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ABSTRACT

STUDIES OF MOLYBDENUM COMPLEXES 

by

GREGORY W. ESTES

The primary goal of this research was to determine the feasibility 

of synthesizing anhydrous metal molybdates by the reaction of dehydrated 

ammonium molybdate with metal salts in nonaqueous media. In order to 

develop an appropriate dehydration technique, a preliminary study was 

made of the dehydration of ammonium oxalate monohydrate by triethylortho- 

formate and 2,2-dimethoxypropane. The anhydrous ammonium oxalate was 

prepared successfully, and the compound was characterized by infrared and 

mass spectrometry, chemical analysis, and by x-ray diffraction.

Triethyl orthoformate does not dehydrate ammonium paramolybdate 

tetrahydrate, but the hydrate does react with 2,2-dimethoxypropane, forming 

an methanol adduct of the molybdate with methanol produced in the dehydration 

by the hydrolysis of the 2,2-dimethoxypropane. This adduct is soluble 

in methanol, and reactions of this solution with a series of metal bromides 

were studied. The affinity of molybdenum for bridging oxygens is 

apparently so strong that it prevents formation of ionic molybdates, 

since only molybdenum oxides were obtained in these reactions.

In the orthoformate dehydration experiments with the ammonium 

molybdate a number of complex, presumably polymeric, compounds were 

isolated. Infrared and mass spectral data suggested that these were acid 

derivatives formed from the byproducts of the orthoformate reaction. In 

order to provide some known compounds with which to compare the spectra, 

the ammonium salts of the molybdenum complexes of oxalic acid, tartaric



acid, and phthalic acid were synthesized. The results indicate that 

only dicarboxylic acids of appropriate stereochemistry form this type 

of complex, and that the formate complexes, although acidic, are of a 

different, and perhaps new type.

x



INTRODUCTION

Anhydrous metal molybdates catalyze a variety of reactions.
1-3At present, these compounds are made by one of two methods. The 

first method consists of mixing an aqueous solution of a molybdenum 

compound, such as ammonium molybdate, with an aqueous solution of some 

metal salt, sometimes in hot solution. The precipitate is collected 

and must be dehydrated prior to use. This dehydration may produce a 

change in structure from one in which some or all of the molybdenum atoms 

have an octahedral environment^ to one in which all of the molybdenum 

atoms have tetrahedral environment.^

The second method consists of heating a mixture of molybdenum 

dioxide or molybdenum trioxide with a metal oxide or carbonate to a 

high temperature. Water is sometimes included in the mixture. The 

few occassions in which melts have been used as a reaction medium for 

the synthesis of metal molybdates also fall into this category. This 

method requires special handling and equipment and can result in undesir

able structural imperfections.

The primary goal of this study was to determine the feasibility 

of synthesizing anhydrous metal molybdates in nonaqueous solvents. A 

logical approach is to dehydrate ammonium paramolybdate tetrahydrate, 

(NH^^MOyC^'AI^O, and then react it with a metal salt in a nonaqueous 

solvent. Several methods of dehydrating ammonium paramolybdate tetra

hydrate are possible. When possible, these methods were tested with 

ammonium oxalate monohydrate, (NH^)2^2^4"^0, Pri°r to their extension 

to ammonium paramolybdate tetrahydrate. Ammonium oxalate monohydrate 

is readily available, inexpensive, and thermally unstable, and is of 

interest as a reducing agent and as a source of the oxalate ligand in 

nonaqueous solvents.
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One possible method is to thermally dehydrate ammonium para

molybdate tetrahydrate and react the dehydrated product with a metal salt

in a nonaqueous solvent. Although there is some disagreement among the
6*~10various reports, the thermal decomposition studies performed on

ammonium paramolybdate tetrahydrate at atmospheric pressure indicate that

both water and ammonia are lost near 100°C. Therefore, this method is

likely to work only with difficulty.

Hydrolysis reactions employing such compounds as orthoesters,

such as triethyl orthoformate, HCCOC^H,.)^, and ketals, such as

2,2-dimethoxypropane, (CH^)2C(OCH^)2> have been used successfully in
11-13dehydrating transition metal compounds. They may also be success

ful in dehydrating ammonium paramolybdate tetrahydrate.

Another possible method is based on the reversible formation of
14-31polyanions by ammonium molybdate with changing pH. The reaction

6*~ 2— 4* 29 32(Mo^024) + SNHg --- ►  7 MoO^ + 8NH^ occurs readily in aqueous solution. ’

Since ammonium paramolybdate is a tetrahydrate, it may undergo this

reaction in a nonaqueous solvent to product anhydrous ammonium molybdate,

(NH4)2Mo04.

A third possibility would be to synthesize the anhydrous ammonium 
31dimolybdate (NH4)2Mo20^, and then react it with a metal salt in a 

nonaqueous solvent.

Once an anhydrous ammonium molybdate is synthesized, it should 

be easy to react it with a metal bromide, or other anhydrous metal salt, 

in a nonaqueous solvent. An alternative method is to combine the 

reaction of the metal salt and ammonium paramolybdate tetrahydrate with 

the dehydration reaction by triethyl orthoformate. The presence of the



metal salt is likely to make the dehydration reaction easier and more

sure of success by increasing the ionic strength.

Attempts were made to synthesize several molybdenum carboxylates

in order to make some comparisons with the mass spectra of the molybdenum

compounds synthesized in the attempts to dehydrate ammonium paramolybdate

tetrahydrate and react the product with metal bromides. Molybdenum
33-37carboxylates appear to be easily synthesized, some are good reduc-

38tion catalysts, and carboxylic acids are often used in quantitative
39 40and qualitative analyses of various transition metals. ’
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CHAPTER I.

DEHYDRATION OF INORGANIC SALTS 

Experimental

A. Reagents

Analytical reagent grade methanol, ACS reagent grade acetoni- 

trile, and USP grade absolute ethanol were dried over Type 3A "Linde" 

Molecular Sieves. Other commercially available chemicals were used 

without further purifications.

Eh Elemental Analyses

CHN analyses were run by Mrs. Deanna Cardin on an F & M Model 

185 CHN Analyzer.

Ammonia was determined by Kjehldahl method.

Molybdenum was determined gravimetrically as the 8-quinolinol 
41-45complex. The sample was initially dissolved in an acidic hydrogen

peroxide solution to insure that all of the molybdenum was present as 

Mo (VI).

C. Preparation of Compounds

1_. Dehydration of Ammonium Oxalate Monohydrate by Triethyl 

Orthoformate

Ammonium oxalate monohydrate was refluxed with excess (<̂ 50 fold) 

triethyl orthoformate in an appropriate solvent. The quantities of 

reagents and reaction times used are shown in Table I.

Anal. Calcd for (NH^)2C20^: C, 19,34; H, 6.57; N, 22.58. Found:

C, 20.09; H, 6.25; N, 22.09.

A melting point determination showed that the product decomposed to 

gaseous products at 225°C. The powder pattern is different from the 

pattern for ammonium oxalate monohydrate. No pattern has been reported



Table I. The Quantities 
Monohydrate

of Reagents and Reaction Times Used for the Dehydration of Ammonium Oxalate

Ammonium Oxalate 
Monohydrate (g)

Triethyl
Orthoformate (ml)

Solvent Volume of 
Solvent (ml)

Time 
(Hr:Min)

0.80 50 1,2-Dimeth- 
oxyethane

100 3:00

0.70 50 methanol 100 2:10a

1.10 60 methanol 80 4:50

1.10 50 t-butanol 100 3:10a

1.20 70 acetonitrile 130 3:00

1.10 55 nitromethane 100 2:30

Reaction was not complete as determined by the comparison of the powder patterns with those for ammonium oxalate 
hydrate and anhydrous ammonium oxalate.

Ln
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for anhydrous ammonium oxalate.

2_. Dehydration of Ammonium Oxalate Monohydrate by 2,2-Dimethoxy

propane

1.32 g of ammonium oxalate monohydrate were refluxed in 110 ml 

of 2,2-dimethoxypropane (—100 fold excess), 1 ml of acetic anhydride, 

and 6 ml of acetic acid for 5.5 hr. The product was filtered and 

washed with methanol. The powder pattern was identical with the powder 

pattern of the product obtained by method #1.

3̂. Dehydration of Ammonium Oxalate Monohydrate by 2,2-Dimethoxy

propane in Dioxane

1.01 g of ammonium oxalate monohydrate were refluxed in 93 ml 

of 2,2-dimethoxypropane (— 110 fold excess), 6 ml of acetic acid, 2 ml of 

acetic anhydride, and 90 ml of dioxane for 3.6 hr. The product was 

filtered and washed with dioxane. A melting point determination showed 

that at 225°C the solid turned to a liquid which boiled immediately.

Anal. Calcd for (NH^) 2^2® b' 1/2C^Hg02: C, 23.36; H, 6.54; N, 18.18.

Found: C, 21.38; H, 6.02; N, 18.70.

4:. The Attempted Dehydration of Ammonium Paramolybdate 

Tetrahydrate by Triethyl Orthoformate in 1,2-Dimethoxethane

Three trials were made, which gave the same basic results.

Trial #1: 10.59 g of ammonium paramolybdate tetrahydrate were

refluxed in 240 ml of 1,2-dimethoxyethane and 160 ml of triethyl ortho

formate ('*25 fold excess) for 9.5 hr.

Anal. Found: C, 17.28; H, 3.17; Mo, 43.29; N, 5.50.

Trial #2: 8.59 g of ammonium paramolybdate tetrahydrate were

refluxed in 240 ml 1,2-dimethoxyethane and 155 ml of triethyl ortho

formate (r*25 fold excess) for 19 hr.
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Anal. Found: C, 19.54; H, 3.07; Mo, 41.04; N, 6.26.

Trial #3: 5.10 g of ammonium paramolybdate tetrahydrate were

refluxed in 175 ml of 1,2-dimethoxyethane and 70 ml of triethyl ortho

formate (~100 fold excess) for 4.3 hr.

Anal. Found: C, 17.00; H, 2.98; N, 5.30.

All three products were brown tars and appear to be the same in other 

respects. Two other trials apparently did not go to completion.

5̂. Attempted Dehydration of Ammonium Paramolybdate Tetrahydrate 

with Triethyl Orthoformate in Ethanol

1.74 g of ammonium paramolybdate tetrahydrate were refluxed 

with 9.13 g of triethyl orthoformate ('*•15 fold excess) in 50 ml of 

ethanol for 3 hr. The solution turned brown while it was being heated, 

but the color faded as it cooled. Some of the solution was distilled 

off and a tan solid was filtered out and washed with ethanol.

Anal. Found: C, 24.92; H, 5.34; Mo, 45.12; N, 5.49.

6_. The Attempted Dehydration of Ammonium Paramolybdate 

Tetrahydrate by 2,2-Dimethoxypropane in the Presence of Acetic Anhydride 

Two trials were made for this synthesis, the first of which 

apparently did not go to completion.

Trial #1; 2.45 g of ammonium paramolybdate tetrahydrate were

refluxed in 100 ml 2,2-dimethoxypropane (•'■45 fold excess), 7 ml of acetic 

acid, and 1 ml of acetic anhydride for 2.25 hr.

Anal. Found: C, 20.13; H, 3.72; Mo, 48.90; N, 3.68.

Trial #2: 4.73 g of ammonium paramolybdate tetrahydrate were

refluxed with 200 ml of 2,2-dimethoxypropane (~60 fold excess), 10 ml of 

acetic acid, and 0.1 ml of acetic anhydride for 5 hr.

Anal. Found: C, 25.29; H, 4.19; Mo, 35.36; N, 3.95.
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]_. The Dehydration of Ammonium Paramolybdate Tetrahydrate by

2,2-Dimethoxypropane

2.08 g of ammonium paramolybdate tetrahydrate were refluxed 

with 100 ml of 2,2-dimethoxypropane (A500 fold excess) and 7 ml of 

acetic acid for 2.5 hr. The white product was filtered and washed 

with methanol. This product appears to be soluble in methanol. The 

powder pattern is different from that for ammonium paramolybdate 

tetrahydrate or that for anhydrous ammonium paramolybdate.

Anal. Calcd for (NH^)^Mo 02^*5CH30H: C, 4.53; H, 3.34; Mo, 50.73;

N, 6.34. Found: C, 4.48; H, 2.81; Mo, 51.10; N, 5.70.

J3. The Attempted Dehydration of Ammonium Paramolybdate 

Tetrahydrate by 2,2-Dimethoxypropane in Acetonitrile

3.93 g of ammonium paramolybdate tetrahydrate were refluxed 

in 125 ml of 2,2-dimethoxypropane (f'dZOO fold excess), 5 ml of acetic 

acid, and 70 ml of acetonitrile for 3.5 hr. The tan solid product was 

filtered out and washed with acetonitrile.

Anal. Found: C. 16.24; H, 3.35; Mo, 44.77; N, 4.63.

9_. Control Experiment - The Reaction of Ammonium Paramolybdate 

Tetrahydrate with Methanol

0.84 g of ammonium paramolybdate tetrahydrate were dissolved 

in 200 ml of methanol and allowed to stand for 4.5 hr. Some methanol 

was distilled off and the white product was filtered out.

Anal. Found: C, 0.90; H, 1.38; Mo, 58.36; N, 4.48 (N/Mo mole ratio

is 4/8).

10. The Reaction of Ammonium Paramolybdate Tetrahydrate with 

Ammonia in Methanol

Two trials were attempted for this reaction. Ammonia solutions 

in methanol were produced by passing ammonia through a column of barium
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46oxide and a glass frit into dry methanol.

Trial #1: 1.47 g of ammonium paramolybdate tetrahydrate were

dissolved in 200 ml of the ammonia solution in methanol and 100 ml of 

methanol and allowed to stand for 7 hr. The undissolved solid was 

filtered out, some methanol was distilled off, and the white product 

was filtered out.

Anal. Found: C, 0.82; H, 2.18; Mo, 56.32; N, 6.64.

Trial #2: 1.83 g of ammonium paramolybdate tetrahydrate were

dissolved in 200 ml of the ammonia solution in methanol and allowed to

stand for 2.5 hr. Some methanol was distilled off and the white solid

was filtered out.

Anal. Found: C, 2.25; H, 2.35; Mo, 43.87; N, 5.25.

The N/Mo mole ratio is 6/7 in both cases.

£. Infrared Spectra

Infrared spectra were run as KBr pellets on a Perkin Elmer 

Model 337 Infrared Spectrometer. The instrument was calibrated against 

polystyrene.

The infrared spectra are shown in Figure 1 through 7.

I). Mass Spectra

Mass spectra were run by Mr. Michael Pazdon on a Hitachi 

Perkin-Elmer Model RMU-6E Mass Spectrometer. Two computer programs 

have been adapted to aid in the interpretation of mass spectra*^

(see the appendix).

The mass spectra are given in Tables II through V.

IL* X-ray Powder Patterns

X-ray powder patterns were run using the Debye^Scherrer method, 

57.3 and 114.6 mm cameras employing the Straumanis mount were used.

The samples were loaded in 0.3 mm diameter capillaries and exposed to



nickel-filtered CuKOL radiation, \=1.5418 A°.

The powder patterns are given in Tables VI and VII.

Unit cells were determined by the unit cell series of computer
51-53programs (including DeWolff comparison).
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Figure 1. The Infrared Spectrum of Anhydrous Ammonium Oxalate
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Figure 2. The Infrared Spectrum of the Ammonium Oxalate-Dioxane Adduct
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Figure 3. The Infrared Spectrum of the Product of the Reaction of 
Ammonium Paramolybdate Tetrahydrate with Triethyl Orthoformate in
1,2-Dimethoxyethane
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Figure 4. The Infrared Spectrum of the Product of the Reaction of 
Ammonium Paramolybdate Tetrahydrate with Triethyl Orthoformate in 
Ethanol
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Figure 5. The Infrared Spectrum of the Product of the Reaction of 
Ammonium Paramolybdate Tetrahydrate with 2,2-Dimethoxypropane in the 
Presence of Acetic Anhydride



20

2*5 3-0 3-5 4-0 MICRONS 5-0 6-0 8-0

0-00-0

1-0 1-0

oo oo
4000 3500 3000 2500

FREQUENCY (CMJ)

2000 1500

MICRONS 15.0 20-0 25-0
* ■ i i i  i  i i  i  i  i i

oo oo
1300 1200 1100 1000 900 800

FREQUENCY (CM1)
700 600 500 400



21

Figure 6. The Infrared Spectrum of ( N H ^ ) *SCH^OH
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Figure 7. The Infrared Spectrum of the Product of the Reaction of 
Ammonium Paramolybdate Tetrahydrate with 2,2-Dimethoxypropane in 
Acetonitrile
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Table II. The Mass Spectrum of Anhydrous Ammonium Oxalate

m/e %

100 13

66 47

65 11

57 10

56 95

55 99

54 90

51 91

50 46

49 18

48 50

46 76

45 18

41 51

40 16

39 93

38 100

37 44

28 93

27 88

26 83

25 73

24 24
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Table III. The Mass Spectrum of the Product of the Reaction of 
Ammonium Paramolybdate Tetrahydrate with Triethyl Orthoformate in
1,2-Dimethoxyethane

m/e %

206 19

97 26

94 30

69 38

60 32

58 30

57 42

56 21

55 38

46 36

44 74

43 96

42 26

41 38

39 26

m/e %

38 21

36 58

32 70

31 36

30 83

29 57

27 75

26 23

20 19

19 21

18 28

17 32

16 100

15 92



27

Table IV. The Mass Spectrum of the Product of the Reaction of Ammonium 
Paramolybdate Tetrahydrate with 2,2-Dimethoxypropane in the Presence of 
Acetic Anhydride

m/ e % m/e % m/e %

281 9 119 60 71 66

264 12 115 100 69 91

263 35 114 41 68 79

207 29 113 97 67 91

206 29 111 35 64 87

189 40 109 43 61 81

188 99 101 47 60 72

187 43 100 49 59 72

173 56 99 84 55 74

172 94 98 41 54 43

161 40 97 56 49 79

160 51 89 69 48 63

159 66 88 41 47 68

156 34 87 51 46 32

146 37 86 65 45 66

145 81 85 66 44 12

144 88 83 49 43 82

143 88 82 54 35 34

141 40 81 85 33 54

133 46 80 78 32 60

132 90 79 35 31 41

131 65 75 44 18 74

129 52 74 63 17 62

127 59 73 68 16 44

120 31 72 44 15 41
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The Mass Spectrum of ( N H ^ ) •5CHgOHTable V.

m/e

242

167

45

42

30

28

17

16

13

%
26

28

86
11

68

100

22

28

39
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Table VI. The Powder Pattern for Anhydrous Ammonium Oxalate (114, 
Film)

J *o
obsd’ d . ,, A° calcd V'o

hkla

6.810 6.77874 m 010

6.416 6.39172 vw oil

5.681 5.67518; 5.62145 m 101, 100

5.471 5.49345; 5.40448 s 110, 111

5.039 5.04591;
4.94711

5.01857; m 102, 003,

4.271 vw

3.770 3.76393; 3.74281 w 004, 111

3.591 3.58253; 3.57707 s 112, 120

3.507 3.51474;
3.47575

3.48793; m 121, l04,

3.187 3.19586;
3.17607

3.17773; w 022, 122,

3.100 3.10247; 3.09001 s 111, 112

3.018 3.03158; 3.01114 vs 212, 005

2.831 2.84474; 2.83759 w 015, 202

2.746 2.74673; 2.73696 s 220, 113

2.652 2.66305;
2.65113;

2.63907;
2.63907

w 201,
221

2l2,

2.578 2.57816 m 111

2.468 2.47355; 2.46739 vw 222, 202

2.417 2.42250;
2.41769;
2.41680;
2.41062;

2.41809;
2.41694;
2.41089
2.40797

s 0l6,
131,
116,

131,
024,
213

2.309 2.31378; 2.30094 w 105, 210

2.276 2.28146;
2.27361;

2.28058;
2.27225

vw 223,
122

116,

continued -

6 mm

111

113

014

124,

114,
121,

213',
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Table VI. Continued

dobsd’ A dcalcd* A I/I hkl

2.222 2.21770 vw 032

2.191 2.18944; 2.18363 vw ■232, 225

2.132 2.13057; 2.12954 vw 033, 106

2.103 2.10677;
2.10472;
2.10294;
2.09648

2.10580;
2.10325;
2.09758;

m 206,
017,
125

026
117

2.058 2.05522;
2.05432;

2.05482;
2.05313

w 312,
204

311

1.981 1.98013; 1.97913 w 323, 233

1.896 1.89857;
1.89173;

1.89857;
1.89162

vw 135, 
027

216

1.866 1.87084;
1.86835;
1.86680;

1.87066;
1.86728;
1.86237

vw 22l,
034,

132
205

1.847 1.84835; 1.84369 w 331, 223"

1.704 1.70549;
1.70049

1.70130; vw 143, 206

1.637 1.63720; 163378 w 226, 223

1.615 1.61753;
1.61691;

1.61734;
1.61494

w 217,
137

137

1.480 1.47886 vw 313

1.439 1.44019;
1.43962;
1.43691

1.44003;
1.43755;

vw 422,
402,

151
144

1.042 1.04268; 1.04191 vw 424, 256'

1.001 1.00174; 1.00039 vw ■614, 174

0.991 0.99129; 0.99116 vw 471, 254

233, 
126,

134,

303,

235, 
130

041

237,

252,

a. Based on the unit cell given in the text on page 34.
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Table VII. The Powder Pattern of (NH^gMo^C^'SCHgOH (114.6 mm Film)

d . ,, A° d . ,, A° I/I hkl3obsd calcd o

10.704 10.91108; 10.75385 s 010, 100

9.707 9.76362 s 011

9.137 9.03552 s 101

8.124 8.03851 s TlO
7.762 7.84314 s 002

7.381 7.44769; 7.32880 s 111, 110

6.948 7.02797; 6.94905; s 111, 012, 111
6.89229

6.398 6.45785 s 102

5.405 5.44609; 5.37692; m 021, 200, 112
5.36407

5.025 5.05699; 5.02662; w 120, 201, ill,
5.01996; 5.01592; 112, 210
5.00966

4.345 4.35630; 4.35091; w 202, 122', 211
4.33991

4.162 4.16126, 4.14514 w 022, 212

3.924 w

3.818 3.82965; 3.80724 w 212, 221

3.676 3.68440; 3.66440 w 221, 220

3.494 s

3.330 s

3.208 m

3.102 m

2.937 m

2.780 vw

2.644 vw

continued -
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Table VII. Continued

d v A° obsd

2.412

2.356

2.316

2.201
2.083

1.971

1.904

1.804

1.734

1.568

1.472

1.330

^calcd* ^

w

w

w

vw

vw

vw

vw

vw

vw

vw

vw

vw

hkl

a. Indices determined on the basis of the unit cell described in the 
text on page 35.
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2_. Results and Discussion

A. Ammonium Oxalate

The fact that the products of the reaction of ammonium oxalate 

hydrate with the various dehydrating agents in various solvents decom

pose at 225°C (Erdey, Gal, and Liptay^ reported that ammonium oxalate 

monohydrate decomposes at 235°C) is a good indication that the products 

are ammonium oxalates. The elemental analysis is also in reasonable 

agreement with the calculated values.

The mass spectrum of the "anhydrous" ammonium oxalate contains 

a number of fragments that correspond to some of the decomposition 

products, such as formic acid (m/e=46) and carbon monoxide (m/e=28).

The infrared spectrum contains the usual band for the ammonium ion at

about 2400 cm  ̂ (probably lowered because of hydrogen bonding). The
-1infrared band above 3500 cm is at too high a frequency to be a water

peak and is attributable to hydrogen bonding between the ammonium ion

and the oxygens in the oxalate group. The band at about 1380 cm  ̂can

be attributed to carbon-oxygen vibrations and the band at 760 can be

attributed to C-C vibrations.

The reaction of ammonium oxalate with 2,2-dimethoxypropane in

dioxane yields a product that decomposes to a liquid that immediately

boils away. This indicates, probably, that the ammonium oxalate

decomposes, leaving the dioxane (b. p. 101°C) which would immediately

boil. The infrared spectrum has the usual ammonium ion (3200 cm "S

and C=0 (1620 cm ) absorptions, as well as a broad band at about

1220 cm  ̂which is attributable to cyclic C-0 vibrations. There are
-1 -1also bands which correspond to C-C vibrations (770 cm and 720 cm ) 

and CH2  vibrations (640 cm .
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The data indicate that all of the techniques tried were

successful in dehydrating ammonium oxalate monohydrate. The reaction

in dioxane probably leads to a dioxane adduct. Although the required

reaction time apparently varies with the solvent chosen, there is no

correlation with any of the usual solvent properties, such as boiling

point, dielectric constant, etc. The data are not sufficient to test
54the presure/volume approach discussed by Dack.

The unit cell determination for anhydrous ammonium oxalate 

gave a triclinic cell with the parameters a=6.213 A°, b=7.385 A°, 

c=15.406 A°, a=90.3,yg=101.2°, and y=112.2°.

15. Ammonium Paramolybdate

The infrared spectra of the products of the reactions of

ammonium paramolybdate tetrahydrate with triethyl orthoformate and

the reaction of ammonium paramolybdate tetrahydrate with 2,2-dimethoxy-
-1propane and acetic anhydride have aborptions near 1600 cm that indi-

-1cate C=0 vibrations, and near 3400 cm that indicate the presence of 

the ammonium ion. The mass spectra of the products of the reaction of 

ammonium paramolybdate tetrahydrate with triethyl orthoformate in

1,2-dimethoxyethane and the product of the reaction of ammonium 

paramolybdate tetrahydrate with 2,2-dimethoxypropane and acetic anhy

dride have m/e peaks at 44, which corresponds to a CC^ fragment from 

an organic acid, and at 18, which corresponds to an ammonium ion,

These compounds may be polymeric acid derivatives. It is known that

metal molybdates catalyze the hydrogenation of the carbonyl groups
, „ 55, 56of esters.
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The product of the reaction of ammonium paramolybdate with

2.2-dimethoxypropane is probably not an acid derivative, in spite of 

the infrared absorption at about 1600 cm \  because there is no mass 

spectrum peak at m/e=44 from a CO2  fragment of an acid. The infrared 

absorption at about 1600 cm  ̂is attributable to an NH vibration or to 

an overtone of an Mo-0 vibration that occurs at a lower frequency. The 

presence of 0-H (1420 cm )̂ , C-0 (1030 cm , and CI^ (1320 cm \

930 cm "*■) bands in infrared spectrum indicate that this compound may be

a methanol adduct. Molybdenum compounds in which alcohols are coordinated
57 58 59to molybdenum have been reported for manitol, ’ chloral hydrate

(which is a geminal diol^) , ethanol,^ and m e t h a n o l . ^  The infrared

absorption at 3200 cm indicates that it is an ammonium salt. The unit

cell determination gave two triclinic cells that fit the powder pattern

equally well and are probably variations of the same cell. The first

cell has the parameters a=10.808 A°, b=11.112 A°, c=15.920 A°, QC=99.56°,

0=91.51°, and *^=94.98°. The second cell has the parameters a=11.673 A°,

b=ll.974 A°, c=15.347 A°, Ct=103.19°, 0=92.59 A°, and y=111.98°. A

qualitative inspection of the indices for the d values generated by the

two cells indicates that the first cell may be the correct one because

it gives simpler indices. The indices based on the first cell are given

in Table VII.

The reaction of ammonium paramolybdate tetrahydrate with

2.2-dimethoxypropane in acetonitrile yielded a tar. It is an ammonium 

salt (infrared absorbtion at 3150 cm ■*■) . It probably is not a nitrile

adduct since there is no cSn absorption at about 2000 cm A nitrile

will hydrolyze in acid solution, and this could cause an acid derivative

to be synthesized with an infrared absorption at 1600 cm \
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The only reaction that appears to have occured when ammonium 

paramolybdate tetrahydrate was dissolved in a solution of ammonia in 

methanol was the replacement of some water of hydration by some metha

nol. When ammonium paramolybdate was dissolved in methanol, the N/Mo 

mole ratio decreased from 6/7 to about 4/8, possibly because of the 

reactions ( N H ^ ) + 3NH^ and >

(NH^^H^Mo^C^ + This is supported by the fact that 4 M solutions
46of ammonia in methanol can be prepared easily. The acid-base properties 

of the ammonium paramolybdate may be affected by the change in solvent 

to a large enough extent to allow this reaction to occur. The resulting 

molybdenum compound could also lose water of hydration, in a manner 

similar to the reaction of ammonium paramolybdate tetrahydrate in the 

solutions of ammonia in methanol.
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3̂. Conclusions

Ammonium oxalate monohydrate and ammonium paramolybdate tetra

hydrate were dehydrated by 2,2-dimethoxypropane in the presence of small 

amounts of acetic acid to give anhydrous ammonium oxalate and a methanol 

adduct of ammonium paramolybdate with five coordinated methanol molecules. 

Ammonium oxalate was also dehydrated by triethyl orthoformate, and this 

reaction shows some solvent effects. Ammonium paramolybdate tetra

hydrate reacted with triethyl orthoformate to give tars and this reaction 

also showed some solvent effects. Attempts to form anhydrous ammonium 

molybdates by reacting ammonium paramolybdate tetrahydrate with ammonia 

in methanol were also unsuccessful.
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CHAPTER II. 

METAL MOLYBDATES

_1. Experimental

A. Reagents

See Chapter I, page 4.

Analyses

CHN Analyses were run by Mrs. Deanna Cardin on an F & M Model 

185 CHN Analyser.

The analysis for molybdenum is that described in Chapter I, page 4.
42 43EDTA was added as a masking agent for the other metals. ’

Copper was determined gravimetrically as the 8-quinolinol
41,44 , , 64 , „ 65-67complex, the anthranxlate, or the thxocyanate.

Cadmium was determined gravimetrically as the 8-quinolinol

complex^’ ^  or the thiourea reinickate.*^
69Bismuth was determined volumetrically as the EDTA complex or 

gravimetrically as the oxychloride.^

Bromide was determined by the Mohr method.

Ch Compound Preparation

_1. Metal Bromides

Copper(II), cadmium(II), bismuth(III), and tin(IV) bromides were

prepared by adding increments of elemental bromine to the metal in dry
71methanol until all of the metal had reacted. Solid CuB^ could be 

dissolved directly in methanol with no apparent affect on the results.

2_. Anhydrous Ammonium Paramolybdate

Anhydrous ammonium paramolybdate was prepared by refluxing 

ammonium paramolybdate tetrahydrate with 2,2-dimethoxypropane and
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acetic acid in a manner similar to the described in Chapter I. The 

fact that no hydrolysis products of the metal bromides were observed 

indicates that the reaction was probably successful.

3_. Attempted Synthesis of Cadmium Molybdate

Cadmium bromide was made from 2.35 g (0.021 moles) of cadmium 

and 2.0 ml of bromine in 50 ml of methanol. Anhydrous ammonium 

paramolybdate was made from 3.20 g (0.0026 moles) of ammonium 

paramolybdate tetrahydrate, 190 ml of 2,2-dimethoxypropane, and 9 ml 

of acetic acid. 55 ml of methanol, the anhydrous ammonium paramolybdate, 

and the solution of CdB^ were mixed and stirred for 5.5 hr. The product 

was filtered out and washed and methanol.

Anal. Found: H, 1.64; Cd, 3.37; Mo, 47.34.

Another trial with a different reaction time and a different 

ratio of reactants gave the same results.

4_. Attempted Synthesis of Tin Molybdate

Tin bromide was made from 0.43 g (0.0036 moles) of tin and 

1.8 ml of bromine in 43 ml of methanol. Anhydrous ammonium paramolybdrate 

was made from 1.51 g (0.0012 moles) of ammonium paramolybdate tetrahydrate, 

190 ml of 2,2-dimethoxypropane, and 4 ml of acetic acid. The anhydrous 

ammonium paramolybdate, 47 ml of methanol, and the solution of tin 

bromide were mixed and stirred for 3.5 hr. Analysis of the powder 

pattern and qualitative chemical tests showed that the product probably 

contained tin bromide, ammonium bromide, and an ammonium molybdate or 

a molybdenum oxide. Another trial with a different reaction time and 

a different ratio of reactants gave the same results.

_5. Attempted Synthesis of Bismuth Molybdate.

Method #1: Bismuth bromide was made from 4.9 g (0.023 moles)

of bismuth and 3.7 ml of bromine in 50 ml of methanol. Anhydrous



40

ammonium paramolybdate was made from 7.07 g (0.0057 moles) of ammonium 

paramolybdate tetrahydrate, 220 ml of 2,2-dimethoxypropane, and 6 ml of 

acetic acid. The anhydrous ammonium paramolybdate, 75 ml of methanol, 

and the bismuth bromide solution were mixed and stirred for 8 hr. The 

product, when dried, was a yellow solid with blue streaks.

Anal. Found: H, 3.30; Bi, 8.25; Mo, 24.89; N, 11.47.

The powder pattern showed that a molybdenum oxide was produced that is 

similar to that producted in the reaction of anhydrous ammonium 

paramolybdate with cadmium bromide. The bismuth may have been in the 

form of bismuth bromide. Other reaction times and other ratios of 

reactants were tried with the same results.

Method #2: Bismuth bromide was made from 2.84 g (0.014 moles) 

of bismuth and 4 ml of bromine in 55 ml of methanol. Anhydrous ammonium 

paramolybdate was made from 4.34 g (0.0035 moles) of ammonium paramolybdate 

tetrahydrate, 180 ml of 2,2-dimethoxypropane, and 5 ml of acetic acid.

The anhydrous ammonium paramolybdate, 45 ml of methanol, and the bismuth 

bromide solution were mixed and refluxed for 3.25 hr.

Anal. Found: C, 1.12; H, 1.47; Bi, 1.91; Mo, 46.94.

Other reaction times and reactant ratios were tried with similar results. 

j6. Attempted Synthesis of Copper Molybdate 

Method //I: Anhydrous ammonium paramolybdate was made from

4.61 g (0.0037 moles) of ammonium paramolybdate tetrahydrate, 200 ml of 

2,2-dimethoxypropane, and 7 ml of acetic acid. The anhydrous ammonium 

paramolybdate, 4.60 g (0.021 moles) of copper(II) bromide, and 140 ml 

of methanol were mixed and stirred for 0.5 hr.

Anal. Found: C, 0.93; H, 1.82; Cu, 3.36; Mo, 56.44; N, 4.35.

The powder pattern showed that the copper was in the form of anhydrous
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copper(II) bromide. Other reaction times and reactant ratios were 

tried with the same results.

Method #2: Copper(II) bromide was made from 0.73 g (0.011 moles) 

of copper metal and 2 ml of bromine in 55 ml of methanol. Anhydrous 

ammonium paramolybdate was made from 4.34 g (0.0035 moles) of ammonium 

paramolybdate tetrahydrate, 200 ml of 2,2-dimethoxypropane, and 3 ml 

of acetic acid. The copper(II) bromide solution, and the anhydrous 

ammonium paramolybdate, were mixed and refluxed for 50 min.

Anal. Found: C, 1.52; H, 1.76; Mo, 47.46.

Other reaction times, reactant ratios, and commercial copper(II) bromide 

were used with the same results.

Method #3: 2.26 (0.010 moles) of copper(II) bromide, 4.78 g

(0.0039 moles) of ammonium paramolybdate tetrahydrate and 14.84 g (0.10 

moles) of triethyl orthoformate were refluxed in 65 ml of methanol for 

2 hr. A green solid was filtered out that contained copper and bromine, 

but no molybdenum, and whose powder pattern has lines in common with the 

reported pattern for (NH^^CuBr^^I^O. When some methanol was stripped 

off of the filtrate, a white solid was isolated.

Anal. Found: C, 1.13; H, 1.64; Mo, 57.28; N, 3.65.

The N/Mo mole ratio is 1/2. Other reactant times and ratios of reac

tants were tried with no effect on the results. Using ethanol instead 

of methanol as the solvent also did not affect the results.

D. X-ray Powder Patterns

X-ray powder patterns were run as described in Chapter I page 9.

IS. Infrared Spectra

Infrared spectra were run as described in Chapter I page 9.



Figure 8. The Infrared Spectrum of the Product of the Reaction of 
Ammonium Paramolybdate Tetrahydrate, Cupric Bromide, and Triethyl 
Orthoformate in Methanol.
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2_. Results and Discussion

The reaction of ammonium paramolybdate tetrahydrate with copper(II)

bromide and triethyl orthoformate apparently gave a hydrated copper(II)
+ -1 bromide and an ammonium molybdate (NH^ infrared absorbtion at 3200 cm ).

The copper(II) bromide seemed to act as a better dehydrating agent than

triethyl orthoformate.

The reactions of anhydrous ammonium paramolybdate with metal

bromides gave molybdenum oxides. The ammonia may have been lost in a

manner similar to the process that takes place when ammonium paramolybdate

tetrahydrate is dissolved in methanol. The equilibrium may have been

shifted by the presence of the metal bromide and the absence of water

of hydration.
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CHAPTER III.

MOLYBDENUM CARBOXYLATE 

1. Experimental

A. Reagents

See Chapter I, page 4. Molybdenum trioxide was dried at 135°C 
72overnight prior to use. Anthranilic acid had been recrystalized pre

viously.

IJ. Analyses

CHN analyses were as described in Chapter I, page 4.

The procedure for the molybdenum analysis was that described 

in Chapter I, page 4. The precipitate in the case of the oxalate 

complex was red and the value obtained did not agree with the calculated 

value. This is probably due to two factors:

1. Oxalic acid will react with the molybdenum oxinate, when heated, to
45give molybdenum trioxide.

2. 8-Quinolinol reacts with the Mo(V) oxalate complex to form a red
73complex with the molybdenum/oxalate/oxine ratio of 2:2:2.

Mixed oxine/acid complexes might have formed in a few of the other 

cases also.

C. Preparation of Compounds 

1. Method #1
33 34The method described by Killefer and Linz, Kay and Mitchell,

35 36 37Henderson et al, ’ and Gopalakrishman et al. was attempted for all

of the ligands. A solution of the ammonium salt of the carboxylic acid

was produced either by dissolving the ammonium salt itself in water or

by dissolving the acid in water and adding enough ammonium hydroxide to
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bring the pH to about 7. Table VIII gives the quantities of reagents 

used. A 1:1 mole ration was used in all cases. The solution was brought

Table VIII. The quantities of Reagents used in the Synthesis of the 
Molybdenum Carboxylates

Acid grams of 
acid used

grams of 
ammonium salt 
used

ml 15 M
NH.OH4

grams
MoO,
used

acetic

benzoic

oxalic

succinic

tartaric

anthranilic

mandelic

phthalic

(4.lml)
4.0537

0.7572

4.0446

5.1147

4.4260

4.9223

5.3324

2.7011

8.1939

2.15

4.60

4.40

2.70

2.30

4.50

4.7693

4.6315

4.6188

4.7406

4.6370

4.6082

4.7050

4.7050

to a boil and the MoO^ was added in small increments. Each increment 

was allowed to dissolve before the next was added. The undissolved 

material was filtered out, and the solution was heated until the product 

started to precipitate out. The solution was cooled in an ice bath, and 

the product was filtered and washed with cold water.

The reaction of mandelic acid with molybdenum trioxide gave 

a blue solution, probably caused by molybdenum blue (a reduced form of 

molybdenum), and gave off a distinct odor like that of benzaldehyde.

The elemental analyses of the other products are given in Table IX.

2_. Method #2

A second method was attempted for anthranilic acid. 6.06 g 

(0.0049 mole) of ammonium paramolybdate tetrahydrate were dissolved in



Table IX. Elemental Analyses for the Products of Method
m=number of ammonium ions, n=inumber of ligands coordinatf

Acid %C ZH

Acetic Calc 10.04 3.79
Found 2.29 1.20

Benzoic Calc 28.00 3.36
Found 3.03 2.81

Oxalic Calc 8.39 3.52
Found 10.70 3.94

Tartaric Calc 13.87 4.08
Found 13.92 3.81

Phthalic Calc 26.51 3.90
Found 26.64 4.03

Succinic Calc 15.28 4.49
Found 6.93 2.70

Anthranilic* Calc 26.58 3.83
Found 60.97 5.00

*Calc for anthranilic acid C, 61.13; H, 5.13; N, 10.22.

(% Calculated for (NH,) MoO„(Acid) ’H-O,h- in j n £

%Mo %N n

40.14
51.80

5.86
4.52

1 1

31.98
51.06

4.67
6.63

1 1

33.54
20.66

9.79
10.94

2 1

27.72
25.24

8.09
8.06

2 1

26.50
23.00

7.74
7.70

2 1

30.55
43.99

8.92
6.43

2 1

30.36
1.99

8.86
10.44

1 1

■P-
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75 ml of water and 25 ml of buffer solution. The buffer solution was 

made up of 4 parts of a 50% (v/v) acetic acid solution and 3 parts of 

a 50% (w/v) ammonium acetate solution. 4.50 g (0.033 mole) of anthranilic 

acid were dissolved in 39 ml of a 1 F sodium hydroxide solution. The 

anthranilic acid solution was filtered and diluted to 100 ml with water. 

The ammonium paramolybdate solution was brought to a boil, and the 

anthranilic acid solution was added. A brown precipitate formed 

immediately, then gradually changed color to light tan as the solution 

stood. The solid was filtered out and washed once with hot water and 

three times with cold water.

Anal. Found: C, 4.56; H, 1.24; Ho, 52.51; N, 3.27.

Reaction of Ammonium Molybdenum Oxalate with Copper(II)

Chloride

The ammonium molybdenum oxalate complex was reacted with 

copper(II) chloride as follows: A solution containing 0.5778 g (.0034

mole) of copper(II) chloride was mixed with a solution containing 

0.5893 g (.002 mole) of the ammonium molybdenum oxalate complex. The

blue solid was filtered out and washed with water.

The product did not contain any molybdenum and its powder 

pattern contained a large number of lines in common with the file 

pattern for copper(II) oxalate.

13. Infrared Spectra

Infrared spectra were run as described in Chapter I, page 9.

The infrared spectrum of ammonium molybdenum oxalate was like
37that reported by Gopalakrishman, et al. The infrared spectra of the 

tartrate and phthalate complexes are shown in Figure 9 and 10.
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E,. Thermogravimetric Analyses

Thermogravimetric analyses were run on a DuPont Model 950 

Thermogravimetric Analyzer.

The thermogravimetric analyses for the tartrate and phthalate 

complexes are shown in Figure 11 and 12.

F_. Mass Spectra

The mass spectra were determined as described in Chapter I, page 9. 

The mass spectra for the oxalate, tartrate, and phthalate com

plexes are given in Tables X through XII.

£. X-ray Powder Patterns

The X-ray powder patterns and unit cell determinations were 

carried out as described in Chapter I, page 9.

The powder patterns for the oxalate, tartrate, and phthalate 

complexes are given in Tables XIII through XV.



Figure 9. Infrared Spectrum of Ammonium Molybdenum Tartrate.
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Figure 10. Infrared Spectrum of Ammonium Molybdenum Phthalate.
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Table X The Mass Spectrum of Ammonium Molybdenum Oxalate

m/e %

144 30

45 36

44 42

43 67

42 3

37 8

35 23

29 11

28 14

27 6

19 100

18 73

17 42

1 27
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Table XI. The Mass Spectrum of Ammonium Molybdenum Tartrate.

m/e % m/e %

146 2 44 17

108 2 43 8

100 2 42 2

98 4 41 8

94 2 38 6

92 2 36 15

84 8 35 4

83 4 30 4

69 6 29 4

67 8 28 65

65 4 27 4

56 10 20 6

55 2 19 8

54 10 18 100

53 2 17 92

52 2 16 63
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Table XII. The Mass Spectrum 

m/e 

350 

166 

149 

148 

125 

122 
106 

105 

98 

77 

76 

57 

56 

45 

44 

38 

36 

28 

18 

17 

16 

1

of Ammonium Molybdenum Phthalate. 

%

42

10
16

56

6

68
62

100
10
16

76

11
5

1

2

9

29

54

78

89

61

7



Table XIII. The Powder Pattern of Ammonium Molybdenum Oxalate (114.6 mm 
Film)

obsd’ A° A° 1/1 _ hklao

12.6090 12.51362 m 110

7.5122 7.51316; 7.46826 m 200; 001

6.7071 6.73534; 6.63950 s 130; 111

6.2623 6.25681;
6.20818

6.23081; m 220; 021; 111

5.1022 5.10697; 5.06979 vw 131; 201

4.8982 4.90270; 4.89015 w 131; 310

4.5314 4.51613; 4.50633 w 240; 041

4.3322 4.32911 vw 150

4.1558 4.17121 vw 330

3.7903 3.78895;
3.76733

3.77369; s 15l; 241; 060

3.5297 3.54562; 3.52901 vw 022; 331

3.3240 3.33154;
3.31975

3.32414; s 42l; 132"; 222

3.1523 3.15706 vw 170

3.0228 3.02386 w 261

2.9280 2.92817 w 171

2.8550 2.86518;
2.84764

2.85767; w 152; 5ll; 312

2.7849 2.79142; 2.79141 m 152; 530

2.6602 2.66009; 2.65209 m 460; 062

2.5865 2.59239 w 371

2.5183 2.51862 w 281

2.4346 2.43911;
2.43114;
2.42945

2.43406;
2.43041;

w 512;
203;

172;
551

023;

continued -
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Table XIII.

d ,, A° obsd

2.3642
2.2464

2.2090
2.1734
2.1337

2.0794
2.0094
1.9271
1.8777

1.8268

1.7751
1.7229
1.6922
1.6551
1.6208

1.5728
1.5399
1.5027

1.3960

Continued

d , , Acalc

2.36681
2.24907; 2.24511; 
2.24224
2.21317
2.17480; 2.17397
2.13700; 2.13484; 
2.13388; 2.13114; 
2.21966
2.07876; 2.07694 
2.00936; 2.00676 
1.92717
1.87942; 1.87940; 
1.87829; 1.87807
1.82794; 1.82768; 
1.82642
1.77435; 1.77281 
1.72299; 1.72285 
1.69286 
1.65519
1.62077; 1.61954; 
1.61908
1.57156
1.53844
1.50380; 1.50263; 
1.50263; 1.50211; 
1.50193
1.39678; 1.39576; 
1.39571; 1.39571; 
1.39541

I/I___c

w

w

vw

w

vw

m

vw

m

w

m

vw

w

vw

vw

vw

vw

vw

vw

w

hkl

133
372; 390; 641 

333

391; 602
710; 62~2; 153; 
243; 423

192; 063 
552; 711 
590

443.; 463'; 800;
732
623; 224; 114

204; 044 
682; 822 

244
2,10,3*
174; 802; 643 

791
2,14,1
374; 284^ 10,0,0; 
0,12,3; 194

355; 10,4,2; 
2,10,4; 10,6,0; 
245

continued -
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Table XIII. Continued

d v ^  A obsd d « j , A calcd I/I

1.3516 1.35182; 1.35137 w

1.3020 1.30261;
1.30182

1.30258; w

1.2640 1.26412; 1.26411 vw

1.2499 1.24978 vw

1.1749 1.17555;
1.17466;

1.17502;
1.17455

vw

1.1523 1.15242;
1.15225;
1.15162

1.15237;
1.15221;

vw

1.1308 1.13093; 1.13046 vw

1.1198 1 . 1 2 0 2 0 vw

1 . 0 1 2 2 1.01228; 1.01209 vw

0.96826 0.96839 vw

0.92365 0.92365 vw

0.92207 0.92178 vw

0.83884 0.83891 vw

a. Based on the unit cell given in Table XVI.

hkla

10,0,2; 10,6,1
11*3,7; 11,3,1;
645

735; 10,6,1

10,10,1
10,6,3; 715j_ 
10,12,0; 536

11,1,4; 11,1*3; 
266; 954; 626

685; 95l 

805

8 8 6 ;̂ 975 

2,14,6 

5,23,1 

667

7,12,8
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Table XIV. The Powder Pattern for Ammonium Molybdenum Tartrate (114.6 mm
.m)

I . A° obsd ^calcd, ^ I/Io hkla

13.3310 13.38858; 12.88992 s 1 1 0 , 2 0 0

7.7958 7.89440; 7.8331; m 2 0 1 , 0 2 0 , 1 1 1

7.76423

6.7324 6.69429 m 2 2 0

6.4168 6.44496 vw 400

6.1253 6.12577 vw 311

5.5876 5.57924; 5.56151 w 401, 221

4.9607 4.97706 vw 420

4.5314 4.54502; 4.52926; vw 421, 511, 131
4.50969

3.8900 3.88212 w 2 2 2

3.6731 3.66962; 3.66911 w 222, 530

3.5325 3.53972; 3.53568; vw 512, 402, 422
3.52551

3.3572 3.36357 w 621

3.2249 3.22228 w 421

3.0675 3.06288 w 622

2.7790 2.78076 w 442

2.5894 2.58961; 2.58808; vw 133, 333, 152
2.58768

2.4188 2.42008 vw 460

2.1704 2.17126 w 171

2.0808 2.08299 vw 334

a. Based on the Powder pattern given in Table XVI
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Table XV. The Powder Pattern of Ammonium Molybdenum Phthalate (114.6 mm 
Film)

dobsd’ A

12.9790

8.9161

8.1018

7.0923 

6.8046 

6.4917 

6.0177 

5.7909 

5.3434 

5.0220 

4.6225 

4.3239 

4.1907 

4.0167 

3.7792 

3.6362 

3.5463 

3.4755 

3.3847 

3.2855

3.0924 

3.0419 

2.9921

dcalcd* A

12.93828

8.96874

8.28243; 8.13140; 
8.12566

6.79380

6.46914

6.01732

5.79220

5.37577

5.07194

4.61196

4.32623; 4.31276

4.21019

4.00894

3.64812; 3.62795 

3.54640

3.39690; 3.37037 

3.28179; 3.28065 

3.10215

3.04237; 3.04177 

2.98958; 2.98735

l!h

vw

s

vw

s

w

w

w

s

m

m

m

vw

w

w

w

s

w

w

w

s

vw

w

vw

hklc

001
110
201, 200, 111

111
002
201
112
020
311

312

401, 003

113

2 2 1

403, 111 

401

222, 421 

511, 422 

404

513, 331 

330, 132

continued -
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Table XV. Continued

d V Aobsd

2.8965

2.7942

2.7385

2.7095

2.6442

2.5865

2.5349

2.4144

2.3583

2.3020

2.1684

2.1001
2.0592

1.9848

1.9375

1.8791

1.8473

1.8142

1.7601

1.7353

1.7163

1.6628

1.6203

1.5725

1.5509

1.5148

^calcd’ ^

2.89610

2.79901

2.73635

2.70855,- 2.70384

2.64331

2.58766

2.53720; 2.53597

s

vw

w

vw

vw

vw

vw

m

w

vw

vw

w

w

m

vw

vw

vw

vw

m

w

w

vw

w

w

m

vw

hkla

224

331

514

333, '204

315

005

332\ 622

continued -
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Table XV. Continued

d , A° d , A° I/Iobsd   calcd_______  o

1.5000 vw

1.4809 vw

1.4553 vw

1.4179 vw

1.3969 w

1.3752 vw

1.3530 vw

1.3324 vw

1.3136 vw

1.2847 vw

1.2568 vw

1.1820 vw

1.1624 vw

1.1480 vw

1.1246 vw

1.0975 vw

1.0284 vw

0.86143 vw

0.84463 vw

0.80515 vw

0.80242 vw

0.78474 vw

0.78327 vw

0.77752 vw

0.77589 vw

a. Based on the unit cell given in Table XVI.
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2_. Results and Discussion

Oxalic acid, tartaric acid, and phthalic acid all formed stable

1:1 complexes of the type (NH^)2 ^ 0 3  (Acid) ‘̂ 0. The oxalate complex was
37 35studied by Gopalskrishman et al. Henderson and Barr made the complex

M0 O2  (NaC^H^Og) ̂ * 3 ^0 by dissolving MoO^ in a boiling solution of sodium

hydrogen tartrate in a 1:2 mole ratio. The difference in the constitu-
35tion between the complex of Henderson and Barr and the complex reported

here is probably due to the difference in the mole ratios of the reac-
74tants used (1:1 mole ratio in this work). Prasad and Pandey showed

that, for citric acid, the Mo/ligand ratio in the complex depended on

the mole ratio in the reaction mixture. The phthalate complex has not

been reported in the literature. All three complexes have the infrared

absorptions for the ammonium ion (about 3100 cm ■*") and for the carbonyl
- 1group (about 1600 cm ). The oxalate and tartrate complexes have the

expected m/e peaks at 44 in their mass spectra, also indicating that they

are carboxylic acid derivatives. The phthalate complex loses the

expected fragment (m/e=76), but does not have a significant peak

at m/e=44, probably because the benzene ring forms the more stable cation.
37By analogy to the oxalate complex, the presence of three infrared

- 1  - 1  - 1absorptions (920 cm , 875 cm , and 750 cm ) which can be attributed

to MoO vibrations indicates that the phthalate complex may be an
-1 -1oxo-bridged dimer. The fact that two bands (875 cm and 710 cm ) can

be attributed to MoO vibrations appear in the infrared spectrum for the

tartrate complex indicates that it may also be a dimer. The data are

insufficient to support other structural conclusions. The thermo-
37gravimetric analyses show that the oxalate complex and the tartrate



67

complex do not lose the ligand until about 200°C, while the phthalate 

complex starts to lose the ligand at about 160°C, This indicates that 

the phthalate ligand is fairly loosely bound, while the oxalate and 

tartrate ligands are more tightly bound. The unit cell determinations 

of the three complexes all produced a number of satisfactory cells. The 

volumes, and other data for the oxalate and tartrate complexes indicate 

that all of the cells are variations of the same cell. The unit cell 

determination of the phthalate complex produced only one cell with other 

than triclinic symmetry. Table XVI gives the simplest monoclinic cell 

for each complex.

Table XVI. Unit Cells for the Three Carboxylate Complexes. (a, b, and 
c are in A , /? is in degrees).

Phthalate Tartrate Oxalate

a 17.3128 25.9572 15.0889

b 10.7517 15.6677 22.6056

c 13.7746 9.1901 7.4999

0 69.941 83.324 95.250

Cell Monoclinic Monoclinic Monoclinic
Type

Centering C C C

None of the other ligands formed stable complexes. Apparently, 

for complexes to be formed by this method, the ligand must have two acidic 

functional groups that are held closely enough together (either by their 

position in the ligand or by coordination through other sites) for them 

to be in a position to form a chelate. In oxalic acid and phthalic acid, 

the carboxyl groups are held rigidly in position by the carbon skeleton; 

in tartaric acid, the two carboxyl groups would be brought closer 

together by the coordination of the alcohol functional groups to the
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molybdenum atom. Although succinic acid has two acidic functional

groups, they would be relatively far apart. None of the other potential

ligands had two acidic functional groups. Unfortunately mandelic acid

decomposed, so that it may not be readily classified in this scheme.
33Some other acids will also reduce Mo(VI) to Mo(V).
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POSSIBLE FUTURE STUDIES

A variety of possible extensions of this study have presented 

themselves during the course of the work.

First, since some molybdenum carboxylates and metal molybdates 

catalyze oxidation-reduction reactions, the oxidation-reduction potentials 

of the ones that can be easily synthesized could be studies by cyclic 

voltametry. They could also be studied by such techniques as uv-visible 

spectroscopy, magnetic circular dichroism, X-ray photoelectron spectros

copy, and ESR in order to elucidate their structures and to relate 

their structures to the reaction mechanisms.

Second, the limited thermodynamic datâ "* ^  should be extended.
78Third, the wave function basis set for molybdenum and the

79data on the organomolybdenum compounds that show aromaticity may allow

theoretical studies that could shed some light on the orbital interactions

involved in the reactions catalyzed by molybdenum compounds, possibly
80-83xn terms of perxcyclxc reactxons.

84-98Fourth, crown ethers have been studied extensively because

they coordinate with the cations of ionic compounds, and allow these 

compounds to be dissolved in nonpolar organic solvents. Some crown 

ethers are very selective about the cations with which they will 

coordinate. It would be of interest to study the complexation of both 

ammonium and metal molybdates with crown ethers and to study the ability 

of the complexes to undergo dehydration reactions, substitution reactions, 

and other reactions in nonaqueous solvents. They may be useful in the 

development of a synthesis of anhydrous metal molybdates.

Finally, although I was unable to form metal molybdates in



nonaqueous solvents, this part of the study should be continued 

especially in the area of the reactions of ammonium dimolybdate
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APPENDIX

These computer programs are written in Fortran IV (IBM 360 
48Compiler). They are intended to be used together to aid in the inter

pretation of mass spectra.

The first program (UNH-39) is based on the program described by 
47Schrader. It determines all of the empirical formulas containing 

carbon, hydrogen, nitrogen, oxygen, and any one, two, or th ee hetero

atoms of choice, that correspond to an m/e peak of a mass spectrum to 

within a specified error limit. The program automatically restricts the 

number of hydrogens in the fragment formula to a number that is reasonable 

based on the number of carbons, and nitrogens in the formula. This

program has the advantage over other mass spectrum analysis programs, such
49 50as those described by Beech and by Isenhour and Jurs, that inorganic

compounds can be analysed, as well as organic compounds.

The second program (UNH-40) will determine all of the possible

m/e values that can appear in a mass spectrum for an empirical formula

containing carbon, hydrogen, nitrogen, oxygen, and any one, two, or

three heteroatoms. As in UNH-39, the number of hydrogens in any given

fragment is restricted to a reasonable quantity.

The input instructions, and program lists are given in the following

pages.
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Title:

Object:

Comment: 

Input:

Cards:

Output:

U.N.H. Program No. 39

MASS SPECTRUM FRAGMENT FORMULAS

To calculate possible fragment formulas for the m/e peaks of 
a mass spectrum, based on C, H, N, 0, and up to 3 other hetero 
atom types.

Based on Appendix C of Shrader, Stephen R. "Introductory Mass 
Spectrometry", Allyn and Bacon, Boston, Mass., 1971.

TITLE = any information
LN = maximum number of nitrogen atoms in any fragment 
L0 = maximum number of oxygen atoms in any fragment 
LH = total number of all hetero atoms, including nitrogen and 

oxygen, allowable in any fragment 
ER = maximum allowable difference between calculated and observed 

masses for any fragment.
HI = maximum number of hetero atoms of type 1 in any fragment
H2 = maximum number of hetero atoms of type 2 in any fragment
H3 = maximum number of hetero atoms of type 3 in any fragment

Note: LN + L0 + HI + H2 + H3 = LH
AT0M1, AT0M2, AT0M3 = name of each hetero atom, of type 1,2, or 3 
WH1, WH2, WH3 = corresponding atomic weight 
EXPM = experimental m/e values

(1) TITLE = any information, all columns, FORMAT(20A4)
(2) Number and error, FORMAT(315,F10.5)

Columns 1-5 LN = number of nitrogen atoms, as XXXXX
6-10 L0 = number of oxygen atoms, as XXXXX
11-15 LH = total number of all hetero atoms,

XXXXX
16-25 ER = allowable error (difference) between 

calculated and observed m/e,
XXXX.XXXXX

(3) Hetero atoms, FORMAT(315)
Columns 1-5 HI = number of hetero atoms of type 1,

XXXXX
6-10 H2 = number of hetero atoms of type 2,

XXXXX
11-15 H3 = number of hetero atoms of type 3,

XXXXX
(4) Hetero atoms, descriptions, FORMAT(6A4,F10.5)

Columns 1-24 AT0M1 = name of hetero atom of type 1
25-34 WH1 = atomic weight, as XXXX.XXXXX

Repeat with separate cards for AT0M2 and AT0M3, if present.
(5) Data cards, FORMAT(F10.5)

Columns 1-10 EXPM = experimentally observed m/e ratio,
as XXXX.XXXXX

(6 ) Stop card, blank in columns 1-10; end of calculation

Output lists the names and weights of the hetero atoms and tab
ulates the experimental, calculated, and difference m/e values 
for possible fragment formulas, which are given.
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I F( NHC.-NH) 95 ,54,54 39R-0970
54 CNH=FLOAT(NH) 39R-09BO

CNN=FLCAT1NNI 35R-0990
C\C=FLCAT(NC» 39R-10CO
DND=FL0AT (NO ) 39P.-1010
D M  =FLCAT ( M  ) 39R-1020
DN2=FL0AT(N2> 39R-1030
CN3=FL0AT(N3) 39R-1040
CALC = 12.00*CNC + 1.007 82 5’f‘0NF+14.0O3074*0NN + 15 .96 491 *DN0 H 1*DN 1 + 39R-1050
lhb2^DN2+HH3*CK3 39R-1060
CIF F=CALC-EXPM 39R-1070
I F ( FP+0IFF)00,55,55 39R-1080

55 IF{FR-DIFF)8C,5o,56 39R-1090
56 CIFF=DIFF*10CO.O 39R-1100

V =R CUNOlDIFF ) 39R-1110
IFF = IF IX(Y ) 39R-1120
fcRI TE (PRINTR ,205)£XPM,NC,NH,i\|N,NC,N1,N2, N3,CALC, IFF 35R-1130

60 NC=NC-1 39R-1140
Nh = NF +12 39R-1150
GC TC 53 39R-1160

65 CONTINUE 39R-1170
96 CCMT INUF 3 9 P.-1180
57 CCNTINUE 39R-1190
68 CONT INUE 39R-1200
59 CCNTINUE 39R-1210
100 GC TC 50 39R-1220
101 STOP ' 39R-1230
2 C1 FCRMAT(3I5,F10.5) 39S-1240
2C2 FCRMAT13I5 J 39R-1250
203 FCRMAT(F10.5 ) 39R-1260
204 FCRMATllh ,3X,'EXPM',5X,'C ',5X, ,h*,5X»*N*,5X,'0*,5X,*H1 *,4X,'H2*, 39R-1270

14X, 'H3*,7X, 'CALC *,4X,* DIFFERENCE*1000.0*) 39R-1280
208 FORMAT ( IF ,1X,F8.4,7(2X,I4),2X,F6.4,2X,I8) 35R-1260
2 C 6 FORMAT(20A4) 39R-1300
2C7 FCRM AT(6A4,F10.5) 39 R-1310
208 FCRMAT(lh1.2CA4) 39R-1320
2C9 FCRMAT(lh ,fcX,'HETERGATOM H1 IS*, 2X ,6A4) 39R-1330
210 FCRMAT ( 1H ,6X,'ATOMIC nEIGHT =',2X,F10.5) 39R-1340
2 11 F ['. R M A T ( 1H ,6X»'HETEROATCM #2 IS'»2X,6A4) 35R-1350
212 FCRMAT11H ,6X*'HfcTERQATGM A3 IS',2X,6A41 39R-1360

END 39R-1370

FUNCTION RCUNC(B) 39R-1380
X =AI NT(B) 35R-1350
IF(B-X-0.5)3CC,30l,301 39R-1400

301 X=X *1.0 39R-1410
300 RCUNC = X 39R-1420

RETURN 39R-1430
END 39R-1440
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Title: 

Object:

Input:

Cards:

Output:

U.N.H. Program No. 40

PREDICTED MASS SPECTRUM

To calculate the possible fragment m/e values for any empirical 
formula.

TITLE = any information
C = number of carbon atoms in the formula
H = number of hydrogen atoms in the formula
N = number of nitrogen atoms in the formula
0  = number of oxygen atoms in the formula
HI = number of hetero atoms of type 1 in the formula
H2 = number of hetero atoms of type 2 in the formula
H3 = number of hetero atoms of type 3 in the formula

AT0M1, AT0M2, AT0M3 = name of the corresponding hetero atom
WH1, WH2, WH3 = atomic weight of the corresponding hetero atom
A = control parameter

(1) TITLE = any information, all columns, F0RMAT(20A4)
(2) Formula and control parameter, FORMAT(7F5.1,12)

Columns 1-4 C = number of carbons, as XXXX
6-9 H = number of hydrogens, as XXXX

11-14 N = number of nitrogens, as XXXX
16-19 0 = number of oxygens, as XXXX
21-24 HI = number of type 1 hetero atoms, as XXXX
26-29 H2 = number of type 2 hetero atoms, as XXXX
31-34 H3 = number of type 3 hetero atoms, as XXXX

37 A = 0 for last data set
1  for all except the last

(3) Hetero atom descriptors, FORMAT(6A4,F10.5)
Columns 1-24 AT0M1 = name of type 1 hetero atom

25-34 WH1 = atomic weight of type 1 hetero atom,
as XXXX.XXXXX

Repeat with separate cards for AT0M2 and AT0M3.
Repeat cards (1), (2), and (3) for each data set. Note "A" value,

Output lists the title, name, and weight of each hetero atom, 
the formulas and m/e values for the possible fragments (in 
ordered, tabular format), and the m/e value for the molecular 
ion peak.
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