λ

)
,

cos

(
O
(

1√
λ

))
= 1 +O

(
1

λ

)
.

(5.15)

Substituting (5.15) into (5.13) and (5.14), we can write:

sin(α) = sin(
√
λc) +O

(
1√
λ

)
, (5.16)

cos(α) = cos(
√
λc) +O

(
1√
λ

)
. (5.17)

From (5.10) we get

sinh(β) = sinh

(
1

c
+O

(
1

λ

))
= sinh

(
1

c

)
+O

(
1

λ

)
, (5.18)

and

cosh(β) = cosh

(
1

c

)
+O

(
1

λ

)
. (5.19)
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Let us multiply (5.16) and (5.18) to obtain

sin(α) sinh(β) =

(
sin(
√
λc) +O

(
1√
λ

))(
sinh

(
1

c

)
+O

(
1

λ

))
= sin(

√
λc) sinh

(
1

c

)
+O

(
1√
λ

)
. (5.20)

Also, multiplying (5.17) and (5.19), we have

cos(α) cosh(β) =

(
cos(
√
λc) +O

(
1√
λ

))(
cosh

(
1

c

)
O
(

1

λ

))
= cosh(

√
λc) cosh

(
1

c

)
+O

(
1√
λ

)
. (5.21)

Substituting (5.20) and (5.21) into (5.5) yields

2
√
λ− λc2

(
sin(
√
λc) sinh

(
1

c

)
+O

(
1√
λ

))
− 2λ

(
cosh(

√
λc) cosh

(
1

c

)
+O

(
1√
λ

))
= 0.

(5.22)

Let us divide (5.22) by 2λ to obtain

c2

2
sin(
√
λc) sinh

(
1

c

)
+ cosh(

√
λc) cosh

(
1

c

)
= O

(
1√
λ

)
. (5.23)

Let

A =
c2

2
sinh

(
1

c

)
, B = cosh

(
1

c

)
. (5.24)

Then (5.23) can be written in the form

A sin(
√
λc) + B cos(

√
λc) = O

(
1√
λ

)
. (5.25)
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B

A

√
A2 + B2

θ

Figure 4: The triangle induced by (5.23) and (5.24).

By multipling (5.25) by 1√
A2+B2 , we get

A√
A2 + B2

sin(
√
λc) +

B√
A2 + B2

cos(
√
λc) = O

(
1√
λ

)
. (5.26)

Let us denote D = 1√
A2+B2 , whereD > 0. From Figure 4, we see that

A√
A2 + B2

= sin θ,

B√
A2 + B2

= cos θ.

Setting θ = arctan
(A
B

)
, one can see that the model equation corresponding to (5.26) can be

written as

sin(
√
λc) sin(θ) + cos(

√
λc) cos(θ) = cos(

√
λc− θ) = 0. (5.27)

From (5.27) we derive that

cos(
√
λc− θ) = 0 (5.28)

and √
λnc =

(2n+ 1)π

2
+ θ, n = 0, 1, 2 · · · . (5.29)
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for n = 0, 1, . . .. Thus, the asymptotic approximation [7,8] for the eigenvalues of the clamped-

clamped model is

λn =

(
2πn+ θ

c

)2

+O
(

1

n

)
, n→∞. (5.30)

6 Timoshenko Beam Model

Spectral Asymptotics for Hinged-Hinged Conditions when ω > ωc

The corresponding spectral equation (see (3.48)) has the form

sin(β̃) sin(γ) = 0,

where β̃ and γ are given by formulas (3.40) and (3.41). This implies that either sin(β̃) = 0

or sin(γ) = 0. Equation sin(β̃) = 0, implies

β̃n = nπ, n = 1, 2, . . . (6.1)

Substituting (6.1) into (3.41), we obtain

√√√√(
I +

1

k′G

)
ρω2

n

2
−

√(
I − 1

k′G

)2
ρ2ω4

n

4
+ ρω2

n = nπ, (6.2)

or ((
I +

1

k′G

)
ρω2

n

2
− (nπ)2

)2

=
ω4
nρ

2

4

(
I − 1

k′G

)2

+ ω2
nρ. (6.3)
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Since λn = −ω2
n, (6.3) can be simplified to the form of the following quadratic equation:

λ2n
Iρ2

k′G
+ λnρ

(
1 + (nπ)2

(
I +

1

k′G

))
+ (nπ)4 = 0. (6.4)

Let us denote the solutions for sin(β̃) = 0 by λ̃n. We obtain the following formula:

λ̃n =
−ρ
(
1 + (nπ)2

(
I + 1

k′G

))
±
√
ρ2
(
1 + (nπ)2

(
I + 1

k′G

))2 − 4 Iρ
2

k′G
(nπ)4

2 ρ
2I
k′G

, (6.5)

for n = 1, 2, . . .. Let us simplify the expression under the square root:

√√√√ρ2

(
1 + 2(πn)2

(
I +

1

k′G

)
+ (πn)4

(
I +

1

k′G

)2
)
− 4Iρ2

k′G
(πn)4

= ρ

√
1 + 2(πn)2

(
I +

1

k′G

)
+ (πn)4

(
I − 1

k′G

)2

. (6.6)

Thus, we see that the expression under the square root is always positive. Now, we consider

the equation sin(γ) = 0, and have

γ = mπ; m = 1, 2, . . . (6.7)

which means that

(mπ)2 =
ω2
mρ

2

(
1

k′G
+ I

)
+

√
ω4
mρ

2

4

(
I − 1

k′G

)2

+ ω2
mρ. (6.8)
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Let us denote λm to be the solution for sin(γ) = 0. After simplifying (6.8), we obtain λm is

similar to λ̃n in (6.5).

λm =
−ρ
(
1 + (mπ)2

(
I + 1

k′G

))
±
√
ρ2
(
1 + (mπ)2

(
I + 1

k′G

))2 − 4 Iρ
2

k′G
(mπ)4

2 ρ
2I
k′G

, (6.9)

where m = 1, 2, . . .

Spectral Asymptotics for Hinged-Sliding Conditions when ω > ωc:

Let us find the asymptotic approximation for the solutions of (3.60), which is

cos(β̃) cos(γ) = 0.

This implies that

cos(β̃) = 0 and cos(γ) = 0. (6.10)

From (6.10), we obtain

β̃n =
(2n+ 1)π

2
and γn =

(2m+ 1)π

2
; m,n = 0, 1, . . . (6.11)

Substituting β̃n from (6.11) into (3.41), we get

√√√√(
I +

1

k′G

)
ρω2

n

2
−

√(
I − 1

k′G

)2
ρ2ω4

n

4
+ ρω2

n =
(2n+ 1)π

2
. (6.12)
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For λ̃n = −ω2
n, we can simplify (6.12) and obtain the formula for the solutions of the equation

cos(β̃) = 0, which is

λ̃n =

−ρ
(

1 +
(

(2n+1)π
2

)2 (
I + 1

k′G

))
±

√
ρ2
(

1 +
(

(2n+1)π
2

)2 (
I + 1

k′G

))2

− 4 Iρ
2

k′G

(
(2n+1)π

2

)4
2 ρ

2I
k′G

,

(6.13)

where n = 0, 1, . . .. Similarly, by substituting γn from (6.11) into (3.40), we obtain

√√√√(
I +

1

k′G

)
ρω2

m

2
−

√(
I − 1

k′G

)2
ρ2ω4

m

4
+ ρω2

n =
(2m+ 1)π

2
, (6.14)

Since λm = −ω2
m, we can simplify (6.14) and obtain the formula for the spectrum, which is

λm =

−ρ
(

1 +
(

(2m+1)π
2

)2 (
I + 1

k′G

))
±

√
ρ2
(

1 +
(

(2m+1)π
2

)2 (
I + 1

k′G

))2

− 4 Iρ
2

k′G

(
(2m+1)π

2

)4
2 ρ

2I
k′G

,

(6.15)

where m = 0, 1, . . .

Spectral Asymptotics For Hinged-Hinged Conditions when ω < ωc:

The spectral equation corresponding to this case (see (3.73)) is

sin(γ) sinh(β) = 0.
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This implies that either sinh(β) = 0 or sin(γ) = 0, where β and γ are defined in (3.66) and

(3.40). For the former, sinh(β) = 0 if and only if β = 0. Therefore,

(
I +

1

k′G

)
ρω2

2
=

√(
I − 1

k′G

)2
ρ2ω4

4
+ ρω2,

which simplifies to

ω4ρ2I

k′G
− ρω2 = 0. (6.16)

Let us denote the solutions for sinh(β) = 0 to be λ̃. Since λ̃ = −ω2, we obtain

λ̃ = 0, or λ̃ = −k
′G

ρI
. (6.17)

When sin(γ) = 0, we have

γ = nπ; n = 1, 2, . . . (6.18)

which implies that

(nπ)2 =
ω2ρ

2

(
1

k′G
+ I

)
+

√
ω4ρ2

4

(
I − 1

k′G

)2

+ ω2ρ. (6.19)

Let us denote λn to be the solution in this case. After simplifying (6.19) we obtain

λn =
−ρ
(
1 + (nπ)2

(
I + 1

k′G

))
±
√
ρ2
(
1 + (nπ)2

(
I + 1

k′G

))2 − 4 Iρ
2

k′G
(nπ)4

2 ρ
2I
k′G

, (6.20)

where n = 1, 2, . . .
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Spectral Asymptotics For Hinged-Sliding Conditions when ω < ωc:

The spectral equation for (3.82) can be represented as

cos(γ) cosh(β) = 0.

Since cosh(β) 6= 0, we have the spectral equation of cos(γ) = 0. The set of solutions can be

given in the form

λm =
(2n+ 1)π

2
, m = 0, 1, . . . (6.21)

Substituting (6.21) into (3.40), we obtain

λm =

−ρ
(

1 +
(

(2m+1)π
2

)2 (
I + 1

k′G

))
±

√
ρ2
(

1 +
(

(2m+1)π
2

)2 (
I + 1

k′G

))2

− 4 Iρ
2

k′G

(
(2m+1)π

2

)4
2 ρ

2I
k′G

(6.22)

where m = 0, 1, . . .
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