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ABSTRACT 

Design, Mechanical Modeling, and 3D Printing of 

Koch Fractal Contact and Interlocking 

by 

Mona Monsef Khoshhesab 

University of New Hampshire, September, 2017 

 

   Topological interlocking is an effective joining approach in both natural and engineering 

systems. Especially, hierarchical/fractal interlocking were found in many biological systems and 

can significantly enhance the system mechanical properties. Inspired by the hierarchical/fractal 

topology in nature, mechanical models for Koch fractal interlocking were developed as an example 

system to better understand the mechanics of fractal interlocking. In this investigation, Koch fractal 

interlocking with and without adhesive layers were designed for different number of iterations N. 

Theoretical contact mechanics model was used to capture the deformation mechanisms of the 

fractal interlocking with no adhesive layers under relatively small deformation. Then finite element 

(FE) simulations were performed to study the mechanical behavior of fractal interlocking under 

finite deformation. The designs were also fabricated via a multi-material 3D printer (Objet Connex 

260) and mechanical experiments were performed to further explore the mechanical performance 

of the new designs. 



XI 

 

   It was found that the load-bearing capacity of Kotch fractal interlocking can be effectively 

increased via fractal design. In general, when the fractal complexity (it is specifically represented 

as number of hierarchy N in the present Koch fractal design) increases, the stiffness of the fractal 

interlocking will increase significantly. Also, when N increases, the stress are more uniformly 

distributed along the fractal boundary of the top and bottom pieces of the fractal interlocking, 

which efficiently reduce local stress concentration, and therefore the overall strength of the 

interlocking also increases. 

   However, the mechanical responses of fractal interlocks are also sensitive to imperfections, 

such as the gap between the interlocked pieces and the rounded tips. When fractal complexity 

increases, the mechanical properties will become more and more sensitive to the imperfection and 

eventually, the negative influences from imperfection can even become dominant. Therefore, 

considering the imperfection, there is an optimal level of fractal complexity to reach the maximum 

mechanical performance. This result is in consistent with fractal interlocks in different biological 

systems.    

   Except topology, the influences of friction, material properties and damage evolution, and 

the adhesive layer on the mechanical performance of Koch fractal interlocking were also evaluated 

via non-linear FE simulations and mechanical experiments on 3D printed Koch interlocking 

specimens. It was found that the adhesive layer can significantly improve the load transmission of 

the fractal interlocking and therefore can effectively amplify the interlocking efficiency.  
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Chapter 1. Background and Introduction 

1.1. Motivation 

In nature, during years of evolution, many biological systems develop complicated 

geometrical and material heterogeneity across several length scales to achieve light weight and 

high mechanical performance [1-6]. Generally, hierarchical heterogeneity can be achieved via two 

different mechanisms: (1) variation of nano/micro structures at different length scale, such as 

bones and sea shells [7-9] and (2) self-similarity via fractal geometry, such as gecko feet [10-11] 

and biological sutures [12-14]. The fractal interlocking explored in this investigation falls in the 

second category. It is a type of fractal-induced self-similar mechanical interlocking, which 

provides a specific option of designing hierarchical heterogeneity in any material system.   

Examples of hierarchical interlocks in biological systems are shown in Fig.1. Fig. 1a shows 

the cranial suture of a white-tailed deer with complicated interlocking pattern. Cranial suture is 

very important in transmitting load, absorb energy, and provide flexibility to accommodate growth, 

respiration and locomotion [15-17]. The geometric interlocking pattern is the key to optimize the 

multi-function of cranial suture. Fig. 1b shows the micro-CT images of the sutural interlock on the 

carapace of red-eared turtle. A complicated 3D interlock balance the rigidity and flexibility of the 

turtle shell. Figs. 1c and 1d show the fractal-like fossil ammonite sutures of two different species. 

The fossil record shows that the complexity of ammonite suture consistently increases within 

several mass extinctions [18]. These examples indicate that the hierarchical interlocking is one of 

the key mechanical mechanism to achieve optimal mechanical properties and function.  
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Figure 1.1 Examples of hierarchical interlocking in nature: (a) cranial sutures in deer’s 

skull[19], (b) suture in the shell of red-eared slider turtle[20] (c) Ammonite shell (Craspedites 

nodiger)[21] and (d) Ammonite shell (Ceratitic) with suture lines[22]. 

 

   The evolution and growth of hierarchical interlocks in nature is a mystery to the field. For 

example, it is not well understood why the cranial suture of human being develops from a simple 

straight line to a complicated zigzag pattern during growth from infant to adult [14, 17], and why 

the cranial sutures of mammals with horns exhibit even more complex patterns than those of 

humans. Also, why there is a limitation for geometry complexity in these biological systems? 

To address these questions, recently, composite mechanical models of biological sutures with 

different waveforms were extensively explored [23-32]. The triangular tooth geometry was proved 

to be the optimized geometry to maximize strength and load transmission [31-33]. Also, it was 

found that by increasing the number of hierarchy, the overall stiffness, strength and fracture 

toughness can be tuned by orders of magnitude [22-25, 32-34].  

Craspedites nodiger

(c)

Red-eared slider turtle

(b)

Ceratites

(d)

Deer skull

(a)
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   In this investigation, the primary goal is to design Koch fractal interlocking and explore the 

influence of number of hierarchy, material properties, and geometry imperfection on the overall 

mechanical properties of the designs. Design principles for fractal interlocking will be developed, 

which will provide insights to develop optimized design for joining similar/dissimilar materials 

through topological interlocking. 

1.2. Fractals  

Euclidean geometry is a system of geometry considered measurement and the concepts of 

congruence, parallelism and perpendicularity with ten common assumptions and postulates. When 

any of the postulates is negated, the geometry is non-Euclidean [35]. Fractal geometry is one of 

the youngest non-Euclidean geometric concepts which uses simple algorithms to design complex 

forms. They were discovered by Mandelbrot [3]. They can not only model the complex forms, but 

also act as bridge between regular geometries to irregular ones [3, 36-37]. One interesting 

characteristic of fractals is that they exhibit great complexity driven by simplicity [38-41]. Fractals 

exhibit repeating patterns that display at every scale. This is one major feature of fractal, called 

self-similarity.  

To further understand the definition of fractal, examples of three basic fractals are provided 

in Figure 1.2.  Figure 1.2a shows a binary fractal tree which is defined recursively by symmetric 

binary branching. The trunk of length L splits into two branches of smaller length R, each making 

an angle θ with the direction of the trunk. Continuing in this way for infinitely many branching, 

the tree is the set of branches, together with their limit points, called branch tips. Figure 1.2b shows 

the Sierpinski triangle, which is a basic fractal with the overall shape of an equilateral triangle, 

subdivided recursively into smaller equilateral triangles. Another basic fractal is the Koch flakes, 
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as shown in Figure 1.3c. The Koch flakes is also generated from an equilateral triangle, then the 

edges are recursively replaced by Koch fractal curves.  

 

Figure 1.2 Examples of three basic fractals: (a) the simple fractal tree [42], (b) Sierpinski 

triangle [43], and (c) Koch snow flake[44]. 

 

Koch curve is one of the first classical fractals described by Helge von Koch in 1904 as an 

example of a non-differentiable curve. It was generated via an iterated function system (IFS) where 

the number of iteration defined as N [44]. We will talk about Koch curve in more detail in Chapter 

2. 

Fractals are also ubiquitous in nature in all length scales, as shown in Fig. 1.3. Natural fractals 

include frost crystals occurring naturally on cold glass (Fig.1.3a), Romanesco broccoli, 

showing 3D self-similar geometry (Fig.1.3b), and fractal defrosting patterns, polar Mars, where 

the patterns are formed by sublimation of frozen CO2. The width of image is about a kilometer 

(Figure 1.3c)! 

(a) (b) (c)

https://en.wikipedia.org/wiki/Romanesco_broccoli
https://en.wikipedia.org/wiki/Self-similar
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Figure 1.3 Examples of fractals in nature across all length scales:(a) frost crystals on cold 

glass form fractal pattern [45], (b) Romanesco broccoli [45], and (c) fractal defrosting patterns, 

polar Mars [45]. 

 

Fractals have been used by scientists in electrical engineering to produce electronic circuit 

with chaotic behavior [46], medical and health care fields to model and measure tumor and 

irregular distribution of collagen in tissue [47,48], architecture engineering to design bio-inspired 

constructions [49-51]. 

1.3. Topological interlocking  

   Topological interlocking has been suggested as a novel method to create architectured 

materials [52-72]. This concept relies on segmenting a monolithic material into elementary blocks 

with specific shapes. The building blocks are constrained in their movement by the neighboring 

ones [53]. Providing structural stability, topological interlocking allows for restricted locomotion 

of neighboring building blocks. This ensures that the new architectured material articulated via 

topological interlocking is more compliant than a monolithic one, and is also able to absorb 

vibrational energy, which is dissipated by frictional losses [53, 61]. 

  Topological interlocking plays a critical role in joining similar/dissimilar materials and 

structures. For example, topological interlocking is used in adhesive science and engineering [57, 

73] , in the area of friction and tribology [74], in plasticity and creep [75] (interlocking of wavy 

(a) (b) (c)

https://en.wikipedia.org/wiki/Romanesco_broccoli


6 

 

grains, with a great resistance to sliding deformation.) of ductile metals and also in fiber reinforced 

composites [76].Compared with bonding via adhesive materials or mechanical fasteners, 

mechanical interlocking has a similar function with a simpler and more robust method in 

manufacturing [53, 61]. The geometry of the interlocked piece is the key to achieve high-quality 

joints through topological interlocking [53, 59, 61, 77-85]. 

    As shown in Figure 1.4, topological interlocking is also found in many biological 

composites to meet a complex spectrum of functional requirements through hierarchical/fractal 

geometries. Bones, woods, nacre, and biological sutures are a few examples of natural composites 

that employed hierarchical design to achieve remarkable properties and functionality [1, 11, 37, 

71-76]. Figure 1.4a , 4b and 4c show interlocked linking girdles in three species of diatoms. Figure 

1.4d displays natural gear in a species of jumping inset, Issus. Having a row of cuticle gear teeth 

around the curved medial surfaces of their two hind-leg trochantera, the jumping efficiency of the 

nymph, but can be significantly improved [89]. 
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Figure 1.4 Examples of topological interlocking in nature: (a) linking girdle in Aulacoseira 

ambigua [86], (b) in Aulacoseira alpiegena [87], and (c) in Aulacoseira valida [88]; (d) gear-like 

joints in a jumping insect Issus [89]. 

 

   Recently, topological interlocking has been shown to be an effective method to create 

architectured materials [8, 20, 52-53].  Topologically interlocking of building blocks have shown 

unusual and attractive combinations of properties [90-96].  

   Inspired by those remarkable biological systems, innovative designs were recently 

developed and fabricated by utilizing different technologies. For example, suture-inspired 

composites and nacre-inspired composites were designed [6, 84, 97-100] and fabricated via 3D 

printing.  Also, inspired by the fractal geometry of gecko feet, dry adhesives were designed and 

fabricated [101-104]. In addition, lotus-leaf-inspired super hydrophobic surfaces are industrialized 

and are being manufactured in a wide range [105-107]. In all the previous research, it was shown 

Aulacoseira ambigua Aulacoseira alpigena

Krammer

2μm

10μm

2μm

Aulacoseira valida(a)
(b)

(c)

20μm

(d)

Jumping insect
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that the mechanical behavior of the mechanical designs have great sensitivity to geometric 

hierarchy [5, 9, 12, 14, 23-26 31-32].  

1.4. Contact mechanics framework  

   According to the following classical categorization of the theories for contact mechanics, 

Koch fractal contact and interlocking studied in this thesis is a non-Hertzian, mainly non-

adhesive and conforming contact. There is no classical analytical model exist for this specific 

problem. Therefore, one of the research goals of this thesis is to derive a new theoretical model to 

capture the mechanical behavior of Koch fractal contact/interlocking. Theoretical results, then will 

be verified with numerical and experimental ones. 

Hertizan theory vs. non-Hertizan theory. The original work in contact mechanics belongs to 

Heinrich Hertz [108, 109]. It applies to normal contact between two elastic solids that are smooth 

and can be described locally with orthogonal radii of curvature. Further, the size of the actual 

contact area must be small compared to the dimensions of each body and to the radii of curvature. 

Hertz made these assumptions based on observations that the contact area is elliptical in shape for 

such three-dimensional bodies [108]. Closed-form solutions can be derived when the contact area 

is circular such as with spheres or cylinders in contact. At extremely elliptical contact, the contact 

area is assumed to have constant width over the length of contact such as between parallel cylinders 

[108, 109].     

   Thus, to summarize, there are four basic assumptions for Hertzian contact problems [108]: 

(1) the strains are small and the material deforms within the elastic limit, (2) the surfaces are 

continuous and non-conforming. This means the area of contact is much smaller than the 

characteristic dimensions of the contacting bodies, (3) each body can be considered as an elastic 
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half-space, and (4) the surfaces are frictionless[108, 109]. If some or all these assumptions are 

violated the contact problem will be recognized as non-Hertzian contact.  

   For the Koch fractal contact, the assumptions (2), (3) and (4) are violated, therefore, Koch fractal 

contact studied in this thesis is a non-Hertzian contact problem. 

Adhesive vs. non-adhesive contact. The classical theory of contact mainly focused on non-

adhesive contact where there is no tension force within the contact area. This means removing 

adhesion forces, the contacting bodies can be separated. Non-adhesive contact mechanics 

problems can become very sophisticated, which is due to complex forces and moments are 

transmitted between the bodies in contact.  The contact stresses are also usually a nonlinear 

function of the deformation. To simplify both the problem and the solution, a reference can be 

defined in which the objects are static and interact through surface tractions at their interface [109].  

   Based on this definition, the Koch fractal contact with gaps are non-adhesive contact. While the 

Koch fractal interlocking with soft adhesive layer fall out of the contact mechanics range, but after 

the failure of the interfacial layer material, the contact is adhesive contact. 

Conforming vs. non-conforming contact. Based on geometry of contact bodies, the analytical 

methods for non-adhesive contact problem can be categorized in two types [108, 109]. A 

conforming contact is when the two bodies touch at multiple points before deformation which 

means the two bodies are fit together [109]. A non-conforming contact is when the contact area is 

very small compared to the sizes of the objects and the stresses are highly concentrated in one area 

[109]. Thus Koch fractal contact is a conforming contact problem.  
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1.5. Overview 

In this thesis, Koch fractal interlocks are designed as a geometrically imperfect system. We 

systematically investigated the role of fractal geometry and imperfection in determining the 

contact and interlocking behavior of the designs. Both theoretical and numerical models were 

developed to quantify the mechanical properties of Koch fractal contact and interlocking. Also, to 

further evaluate the mechanical performance of the designs and the model prediction, the designs 

were fabricated via 3D-printing and mechanical experiments were performed.  

The main content of this thesis is organized into the four following chapters: 

In Chapter 2, Koch fractal interlocks with no adhesive layers were designed and modeled 

theoretically. The theoretical framework of fractal contact was proposed and a theoretical model 

was developed to quantify the deformation mechanisms. The influences of the number of 

hierarchies, geometric imperfection and friction were evaluated via the theoretical model. A 

scaling law was then summarized.  

In Chapter 3, finite element models of the design was developed. Numerical simulations were 

performed to investigate the influences of different geometric parameters and material models on 

the overall mechanical behavior of the designs. Both linear elastic and elasto-perfectly plastic 

material models were used in FE simulations. In addition to the load-displacement behavior 

(equivalent to the effective stress-strain behavior), the contact area and energy absorption behavior 

of the designs were also evaluated.  

To further prove the concept, Chapter 4 mainly focuses on 3D printing of the designs and 

mechanical experiments on the 3D printed specimens. In this Chapter, to evaluate the role of soft 

adhesive layer, the designs with gaps and the corresponding designs with soft adhesive layers were 
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compared via both mechanical experiments and FE simulations. Also, both uni-axial tension and 

compact tension experiments were conducted to evaluate the stiffness, strength and fracture 

toughness of the Koch fractal interlocking with soft adhesive layers under uniform and 

concentrated loading cases.   

Finally, the major conclusions and future work are summarized in Chapter 5.  Based on the 

results in Chapters 2-4, a design guideline for 3D printed fractal contact and interlocking were 

developed.   
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Chapter 2. Theoretical Model of Koch Fractal Interlocking 

2.1. Design of Koch fractal interlocking 

As one of the first rigorously defined fractals, Koch curve is a non-differentiable curve, which 

was proposed by Helge von Koch [44] in 1904. It was generated via an iterated function system 

(IFS) which iteratively separates a straight line with length 𝑎0 into four smaller sections with the 

same length 𝑎0/3 as shown in Figure 2.1. Within each iteration, in order to keep the direct distance 

between the starting and end points of the new curve to have the same length as the mother curve, 

the four smaller sections are connected together with angles of either 120 or 60 degrees between 

them as shown in Figure 2.1. The geometries at different iteration level N are self-similar. 

 

Figure 2.1. Koch geometry for N=0, 1, 2, 3. 

 

N=0

N=2

N=1

N=3

60˚

60˚ 120˚

120˚

N= 2

N= 3

N= 1

N= 0
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Thus, to satisfy the definition of Koch fractal, the smallest section length 𝑎𝑁 of Nth order 

Koch curve is related to 𝑎0 and N as: 

𝑎𝑁= 
𝑎0

3𝑁 .      (2.1) 

Then, the total arc length 𝐿𝑁 of the Nth order Koch curve is related to 𝑎0 and N as: 

𝐿𝑁= 4𝑁𝑎𝑁 = 𝑎0(4/3)𝑁 .                     (2.2) 

Eq.(2.2) shows that the total arc length 𝐿𝑁 experiences exponential growth with N. Full 

differentiation of Eq.2.2 gives: 

               𝑑𝐿𝑁=  
𝜕𝐿𝑁

𝜕𝑎0
𝑑𝑎0 +

𝜕𝐿𝑁

𝜕𝑁
𝑑𝑁,                                                     (2.3)  

Eqs. (2.1-2.3) yield: 

 𝑑𝐿𝑁 = (
4

3
)𝑁 𝑑𝑎0 + ln 

4

3
𝐿𝑁𝑑𝑁 = 𝐿𝑁(

𝑑𝑎0

𝑎0
+ ln 

4

3
𝑑𝑁),  

               (2.4) 

Eq.2.4  shows that the growth rate of 𝐿𝑁 is actually proportional to the current value of 𝐿𝑁, 

indicating the exponantioal growth of 𝐿𝑁 with N. 

In order to achieve interlocking for the Koch curve design, N needs to be larger than 1. 

Representative volume elements (RVE) of a periodic fractal interlock with N=2, 3 and 4 are shown 

in Figure 2.2.a. The RVE includes two pieces with the bottom boundary of the top piece and the 

top boundary of the bottom piece follow the geometry of two sections of Koch curve: In the 

designs, to avoid potential stress concentration at the tooth tips, all tips were rounded by radius r 
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(shown in Figure 2.2.c) where r is the radius of the rounded tip of the inner edge of the convex 

angle and also the tip radius of the outer edge of a concave angle. To ensure self-similarity r is a 

function of the Koch geometry and N through r=𝑐𝑎𝑁 ( 0 < 𝑐 < 1). A small gap g between the two 

boundaries from the top and bottom pieces was introduced, as shown in Figure 2.2.c. To define g, 

first the Koch curve was rounded with radius r and then offset by g and defined the top part of 

Koch layer. Therefore, the geometry of the Koch fractal interlocking is determined by four 

independent geometry parameters: 𝑎0, N, g, r in addition to friction coefficient μ.  

 

Figure 2.2. (a) Specimen with Koch fractal gap for N=2, 3 and 4. (b) Koch fractal geometry 

for N=0,1,2 and 3 (c) enlarged image of r, g, 𝑎𝑠 and 𝑎𝑓. 

 

The mechanical behavior of the Koch contact design will be quantified via mechanical 

modeling in the following section. 

N=2

N=3

N=4

g

(a) (b)

N= 1

N= 2

N= 3

N= 0

2r

(c)

g N=3

2r 2r

concave

convex
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2.1. Contact model for slant surfaces 

During uni-axial tension along vertical direction, load bearing capacity of fractal interlocking 

is achieved via contact along the boundaries of the top and bottom pieces. Since the fractal 

boundary is composed of flat (in blue) and slant (in red) segments, as shown in Figure 2.3.a (N=3, 

as an example), the fundamental contact mechanism is the contact between two pieces with a flat 

contact surface, and a slant contact surface. In general, for Koch fractal contact, the slant contact 

surface forms a 60 degree angle with the horizontal direction, as shown in Figure 2.3.b. 

 

Figure 2.3. (a) Categorizing slant (red) and flat (blue) segments for N=2 case; (black and 

white arrows show slant and flat segments in contact, respectively); (b) the free body diagram of 

the top piece of a pair of slant segments in contact. (c) Dash line displays the deformed 

configuration. 

 

The geometric model for the basic contact problem with slant surface is shown in Figure 2.3.b, 

where length of the rectangular model is L, the length of the slant surface is a and the angle between 

the slant surface and horizontal direction is 60 degrees. A local coordinate n-t defined with t-axis 

along the contact surface, and n-axial normal to the contact surface. Assume the far-field normal 

x

y

N= 3

(a) (b) (c)

30˚
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force is 𝐹𝑠 , and the contact-induced normal force on the contact surface is 𝐹𝑛, and the contact-

induced tangential force on the contact surface is 𝐹𝑡, the equilibrium of the top piece yields: 

𝐹𝑠 =𝐹𝑛 cos60˚ + 𝐹𝑡 sin60˚.    (2.5) 

By defining𝑓𝑠, 𝑓𝑛 and 𝑓𝑡 as forces per unit length as;  

𝑓𝑛 = 𝐹𝑛 /𝑎,    𝑓𝑡 = 𝐹𝑡/𝑎,  𝑓𝑠 =
𝐹𝑠

𝑎 cos 60˚
.         (2.6)  

  

Based on the Coulomb's law of friction,  𝑓𝑡=𝜇𝑓𝑛. Where 𝜇 is the static/kinetic friction 

coefficient. Thus Eq.(2.5) can be rewrite as; 

𝑓𝑠=𝑓𝑛(1 + 𝜇 tan60˚).     (2.7) 

The normal deflection 𝛿𝑛 around the contact area is related to 𝛿𝑠 as: 

𝛿𝑛= 𝛿𝑠 cos60˚.      (2.8) 

Thus, through the system of Eqs. (2.1)-(2.4), the far-field traction-displacement relation 𝑓𝑠 −

𝛿𝑠 can be obtained via the local normal traction-displacement relation 𝑓𝑛 − 𝛿𝑛  in the contact area. 

When the surface is flat, the normal contact traction is: 

𝑓𝑛 = 𝑘𝑛𝛿𝑛,     (2.9) 

where, 𝑘𝑛 = E 
𝑡

𝐿
,   
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This is a simpler version derived from flament solution, where L is the height of a flat segment, 

t is the out of plane thickness and E is the Young’s modulus of the base material. 𝑘𝑛 was derived 

based on assumption that flat contact is equivalent to one-piece. We proved that through FE 

analysis. Please see the Appendix A for more details. 

Thus, 𝑓𝑠  can be written as a function of 𝑓𝑛  and 𝛿𝑠 as follow: 

𝑓𝑠=𝑘𝑛(1 + 𝜇 tan60˚) cos60˚ 𝛿𝑠.               (2.10) 

To apply this model hierarchically via the Koch curve geometry, a theoretical model to predict 

the traction-displacement relation of Koch interlocking can be derived. Due to the small gap g the 

contact mechanism of Koch fractal interlocking can be separated into three stages for different 

overall uni-axial displacement δ as shown in Figure 2.4:  Stage I (δ< 𝑔.), in this stage no contact 

happens due to the small gap g; Stage II (𝑔 <δ<
𝑔

cos 60°
= 2𝑔), only some of the flat segments are 

in contact and no slant segment are in contact yet; Stage III (δ>
𝑔

cos 60°
= 2𝑔), both slant and flat 

segments are in contact. Assume the vertical force applied at the boundaries of the Nth order Koch 

fractal interlock is 𝐹(𝑁), the force-displacement relations of the three stages can be expressed as: 
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Figure 2.4. Contact/interlocking stages (a) Stage I, when no segment is in contact (b) Stage 

II when only some flat segments get in contact (c) Stage III when some of the flat and slant 

segments get in contact. 

 

   Stage I: 𝐹(𝑁) = 0;     δ< 𝑔  (2.11) 

   Stage II: 𝐹(𝑁) = 𝑓𝑛𝑎𝑛 𝑛𝑓
𝑐 [𝑁]

;   𝑔 <δ< 2𝑔 (2.12) 

   Stage III: (𝑁) = 𝑓𝑠𝑎𝑠 𝑛𝑠
𝑐 [𝑁]

+ 𝑓𝑛𝑎𝑛𝑛𝑓
𝑐 [𝑁]

;  δ> 2𝑔  (2.13)  

where 𝑎𝑠, and 𝑎𝑓  are the contact areas of each slant and flat segment in the Koch fractal , 𝑛𝑓
𝑐 [𝑁]

 

and 𝑛𝑠
𝑐 [𝑁]

 are the number of flat and slant segments in contact, respectively.  𝑛𝑓
𝑐 [𝑁]

 and 𝑛𝑠
𝑐 [𝑁]

 will 

be determined in the next section. 

Stage I

No segment in contact

Stage II

Flat segment in contact

Stage III

Flat and Slant segments 

in contact

(a) (b) (c)
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Generally, 𝑎𝑠 and 𝑎𝑓 are directly related to 𝑎𝑁. Due to the rounded tip r and the gap g, 𝑎𝑠 and 

𝑎𝑓 will be functions of r and g as well. The schematics of the contact area for flat and slant 

segments are shown in Figure 2.5.  

 

 

Figure 2.5. Schematics of flat and slant segments’ length when (a) r>g and (b) r<g. 

 

According to Figure 2.5  𝑎𝑠 and 𝑎𝑓  can be expressed as a function 𝑎𝑁 , r and g as: 

 If r>g; 

𝑎𝑠=𝑎𝑁 − 2𝑔 𝑠𝑖𝑛60° − 𝑟 𝑡𝑎𝑛60° − 𝑟 𝑡𝑎𝑛30°.    (2.14) 

𝑎𝑓=𝑎𝑁 − 𝑟 𝑡𝑎𝑛60° − 𝑟 tan30°.     (2.15) 

rtan(60 ) rtan(30 )

r  > g r < g

rtan(60 ) gtan(30 )

Flat

Slant

(a) (b)
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And if r<g; 

𝑎𝑠=𝑎𝑁 − 2𝑔 𝑠𝑖𝑛60° − 𝑟 𝑡𝑎𝑛60° − 𝑔 𝑡𝑎𝑛30° 

= 𝑎𝑁 −
2𝑔

𝑠𝑖𝑛60°
− 𝑟 𝑡𝑎𝑛𝑡60°.     (2.16) 

𝑎𝑓=𝑎𝑁 − 𝑟 𝑡𝑎𝑛60° − 𝑔 tan30°.    (2.17) 

 

2.2. Fractal contact model 

Categorization and self-similar reproducing mechanism. In nature, the fractal interlocking is the 

contact between flat segments and slant segments in different levels in a fractal manner. Due to 

the self-similarity of Koch fractal geometry, for Koch curves with N>2, the geometry can be 

decomposed of four sections with the geometry of N=1 rotating with four different angles with the 

horizontal direction as shown in Figure 2.6. The four units are shown in Figure 2.6.a, named as 

units 𝑆0𝑜, 𝑆60𝑜, 𝑆120𝑜, 𝑆180𝑜 rotating counter-clockwise to the horizontal direction (due to 

symmetry) as 0°, 60° /−60°, 120°/−120°, and 180°, respectively. 
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Figure 2.6. (a) Four decomposed sections with N=1 geometry:  x, y, z, k rotating counter-

clockwise to the horizontal direction as 0°, 60° , 120°, and 360°, respectively. (b) Reproducing 

process of each section𝑆0𝑜, 𝑆60𝑜, 𝑆120𝑜, 𝑆180𝑜 in [N]th  level from sections in [N-1]th level. 

 

According to this categorization, Koch fractal order N can be decomposed into 𝑆0𝑜, 𝑆60𝑜, 

𝑆120𝑜, 𝑆180𝑜 units. The number of each unit in the Nth order RVE is x, y, z and k, respectively. 

Using this categorization method, for a Koch curve with Nth order, a vector 𝒎[𝑁] can be 

defined as:  

𝒎[𝑁] = [

𝑥
𝑦
𝑧
𝑘

]

[𝑁]

      (2.18) 

(b)

[N-1] [N]

C.C.W

(a)
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Figure 2.6.b shows that from [N-1] to [N] hierarchy, each  𝑆0𝑜  section will generate two 𝑆0𝑜 

sections, and two 𝑆60𝑜 sections, but no 𝑆120𝑜 and 𝑆180𝑜segments; each 𝑆60𝑜 section will generate 

one 𝑆0𝑜 section, two 𝑆60𝑜 sections, and one 𝑆120𝑜 section; each 𝑆120𝑜 section will generate one 

𝑆60𝑜 section, two 𝑆120𝑜 sections, and one 𝑆180𝑜 section; and each 𝑆180𝑜 section will generate two 

𝑆120𝑜 sections and two 𝑆180𝑜  sections in [N] order hierarchy. 

Thus, due to self-similarity, the iterative relation of the number of each section at two 

neighboring hierarchies can be written as: 

𝒎[𝑁] = 𝑹𝒎[𝑁−1]      (2.19) 

where, R is named as reproducing matrix, and for Koch fractal geometry, 

𝑹 = [

2 1
2 2

0 0
1 0

0 1
0 0

2 2
1 2

]     (2.20) 

By taking the first row as an example, matrix R means that  𝑆0𝑜 in N hierarchy were generated 

from 𝑆0𝑜 and 𝑆60𝑜 in N-1 hierarchy. where two were 𝑆0𝑜, one was 𝑆60𝑜 and non from 𝑆120𝑜  and 

𝑆180𝑜 , as gives the first row of R as (2, 1, 0 ,0). 

Group matrix. In general Koch curve are composed of two types of segments: flat or slant.  

The total number of flat segments 𝑛𝑓, and slant segments 𝑛𝑠, are shown as a vector n as follows; 

𝒏 [𝑁] = [
𝑛𝑓

𝑛𝑠
]

[𝑁]

     (2.21) 

For each unit, the number of flat and slant segments can be summarized in a table as follows: 
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Table 2.1 Number of flat and slant segments generated from S0o , S60o , S120o  and S180ounits. 

 

 

 

Table 2.1 means each S0o and S180o units are composed of two flat and two slant segments 

and each of S60o and S120o  units will generate three slant and one flat segments. Defining G matrix 

as a group matrix all segments can be grouped into slant and flat. According to this table G can be 

written as: 

𝑮 = [
2 1 1 2
2 3 3 2

] .    (2.22) 

Using matrix G the total number of flat and slant segments can be calculated as: 

𝒏 [𝑁] = 𝑮𝒎[𝑁]      (2.23) 

From another point of view, G is related to the reproducing matrix, R through the following 

two equations; 

 

 

Contact matrix. Furthermore, among all flat and slant segments, only some of them are in 

contact/interlocking. We define a vector 𝒏𝑐 to represent the number of segments in contact and it 

can be: 

 𝑆0 𝑆60 𝑆120 𝑆180 

𝑛𝑓 2 1 1 2 

𝑛𝑠 2 3 3 2 

𝐺1𝑗=𝑅1𝑗+𝑅4𝑗 .      (2.24)   

𝐺2𝑗=𝑅2𝑗+𝑅3𝑗 , j=1,2,3,4      (2.25) 
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𝒏𝑐 [𝑁] = [
𝑛𝑓

𝑐

𝑛𝑠
𝑐]

[𝑁]

      (2.26) 

Table 2.2 Number of flat and slant segments in contact that generated from S0o , S60o ,
S120o  and S180ounits. 

 

 

 

 

Table 2.2 means each S0o unit has neither flat nor slant segments in contact; each of S60o unit 

has one slant segment in contact; each S120o  unit has one flat and two slant segments in contact; 

and each S120o  unit has two flat and two slant segments in contact. By defining matrix C as a 

contact matrix, all contact segments will be categorized into slant and flat segments. According to 

Table 2.2 C can be written as; 

𝑪 = [
0 0 1 2
0 1 2 2

]     (2.27) 

Thus, total number of flat and segments in contact can be determined via: 

𝒏𝑐 [𝑁] = 𝑪𝒎[𝑁]      (2.28) 

According to Eqs. (2.18)-(2.27), for the Nth order Koch fractal interlocking, the numbers of 

flat and slant segments in contact can be determined through those at [N-1]th order. A Matlab 

code was developed to theoretically explore the influence of each parameter on the mechanical 

properties of fractal contact. 

 𝑆0 𝑆60 𝑆120 𝑆180 

𝑛𝑓
𝑐  0 0 1 2 

 𝑛𝑠
𝑐 0 1 2 2 
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The number of flat and slant in contact is summarized and shown in Table.2.3. From this 

table, knowing x, y ,z and k at [N], the exact number of flat and slant segments in contact can be 

predicted at [N+1]. As an example, from this table, the number of flat and slant segment in 

contact for N=3 are 2 and 12, respectively. 

 

Table 2.3 Summary of number of flat and slant segments in contact 

N 

Segment          

2 3 4 N+1 

𝑆0 = 𝑥 2 6 20 2𝑥𝑁 + 𝑦𝑁 

𝑆60= y 2 8 30 2𝑥𝑁 + 2𝑦𝑁+𝑧𝑁 

𝑆120 = 𝑧 0 2 12 𝑦𝑁+2𝑧𝑁 +2𝑘𝑁 

𝑆180 = 𝑘 0 0 2 𝑧𝑁 +2𝑘𝑁 

 

2.3. Influence of g, r and μ for N=3 

By taking the case of N=3 as an example, the influences of the small gap g, the rounded tip 

radius r and friction coefficient μ on the overall force (F) and displacement (δ) relation were 

studied via the theoretical model. The theoretical model results of the load-displacement curves 

are shown in Figure 2.7.  

Figure 2.7 shows that for the perfect model of g= r = μ=0, the curve starts from (0, 0) point. 

For the cases of g >0, the curves show three stages: Stage I, δ<g, the curve is with zero stiffness; 

Stage II, 2g <δ<g; and (3) Stage III, δ>2g. Figure 2.7.a shows that when g increases not only the 

contact of flat and slant segments is delayed, the slope of the force displacement curves at stages 

II and III also decreases.  To calculate the stiffness, slope of force-displacement curve is converted 
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to the slope of stress-strain curve by using initial area (w) and initial height (L) of one Koch RVE. 

So that stiffness of Stage II Stage III of contact are 𝐸𝐼𝐼and 𝐸𝐼𝐼𝐼, respectively. 

 

Figure 2.7. Influence of (a) gap g, (b) rounded tip radius r and (c) friction coefficient μ 

mechanical response of Stages II and III for case N=3. 

 

The effective force-displacement curves for the case of N=3 and g=0.1mm and μ=0.1, with 

different values of r=0, 0.05, 0.15 and 0.3mm are shown in Figure 2.7.b. The four curves in 

r= 0 , μ= 0
g= 0.1 , μ= 0

g= 0.1 ,r= 0

μ= 0

μ= 0.3

μ= 0.2

μ= 0.1

(a)

(c)

(b)
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Figure 2.7.b show that the contact starts from the same overall displacement due to the same gap, 

and then increases through the two stages. It can be seen that when r decreases, the effective 

stiffness of the fractal interlocks will increase significantly which is mainly due to the increase in 

contact area (Eqs.(2.14)-(2.17)). 

To evaluate the effect of friction coefficient μ, the overall load-displacement curves for the 

case of N=3, g=0.1mm and r=0.05 with different friction coefficient μ=0, 0.1, 0.2 and 0.3 are 

plotted in Figure 2.7.c. It can be seen that when μ increases, the slopes at Stage II are barely 

influenced, while the slopes at Stage III increases. This confirms the fact that flat segment’s contact 

is independent of friction coefficient μ. However, the contact of slant segments (Stage III) depends 

on μ. When μ increases, contact force also increases. 

2.4. Influence of g, r and μ for cases with different N 

In this section, the influences of the geometric imperfections g, r and the friction coefficient 

μ for different Ns were evaluated via the theoretical model. The influence of each parameter was 

explored by fixing other parameters in the theoretical model. 

Effect of g. The influences of gap g on the effective stiffness of the two contact stages were 

studied for different N via the theoretical model. Figure 2.8.a shows that when g=0, as N increases, 

theoretically, the effective slope of force-displacement always increases and there is no limitation 

for that. This trend continues so that theoretically/conceptually, the stiffness of the Koch fractal 

interlock (when N→ ∞) can achieve an even higher stiffness than the base material, although this 

sounds intuitively impossible. In this case, there is only one recognizable stage for contact 

mechanism (which is a combination of Stages II and III together) since both flat and slant segments 

are in contact from the very beginning.  
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However, in reality, g cannot be zero. Figure 2.8.b shows that by keeping μ=0.1, g= 0.1 mm, 

and to ensure self-similarity, r=0.15aN, and increasing N, the slopes of F-δ curve increases when 

N<5; when N increases beyond 4, the slope starts decreasing and eventually become zero when N 

increases beyond 5. This is because that according to Eqs. (2.16) and (2.19), for non-zero g values, 

when N increases beyond a critical value, the contact area starts to decrease and eventually goes 

to zero due to loss of contact/interlocking. Figure 2.8.c shows that when g increases to 0.2 mm, 

when N=5, the force has already gone to zero, indicating when g increases, the critical N for losing 

contact decreases. 
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Figure 2.8. Theoretical prediction of the influences of gap g on the mechanical response of 

fractal contact models for different N.  

 

It can be concluded that the gap g plays a significant role on determining the contact 

behavior of Koch fractal interlocking, which is mainly due to influence of g on the contact area. 

The contact area can be quantified via the theoretical model. The contact areas A of the cases of 

N=2, 3 and 4, with μ= 0.1, g = 0.2 mm, r = 0.15 𝑎𝑁 are predicted as a function of the overall 

displacement, as shown in Figure 2.9. 

g= 0 mm

N=5

g= 0.2 mm

g= 0.1 mm
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Figure 2.9 shows the evolution of the contact area of flat segments, 𝐴𝑓 and the contact area of 

only slant segments, 𝐴𝑠. It can be seen that no contact occurs at Stage I; at Stage II, when N 

increases, 𝐴𝑓  increases. However, at stage III, only N=2 and 3 have slant segments in contact, 

with 𝐴𝑠.  for N=3 slightly larger than that with N=2. For N=4, 𝐴𝑠=0.  This is because that for the 

relatively large value of g, the slant segments for the case of N=4 will not be in contact. 

 

 

Figure 2.9. (a) Theoretical prediction of the contact area of flat and slant segments in 

different stages of deformation, and (b) the total contact area of Koch fractal for N=2, 3 and 4. 

(𝐴𝑓 , 𝐴𝑠 and 𝐴𝑓 + 𝐴𝑠 represent contact area of flat, contact area of slant and total area, 

respectively.) 

 

Figure 2.9.b shows how total contact area changes with displacement during the three stages. 

When N increases from 2 to 3, the total contact area increases significantly in both stages. 

However, for N=4, the total contact area 𝐴𝑓 + 𝐴𝑠 keeps unchanged from Stage II to Stage III. This 

μ= 0.1, g= 0.2 mm, r= 0.15 
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+
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(b)
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explains that the slope of the load-displacement curve (shown in Figure 2.8.c) of N=4 does not 

change.  

Effect of r. The influence of geometric parameter r on the effective stiffness of the two contact 

stages were studied for different N. As Figure 2.10.a shows that for r=0 case, when N increases, 

the slope of the F-δ curve in Stage II increases until N=5 and then because of the gap g, starts to 

decrease when N changes from 5 to 6. Figure 2.10.b and c show that for the cases of r = 0.1𝑎𝑁 mm 

and 0.2𝑎𝑁 mm, the slope of the F-δ curve increases until N=5, after which it decreases with N, and 

when r increases, the critical number of hierarchy of losing contact will decrease. 



32 

 

 

Figure 2.10. Influence of rounded tip radius r on mechanical behavior of Koch fractal 

contact models. 

 

Similarly, the contact areas of the case shown in Figure 2.10.c are plotted for different Ns in 

Figure 2.11. Figure 2.11.a shows that at Stage II, when N increases from 2 to 5, the contact area of 

flat segments always increases; however, at Stage III, the contact area of slant segments increases 

first but then stop increasing (𝐴𝑠 is almost the same for the cases of N=3 and 4) and eventually 

becomes zero when N=5.   

r= 0 mm r= 0.1 mm

N=7

N=6

r= 0.2 mm

g=0.05 mm , μ=0.1
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Figure 2.11. (a) Contact area of flat and slant segments in different stages of deformation. 

(b) Total contact area of Koch fractal for N=2, 3,4 and 5.  𝐴𝑓 , 𝐴𝑠 and 𝐴𝑓 + 𝐴𝑠 represent contact 

area of flat, contact area of slant and total area, respectively. 

 

Figure 2.11.b shows the evolution of the total contact area A for the case of r=0.2𝑎𝑁. When 

N<5, from Stage II to III, A always increases, when N=5, A become unchanged from Stage II to 

Stage III. This is because of the zero 𝐴𝑠 in Stage III for N=5.  

Figure 2.12 shows the evolution of the total contact area A for the case of r=0.1𝑎𝑁, it can be 

seen that when N>5, the contact area of the flat segments already starts to decreases in Stage II. 

The critical value of losing contact in Stage III is N=6, which is larger than the case of r=0.2𝑎𝑁. 

This indicates that when r decreases, the critical value of N for losing contact will increase.  
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Figure 2.12. (a) Contact area of flat and slant segments in different stages of deformation. 

(b) Total contact area of Koch fractal for N=2, 3, 4, 5 and 6.  𝐴𝑓 , 𝐴𝑠 and 𝐴𝑓 + 𝐴𝑠 represent 

contact area of flat, contact area of slant and total area, respectively. 

 

Effect of μ. The influence of friction coefficient μ on the effective stiffness of the two contact 

stages were studied for different N. Figure 2.13 shows that for all three cases of μ=0, 0.1 and 0.2, 

the slope slightly increases for each N, but the critical N for losing contact keeps the same, 

indicating that the critical N for losing contact is not sensitive to the friction coefficient μ. 
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Figure 2.13. Theoretical prediction on the influences of friction coefficient on the load-

displacement relations for different N’s.  

 

2.5. Scaling Law 

The theoretical prediction results in Section 2.5 indicate that the number of hierarchy N, the 

imperfection g and r, and the friction are all very important for the mechanical properties of the 

Koch fractal interlocking. Especially, N dominates the scaling effects of the effective stiffness.   

Based on the theoretical model, the influences of N on the overall stiffnesses of 𝐸𝐼𝐼 and 𝐸𝐼𝐼𝐼 of 

the fractal interlocking at Stages II and III are plotted in Figure 2.14. It was found that 𝐸𝐼𝐼 and 

r= 0.1 mm ,  g= 0.05 mm
μ=0 μ=0.1
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𝐸𝐼𝐼𝐼 are functions of N, g, r and μ. System of Eqs.(2.4) to (2.31) provides a scaling law to predict 

the influences of these parameters on 𝐸𝐼𝐼 and 𝐸𝐼𝐼𝐼 . 

Figure 2.14.a shows that the influence of g on the non-dimensionalized effective stiffness of 

Stage II , 
𝐸𝐼𝐼

𝐸
 for different N values, where E is the Young’s modulus of the material. The solid 

black curve indicates the stiffness of the perfect system of g= 0 and r= 0. It provides the upper 

limit of the effective stiffness for Koch contact for each N. For the perfect system, 𝐸𝐼𝐼 =𝐸𝐼𝐼𝐼, and 

they always increase with N, and can goes to infinity. However, for any g>0, and/or r>0, there is 

a critical value of 𝑁𝑐𝑟for each stage, when N>=𝑁𝑐𝑟, the top and bottom piece will loss contact, and 

therefore a zero stiffness. For example, for the cases shown in Figure 2.14, when g=0.1 mm, 𝑁𝑐𝑟=6, 

and when g=0.2 mm, 𝑁𝑐𝑟=5.  Also, there is a 𝑁𝑜𝑝𝑡 (2<𝑁𝑜𝑝𝑡<𝑁𝑐𝑟) for each stage, at which the 

maximum stiffness is achieved. For example, for the cases shown in Figure 2.14, in Stage II, 

𝑁𝑜𝑝𝑡=4, and in Stage III, 𝑁𝑜𝑝𝑡=3. 
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Figure 2.14. Influences of gap g on non-dimensionalized effective stiffness in (a) Stage II 

and (b) Stage III. (The solid black curves represent the ideal case of g=0 and r=0 which is the 

upper limit of effective stiffness for Koch contact for each N.) 

 

Figure 2.14 shows that when g changes from 0 to 0.1, the stiffness changes more dramatically 

than when g changes from 0.1 to 0.2. To show the dramatic transition more clearly, Figure 2.15 

shows more curves when g changes from 0 to 0.1. Figure 2.15 shows that in Stage II, when g 

increases from 0.01mm to 0.1mm, 𝑁𝑜𝑝𝑡decreases from 6 to 4.   

g=0

g=0.1

g=0.2

g=0
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Figure 2.15. Non-dimensionalized effective stiffness vs. N, when 0 < g <0.1 mm. 

 

Effect of r. Figure 2.16 shows how the effective non-dimensional stiffness in Stage II and Stage 

III changes with N for three self-similar cases: r=0, r=0.1𝑎𝑁, and r=0.2𝑎𝑁. It can be seen that when 

r increases from 0 to 0.2aN, 𝑁𝑐𝑟decreased from 7 to 6, while 𝑁𝑜𝑝𝑡=5 in Stage II, and 𝑁𝑜𝑝𝑡=4 in 

Stage III. 

g= 0.1mm

r=  mm , μ=0.1

0< g <0.1
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Figure 2.16. Influence of rounded tip radius r on non-dimensionalized effective stiffness in 

(a) Stage II and (b) Stage III. (The solid black curves are for the ideal case of g = 0 and r = 0.) 

 

Effect of μ. By taking a specific geometry: g=0.05 and r=0.1𝑎𝑁, as an example, the non-

dimensional stiffness in both stages are plotted as a function of N in Figure 2.17. Figure 2.17.a 

shows that in Stage II, the stiffness 𝐸𝐼𝐼 is independent of the friction coefficient μ. This is because 

the contact of flat segments is independent on friction. Figure 2.17.b shows that in Stage III, the 

stiffness 𝐸𝐼𝐼𝐼 slightly increases, when the friction coefficient μ increases. 

r= 0
r= 0.1

r= 0.2

g=0.05 mm , μ=0.1
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Figure 2.17. Influence of friction coefficient on non-dimensionalized effective stiffness in 

(a) Stage II and (b) Stage III. (The solid black curves are for the ideal case of g = 0 and r = 0) 

 

2.6. Summary 

In this chapter, a theoretical model was developed to predict the contact area and the load-

displacement relation of both perfect and imperfect Koch fractal contact and interlocking with 

different geometries. The Koch fractal interlocking shows a typical three-stage deformation 

mechanism, when the gap g is larger than zero.  

The influences of the geometric imperfection including the gap g and the tip radius r, and the 

friction coefficient was quantified via the theoretical model. It was found that the design is 

sensitive to geometric imperfection and friction. Specifically, it was shown that when g increases, 

the stiffness in both stages decrease, also initiation of contact delays; when r increases, both the 

μ=0.2

μ=0.1

μ=0

μ=0.2
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overall stiffness and contact area increases; Friction does not influence the contact area and the 

stiffness in Stage II, but in Stage III, when μ increases, the overall stiffness slightly increases. 

A scaling law for the effective stiffness non-dimenalized with the Young’s modulus of the bulk  

material (E=1.7 GPa) was shown in Section 2.6. The scaling law indicates that for the perfect 

system, the stiffness will increase exponentially with N. However, the system is imperfection 

sensitive so that an optimal N value 𝑁𝑜𝑝𝑡 exists to achieve the maximum stiffness. Also, the Koch 

fractal contact area is sensitive to imperfections, so that a critical value N value 𝑁𝑐𝑟 exist, beyond 

which no contact occurs and therefore the system shows zero overall stiffness. Specifically, the 

stiffness decreases exponentially with the gap g. Compared with g, r and friction has less influence 

on the overall stiffness.  

 

 

  



42 

 

Chapter 3. Finite Element Analysis of Koch Fractal Interlocking 

 

In this chapter, Finite Element (FE) analysis is performed to evaluate the mechanical behavior 

of Koch fractal interlock designed. Both 2D and 3D FE models of both perfect and imperfect Koch 

fractal interlocking are developed. Non-linear FE simulations were performed to quantify the 

mechanical properties and behavior of the designs. 

To choose the correct unit cell for the FE models, the effects of the number of Representative 

Volume Elements (RVE), and the geometry of it are present in Sections 3.1 and 3.2, respectively.  

Parametric study of the load-displacement behavior of the Koch fractal designs were performed 

and presented in Section 3.3. In Section 3.4, 3D FE simulations were performed to further evaluate 

the evolution of contact area of the designs during deformation.  To further evaluate the influences 

of material property on the stiffness and strength of the designs, in Section 3.5, FE simulations 

with both linear elastic material model and elasto-perfect-plastic material model were conducted 

and the results are compared. In section 3.6, the energy absorption of fractal interlocks with 

different geometries were quantified via FE simulations. Finally, the major conclusions are 

summarized in Section 3.7. 

 

3.1 Effects of the number of RVEs  

FE models of Koch fractal contact with 1 RVE, 2 RVE and 3 RVEs were developed in 

ABAQUS 6.13. Two dimensional finite element (FE) models for N=2, 3 and 4 were developed in 

ABAQUS/CAE. Four-node, plane stress, quadrilateral, and elements with reduced integration 

(CPS4R) were used in all FE models. Elastic model with Young’s modulus of E= 1.7 GPa, 
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Poisson’s ratio of ν=0.4 and density of ρ= 1.1𝑒−9 was used. Very fine mesh were used in the 

contact area, as shown in Figure 3.1a.  Mesh sensitivity study was performed to balance 

computational cost and accuracy. 0.1 mm mesh size was chosen within the fractal zone (L as shown 

in Figure 3.1b.)  The bottom edges of the FE models are fixed and the top edge subjected to a 

prescribed displacement. From the FE simulations, the displacement δ were output as the change 

in distance between the peak point and the bottom line of the fractal boundary, as shown in 

Figure 3.1b, so that we only focus on the deformation in the fractal contact zone, the deformation 

of the shoulders are excluded. The left and right boundaries of the FE models can only move 

vertically.  

 

Figure 3.1. Boundary conditions and the finite element mesh with N=2, 3 and 4, 

respectively; (b) illustration of the measured displacement. 

 

N=2

N=3

N=4

F, δ

L, δ
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(b)
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The overall load-displacement curves of the FE models with different numbers of RVEs for 

the case of N=2, r= 0.45, g=0.1 and μ=0.3 and N=3, r= 0.15, g=0.1 and μ=0.3 are compared in 

Figure 3.2.a and Figure 3.3a, respectively. All three cases show the three-stage deformation 

mechanism very clearly. To further evaluate the influence of number of RVEs, the effective stress-

strain curves are plotted and shown in Figure 3.2b and Figure 3.3b, respectively. It can be seen 

that   the stress-strain curves are identical for different numbers of RVE. Figure 3.2 and Figure 3.3 

indicate that the results with the rolling boundary condition on the left and right edges are 

independent on the number of RVEs.  

 

Figure 3.2. Mechanical response of Koch interlocking models. (a) Force-displacement 

curves and (b) Stress-strain curves of Koch fractal with different number of RVEs horizontally 

oriented when N=2.  
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Figure 3.3. Mechanical response of Koch interlocking models. (a) Force-displacement 

curves and (b) Stress-strain curves of Koch fractal with different number of RVEs horizontally 

oriented when N=3. 

 

3.2 Effect of RVE symmetry 

To study the effect of RVE symmetry, two types of FE models were developed for each case 

of N=2, 3 and 4: Type 1 is with 2 RVEs with the peaks upward, and Type 2 is also with 2 RVEs 

but one with the peak upward and the other with the peak flipped 180°, as shown in Figure 3.4a In 

all FE models g=0.1 mm, μ=0.3, and to ensure self-similarity, r changes proportionally to the 

length of segments in each N i.e r=𝑐a𝑁 (𝑐 = 0.15)mm. 
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Figure 3.4. (a) Influence of geometry complexity on mechanical behavior of Koch fractal 

with N=2,3 and 4. (b) Stress distribution of cases with different RVE design when δ=0.3 mm. 

 

The overall load-displacement curves of all FE models are compared in Figure 3.4a shows 

that when N increases, stiffness in both Stage II and III increases. The FE results of Type 1 and 

Type 2 are almost identical in Stage II. However, in stage III, the Type 2 has a slightly lower 

stiffness than Type 1. This is because that for Type 2, due to the asymmetric geometry the local 

deformation in Stage III becomes asymmetric (as shown in the stress contour of Figure 3.4b) and 

therefore, the contact area might be slightly reduced.  
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Stress contours for all Type 1 FE models in Stage II and Stage III are shown and compared in 

Figure 3.5 It can be seen that when the order of hierarchy N increases, in both Stage II and Stage 

III, the local stress increases and more material gets involved through contact and interlocking and 

therefore absorb more energy.  

 

Figure 3.5. FE Von Misses stress counter of the designs with N=2,3 and 4 at two 

displacement δ= 0.15, 0.35 (g=0.1 mm and r=0.15 𝑎𝑁). 

 

3.3  Parametric study on the overall force displacement behavior for case N=3 (Elastic 

model) 

In this section, by taking the case of N=3 as an example, the influence of each geometric 

imperfection including the small gap g, the rounded tip radius r and friction coefficient μ on the 

overall force-displacement curves will be explored via FE simulations.  
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Based on the results in Sections 3.1 and 3.2, for the parametric study, FE models with one 

RVE and with rolling constrains on the left and right boundaries will be used to quantify the 

mechanical behavior of the designs. 

Influence of gap g. FE models of Koch fractal interlocking with N=3, and with three different 

values of g =0.1, 0.4, 0.6 mm were developed. In all FE models, r=0.05 mm and μ=0.3. The overall 

load-displacement curves of all FE models are plotted and compared in Figure 3.6. It can be seen 

that there are two major effects due to g: (1) when g increases, the initial contact is delayed; (2) 

when g increases, the stiffness in both Stage II and Stage III decreases. The reduction of stiffness 

is more serious in Stage III than in Stage II. This is because g has more influence on the contact of 

slant segments in Stage III. Figure 3.6b shows that when g is large enough, no slant segments will 

be in contact, so that the stiffness in Stage II and Stage III is the same. 

 

Figure 3.6. Influences of gap g on the force-displacement response of N=3. 

N=3

μ=0.3

r=0.15 mm

(a) (b)

g=0.4 mmg=0.1 mm g=0.6 mm

δ – g (mm)
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Influence of rounded tip radius r. FE models of Koch fractal interlocking with N=3, and r=0.05, 

0.15 and 0.3 with three different values of g =0.1, 0.4, 0.6 mm were developed. In all FE models, 

g=0.1 mm and μ=0.3. The overall load-displacement curves of all FE models are plotted and 

compared in Figure 3.7. This figure shows that r has very little influence on the stiffness of Koch 

fractal interlocking. 

 

Figure 3.7. Influence of r on mechanical response of Koch fractal design when N=3. 

 

Influence of friction coefficient μ. FE models of Koch fractal interlocking with N=3, and 

μ=0.1 and 0.3 were developed. In all FE models, g=0.1 mm and r=0.15. The overall load-

displacement curves are compared in Figure 3.8. It can be seen that μ does not influence the 

stiffness in Stage II, and when μ increases, the stiffness in Stage II slightly increases.  
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Figure 3.8. Influence of friction coefficient μ on load-displacement response of Koch fractal 

contact with N=3. 

 

3.4  3D FE simulations of Koch fractal interlocks  

From the 2D FE models, the contact area cannot be outputted. While the contact area can be 

achieved from 3D FE models. Therefore, 3D FE models were also developed. 

3D FE models with N=2, 3 and 4 with g= 0.1 mm, μ=0.3 and r= 0.15 a𝑁 mm were developed 

as shown in Figure 3.9. The out of plane thickness for all 3D FE models is 1 mm. The mesh size 

is the same with that of the 2D FE models. 
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Figure 3.9. (a) 3D FE models of the Koch fractal design with N=3, r= 0.15 mm, g= 0.1 mm; 

(b) Boundary and loading conditions applied to 3D FE models. 

 

The evolution of total contact area A and the overall load-displacement curves for different Ns 

are plotted and compared in Figure 3.10a and Figure 3.10b, respectively. 
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Figure 3.10. Numerical (a) contact area versus overall displacement and (b) force-overall 

displacement relation of N=2, 3 and 4. 

 

To further study the influence of g, r, μ and boundary condition on the contact area, different 

geometries of N=3 were investigated.  Influence of g, on contact area at different deformations is 

shown in Figure 3.11a. As it is expected increasing g significantly decreases the contact area A. 

Influence of r on contact area of N=3 is shown in Figure 3.11b. As this figure shows for small 

deformation, contact area does not extensively changes when r increases to its triple (0.05 mm to 

0.15 mm). However, keep increasing r to 0.3 mm, more significant influence can be observed on 

the amount of contact area.  

The influence of friction coefficient is shown in Figure 3.11c. For small deformation, the 

results are identical and shows no difference at all. While for large deformations, the lower value 

μ= 0.3

g=0.1 mm

r= mm 

N= 2

N=3

N=4

(a) (b)

2D model

3D model



53 

 

of μ shows a slightly higher curve. Finally, Figure 3.11d indicates how different boundary 

conditions on the sides of the fractal zone influences the contact area. As it can be seen, for small 

deformations there is almost no difference between boundary conditions. This is mainly due to 

existence of flat segments as they have major role in controlling motion. 

 

Figure 3.11. Comparison between contact area of Koch fractal with different values of (a) g,  

(b) r, (c) μ and (d) boundary conditions. 
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3.5  Comparison between linear elastic and elastic-perfectly plastic model 

 

In this Section, to evaluate the influence of material model on the prediction, FE models with 

both linear-elastic material model and elasto-perfect-plastic model are developed. For the linear 

elastic material model, the Young’s modulus is E=1700 MPa, and the Poisson’s ratio v=0.4. For 

the elasto-perfect-plastic model, the Young’s modulus, the Poisson’s ratio and the initial yielding 

stress were assumed to be 1700 MPa, 0.4 and 54.32 MPa, respectively. These values are achieved 

from performing an experimental uniaxial test on a VeroWhite dog bone. 

Influences of N. FE model with N=2, 3 and 4 were developed. In all FE models, g=0.1 mm, μ= 

0.3, and to ensure self-similarity, r is proportionally changing to 𝑎𝑁 i. e 𝑟 = 0.15a𝑁 .  The FE 

results of load-displacement curves are plotted and compared in Figure 3.12. The bifurcation points 

of the solid and dash lines indicate the initiation of yielding in the interlocking material. It can be 

seen that the interlock softens when part of the material enters into the plastic regime. Generally, 

when N increases, local yielding occurs earlier and under a higher load. For example, for N=2, 

local yield initiates in Stage III, while for N=3, local yielding initiates in Stage II. This is consistent 

with the stress contour shown in Figure 3.5. After the initial local yielding, the yielding propagates 

in more area and the load-displacement curves reach a peak. This indicates the strength of the 

Koch fractal interlock. When N increases, the overall strength also increases. In addition, when N 

increases, the curves after the peak become smoother, indicating a more stable response in the 

post-yielding regime.  
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Figure 3.12. FE comparison between linear-elastic and elasto-perfect plastic material 

models for N=2, 3 and 4. 

 

By taking N=3 case as an example, the influence of geometry factors g, r and friction μ are 

investigated in the following sub-sections.  

Influence of gap g. FE models with N=3 was developed. For all models, μ= 0.3 and r= 0.05 mm. 

The FE overall load-displacement curves are plotted in Figure 3.13. As we expected, when g 

increases, both strength and stiffness of fractal interlocking significantly decreases. Especially, the 

strength can reduce about 10 times.   
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Figure 3.13. Influences of gap g on the force-displacement response for N=3. 

 

Influence of r. FE models with N=3 was developed. For all models, μ= 0.3 and g= 0.1 mm, and r 

varies as 0.05mm, 0.15mm, and 0.3mm. The FE overall load-displacement curves are plotted and 

compared in Figure 3.14.Figure 3.13 Generally, when r increases, less materials are available for 

contact and interlocking and therefore the forces are expected to decrease slightly, however, when 

for a smaller r, the bending of the teeth can make the contact and interlocking become weaker. 

Therefore, this is an optimal r which balances the two factors and gives the maximum stiffness and 

strength. But, overall, the results are not very sensitive to r. 
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Figure 3.14. Influence of r on mechanical response of N=3 with elasto-perfect-plastic 

response. 

 

Influence of friction coefficient μ. FE models with N=3, g=0.1 mm and r=0.05 mm was 

developed. Figure 3.15 shows that when μ increases, both stiffness and strength increases. Also, 

for larger friction, local yielding occurs earlier.  
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Figure 3.15. Influence of μ on the load-displacement curves of N=3 with linear elastic and 

elasto-perfectly plastic material models. 

 

3.6 FE quantification of Energy 

The energy per unit volume absorbed by the top and bottom part of the Koch fractal 

interlocking with different geometries were quantified via FE simulations. Elasto-perfect-plastic 

material model was used in all FE simulations. 

2D FE models were developed. The energy density of the top and bottom parts of the interlock 

with N=2, 3, and 4 is plotted and compared in Figure 3.16. Generally, when N increases, the energy 

density increases, indicating the more efficient usage of material. For N=2, the top piece absorbs 

a little more strain energy than the bottom piece. While for the cases of N>2, the bottom piece 

absorbs more energy than the top piece, and it is a trend that a larger N, the energy absorbed by 
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the top piece increases, while that absorbed by the bottom piece decreases. Therefore, more 

difference in the energy absorbed by the top and bottom pieces. This difference indicates the 

increase in bending energy of the bottom piece, when N increases. 

 

Figure 3.16. Distribution of strain energy per volume fraction between top and bottom 

pieces for different cases of (a) N=2, (a) N=3 and (a) N=4. 
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Figure 3.17 shows the influence of r on the energy density of the top and bottom pieces. In 

general, when r increases, the energy density increases, indicating a better usage of the material. 

Comparing Figure 3.17a, b and c, it can be seen that when r decreases, the difference between 

the amount of strain energy absorbed by the top and bottom pieces increases, indicating more 

bending deformation in the teeth.  

 

Figure 3.17. Distribution of strain energy per volume fraction between top and bottom 

pieces for N=3 with different values of (a) r=0.05 mm, (b) r=0.15 mm and (c) r=0.3 mm. 

 

Figure 3.18 shows the influence of g on the energy density of the top and bottom pieces of the 

Koch fractal interlocking with different values of g. In can be seen that with the same value of r 

and μ, the geometry with a larger g absorbs much less energy than that with a smaller gap. Also, 

when g increases, some of the teeth on the top piece becomes slander and therefore experience 

larger bending deformation. 
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Figure 3.18. FE curves of energy density vs displacement and FE stress distribution 

contours for N=3 with r=0.05 mm, (a) g=0.6 mm and (b) g=0.1mm. 

 

3.7 Summary of the chapter 

In summary, in this chapter we numerically studied the mechanical behavior of Koch fractal 

contact for different geometries. 2D and 3D FE models show to have almost identical results. The 

Koch fractal interlocking FE model shows a typical three-stage deformation mechanism, when the 

gap g is larger than zero. 

The influences of the geometric imperfection including the gap g and the tip radius r, and the 

friction coefficient μ were quantified via FE model. It was found that the initial stiffness of designs 

is only sensitive to N and geometric imperfection g. It was shown that when g increases, the 
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stiffness in both stages decrease, also initiation of contact delays; tooth radius r shows to have a 

slight influence on both contact area and contact force; friction does not influence the contact area 

and the stiffness in Stage II, but in Stage III, when μ increases, the overall stiffness slightly 

increases. 

FE models with elastic perfectly plastic mechanical model were developed. From this 

investigation, it was found that strength increases by; increasing complexity of designs i.e 

increasing N and decreasing imperfections g and r. 

The influences of the geometric imperfection and N were investigated on energy density of top 

and bottom pieces of Koch interlock models. It was shown that increasing N, energy density of the 

whole model increases which indicates the more efficient usage of material. Increasing N also 

increases the amount of energy absorbed by the top piece. 

The influences of the geometric imperfection and N were investigated on energy density of top 

and bottom pieces of Koch interlock models. It was showed that increasing N, increases energy 

density of whole model increases indicating the more efficient usage of material. Increasing N also 

shows the energy absorbed by the top piece increases, while that absorbed by the bottom piece. 
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Chapter 4. 3D Printing and Mechanical Experiments  

 

In this Chapter, the Koch fractal interlocking of N=2, 3 and 4 were fabricated via a multi-

material 3D printer (Objet Connex 260). The specimens were two types: (1) with gap g and (2) 

with the gap filled with soft adhesive layer. Uni-axial tensions experiments were performed on 

both type of specimens. The experimental results of the specimens with gaps were compared with 

the theoretical prediction and FE simulations. The results from experiments of both types of 

specimens were compared to evaluate the role of the adhesive layer in the Koch fractal 

interlocking. In addition, a new design of Koch interlocking with asymmetric geometry was 

fabricated with the soft adhesive layer and both uni-axial tension and compact tension experiments 

were performed to evaluate the mechanical behavior of the new designs.  

In Section 4.1, Koch fractal interlocking with different N and gaps were fabricated and tested 

via uni-axial tension experiments. In Section 4.2 Koch fractal interlocking with different N and 

soft adhesive layer were fabricated and tested via both uni-axial tension experiments and compact 

tension experiments. The results of the two types of specimens were compared in Section 4.3. 

Then, in Sections 4.4 and 4.5, to balance the material usage on the top and bottom piece, Koch 

interlocking specimens with one RVE upward and the other RVE downward were designed and 

fabricated with the soft adhesive layer. Both uni-axial tension and compact tension experiments 

were performed to evaluate the toughness of the new design under two different loading cases. 

Finally, conclusions were summarized in Section 4.6. 
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4.1  Fabrication and tensile experiments of Koch fractal interlocking with gaps  

Koch fractal interlocking with N=2, 3 and 4 with one RVE was designed for experiments. The 

dimensions of the specimens are: the width of the specimen, i.e. 𝑎0=54 mm, g = 0.2 mm and 

r=0.15 𝑎𝑁.The specimens were printed as VeroWhite material from the 3D printer. Speckle 

patterns were put on the surfaces of the specimens and Digital Image Correlations (DIC) (VIC-

2D) was used to track the strain evolution during the experiments. Then the top and bottom pieces 

of each specimen were mounted on the Zwick material testing machine. Quasi-static uni-axial 

tensile load was controlled for the top piece, the loading rate is 0.024 mm/min. Through performing 

mechanical test on a dog bone Vero white the Young’s modulus, Poisson’s ratio, and ultimate 

strength are found to be E=1.7 GPa, υ=0.33 and σ =35 MPa, respectively. 

From the experiments, the overall force-displacement curves of the 3D-printed specimens 

with N=2, 3 and 4 are shown in Figure 4.1.a. It can be seen that generally, when N increases, the 

stiffness and strength of the specimens increase. The increase in stiffness and strength is significant 

from N=2 to 3. When N increases from 3 to 4, although the stiffness and strength only slightly 

increases, but the toughness and the final displacement to breakage increase significantly.  
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Figure 4.1. Experimental results of 3D-printed Koch fractal interlocking with N=2, 3 and 4, 

one RVE, gap g=0.2 mm and r= 0.15 𝑎𝑁. Teeth with large deformations are marked with a 

circle. 

 

During the deformation, some of the teeth break, as shown in Figure 4.1.b, which cause the 

drop of the curves. For N=2, due to sliding of the two slant segments, no tooth breakage was 

observed. When N=3 and 4, have one and two major teeth breakage, respectively, which are 

marked with circles on Figure 4.1.b. 

For each specimen, two major strain components of Ɛ𝑦𝑦 and Ɛ𝑥𝑦 were output from the Digital 

Image correlation (DIC) software (VIC2D). Figure 4.2 shows the distribution of Ɛ𝑦𝑦 for N= 2, 3 

and 4 at different overall displacement. When the overall strain 𝜀= 0.03, for N= 2 specimen, there 

is no contact yet; while for the cases of N=3 and 4, the flat segments start in contact. When the 

overall strain in vertical direction  ε = 0.05, for N=2 specimen, only slant segments are in contact, 
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the model experiences sliding and interlocking; for the cases of N=3 and 4, the flat and slant 

segments are fully in contact. When the overall strain 𝜀= 0.08, in shown in Figure 4.2. For all 

specimens, some of the segments which were in contact before now lost contact due to large local 

deformation and tooth breakage (Marked with circles in Figure 4.1b).  

 

 

Figure 4.2. DIC strain (𝜀𝑦𝑦) contours of Koch fractal interlock with N=2, 3 and 4 under uni-

axial tension. 
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The shear strain component was also output from DIC at the overall strain of 0.05, as shown 

in Figure 4.3. It can be seen that the local shear is significant around the slant segments in 

contact.  

 

Figure 4.3. DIC strain (𝜀𝑥𝑦) contours of Koch fractal interlock with N=2, 3 and 4 under uni-

axial tension. 

 

4.2 Fabrication and tensile experiments on Koch interlocking with adhesive layer  

Different from Section 4.1, in this Section, the gap of the specimens in Section 4.1 were 

replaced with a soft adhesive layer. The new specimens with adhesive layers were fabricated via 

the multi-material printer, in which the adhesive layer was printed as TangoBlack+, and the major 

pieces were printed as VeroWhite (the same as the specimens in Section 4.1). TangoBlack+ is a 

soft rubbery material with Young’s modulus ~1MPa. Again the geometric dimensions of the 

specimens are: 𝑎0=54 mm, g = 0.2 mm and r =0.15 𝑎𝑁.Thus, the only difference between the 

specimens in this section and those in Section 4.1 is with or with/out the soft adhesive layer. 

Speckle patterns were also put on the surfaces of the specimens and Digital Image Correlations 

(DIC) (VIC-2D) was used to track the strain evolution during the experiments. Then the top and 
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bottom pieces of each specimen were mounted on the Zwick material testing machine. Quasi-static 

uni-axial tensile load was controlled for the top piece, the loading rate was 0.024 mm/min.  

From the experiments, the overall load-displacement curves are plotted and shown in 

Figure 4.4. It can be seen that generally, the curves show two peaks, and when N increases, the 

stiffness is almost the same, while the toughness and the peak strength of both peaks increases 

significantly. Although, more improvement was observed when N increases from 2 to 3 than from 

3 to 4. The first load drop after the first peak is because of the failure of the soft adhesive layer. 

Then after the layer failure, the interlocking still functions through fractal contact between the top 

and bottom pieces.  

 

Figure 4.4. Experimental results of Koch N=2, 3 and 4 with a soft layer. 
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4.3 Comparison of Koch interlocking with gaps and soft adhesive layers 

The only difference between the specimens and experiments in Sections 4.1 and 4.2 is the 

soft adhesive layer. In order to evaluate the role of the soft adhesive layer, the overall load-

displacement curves of the Koch interlocking with gaps (Section 4.1) and with layers (Section 

4.2) for different Ns are plotted and compared in Figure 4.5.  

 

Figure 4.5. Comparison between the overall load-displacement curves of the 3D-printed 

specimens with and without a soft adhesive layer for N= 2, 3 and 4 (one RVE, gap g=0.2 mm 

and r= 0.15 𝑎𝑁 .) 

 

Figure 4.5 clearly shows that by adding a soft adhesive layer, the stiffness, strength and 

toughness are all significantly increased. Also, for the specimens with the soft adhesive layer, the 

effective stiffness after the first peak is similar to the effective stiffness of the corresponding 

specimens with gaps. Also, compared with the specimens with soft adhesive layers, the ones with 

gaps are very sensitive to the alignment of the specimens. This is because that the top and bottom 
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pieces initially are not connected, and any in-plane and/or out-of-plane misalignment can 

significantly reduce the contact area and therefore the load-bearing capacity of the specimens. 

4.4 Comparison between FE models and experiments 

To compare and validate experimental results of 3D-printed dog bone specimens without a 

soft layer, with numerical results, 2D FE models of N=2, 3 and 4 with g= 0.2 mm, μ=0.01 and 

r= 0.15 a𝑁 mm were developed, where a0 =54 mm. The out of plane thickness is 4 mm. and the 

mesh size 0.2 mm was used for Koch surfaces. For all models, plane stress elements (CPS4R) and 

elasto perfectly plastic material model with Young’s modulus of E= 1.7 GPa, Poisson’s ratio of  

ν=0.33 and failure strength of σ =30 MPa was used. 

The overall force-displacement curves of the FE models with gap instead of adhesive layer 

are compared with the experimental curves of the specimens with adhesive layer. All other 

geometric parameters of the FE models and the specimens are the same. Figure 4.6 shows that the 

FE results capture the second peak in the experimental curve. While the second peak in 

experiments is after the failure of the adhesive layer and therefore is mainly due to the fractal 

contact and interlocking. This indicate that the FE model captured the fractal contact and 

interlocking accurately.  
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Figure 4.6 Comparison between overall force-displacement curve from FE simulation and 

experimental results for N=2, 3 and 4. 

 

4.5 Tensile experiments on Koch fractal interlocking with asymmetric geometry 

Based on the results of Sections 4.1 - 4.3, it is suggested that the Koch fractal interlocking 

with soft adhesive layer is preferred for better mechanical performance (i.e. increased stiffness, 

strength and fracture toughness) and more stable behavior (insensitive to misalignment etc.).  Also, 

it was shown in Chap. 3 that the top and bottom pieces deform differently and absorb different 

amount of energy. Thus, for practical design, to balance the energy absorbed by the top and bottom 

pieces, Koch fractal specimens with neighboring RVEs having opposite directions (as shown in 

Figure 4.7) are expected to have better mechanical performance. According to these reasons, in 

this Section and the next, we will focus on the Koch fractal interlocking with soft adhesive layers 

and also with neighboring RVEs having opposite directions.  
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Figure 4.7. 3D-printed Koch interlocking specimens with two flipped RVEs and a soft 

adhesive layer tested under uni-axial tension for N=0,1 2 and 3. 

 

For all specimens, the total width of the two RVEs is 54 mm, the in-plane thickness of the soft 

adhesive layer is 0.4 mm (g=0.4 mm) and the out-of-plane thickness is 2 mm. To reduce potential 

stress concentration at sharp corners, the Koch interface were rounded at the tips with radius r = 

0.15 𝑎𝑁. Thus the designs for different Ns are self-similar.  

The new designs for N= 0, 1, 2 and 3 were fabricated via the multi-material 3D printer. As 

shown in Figure 4.7, each specimen include two RVEs with opposite directions. Again, the layer 

was printed as TangoBlack+, and the top and bottom pieces were printed as VeroWhite. To better 

transform load from the grips, shoulders were added to the specimens, as shown in Figure 4.7. 
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Quasi-static uni-axial tension experiments with displacement rate of 0.024 mm/min were 

conducted on a material testing machine (ZWICK/Roell Z5.0).  

To guarantee repeatability, three identical specimens were printed and tested for each N 

(total of 12 tests).  

The overall force-displacement curves are plotted and compared in Figure 4.8. For the cases 

of N=0 and 1, the curves only contain one peak. While for the cases of N=2 and 3 all curves show 

two peaks. This is because the cases of N=0 and 1 do not have interlocking, while the cases of N=2 

and 3 have interlocking. The first peak of the four geometries are similar to each other, while the 

residual strength (𝜎𝑟) of the second peak increases dramatically when N increases. Also, Figure 4.8 

shows that as the number of hierarchy N increases, fracture toughness, Г (area under F-δ curve) 

increases.   
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Figure 4.8. Experimental load-displacement curves of the 3D-printed specimens tested 

under uniaxial tension, with two flipped RVEs and a soft adhesive layer for N=0, 1, 2, and 3. 

 

Figure 4.8 shows that for the cases of N=2 and 3, the second peak starts from the overall 

displacement equals to the thickness of the layer, i.e. 0.4mm. This further confirms that the 
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second peak is due to the interlocking after the material in the adhesive layer fails. As a result, 

even though the adhesive layer fails, contact and interlocking keeps the parts together.  

The fracture toughness ГN of each geometry was nondimensionalized by the toughness of the 

flat specimen Г0 and plotted as a function of N, shown in Eq. (4.1) in Figure 4.9.a. It can be seen 

that the toughness of N=2 is about three times higher than the flat layer, and that of N=3, is about 

six times higher than the flat layer. More accurately, it was found that the non-dimensionalized 

toughness exponentially related to N and well above the rule of mixture, as indicates that the 

significantly improved energy dissipation ability with higher Ns is mainly due to the Koch 

geometry.  

Г𝑁

Г0
= 𝑒(𝑐𝑁)                                                            (4.1) 

 

 

Figure 4.9. (a) Nondimensionalized toughness vs. N (b) the finite element stress contours of 

the Koch layer with different Ns. 

To further understand the toughening mechanism, finite element models of the four specimens 

were developed in ABAQUS V 6.13 (Simulia, USA). Linear, quadrilateral, plane stress elements 
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(CPS4R) were used in the model. Hyperplastic Mooney-Rivlin model were used for the soft Koch 

layer. For the hard phase, linear elastic, isotropic material model was used, with Young’s modulus 

E=1700 MPa and the Poisson’s ratio υ=0.4. These parameters were obtained from best fitting the 

experiment data of N=0. The FE results of the stress contours of the Koch layer with different Ns 

are shown in Figure 4.9.b, which that the highest stress is always located in the flat segments and 

the tips of the Koch layer. Also, when N increases, damage were distributed in a fractal manner. 

In this way, energy can be dissipated more efficiently in the hard phase to avoid the catastrophic 

failure. 

 

4.6 Compact tension experiments of Koch fractal interlocking with asymmetric geometry  

To investigate damage evolution in Koch fractal layer, similar specimens for compact tension 

experiments were designed. The dimensions of the specimens were designed according to 

modified ASTM standard size as shown in Figure 4.10. The designed specimens include Koch 

interfacial layers with four different geometries, N=0, 1, 2 and 3. The thickness of soft interface is 

0.4 mm (g=0.4 mm) and out of plane thickness of samples is 2 mm. The designs were then 

fabricated via the multi-material 3D printer. Quasi-static compact tension experiments with 

displacement rate of 0.024 mm/min were conducted on a material testing machine (ZWICK/Roell 

Z5.0). To ensure repeatability, three identical specimens were printed and tested for each 

geometry. 
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Figure 4.10. 3D-printed specimens fabricated for compact tension test with N=0,1 2 and 3. 

 

The load-displacement curves of the compact tension experiments are shown in Figure 4.11.a. 

For higher Ns (N=2, and 3), a significant plateau was observed, indicating a period of stable crack 

propagation. While for lower Ns (N=0 and 1), an unstable crack propagation happened right after 

the damage initiation. The non-dimensionalized toughness is plotted as a function of N in 

Figure 4.11.b, which shows a hyperbolic relation between the toughness and N through equation 

bellow; 

Г𝑁 = (
Г3−Г0

2
)[tanh(2𝑁 + 𝑎)]                                                 (4.2) 
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Figure 4.11. Experimental results of compact tension test. (a) Force-displacement curves of  

four geometries (b) Normalized toughness vs N. The dash line displays the toughness deriving 

from the rule of mixture. 

 

The toughness of the uni-axial tension specimens and compact tension specimens are 

compared with the rule of mixture prediction (dash line) in Figure 4.12. It can be seen that the 

toughness of both types of specimens are with toughness beyond the rule of mixture. However, 

different from the exponential increases for uni-axial tension, for the compact tension, the increase 

slows down when N increases beyond 2, indicating a limit of increasing toughness via Koch fractal 

design.  

=
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Figure 4.12. Comparison between toughness of 3D-printed specimens designed for uni-

axial tension and compact tension. Black dash-line displays predication from rule of mixture. 

 

4.7 Summary  

In this chapter, Koch interlocking with gaps and with soft adhesive layers with the same 

geometries were designed and fabricated via multi-material 3D printing. Quasi-static uni-axial 

tension experiments on the Koch interlocking with gaps further proved the concept and the scaling 

law developed in Chapters 2 and 3. Also, by comparing the experimental results of the two sets of 

specimens, it is demonstrated that the soft adhesive layer plays a very important role in further 

improve the mechanical performance of the Koch fractal interlocking. Comparing with the designs 

with gaps, those with the soft adhesive layer can significantly improve the strength and toughness, 

and also have more stable behavior and less sensitive to the imperfection from loading.  
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In addition, new designs with flipped RVEs and adhesive layers were developed. Both quasi-

static uni-axial tension and compact tension experiments were performed. Interestingly, it is shown 

that when N increases, the toughness of the Koch fractal layer can have increased toughness 

beyond the rule of mixtures. Under uni-axial tension, the toughness of the Koch fractal interlocking 

with soft adhesive layers increases exponentially with N. While under compact tension, the 

toughness increases hyperbolically, and slows down when N increases beyond 2 and 3. 
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Chapter 5. Conclusions 

In this study, inspired by the topological interlocking and fractal geometry in nature, Koch 

fractal interlocking was designed, fabricated and investigated through analytical, numerical and 

experimental approaches.   

5.1 Specific conclusions for each chapter 

In Chapter 2, the theoretical model was introduced to predict the overall load-displacement 

relation of both perfect and imperfect Koch fractal contact and interlocking with different 

geometries. The Koch fractal interlocking shows a typical three-stage deformation mechanism, 

when the gap g is larger than zero. The influences of the geometric imperfection including the gap 

g and the tip radius r, and the friction coefficient were quantified. It was found that the mechanical 

performance of the design is much more sensitive to geometric imperfection g and r rather than 

friction. 

   The theoretical scaling law indicates that for the perfect system, the stiffness will increase 

exponentially with N. However, the system is imperfection sensitive so that an optimal N value 

𝑁𝑜𝑝𝑡 exists to achieve the maximum stiffness. Also, the Koch fractal contact area is sensitive to 

imperfections, so that a critical value 𝑁𝑐𝑟 exists, beyond which no contact occurs and therefore the 

system shows zero overall stiffness. The stiffness was shown to decrease exponentially with the 

gap g compared to r and friction.  

In Chapter 3, FE models with two cases of elastic and elastic-perfectly plastic mechanical 

models were developed. The influences of the geometric imperfection including the gap g and the 

tip radius r, and the friction coefficient μ were quantified. It was found that the initial stiffness of 

the designs is only sensitive to N and the geometric imperfection g. It was shown that when g 
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increases, the stiffness in both stages decrease, also the initiation of contact delays; tooth radius r 

shows to have a slight influence on both contact area and the contact force; friction does not 

influence the contact area and the stiffness in Stage II, but in Stage III, when μ increases, the overall 

stiffness slightly increases. Through this numerical investigation, it was also found that the strength 

of Koch fractals increases when N increases and the imperfections g and r decrease.  

In Chapter 3, the influences of the geometric imperfection and N were also investigated on 

energy density of top and bottom pieces of Koch interlock models. It was shown that when N 

increases, the energy density of whole model increases, indicating the more efficient usage of 

material. 

In Chapter 4, Koch interlocking with gaps and with soft adhesive layers were designed and 

fabricated via a multi-material 3D printer (Objet Connex 260). Quasi-static uni-axial tension 

experiments on the Koch interlocking with gaps further proved the concept. Also, by comparing 

the experimental results of the two sets of specimens, it is demonstrated that the soft adhesive layer 

plays a very important role in further improving the mechanical performance of the Koch fractal 

interlocking. Comparing with the designs with gaps, those with the soft adhesive layer can 

significantly improve the strength and toughness, and also have more stable behavior and are less 

sensitive to the loading and alignment imperfections. 

In addition, to ensure same energy absorption of the top and bottom pieces, new designs with 

flipped RVEs and adhesive layers were developed. Both quasi-static uni-axial tension and compact 

tension experiments were performed. Interestingly, it was shown that when N increases, the 

toughness of the Koch fractal layer can have increased toughness beyond the rule of mixtures. 

Under uni-axial tension, the toughness of the Koch fractal interlocking with soft adhesive layers 
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increases exponentially with N. While under compact tension, the toughness increases 

hyperbolically, and slows down when N increases beyond 2 and 3. 

5.2 Summary of design guidelines developed  

   For the Koch fractal interlocking and contact, geometric parameters (N, g, r, 𝑎0), especially 

N and g should be wisely chosen to reach optimal mechanical properties under desired design 

objectives. In general, stiffness and strength increases, when the geometric imperfection decreases. 

For certain geometric imperfection, there is an optimal N for the maximum stiffness.  

   A softer adhesive layer is beneficial in enhancing the strength and toughness and reduce the 

sensitivity to imperfections. The material properties can be optimized under certain design 

requirements.  

   When applying the Koch fractal design for joining dissimilar materials, based on the results 

in Section 3.6, in which showed that if the materials of the top and bottom pieces are the same, the 

bottom piece absorbs more energy than the top piece. So  for Koch fractal dissimilar joints, a stiffer 

and stronger material in bottom can provide a better usage of material and a better balance in 

energy absorption from top and bottom pieces.  

   The Koch fractal interlocking’s response to uni-axial tension and compact tension were 

explored. For this two type of loadings, to maximum the load-bearing capacity, the geometry and 

material combinations can be optimized. The Koch fractal interlocking under shear should have 

similar benefits, although it was not explored in this thesis.  
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5.3 Discussion 

Advantages of fractal design. Mechanical interlocking, as a joining mechanism, has been 

studied for a long time. For example, the interlocking mechanism of nacre-inspired dove-tail 

shaped interlocking building blocks was investigated through experimental, numerical and 

theoretical models in previous studies [110-112]. Ammonite-inspired hierarchical deterministic 

fractal suture interfaces were also explored analytically and numerically [113-114]. Bio-inspired 

jigsaw-like interlocking sutures with snapping feature were investigated [31]. Previous research 

mainly focused on either composite modeling of fractal joints [113-114] and surface contact with 

fractal roughness [115]. In this work, we focused on Koch fractal contact and interlocking. Using 

three geometry factors g, 𝑁 and 𝑎0 various geometries with different mechanical behavior can be 

designed and fabricated. Fractals, are good options in generating complex geometries driven by 

simplicity due to the self-similarity, and therefore, superior mechanical properties. Due to the 

imperfection sensitivity of fractal design, the challenges of applying fractal design in engineering 

system are the complexity and accuracy in manufacturing. Additive manufacturing provides an 

opportunity to overcome these challenges and enable potential wide application of the concept of 

fractal design. 

Imperfection sensitivity. In summary, being consistent with the observation of fractal 

interlocks in nature, we demonstrated that in general the stiffness of the interlocking can be 

effectively increased via fractal design. In general, when the fractal complexity (it is specifically 

represented as number of hierarchy N in the present Koch fractal design) increases, the stiffness of 

the fractal interlocking will increase significantly [113]. This is mainly attribute to the increase in 

contact area when fractal complexity increases. However, the mechanical responses of fractal 

interlocks are also sensitive to imperfections, such as the gap between the interlocked pieces and 
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the rounded tips. When fractal complexity increases, the mechanical properties will become more 

and more sensitive to the imperfection and eventually, the negative influences from imperfection 

can even become dominant. Therefore, it is expected that considering the imperfection, there is an 

optimal level of fractal complexity to reach the maximum mechanical performance [116]. This is 

again in consistent with fractal interlocks in all different biological systems. 
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Appendix A. FE Simulations of Flat and Slant Contact 

In Chapter 2, the theoretical model developed was based on the following assumptions: 

1- Deformation is small 

2- Material is linear elastic 

3- Bending deformation of the teeth during the contact was neglected  

4- The compressive load-displacement behavior of the contact between the flat surfaces of 

two separate parts is equivalent to that of a one-piece model (Eq. (2.9) 𝑘𝑛 = 𝐸
𝑡

𝐿
, was 

derived based on this assumption) 

5- Interaction between the contact-induced deformation of the neighboring flat and slant 

surfaces in the fractal design is neglected  

6- There is friction between two contacting surfaces. (Therefore the load-displacement 

relation of flat and slant surfaces are related via Eq.(2.7).) 

7- No relative sliding between the slant surfaces in contact. 

   To justify the assumptions 4 and 6, three mechanical FE models (as shown in Figure A1) 

were developed in ABAQUS : Model 1) Bulk material (one-piece) under compression; Model 2) 

Two-piece model with flat surfaces in contact, with the same total dimension and the same material 

as Model (1); Model 3) Two-piece model with slant surfaces in contact with the same total 

dimension and the same material as Models (1) and (2). For all models, plane stress elements 

(CPS4R) were used. Linear elastic material model with Young’s modulus of E=1.7 GPa and 

Poisson’s ratio of ν=0.33 were used. In all three FE models, l = 26 mm (excluding the gap for 

models 2 and 3), w= 6 mm, and the out-of-plane depth t is 4mm. The friction coefficient is 0.1. 
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Figure A.1 (a) Bulk martial (b) contact of two flat surfaces (c) contact of two slant surfaces. 

    

   The vertical displacement of the bottom edges of all three models were constrained, the 

nodes on the top edge of the three models were subjected to a prescribed vertical displacement 

downward. Thus all three models were under uniaxial compressive loads. For model 3, to avoid 

relative sliding, the left and right edges of the model was under the vertical free rolling condition. 

The applied loading and boundary condition were schematically shown in Figure A.2. For models 

2 and 3, δ is set to be zero when contact initiates.    
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Figure A.2 (a) Applied loading and boundary condition on Models (1) and Model (2). (b) 

Applied loading and boundary condition on Model (3). 

 

  The overall load-normalized displacement curves for all three models are shown in Figure 

A.3. The FE curves then compared to the analytical models of Eqs. (2.9) and (2.10). Figure A.3 

shows that the mechanical response of Model (1) and Model (2) are almost identical which 

justifies the assumption 4. Under small deformation, the theoretical model presented in Eq. (2.9) 

shows good agreement with the FE results of both Model 1 and Model 2. This proves the accuracy 

of Eq. (2.9). 

δδ
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Figure A.3 Force-normalized displacement of Model (1), Model (2) and Model (3) are 

compared to theoretical predictions from Eqs. (2.9) and (2.10). 

Figure A.3 also shows that the FE results of Model (3) are very close to the prediction from 

Eq. (2.10). This verifies the accuracy of Eq. 2.10. 

In Figure A.4, the contours of vertical stress, and von-Mises stress for all three FE models are 

shown and compared at the same overall displacement of δ=1.9 mm. It can be seen that for models 

1 and 2, the stress distribution is uniform and identical, which again justify the assumption 4. 
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Figure A.4 Von Misses stress distribution at displacement of δ=1.9 mm for (a) Model (1), 

(b) Model (2), and (c) Model (3). Vertical stress distribution S22  (d) Model (1), (e) Model (2), 

and (f) Model (3). 
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   To evaluate the influence of model length l on the conclusions, FE Model (1) and Model 

(2) were developed with l= 1.5 mm, w = 6, out-of-plane depth t=4 mm. Figure A.5 compares the 

force-normalized displacement curves of Model (1), Model (2) and the theoretical prediction from 

Eq. (2.9). It can be seen that for models with relatively small length to width ratio of  
𝑙

𝑤
 = 

1

4
, the 

difference among the three curves are slightly larger than the case with larger length to width ratio 

(shown in Figure A.3).   

 

Figure A.5 Force-normalized displacement of Model (1) and Model (2) are compared to 

theoretical prediction from Eq.(2.9). 

 

Vertical stress contours for two FE models of Model 1 and Model 2 are shown and compared 

at the same displacement of δ=1.9 mm in Figure A.6. It can be seen that the stress distribution is 

uniform for both models, and the stress level is close.  
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Figure A.6 Vertical stress distribution at displacement of δ=0.2 mm for (a) Model (1) (b) 

Model (2). 
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Appendix B. Correction on Energy Absorption from FE Simulations 

 

  In this appendix, we will evaluate the influences of shoulder on the energy absorption of the 

top and bottom pieces in the Koch fractal design. The shoulder parts of the top and bottom pieces 

are shown in Fig. B1a. In Section 3.6, we quantified energy absorption of the top and bottom pieces 

with different geometries. In that study, the shoulder was also included in the top and bottom 

pieces, as shown in Figure B.1b. 

 

Figure B. 1 Geometrical definition of top shoulder, bottom shoulder and fractal zone: (b) 

top and bottom pieces including shoulders, and (c) top and bottom pieces excluding shoulders. 
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To more accurately evaluate the energy absorption in the fractal zone, different from the 

results in Section 3.6, the energy absorbed by the shoulders were excluded from the top and bottom 

pieces (shown in Figure B.1c), i.e. 

𝑈𝑡𝑜𝑝 =  𝑈𝑡𝑜𝑡𝑎𝑙_𝑡 − 𝑈𝑡_𝑠ℎ, and     (B.1) 

𝑈𝐵𝑜𝑡𝑡𝑜𝑚 =  𝑈𝑡𝑜𝑡𝑎𝑙_𝑏 − 𝑈𝑏_𝑠ℎ,                       (B.2) 

where, 𝑈𝑡𝑜𝑝 and 𝑈𝐵𝑜𝑡𝑡𝑜𝑚 are the strain energy of top and bottom pieces in the fractal zone 

only, respectively (Figure B.1.c).  𝑈𝑡_𝑠ℎ and 𝑈𝑏_𝑠ℎ are strain energy absorbed by top shoulder and 

bottom shoulder, respectively. 𝑈𝑡𝑜𝑡𝑎𝑙_𝑡 and  𝑈𝑡𝑜𝑡𝑎𝑙_𝑏 represent the total strain energy absorbed by 

top and bottom pieces including the shoulder area (shown in Figure B.1b.) 

   2D FE models were developed in ABAQUS with different geometries. For all models, plane 

stress elements (CPS4R) and elasto perfectly plastic material model were used with Young’s 

modulus of 1.7 GPa, Poisson’s ratio of 0.33 and the initial yielding strength of 54 MPa. In all FE 

models, the out-of-plane thickness is t= 4 mm.  

   𝑈𝑡𝑜𝑡𝑎𝑙_𝑡 and 𝑈𝑡𝑜𝑡𝑎𝑙_𝑏 were directly output from FE models. To calculate 𝑈𝑡𝑜𝑡𝑎𝑙_𝑡 and 𝑈𝑡𝑜𝑡𝑎𝑙_𝑏  

in linear elastic regime, it was assumed the stress in the shoulder parts are uniform and equals to 

the surface traction applied at the top edge of the model. Thus,  

𝑈𝑡_𝑠ℎ =
1

2

𝑉𝑡_𝑠ℎ

𝐸
 𝜎2 ,     (B.3) 

where, E, 𝜎, 𝑉𝑡_𝑠ℎ and 𝑉𝑏_𝑠ℎ are Young’s modulus, surface traction, volume fraction of top 

shoulder and volume fraction of bottom shoulder, respectively. 
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   The energy density of the top and bottom parts of the interlock with N=2, 3, and 4 are plotted 

and compared in Figure B.2. Generally, when N increases, the total energy density increases, 

indicating the more efficient usage of material.  For all three models, the bottom piece absorbs 

more energy than the top piece. When N increases, the energy absorbed by top piece and that by 

bottom piece both increase.  

 

Figure B. 2 Distribution of strain energy per volume fraction between top and bottom pieces 

for different cases of (a) N=2, (a) N=3 and (a) N=4. 

 

Figure B.3 shows the influence of r on the energy density of the top and bottom pieces. In 

general, when r decreases, the difference between the amount of strain energy absorbed by the top 

and bottom pieces increases, indicating more bending deformation in the teeth. 
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Figure B. 3 Distribution of strain energy per volume fraction between top and bottom pieces 

for N=3 with different values of (a) r=0.05 mm, (b) r=0.15 mm and (c) r=0.3 mm. 

 

   Figure B.4 shows the influence of g on the energy density of the top and bottom pieces of 

the Koch fractal interlocking. In can be seen that with the same value of r and μ, the geometry with 

a larger g absorbs much less energy than that with a smaller gap. Also, when g increases, some of 

the teeth on the top piece become slender and therefore experience larger bending deformation. 
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Figure B. 4 FE curves of energy density vs displacement for N=3 with r=0.05 mm, (a) 

g=0.6 mm and (b) g=0.1mm. 

 

 

 

g=0.6 mm g=0.1 mm

Top piece

Bottom piece

N=3

μ=0.3

r=0.05 mm

(a)
(b)


	DESIGN, MECHANICAL MODELING AND 3D PRINTING OF KOCH FRACTAL CONTACT AND INTERLOCKING
	Recommended Citation

	MergedFile

