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ABSTRACT

COORDINATION OF LEADER-FOLLOWER

MULTI-AGENT SYSTEM WITH TIME-VARYING

OBJECTIVE FUNCTION
by

Zalan M. Fabian

University of New Hampshire, September, 2017

This thesis aims to introduce a new framework for the distributed control of multi-agent systems

with adjustable swarm control objectives. Our goal is twofold: 1) to provide an overview

to how time-varying objectives in the control of autonomous systems may be applied to the

distributed control of multi-agent systems with variable autonomy level, and 2) to introduce

a framework to incorporate the proposed concept to fundamental swarm behaviors such as

aggregation and leader tracking. Leader-follower multi-agent systems are considered in this

study, and a general form of time-dependent artificial potential function is proposed to describe

the varying objectives of the system in the case of complete information exchange. Using

Lyapunov methods, the stability and boundedness of the agents’ trajectories under single order

and higher order dynamics are analyzed. Illustrative numerical simulations are presented to

demonstrate the validity of our results. Then, we extend these results for multi-agent systems

with limited information exchange and switching communication topology. The first steps of

the realization of an experimental framework have been made with the ultimate goal of verifying

the simulation results in practice.
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Chapter 1

Introduction

1.1 Introduction

Swarming is a commonly observed behavior in nature, and it grants certain species significant

advantages to their survival. Examples include schools of fish, packs of wolves, colonies of ants or

flocks of birds. This collective behavior was examined extensively by experts of interdisciplinary

fields [3–5], and it was successfully mimicked in optimization algorithms [6–8] and distributed

control problems, such as consensus [9], flocking [10], formation control [11] and coverage control

of sensor networks [12]. The term swarm in engineering may refer to a group of vehicles, robots,

other agents with individual dynamics, but with some coupled behavior that binds them in

working towards a common goal.

By analyzing the swarming phenomenon occurring in nature, the associated control problems

can be divided into the following categories. Aggregation [13] is one of the most fundamental

behaviors, and it refers to the process of swarm members grouping into a cluster. In other words,

looking at the multi-agent system as time approaches infinity, the agent states are within a

bounded region. In some cases the agents may need to approach a moving target and stay in its

vicinity, which is usually referred to as swarm tracking [14] or hunting [15]. Social foraging on

the other hand is a more complex behavior, which is illustrated in [16] by considering simple life

forms, such as bacteria searching for nutrients. The swarm members are attracted to locations

with high nutrient concentration, and repelled by spots of poisonous substances. The attractive

or repulsive forces applied by the environment may be modeled by a resource profile function.

There are numerous applications with strong arguments for the use of autonomous robotic

swarms, and they include operations in reconnaissance [17], demining [18], exploration [19], and

1



Introduction 2

resource mining [20]. Moreover, a growing interest can be observed in the commercial sector as

well, mainly for applications in warehousing or product delivery [21, 22]. The properties which

make swarms more desirable than single robots include robustness, flexibility, multi-tasking

potential and cost-effectiveness. Furthermore, the structure of an individual agent, both by

means of hardware and software, can be significantly simpler than a single complex intelligent

robot, rendering it to be easily testable and less prone to errors.

Although fully autonomous robotic swarms are capable of performing complex tasks, the super-

vision by a human operator still plays an essential role in practical applications. The interaction

of the human operator with an autonomous swarm may be captured by a leader-follower multi-

agent system framework, where the human leader oversees the follower agents and coordinates

their motion to achieve a global goal. Walker et al. investigated a robotic swarm maneuvered

to goal points by a human operator [23]. Goodrich et al. construct a framework of human

interaction with bio-inspired robot teams [24]. Flocking algorithms with a virtual leader have

been widely explored in the literature. In the work of Meng et al. the swarm is divided into a

leader group and a follower group and swarm tracking and velocity matching is achieved [25].

Shi et al. used a virtual leader as an external reference signal for a group of autonomous agents

with point mass dynamics [26]. Gu and Wang proposed a leader-follower algorithm, in which

the followers have no information of which agents are part of the leader set [27]. Su et al. inves-

tigated virtual leaders with varying velocity, generalizing well-known results from the literature

[28].

A weakness of the above described human-machine hybrid system is that the performance of

the human operator may be unreliable due to unmodeled physiological or psychological factors,

such as fatigue, stress, or external distractions. Under optimal conditions, the follower agents

may rely on the input from the human operator for guidance in achieving the global goals of the

overall system. However, due to the aforementioned factors affecting the human leader, a better

solution to the system-level goal may be obtained by increasing the autonomy of the follower

agents and granting them more independence to pursue their own local objectives. In other

words, dynamically changing autonomy levels may result in a safer and more effective control

strategy for the autonomous system, when compared to a system with fixed interaction rules

between the human operator and the autonomous subsystems.

The idea of manipulating the autonomy of robotic systems has been gaining ground in recent

years, and it is commonly referred to as adjustable, sliding or adaptive autonomy [29–31].

Reference [32] presents an experiment in the control of a robotic system with discrete autonomy

modes that ranges from full autonomy to basic teleoperation. The authors of [33] propose a

decision-theoretic approach where the autonomy level is closely related to the attention level of
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a supervision unit. A Mixed Markov Decision Process is used to model the system behavior, in

which the states represent both the system state and the discrete level of attention. In [34] and

[30] the focus is on introducing transfer-of-control strategies, and these strategies are applied to

real-world examples of multi-agent systems. The application of adjustable autonomy for future

space missions is investigated in [35].

The adaptive autonomy level of a swarm may also be considered to be a continuous time-

dependent parameter of the multi-agent system. This parameter can be provided to the follower

agents of the swarm by a “global planner”, with some underlying dynamics unknown to the

agents. In practice, this might mean that the condition of the human operator is monitored (see

for example [36]), and the optimal autonomy level is determined and broadcast to the swarm.

Alternatively, one can consider the “autonomy” parameter as a measure of leader reliability

based on its past actions perceived by the swarm. In this approach the agents observe the

leader’s actions, and decide on the level of autonomy either individually or collectively through

consensus algorithms.

Motivated by the aforementioned ideas, the objective of this thesis work is to provide a frame-

work of time-varying objective functions in the context of multi-agent leader-follower systems

and to analyze certain fundamental swarm behaviors such as leader tracking or aggregation

in the proposed framework. The problem is investigated under different agent dynamics and

communication topologies. To our knowledge, continuous time-varying objective functions for

leader-follower distributed systems has not yet been investigated in the literature and therefore

it is the main contribution of this work. Experimental validation of the proposed methods is

also a significant aspect of the project which cannot be overlooked. Therefore, the first steps of

the realization of an experimental framework has been implemented as part of this work.

1.2 Preliminaries

In a swarm with N agents, the dynamics of the ith agent in the swarm has the general form

ẋi = fi(xi, ui),

where xi ∈ Rn represents the state of agent i and ui ∈ Rm is the control input to agent i. The

state may be position, orientation or any other measure we select as a state depending on the

particular application.



Introduction 4

If the agent dynamics are the same for every agent, that is if

fi(x
′, u′) = fj(x

′, u′)

for every i, j pairs, where i, j ∈ 1, 2, .., N and for every x′ ∈ Rn and u′ ∈ Rm, then the swarm is

homogeneous. If a swarm is not homogeneous, it is said to be heterogeneous.

The order of a dynamic system is the order of the differential equation governing it, that is

the order of the highest derivative present with respect to time in the dynamics. A first-order

system is also called a single-integrator system, whereas a second-order system is referred to as

double-integrator. Systems with order above two are usually said to have higher-order dynamics.

A leader-follower multi-agent system is a heterogeneous system, where a subset of the agents

constitute the leader group, while the other agents are followers. The leaders are distinguished

in a sense that they either have access to a broader set of information, which they broadcast

to the followers, or the leaders’ state serve as tracking objective for followers. In practice this

might mean that leaders are responsible for guiding the swarm or maintaining the formation

due to their ability to access more sensor data or external information than the followers.

Agents share information about their state through a communication network, and the topology

of this network is described as a graph structure, therefore it is necessary to introduce some

concepts and results from graph theory (mostly from an algebraic graph theory point of view).

A directed graph, or digraph G(V,E) consists of a vertex set V and an edge set E, where an arc,

or directed edge is an ordered pair of distinct vertices. If an edge exists between two distinct

vertices, they are called adjacent. A path in a directed graph G(V,E) is a sequence u0, ..., ur of

distinct vertices such that (ui−1, ui) is an arc of G for i = 1, .., r. A digraph is said to be strongly

connected if any two vertices can be joined by a path. If the edge set consists of unordered pairs

of distinct vertices, the graph is called undirected. A subgraph F (V ′, E′) of a graph G(V,E) is

such that V ′ ⊆ V, and E′ ⊆ E. If V ′ = V , we call F a spanning subgraph. A graph is called

complete if every pair of vertices are adjacent. [37]

A weighted directed graph is a triple (V, E, A). Here (V, E) is a digraph with n vertices and

A = [aij ] is its n×n weighted adjacency matrix with entry aij ≥ 0 as the weight of the directed

edge from vertex i to j (we exclude self-joining edges, i.e. aii = 0). The weight of edge e is

denoted as w(e).

A weighted directed graph G(V, E, A) with vertex set V , edge set E, and adjacency matrix

A = [aij ]N×N , is called balanced if
∑N

j=1,j 6=i aji =
∑N

j=1,j 6=i aij for any vertex i ∈ V . An N ×N
permutation matrix is any N×N matrix which can be obtained by rearranging the rows and/or
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columns of the N ×N identity matrix. A square matrix A ∈ RN×N is said to be reducible if a

permutation matrix P exists such that P TAP is block upper triangular. If a square matrix is

not reducible, it is called irreducible. A digraph with adjacency matrix A is strongly connected

if and only if A is irreducible.

Lemma 1.1. [38][39] Let a matrix W = [wij ] ∈ RN×N . Suppose that wij ≥ 0 for i 6= j and

wii = −
∑N

j=1,j 6=iwij < 0 for i = 1, 2, ...,M . Then

1. λ = 0 is an eigenvalue of W with a right eigenvector [1 1 ... 1]T . The eigenvalues of W

have the property Re(λi) ≤ 0.

2. Let ξ = [ξ1 ξ2 ... ξN ] be a left eigenvector of W corresponding to the zero eigenvalue; then,

there exists at least one ξ such that ξi ≥ 0 ∀i = 1, 2, ..., N , also denoted as ξ ≥ 0. W

is irreducible if and only if there exists one ξ > 0. If W is irreducible, then zero is an

eigenvalue of W with multiplicity of one.

3. If W is irreducible, then W + W T and EW + W TE are both irreducible, where E =

diag(ξ1, ξ2, ..., ξN ).

4. Without loss of generality assume that
∑N

i=1 ξi = 1. Then, ξ = 1
N [1 1 ... 1]T if and only

if
∑N

j=1,j 6=iwji =
∑N

j=1,j 6=iwij holds. Moreover, in this case W + W T is negative semi-

definite.

Let L(G) = [lij ] denote the Laplacian matrix of weighted graph G(V,E,A) on n vertices, where

lij =

−aij if i 6= j∑N
j=1,j 6=i aij if i = j.

Notice, that Lemma 2.2 directly concerns −L(G), therefore the smallest eigenvalue of L(G) is

0, with a multiplicity of 1 if and only if G is connected. Hence, if weighted graph G is connected

then the eigenvalues of L(G), also called the Laplacian eigenvalues, can be enumerated as

0 = λ1 < Re(λ2) ≤ Re(λ3) ≤ ... ≤ Re(λN ). For weighted undirected graphs, all the eigenvalues

are real and λ2 is also known as the algebraic connectivity, and has many interesting properties

related to graph invariants[40]. The magnitude of λ2 reflects how well-connected a graph is

and therefore has been frequently used to analyze the stability and robustness of multi-agent

systems and networks.

Lemma 1.2. Consider a weighted undirected graph G(V, E, A) with N vertices and algebraic

connectivity λ2(G). Denote w(e) the weight of edge e ∈ E.
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1. Form graph G1 from G by reducing the weight of edge e to a new value w1(e), so that

w1(e) ≤ w(e). Then λ2(G1) ≤ λ2(G), and equality holds if and only if w1(e) = w(e) [41].

2. Form graph G2 from G by increasing the weight of edge e to a new value w2(e), so that

w2(e) ≥ w(e). Then λ2(G2) ≥ λ2(G), and equality holds if and only if w2(e) = w(e) [41].

3. Let G3 be a spanning subgraph of graph G. Then, λ2(G3) ≤ λ2(G) [40].

4. Form graph G4(V, E
′, A′) from G by inserting a new edge e into G, that is E′ = E ∪ {e}.

Then, the eigenvalues of G and G4 interlace: 0 = λ1(G) = λ1(G4) ≤ λ2(G) ≤ λ2(G4) ≤
λ3(G) ≤ ... ≤ λN (G) ≤ λN (G4) [40].

1.3 Organization

In Chapter 2 a distributed control framework is introduced to incorporate leader-follower multi-

agent systems with time-varying objectives, given that every follower has access to the state of

every other agent and the leader (completely connected communication topology). In Chapter

3 the results are extended and the complete information exchange assumption is relaxed to

balanced communication topology. Moreover it is shown how the proposed framework can

tackle switching topologies and collision avoidance problems. Chapter 4 demonstrates the first

steps towards the experimental validation of the proposed distributed control scheme. Chapter

5 discusses future directions and concludes the current study.

This introduction and the following chapter demonstrates the results published in [42] by Z.

Fabian and S.Y. Yoon with extension to agents with uncertain higher order dynamics.



Chapter 2

Coordinated control under complete

communication graph

2.1 Introduction

In this chapter, we study the coordinated control of leader-follower multi-agent systems with

time-dependent objectives and completely connected communication topology, and we develop

a framework to incorporate the varying autonomy level of follower agents to the swarm control

problem. Complete connectedness implies that the state of any agent is available to every

other agents at any time t. In particular, the swarm aggregation and leader tracking problem

is studied, where the time-dependent objectives of the swarm are introduced as time-varying

parameters of the artificial potential functions. These time-varying parameters of the potential

function govern the virtual interaction forces between the follower agents and the leader, and

they can be used to relax or tighten the formation of the agents around the leader. For the

considered control problem, we employ Lyapunov methods to demonstrate the stability and

boundeness of the the agents’ trajectories. This is initially proven for single integrator agents,

and then expanded to agents with higher order dynamics. For the follower agents, a time-bound

is also provided for their convergence to the final formation.

The organization of the chapter is as follows. Section 2.2 defines the framework involving the

applied artificial potential functions. Section 2.3 analyzes the aggregation problem with single-

integrator agents and a leader, and an ultimate bound for the swarm size is derived. These

results are then extended to uncertain higher order agent dynamics in Section 2.4. Illustrative

7



Coordinated control under complete communication graph 8

simulation results are included in Section 2.5 to further explain the presented ideas. Finally, we

draw conclusions in Section 2.6.

2.2 Artificial potential functions for adjustable autonomy levels

In order to define our framework, consider a generic swarm involving N agents and a leader. We

will denote the state of agent i with the column vector xi ∈ Rn and the state of the leader agent

with the column vector xL ∈ Rn. The state might represent the location or any other desired

parameter of the agent. Let ui denote the control input to agent i. An artificial potential

function V : R(N+1)n 7→ R, also referred to as global potential function, describes the global

objectives of the system by assigning a scalar value to admissible configurations of the agent

states.

Assume, that

ui = −∇xiV (x), (2.1)

where x is the stacked state vector xT = [xT1 xT2 · · · xTN xTL ]. This means that the agents’ dy-

namics are governed by the negative gradient of the underlying artificial potential field evaluated

at the respective agent’s current states.

In our framework, V (x) is the superposition of local potential functions

V =
1

2

N∑
i=1

Vi =
1

2

N∑
i=1

(V a
i − V r

i ), (2.2)

where V a
i : R+ 7→ R and V r

i : R+ 7→ R represent the attractive and repulsive component of the

potential field, respectively. Both V a
i and V r

i are functions of the inter-agent distances. Further

assume that, for some fi,j , fi,L : R+ 7→ R, the gradient of the local potential function can be

written in the following form:

∇xiVi(x) =
N∑
j=1

fi,j(‖xi − xj‖)(xi − xj) + fi,L(‖xi − xL‖)(xi − xL). (2.3)

One can interpret fi,j as the magnitude of the resulting “force” vector acting between agent i

and j (or fi,L between agent i and the leader L).
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Now, from (3.2), (2.2) and (2.3) we have

ui = −
N∑
j=1

fi,j(‖xi − xj‖)(xi − xj)− fi,L(‖xi − xL‖)(xi − xL). (2.4)

We may further break down this inter-agent force into attractive and repulsive components:

fi,j(‖xi − xj‖) = fai,j(‖xi − xj‖)− f ri,j(‖xi − xj‖), (2.5)

and

fi,L(‖xi − xL‖) = fai,L(‖xi − xL‖)− f ri,L(‖xi − xL‖). (2.6)

Superscript “a” and “r” denote the attractive and repulsive components, respectively. Swarm

aggregation is achieved by the interplay of the virtual attractive and repulsive forces resulting

from the underlying artificial potential function. Attractive forces dominate on large distances

to ensure swarm cohesion, while repulsion forces dominate on short distances to avoid collision.

Also, without repulsive forces the whole swarm would collapse into a single point, whereas

without attractive forces the swarm would disperse.

To incorporate the aforementioned points into the framework, we introduce the following as-

sumption.

Assumption 1. The inter-agent virtual force functions satisfy fi,j = fj,i for neighboring agents

i and j, and unique equilibrium distance de > 0 exists for all fi,j , where fai,j(de) = f ri,j(de).

Moreover, fai,j(d) > f ri,j(d) for any d > de, and f ri,j(d) > fai,j(d) for any 0 < d < de.

In this chapter, we consider the case where the attractive force increases linearly with the

inter-agent distance, whereas the repulsive forces are bounded. To incorporate the adjustable

autonomy in our framework, we let the attractive and repulsive forces to be time-varying func-

tions of the inter-agent distance, and with some restrictions as detailed below.

Assumption 2. Let

fai,j(‖xi − xj‖, t) = ka(t),

fai,L(‖xi − xL‖, t) = kaL(t).

There exist ka, k
a
, kaL, k

a
L ∈ R+ such that ka < ka(t) < k

a
and kaL < kaL(t) < k

a
L for all t.

Furthermore, there exist F
r
, F

r
L ∈ R+ such that

0 < f ri,j(‖xi − xj‖, t)‖xi − xj‖ < F
r
,

0 < f ri,L(‖xi − xL‖, t)‖xi − xL‖ < F
r
L.
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An example for a potential function satisfying these assumptions is

Vi(x) =

N∑
j=1

(
ka(t)

2
‖xi − xj‖+

krr

2
e−
‖xi−xj‖

2

r

)
+
kaL(t)

2
‖xi − xL‖+

krLrL
2

e
− ‖xi−xL‖

2

rL . (2.7)

The corresponding virtual interaction forces acting on the agents are

∇xiVi(x) =−
N∑
j=1

(
ka(t)− kre−

‖xi−xj‖
2

r

)
(xi − xj)

−
(
kaL(t)− krLe

− ‖xi−xL‖
2

rL

)
(xi − xL). (2.8)

2.3 Aggregation with single-integrator dynamics

In this section we investigate the swarm behavior and stability for a system with single-integrator

agent dynamics and an immobile leader. In particular, let

ẋi = ui, i = 1, 2, · · · , N, (2.9)

and

ẋL = 0. (2.10)

The artificial potential functions introduced in the previous section ensures the aggregation of

the follower agents, keeping them in close proximity to each other and forming a cohesive group.

In particular, we use the following definition for the aggregation problem.

Definition 2.1. (Aggregation) Consider a swarm consisting of N agents, with states xi(t) ∈ Rn

for i = 1, 2, · · · , N . Design the corresponding control inputs ui(t) for all agents i = 1, 2, · · · , N
and j = 1, 2, · · · , N so that

lim
t→∞
‖xi(t)− xj(t)‖ ≤ 2ε

for some ε > 0.

Our goal is to determine the expected ultimate swarm size of the multi-agent system when the

forces of attraction and repulsion are varying within the predefined limits in Assumptions 1 and

2. Define the swarm centroid as

x =
1

N

N∑
i=1

xi. (2.11)
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Excluding the leader from the system, the swarm centroid is stationary due to the symmetry

of the interaction forces (see proof in [43]). However, taking the leader into consideration, the

asymmetry of the interaction forces results in the motion of swarm centroid. The asymmetry

originates in the fact that the leader is not affected by the inter-agent interaction forces. Our

intuition suggests that the centroid movement is governed by the leader attraction and repulsion

imposed to the follower agents.

Lemma 2.2. Consider a swarm consisting of N agents with dynamics (2.9), a leader agent

with dynamics (2.10) and control input (2.4), where Assumption 1 is satisfied. Then, the swarm

centroid dynamics are governed exclusively by the leader interaction forces as follows:

ẋ = − 1

N

N∑
i=1

fi,L(‖xi − xL‖)(xi − xL).

Proof. Substituting the agent dynamics and control law from (2.4) into the derivative of the

swarm centroid we have

ẋ =
1

N

N∑
i=1

ẋi = − 1

N

N∑
i=1

N∑
j=1

fi,j(‖xi − xj‖)(xi − xj)−
1

N

N∑
i=1

fi,L(‖xi − xL‖)(xi − xL). (2.12)

By reorganizing the summation limits and applying the fact that fi,j(‖xi−xj‖) = fj,i(‖xj−xi‖),
we can state that

1

N

N∑
i=1

N∑
j=1

fi,j(‖xi − xj‖)(xi − xj) =

1

N

N−1∑
i=1

N∑
j=i

(fi,j(‖xi − xj‖)(xi − xj) + fj,i(‖xj − xi‖)(xj − xi)) = 0.

Hence the first term in (2.12) is 0, which completes the proof.

As we see, the system behavior can be described as follows: the follower agents aggregate around

their centroid, which is drawn to the leader at the same time. To determine the ultimate swarm

size, the first step is to investigate how close the swarm centroid can approach the leader. The

reason why a non-zero ultimate centroid-leader distance might exist is that the leader attractive

force might not be strong enough to ”break apart” the cohesive group of aggregated follower

agents.

Lemma 2.3. Consider a swarm consisting of N agents with dynamics (2.9), a leader agent

with dynamics (2.10) and control input (2.4), where Assumptions 1 and 2 are satisfied. Let
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ẽ = x − xL denote the vector from the leader to the swarm centroid. As t → ∞ the swarm

centroid asymptotically approaches the hyperball around the leader such that

‖ẽ‖ < F
r
L

kaL
. (2.13)

Moreover, the swarm centroid enters any hyperball around the leader with radius

‖ẽ‖ =
F

r
L

kaL(1− δ)
:= Kδ,

0 < δ < 1, in finite time bounded by

Tδ = − 1

2kaLδ
ln

[
K2
δ

‖ẽ(0)‖2

]
.

Proof. Consider the following Lyapunov function candidate:

W (x) =
1

2
ẽT ẽ.

Taking its time derivative along the agent trajectories yields

Ẇ = ˙̃eT ẽ = (ẋ− ẋL)T (x− xL) = ẋ
T
ẽ.

Applying Lemma 2.2 we have

Ẇ = − 1

N

N∑
i=1

fi,L(‖xi − xL‖)(xi − xL)T ẽ.

Substituting the attraction and repulsion terms from Assumption 2 yields

Ẇ = − 1

N

N∑
i=1

kaL(t)(xi − xL)T ẽ+
1

N

N∑
i=1

f ri,L(xi − xL)T ẽ.

Notice, that
N∑
i=1

(xi − xL) = Nx−NxL = Nẽ.

Hence, we have

Ẇ = −kaL(t)‖ẽ‖2 +
1

N

N∑
i=1

f ri,L(xi − xL)T ẽ.
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Applying the upper bound on the repulsion terms from Assumption 2 and the Cauchy-Schwarz

inequality yields

Ẇ ≤ −kaL(t)‖ẽ‖2 + F
r
L‖ẽ‖ = ‖ẽ‖

(
−kaL(t)‖ẽ‖+ F

r
L

)
. (2.14)

Consequently, if F
r
L

kaL(t)
< ‖ẽ‖, then Ẇ < 0. In the region where the previous inequality holds, the

Lyapunov-function must decrease, which means that the leader-centroid distance is decreasing.

Since for all t we have
F

r
L

kaL(t)
≤ F

r
L

kaL

the leader-centroid distance must decrease if

F
r
L

kaL
< ‖ẽ‖,

therefore as t→∞,
F

r
L

kaL
≥ ‖ẽ‖,

which serves as an upper bound for the leader-centroid ultimate distance.

From (2.14) one may notice that if we let

‖ẽ‖ ≥ F
r
L

kaL(1− δ)
,

then

Ẇ ≤ −kaLδ‖ẽ‖2.

Due to the fact that we defined our Lyapunov function as W = 1
2‖ẽ‖

2, and by applying the

comparison principle we conclude that

W (t) ≤W (0) e−2δk
a
Lt.

Thus the maximum time Tδ necessary for the swarm centroid to approach the leader in distance

‖ẽ‖ = Kδ is obtained from the inequality above and by substituting W = 1
2K

2
δ . In particular,

solving for the aforementioned conditions yields

Tδ =
1

−2kaLδ
ln

[
1

2W (0)
K2
δ

]
,

which completes the proof.



Coordinated control under complete communication graph 14

Since we showed that the swarm centroid will approach the leader, now we have to find a bound

on the ultimate swarm size to prove swarm stability. Let ei = xi−x denote the vector pointing

from agent i to the swarm centroid. The following theorem asserts, that agent trajectories are

globally uniformly ultimately bounded for an immobile leader. The global uniform ultimate

boundedness of the agent trajectories is captured by the following theorem.

Theorem 2.4. Consider a swarm consisting of N agents with dynamics (2.9), a leader agent

with dynamics (2.10) and control input (2.4), where Assumptions 1 and 2 are satisfied. As

t→∞, all swarm members will converge to a hyperball

Hε(x) = {xi : ‖xi − x‖ ≤ ε},

where

ε =
(N − 1)(F

r
+ 2

NF
r
L)

Nka + kaL
.

Moreover, the convergence to any system state, where

‖ei‖ ≤
(N − 1)(F

r
+ 2

NF
r
L)

(Nka + kaL)(1− γ)
:= Kγ

for all i = 1, 2, · · · , N and γ ∈ (0, 1) occurs in finite time bounded by

Tγ = max
1≤i≤N

{
− 1

2γ(Nka + kaL)
ln

(
K2
γ

‖ei(0)‖2

)}
.

Proof. Consider the following Lyapunov-function candidate corresponding to agent i:

Wi(x) =
1

2
eTi ei.

Taking the time derivative along the agent trajectory, in view of (2.9) yields

Ẇi = uTi ei − ẋ
T
ei.

Taking Lemma 2.2 into account we have

Ẇi = Θ1 + Θ2 + Θ3,

where

Θ1 = −
N∑
j=1

fi,j(‖xi − xj‖)(xi − xj)T ei,
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Θ2 = −fi,L(‖xi − xL‖)(xi − xL)T ei,

Θ3 =
1

N

N∑
j=1

fj,L(‖xj − xL‖)(xj − xL)T ei.

Now we will find upper bounds for Θ1, Θ2 and Θ3, and determine the region where the Lyapunov-

function must decrease. This at the same time implies that agent i is getting closer to the

centroid.

A bound for Θ1 can be found by noticing that

N∑
j=1

(xi − xj) = Nxi −Nx = Nei.

Then, given Assumption 2 and the bounds on the attractive and repulsive forces, we can write

Θ1 ≤ −Nka‖ei‖2 + (N − 1)F
r‖ei‖. (2.15)

For Θ2, note that by using the notation from the proof of Lemma 2.3 we can expand (xi − xL)

as

(xi − xL) = (xi − x) + (x− xL) = ei + ẽ.

In view of this, and by substituting the attraction and repulsion components, Θ2 takes the form

Θ2 = −kaL‖ei‖2 − kaLẽT ei + f ri,L(‖xi − xL‖)(xi − xL)T ei. (2.16)

Lastly, since
N∑
j=1

(xj − xL) = Nẽ,

for Θ3 we have

Θ3 = kaLẽ
T ei −

1

N

N∑
j=1

f rj,L(‖xj − xL‖)(xj − xL)T ei. (2.17)

As one may notice, the terms containing ẽ in (2.16) and (2.17) will cancel each other out.

Moreover, the sum of the repulsion components in Θ2 and Θ3 can be written as

N − 1

N
f ri,L(‖xi − xL‖)(xi − xL)T ei −

1

N

N∑
j=1,j 6=i

f ri,L(‖xj − xL‖)(xj − xL)T ei
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≤ 2

N
(N − 1)F

r
L‖ei‖.

Combining the bounds for Θ1,Θ2 and Θ3 we then obtain

Ẇi ≤ ‖ei‖
[
(−Nka − kaL)‖ei‖+ (N − 1)(F

r
+

2

N
F

r
L)

]
. (2.18)

Since ‖ei‖ ≥ 0, the time derivative of the Lyapunov function (2.18) is negative, if

‖ei‖ >
(N − 1)(F

r
+ 2

NF
r
L)

Nka + kaL
≡ ε.

Decreasing Wi implies that the distance between agent i and the swarm centroid is decreasing

as well, which is true for every agent i = 1, 2, · · · , N. Therefore as t→∞, every member of the

swarm must be within a hyperball around the centroid with radius ε.

Moreover, equation (2.18) with A = Nka + kaL and B = (N − 1)(F
r

+ 2
NF

r
L) yields that

Ẇi ≤ ‖ei‖(−A‖ei‖+B).

Using the same arguments as in the proof of Lemma 2.3, if we assume that ‖ei‖ ≥ B
A(1−γ) = Kγ

we obtain

Wi(t) ≤Wi(0) e−2γAt.

Solving the inequality for ‖ei‖ = Kγ and Wi = 1
2K

2
γ yields the time bound for agent i as

T iγ =
1

−2γA
ln

[
K2
γ

2Wi(0)

]
.

If we find T iγ with the slowest convergence, we obtain the result stated in Theorem 2.4.

Remark 2.5. Theorem 2.4 provides an ultimate bound on the swarm size of the follower agents

around the swarm centroid. Combining the results of Lemma 2.3 and Theorem 2.4, we can

conclude that the ultimate bound on the swarm size of the follower agents and the leader is

given by a hyperball with radius

E = ε+
F

r
L

kaL
.

Remark 2.6. The presented time bound is determined by the agent for which ‖ei(0)‖ is the

largest. That is, the slowest convergence among all agents occurs for the one initially furthest

away from the swarm centroid, which matches our expectations.
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Theorem 2.4 reflects the possibility of putting adjustable autonomy into practice by manipu-

lating the swarms size through some time-varying parameters. Intuitively, the swarm size is

proportional to the repulsion and decreases with high attractive force. We also mention, that

the introduced theorem provides a conservative bound on the swarm size, which originates in

the nature of the proof presented. As one may see in Section 2.5, the ultimate swarm size in

fact is smaller than Theorem 2.4 suggests.

In this section we considered an immobile leader to demonstrate our results. However, by

applying a simple coordinate transformation, all the introduced results hold for a leader in

motion as well. In fact, letting

x′i = xi − xL

and

ẋ′i = u′i = −∇xiV (x)− ẋL

for all i = 1, 2, · · · , N , allows for the results in this section to be applied to systems with

non-static leaders.

So far we have investigated the boundedness of the leader-centroid distance and the agent-

centroid distance affected by time-varying attraction and repulsion. In Theorem 2.4 a hyperball

is defined bounding ‖ei‖, the individual agents’ distance from the centroid. A slightly differ-

ent approach is to analyze the sum of squared distances from the centroid to every agent in

the swarm, which serves as a combined bound. The next proposition reflects this collective

formulation of the problem.

Proposition 2.7. Consider a swarm consisting of N agents with dynamics (2.9), a leader

agent with dynamics (2.10) and control input (2.4), where Assumptions 1 and 2 are satisfied.

As t→∞, the sum of squared distances from the centroid will converge to a hyperball

H∗(x) = {x :
∑

1≤i≤N
‖xi − x‖2 ≤ ε2∗},

where

ε∗ =
√
N · (N − 1)F

r
+ F

r
L

Nka + kaL
.

Proof. Let the Lyapunov-function corresponding to agent i be Wi(x) = 1
2e
T
i ei and W =∑N

i=1Wi(x). From the proof of Theorem 2.4, we have the inequality

Ẇi ≤−Nka‖ei‖2 + (N − 1)F
r‖ei‖ − kaL‖ei‖2 − kaLẽT ei + f ri,L(‖xi − xL‖)(xi − xL)T ei
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+
1

N

N∑
j=1

fj,L(‖xj − xL‖)(xj − xL)T ei.

One may notice, that
N∑
i=1

kaLẽ
T ei = kaLẽ

T
N∑
i=1

ei = 0

and along similar lines

N∑
i=1

1

N

N∑
j=1

fj,L(‖xj − xL‖)(xj − xL)T ei =
1

N

N∑
i=1

eTi

N∑
j=1

fj,L(‖xj − xL‖)(xj − xL) = 0.

Therefore, we have

Ẇ ≤ −Nka
N∑
i=1

‖ei‖2 + (N − 1)F
r
N∑
i=1

‖ei‖ − kaL
N∑
i=1

‖ei‖2 + F
r
L

N∑
i=1

‖ei‖.

Applying the notation
√∑N

i=1 ‖ei‖2 = ‖e‖, observe that
∑N

i=1 ‖ei‖ ≤ ‖e‖ ·
√
N , which yields

Ẇ ≤ ‖e‖ ·
[
(−Nka − kaL)‖e‖+ F

r
(N − 1)

√
N + F

r
L

√
N
]
. (2.19)

Due to the fact that W = 1
2‖e‖

2 and using the same reasoning as in the proof of Theorem 2.4

for (2.18) applied to (2.19) we arrive at the bound ε∗ in the proposition.

2.4 Robust aggregation with general dynamics

Next, we build on the results from the previous section and modify the introduced framework to

accommodate for agents with uncertain higher order dynamics. The ideas and derivation pre-

sented here extend well known results from the literature [44] to time-varying virtual interaction

forces.

Consider the same framework introduced in Section 2.2, but now with the following agent

dynamics:

Mi(xi)ẍi + gi(xi, ẋi) = ui, (2.20)

where Mi ∈ Rnxn is the inertia matrix of agent i and gi represents some additional effects such

as damping, disturbances or gravitational effects. We allow for the inertia of each agent to be

an unknown parameter, but the following assumptions must hold.
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Assumption 3. For all agents i = 1, 2, · · · , N we have

Mi‖y2‖ ≤ yTMi(xi)y ≤Mi‖y2‖ <∞

for real scalars

0 < Mi < Mi <∞,

and any arbitrary column vector y ∈ Rn.

In order to reflect model uncertainties in the agent dynamics, we will assume that gi consists of

a known part gki and a bounded unknown part gui .

Assumption 4. For all gi(xi, ẋi) i = 1, 2, · · · , N the equality

gi(xi, ẋi) = gki (xi, ẋi) + gui (xi, ẋi)

is satisfied. Furthermore, a state-dependent upper bound exists such that

‖gui (xi, ẋi)‖ ≤ Gi(xi, ẋi).

Due to the second-order dynamics analyzed in this section, we have to add assumptions regarding

the time-derivative of attraction and repulsion components.

Assumption 5. For all t ≥ 0 the following inequalities must stand,

k̇a(t) ≤ Γa(x),

k̇aL(t) ≤ ΓL
a (x),

ḟ ri,j(‖xi − xj‖, t)‖xi − xj‖ ≤ Γr(x) for all i, j,

ḟ ri,L(‖xi − xL‖, t)‖xi − xL‖ ≤ ΓL
r (x) for all i,

where Γa,Γ
L
a ,Γr,Γ

L
r are known, state-dependent, finite upper bounds.

Although we assume state-dependent bounds, it is sufficient to provide global bounds for the

attraction and repulsion term derivatives.

The next assumption we make is a smoothness assumption on the artificial potentials, which is

satisfied by a wide class of functions in practice. Moreover, we know these bounds during the

design of the control law, since the artificial potential functions are determined by the system

designer.
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Assumption 6. For all {i, j} pairs, where i = 1, 2, · · · , N and j = 1, 2, · · · , N the potential

function gradients are bounded as follows:

‖∇xiV (x)‖ ≤ α(x) for all xi

‖∇xj [∇xiV (x)] ‖ ≤ β(x) for all xi and xj ,

where α(x) and β(x) are known and finite functions of the agent states.

The last assumption we need states that the agents are initially motionless.

Assumption 7. ẋi(0) = 0 for i = 1, 2, · · · , N .

In Section 2.3 we showed that if agent movement is governed by (2.9), then we have an ultimate

bound on the swarm size and some other properties hold. Sliding mode control reduces the

motion of the system to a lower dimensional sliding manifold, hence in our case forcing it to

move according to single-integrator agent dynamics [45, 46]. By showing that the sliding mode

occurs in finite time, we also prove that all the results and conclusion from Section 2.3 hold for

the more general dynamics introduced in this section.

Theorem 2.8. Consider a swarm consisting of N members with dynamics (2.20), an artificial

potential function satisfying Assumptions 1, 2, 5, 6, and initial conditions as prescribed in

Assumption 7. Let the control input for agent i be

ui = −Ki(x) sign(si) + gki (xi, ẋi), (2.21)

with gain

Ki(x) > M i(
1

M i

Gi(xi, ẋi) + J i(x) + εi) (2.22)

for some εi > 0, where

J i(x) = Nβ(x) [α(x(0))+α(x)]+‖xi−xL‖ΓL
a (x)+ΓL

r (x)

+ (N−1)

[
max

1≤j≤N
‖xi−xj‖Γa(x)+Γr(x)

]
, (2.23)

and sliding manifold

si = ẋi +∇xiV (x). (2.24)

Then, the sliding mode occurs in all si surfaces and

ẋi = −∇xiV (x)
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is satisfied in finite time, bounded by

Ts = max
1≤i≤N

{
‖∇xiV (x(0))‖

εi

}
. (2.25)

Proof. The reaching condition of sliding mode control states that the sliding mode occurs in

finite time, if

sTi ṡi < −εi‖si‖ (2.26)

for some εi > 0. Considering the Lyapunov function candidate Li = 1
2s
T
i si we have L̇i < −εi‖si‖.

From here, by applying the comparison principle [45] one can show that the inequality is satisfied

in finite time bounded by T is = ‖si(0)‖
εi

, where ‖si(0)‖ = ‖∇xiV (x(0))‖ due to Assumption 7.

The time bound is determined by the maximum of all T is individual time bounds, which proves

(2.25).

From (2.20) and in view of our definition of the sliding manifold in (2.24) we obtain

sTi ṡi = sTi

[
Mi(xi)

−1ui −Mi(xi)
−1gi(xi, ẋi) +

d

dt
∇xiV (x)

]
. (2.27)

First we derive an upper bound for the right-hand side, then show that (2.26) can always be

satisfied. Applying the chain rule, we have

d

dt
∇xiV (x) =

N∑
j=1

∇xj [∇xiV (x)] ẋj+
N∑
j=1

k̇a(xi−xj)

−
N∑
j=1

ḟ ri,j(‖xi−xj‖, t)(xi−xj) + k̇aL(xi−xL)−ḟ ri,L(‖xi−xL‖, t)(xi−xL). (2.28)

In view of Assumption 6 and 7 it is shown in [43] that

‖
N∑
j=1

∇xj [∇xiV (x)] ẋj‖ ≤ Nβ(x) (α(x(0)) + α(x))) .

If we take Assumption 5 into account and apply the Cauchy-Schwarz inequality we have the

state-dependent upper bound from (2.23):

‖ d
dt
∇xiV (x)‖ ≤ J i(x).
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Now choose the control input for agent i as in (2.21), where sign operates elementwise on si.

Notice, that

sTi sign(si) = |si1 |+ |si2 |+ · · ·+ |sin | ≥ ‖si‖.

Therefore by substituting (2.21) into (2.27) and applying the bounds from Assumptions 3, 4

and the bound we derived for ‖ ddt∇xiV (x)‖ yields

sTi si ≤ −‖si‖
(

1

M i

Ki(x)− 1

M i

Gi(xi, ẋi)− J i(x)

)
. (2.29)

If we let the inequality from (2.22) hold, then the reaching condition (2.26) is satisfied, thus the

sliding mode occurs in finite time.

2.5 Simulation

The proposed results are verified in this section using numerical simulations. Consider the case

with N = 15, and an immobile leader fixed at the origin. The initial agent locations were chosen

randomly within a radius of R = 30 around the point P = (40, 40). The agent states evolve

in R2 governed by the underlying potential function in (2.7) and the corresponding forces of

attraction and repulsion in (2.8). It is straightforward to prove that in this case

F
r

= k
r
√

r

2e

and

F
r
L = k

r
L

√
rL
2e
.

The simulations were performed under two different agent dynamics.

2.5.1 Single-integrator (SI) dynamics

Consider the agent dynamics in (2.9), with n = 2 and the following attraction-repulsion param-

eters: ka = 2, kr = 3, r = 2, kaL = 10.1 + 10 sin(2πT ft), f = 4, krL = 20.2, rL = 0.1 where T = 200

is the simulation time length. We assume the states of the agents provide their coordinates in

the cartesian x-y plane.

The agent trajectories under the control (2.4) are illustrated in Fig. 2.1(a). As one may observe,

the agents approach the origin and aggregate in the proximity of each other and the leader. The

ultimate swarm size ε is marked by a dashed circle centered at the swarm centroid at t = T in
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Figure 2.1: Agent motion with SI dynamics

Fig. 2.1(b). The agents enter the region as specified in Theorem 2.4 and never leave it, even

though the leader attractive force is time-varying. As mentioned in Section 2.3, Theorem 2.4

provides a conservative bound on the region of attraction. The actual time-varying swarm size

fits in a smaller region.

As the leader attraction varies in time, the swarm size changes dynamically, while preserving its

cohesion. As shown in Fig. 2.1(c), the swarm centroid approaches the leader and the convergence
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speed is inversely proportional to the centroid-leader distance. The dashed circle marks the

upper bound for ‖ẽ‖ analyzed in Lemma 2.3. In this particular case, the leader attractive force

is stronger than the inter-agent cohesion forces, therefore the swarm centroid is drawn to the

leader’s location. Taking a look at the value of the potential function from (2.7) in Fig. 2.1(d),

the speed of the algorithm can be observed. The global objective function does not converge

to a single value due to the variations in interaction forces, but oscillates within a bounded

interval.

2.5.2 Double-integrator (DI) dynamics

Consider N = 10 agents with double integrator dynamics, that is

Miẍi = ui,

where Mi denotes the mass of agent i. In the simulation plotted in Figs. 2.2(a) and 2.2(b) the

value of Mi = 1 was used for the sake of simplicity. All other system parameters remained

unchanged from the single integrator case in the previous subsection. The control gain Ki(x)

was derived from the bounds

α(x) = N

[
k
a

max
1≤j≤N

‖xi − xj‖+ kr
√
r

2
e−

1
2

]
+ ‖xi − xL‖k

a
L + krL

√
rL
2

e−
1
2 ,

β(x) = N
[
k
a

+ 2kre−
1
2

]
+ k

a
L + 2krLe−

1
2 ,

presented in [43] (extended with the leader interaction term) and from the a priori known bound

on the time-derivative of the leader attraction term.

As one may observe, the agents approach the leader and remain within the region determined

by Theorem 2.4 (dashed circle), thus the results for the single integrator model still hold.

2.5.3 Double-integrator dynamics with model uncertainty

This section presents simulation results for a more realistic case, where the agent dynamics

contain an unknown but bounded part representing disturbances and model uncertainties. In

particular let

Miẍi + gu(ẋi) = ui,
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Figure 2.2: Agent motion with DI dynamics

where gu(ẋi) represents the unknown part such that

gu(ẋi) =

huẋi ‖gu(ẋi)‖ ≤ Gmax

huẋi · Gmax
‖huẋi‖ ‖gu(ẋi)‖ > Gmax.

For the included numerical example Mi = 1, hu = 0.5 and Gmax = 10 values were used.

The simulation was performed for N = 10 agents initially scattered within a circle of radius

R = 20 centered at the point P = (10, 10). The attraction repulsion parameters were identical

to the DI case. Apart from Gmax included in the control input (see (2.21) and (2.22)), no other

information about gu(ẋi) was used to control the multi-agent system.

The simulation results show, that the proposed control technique was able to drive the agents

to the proximity of the leader (see Figs. 2.3(a) and 2.3(b)). However, compared to the ideal DI

case, one may observe an overshoot in the agent trajectories. The deviation from an “optimal”

route, as seen in the DI simulations, is the result of the unknown first-order term in the agent

dynamics.
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Figure 2.3: Agent motion with DI dynamics and model uncertainty

2.6 Conclusions

In this chapter, the aggregation and leader tracking problem was studied for multi-agent systems

with time-varying artificial potential functions. The time-dependent parameters of the artificial

potential function was introduced as a potential framework for incorporating varying autonomy

level of follower agents in the control of swarms. For single integrator agents, it was demonstrated

that the swarm aggregate around the leader and the agents’ trajectories are bounded. These

results were then extended to agents with higher order dynamics. Numerical examples were

also provided here to illustrate the results of our theoretical derivation.



Chapter 3

Coordinated control under balanced

communication graph

3.1 Introduction

The idea of adjusting the interaction rules between the leader and the follower agents of a swarm

was introduced in the previous chapter and in [42]. The intent was to provide the follower agents

greater autonomy if leader performance declined. The proposed framework involves time-varying

social potential functions acting between the agents and the leader in a complete graph structure.

That is, each follower imposes both attraction and repulsion to every other agent and is affected

by the leader’s interaction forces. Gazi and Passino extensively investigated swarm models with

global coupling and unit coupling weights [13, 16, 44, 47]. Relaxing the assumption on the

communication graph would constitute a significant step towards practical implementation of

our proposed framework on a robotic system.

The influence of information topology on multi-agent system stability is an important research

focus in the area of swarm coordination. In most works, algebraic graph theory is deployed

to address this problem. Olfati-Saber and Murray [48] analyzed the consensus problem with

strongly connected switching topology and considered the effect of time delay. Sepulchre et

al. [49] investigated the planar motion of particles exchanging relative information, focusing

on balanced communication. Li[38] discussed the stability and boundary of single integrator

swarms with general, directed topology generalizing the results of Gazi and Passino.

Algebraic connectivity is a spectral property of graphs, quantifying connectedness. A remarkable

finding of the field is the influence of the algebraic connectivity of the communication graph on

27
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the speed of convergence in consensus problems [48]. Due to its impact on the properties of

dynamic systems operating over an information network, the effect of graph parameters on the

algebraic connectivity was studied extensively. Kim and Mesbahi [50] aimed at maximizing the

algebraic connectivity of weighted graphs by finding the optimal vertex positional configuration.

Bounds on the algebraic connectivity as a function of graph parameters can be found in [51]

and [52].

In this chapter we aim at extending the control framework for leader-follower swarms with

time varying inter-agent dynamics from the previous chapter and [42], to balanced directed

communication topologies. The proposed control framework allows uncorrelated time-varying

inter-agent attraction and repulsion coupling weights, which are not uniform among all follower

agents. Swarm centroid motion and leader-centroid ultimate distance is analyzed under these

conditions, and we establish a relationship between the bounds on the time-varying coupling

weights and the ultimate swarm size. Next, the swarm control problem with time-varying inter-

agent dynamics is extended to systems with switching communication topologies. Using the

properties of algebraic connectivity of weighted graphs, an analytic expression of the ultimate

swarm formation size is determined in the presence of the time-varying system parameters and

configuration. Applications of this switching topology control framework are briefly discussed,

such as swarm cohesion maintenance or collision avoidance.

The organization of the chapter is as follows. Section 1.2 introduces the necessary concepts in

graph theory. Framework description and stability analysis is performed in Section 3.2, including

centroid motion, leader-centroid distance and ultimate swarm size. Section 3.3 is a discussion

on the possible applications of the introduced framework. Numerical simulations are presented

in Section 3.4 to demonstrate our results. We draw conclusions in Section 3.5.

3.2 Stability analysis under balanced, time-varying coupling weights

3.2.1 Framework description

We adopt the framework introduced in [42] with a relaxed communication topology and coupling

matrix as discussed in [38]. Consider a swarm involving N agents and a leader. We will denote

the states of agent i with the column vector xi ∈ Rn and the states of the leader agent with the

column vector xL ∈ Rn. Let ui denote the control input to agent i. The system evolves in the

n-dimensional Euclidean space governed by the motion equations

ẋi = ui, (3.1)
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with control input

ui =

N∑
j=1,j 6=i

[
−faij(xi, xj , t) + f rij(xi, xj , t)

]
− faL,i(xi, xL, t) + f rL,i(xi, xL, t), (3.2)

where faij and f rij denote the attraction and repulsion functions from agent j to i; faL,i and

f rL,i describes the attraction and repulsion from the leader to agent i. Furthermore, we will

assume linear long-range attraction and nonlinear short-range upper-bounded repulsion, with

time-varying coupling strengths as

faij = wij(t)(xi − xj), (3.3)

f rij = νij(t)g
r(‖xi − xj‖)(xi − xj),

faL,i = wL,i(t)(xi − xL),

f rL,i = νL,i(t)g
r
L(‖xi − xL‖)(xi − xL),

where wij(t) ≥ 0, νij(t) ≥ 0 are the attraction and repulsion coupling weights from agent j to

i; wL,i(t) ≥ 0, νL,i(t) ≥ 0 denote the leader-agent attraction and repulsion coupling weights;

gr(‖xi−xj‖) : Rn 7→ R, grL(‖xi−xL‖)Rn 7→ R are the repulsion terms such that the following

assumption holds.

Assumption 8. There exist constants F r > 0 and F rL > 0 such that

0 < gr(‖y‖)‖y‖ ≤ F r ∀t > 0

0 < grL(‖y‖)‖y‖ ≤ F rL ∀t > 0.

Let W (t) = [wij(t)] ∈ RN×N be the time dependent attraction coupling matrix of the swarm,

where wij(t) ≥ 0 for t ≥ 0 and i 6= j, and wii(t) = −
∑N

j=1,j 6=iwij(t) < 0. Notice, that

the diagonal elements of W do not affect the swarm dynamics. Here, wij = 0 means that

agents i and j are not connected, whereas wij > 0 indicates attraction from agent j to i

with coupling force wij . Analogously, let K(t) = [νij(t)] ∈ RN×N be the repulsion coupling

matrix of the swarm, where νij(t) ≥ 0 for t ≥ 0 and i 6= j, and νii(t) = −
∑N

j=1,j 6=i νij(t) <

0. Denote WL(t) = [wL,1(t) wL,2(t) ... wL,N (t)]T ∈ RN the vector of leader attraction, and

KL(t) = [νL,1(t) νL,2(t) ... νL,N (t)]T ∈ RN the vector of leader repulsion.

Let the weighted digraph Ga on N + 1 vertices denote the attraction graph of the swarm, where

a directed edge from j to i exists with edge-weight wij(t) if wij(t) > 0. A directed edge from

the leader to agent i exists if wL,i > 0. Let the repulsion graph of the swarm represented by

weighted digraph Gr on N+1 vertices, a directed edge from j to i exists with edge-weight νij(t)



Coordinated control under balanced communication graph 30

if νij(t) > 0. Moreover, a directed edge from the leader to agent i exists is νL,i > 0. One may

notice that L(Ga) = −W and L(Gr) = −K. Moreover, if the diagonal elements of W and K

are omitted, we obtain the adjacency matrices of Ga and Gr.

First, we will investigate swarm properties under fixed communication topology, hence we in-

troduce the following assumption.

Assumption 9. Denote Ea and Er the edge sets of the attraction and repulsion graphs respec-

tively. Ea(0) = Ea(t) ∀t > 0, Er(0) = Er(t) ∀t > 0.

We let the edge-weights to be time-varying, but bounded by known, positive bounds.

Assumption 10.

• For any agents i and j, there exist wij ≥ 0 and wij ≥ 0 such that wij ≤ wij(t) ≤ wij ∀t ≥
0,

• For any agents i and j, there exist wL,i ≥ 0 and wL,i ≥ 0 such that wL,i ≤ wL,i(t) ≤
wL,i ∀t ≥ 0,

• For any agents i and j, there exist νij ≥ 0 and νij ≥ 0 such that νij ≤ νij(t) ≤ νij ∀t ≥ 0,

• For any agents i and j, there exist νL,i ≥ 0 and νL,i ≥ 0 such that νL,i ≤ νL,i(t) ≤
νL,i ∀t ≥ 0.

Denote

W = [wij ] ∈ RN×N ,

KL = [νL,1 νL,2 ... νL,N ]T ∈ RN ,

ω = min
i
wL,i ∈ R,

Λ = diag(−ν11,−ν22, ...,−νNN ) ∈ RN×N ,

νii = −
N∑

j=1,j 6=i
νij ∈ R.

Cohesion of an artificial swarm described in (3.1) with control input in (3.2) may only be

maintained if the attraction graph is strongly connected and balanced.

Assumption 11. Let Ga be strongly connected and balanced for all t > 0,

N∑
j=1,j 6=i

wij =

N∑
j=1,j 6=i

wji, i = 1, 2, ..., N + 1.



Coordinated control under balanced communication graph 31

Remark 3.1. W is irreducible as a result of Assumption 11. We also mention, that symmetric

coupling is a special case of balanced coupling, where wij(t) = wji(t), ∀t > 0.

For now, we will assume that the leader is immobile and fixed in the origin. However, all

the introduced results hold for a leader in motion by applying the coordinate transformation

x′i = xi − xL. In our model the leader position indicates the point-of-interest to followers,

therefore it is assumed that leader attraction acts on every agent.

Assumption 12. The leader is fixed in the origin, that is xL = 0 and ẋL = 0.

Assumption 13. Leader attraction acts on every agent, that is

wL,i(t) ≥ 0, i = 1, 2, ..., N ∀t ≥ 0.

Furthermore, let wL,i(t) = ωL(t), i = 1, 2, ..., N ∀t ≥ 0.

3.2.2 Motion of the swarm centroid

Define the swarm centroid as

x =
1

N

N∑
i=1

xi. (3.4)

In [16] Gazi et al. proves that the swarm centroid is stationary if no leader is present and

both the attraction and repulsion graphs are complete, with unitary weights. However, in our

framework the centroid movement is governed by nonlinear terms and the leader interaction.

Proposition 3.2. Consider a swarm of N agents with dynamics (3.1) and a leader with dy-

namics as in Assumption 12 and coupling matrices W (t) and K(t), where Assumption 11 is

satisfied. Then the motion of the swarm centroid is governed by

ẋ =
1

N

N∑
i=1

N∑
j=1,j 6=i

νijg
r(‖xi − xj‖)(xi − xj)−

1

N

N∑
i=1

wL,i(xi − xL)

+
1

N

N∑
i=1

νL,i g
r
L(‖xi − xL‖)(xi − xL).

Proof. From (3.1) and (3.4) we have

ẋ =
1

N

N∑
i=1

ẋi,
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=− 1

N

N∑
i=1

N∑
j=1

wij(t)(xi − xj) +
1

N

N∑
i=1

N∑
j=1,j 6=i

νij(t)g
r(‖xi − xj‖)(xi − xj)

− 1

N

N∑
i=1

wL,i(t)(xi − xL) +
1

N

N∑
i=1

νL,i(t)g
r
L(‖xi − xL‖)(xi − xL).

Due to Assumption 11 and the definition of the diagonal elements in W we have
∑N

i=1wij =∑N
i=1wji = 0, and therefore

N∑
i=1

N∑
j=1

wij(t)(xi − xj) =

N∑
i=1

xi

N∑
j=1

wij −
N∑
j=1

xj

N∑
j=1

wij = 0,

which completes the proof.

Remark 3.3. The centroid motion is exclusively governed by the leader’s attraction and repulsion

in case of symmetric coupling.

3.2.3 Leader-centroid distance

In the context of leader-follower swarms, there are two characteristic properties to be analyzed.

Swarm cohesion can be described by the swarm size, measured as an average deviation from

the swarm centroid. On the other hand, the leader-swarm relationship is described by the

leader-centroid distance, ‖ẽ‖, where ẽ = x− xL.

Proposition 3.4. Consider a swarm consisting of N agents with dynamics and control input

in (3.1)-(3.2) and a leader agent with dynamics as in Assumption 12. If Assumptions 8-13

are satisfied for the swarm and the leader, then as t → ∞ the swarm centroid asymptotically

approaches the hyperball around the leader with radius

‖x− xL‖ <
F rtr(Λ) + F rL

∑N
i=1 νL,i

Nω
L

. (3.5)

Proof. Consider the positive scalar function V = 1
2 ẽ
T ẽ. Then, V̇ = ˙̃eT ẽ = ẋ

T
ẽ. Applying

Proposition 3.2 and taking Assumption 8 into consideration, one obtains

V̇ =
1

N

N∑
i=1

N∑
j=1,j 6=i

νijg
r(‖xi − xj‖)(xi − xj)T ẽ

+
1

N

N∑
i=1

νL,i g
r
L(‖xi − xL‖)(xi − xL)T ẽ− 1

N

N∑
i=1

wL,i(xi − xL)T ẽ,
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≤F
r

N
‖ẽ‖

N∑
i=1

N∑
j=1,j 6=i

νij +
F rL
N
‖ẽ‖

N∑
i=1

νL,i −
1

N

N∑
i=1

wL,i(xi − xL)T ẽ.

Notice that by Assumption 13,

N∑
i=1

wL,i(xi − xL)T ẽ = ωLẽ
T

N∑
i=1

(xi − xL) = ωLẽ
TNẽ,

and

N∑
i=1

N∑
j=1

νij ≤ tr(Λ),

therefore

V̇ ≤ ‖ẽ‖

[
F r

N
tr(Λ) +

F rL
N

N∑
i=1

νL,i − ωL‖ẽ‖

]
.

Since ‖ẽ‖ =
√

2V , we have V̇ < 0 when

F rtr(Λ) + F rL
∑N

i=1 νL,i√
2Nω

L

<
√
V ,

and therefore the swarm centroid will globally and exponentially converge to a hyperball around

the leader with radius in (3.5).

3.2.4 Ultimate swarm size

In [38], it is shown that under general communication topology and fixed coupling weights, the

trajectories of the swarm converge to a hyperellipsoid centered at the weighted center of the

swarm. Let ξ = [ξ1 ξ2 ... ξN ] be the left eigenvector of a coupling matrix W corresponding to

the zero eigenvalue. The weighted center is defined as

x̃ =
N∑
i=1

ξixi,

where, without loss of generality, the weights are assumed to be such that
∑N

i=1 ξi = 1. In

light of Lemma 2.2, for any balanced coupling topology ξ = 1
N [1 1 ... 1]T , and therefore the

weighted center and the swarm centroid overlap. In addition, as long as W (t) is balanced,

ξ(t) = 1
N [1 1 ... 1]T .
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The eigenvalues of the irreducible and symmetric matrix W ∗(t) = 1
N (W (t) + W T (t)) can be

enumerated as

0 = µ1(t) > µ2(t) ≥ µ3(t) ≥ ... ≥ µN (t).

Furthermore, let µ(t) without any subscript denote the second largest eigenvalue, that is µ(t) =

µ2(t) < 0. Notice, that −µ(t) is the algebraic connectivity of the connected graph G∗ for

which L(G∗) = −W ∗(t) is its Laplacian. Moreover, let µ be the second largest eigenvalue of

W ∗ = 1
N (W +W T ).

Proposition 3.5. Consider a swarm consisting of N agents with dynamics and control input

in (3.1)-(3.2), and a leader agent with dynamics as in Assumption 12. If Assumptions 8-13

are satisfied for the swarm and the leader, then as t → ∞ all follower agents asymptotically

approach the swarm centroid such that

N∑
i=1

‖xi − x‖2 ≤ ε2, (3.6)

where

ε =
F r
√
tr(Λ

2
) + F rL‖KL‖

−N
2 µ+ ω

. (3.7)

Proof. Let ei = xi−x and consider the positive definite function Vi = 1
2

1
N e

T
i ei for i = 1, 2, ..., N .

Then we have V̇i = 1
M ẋ

T
i ei − 1

M ẋ
T
ei. Now define the positive definite function V =

∑N
i=1 Vi.

Note that

N∑
i=1

ẋ
T
ei = ẋ

T
N∑
i=1

ei = 0,

xi − xj = ei − ej ,

xi − xL = ei + ẽ.

In light of Assumption 8 we obtain

V̇ =
N∑
i=1

V̇i =
1

N

N∑
i=1

ẋTi ei −
1

N

N∑
i=1

ẋ
T
ei,

=− 1

N

N∑
i=1

N∑
j=1

wij(xi − xj)T ei +
1

N

N∑
i=1

N∑
j=1

νijg
r(‖xi − xj‖)(xi − xj)T ei

− 1

N

N∑
i=1

wL,i(xi − xL)T ei +
1

N

N∑
i=1

νL,i g
r
L(‖xi − xL‖)(xi − xL)T ei,
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≤− 1

N

N∑
i=1

N∑
j=1

wij(ei − ej)T ei +
1

N
F r

N∑
i=1

‖ei‖
N∑

j=1,j 6=i
νij −

1

N

N∑
i=1

wL,ie
T
i ei

− 1

N

N∑
i=1

wL,iẽ
T ei +

1

N
F rL

N∑
i=1

νL,i‖ei‖. (3.8)

Denote e =
[
eT1 eT2 ... eTN

]T
∈ RNn. In the following the inequality

N∑
i=1

aibi ≤

√√√√ N∑
i=1

a2i

√√√√ N∑
i=1

b2i , ai, bi ≥ 0, i, j = 1, 2, ..., N

will be used. First notice that

N∑
i=1

wL,iẽ
T ei = ωLẽ

T
N∑
i=1

ei = 0,

and

−
N∑
i=1

N∑
j=1

wij(ei − ej)T ei =

N∑
i=1

N∑
j=1

wije
T
j ei −

N∑
i=1

eTi ei

N∑
j=1

wij =

N∑
i=1

N∑
j=1

wije
T
j ei. (3.9)

For the other terms in (3.8), we have

N∑
i=1

νL,i‖ei‖ ≤ ‖KL‖‖e‖,

N∑
i=1

‖ei‖
N∑

j=1,j 6=i
νij ≤ ‖e‖

√√√√ N∑
i=1

N∑
j=1,j 6=i

ν2ij ≤
√
tr(Λ

2
)‖e‖,

−
N∑
i=1

wL,ie
T
i ei ≤ −ω‖e‖2.

It is shown in [38] that for constant W and µ

1

N

N∑
i=1

N∑
j=1

wije
T
j ei =

1

2
eT
[

1

N
(W +W T )⊗ In

]
e

≤ µ‖e‖2.

In our case W = W (t) and µ = µ(t). Let G∗ be the weighted undirected graph on N vertices,

which has the graph Laplacian L(G∗) = − 1
N (W + W T ). Since W + W T is irreducible (see
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Lemma 2.2), G∗ is connected, with Laplacian eigenvalues

0 = λ∗1(t) < λ∗2(t) ≤ λ∗3(t) ≤ ... ≤ λ∗N (t).

Then,

λ∗1(t) = −µ1(t), λ∗2(t) = −µ2(t), ..., λ∗N (t) = −µN (t).

In light of Lemma 2.3, the minimum of λ∗2(t) is obtained if W (t) = W , denoted by λ∗2. Increasing

any edge-weights may only increase the algebraic connectivity of the graph. Therefore λ∗2(t) ≥ λ∗2
for all t > 0. Consequently,

µ(t) = µ2(t) = −λ∗2(t) ≤ −λ∗2 = µ,

and

1

N

N∑
i=1

N∑
j=1

wije
T
j ei ≤

1

2
µ‖e‖2 < 0.

Combining the results for each term of (3.8), we obtain

V̇ ≤ ‖e‖
[
(
1

2
µ− 1

N
ω)‖e‖+ 1

N
F r
√
tr(Λ

2
)+

1

N
F rL‖WL‖

]
.

Since ‖e‖ =
√

2NV , when

√
V >

1
NF

r

√
tr(Λ

2
) + 1

NF
r
L‖WL‖√

2N(12µ−
1
N ω)

we have V̇ < 0 and the swarm will globally and exponentially converge to the hyperellipsoid

described in (3.6) and (3.7).

Remark 3.6. In [42] fully connected and symmetric attraction and repulsion graphs with equal

weights are assumed. That is, for N followers

W = ka(t)


−(N − 1) 1 ... 1

1 −(N − 1) ... 1

1 1 ... 1

1 1 ... −(N − 1)

 ,
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where ka(t) denotes the inter-agent attraction weight at time t, such that 0 < ka ≤ ka(t) ≤
k
a ∀t > 0. Similarly, the leader attraction is equal for each agent such that 0 < kaL ≤ kaL(t) ≤
k
a
L ∀t > 0. The algebraic connectivity of a simple, complete graph Kn on n vertices is n [53].

Notice, that

W (t) = −ka(t) L(Kn).

Therefore, due to the symmetry of W we have

µ = − 2

N
kaN = −2ka.

From here, it is straightforward to show, that

ε =
F r(N − 1)

√
(N) + F rL

√
(N)

Nka + kaL
,

which matches with the result in [42].

3.3 Applications in swarm coordination

3.3.1 Switching swarm topology

In Section 3.2, we investigated the swarm behavior with fixed, balanced communication topology

and derived a bound on the swarm size. However, by introducing some assumptions, the same

results may be applied to time-varying swarm topologies.

Consider the framework discussed in the previous section, and a swarm of N followers and a

leader with symmetric coupling. Let Ga,f (V, Ea,f , Aa,f ) denote the fixed attraction graph on

N + 1 vertices (including the leader), which is the time-invariant component of the attraction

graph and assumed to be connected.

Let W denote the attraction coupling matrix of the fixed attraction graph, and W ′ denote the

attraction coupling matrix of the graph obtained from Ga,f by inserting a new undirected edge

with weight as in Assumption 10. Let µ′ denote the second largest eigenvalue of the irreducible

matrix 1
N (W ′ +W ′T ). In light of Lemma 2.3, inserting a new edge into Ga,f may only increase

its algebraic connectivity. Consequently, µ′(t) ≤ µ(t) ≤ µ must hold for all t. Naturally, the

inequality will hold for subsequent inserted edges as well. In other words, inserting a new

attraction link into the swarm topology may only decrease the ultimate bound on the swarm

size.
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Let Gr,c(V, Er,c, Ar,c) denote the complete repulsion graph, where repulsion acts between any

two agents, and the repulsion coupling weights satisfy Assumption 10. It is straightforward

to see, that the ultimate swarm size from Proposition 3.5 may only decrease by removing any

repulsion links from the swarm topology.

Let ε(Ga, Gr) denote the ultimate swarm size of the swarm with attraction graph Ga and

repulsion graph Gr. Let G+
a denote any attraction graph obtained by inserting edges into Ga,f ,

and G−r denote any repulsion graph obtained by removing edges from Gr,c. Then we can state

that ε(G+
a , G

−
r ) < ε(Ga,f , Gr,c). Therefore, if we assume that the edges of the fixed attraction

topology are maintained for all t, by determining ε(Ga,f , Gr,c), we obtain a conservative upper

bound on the ultimate swarm size with changing attraction and repulsion topology.

3.3.2 Limiting distance between agents

In certain applications it is desirable to limit the maximum distance between any two agents in

order to maintain swarm cohesion and communication. This can be achieved by adjusting the

attraction coupling between agents getting out of range from each other.

Assume, that we want to limit the distance between agents i and j so that ‖xi − xj‖ ≤ Ri,j ,

where Ri,j > 0 is the critical distance between agent i and j and the initial inter-agent distance

is less than Ri,j . An approach to achieve it is to set ωij so that

1

2

d

dt
(xi − xj)T (xi − xj) < 0,

whenever ‖xi − xj‖ ≥ Ri,j . For the sake of simplicity, we will further assume that the velocity

vector ẋj = vj of agent j is available for agent i. Then, we have

1

2

d

dt
(xi − xj)T (xi − xj) =

=(ẋi − ẋj)T (xi − xj)−
N∑

k=1,k 6=i,j
wik(xi − xk)T (xi − xj)

+

N∑
k=1,k 6=i

νik g
r(‖xi − xk‖)(xi − xk)T (xi − xj)− wL,i(xi − xL)T (xi − xj)

+ νL,i g
r
L(‖xi − xL‖)(xi − xL)T (xi − xj)− vj(xi − xj)− wij‖xi − xj‖2,

=H(x)(xi − xj)− wij‖xi − xj‖2 < 0.
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Therefore, if we choose wij such that

H(x)(xi − xj)
‖xi − xj‖2

< wij , (3.10)

then
1

2

d

dt
‖xi − xj‖2 < 0

is satisfied.

To implement the attraction weights for limited interagent distance, agent i must check its

distance from agent j. In the case when ‖xi−xj‖ ≥ Ri,j , wij is switched according to (3.10). A

formula can be derived using the same approach if the other agent’s velocity vector is unknown

to agent i.

3.4 Simulation

In this section we will verify our results through numerical simulations. Consider a swarm with

N = 6 follower agents and a leader. The states evolve in R2 governed by (3.1), where the

attraction and repulsion functions have the following forms:

fai,j = wi,j(t)(xi − xj),

f ri,j = νi,j(t)e
−
‖xi−xj‖

2

r (xi − xj),

faL,i = wL,i(t)(xi − xL),

f rL,i = νL,i(t)e
− ‖xi−xL‖

2

rL (xi − xL),

where r and rL are scalars, and chosen to be r = rL = 2. It is straightforward to see that

F r =
√

r
2e , and F rL =

√
rL
2e .

3.4.1 Swarm size adjustment

Adjusting the swarm size of robotic swarms may be necessary in order to move through terrains

with obstacles. In this simulation the focus is on the coordination of the follower agents,

therefore we will omit the leader. First, we let the swarm to approach an equilibrium state with

the weights wij = 2 and νij = 5 for each edge in the graph in Fig. 3.1. Then, the weights are

switched to wij = 4.5 and νij = 4.8 for each edge.
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(a) Topology representing both the
attraction and repulsion graph

(b) Partitioning of the same graph
into two disjoint sets

Figure 3.1: Graph G representing the interaction topology used throughout the sim-
ulation cases

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

Figure 3.2: Simulation 1: Approximate swarm size before (dashed line) and after (solid
line) switching attraction and repulsion weights. The swarm centroid is indicated by

the diamond marker.
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(b) Agent-centroid squared error

Figure 3.3: Simulation 2: Agent-centroid squared error converges to the region derived
in Proposition 3.5

The results can be observed in Fig. 3.2, where the concentric circles are estimates of the swarm

size before and after the switching. Note, that the swarm centroid is immobile, because the

coupling is symmetric and no leader is present.

3.4.2 Ultimate swarm size with time-varying weights

In this numerical example, we compare the ultimate swarm size obtained in Proposition 3.5,

to the simulated size of the swarm while the coupling weights are allowed to change within

some predefined bounds. The coupling weights were sinusoidal functions, such that wij = ω
L

=

1, wij = ωL = 9, νij = νL,i = 2, νij = νL,i = 10, for i, j pairs which are connected by an

edge of the communication graph in Fig. 3.1.

The simulation results are presented in Fig. 3.3. The agents approach the leader at the origin

(Fig. 3.3(a)), and remain in its vicinity. The system state converges to and remain within the

hyperellipsoid described in Proposition 3.5.

3.4.3 Collision avoidance

Collision avoidance is an important property of distributed control algorithms. Applying the

reasoning in Section 3.3.1, let the fixed swarm interactions be represented by graph G(V, E) in
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(a) Aggregation with collision avoidance
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(b) No collision avoidance: agents not connected cannot
avoid collision

Figure 3.4: Simulation 3: Agent trajectories with and without collision avoidance

Fig. 3.1 (both attraction graph Ga and repulsion graph Gr). Whenever disconnected agents

i and j approach each other within Rcij ∈ R+ critical distance, insert a new edge e into Gr

between agent i and j. As they leave each other’s neighborhood of radius Rcij , remove edge e.

Let νc denote the weight of the inserted repulsion edge. In this simulation, we let the critical

distance take the form

Rcij =

√
r · νc

wij
+ ε,

the values were empirically set to νc = 6, ε = 0.5. For the sake of simplicity, we choose the fixed

coupling weights as

wij = 5, νij = 6, ∀ {i, j} ∈ E,

wL,i = 5, νL,i = 6 ∀ i,

for all t > 0.

The same simulation was repeated without applying the aforementioned collision avoidance

technique. As Fig. 3.4(a) shows, by using collision avoidance, the agents aggregated around

the leader, and all agents without fixed interaction link avoided collision. In Fig. 3.4(b) one

may observe, that disconnected agents are organized in two groups and converge to two distinct

points around the leader. The underlying reason is that G is bipartite, that is its vertices can be

divided into two disjoint sets A and B such that every edge connects a vertex in A to a vertex
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in B (Fig. 3.1(b)). Therefore, agents in the same set has no interaction with each other, and

will eventually collide.

3.5 Conclusions

In this chapter, we have investigated the collective behavior of leader-follower swarms, where

the interaction topology can be described by an attraction and a repulsion graph with time-

varying weights. Centroid motion and leader-centroid distance was analyzed, then quantitative

connection was established between the ultimate swarm size and the bounds on the time-varying

weights using results from algebraic graph theory. We discussed applications of time-varying

coupling weights and topologies in distributed control and presented numerical simulations to

demonstrate our results. Agents of higher order dynamics and the influence of communication

time-delays on the swarm size serves as future research topics.



Chapter 4

Experiments

4.1 Introduction

Experimental validation is an important aspect in the design of distributed control algorithms,

but also a challenging one. First of all, selecting a robotic platform is a critical issue, which can

make or break the experiment. For multi-agent system modeling the following considerations

must be taken into account:

• Relatively small size: The size of the robots must be comparably small with respect to the

allocated space for the experiment in order to observe the trajectories and the interaction

between agents.

• Large number of robots: since we are aiming at modeling a multi-agent system the exper-

iment will be designed for several (at least 5-6) robots. Therefore, it might be necessary

to design for less complex, inexpensive platforms.

• Communication: the robots must be able to communicate with each other real-time, and

also receive commands or information from external sources (such as a PC). The speed,

bandwidth and latency of the communication channel are all important factors.

• Safety: implementing the desired algorithm properly for the first time is almost impossi-

ble, usually several iterations are necessary. This results in unexpected behavior, which

may damage the robots, the environment or the operator. Therefore it is necessary to

implement some safety measures in the experimental setup (both physically and in the

software).

44
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On top of these issues the agents’ state must be fed back and made available to other agents.

The most common case is to use position feedback, and therefore we need some means of ob-

taining that in real-time. Designing such an experimental setup is a complex issue and requires

a comprehensive understanding of both the control aspect and general system engineering dis-

ciples. One major goal of the Mechatronics and Controls Laboratory is to set up a platform for

testing and validating such distributed control algorithms as the ones proposed in this thesis.

Although the main contribution of this thesis work is the introduced theoretical framework, the

first steps of the aforementioned endeavor were realized as part of this work. The following

goals were set forth:

• Set up communication with a quadcopter from a PC. The quadcopter is intended to model

a single agent in the multi-agent system.

• Stabilize its position and attitude, since for the proposed control framework it is necessary

to maintain the position with high accuracy.

• Be able to maneuver it between predefined waypoints using control commands sent from

the PC.

The organization of the chapter is as follows: first the experimental setup and its fundamental

components are introduced in Section 4.2. In Section 4.3 the designed controller for position

and attitude stabilization is introduced. Lastly the future directions are outlined in Section 5.

4.2 Experimental setup

The experimental setup consists of the following components: a quadcopter, an area surrounded

by protective net (referred to as the cage), a motion tracking camera system laid out around

the cage, a PC connected to the camera system and a PC sending control commands to the

quadcopter (see Fig. 4.1).

4.2.1 Quadcopter

The quadcopter is a Hummingbird model (see Fig. 4.2) from the company AscTec. This is

a small and agile unmanned aerial vehicle designed for research purposes, in particular for

swarming and controls experiments. Some technical data from the manufacturer’s website [1]:

• Dimensions: 54 x 54 x 5.5 cm
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Figure 4.1: Experimental setup in the UNH Mechatronics and Controls Laboratory

• Propeller size: 8”

• Motors: 4 x 80 W

• Maximum thrust: 20 N

• Maximum payload: 200 g

• Maximum total weight: 710 g

• Maximum airspeed: 15 m
s

• Maximum flight time: 20 mins without payload

• Battery: 2100 mAh LiPo

Propeller protector is attached to the experimental model. A remote control (Futaba T8J )

was provided with the quadcopter sending control signals through serial communication. The

AscTec Hummingbird is equipped with an Atomboard v3 onboard computer, with the following

specifications [54]:

• CPU: Intel Atom Processor E3845
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Figure 4.2: AscTec Hummingbird, the model used in the experiments [1]

• Number of cores: 4

• Clock speed: 1.91 GHz

• RAM: 4 GB DDR3

• Hard Disk: 64 GB SSD, 8 GB eMMC

• Network: Gigabit Ethernet

• USB: 5 x USB2.0, 1 x USB3.0

The model also comes with a pair of pre-configured XBee modules providing serial communi-

cation link between the quadcopter’s onboard computer and another device to which the other

XBee is connected.

The communication interface to the onboard computer’s Low Level Processor (responsible for

DC motor control) is specified in [55]. To summarize, we may send the following control com-

mands: roll/pitch/yaw in degrees and thrust in % of maximum value. The onboard control

algorithm, which directly controls the DC motor voltages to track the control command signal
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is closed source. First, the serial programming interface must be enabled via the remote control

in order to allow the quadcopter to accept control commands from other sources. It is important

to mention that the control command must be sent with at least 10Hz frequency, otherwise the

quadcopter switches to autopilot mode.

Moreover, the interface provides access to the quadcopter’s onboard sensor data, such as the

accelerometers or gyroscope in the form of polling. A polling request package must be sent

in which the requested data is specified. The onboard processor assembles a package with the

required data and sends it back to the requester. However, there are serious issues with this

method when it comes to implementing real-time control algorithms. Most importantly, the

real-time operation is not guaranteed. There is no guaranteed time in which we receive the

requested data package for feedback. Secondly, alternating between control command packages,

polling packages and receiving the polling data in real-time leads to a complicated multi-threaded

software solution. Lastly, the onboard sensor data proved to be too noisy for precise control

applications, and therefore a more accurate position and velocity feedback method was required

in the form of a motion tracking camera system.

4.2.2 Motion tracking camera system

To provide high-precision position feedback, a system of motion tracking cameras were utilized

around the cage. Eight cameras were used evenly distributed along the walls of the cage (Fig.

4.3). The cameras were set up so that they point to the middle of the space enclosed by the

protective net. The camera model used is the Flex 13 from the company Optitrack, with the

following specifications[56]:

• Dimensions: 53.8 x 81 x 42.4 mm

• Weight: 186 g

• Lens: 5.5 mm focal length at f/1.8, with 800nm IR long pass filter

• Horizontal/Vertical FOV: 56◦/46◦

• Resolution: 1280 x 1024

• Frame rate: 30-120 FPS

The software Optitrack Motive is provided by the manufacturer providing calibration support

and easy access to tracking data as well as streaming options. After setup, the cameras must
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Figure 4.3: Layout of motion tracking cameras

be calibrated using a calibration wand and a calibration frame. The resulting mean error of

position measurement according to Motive is around 0.5mm.

The camera system is capable of detecting and tracking IR (infrared) markers. In Motive

markers can be grouped to form a rigid body, both the position and orientation of rigid bodies

can be tracked in real-time. Fig. 4.4 shows the markers attached to the quadcopter, added as

a rigid body in Motive.

Motive can be set up to stream rigid body data real-time across networks. The streamed data

consists of the position of the individual markers as well as the orientation of the rigid body

represented by quaternions. The position of the rigid body’s pivot is also streamed, which will

be used to represent the quadcopter location in the experiments. The pivot is the center-of-mass

of the markers constituting the rigid body. The stream can be accessed by a remote computer,

on which the quadcopter control algorithm is running.

4.3 Controller design

Even though attitude and height control is implemented on the quadcopter’s onboard computer

(closed source), due to the inaccuracy of its sensors a significant drift can be observed right after

take off, with the reference roll/pitch/yaw degrees all being zero. The drift can be compensated

to a certain degree using the remote control’s trimming option (setting a constant bias to

the roll/pitch/yaw commands), but it is far from satisfactory for distributed control purposes.
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Figure 4.4: Rigid body representing the quadcopter as seen in Motive (inverted colors).
Yellow balls represent the actual markers in 3D space, the blue sphere indicates the

marker pivot.

Instead of using the quadcopter’s noisy sensor data, the position feedback was used to stabilize

the quadcopter’s position.

A remote computer in the laboratory is set up to receive the real-time streaming data from

Motive. The position provided by the camera system is with respect to the camera system’s fixed

frame of reference set up during calibration and referred to as world frame. Using the position

of the rigid body from two consecutive camera frames, the velocity vector of the quadcopter can

be determined in the world frame.

Due to the fact that only roll/pitch/yaw commands can be issued to the quadcopter (repre-

senting rotation about the x− y − z axes of the quadcopter itself), the velocity vector must be

transformed to quadcopter frame, that is it has to be represented in a coordinate frame fixed to

the quadcopter. The transformation matrix can be determined based on the quaternion data

streamed through the network (must be converted to Euler-angles first). The process described

in [57] was implemented.
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Figure 4.5: Free-body diagram and reference frame of the quadcopter model[2]

The second-order dynamic model of a quadcopter can be found in [2]. Using the notations as it

can be observed in Fig. 4.5, the dynamic model takes the form

mẍ = −usin(θ) (4.1)

mÿ = ucos(θ)sin(φ) (4.2)

mz̈ = ucos(θ)cos(φ)−mg (4.3)

ψ̈ = τ̃ψ (4.4)

θ̈ = τ̃θ (4.5)

φ̈ = τ̃φ, (4.6)

where u = f1 + f2 + f3 + f4 and fi = kiωi, ki > 0, ωi is the angular speed of motor i; τ̃ψ, τ̃θ

and τ̃φ are transformed angular moments (see [2] for more details).

Advanced nonlinear control techniques such as sliding mode control or adaptive control can

be deployed to stabilize the quadcopter dynamics. However the main goal for this work was

to implement a simple controller as a first step, which successfully stabilizes the nonlinear

quadcopter dynamics. PID (proportional-integral-derivative) control is the most commonly

used method providing acceptable results even without knowing the exact plant dynamics. In

this project, separate PID control loops were designed for the x and y components of the velocity

vector in the quadcopter’s frame. It was assumed that the x component of the velocity vector

vx = ẋ is proportional to the pitch, while the y component vy = ẏ is proportional to the roll. As

a first approach, the component in z direction vz = ż pointing up can vary and it is controlled
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through the thrust from the PC by the operator. The error signal for the PID controller is

formulated as ex = vrx − vx and ey = vry − vy. For lateral position stabilization the reference

velocity for both components vrx = vry = 0.

The PID controller gains were tuned empirically, and selected as follows:

Kx
P = Ky

P = 6, Kx
I = Ky

I = 0.4, Kx
D = Ky

D = 1.

The output of the PID controller must be scaled and saturation must be applied to match the

control command range as interpreted by the quadcopter, that is:

• Roll/pitch: integer in the range [−2047,+2047] corresponding to -52◦ to +52◦

• Thrust: integer in the range [0,+4095] corresponding to 0% to 100% thrust

The designed controller was capable of stabilizing the quadcopter velocity in the x and y direc-

tions. However, the coupling between roll, pitch and thrust cannot be neglected. The oscillation

in z direction increases with higher thrust value and minimal close to the ground (low thrust).

PID control loop was implemented for the z velocity component as well. The empirically tuned

PID gains are

Kz
P = 2, Kz

I = 0.1, Kz
D = 1.

Using all three PID control loops the quadcopter position can be stabilized in a given height.

However, the necessary PID gains for the thrust control depends on the thrust value and height

about which we are trying to stabilize the position. The underlying reason for this is the

quadcopter’s nonlinear dynamics and the coupling between roll/pitch and thrust. Certain aero-

dynamic effects may take place when the quadcopter is close to the ground, which is out of the

scope of the current study.

Fig. 4.6 shows the structure of the closed-loop system, where u
x/y/z
v denotes the PID controller

output and the actual control command value sent to the quadcopter is denoted by up/r/t

referring to pitch, roll and thrust respectively. Distinct PID control loops are implemented for

the x, y and z components of the velocity vector reflected by the index/superscript x/y/z.

Furthermore, basic waypoint navigation has been implemented. Measuring the quadcopter’s

current position and knowledge of the predefined waypoint can be used to calculate the vector

pointing from the quadcopter to the waypoint. This vector can be scaled and used as reference

velocity for the PID controller. If the maximum reference velocity is small enough, the same

PID gains can be used for waypoint navigation.
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Figure 4.6: Closed-loop system with PID control (implemented as 3 distinct loops in
x, y and z direction)

Figure 4.7: Sketch of the experimental setup including all components

The interconnection and function of the various components used in the experimental setup can

be observed in Fig. 4.7.
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Figure 4.8: Position stabilization results using PID control. Quadcopter trajectory
on the ground plane (left) can be confined into a circular area with radius r = 2.65 cm
(red circle). Quadcopter altitude is oscillatory (right), the maximum distance between

peaks is d = 10.8 cm (between red lines).

4.4 Experimental results

Experiments were performed to verify the stability and performance of the designed closed-loop

system.

4.4.1 Position stabilization in ground plane

In the first experiment, position stabilization in the ground plane was tested. The thrust

and therefore the altitude was adjustable from the remote PC. The quadcopter trajectory was

recorded from starting position (0.0253, − 0.0594), which denotes the marker pivot’s position

(close to but not the same as the quadcopter’s center of mass). As it has been mentioned in the

previous section, verifying the position stabilization performance mainly means stabilization in

the XY (ground) plane due to the effect of roll/pitch on the vertical velocity. Fig. 4.8 shows the

obtained results. The position was stabilized within a bounded area with radius r = 2.65 cm.

The quadcopter altitude was oscillating with an amplitude of approximately 6cm. These results

might be further improved by fine-tuning the PID gains, however according to the experience

of the author it is close to the limit of the applied control approach.
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Figure 4.9: Altitude stabilization: Quadcopter altitude vs. time, the altitude stabi-
lization is turned on at t = 9 s. The altitude is stabilized through thrust control, the
amplitude of oscillation in z-direction has been reduced to 1.1 cm as indicated by the

red lines.

4.4.2 Position stabilization in fixed altitude

Stabilization of the vertical velocity can be achieved by using a third PID loop, where the

output is vz and thrust control command is sent to the quadcopter. However, due to the effect

of roll/pitch on the vertical velocity (see Eq. 4.3) the appropriate PID gains strongly depend on

the thrust value and therefore a different control technique would be more effective. The fixed

control gains

Kz
P = 2, Kz

I = 0.1, Kz
D = 1

were used to stabilize the quadcopter altitude at a certain height. The results can be seen in

Fig. 4.9 and 4.10. By introducing the third PID control loop, the amplitude of oscillation in

z-direction is significantly lower (compare to Fig. 4.8), around 1.1 cm.
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Figure 4.10: Vertical motion during altitude stabilization: quadcopter trajectory
remains within a circular area with radius 2.05 cm.

4.4.3 Waypoint navigation

In this experiment waypoints were set up within the cage at the following (world) coordinates

in meters:

• Waypoint 1: WP1 = (−0.585, − 0.030)

• Waypoint 2: WP2 = (0.020, 0.850)

• Waypoint 3: WP3 = (0.605, − 0.030)

The initial marker pivot location was close to the origin, at (0.0174, −0.0329). The quadcopter

must approach the waypoints within 1 cm in the same order as they were defined. These

waypoints were pre-programmed into the control algorithm and the operator instructed the

quadcopter to go to the next waypoint if the previous one has been reached. The camera
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Figure 4.11: Quadcopter trajectory during waypoint navigation. The tolerance to
consider a waypoint reached was set to 1 cm.

system is capable of measuring distance with sub-millimeter accuracy. The results can be seen

in Fig. 4.11. The task was performed successfully, all waypoints were reached in order. The

whole mission from take-off to landing takes around 75 seconds. The quadcopter trajectory is

oscillating perpendicular to the heading direction, the amplitude of the oscillation is less than

6 cm.



Chapter 5

Conclusion and future work

This thesis aimed to introduce a new framework for the distributed control of leader- follower

multi-agent systems with adjustable swarm control objectives. The mathematical model was

employed to describe fundamental swarm behaviors such as aggregation and leader tracking.

In Chapter 2, aggregation and leader tracking problem was studied under a complete commu-

nication topology and under first-order and higher-order dynamics. Bounds on the swarm size

and time of convergence have been derived.

However, in practical applications the agents’ communication capabilities are limited, and there-

fore it is desirable to relax the assumption on the information exchange topology. In Chapter 3,

the framework was extended to swarms where the interaction topology is described by an attrac-

tion and a repulsion graph with time-varying weights. Quantitative connection was established

between the ultimate swarm size and the bounds on the time-varying weights under single-

integrator agent dynamics. Extending these results to higher-order dynamics would constitute

an essential step towards real-world implementation.

This study introduced a mathematical framework to model time-varying swarm objectives,

but it does not discuss the question how to actually adjust the objective function in different

situations. As a possible future study, it would be desirable to investigate transfer-of-control

or autonomy-adjustment strategies, which would update the coupling weights based on some

underlying algorithm. One direction would be the application of optimal control methods (based

on cost function minimization) to find (sub)optimal weights in order to achieve the system level

goal. An alternative approach is to develop adaptive control methods to update the weights

based on some learning technique (for example neural networks).
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Experimental validation is an important aspect of control systems engineering. Testing of a con-

trol framework is a challenging problem, which requires comprehensive knowledge of both the

theoretical framework and the real-world system under control. In Chapter 4, first steps towards

the experimental validation of the proposed distributed control scheme was demonstrated. PID

control based position stabilization and waypoint navigation has been implemented for an As-

cTec Hummingbird quadcopter, where the position feedback was provided by a motion tracking

camera system.

Although PID control design enables for fast design and testing even without deep understanding

of the plant dynamics, it certainly has its limitations. Even though the designed controller

showed satisfactory performance stabilizing the velocity in x and y directions, the coupling

between roll, pitch and thrust cannot always be neglected as it was reflected by the issues with

thrust control.

Therefore it is necessary in the future to identify the dynamic model of the quadcopter and

design the controller based on that, where the velocity control in x, y, z directions is not decou-

pled. Better understanding of the plant dynamics and its uncertainties (both parameter and

structural) would enable for more robust optimal control design such as H2 or H∞ control.

Moreover, the comparably large size of the used quadcopter model may constitute a serious

problem in case the experiments are extended to several autonomous agents. It would be

necessary to reproduce the same results for a robotic platform with smaller physical dimensions.

Another disadvantage of the Hummingbird is the lack of knowledge of the actual attitude con-

trol algorithm running on the onboard computer. The fact that only roll/pitch/yaw/thrust

commands can be sent to the quadcopter (which will be tracked by a closed source controller)

is also very limiting. Direct access to the DC motor voltages would enable for designing more

advanced control algorithms.
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decision-theoretic approach to cooperative control and adjustable autonomy. In ECAI,

pages 971–972, 2010.

[34] Paul Scerri, David V Pynadath, and Milind Tambe. Why the elf acted autonomously:

Towards a theory of adjustable autonomy. In Proceedings of the First International Joint

Conference on Autonomous Agents and Multiagent Systems: part 2, pages 857–864. ACM,

2002.



Bibliography 63

[35] Gregory Dorais, R Peter Bonasso, David Kortenkamp, Barney Pell, and Debra Schreck-

enghost. Adjustable autonomy for human-centered autonomous systems. In Working notes

of the Sixteenth International Joint Conference on Artificial Intelligence Workshop on Ad-

justable Autonomy Systems, pages 16–35, 1999.

[36] P. Rani, N. Sarkar, and J. Adams. Anxiety-based affective communication for implicit

human-machine interaction. Advanced Engineering Informatics, 21:323–334, 2007.

[37] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

[38] W. Li. Stability analysis of swarms with general topology. IEEE Transactions on Systems,

Man, and Cybernetics. Part B: Cybernetics, 38:1084–1097, 2008.

[39] R. A. Horn and C.R. Johnson. Matrix Analysis. New York: Cambridge Univ. Press, 1985.

[40] B. Mohar. The laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applica-

tions, 2:871–898, 1991.

[41] Y. Guan and G. Xu. Algebraic connectivity of weighted graphs under shifting components.

Discrete Mathematics, Algorithms and Applications, 2:263–275, 2010.

[42] Z. Fabian and S. Y. Yoon. Coordination of multi-agent leader-follower system with time-

varying objective function. IEEE Conference on Decision and Control, 2016.

[43] V. Gazi and K. M. Passino. Swarm Stability and Optimization. Springer, 2011.

[44] Veysel Gazi. Swarm aggregations using artificial potentials and sliding-mode control.

Robotics, IEEE Transactions on, 21(6):1208–1214, 2005.

[45] H. K. Khalil. Nonlinear Systems (3rd Edition). Prentice Hall, 2001.

[46] R. A. DeCarlo, S. H. Zak, and G. P. Matthews. Variable structure control of nonlinear

multivariable systems: a tutorial. Proceedings of the IEEE, 76:212–232, 1988.

[47] Yanfei Liu and Kevin M Passino. Stable social foraging swarms in a noisy environment.

Automatic Control, IEEE Transactions on, 49(1):30–44, 2004.

[48] Reza Olfati-Saber and Richard M Murray. Consensus problems in networks of agents with

switching topology and time-delays. Automatic Control, IEEE Transactions on, 49(9):

1520–1533, 2004.

[49] Rodolphe Sepulchre, Derek A Paley, and Naomi Ehrich Leonard. Stabilization of planar

collective motion with limited communication. Automatic Control, IEEE Transactions on,

53(3):706–719, 2008.



Bibliography 64

[50] Yoonsoo Kim and Mehran Mesbahi. On maximizing the second smallest eigenvalue of a

state-dependent graph laplacian. Automatic Control, IEEE Transactions on, 51(1):116–

120, 2006.

[51] Nair Maria Maia De Abreu. Old and new results on algebraic connectivity of graphs. Linear

algebra and its applications, 423(1):53–73, 2007.

[52] Guixian Tian, Tingzhu Huang, and Shuyu Cui. Bounds on the algebraic connectivity of

graphs. Advances in Mathematics, 41(2), 2012.

[53] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23:

298–305, 1973.

[54] Asctec onboard computer. http://wiki.asctec.de/display/AR/Onboard+Computer, .

Accessed: 03/27/2017.

[55] Communicating with the Low Level Processor. http://wiki.asctec.de/display/AR/

Communicating+with+the+Low+Level+Processor, . Accessed: 03/27/2017.

[56] Optitrack Flex 13 technical details. http://optitrack.com/products/flex-13/specs.

html, . Accessed: 03/27/2017.

[57] Transform world-space coordinates to local rigid body co-

ordinates. http://help.naturalpoint.com/kb/articles/

transform-world-space-coordinates-to-local-rigid-body-coordinates, . Ac-

cessed: 03/27/2017.

http://wiki.asctec.de/display/AR/Onboard+Computer
http://wiki.asctec.de/display/AR/Communicating+with+the+Low+Level+Processor
http://wiki.asctec.de/display/AR/Communicating+with+the+Low+Level+Processor
http://optitrack.com/products/flex-13/specs.html
http://optitrack.com/products/flex-13/specs.html
http://help.naturalpoint.com/kb/articles/transform-world-space-coordinates-to-local-rigid-body-coordinates
http://help.naturalpoint.com/kb/articles/transform-world-space-coordinates-to-local-rigid-body-coordinates

	COORDINATION OF LEADER-FOLLOWER MULTI-AGENT SYSTEM WITH TIME-VARYING OBJECTIVE FUNCTION
	Recommended Citation

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Preliminaries
	1.3 Organization

	2 Coordinated control under complete communication graph
	2.1 Introduction
	2.2 Artificial potential functions for adjustable autonomy levels
	2.3 Aggregation with single-integrator dynamics
	2.4 Robust aggregation with general dynamics
	2.5 Simulation
	2.5.1 Single-integrator (SI) dynamics
	2.5.2 Double-integrator (DI) dynamics
	2.5.3 Double-integrator dynamics with model uncertainty

	2.6 Conclusions

	3 Coordinated control under balanced communication graph
	3.1 Introduction
	3.2 Stability analysis under balanced, time-varying coupling weights
	3.2.1 Framework description
	3.2.2 Motion of the swarm centroid
	3.2.3 Leader-centroid distance
	3.2.4 Ultimate swarm size

	3.3 Applications in swarm coordination
	3.3.1 Switching swarm topology
	3.3.2 Limiting distance between agents

	3.4 Simulation
	3.4.1 Swarm size adjustment
	3.4.2 Ultimate swarm size with time-varying weights
	3.4.3 Collision avoidance

	3.5 Conclusions

	4 Experiments
	4.1 Introduction
	4.2 Experimental setup
	4.2.1 Quadcopter
	4.2.2 Motion tracking camera system

	4.3 Controller design
	4.4 Experimental results
	4.4.1 Position stabilization in ground plane
	4.4.2 Position stabilization in fixed altitude
	4.4.3 Waypoint navigation


	5 Conclusion and future work
	Bibliography

