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ABSTRACT 

AN EVALUATION OF NEW ENGLAND COTTONTAIL HABITAT RESTORATION 

by 

Alena Warren 

University of New Hampshire, December, 2017 

 

Several state, federal and non-profit agencies have developed collaborative 

goals for restoring habitat in New England and New York for a declining rabbit species, 

the New England cottontail (Sylvilagus transitionalis, NEC). My goal was to evaluate 

habitat restorations at both the local, or site, scale, and the landscape scale. In order to 

objectively quantify the suitability of the sites being managed, I developed a Habitat 

Suitability Index, based on the HSI models designed the U.S. Fish and Wildlife Service.  

I identified candidate habitat variables for NEC, including types of cover and refuges, 

and food, and then asked a panel of NEC experts to rank the importance of the 

candidate variables. I collected data on the most important habitat variables at 60 sites 

managed for NEC across New England and eastern New York.  The NEC experts also 

ranked the same 60 sites from 1 (unsuitable) to 5 (optimal). The model was optimized to 

improve agreement with expert opinions for the 60 sites. Specific applications may 

include determining when a site is suitable for releasing translocated or captive breed 

rabbits, and identifying habitat features that need modification as forest succession 

progresses. To evaluate habitat restoration efforts at a larger landscape scale, I created 

metapopulation models for two management focus areas (Cape Elizabeth and Kittery-



 

x 

Berwick) in Maine for population viability analyses. I ran simulations to compare the 

relative effects of the two focus areas as well as five management scenarios. I 

conducted a sensitivity analysis to determine the importance of various model 

parameters on extinction risk. The Cape Elizabeth focus area, which has more habitat 

patches that are closer together, had lower extinction risks than Kittery-Berwick. 

Reintroductions and creating additional habitat appeared especially important in the 

Kittery-Berwick focus area. The simulation results were sensitive to changes in the 

standard deviations of the survival and recruitment rates, and the probability of 

catastrophic mortality, indicating that variation is detrimental to NEC metapopulation 

growth. Variation in weather caused by climate change may need to be mitigated by 

monitoring and managing NEC habitat and populations.  
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CHAPTER I 

INTRODUCTION 

 

The New England cottontail (Sylvilagus transitionalis, NEC) is a lagomorph that 

occurs in southern New England and eastern New York (Chapman et al. 1992). It relies 

on dense shrublands and other types of early-successional habitat (Litvaitis 1993). 

Historically, such habitats were associated with wetlands, rock outcrops and naturally-

disturbed forest patches that were a consequence of hurricanes, fires, and beaver dams 

(Litvaitis 2003). Beginning in the mid 1800s, abandoned farms in the region grew into 

shrublands and young forests (Litvaitis 2003). As a result, NEC habitat was abundant 

and the species was common throughout its geographic range. However, by the early 

1960s, the majority of abandoned farmland matured into to closed-canopy second-

growth forests that are unsuitable for NEC (Litvaitis 1993). Development and limited 

timber harvests have further reduced and fragmented NEC habitats (Litvaitis et al. 

2006). Today, remaining NEC utilize human-altered habitats including abandoned 

agricultural fields, railroad corridors, and powerline rights-of-way (Litvaitis 1993).  

As a result of shrinking habitat and increasingly isolated patches, NEC and other 

species dependent on thicket habitats have experienced substantial population 

declines. By 2004, NEC occupied only 14% of the historic range (Litvaitis et al. 2006). It 

is listed as endangered by the states of New Hampshire and Maine, is a species of 
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conservation concern in New York and Rhode Island, and was a candidate for the 

federal Endangered Species List.   

Currently, remnant populations are restricted to small, isolated habitat patches. 

Barbour and Litvaitis (1993) observed that NEC occupying habitat patches < 2.5 ha 

were smaller, consumed lower quality forage, and had lower survival rates than rabbits 

occupying larger patches. Rabbits on small patches were food limited, and thus suffered 

higher mortality rates because they frequently foraged away from cover where they 

were more vulnerable to predation (Villafuerte et al. 1997). 

Although individual patch characteristics are important in determining NEC 

survival, landscape characteristics are also critical. Habitats near disturbed areas, with 

high perimeter to area ratios, and with high habitat heterogeneity are associated with 

lower survival rates (Brown and Litvaitis 1995). Litvaitis et al. (2003) found that the 

species occupied old agricultural fields in close proximity to powerlines, railroads, and 

highway corridors characterized by dense understory vegetation. Using Geographic 

Information System data, Tash and Litvaitis (2007) report similar findings throughout the 

current range of NEC.  

Because of the contraction of the range of NEC, populations are geographically 

isolated from one another, raising concerns about the short and long-term viability of the 

NEC (Fenderson et al. 2014, Amaral et al. 2016). Remnant populations may even be 

further broken down into smaller metapopulations because of dispersal obstacles (e.g. 

multi-laned highways). At the landscape scale, the demography of each patch 

influences the viability of a metapopulation; for example, patches of different sizes are 

known to have different NEC survival rates (Barbour and Litvaitis 1993, Brown and 
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Litvaitis 1995). Local populations may act as “sources” or “sinks”, where sources are 

populations with high survival rates that produce surplus rabbits; and sinks are 

populations where survival and reproduction are below maintenance rates (Hanski 

1998). As a result, sink patches rely on source patches for the immigration of 

individuals. For NEC, if the sink habitats are too numerous relative to source habitats, 

the metapopulations will continue to decline.  

 

A COLLABORATIVE APPROACH 

The U.S. Fish and Wildlife Service is responsible for listing endangered species. 

They take into consideration the current threats to the species including habitat or range 

contraction, diseases, over-utilization, as well as the current protection afforded by other 

laws, and any other factors deemed relevant. NEC was a candidate species for several 

years before a listing decision was made in 2015.  Historically, the Service has made 

this decision by collecting information from states, universities, and various other 

sources. Once listed, regulations meant to protect the species are enacted and 

enforced by the Service.  

In recent years, three instances of a more proactive approach to endangered 

species listing have occurred: the lesser prairie chicken (Tympanuchus pallidicinctus), 

sage grouse (Centrocercus urophasianus), and NEC. In these cases, multiple 

organizations have stated a common interest in conserving the species and providing 

information and plans to the U.S. Fish and Wildlife Service before a listing decision is 

made.  
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For NEC, a collaboration between several groups and all of the states where 

NEC occur has emerged (Fuller and Tur 2012). The agencies involved include the US 

Fish and Wildlife Service, the Natural Resources Conservation Service, state-level 

organizations (e.g. New Hampshire Fish and Game Department), and several non-profit 

agencies (e.g., the National Fish and Wildlife Foundation, Environmental Defense Fund, 

and Wildlife Management Institute).  Products of this collaboration include a 

conservation strategy and reports that both guide conservation and have informed the 

US Fish and Wildlife Service’s listing decision. As a part of the conservation strategy, 

the group has established goals within each state to create a total of about 21,000 ha of 

new habitat, including 800 ha in New Hampshire and 1,475 ha in Maine (Fuller and Tur 

2012). Ultimately, the Fish and Wildlife Service’s certainty that the conservation strategy 

would be effective was an important factor in the decision not to list NEC (U.S. Fish and 

Wildlife Service 2015). 

Much of the habitat restoration, especially on private lands, is occurring through 

the “Working Lands for Wildlife” program, and other Farm Bill funded programs, 

provided by the Natural Resources Conservation Service (NRCS). The “Working Lands 

for Wildlife” program provides financial and technical assistance to private landowners 

in order to create or restore habitat for NEC. This program is available in the focus 

areas developed by each state, where habitat restoration is expected to benefit current 

NEC populations the most. The primary management practices used through this 

program are: brush management and herbaceous weed control to remove or manage 

invasive species and other undesirable vegetation, early-successional habitat 

development to remove mature trees from the canopy, and tree and shrub planting to 
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establish native shrubs. As of 2014,over 200 habitat patches are under management, 

95 of which are funded by NRCS. There is no systematic method for evaluating the 

success of these restoration projects, other than self-reporting from the participating 

organizations.  

 

EVALUATION OF RESTORATION EFFORTS: SITE-SPECIFIC SCALE 

To support a local population of NEC, a habitat patch must have certain 

characteristics. NEC do not migrate seasonally, and have small home ranges (Litvaitis 

and Jakubas 2004), so habitat patches should meet NECs needs in all seasons. Dense 

thickets are necessary for escape cover and are especially important for shelter in the 

winter. Similarly, refuges such as brush piles, abandoned burrows, and stones can 

provide critical protection from predators and the elements. There must be open areas 

with herbaceous plants to provide forage during the growing season. These habitat 

criteria are not captured by the current monitoring protocol (Fuller and Tur 2012). 

A habitat monitoring protocol exists and is used by professionals to assess NEC 

habitat (Fuller and Tur 2012). While this protocol estimates dense cover based on stem 

density, it does not quantify other life requisites such as forage. It also does not account 

for the variation in cover provided by different types of stems, e.g., a rose stem tends to 

provide more cover than a dogwood stem. A habitat monitoring protocol should provide 

estimates of dense cover, forage availability, overall species composition including the 

status of invasives, and the spatial configuration of habitat features.  
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EVALUATION OF RESTORATION EFFORTS: LANDSCAPE SCALE 

The viability of a NEC population depends not only on the suitability of individual 

patches, but the interactions amongst patches (e.g. Villafuerte and Litvaitis 1996, 

Fenderson et al. 2011). Therefore, an evaluation of management on a landscape-scale 

is necessary in determining the extent to which habitat management is aiding, or will 

aid, in NEC population growth and stability. Because distinct habitat patches interact 

with each other via the dispersal of individual rabbits, I propose examining the effects of 

management on a metapopulation level. While management efforts have been guided 

towards focus areas where NEC exist in an attempt to augment current 

metapopulations (Fuller and Tur 2012), it is not known how effective this strategy is, or 

what level of management would be required to sustain a metapopulation. 

Several studies have examined the effects of habitat patch size, quality and 

spatial distribution on metapopulation growth of various plant and animal species 

(Akcakaya et al. 2004) including NEC (Villafuerte and Litvaitis 1996). Modeling is 

commonly used for such objectives because it provides an opportunity to conduct 

simulations that would not be feasible otherwise. For example, it would require immense 

resources and time to conduct a real experiment in which habitat availability was 

manipulated to determine the effects on NEC population growth.  

A metapopulation model can be used for population viability analyses (PVA). 

Essentially, a PVA provides predictions of population growth, decline, or extinction over 

time based on the input parameters, including habitat availability (Akçakaya et al. 2005, 

Blomberg et al. 2012). A PVA includes many factors affecting the growth or decline of 
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the species, including vital rates and stochasticity, making it more realistic than a 

population estimate based on habitat availability alone (Akçakaya et al. 2005). 

There are several examples of metapopulation models being used to evaluate 

the effects of management on population viability that may have implications for NEC. 

Notably, Blomberg et al. (2012) modeled ruffed grouse (another declining species 

requiring early successional habitat) metapopulations to compare many small habitat 

patches to fewer large patches as management alternatives. They found that large 

patches resulted in a slower population decline, and recommended creating large 

patches rather than small patches resulting in the same total area (Blomberg et al. 

2012). A study of NEC using metapopulation modeling found that environmental 

correlation (e.g., snow conditions are relatively uniform across the metapopulation, 

affecting individuals similarly) and habitat loss were important factors in the extinction 

risk of theoretical NEC metapopulations (Villafuerte and Litvaitis 1996).  

 

OBJECTIVES 

Currently, there is no standardized method for evaluating the suitability of NEC 

habitat patches that incorporates all critical habitat features. On the landscape scale, 

each state has proposed habitat management goals and they have implemented some 

portion of those goals, but have not evaluated the effects of management on NEC 

population viability. Considering that the U.S.Fish and Wildlife Service did not list NEC 

as endangered in 2015 due in part to the expected effects of on-going habitat 

restoration efforts, I propose the following objectives to evaluate the success of these 

efforts: 
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1. Develop a standardized NEC habitat monitoring protocol that evaluates 

management activities relative to habitat suitability at the site-specific scale. The 

protocol shall assess the abundance of critical habitat components, including 

security cover and forage.   

2. Evaluate the effects of habitat management at the landscape scale using 

population viability analyses. These analyses will estimate the extinction risk of 

NEC metapopulations during a 15 year simulation horizon, given the amount and 

spatial configuration of habitat patches in different management focus areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

9 

 

 

 

 

 

 

 

 

ORIGINAL CONTRIBUTION BY M.S. CANDIDATE IN CHAPTER TWO 
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guide restoration of New England cottontail habitats. Wildlife Society Bulletin 40 (1): 69-
77.  

 

 

 

 

 

 

 

 

 



 

10 

 

 

CHAPTER II 

DEVELOPING A HABITAT SUITABILITY INDEX TO GUIDE RESTORATION OF NEW 

ENGLAND COTTONTAIL HABITATS 

 

INTRODUCTION 

In the northeastern United States, New England cottontails (Sylvilagus 

transitionalis, NECs) are among the diverse taxa dependent on the dense understory 

vegetation of regenerating forests and native shrublands (Litvaitis et al. 1999). 

Historically, these habitats (collectively referred to as “thickets”) were a consequence of 

natural (e.g., wind-blow downs, fire, riparian floods, and beaver impoundments) and 

anthropogenic (e.g., aboriginal fires and agriculture) disturbances or physical properties 

(e.g., distinct microclimates and low soil moisture) that set back or limited forest 

succession (Litvaitis 2003).  In recent times, thicket habitats have undergone a “boom – 

bust cycle” largely as a consequence of widespread abandonment of farmlands, 

suppression of natural-disturbance regimes, and changes in land-use patterns (Litvaitis 

1993).  

Since the early 1970s, wildlife biologists have noted that the abundance and 

distribution of NECs were declining (e.g., Linkkila 1971, Johnston 1972, and Jackson 

1973). In 1989, the United States Fish and Wildlife Service acknowledged that decline 
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and included NECs as a candidate species for threatened or endangered status 

(USFWS 1989).  A subsequent range-wide survey revealed that remaining populations 

were disjunct and occupied approximately 14% of their historic range (Litvaitis et al. 

2006).  As a result, NECs were considered for listing under the federal Endangered 

Species Act (Fuller and Tur 2012).   

Rather than delay recovery until a listing decision is made, several governmental 

(United States Fish and Wildlife Service, Natural Resources Conservation Service, and 

state fish and wildlife agencies within the current range of NEC) and non-governmental 

organizations (e.g., Environmental Defense Fund, National Fish and Wildlife 

Foundation, National Wild Turkey Federation, Wildlife Management Institute, and local 

land trusts) have initiated efforts to restore and expand populations of NECs (Arbuthnot 

2008, Fuller and Tur 2012). These efforts include a systematic undertaking to develop 

and maintain >20,000 ha of habitat for NECs on public and private lands (Fuller and Tur 

2012) and were recently considered sufficient to forego listing NECs as threatened or 

endangered (USFWS 2015).   

Although much is known about the habitat associations of NECs (Barbour and 

Litvaitis 1993, Brown and Litvaitis 1995, Tash and Litvaitis 2007), there is no obvious 

approach for evaluating the suitability of managed sites.  Such a procedure could help 

gauge the success of overall restoration efforts and aid in developing specific recovery 

protocols (e.g., determine when a site is suitable for releasing captive-bred or 

translocated rabbits). In response to that need, we sought to develop a method that 

managers could use to monitor progress in generating thicket habitats and be able to 

determine when those habitats were suitable for NECs.   
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Our approach was patterned after models developed by the United States Fish 

and Wildlife Service (USFWS 1981).  Habitat suitability index (HSI) models have been 

widely applied to quantify current and future habitat conditions while assessing human 

impacts or management alternatives (e.g., Schamberger and Krohn 1982). Essentially, 

HSI models generate a rating for a site from 0 (poor or unsuitable) to 1 (maximum 

suitability) based on measurements of species-specific habitat features or life requisites 

(food, cover, breeding sites, etc.). Typically, HSI models were based on literature 

reviews and expert opinions, with little or no validation (USFWS 1981, Brooks 1997). 

However, a number of studies subsequently compared HSI model output to a measure 

of productivity (e.g., population density or occupancy rates) of the target species 

(summarized by Terrell and Carpenter 1997). Results of those evaluations were mixed. 

Some studies found little correlation between HSI model outputs and population data, 

suggesting that expert-opinion models failed to identify the appropriate habitat variables 

or their relationships to suitability (Robel et al. 1993, Terrell and Carpenter 1997).  

However, using population data to verify model performance can be problematic.  

Animals may move into an area of low overall habitat quality for a variety of reasons 

(e.g., response to territoriality or social hierarchy) and similarly, animals may be missing 

from high-quality sites as a consequence of exploitation or density-independent factors, 

thus reducing the utility of population density and occupancy as indicators of habitat 

suitability (van Horne 1983, Burgman et al. 2001). Survival rates or fecundity may be 

more appropriate surrogates for carrying capacity (van Horne 1983); yet those 

parameters are infrequently used (Roloff and Kernohan 1999).  
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Among other studies, however, expert-opinion models performed similarly to 

empirical models (Bowman and Robitaille 2005, Germaine et al. 2014). Additionally, 

expert-opinion models can be optimized with field data to improve their predictive power 

(Cook and Irwin 1985, McComb et al. 1990, Terrell and Carpenter 1997).   

 Our goal was to develop a HSI-based model that could be used to evaluate 

parcels of land that have been included in the multi-state NEC restoration effort. We 

envisioned that our protocol would have several distinct, site-specific applications.  First, 

it could provide a consistent approach for monitoring management actions and help 

identify potential limitations of a site prior to releasing cottontails.  Such an approach 

could also be used to prioritize actions among multiple sites or rank suitability of them.  

Finally, an HSI model could be used to track suitability of one site over time and alert 

managers to specific features that may need remediation (e.g., help in developing a 

mowing schedule).  Therefore, the objectives of our study were to: i.) use literature 

reviews and expert opinions to identify variables that describe life requisites of NECs, ii.) 

develop suitability indices for those variables that can be incorporated in a simple model 

to rank specific sites, and iii.) optimize the resulting model using information on NEC 

occupancy and expert rankings of surveyed sites.    

STUDY AREAS 

We restricted our field efforts to managed sites within the occupied range of 

NECs (Litvaitis et al. 2006) that were contained in management focus areas described 

in the NEC conservation strategy (Fuller and Tur 2012).  This region is in the 

northeastern United States, from the Hudson River Valley in New York, portions of 

Connecticut, Massachusetts, Rhode Island, southeastern New Hampshire, and 
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southwestern Maine (Fig. 1). In southern areas and along the Atlantic coast, forests are 

dominated by oaks (Quercus spp.) and pines (Pinus spp.). To the north, forest types 

include maples (Acer spp.), birches (Betula spp.), and American beech (Fagus 

grandifolia). Land uses vary throughout the region. In general, southern and coastal 

areas are characterized by a mix of urban/suburban developments, small woodlots, and 

scattered agricultural fields. Inland landscapes are dominated by large blocks of mid-

successional forests (Tash and Litvaitis 2007). 
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Figure 1.  Current distribution of New England cottontails and location of 60 managed sites that were 
inventoried during development of a habitat suitability index.  

 



 

16 

MATERIALS AND METHODS  

Identifying Habitat Variables 

Once established on a site, NECs do not migrate or frequently move to new sites 

(Barbour and Litvaitis 1993), so a habitat patch must provide the resources required 

year round. Food and cover are patch-specific features and based on our knowledge of 

life requisites and published literature, we identified 10 candidate variables to describe 

these (Table 1). Several additional features are known or suspected to affect 

persistence of NEC at a local scale but were not included in our model, specifically size 

of habitat patch, surrounding landscape composition, proximity to other patches of 

habitat occupied by NECs, and presence of eastern cottontails (S. floridanus).  Small 

patches of habitat (<3 ha) are known to function as demographic sinks for NECs 

(Barbour and Litvaitis 1993).  As a result, Fuller and Tur (2012) did not recommend 

managing small parcels as part of the recovery strategy and we do not recommend 

application of our HSI-based approach among patches <3 ha. Landscape composition 

(Brown and Litvaitis 1995, Tash and Litvaitis 2006, Fenderson et al. 2014) and proximity 

to other parcels occupied by NECs (Litvaitis and Villafuerte 1996) may also affect local 

persistence of NECs. Finally, competition between NECs and expanding populations of 

eastern cottontails is suspected of contributing to the decline of NEC populations in 

some regions (Probert and Litvaitis 1996, Litvaitis et al. 2007). As a result, eastern 

cottontails may hinder restoration efforts. We believe that all of these features should be 

considered while identifying parcels for inclusion in restoration efforts, but decided not to 

include them in our suitability model because of obvious limitations in easily modifying 

them. 
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Table 1.  Candidate variables of New England cottontail habitat based on literature review and majority 
opinion of their importance (ranked 1 to 4, 1 being the very important, 4 being not important) by a panel of 
biologists familiar with New England cottontails. Understory vegetation refers to woody vegetation with a 
diameter at breast height (dbh) of <7.5 cm. 

 
Variable 
 

Description 
Supporting 
Literature 

 
Majority 
Opinion of 
Importance 
 

 
C1: Security cover 

 
Abundance of very dense 
understory vegetation that 
provides protection from predators 
and weather extremes.  

 
Barbour and Litvaitis 
1993, Brown and 
Litvaitis 1995, 
Chapman and Litvaitis 
2003  

 
1 

 
C2: Winter forage 
and escape cover 

 
Abundance of moderately dense 
understory vegetation that 
provides cover and forage.  

 
Dalke and Sime 1941, 
Barbour and Litvaitis 
1993  

 
1 

 
C3: Winter forage 
and travel cover 

 
Abundance of less dense 
understory vegetation that 
provides cover and forage. 

 
Dalke and Sime 1941 

 
4 

 
C4: Winter forage 

 
Availability of edible twigs, buds, 
leaves in winter. 

 
Dalke and Sime 1941, 
Smith and Litvaitis 
2000  

 
2 

 
C5: Additional 
refuges 

 
Presence of natural and artificial 
burrows, stone walls, and other 
structural refuges that provide 
protection. 

 
Chapman 1975 

 
2 

 
C6: Vegetation 
height 

 
Understory vegetation of a certain 
height provides escape cover from 
aerial and terrestrial predators. 

 
Litvaitis and Jakubas 
2004, Arbuthnot 2008 

 
1 

 
 
C7: Herbaceous 
forage 

 
 
Abundance of grasses and forbs 
that provide forage during the 
growing season. 

 
 
Dalke and Sime 1941, 
Smith and Litvaitis 
2000 

 
 
2 

 
C8: Summer 
interspersion index 

 
Availability of forage near 
protective cover in summer. 

 
Smith and Litvaitis 
2000 

2 

 
C9: Winter 
interspersion index 
 
C10: Coverage by 
invasive shrubs 
 

 
Availability of forage near 
protective cover in winter. 
 
Concern that invasive shrubs may 
not provide adequate winter food 
or cover. 
 

 
Brown and Litvaitis 
1995 
 
Litvaitis et al. 2003 
 

 
2 
 
 
3 
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 Next, 9 biologists with first-hand experience with NEC habitat were asked to 

review our list of candidate variables and rank their relative importance.  Ranking 

options were: 1 (very important), 2 (moderately important), 3 (somewhat important), 4 

(not important), or “I don’t know.” The implications of invasive shrubs as a detrimental 

feature generated inconsistent responses from the panel.  Although there was some 

recognition that the spread of invasive plants may have negative consequences, it was 

also acknowledged that some invasive shrubs provide suitable cover.  As a result, we 

eliminated this candidate variable from consideration. Rankings were then used to 

identify the variables that were combined or modified to facilitate measurement and 

subsequent incorporation into an HSI model (Table 2). 
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Table 2.  Final group of variables selected to generate a habitat-suitability index for habitats managed for 
New England cottontails. Understory vegetation refers to woody vegetation with a diameter at breast 
height (dbh) of <7.5 cm.  

 
 

 

 
Variable 
 

 
Definition 
 

 
Suggested Inventory Method 
 

 
V1: Security cover 

 
Percentage of the understory 
vegetation that has a density 
of >300,000 stem- cover 
units/ha. Includes C1+4 in 
Table 1. 

 
Record understory-stem density by 
species in 10 x 1-m plots and convert 
to stem-cover units (see text for 
details).  Placement and number of 
sampling plots will be dependent on 
the distribution of understory stems 
(e.g., relatively uniform woody cover = 
systematic distribution of plots) and 
size of managed site.  For example, at 
least 2 plots/ha for large sites (>10 ha), 
3/ha for medium-sized sites (5-10 ha), 
and 5/ha for small sites (<5 ha). 
Calculate the percentage of the site 
that contains >300,000 stem-cover 
units/ha. 

 
V2: Other cover 

 
Percentage of the understory 
vegetation that has a density 
of 100,000-300,000 stem-
cover units/ha. Includes 
C2+3+4 in Table 1. 

 
Inventory similar to security cover. 
Calculate the percentage of the site 
that contains 100,000-300,000 stem-
cover units/ha. 

 
V3: Height of woody 
cover 

 
Average height of the 
understory vegetation in the 
patch (meters).  Includes C6 
in Table 1. 

 
Measure height (m) of dominant 
understory vegetation in sample plots 
and calculate an average for the site.  

 
V4: Summer forage 

 
Edge-to-area ratio of 
herbaceous openings to 
woody cover (m/ha). Includes 
C7+8 in Table 1. 

 
Use high-resolution aerial photography 
(e.g., Google Earth) to delineate the 
edge between woody understory cover 
and grass/forb openings no smaller 
than 3 m in diameter and determine 
length of edge (meters). Divide edge 
by area of managed site (ha). Verify 
the accuracy of the aerial photography 
in the field. 

 
V5: Additional 
refuges 
 

 
Presence/absence of 
constructed brush piles, 
natural or artificial burrows, 
rock walls, and stone 
foundations. Includes C5 in 
Table 1. 

 
Suitable refuges noted as observed in 
the field. 
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Developing Suitability Indices 

We sampled 60 sites being managed for NECs to collect information on each 

habitat variable (Fig. 1). These sites were located in five of the six states participating in 

the recovery initiative, spanned a range of restoration conditions, and included various 

plant communities that were under a variety of management prescriptions. Selected 

sites also had dominant woody vegetation that was >0.5 m tall because we considered 

that to be the minimum condition for NEC occupancy. At each site, we used 10 x 1-m 

plots to inventory the woody understory vegetation (<7.5 cm dbh), including stem 

density by species and dominant understory height (Table 2).  The presence of potential 

refuges (e.g., natural or artificial burrows, intentionally-constructed brush piles, rock 

walls, or stone foundations) was also noted.  

To adequately represent cover or visual obstruction by vegetation, we converted 

estimates of stem density to stem-cover units because of large differences in the 

amount of cover provided by different plants. To accomplish this, we estimated the 

cover provided by specific plants using a profile board (Nudds 1977) during leaf-off 

season and then applied linear regression to calculate the relative cover value of an 

individual stem (similar to procedures used by Litvaitis et al. 1985). For example, 

raspberry stems (Rubus spp.) were found to provide the least amount of visual 

obstruction and were assigned a stem-cover value of 1. Dogwoods (Cornus spp.) 

provided 4.28 times the amount of visual obstruction of raspberry stems, whereas 

barberry (Berberis spp.) stems provided 8.72 times more visual obstruction (Appendix 

A).  Using that information, a hypothetical habitat patch with an average stem density of 

40,000 dogwood stems/ha would have 171,200 stem-cover units/ha.  The patch would 
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have 348,800 stem-cover units/ha if all stems were barberry, but only 40,000 stem-

cover units if all stems were raspberries. In previously prepared management guidelines 

(Arbuthnot 2008), 40,000-50,000 stems/ha was recommended as security cover for 

NECs. Using stem-cover units, we modified thresholds for security cover (V1) as the 

proportion of the patch with >300,000 stem-cover units/ha and other cover (V2) as the 

proportion of the patch with 100,000-300,000 stem-cover units/ha. 

Ideal NEC habitat also includes openings dominated by grasses and forbs in 

close proximity to woody cover (Arbuthnot 2008) because cottontails do not stray far 

from cover to search for food (Smith and Litvaitis 2000). To describe that feature, we 

used an edge-to-area ratio rather than the percentage of the patch that was dominated 

by herbaceous vegetation. Recent aerial photographs (e.g., Google Earth) were used to 

measure the length of grass/forb-shrub edges and the total patch area (V4, Fig. 2).   
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Figure 2.  Aerial photograph (from Google Earth) used to measure patch area and summer forage 
availability (edge-to-area ratio of woody cover and herbaceous forage). Also shown is an example of the 
sample plot layout for assessing habitat variables 1-3 used in the habitat suitability model. 

 

To develop suitability indices for each variable, we used an iterative process that 

incorporated expert opinions and field inventories.  Our intent was to clearly distinguish 

different levels of suitability among patches.  First, we asked experts to rank the 60 

managed patches that we had inventoried on a scale of 1 to 5, where 1 indicated that 

the site was unsuitable and would require substantial management to become suitable 

and 5 was an ideal site that would or did support a high density of NECs. Experts were 

reminded to only consider patch-specific suitability and disregard surrounding 

landscape features that might affect dispersal/colonization by NECs. Next, we 

compared the habitat variables at each of these sites to the expert ranks (Fig. 3) to 

generate upper and lower values for suitability curves of each habitat variable.  For 
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example, we found that sites ranked as suitable or highly suitable by experts had much 

greater coverage of dense understory vegetation (usually >25% of patch) than sites that 

were ranked as marginal or not suitable (usually <5% coverage in dense understory 

vegetation).  For our initial suitability curve of that habitat variable, index values were set 

a 0 (not suitable) if dense understory coverage was <5% and 1.0 (optimal suitability) if 

coverage was >25%.  We assumed a linear increase in suitability as dense understory 

coverage increased from 5% to 25%.  We repeated this for all variables.  As model 

development progressed, suitability curves were modified if those changes improved 

our ability to separate patches into categories of suitability based on expert ranks.  
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Figure 3.  Average (and standard errors) values of four habitat variables sampled among 60 sites 
managed for New England cottontails that were also were ranked from 1 (not suitable) to 5 (highly 
suitable) by biologists knowledgeable on the requirements of New England cottontails.  

 

Incorporating refuges (V5) into the HSI model presented a particular challenge.  

Refuges were considered a positive component of NEC habitat by the expert panel and 

creation of brush piles or artificial burrows was included in the management of some 

sites. For that reason, some sites that had limited regenerating woody vegetation 

(because of recent cutting or mowing) had an abundance of refuges. On the other hand, 

sites with substantial dense understory vegetation often lacked refuges or refuges were 

difficult to detect. 
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Optimizing the Model 

Following the United States Fish and Wildlife Service protocol for developing a 

HSI model (USFWS 1981), individual suitability indices were combined into a function 

that produced a value of 0 to 1 for a site. Structuring that function required determining 

the relative importance (or weight) of each variable. Typically, the structure of the model 

is either a weighted average of the variables, or in a case where one or several 

variables are very influential to the survival of the species, the lowest score of those 

critical variables is taken as the overall suitability score (USFWS 1981). 

Our literature review and expert opinions (Table 1) indicated that all five variables 

(Table 2) have some degree of importance to NECs; therefore, we developed a model 

based on a weighted average. To determine the relative contribution of each variable, 

we examined relationships between variable measurements, expert rankings of 

surveyed sites, and NEC occupancy of surveyed sites, as well as expert opinions about 

the importance of each variable and literature. Variables were given a higher weight if 

expert opinion, literature reviews, and field data were in agreement that the variable was 

very influential in determining habitat suitability. Variables thought to be less important 

by experts or indicated by field data were given a lower weight.  

 

RESULTS 

Habitat Variables and Suitability Indices 

Using expert opinions and relationships between habitat variables and ranked 

suitability (Fig. 3), we created suitability index curves for individual variables except 

refuges (Fig. 4). To incorporate refuges, we simply added 0.1 to the score if refuges 
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were found on a site or 0 if refuges were not detected (see below). The function of 

added refuges is to compensate for insufficient cover on the site. As a result, the 

suitability of a site can be enhanced with the addition of refuges but not lowered if 

refuges were not found, and the score cannot exceed 1.0 because that would inflate the 

final HSI score.  
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Figure 4.  Suitability index (SI) curves for four habitat variables that describe life requisites of New 
England cottontails.  
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Optimized Model Structure 

The final HSI model was a weighted average of four habitat variables plus the 

presence/absence of refuges (Eq. 1). Experts stressed the importance of dense 

vegetation (security cover) and previous studies showed that NECs prefer dense 

HSI =  (3 x V1) + (2 x V2) + V3 + V4  + V5      

7 
Where:  

V1 = Security cover 
V2 = Other cover 
V3 = Vegetation height 
V4 = Summer forage 
V5 = Refuges (addition of V5 cannot result in the HSI exceeding 1.0)   
 
(Equation 1) 

 
 
 
vegetation (e.g., Barbour and Litvaitis 1993, Smith and Litvaitis 2000). That 

pattern was corroborated by our inventory of managed sites where those that were 

ranked high or were occupied by NECs tended to have a larger proportion of the site 

covered in dense vegetation (Fig. 3). As a result, we gave this variable (V1) a weight of 

3 and other cover (V2) a weight of 2.  Height of woody vegetation (V3), summer forage 

(V4), and presence/absence of refuges (V5) were consider as less crucial based on 

observed winter-mortality patterns (Barbour and Litvaitis 1993).  

HSI Scores versus Expert Opinion Ranks 

There was a clear relationship between the expert-opinion ranks of managed 

sites and the HSI generated by our model (Fig. 5). Variability in the HSI score within 

each expert opinion ranking category was expected. NECs could find a variety of 

conditions tolerable and our field measurements may not have accurately captured 
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nuances among variables. Also, there was likely some degree of subjectivity by experts 

when ranking sites. Despite those difficulties, it was clear that the resulting HSI model 

differentiated among unsuitable (rank = 1-2), marginal (rank = 3) and suitable sites (rank 

= 4-5).   

 

Figure 5.  Average habitat suitability index model scores (and standard errors) for 60 sites with expert-
opinion rankings, where 1 was assigned to the least suitable sites and 5 was assigned to the most 
suitable sites.   

 

Among the 60 managed sites we inventoried, HSI model scores ranged from 

near 0 to 1.0 (Fig. 6). The average HSI score for the most suitable sites, as rated by the 

experts, was 0.66 and the average model score for NEC-occupied sites was higher (µ = 

0.67, SE = 0.05) than for unoccupied sites (µ = 0.42, SE = 0.25). Therefore, an initial  
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threshold value for releasing rabbits on an unoccupied site could be an HSI score of 

0.65-0.7. 

 

Figure 6.  The distribution of habitat suitability index model scores for 60 sites managed for New England 
cottontails.    

 

DISCUSSION 

We believe our HSI model can facilitate restoration of NEC populations by 

consistently evaluating sites and identifying specific habitat components that need to be 

improved.  Consider a hypothetical site with the following characteristics: V1 = 15% 

coverage (SI = 0.58), V2 = 35% coverage (SI = 0.58), V3 = 1.25 m (SI = 0.63), V4 = 38 

m/ha (SI = 0.75), and V5 = Absent.  Entered into our model, we generated a score just 

below the recommended threshold.   

(3 x 0.58) + (2 x 0.58) + 0.63 + 0.75 + 0 = 0.61 
7 
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We could add brush piles or artificial burrows (we recommend 2-3/ha) to improve 

current conditions (HSI increases to 0.71), or wait several years until the average height 

of understory vegetation increases to 2 m (HSI increases to 0.66), or use both 

approaches (HSI increases to 0.76).  On the other hand, we could expand coverage of 

very dense (V1) and moderately dense (V2) understory vegetation to substantially 

increase suitability.   

Describing the suitability of a site can also be an effective approach in recruiting 

and retaining private landowners as partners in the restoration effort.  More than half of 

forestland in New England is privately owned (Butler and Ma 2011), making landowner 

recruitment an essential component of the NEC conservation strategy. The HSI model 

can help in educating landowners about the needs of NECs and the management 

options available. It can also give participating landowners a target or management goal 

to achieve. Additionally, application of the HSI model can provide a structured approach 

for obtaining funds from such cost-share programs as the Environmental Quality 

Incentives Program coordinated by Natural Resources Conservation Service where 

limited funds could be directed toward the lands with the greatest management 

potential. 

Although we dropped the prevalence of invasive shrubs from consideration as a 

habitat feature, that characteristic should not be overlooked when developing 

management recommendations for a specific site.  We acknowledge that generically, 

invasive shrubs cannot be easily categorized as either detrimental or beneficial to 

NECs.  Available information suggests that the cover value of certain invasive shrubs 

can be comparable or even greater than some native shrubs (Litvaitis et al. 2013) and 
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relative value of invasive and native shrubs as winter forage are largely unknown.  

Additional considerations when addressing management protocols toward invasive 

shrubs would be their prevalence in the surrounding landscape (Litvaitis et al. 2013) and 

the importance of the site to other thicket-affiliated taxa.  For example, some invasive 

shrubs support fewer insects that are an important food source of nesting songbirds and 

their developing offspring (Fickenscher et al. 2014). Under such conditions it would be 

important to consider the needs of both nesting songbirds and NECs while developing 

management prescriptions (Litvaitis et al. 2013).   

In addition to describing applications of the HSI model, it is also relevant to 

describe applications that we do not believe our model should be used for.  We do not 

believe that the evaluation of a site should be used to predict the occurrence of NECs. 

Landscape composition and proximity to other sites occupied by NECs are important 

considerations in such an evaluation and are not included in the HSI model.  

Finally, an important aspect of the HSI approach is its adaptability. With new 

information on NEC habitat associations, our model can be updated, especially among 

different plant communities that were not well represented in the 60 sites we 

inventoried, including pitch pine-scrub oak (Pinus rigida-Quercus ilicifolia) or mountain 

laurel (Kalmia latifolia) dominated habitats. Releases of captive-bred and translocated 

rabbits to vacant habitats and subsequent monitoring of their fate should also provide 

opportunities to reconsider the relative weights given to variables in the HSI model.  
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Appendix A.  Relative cover values (visual obstruction) provided by selected understory 

shrubs and young trees encountered on managed New England cottontail habitats. 

 

Group Cover Value 

Eleagnus 13.16 

Berberis 8.72 

Cornus 4.28 

Young evergreen trees 65.88 

Lonicera 31.09 

Juniperus 14.07 

Low-growing shrubs 2.63 

Rubus 1.00 

Rosa 5.81 

Spirea 1.88 

Young deciduous trees 2.65 

Upright shrubs 6.56 
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CHAPTER III 

ASSESSING NEW ENGLAND COTTONTAIL HABITAT MANAGEMENT AT A 

LANDSCAPE SCALE 

INTRODUCTION 

In response to the rangewide decline of New England cottontails (Sylvilagus 

transitionalis - NEC), several governmental (U.S. Fish and Wildlife Service, Natural 

Resources Conservation Service, and state fish and wildlife agencies within the current 

range of the New England cottontails) and nongovernmental organizations (e.g., 

Environmental Defense Fund, National Fish and Wildlife Foundation, National Wild 

Turkey Federation, Wildlife Management Institute, and local land trusts) are working in 

collaboration to create more habitat for this species (Fuller and Tur 2012). The 

management of habitat for NEC involves creating and maintaining patches of early-

successional forests or shrubland habitats (Arbuthnot 2008). Restoration efforts are 

concentrated in focus areas to expand existing populations of NEC (Fuller and Tur 

2012). For example, although NEC once occurred across much of southern Vermont 

and New Hampshire, and along the coast of Maine to Portland, habitat management is 

only occurring only in a few focus areas where NEC still occur (Fig. 7).  

Habitat restoration goals have been set forth for each focus area, but it is not 

known how much habitat is needed to maintain stable metapopulations of NEC. 

Because it takes several years for most sites to become suitable after management, 
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and NEC populations can decline for reasons other than habitat suitability, it is 

impractical to empirically measure the effects of habitat management on NEC 

abundance to refine habitat goals at this time. Under such circumstances when field 

experiments are not feasible due to restrictions of time, space, and cost, population 

viability analyses (PVA) and metapopulation simulations can be used to explore 

different management scenarios.  

A metapopulation is a set of local populations that interact with one another via 

the dispersal of individuals. In recent years, NEC have been relegated to genetically 

and spatially distinct metapopulations (Fenderson et. al 2014). Management focus 

areas are intended to function as metapopulations where source and sink populations 

determine their viability (Fig. 8). A source population has high survival rates from which 

individuals frequently disperse to other populations. Sink populations, on the other 

hand, have low survival rates and rely on immigrants from source populations to remain 

occupied (Hanski 1998). The source-sink concept is particularly relevant to NEC 

because small habitat patches have been found to have lower survival rates (Barbour 

and Litvaitis 1993) and some of the metapopulations are declining because they are 

largely comprised of small patches (Litvaitis et al. 2006). Previous investigations of 

various plants and animals have examined the effects of habitat-patch size, quality, and 

spatial distribution of individual populations on metapopulation growth (Akcakaya et al. 

2004).  
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Figure 7.  The approximate historic northern extent of New England cottontails in northern New England, 
and the current management focus areas (redrawn from Fuller and Tur 2012). 
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Figure 8.  Illustrated metapopulation composed of source patches (blue) and sink patches (orange), 
where the size of the circle represents carrying capacity. Source patches supply dispersing individuals 
that colonize sink patches, which are vulnerable to population decline and extinction.  

 

A metapopulation model can be constructed to run simulations and conduct PVA. 

A method commonly used in conservation biology is creating a model using a spatially 

explicit software program to estimate extinction risk, population trajectory, and other 

outcomes for specific management alternatives (Akçakaya et al. 2004, Blomberg et al. 

2012). There are several examples of metapopulation models used to evaluate the 

effects of management on population viability that have implications for NEC. Notably 

efforts by Blomberg et al. (2012) that simulated responses by ruffed grouse (Bonasa 

umbellus) populations in response to different habitat-management strategies and found 

that fewer but larger patches resulted in a slower population decline. Modelling a 

hypothetic NEC metapopulation, Litvaitis and Villafuerte (1996) found that 

environmental correlation (e.g., snow conditions that are relatively uniform across a 

metapopulation affect individuals similarly) and habitat loss were important factors 

determining short-term extinction risk. Viability of a NEC metapopulation depended on 
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the suitability of individual patches and the interactions among patches (Litvaitis and 

Villafuerte 1996). 

Methods of modelling metapopulations and predicting extinction risk have 

changed rapidly alongside the advances in computing power that allows us to perform 

these simulations. The term “metapopulation” was introduced in 1969 (Levins), although 

aspects of metapopulation theory had been developed before then. Various strategies 

for simulating metapopulations have been developed. An important advancement was 

the inclusion of variability, or stochasticity, in models to better represent the uncertainty 

of real metapopulation dynamics. Boyce (1977) discovered that introducing stochasticity 

reduces the expected growth rate of the metapopulation, when compared to 

deterministic models using the same vital rates but no variation in the rates. This 

phenomenon has been found to occur in real life; environmental variation reduces 

population growth rates (Pickett et al. 2015). This suggests that deterministic models 

may underestimate minimum population sizes and minimum amounts of habitat needed 

for a metapopulation to persist, and underscores the importance of stochasticity for 

accurate modelling results.  

A metapopulation model and PVA can be used to simulate habitat management 

activities and their effects on NEC metapopulation viability. The relative extinction risks 

and projected abundance of individuals can be compared between different 

management scenarios of interest. In the case of NEC, I am interested in evaluating the 

effectiveness of the focus area strategy (creating more habitat patches near other 

patches), as well as the role of more intensive management over time, such as 
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maintaining the suitability of all patches that have been created and reintroducing NEC 

to vacant patches.  

 

GOALS 

Create a stochastic metapopulation model for NEC in two focus areas, develop various 

management scenarios to simulate, and compare outcomes. My goal was to inform 

management decisions regarding NEC habitat. My objectives were to: 

1. Compare outcomes of habitat management scenarios using NEC metapopulation 

models for two focus areas. 

2. Develop management recommendations based on NEC metapopulation 

simulations. 

3. Identify areas for future research to improve NEC metapopulation simulations.  

 

METHODS 

Study Areas  

I modeled the Cape Elizabeth, Maine and Kittery-Berwick, Maine (Fig. 9) focus 

areas because there have been extensive surveys of NEC populations and habitats in 

those landscapes (Litvaitis et al. 2003, Fenderson et al. 2014). 

Both areas are in eastern temperate forest, with climate and vegetation 

influenced by the Atlantic coast. The Cape Elizabeth focus area is coastal, contains a 

number of state parks and open areas as well as residential neighborhoods. It covers 

two towns, Scarborough and Cape Elizabeth, and totals about 15,000 hectares, of 
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which 262 ha are suitable (managed and unmanaged) for NEC (Table 3). The Kittery-

Berwick focus area is actually two adjacent management focus areas, Kittery and Eliot-

Berwick, and it includes inland and coastal areas, is more heavily forested, and covers 

35,000 hectares, including 121 ha of suitable habitat (Table 3).  

NEC habitat patches (Fig. 10) vary in vegetation composition, but are often 

dominated by native shrubs and early-successional trees (e.g. Cornus spp., Alnus spp., 

Aronia melanocarpa, Kalmia latifolia, Betula spp., Pinus strobus, Prunus virginiana), 

invasive shrubs (e.g., Rosa multiflora, Elaeagnus umbellate, Lonicera spp., Berberis 

thunbergii), and grasses and forbs. Many areas have wetland or coastal marshes. Most 

managed and unmanaged patches are former agricultural lands or areas of low quality 

timber that have been clearcut. Some are remote, and others are adjacent to residential 

or industrial areas and roads.   
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Figure 9: The locations of the two NEC management focus areas for which metapopulation models were 
developed. Both are located in Maine, in the northeastern United States. 
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Figure 10: Habitat patches in the two focal areas, Cape Elizabeth and Kittery-Berwick. Managed habitat 
patches are shown in blue, and unmanaged patches in yellow.  
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Table 3.  Managed and unmanaged habitats suitable for New England cottontails in two focal areas in 
southern Maine. 

Focus Area  
Managed/Unmanaged habitat patches 

Number         Mean size (ha)             Range (ha) 

Mean 
distance 
between 
patches (km) 

Cape Elizabeth    16/17                  10.2/5.8                  1.2-28.7/0.7-30.5 4.0 
Kittery-Berwick    8/15                    11.1/2.1                  3.8-32.0/0.1-10.5 7.9 

 

Model Vital Rates 

To simulate metapopulation dynamics, vital rates including annual survival, 

dispersal distances, and recruitment were estimated using existing literature and 

unpublished research (Table 4). Information on juvenile survival rates of NEC is lacking. 

Therefore, I assumed juvenile rates to be equivalent to those of adults as reported in 

studies of other lagomorphs (e.g., Gillis 1998, Zeoli et al. 2008, Kielland et al. 2010). In 

the literature (summarized in Chapman and Litvaitis 2003), the number of young per 

year for various Sylvilagus species ranges from 14 to 39, with much variation in litter 

sizes and number of litters. Litter size and frequency can depend on the site suitability, 

age and size of the female, latitude (Chapman and Litvaitis 2003), and possibly a 

myriad of other factors. There are some NEC reproduction data from the captive 

breeding program at the Roger Williams Zoo (L. Perrotti, Roger Williams Zoo, 

Providence, RI; unpublished report), but it is unknown how captivity affects fecundity. 

Captive breeding programs are often hindered by lower survival and lower fertility than 

expected for the species (Snyder et. al, 1996). In the absence of real data on wild NEC 

reproduction, I have estimated recruitment to be 4.05 per individual, which is similar to 

other better studied Sylvilagus species (Chapman and Litvaitis 2003). Recruitment is 
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calculated by multiplying the number of litters per year (3) × young per litter (9) × female 

proportion of the population (0.5) × annual survival rate (0.3).  

 

Table 4.  Estimated vital rates for New England cottontails used to parameterize the metapopulation 
model.  

Vital rate Mean (SD) Supporting literature 
Annual survival rate on patches  
≥3 ha (source populations) 0.3 (0.15) 

H. Kilpatrick (pers. comm.), 
Brown and Litvaitis (1995), 
Villafuerte and Litvaitis (1996) 

 

Annual survival rate on patches 
<3 ha (sink populations) 

0.15 (0.08) 

 

H. Kilpatrick (pers. comm.),  
Barbour and Litvaitis (1993), 
Villafuerte and Litvaitis (1996) 

 

Carrying capacity 

 

2 individuals per ha 

 

Barbour and Litvaitis (1993), 
Villafuerte and Litvaitis (1996) 

 

Recruitment per capita on 
patches  ≥3 ha (source 
populations) 

 

4.05 (0.9) 

 

Chapman and Litvaitis (2003), L. 
Perrotti (unpublished report) 

 

Recruitment per capita on 
patches <3 ha (sink populations) 

2.025 (0.45) 

Chapman and Litvaitis (2003), L. 
Perrotti (unpublished 
report),Barbour and Litvaitis 
(1993) 

 

Maximum dispersal distance 

 

3 km 

 

Litvaitis and Villafuerte (1996)  

 

Maximum annual growth rate (λ)  

2.0 

 

Keith and Windberg (1978), 
Litvaitis and Villafuerte (1996) 

 

Environmental Correlation > 80% Litvaitis and Villafuerte (1996) 
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Another model input is NEC abundance for each population or patch. There is 

some information on NEC density at occupied sites in Maine (e.g. Brubaker 2012). To 

be able to compare two focus areas, the NEC abundance data would need to be 

collected using the same methods and without bias for one area over another. There 

are ongoing efforts to standardize NEC monitoring protocols across the range (Fuller 

and Tur 2012), which would benefit modeling efforts that involve more than one focus 

area. I was not confident that I had current population data for all occupied patches in 

both focus areas. I chose to set all patches as occupied at the beginning of the 

simulations, to ensure that differences in predictions between focus areas and between 

management scenarios were not caused by differences in abundance data. While this 

may not be realistic, NEC abundance is highly dynamic, laborious to measure, and can 

be altered through translocations and reintroductions of rabbits, so I decided to maintain 

the focus of this analysis on habitat restoration by standardizing NEC abundance.    

Model Structure   

RAMAS GIS (Version 6, Akcakaya and Root 2013) provided the framework for 

developing a metapopulation model. Habitat availability, vital rates, demographic and 

environmental stochasticity, and environmental correlation were components of the 

model. Stochasticity included variation in annual survival, recruitment, and carrying 

capacity because these rates are affected by changes in weather, predation, and other 

factors. Based on the last 40 years of weather data from Portland, Maine, I found that 

snow persistence is highly variable (Fig. 11) and 1 in 10 winters had >100 days with 

snow on the ground (National Climatic Data Center 2015). NEC mortality is strongly 

influenced by long winters (Brown and Litvaitis 1995), and the depth and persistence of 
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snow increase mortality in a similar species, eastern cottontail (Sylvilagus floridanus, 

Boland and Litvaitis 2008), so my model included a 10% annual probability of a 

catastrophe (severe winter) in which 75% of adults and juveniles die. In non-catastrophe 

years, the model adjusted vital rates based on a normal probability curve that is 

supported by snow-cover data that were normally distributed.  

 

 

Figure 11: The number of days with snow cover each year from 1975 to 2014 in Portland, Maine, from the 
National Climatic Data Center (2015).  

 

Environmental correlation is the effect of habitat patches close together 

responding similarly to events such as weather. NEC experience high environmental 

correlation (Litvaitis and Villafuerte 1996), as their vital rates are affected by weather 
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and the metapopulations in northern New England are not large enough to experience 

significantly different weather events.  

Inputs of habitat availability were modified to create five management 

alternatives (described below). For each scenario, I used a 15-year simulation that was 

replicated 10,000 times for both focus areas. Because variation is built into the model, 

each simulation is different, and a high number of simulations is needed to determine 

the average outcomes. Simulations more than 15 years may be unrealistic due to the 

ephemeral nature of the habitat and rapid life cycle of NEC. Metapopulation simulations 

generated two useful outputs: a population-growth trajectory and extinction risk. The 

trajectory showed an average abundance of NECs over time (increase or decline) 

whereas extinction risk was the proportion of the 10,000 simulations for a specific 

management plan that fell below a specified threshold of abundance.  

Landscape suitability can be used to estimate the probability of dispersal 

between patches, e.g., NEC are more likely to reach a nearby patch if the intervening 

landscape is young forest rather than open fields or urban development. However, 

RAMAS GIS 6.0 cannot be used to calculate these probabilities due to GIS software 

changes since the inception of RAMAS GIS (N. Friedenberg, Applied Biomathematics, 

personal communication). Instead, I used geographic distances to estimate the 

probability of dispersal between patches. Dispersal is estimated using a probability 

curve, where individuals are more likely to disperse to patches that are closer, and do 

not disperse further than three kilometers (Litvaitis and Villafuerte 1996). A recent study 

(Cheeseman 2017) had an instance of a NEC traveling 3.8 km, but most dispersal 

distances recorded were under 2km and dispersal events were infrequent. It’s not 
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certain how often NEC travel long distances, or how other factors affect the frequency 

and distance of dispersal, but as this is a growing area of research, I anticipate that 

more refined dispersal values will be available for use in future versions of this model.  

Habitat Availability 

Spatial information on unmanaged but suitable habitats was derived from a 

survey of known occupied habitat patches (Fenderson et al. 2014), completed in 2007-

2009. Information on managed habitats was obtained in 2012 through 2014 from the 

Natural Resources Conservation Service, U.S. Fish and Wildlife Service, and Maine 

Department of Inland Fisheries and Wildlife. The amount and location of managed 

habitats was projected over the next 15 years based on the assumption that NEC 

habitats are ephemeral and require 7 years to become suitable after intensive 

management (e.g., clearcuts) and remain suitable for 10-12 years without further 

management (Aber 1979, Fig. 12). For each patch included in the models, I considered 

the initial condition, schedule of management actions, and the prescribed management 

activity, and then created maps of estimated suitable managed habitat for 4 time steps: 

the years 2015, 2020, 2025 and 2030. Based on field surveys (Fenderson et al. 2014), 

occupied patches did not need intensive management and were considered suitable at 

start of our simulations.  Unmanaged and managed habitats were assumed to decline at 

a rate of 10% per year over the course of the simulation due to succession.  
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Figure 12.  Vegetation regeneration in a hardwood forest after a clearcut (from Aber 1979). By 18 years 
after management, the bulk of the vegetation is no longer in the understory and the habitat is unsuitable 
for NEC.  

 

Management Alternatives 

I developed and compared the outcomes of five management scenarios in each 

focus area.   

Scenario 1, no management:  Only unmanaged habitat patches, based on known 

occupied sites, are considered suitable. This is representative of no action being taken 

to conserve NEC. Habitat availability declines due to succession over the course of the 

simulation. 

Scenario 2, current management:  Managed patches, based on current agency 

plans, are added to the unmanaged patches over time, but no further maintenance or 

management is invoked, so suitable habitat eventually declines with time. This scenario 

demonstrates the effects on NECs if the initiative to create and maintain habitat were to 

discontinue, causing a gradual decrease in available habitat.  
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Scenario 3, maintained management:  All managed and unmanaged habitat 

patches are considered suitable for the duration of the simulation to represent 

continuous management of all patches.  This represents the continued close monitoring 

and maintenance of all patches, if NEC habitat programs and funding continue and 

expand for the foreseeable future.  

Scenario 4, maintained management with reintroductions: While all of these 

management scenarios include the assumption that NEC will be present on vacant, 

suitable patches either independently or through intervention at the beginning of the 

simulation, this scenario adds additional NEC re-introductions to patches throughout the 

simulation. Every 3 years, 5 adult NEC were added to all patches with less than 3 

individuals.  

Scenario 5, maintained management with additional large patch: Because larger 

habitat patches are associated with lower NEC mortality, land managers typically try to 

find and create larger management patches. This scenario examines the relative effect 

of adding a single, 50-ha patch to the center of each focus area.  

 

Sensitivity Analysis 

To examine the relative influence of specific model parameters on model output, 

values were modified by -50%, -25%, -10%, +10%, +25%, and +50% of the initial input 

value to measure the effects of these changes on the probability of falling below 50 

individuals during the simulation (extinction risk).  I chose to analyze five model 

parameters: the survival and recruitment rates, the standard deviations of the survival 

and recruitment rates, the probability that an individual disperses to another patch, the 
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probability of environmental catastrophe (severe winters), and environmental 

correlation. Survival and recruitment were not analyzed separately because they are 

closely linked values: survival is a factor in determining recruitment, and both values 

make up the model’s stage matrix. I chose not to analyze habitat availability, or the 

closely related carrying capacity, as that variable is the subject of manipulation under 

the management scenarios.  

 

RESULTS 

Focus Areas and Management Scenarios 

Mean population trajectory, extinction risk, and the risk of falling below 50 

individuals were calculated from the simulations for each focus area and each 

management scenario. Population trajectory is the abundance of NEC over time. 

Extinction risk is the probability of the metapopulation reaching zero individuals. Quasi-

extinction is a threshold abundance below which the population is unlikely to recover, 

and the actual quasi-extinction abundance for these metapopulations of NEC are 

unknown. I chose to evaluate the likelihood of NEC abundance falling below 50 to 

represent quasi-extinction, because very small metapopulation sizes are a concern in 

addition to true extinction.  

Simulations of the Cape Elizabeth metapopulation had higher abundances and 

lower extinction risks than those for the Kittery-Berwick metapopulation (Fig. 13, Table 

5). However, the two metapopulations were affected similarly by each management 

scenario. The maintained habitat management scenario had a more stable trajectory, 

higher abundances, and lower extinction risks than the no management or current 
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management scenarios. Adding in reintroductions of NEC, or an additional large source 

patch led to even better outcomes for both metapopulations.  

All simulations have an initial drop in average abundance because the model 

calls for fully occupied patches at the beginning of the simulation, but the average 

abundance cannot be 100% of the carrying capacity once the populations are subjected 

to the varying survival rates, reproductive rates, and catastrophes. At times, many of the 

metapopulations may be approaching carrying capacity, which they cannot exceed, but 

the average abundance across the many simulations will always be less than the 

carrying capacity.  
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Figure 13: The population trajectory, or average abundance over time, of the model simulations for two 
focus areas, Cape Elizabeth and Kittery-Berwick, under five management scenarios, 1) no habitat 
management, 2) current habitat management, 3) maintained habitat management, 4) maintained habitat 
management with NEC reintroductions, 5) maintained management with additional source patch.  
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Table 5.  Probability of falling below 50 or 0 individuals (extinction), and end mean abundance, after a 15- 
year simulation of five different management scenarios for Cape Elizabeth (CE) and Kittery-Berwick (KB) 
metapopulations.  

Management Scenario Extinction 
CE/KB 

< 50 individuals 
CE/KB 

Mean abundance 
after 15 years 
CE/KB 

1: No Management 0.01 / 0.15 0.17 / 0.95 108.0 / 19.24 

2: Current Management 0.0 / 0.14 0.04 / 0.95 181.1 / 20.04 

3: Maintained Management 0.0 / 0.0 0.02 / 0.09 276.1 / 141.1 

4: Maintained Management with Reintroductions 0.0 / 0.0 0.0 / 0.0 360.08 / 224.5 

5: Maintained Management with Additional Source 
Patch 

0.0 / 0.0 0.01 / 0.03 373.10 / 221.2 

 

Sensitivity Analysis 

Altering mean survival and recruitment rates, dispersal rates, or environmental 

correlation had little influence on the metapopulation extinction risks.  However, 

increasing the variation (standard deviations) of survival and recruitment and the 

probability of catastrophe had a substantial influence (Fig. 14).  These results suggest 

that the metapopulations are more responsive to demographic and environmental 

variation than to changes in mean vital rates and the proportion of dispersing 

individuals.  
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Figure 14.  A sensitivity analysis of five parameters on both metapopulation models: recruitment and 
survival rates, standard deviations of recruitment and survival rates, probability of catastrophe 
(representing severe winters), dispersal rates (the proportion of the population that disperses to another 
patch), and environmental correlation.  

 

 

 

 

DISCUSSION 

 

Management Implications 

Maintained management with reintroductions is the only management scenario 

that yielded zero extinction risk for both metapopulations. Generally, the two 

metapopulations benefitted from more intensive management scenarios, but there were  

differences in their responses. Notably, the Kittery-Berwick focus area had higher 

extinction risks and no improvement in outcomes between the no management and 
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current management scenarios, whereas Cape Elizabeth had a very low extinction risk 

even with no management and had improved outcomes under current management. 

Both metapopulations had higher abundances and lower extinction risks under the 

hypothetical intensive management scenarios, maintained management with 

reintroductions and maintained management with additional source patch. Cape 

Elizabeth has more patches that are closer together, and had lower extinction risks and 

higher NEC abundances compared to Kittery-Berwick. This pattern supports the focus 

area strategy, which involves prioritizing habitat management near other patches.  Both 

focus areas, but Kittery-Berwick in particular, will require hands-on management of 

habitat in order for NEC to persist in those areas. 

The outcomes are similar to those of a metapopulation model for another early 

successional species, the ruffed grouse (Bonasa umbellus). The species is expected to 

continue to decline without habitat management intervention, and a model was used to 

compare management strategies at a landscape scale, in this case, creating few, large 

habitat blocks vs. several small blocks (Blomberg et. al 2012). Modeling of another 

species with which NEC has little in common, the Northern spotted owl (Strix 

occidentalis caurina), likewise found that large habitat patches that are close together 

could slow the decline of the metapopulation compared to other habitat configurations 

(Marcot et. al 2013), and it was determined that recolonization of vacant patches is 

important, much like NEC. Robinson (2013) modeled a metapopulation of swamp 

rabbits (Sylvilagus aquaticus), a species closely related to NEC but with a different 

habitat specialization, and found that small habitat patches act as population sinks, and 

catastrophic flooding was an important predictor of metapopulation decline. These 
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results are similar to my findings that adding large habitat patches was beneficial to 

NEC persistence, and catastrophic mortality was an important model parameter.  

Simulations with more habitat and greater initial NEC abundances have lower 

extinction risk and higher abundances throughout the simulation. It is logical that a 

higher carrying capacity, and thereby a higher potential abundance of NEC, would 

reduce the likelihood of metapopulation extinction. This underscores the importance of 

habitat management for NEC and other species that require early-successional habitat. 

The carrying capacity of the metapopulation can be increased by creating more habitat, 

or possibly by improving the suitability of existing habitat.  

Habitat patch size is related to habitat quantity and quality, and carrying capacity. 

Benefits from adding a large patch to the focus areas support source-sink theory. Large 

habitat patches should be prioritized over more smaller ones. In my inventory of 196 

reported NEC habitat management patches (Warren et al. 2016), 9 were stated as 

being below 3 hectares (considered a sink in this model), 104 were between 3 and 20 

hectares, and 83 were larger than that. However, in conducting field work at 60 of these 

sites, I found that there was often a complex mosaic of varying suitability within these 

reported patches. Defining biologically relevant habitat patches is different from defining 

management parcels and would result in smaller patches in some cases. Managers 

should continue to prioritize the difficult task of not only securing large areas for NEC 

habitat management, but creating large, continuous patches of suitable habitat in these 

areas to increase carrying capacity and lower extinction risk for the metapopulation.  
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Variability and Climate Change 

These models are stochastic, i.e., they incorporate environmental and 

demographic variability, causing each simulation to produce different results, in contrast 

to a deterministic model that only has one outcome. The sensitivity analysis showed 

that the model is influenced more by variation (in survival and recruitments, and 

catastrophes) than the other parameters. It was surprising that the model did not 

respond more to changes to the mean survival and recruitment rates; however, if these 

rates are decreased enough they eventually impact the outcome of the model, 

indicating that they are a limiting factor below a certain value and are therefore not 

completely inconsequential.  

Increasing variation in the model increases extinction risk, which supports 

Boyce’s (1977) findings that stochasticity negatively affects metapopulation persistence 

in models. This concept has implications for landscape scale conservation planning. 

Survival, dispersal, recruitment and other vital rates are affected by innumerable 

environmental and demographic factors. Our inability to predict the exact vital rates for a 

metapopulation into the future means that we should err on the side of caution when 

estimating the minimum habitat size, corridors, and population sizes needed for a 

metapopulation to persist. Real environmental and demographic variation, which could 

increase due to climate change and anthropogenic effects, are a detriment to 

metapopulation persistence (Pickett et al. 2015) and should not be underestimated in 

models.  

Reviews of climate change studies state that weather will likely become 

increasingly variable, with more frequent, intense precipitation events, and in fact we 
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are already seeing these effects today (e.g., American Association for the Advancement 

of Science 2014, Intergovernmental Panel on Climate Change 2014). This could have 

multiple impacts on NEC metapopulation growth and stability. If the range of vital rates 

increases in response to climate, and as catastrophic mortalities become more likely, 

the risk of metapopulation extinction is greater.  

There may also be an increase in average winter temperatures that could reduce 

the average number of days per year with snow, benefitting NEC somewhat. However, I 

hypothesize based on my findings that NEC metapopulation extinction will be influenced 

more by environmental variability and the frequency of severe snowy winters than by 

small increases to annual survival rates. To mitigate this effect, populations of NEC and 

their habitat should be closely monitored so that managers can intervene when needed 

by introducing captive bred rabbits to vacant patches and maintaining and expanding 

suitable habitat.  

 

Model Limitations and Research Needs 

While these models are useful for comparing the relative effects of management 

scenarios, and for assessing the importance of different parameters on metapopulation 

persistence, there are several areas where more data would improve the predictions. In 

particular, the ability of these models to predict actual NEC abundance in the future is 

limited by a lack of actual NEC occupancy data, dispersal rates, and other vital rates. I 

have identified several areas for future research and model development to create more 

accurate predictions about NEC metapopulations.   
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RAMAS GIS version 6.0 calculates dispersal using geographic distances and 

does not incorporate landscape features that might facilitate or prevent dispersal. The 

body of literature on NEC dispersal is growing, and the models could be improved with 

dispersal probabilities based on real data, and even local, patch-specific data in some 

cases. For example, several barriers and facilitators of dispersal were identified using 

genetic methods (Amaral et. al 2016), and actual dispersal events have been recorded 

using telemetry (Cheeseman, 2017). The results of these studies are varied; for 

example, roads are known to be a barrier to NEC dispersal (Amaral et al. 2016, 

Cheeseman 2017), and NEC have been observed crossing roads, and are perhaps 

more likely to in certain landscape contexts (Cheeseman 2017), so the extent to which 

roads are a barrier and in what context requires more research to apply these findings 

to other landscapes. It is also important to acknowledge that some features that 

facilitate dispersal are as ephemeral as NEC habitat (e.g. abandoned fields and brushy 

road edges). Further studies of NEC dispersal over various landcover types, as well as 

how landcover types are changing, could help to build better spatial models of NEC 

metapopulations.  In turn, these models could help land managers identify areas where 

the management of the landscape between patches would be needed to allow for 

successful dispersal.  

 The survival and recruitment values used in this model are the best current 

estimates. There are few studies on NEC survival rates and reproduction; NEC are 

difficult to track and observe in the wild. Variation in survival and recruitment rates is 

shown to be an important predictor of extinction risk in the sensitivity analysis, but 

without much larger sets of data, we cannot confirm that the amount of variation used in 
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this model is accurate. A long-term study of NEC survival and recruitment at various 

sites would be needed to determine accurate mean survival and recruitment rates, 

standard deviations, and the probability of catastrophic mortalities. An additional factor 

that could affect these rates that is not represented in this model at all is the genetic 

isolation of each metapopulation. 

Sensitivity analysis results can be used as a guide to focus research efforts on 

the most potentially influential model components. My sensitivity analysis suggests that 

variability and probability of catastrophe would be important parameters to research to 

improve the model. These values are difficult to measure, but the models can be useful 

despite our present uncertainty. When interpreting the results of the model, one must 

acknowledge that there is a wide range of possible trajectories NEC may follow and that 

extinction risk may be higher or lower than predicted, based partly on the accuracy of 

our estimates of variability and catastrophes, and other vital rates.   

Although not included in the sensitivity analysis, habitat availability and suitability 

are important considerations for NEC persistence. When the suitability or quality of a 

habitat patch is known, the carrying capacity could be manually adjusted in the model, 

to reflect whether it could support a higher or lower density of NEC than the typical 

value of 2 per hectare. I focused my research on managed habitat patches, but surveys 

of the distribution and suitability of unmanaged habitat (occupied or not) across the 

range of NEC could be used in future models, and they could help to inform decisions 

about when and where to restore additional habitat.  

Finally, these models could be verified by collecting data on NEC abundance in 

the same focus areas being modelled. Over time, the trend in actual abundance can be 
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compared to the prediction. The model prediction is a summary of many possible 

futures, so it is not expected that the actual data will be an exact match; rather, data 

from many years in many locations can eventually reveal how accurate the model is.  

 

Use of NEC Metapopulation Models as Decision-Making Tools 

These models could be used to help make decisions about habitat restoration. 

They could be tailored to other focus areas, and location-specific information can be 

added, before comparing pertinent management scenarios. For example, a land 

manager might be interested to know where in their focus area adding a patch would be 

most valuable, or which patches would benefit most from reintroductions of captive bred 

rabbits. The following are several ways this model could be adapted and improved for 

use as a decision making tool for a specific area: Input dispersal probabilities based on 

firsthand knowledge of barriers, facilitators, and distance, or based on a GIS analysis of 

the area; adjust carrying capacities of the patches based on real NEC density data for 

those patches or based on knowledge of the patch’s suitability; define the temporal 

changes in carrying capacity of the patches based on management plans (e.g. will all of 

the patches be maintained indefinitely? Or will some become unsuitable over time?). 

Spatial data of managed and unmanaged habitat within the focus area is also needed. 

Then, this model can be used to compare scenarios that the land manager is 

considering with more accuracy and locally relevant results. 
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Conclusions 

In the metapopulation simulations, the Cape Elizabeth focus area had lower 

extinction risks and higher abundances of NEC than Kittery Berwick. More intensive 

management of habitat, and reintroductions of NEC, could improve metapopulation 

persistence. The focus area strategy, which involves prioritizing habitat restoration near 

other patches, is supported. The models I developed are sensitive to the variation in 

survival and recruitment (i.e., environmental variability), and the probability of 

catastrophe, suggesting that NEC metapopulations could be negatively impacted by 

variability and severe weather. Increasing frequency of severe winter storms with 

climate change could be a detriment to NEC survival, but this could be mitigated by 

monitoring and managing habitat, and reintroducing captive bred rabbits to vacant 

patches.  

 The models could be improved with more data and future research. Despite 

uncertainty about some of the model parameters, and, therefore, the accuracy of the 

predictions, these and other metapopulation models could be useful tools for land 

managers. Local data can be added (such as real data or estimates of dispersal 

between patches based on barriers and facilitators, carrying capacity of the patches, 

and the spatial distribution of managed and unmanaged habitat), for more locally 

relevant results. Then the model can be used to compare different management 

scenarios a land manager is considering.  
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Introduction 

 As part of an effort to conserve the species, habitat is being created, restored or 

maintained for New England cottontails (NEC) across New England and New York. 

Management practices include clearcutting, selective cutting, burning, removing 

invasives, and planting shrubs and trees. Management occurs on a variety of types of 

sites (e.g. old fields, forests, and coastal shrublands). Despite the diversity among 

managed habitat patches, the common goal is to create large patches of suitable NEC 

habitat, that consist of dense woody understory vegetation, presence of refuges, and 

access to herbaceous forage.  

 To evaluate the suitability of managed sites, a Habitat Suitability Index (HSI) was 

developed. An HSI is a model that incorporates all of the important habitat components 

(food, water, nesting areas, etc) for a species, and combines them to generate a 

suitability score for the site from 0 to 1. An HSI for NEC has been created to help guide 

the management of NEC habitat sites. Evaluating a site using this method can aid land 

managers in deciding how and when to manage a site and determine whether it is 

suitable for NEC.  

 

When to use this model 

This model is intended to be used on sites that have been selected for NEC 

habitat management. It is not intended to be used at a landscape scale or to identify 

potential NEC habitat management sites. It is assumed that before applying the HSI, the 

land manager has already determined that the site is large enough to accommodate 

NECs, and is in a suitable location on the landscape (e.g., is near other NEC habitat 

patches, the surrounding area is not overly hostile to NEC, etc.).  

This model can be used as a baseline before management in some cases, and 

may be useful for planning purposes. Due to the successional nature of NEC habitat, a 

site should be monitored using this method every 2-3 years or as the manager sees fit 

to determine whether a site is becoming more suitable or less suitable over time. The 

suitability score generated by the HSI can help a land manager decide when it is time to 

intervene and manipulate a site again.  
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This method provides a standardized measure of site suitability so that sites can 

be compared to one another. This is particularly useful in areas where an agency may 

be selecting sites to release captive bred NEC onto. The agency can assess the 

potential sites using the HSI and easily compare the suitability scores to one another in 

order to select the best site available for release.  

 

HSI Overview  

 The HSI for managed NEC habitat was developed based on previous NEC 

studies, expert opinion, and field data collected from NEC management sites. There are 

five habitat variables that are assessed (Table A1). Each variable is converted into a 

score from 0-1, and then the five scores are combined in the HSI model to generate a 0-

1 score for the site. 

 

Table A1: Habitat variables used in the New England cottontail Habitat Suitability Index 

 
Variable 
 

 
Definition 
 

 
V1: Security cover 

 
Percentage of the woody vegetation that has a cover 
density of >300,000 stem- cover units/ha  

 
V2: Other cover 

 
Percentage of the woody vegetation that has a cover 
density of 100,000-300,000 stem-cover units/ha  

 
V3: Height of woody cover 

 
Average height of the woody understory vegetation in 
the patch (meters) 

 
V4: Summer forage 

 
Edge-to-area ratio of grassy openings to woody cover 
(meters/ha) 

 
V5: Additional refuges 
 

 
Presence/absence of constructed brush piles, artificial 
burrows, rock walls, and stone foundations 
 

 

 

The HSI model is as follows, where the 0-1 score for each variable is used, except for 

V5 (refuges), which can only be 0 or 0.1:  
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Data Collection 

 

Variables 1, 2, and 3  

 

Variable 1: Security Cover, is the coverage of the woody vegetation on the site that is 

very dense. Very dense is defined as over 300,000 stem-cover units /ha. Variable 2, 

other cover, is the percentage of the woody vegetation that is moderately dense, or 

between 100,000 and 300,00 stem-cover units/ha. A stem-cover unit is the relative 

amount of cover provided by a type of plant (Table A2), for example, honeysuckle 

species tend to provide more cover per stem than a raspberry. This variable is 

measured by counting and identifying stems in sample plots. Variable 3 is the height of 

the woody understory vegetation, measured in meters. At each sample plot used to 

quantify cover density, the dominant height is also measured and then averaged for the 

site. 

 

 

 

 

 

 

 

 

 

 

HSI=    3* V1 +  2* V2 + V3 + V4    +V5 
  7 

 
Where:  
V1 = Security cover 
V2 = Other cover 
V3 = Vegetation height 
V4 = Summer forage 
V5= Refuges 

 



 

 76 

Table A2: The plant groups for which cover-units have been developed. 

Plant Group Cover-Units per Stem 

Eleagnus 13.16 

Berberis 8.72 

Cornus 4.28 

Evergreen trees 65.88 

Lonicera 31.09 

Juniperus 14.07 

Low-growing shrubs 2.63 

Rubus 1.00 

Rosa 5.81 

Spirea 1.88 

Deciduous trees 2.65 

Upright shrubs 6.56 

 

 

First, delineate the patch’s boundary using spatial software such as Google Earth 

or ArcMap. Plots will be 10x1 m, laid out perpendicular to and centered on transects. 

The transects and sample plots can be located in the field using a meter tape and 

compass (Method 1) or ahead of time using aerial photography and a GPS (Method 2), 

details on each approach are below and illustrated in Fig. A1. 

 Method 1: Transects are laid out North to south, unless the shape of the site is 

better suited to another orientation. Starting in the southwest corner, 10 m away from 

any edge of the patch, begin a transect heading North. Measure 30 m using a meter 

tape. At the 30 m mark, lay out a 10x1 msample plot centered on the transect and 

perpendicular. This can be achieved using a 5 m rope and 1m fiberglass rod or pvc 

pipe, or a measuring tape and flags. Repeat this process every 30m along the transect, 

remaining >10m from all edges. Begin the next transect 100m away and parallel to the 

first, and repeat until the entire site has been covered. If the site is a very irregular 

shape or very small, the transects may need to be 50 m apart instead of 100 in order to 

locate several usable plots.  
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 Method 2: Using Google Earth, ArcMap, or a similar program, make a set of 

points that will be the sample plot locations. Using the guidelines from method 1 

(transects 100 m apart and plots every 30 m) can help to streamline data collection if 

the site is difficult to traverse, compared to placing the plots along a square grid. The 

sample plots should all be at least 10 m from any edge, and there should be a sufficient 

number of plots based on the size of the site. Load the points onto a GPS to locate the 

sample plots in the field. At each point, lay out the 10x1 m sample plot area in a west to 

east orientation. This can be achieved using a 5m rope and 1 m fiberglass rod or pvc 

pipe, or a measuring tape and flags. 

 

 

Figure A1: Example of transect and sample plot layout at a site. Large areas with no woody vegetation, or 
with closed-canopy forest, are not included.  

 

 At each sample plot, the woody plant stems are inventoried. Woody stems 

should be counted if they are at least 0.5 m tall, and less than 7.5 cm DBH. Stems 

should be counted at ground-level, that is, if a stem splits into multiple stems above the 

ground, it should be counted as one (or however many stems are emerging from the 

soil). If some stems fall directly on the boundary of the plot, count every other one. 

Large	grassy	areas,	
not	assessed	for	
Variables	1,	2	and	3	

Total	
patch	area	

Woody	vegeta on	

Example	layout	of	
transects	and	
sample	plots	
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Identify the plant group (Table A2) that the stem belongs to, in order to convert the stem 

count to a stem-cover unit density later on. Use the data sheet provided (Appendix C) or 

similar. Visually assess the height of the vegetation in the plot area and measure the 

dominant height (representing the height of most of the vegetation, not necessarily the 

height of the tallest vegetation). Document the height in meters for each plot.  

 For each sample plot, find the stem-cover unit density using either a spreadsheet 

with embedded formulas, or manually by multiplying the stem count of each plant group 

by its cover-unit multiplier (Table A2). Then, find the percentage of plots with a density 

of >300,000 (Variable 1, security cover), and the percentage of plots with a density of 

100,000 to 300,000 (Variable 2, other cover). Average all of the sample plot heights for 

Variable 3, Height.  

 

Variable 4: Summer Forage 

 

 NEC utilize grass, legumes and other herbaceous growth for food during the 

growing season if it is near protective cover. Access to herbaceous forage on a site is 

measured as the edge to area ratio of grassy openings to protective cover. This is 

calculated using high resolution current aerial imagery, and a software program such as 

Google Earth or ArcMap. Usually the imagery available on Google Earth or Bing is 

sufficient, if other photography sets are not available. As NEC habitat sites are 

successional, and the site being evaluated may have been managed recently, it is 

important to verify the accuracy of the imagery in the field.  

 To calculate edge, delineate the edges between woody vegetation that serves as 

cover (shrubs, young trees and vines) and grassy openings that lack woody vegetation. 

Measure the edge in meters. Ignore grassy openings that are less than 3 m across in 

any direction, as these will likely soon be overtaken by woody vegetation and likely don’t 

provide significant foraging opportunities due to being shaded and small in size.  

 The area of the patch (in hectares) can also be calculated using aerial 

photography. Exclude areas obviously not used by NEC such as mature forest, large 

fields, etc. Sometimes the edge between cover and forage can also be the boundary of 

the patch, for example, if a shrub-dominated area borders a large grassy meadow. NEC 
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likely only use the edge of the meadow, so it’s not appropriate to include the entire 

meadow in the patch area.  

 To calculate the edge to area ratio of grassy openings to cover, divide the length 

of edge (meters) by the patch area (hectares).  

 

Figure A2: An example of using Google Earth to delineate the edge between herbaceous forage and 
protective cover, and the total patch area. The edge is shown in red, and the patch boundary in yellow.  

 

  

Variable 5: Refuges 

Variable 5 is the presence of refuges that NEC might use for additional protection. 

These include stone foundations and walls, brush piles (Fig. A3), burrows left by other 

animals, and artificial burrows. While sampling for variables 1-3, make note of any 

refuges seen. On sites where there is abundant dense woody vegetation, it is much 

more difficult to detect refuges, so this variable is measured as the presence or absence 

of refuges rather than a density of refuges.  

Herbaceous	Forage	

Edge	between	
herbaceous	

forage	and	cover	

Total	
patch	area	

Cover	
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Figure A3: A brush pile created to provide refuge for NEC. 

 

Entering data into the model 

 

 The measurements found for variables 1-5 are converted into 0-1 scores. For 

Variables 1-4, suitability curves have been developed for this purpose (Fig. A4). Simply 

identify the measurement found for the site on the x-axis and find the corresponding 0-1 

value, or use a spreadsheet with these functions embedded to automatically calculate 

the scores. Variable 5 does not have a suitability score, instead, this variable equals 0.1 

if refuges were found on the site, and 0 if not.  



 

 81 

 

Figure A4: Suitability index curves, used to convert the measurements of variables 1-4 into suitability 
scores from 0 to 1.  

 

Then, the scores for the 5 variables are combined in a weighted average to generate a 

0-1 score for the site:  
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Interpreting HSI Scores 

 

The HSI score provides a quantitative measurement for comparing sites to one 

another, and to monitor a site over time. If a site’s score begins to drop, it may be time 

to implement management practices. Recalculating the score every 2-3 years will help 

managers identify the point in time when a site becomes too overgrown for NEC. The 

individual variable scores provide insight into which habitat component requires 

improvement. When considering where to release captive bred NEC, managers could 

compare the HSI scores of all of the potential habitat patches in the area of interest.  

 

 

 

 

 

 

 

 

 

 

HSI=    3* V1 +  2* V2 + V3 + V4    +V5 
  7 
 
Where:  
V1 = Security cover 
V2 = Other cover 
V3 = Vegetation height 
V4 = Summer forage 
V5= Refuges 
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APPENDIX B: Developing Cover Values for Plant Groups 

New England cottontails require dense woody cover. This habitat feature is often 

measured by counting woody stems (e.g., Litvaitis, Sherburne, & Bissonette, 1985). 

However, the amount of cover provided by a single woody stem varies, depending 

partly on the species and height of the plant. Barbour and Litvaitis acknowledged this by 

assigning “stem cover units” which weighted coniferous stems more heavily than 

deciduous stems in their stem counts (Barbour and Litvaitis 1993). To further refine the 

estimated cover provided by different species, species commonly found in NEC habitat 

were divided into groups by structural similarities as illustrated in Figure B1, and 

analyzed with a profile density board (Nudds 1977).  

 

 

Figure B1: Several of the plant groupings used to evaluate cover per stem.  
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Ten sites known to have diverse vegetation suitable for NEC in Strafford county 

NH, Rockingham county NH, and York county ME were used as the study sites. At each 

site, samples from each of the plant groups were identified and measured. A sample is 

defined as a homogenous shrub, clump, or stand of woody vegetation that meets size 

criteria: height between 1m and 4m, and DBH under 7cm. For each sample, visual 

obstruction was estimated with a profile board (0.33 x 2 m) in 0.5 meter vertical 

quadrants from a distance of 5 meters, adapted from Nudds (1977). Species, number of 

stems, and height were also recorded. 478 total samples were collected. 

To determine the relative amount of cover provided by each group of plants, the 

% of the board obstructed was plotted against the number of stems for each sample. 

Then, a line was fitted to the points that was constrained to a y-intercept of 0 (because 0 

stems should yield 0% of the board obstructed). The slope of this line represents the 

obstruction, or cover, that each additional stem in the sample provides. These slopes 

were used to derive a cover coefficient (Table B1) that can be used to weight stem 

counts, much like Barbour and Litvaitis did with stem cover units (Barbour and Litvaitis 

1993). All slopes were divided by the value of the least slope, so that the group 

providing the least amount of cover by stem has a weight of 1 and all other groups are 

greater than 1.  

This data is being used to more accurately estimate the cover at a NEC habitat 

patch. The coefficients are applied to the stem counts collected, generating a “weighted” 

stem count for the site. Because a coefficient of 1 is assigned to the group providing the 

least cover, Rubus, it is difficult to compare the weighted stem count to a traditional 

stem count, and the traditional stem density thresholds (e.g., over 40,000 stems per ha 

provides sufficient cover for NEC) should not be applied. To avoid confusion, the 

weighted stem count for a plot or a site is referred to as the cover value.  
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Table B1: The slopes and cover values of the plant groups analyzed. 

Group Slope of Line Cover Value 

Eleagnus 5.66 13.16 

Berberis 3.75 8.72 

Cornus 1.84 4.28 

Evergreen trees 28.33 65.88 

Lonicera 13.37 31.09 

Juniperus 6.05 14.07 

Low-growing shrubs 1.13 2.63 

Rubus 0.43 1.00 

Rosa 2.50 5.81 

Spirea 0.81 1.88 

Deciduous trees 1.14 2.65 

Upright shrubs 2.82 6.56 
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Appendix C: Example field data collection sheet 
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