SYNTHESIS OF POLYCYCLIC AROMATIC HYDROCARBONS: STUDIES OF ARYNE CYCLOADDITION, ACID-CATALYZED REARRANGEMENT, AND COUPLING PATHWAYS

Caitlin Hoffman
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation
https://scholars.unh.edu/thesis/1095

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
SYNTHESIS OF POLYCYCLIC AROMATIC HYDROCARBONS: STUDIES OF ARYNE CYCLOADDITION, ACID-CATALYZED REARRANGEMENT, AND COUPLING PATHWAYS

Abstract
Various synthetic routes towards polycyclic aromatic hydrocarbons dibenzo[g,p]chrysene (DBC), chrysene, zethrene, and their derivatives were studied. All of these compounds are not readily available and the literature lacks facile, efficient, and scalable syntheses. Microwave flash pyrolysis (MFP) was used for the synthesis of benzyne and phenanthryne, both of which have the ability to undergo a Diels-Alder reaction at the bay region of polycyclic aromatic hydrocarbons. Phthalic anhydride was used as a benzyne precursor and 9,10-dicarboxyphenanthrene anhydride as a phenanthryne precursor. DBC was observed after the MFP of biphenyl and 9,10-dicarboxyphenanthrene anhydride, signifying phenanthryne generation. Fluoride-induced elimination and Grignard pathways were also explored for phenanthryne formation, but no indication of phenanthryne was seen. DBC was efficiently prepared via a synthetic sequence that is the functional equivalent of the Stone-Wales rearrangement. This sequence is referred to as the pinacol-pinacolone Stone-Wales sequence, which provides DBC in high yield under mild reaction conditions. This is one of the most efficient and scalable syntheses of DBC with all of the steps providing high yields in short reaction times. Calculations for the rearrangement steps using density functional theory (DFT) further support the conclusion of a very efficient synthetic pathway. The same conditions were not successful for the synthesis of chrysene, however treatment of 1-indanopinacol with polyphosphoric acid (PPA) did provide chrysene, suggesting an alternative mechanism from the pinacol-pinacolone Stone-Wales route. For the synthesis of zethrene, the pinacol-pinacolone Stone-Wales sequence was applied to 1-acenaphthenopinacol, but like 1-indanopinacol, no pinacolone structure was observed. Treatment of 1-acenaphthenopinacol with PPA in a microwave reactor generated a small amount of zethrene. This suggests that the reaction between aromatic pinacols and PPA is an alternative and simple route towards polycyclic aromatic hydrocarbons. Other pathways for zethrene synthesis were also studied. Although further work needs to be completed to optimize the syntheses of chrysene and zethrene, these reactions show promise as mild, simple pathways towards these compounds.

Keywords
Chemistry
SYNTHESIS OF POLYCYCLIC AROMATIC HYDROCARBONS: STUDIES OF ARYNE CYCLOADDITION, ACID-CATALYZED REARRANGEMENT, AND COUPLING PATHWAYS

BY

CAITLIN L. HOFFMAN

B.S., University of New Hampshire, 2012

THESIS

Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry

December 2016
This thesis has been examined and approved in partial fulfillment of the requirements for the degree of a Master of Science in Chemistry by:

Thesis Director, Richard P. Johnson, Professor of Chemistry

Glen P. Miller, Professor of Chemistry

Sterling A. Tomellini, Professor of Chemistry

On December 12, 2016

Original approval signatures are on file with the University of New Hampshire Graduate School.
DEDICATION

To my parents,

who have supported me from start to finish.
ACKNOWLEDGEMENTS

I would like to thank my advisor, Richard Johnson, for his support during my graduate career. I was surprised everyday by the immense amount of chemical knowledge he has, and I’m grateful to say that I’m taking some of it with me. I would also like to thank my committee members for their guidance.

Cindi and Peg, thank you for all your help with everything. I don’t think any of us would make it through without everything you both do. I also want to thank Pat, for all her help with instrumentation and for just being a great person to talk to.

To past and present Johnson group members, thank you for your support, all of your suggestions, and all of the epic lab jam sessions.

A massive thank you goes to my family. My parents, Steve and Sue, have been my biggest support system through all of the highs, lows, and everything in-between. I could not have done this without them. My sisters, Danielle and Emily, and Dan supported me throughout this process as well and helped me keep my sanity. Thank you all so much for always telling me I can do this, even when I thought I couldn’t.

Another thank you goes to the National Science Foundation for funding, which made this research possible.
TABLE OF CONTENTS

DEDICATION ... iii

ACKNOWLEDGEMENTS .. iv

LIST OF SCHEMES ... ix

LIST OF FIGURES .. xii

ABSTRACT ... xiii

General Introduction ... 1

Dibenzo[g,p]chrysene: A History Lesson ... 2
 Background .. 2
 Route Towards Dibenzochrysenes: Origin of The Research ... 3

Chapter I. Cycloaddition Chemistry: Synthetic Routes Using Aryne Precursors 6
 Introduction ... 6
 Aryne Synthesis via Pyrolysis ... 6
 Fluoride Induced Elimination Pathway Towards Aryne Synthesis ... 8
 Aryne Formation Using Dihaloarenes .. 10
 Research Objective ... 12

Results and Discussion ... 12
 Aryne Generation Using Microwave Flash Pyrolysis (MFP) ... 12
 9-(Dibromomethylidene)fluorene: A Potential Phenanthryne Precursor 16

Conclusions ... 21

Chapter II. Pinacol-Pinacolone Stone-Wales Sequence .. 23
Chromatography ... 50
Instrumentation ... 50
Detailed Experimental Section .. 50
Chapter I ... 50
 General Procedure for MFP ... 50
 Microwave Flash Pyrolysis of Perylene (13) and Phthalic Anhydride (14) 51
 Microwave Flash Pyrolysis of Phenanthrene (12) and Phthalic Anhydride (14) 51
 Microwave Flash Pyrolysis of Phenanthrene (12) and Maleic Anhydride (49) 51
 Photochemical Reaction of Diphenylmaleic Anhydride (50).^42 51
 Microwave Flash Pyrolysis of Biphenyl (47) and 9,10-Dicarboxyphenanthrene Anhydride (10). ... 52
 Microwave Flash Pyrolysis of Dibenzo[g,p]chrysene (1) and 9,10-Dicarboxyphenanthrene Anhydride (10). .. 52
 Dibromoolefination of 9-Fluorenone (2) ... 52
 Silylation of 9-(Dibromomethylidene)fluorene (55). ... 53
 Fluoride-Induced Elimination for Phenanthryne Formation 53
 Grignard Reaction of 9-(Dibromomethylidene)fluorene 54
Chapter II ... 54
 Synthesis of 9,9'-Bifluorenyl-9,9'-diol (68) ... 54
 Pinacol Rearrangement to Form Spiro[9H-fluorene-9,9'(10'H)-phenanthren]-10'-one (3) .. 54
 Synthesis of Spiro[9H-fluorene-9,9'(10'H)-phenanthren]-10'-ol (72) 55
 Synthesis of Dibenzochrysene (1) ... 55
Pinacol Coupling of 1-Indanone (73) ... 55
Reaction of 1-Indanopinacol (74) in PPA ... 56
Reaction of 9,9’-Bifluorenyl-9,9’-diol (68) in PPA ... 56
Chapter III .. 57
Synthesis of Acenaphthenopinacol (98) ... 57
Reaction of Acenaphthenopinacol (98) in PPA ... 57
Friedel-Crafts Acylation of Naphthalene ... 58
List of References ... 59
Appendices .. 69
Appendix A: Spectra .. 69
LIST OF SCHEMES

Scheme 1. Clar’s synthesis of 1. 2
Scheme 2. Thermal Stone-Wales rearrangement of 4. 3
Scheme 3. Proposed radical pathway towards 1. 3
Scheme 4. Synthesis of helically twisted 7. 4
Scheme 5. (a) Generation of phenanthryne via VLPP. (b) FVP of phthalic anhydride and perylene. ... 7
Scheme 6. Synthesis of trypticene via MFP. 7
Scheme 7. Benzyne formation and reaction with 20. 8
Scheme 8. Synthesis of 24 and 25 via fluoride-induced elimination. 9
Scheme 9. Cyclotrimerization of arynes. 10
Scheme 10. Benzyne reaction with 34 and 36. 11
Scheme 11. Synthesis of a pentacene precursor via benzyne generation. 11
Scheme 12. Tetraethynaphthalene synthesis using nickel-catalyzed cycloaddition chemistry. 12
Scheme 13. MFP of 14. .. 13
Scheme 14. MFP of 13 with 14. 13
Scheme 15. MFP of 12 with 14. 14
Scheme 16. MFP of 12 with 49. 14
Scheme 17. Photochemical cyclization of 50. 15
Scheme 18. MFP of 10 in the presence of 47. 15
Scheme 19. MFP of 1 and 10. 16
Scheme 20. Dibromoolefination of 9-fluorenone (2). 18
Scheme 21. Silylation of 55. 18
Scheme 22. Fluoride-induced elimination of 56 and 57 mixture. 19
Scheme 23. Grignard reaction of 55. ... 20
Scheme 24. Synthesis of cumulene 60. .. 21
Scheme 25. General pinacol coupling mechanism .. 23
Scheme 26. Pinacol-pinacolone rearrangement ... 24
Scheme 27. Cationic Stone-Wales rearrangement of 4. 12 26
Scheme 28. Cationic oxidative cyclization of 65. 12 27
Scheme 29. Wagner-Meerwein rearrangement of a fluorenyl alcohol (66). 106 ... 28
Scheme 30. Pinacol coupling of 2 ... 28
Scheme 31. Wagner-Meerwein rearrangement of 68 ... 28
Scheme 32. Synthesis of dibromo-substituted DBC. 102 29
Scheme 33. Pinacol-pinacolone Stone-Wales route towards 1. 30
Scheme 34. Synthesis of 1-indanopinacol (74). ... 30
Scheme 35. Synthesis of chrysene from pinacol 74. 103 31
Scheme 36. Rearrangement of 74 using PPA ... 31
Scheme 37. PPA reaction with 68. ... 32
Scheme 38. Comparison of Stone-Wales and pinacol-piacolone Stone-Wales sequence 33
Scheme 39. Synthesis of zethrene derivative 85. 111 35
Scheme 40. Metal-catalyzed annulation to afford zethrene derivatives. 115 35
Scheme 41. Stille cross-coupling route for zethrene synthesis. 116 36
Scheme 42. Synthesis of 79 via a Wittig-Heck approach. 117 37
Scheme 43. Synthesis of dibenzozethrene derivatives. 121 38
Scheme 44. Proposed synthetic pathway towards 79. 40
Scheme 45. Pinacol coupling of 97. ... 41
Scheme 46. Pinacol rearrangement of 98. .. 43
Scheme 47. Microwave PPA reaction with 98. .. 44
Scheme 48. Sodium sulfinate mediated route towards 104. 128 45
Scheme 49. Friedel-Crafts acylation of 46...46
Scheme 50. Attempted bromination routes of 109...47
LIST OF FIGURES

Figure 1. Twisted conformations of π-extended dibenzo[g,p]chrysene.. 5
Figure 2. Phenanthryne precursors. .. 16
Figure 3. Interconversion of 53 to benzyne. .. 17
Figure 4. Free-energies of carbene rearrangement (B3LYP/6-31+G(d,p)). ... 17
Figure 5. Stone-Wales rearrangement of pyracyclene (61). ... 24
Figure 6. (A) Concerted and (B) stepwise Stone-Wales rearrangement pathways. 25
Figure 7. Cationic Stone-Wales rearrangement towards DBC.12 ... 26
Figure 8. Free –energies of the cationic rearrangement towards DBC (B3LYP/6-31+G(d,p))... 29
Figure 9. Extension of 79. .. 34
Figure 10. Open- versus closed-shell zethrenes. ... 38
Figure 11. Free-energies of the cationic rearrangement of 98. ... 42
Figure 12. General proposed route towards 79. ... 44
ABSTRACT

SYNTHESIS OF POLYCYCLIC AROMATIC HYDROCARBONS: STUDIES OF ARYNE CYCLOADDITION, ACID-CATALYZED REARRANGEMENT, AND COUPLING PATHWAYS

by

Caitlin L. Hoffman

University of New Hampshire, December 2016

Various synthetic routes towards polycyclic aromatic hydrocarbons dibenzo[g,p]chrysene (DBC), chrysene, zethrene, and their derivatives were studied. All of these compounds are not readily available and the literature lacks facile, efficient, and scalable syntheses. Microwave flash pyrolysis (MFP) was used for the synthesis of benzyne and phenanthryne, both of which have the ability to undergo a Diels-Alder reaction at the bay region of polycyclic aromatic hydrocarbons. Phthalic anhydride was used as a benzyne precursor and 9,10-dicarboxyphenanthrene anhydride as a phenanthryne precursor. DBC was observed after the MFP of biphenyl and 9,10-dicarboxyphenanthrene anhydride, signifying phenanthryne generation. Fluoride-induced elimination and Grignard pathways were also explored for phenanthryne formation, but no indication of phenanthryne was seen. DBC was efficiently prepared via a synthetic sequence that is the functional equivalent of the Stone-Wales rearrangement. This sequence is referred to as the pinacol-pinacolone Stone-Wales sequence, which provides DBC in high yield under mild reaction conditions. This is one of the most efficient and scalable syntheses of DBC with all of the steps providing high yields in short reaction times. Calculations for the rearrangement steps using density functional theory (DFT) further support the conclusion of a very efficient synthetic pathway. The same conditions were not successful for the synthesis of chrysene, however treatment of 1-indanopinacol with
polyphosphoric acid (PPA) did provide chrysene, suggesting an alternative mechanism from the pinacol-pinacolone Stone-Wales route. For the synthesis of zethrene, the pinacol-pinacolone Stone-Wales sequence was applied to 1-acenaphthenopinacol, but like 1-indanopinacol, no pinacolone structure was observed. Treatment of 1-acenaphthenopinacol with PPA in a microwave reactor generated a small amount of zethrene. This suggests that the reaction between aromatic pinacols and PPA is an alternative and simple route towards polycyclic aromatic hydrocarbons. Other pathways for zethrene synthesis were also studied. Although further work needs to be completed to optimize the syntheses of chrysene and zethrene, these reactions show promise as mild, simple pathways towards these compounds.
General Introduction

This thesis consists of three separate chapters: (I) cycloaddition chemistry: synthetic routes using aryne precursors, (II) pinacol-pinacolone Stone-Wales sequence, (III) progress towards zethrene. Each chapter is self-contained with its own introduction, results and discussion, and conclusion.
Dibenzo[g,p]chrysene: A History Lesson

Background

In the field of polycyclic aromatic chemistry, dibenzo[g,p]chrysenes are of interest due to their optical and electronic properties which arise from a nonplanar geometry. Dibenzo[g,p]chrysene (DBC, 1) is one of the smallest nonplanar polycyclic aromatic hydrocarbons (PAHs). Its twisted conformation enhances solubility; this has attracted attention from the field of materials science.1-3

In 1964, Clar4 reported the synthesis of 1, however the yield was only 8.1%, concluding this reaction pathway was not an efficient route (Scheme 1). The reaction involves treatment of 9-fluorenone (2) with a zinc melt to yield the spiroketone (3), which after treatment with a second zinc melt provides 1.

\begin{center}
\includegraphics[width=\textwidth]{Scheme1.png}
\end{center}

\textit{Scheme 1.} Clar’s synthesis of 1.4

In 1975, Alder and Whittaker5 reported the thermal Stone-Wales rearrangement of bifluorenylidene (4) at 400 °C to afford 1 (Scheme 2). This synthetic pathway required high temperature and was conducted only on a small scale.
In more recent years, there have been reports of DBC synthesis by intramolecular oxidative carbon-carbon bond formation,6-8 metal catalysis,9-10 and super acid conditions.11-13 None of these routes are suitable for a large scale, efficient preparation. Previous research in our group has explored a cationic Stone-Wales pathway,12 as well as a radical pathway towards 1.12,14 The proposed radical pathway involves the use of microwave flash pyrolysis (MFP) with fluorene (5), generating 9,9’-bifluorene (6) which, after the loss of two hydrogens, can undergo a rearrangement to afford 1 (Scheme 3). The cationic Stone-Wales route involves the treatment of 4 with trifluoromethanesulfonic acid (TfOH) to give a product mixture containing 1. Although there are many synthetic routes towards 1, the literature lacks a facile, efficient, and scalable route which affords a high yield of this simple structure.

Scheme 2. Thermal Stone-Wales rearrangement of 4.5

Scheme 3. Proposed radical pathway towards 1.14

Route Towards Dibenzochrysenes: Origin of The Research

Exploring alternative pathways towards 1 that require mild reaction conditions, while producing high yields would make 1 more readily available and more affordable. By avoiding syntheses involving expensive reagents, long reaction times, high temperatures, and multiple
steps, more research can be done investigating the applications of 1. A similar synthetic route might then be applied to prepare other larger or more elusive PAHs.

Discovering an efficient pathway towards 1 could lead to the synthesis of an array of dibenzochrysene homologues. Extension along the bay region of 1 creates a \(\pi \)-extended PAH which can adopt a twisted conformation. The synthesis of unsubstituted hexabenzo[a,c,fg,j,l,op]tetracene (7) has been very recently reported by Itami et.al.\(^{15}\) via a palladium catalyzed annulative \(\pi \)-extension reaction from pyrene (8) and dibenzosilole (9) in refluxing 1,2-dichloroethane (DCE) (Scheme 4). Analysis using X-ray crystallography revealed a helically twisted structure.

![Scheme 4. Synthesis of helically twisted 7.\(^{15}\)](image)

Further extension along the bay region should enhance the helical structure. Density functional theory (DFT) calculations done in our group at the M052x/6-31G(d) level of theory reveal that a helical structure is preferred over other nonplanar conformations (Figure 1). The staggered conformation is 2.4 kcal/mol higher in energy than the helical, while the zigzag conformation is 3.2 kcal/mol higher in energy than the helical. Although these energy differences are not very large, they do show preference for the helical structure and this is further supported by the report\(^{15}\) of helically twisted 7. In these helical structures, a full 360° turn is completed every six units.
Major goals of this research were to develop a short, efficient, low cost synthetic route towards 1 and to investigate possible pathways to extend 1 along the bay region to form larger homologues, as shown in Figure 1.
Chapter I. Cycloaddition Chemistry: Synthetic Routes Using Aryne Precursors

Introduction

Aryne Synthesis via Pyrolysis

Aryne chemistry has been widely studied for the use in cycloaddition reactions. Aryne species are highly reactive, so they are not isolable and are typically generated in situ. There are numerous routes for aryne generation;16-17 however, many of them require harsh reaction conditions like extreme temperatures. Some of the most commonly reported pathways for aryne synthesis involve pyrolysis. Pyrolysis reactions typically involve the loss of carbon monoxide and carbon dioxide from anhydride precursors.18

Pyrolysis of anhydrides is one common route to benzyynes. In 1980, Straetmans and Grutzmacher19 reported the very low pressure pyrolysis (VLPP) of 9,10-dicarboxyphenanthrene anhydride (10), which generates phenanthryne (11) in situ as a precursor to phenanthrene (12) (Scheme 5a). In a similar way, Scott and Fort20 report the flash vacuum co-pyrolysis (FVP) of perylene (13) and phthalic anhydride (14), where 14 acts as a benzyne (15) precursor. A Diels-Alder reaction with 13 at the bay region yields aromatic compound 16 (Scheme 5b).
MFP offers another route for aryne generation. Our techniques followed earlier work by Laporterie who developed a method where graphite is used to transmit thermal energy to the compounds in the reaction mixture, without being reactive itself. This application was further reviewed by Besson. Our research group developed an MFP procedure using graphite or carbon nanotubes, which generates 15. One of the examples involves the reaction of anthracene (17) with 14. Benzyne is generated by the loss of carbon monoxide and carbon dioxide from 14, and can undergo a Diels-Alder reaction with 17, to form trypticene (18) (Scheme 6).

Scheme 5. (a) Generation of phenanthryne via VLPP. (b) FVP of phthalic anhydride and perylene.

Scheme 6. Synthesis of trypticene via MFP.
Pyrolysis is a useful pathway towards aryne formation, however it requires harsh reaction conditions. There are many alternative routes which don’t involve extreme temperatures, pressures, or power. Examples include fluoride induced elimination, formation in aprotic media solution, lithium-halogen exchange, and many others.16-17

Fluoride Induced Elimination Pathway Towards Aryne Synthesis

The fluoride-induced elimination of organosilanes to yield cumulenes,24 strained alkenes, and enynes25 has been reported previously. Utilizing these more mild reaction conditions, aryne generation has been reported using this technique. Kobayashi \textit{et. al.}26 reported the formation of 15 via the fluoride-induced desilylation and triflate elimination of o-trimethylsilylphenyl triflate (19) at room temperature using various fluoride sources. Commonly used fluoride sources are tetramethylammonium fluoride (TMAF), potassium fluoride (KF), cesium fluoride (CsF), tetrabutylammonium fluoride (TBAF), and a KF/18-crown-6 combination. Due to the fact 15 is not isolable, its formation was investigated by introducing furan (20) as a trapping agent. This can undergo a Diels-Alder reaction with 15 to form adduct 21 (Scheme 7).

![Scheme 7. Benzyne formation and reaction with 20.26](image)

Shakespeare and Johnson25 reported the fluoride-induced elimination of dienes 22 and 23 for the synthesis of 1,2,3-cyclohexatriene (24) and cyclohexen-3-yne (25), respectively (Scheme 8). Both reactions used CsF as a fluoride source and proceeded at room temperature, using furan derivatives as trapping agents. In the case of 22, the fluoride attacks the silicon and the triflate group leaves, where in the case of 23, a halide is used as the leaving group.
In more recent work, Castedo et al. utilized these fluoride elimination conditions for the synthesis of several arynes. They report that 19 will react with CsF to form 15, which in the presence of a palladium catalyst undergoes cyclotrimerization, forming triphenylene (26). A similar report involves generating 15 in situ which can undergo a co-cyclization in the presence of an alkyne to form phenanthrene and naphthalene derivatives. In 1999, Castedo et al. reported the fluoride-induced elimination of triflates 27 and 28 to generate naphthalyne (29) and 11 respectively, followed by cyclotrimerization to their triphenylene derivatives 30, 31, and 32 (Scheme 9). Given the results of these reactions, it can be said the fluoride-induced elimination pathway is a useful route towards strained and/or reactive intermediates.
Scheme 9. Cyclotrimerization of arynes.29

Aryne Formation Using Dihaloarenes

Dihaloarenes have been reported to act as aryne precursors \textit{via} a reaction with metals. When compared to the fluoride-induced elimination pathway, this route commonly requires higher temperatures. There have been many reports of using metals such as lithium,30-32 magnesium,33-34 nickel,35 along with several others. In an early example, Wittig33 reported using ortho-fluorobromobenzene (33) in the presence of magnesium in tetrahydrofuran (THF) as a benzyne precursor (Scheme 10). The formation of 15 was confirmed because in the presence of bicyclo[2.2.1]heptadiene (34), the cycloaddition product 35 was observed in 15-21\% yield. Wittig applied these conditions to other dienes such as 20 and 17, again observing the Diels-Alder product from 15.36-39 Following this work, Simmons34 used Wittig’s conditions for benzyne formation in the presence of bicyclo[2.2.1]heptene (36) and observed cycloaddition product 37 in 10\% yield (Scheme 10).
Another commonly used approach for metal promoted aryne generation involves treatment of a dibromo-substituted arene with *n*-butyllithium (*n*-BuLi). As one example, Mülle and Herwig\(^{30}\) demonstrated that treatment of 1,2-dibromobenzene (38) with *n*-BuLi generates 15 which can react with tetraene 39, to form pentacene precursor 40 in moderate yield (Scheme 11). These conditions were also applied to form a nonacene precursor in 58% yield.

It has also been reported that nickel is able to generate arynes from *o*-dihaloarenes and catalyze cycloaddition reactions. Cheng and Hsieh\(^{35}\) reported a nickel-catalyzed cycloaddition of 15 with various alkynes and nitriles. The synthesis involves using 1,2-diiodobenzene (41) as the benzyne precursor. Treatment of 41 and diethylacetylene (42) with dibromo[1,2-bis(diphenylphosphino)ethane]nickel(II) (Ni(dppe)Br\(_2\), bis(diphenylphosphino)ethane (dppe), and zinc powder, yields 1,2,3,4-tetraethynaphthalene (43) in high yield (Scheme 12). Synthesis
of many substituted naphthalenes, phenanthridines, and even triphenylenes were reported using this method. These results prove dihaloarenes are useful precursors to aryne generation when treated with a nickel catalyst, providing good to high yields of cycloaddition products. However, even with the report of the reaction conditions being efficient, the aryne precursors are not always readily available.

\[
\begin{align*}
\text{41} & \quad \xrightarrow{\text{Ni(dppe)Br_{2}/dppe/Zn}} \quad \text{42} \\
\text{MeCN, 100 °C} & \quad \text{Et} - \text{Et} \\
\text{15} & \quad \xrightarrow{\text{42}} \quad \text{43}
\end{align*}
\]

Scheme 12. Tetraethylnaphthalene synthesis using nickel-catalyzed cycloaddition chemistry.35

Research Objective

One goal of this project was to explore various reaction conditions, such as microwave flash pyrolysis (MFP), with different aryne precursors to generate PAHs. Using MFP to generate arynes \textit{in situ}, one could potentially produce a wide variety of PAHs in one step with short reaction times. Another goal of this research was to investigate alternative phenanthryne precursors for cycloaddition chemistry. These precursors could be subjected to pyrolysis, fluoride-induced elimination, or metal-catalyzed aryne formation conditions to test their efficiency.

Results and Discussion

Aryne Generation Using Microwave Flash Pyrolysis (MFP)

The technique of MFP for benzyne formation was previously studied in our group.14, 23 The use of 14 as a benzyne precursor is commonly reported in the literature because of its ability to lose CO\textsubscript{2} and CO under pyrolysis conditions.18 Previous work in our group reports MFP of 14 which affords a product mixture of starting material, benzene (44), biphenylene (45),
naphthalene (46), biphenyl (47), and 26, all derived in one or more steps from 15 (Scheme 13). Using MFP conditions, the ability of 15 and 11 to undergo Diels-Alder cycloaddition at the bay region of various PAHs was investigated.

![Scheme 13. MFP of 14.]

Although the addition of 15 to 13 has been previously reported,\(^{20, 40-41}\) the MFP approach offers greater simplicity. Using the MFP conditions developed by our group, 14 and 13 were reacted in a quartz tube at 150 W for 1 minute. Using graphite as a thermal sensitizer, a 2:1 ratio of reactant 13 to the cycloaddition product 16 was observed via \(^1\)H NMR (Scheme 14). The reaction was repeated at 300 W in an attempt to increase the conversion to product. The maximum pressure threshold, or safe point, of the CEM microwave was reached after 30 seconds, so the reaction was automatically shut down. The same 2:1 reactant:product ratio was observed.

![Scheme 14. MFP of 13 with 14.]

This result led us to explore a similar addition to phenanthrene (12). The same conditions were applied to the reaction between 12 and 14 (Scheme 15). It was observed there
was only about a 5% yield of the cycloaddition product 48. The amount of 14 was increased in hopes of forming more desired product; however this did not improve the conversion.

![Scheme 15. MFP of 12 with 14.](image)

This reaction was repeated using maleic anhydride (49) to determine if it could add to the bay region of 12 to afford 8 under MFP conditions; however only approximately 2% conversion to product was observed (Scheme 16). This reaction presumably proceeds by initial cycloaddition of 49 to the bay region of 12.

![Scheme 16. MFP of 12 with 49.](image)

In an attempt to further explore aryne addition to the bay region of PAHs using MFP, alternative aryne precursors were investigated. Anhydride 10 was synthesized as a phenanthryne precursor using a method reported by Fields et al.42 The reaction proceeds through an oxidative photochemical cyclization of diphenylmaleic anhydride (50) in the presence of iodine in acetone (Scheme 17).
Scheme 17. Photochemical cyclization of 50.

With 10 in hand, MFP was used to determine if it had the ability to act as a phenanthryne precursor to add to various PAHs. To explore this possibility, a reaction between 47 and 10 in the MW at 300 W for 1 minute was completed (Scheme 18). Analysis via 1H NMR indicates the product mixture contains mostly 12, starting material 47, and NMR resonances which correspond to 1, in a 5:2:1 ratio respectively. There was also indication of oligomerization in the NMR baseline.

Scheme 18. MFP of 10 in the presence of 47.

To determine whether MFP could be used to synthesize larger PAHs via aryne addition to the bay region, a reaction between commercially available 1 and 10 was completed (Scheme 19). In this reaction, mostly 1 and 12 were observed, but a small amount of cycloaddition product 7 was detected. Analysis by 1H NMR shows a 20:1.5:1 ratio of 1 to 12 to 7. This indicates the generation of 11 and suggests that after optimization, these reaction conditions could serve as a route to 7.
Scheme 19. MFP of 1 and 10.

9-(Dibromomethylidene)fluorene: A Potential Phenanthryne Precursor

Phenanthryne precursors have received little attention. Some previously reported compounds which act as phenanthryne precursors are 10-trimethylsilylphenanthryl 9-trifluoromethanesulfonate (28),28 10,19 triazole 51,43 and 9-bromophenanthrene (52)44-46 (Figure 2). All of these precursors have the basic skeleton of 11 which can be formed by elimination of leaving groups.

![Figure 2. Phenanthryne precursors.](image)

An alternative way to form an aryne is through rearrangement of a carbene. Thermal interconversion of vinylidene 53 and 15 is well known (Figure 3).47 With this in mind, it was predicted that a fluorene derivative could potentially rearrange to generate 11.
The rearrangement of carbene 54 was studied computationally in Gaussian 0948 with DFT at the B3LYP/6-31+G(d,p) level of theory (Figure 4). The calculations for the free-energies of the carbene rearrangement show a transition state barrier of 10.9 kcal/mol. Due to the fact this barrier is not very high, a facile rearrangement of 54 might provide an efficient route to 11.

9-(Dibromomethylidene)fluorene (55) was synthesized using dibromoolefination conditions to act as a potential phenanthryne precursor. The reaction involves the treatment of 9-fluorenone (2) with carbon tetrabromide (CBr\textsubscript{4}) and triphenylphosphine (PPh\textsubscript{3}) in DCM (Scheme 20).49 This compound can act as a precursor to carbene 54, which can theoretically rearrange to 11. There was also the question of whether 55 itself could act as phenanthryne precursor, or if it would require a transformation into one of the more common silyl-substituted precursors.
Scheme 20. Dibromoolefination of 9-fluorenone (2).

The first route to generating 11 involved treatment of 55 with n-BuLi in the presence of trimethylsilyl chloride (TMSCl) to afford 56, which has not been previously reported (Scheme 21). It was identified via 1H NMR through correlation with predicted chemical shifts calculated in Spartan 08. The replacement of a bromine with a TMS group provides a substituent that can easily undergo nucleophilic attack by a fluoride. Isolation of pure 56 proved difficult because separation of the crude product mixture containing 56 by column chromatography was challenging. Analysis of column fractions via 1H NMR indicated the presence of 56, but also resonances which correspond to the reported NMR51 of the monobromo-compound 57 in a 1.5:1 ratio, respectively. In attempt to get a better yield, the equivalents of n-BuLi were increased and various temperatures were used, however only mixtures of 56 and 57 were obtained.

Scheme 21. Silylation of 55.

The crude reaction mixture of 56 and 57 was utilized to determine if a fluoride-induced elimination pathway could lead to 11. Although 56 was not pure, the goal was to investigate if any conversion to 11 occurred to react with a trapping agent. Fluoride sources tested were CsF, TBAF, and KF with 18-crown-6. In these experiments, KF provided the most promising results. The crude mixture was heated in THF in the presence of KF and 18-crown-6, with 17
as a trapping agent (Scheme 22). Analysis via 1H NMR displayed 56, 57, 17, and very minor peaks within the baseline which correspond to the predicted resonances calculated using DFT at B3LYP/6-31G* level for the desired product 58. The yield was too low to deem this reaction efficient in phenanthryne generation. Variations of temperature, concentration, time, and order of addition were explored, but no major improvements were observed. Further purification of 56 could lead to enhanced reactivity, however with the results obtained, the fluoride-induced elimination of crude 56 is not a promising route for phenanthryne generation.

Scheme 22. Fluoride-induced elimination of 56 and 57 mixture.

Direct use of 55 as a phenanthryne precursor was investigated. Previous reports of using magnesium in the presence of dihaloarenes to generate arynes have been efficient, so similar conditions were applied to 55. This Grignard type reaction could produce a carbenoid which could rearrange to 11. A stirring suspension of magnesium in refluxing THF was treated with 55. After 90 minutes, workup afforded a bright red solid which was highly insoluble (Scheme 23). The proposed structure of the product was biphenylene derivative 59 due to its intense color, insolubility, mass spectrometry (MS) results, and calculated 1H NMR spectrum obtained from DFT using B3LYP/6-31G(d). Attempts at obtaining a 13C NMR were unsuccessful due to the compound’s low solubility.
Tetrabenzo[biphenylene (59) has been reported to be unstable,\(^{43}\) so to prove this was the compound isolated, further analysis was done. The \(^1\)H NMR chemical shifts corresponded to the calculated spectrum, along with the MS value of 352.1 m/z. A UV/vis analysis displayed a spectrum which did not match the predicted maximum absorbance values of 335 m and 419 m, but instead showed them as more red shifted. This discredited the proposed structure, therefore other possibilities were explored. The red substance was identified as cumulene 60 which has been described previously.\(^{24, 52}\) This compound has the same mass value and a similar \(^1\)H NMR splitting pattern to 59. The previously reported \(^1\)H NMR of 60 is an exact match to the isolated product, and it is described as a red, very insoluble solid.\(^{24, 52}\) With these results, it can be concluded the Grignard route for phenanthryne formation is not efficient due to rapid dimerization of the carbenoid intermediate (Scheme 24).
Microwave flash pyrolysis provides a general route for aryne generation. The Diels-Alder reaction between arynes and the bay region of various PAHs can be applied to the synthesis of larger PAH derivatives. Phthalic anhydride (14) was utilized as a benzyne precursor, while the anhydride 10 was utilized as a phenanthryne precursor. MFP reactions of biphenyl (47) and dibenzo[g,p]chrysene (1) with 9,10-dicarboxyphenanthrene anhydride (10) displayed compounds 1 and 7, respectively. This signifies MFP conditions are useful for aryne generation. Further optimization of these reactions could lead to higher conversion to Diels-Alder products, serving as a useful route to polycyclic aromatics. In search of a precursor which generates phenanthryne under more mild conditions, the attempted synthesis of 56 was done, which has the potential to be used in fluoride-induced elimination, however the reaction requires further optimization and purification. An alternative precursor for fluoride-induced elimination could be explored if the bromine of 56 was replaced with a triflate. TMS/triflate substituted

Conclusions

Microwave flash pyrolysis provides a general route for aryne generation. The Diels-Alder reaction between arynes and the bay region of various PAHs can be applied to the synthesis of larger PAH derivatives. Phthalic anhydride (14) was utilized as a benzyne precursor, while the anhydride 10 was utilized as a phenanthryne precursor. MFP reactions of biphenyl (47) and dibenzo[g,p]chrysene (1) with 9,10-dicarboxyphenanthrene anhydride (10) displayed compounds 1 and 7, respectively. This signifies MFP conditions are useful for aryne generation. Further optimization of these reactions could lead to higher conversion to Diels-Alder products, serving as a useful route to polycyclic aromatics. In search of a precursor which generates phenanthryne under more mild conditions, the attempted synthesis of 56 was done, which has the potential to be used in fluoride-induced elimination, however the reaction requires further optimization and purification. An alternative precursor for fluoride-induced elimination could be explored if the bromine of 56 was replaced with a triflate. TMS/triflate substituted
arenes have proven to be efficient in aryne generation. It was discovered that under Grignard conditions, 55 does not generate phenanthryne, but instead the carbenoid dimerizes to form a cumulene (60). Alternative phenanthryne precursors might be investigated.
Chapter II. Pinacol-Pinacolone Stone-Wales Sequence

Introduction

Pinacol Coupling and Pinacol Rearrangement

Pinacol coupling has been widely studied by researchers since 1859 when Fittig described the coupling of acetone using sodium.\(^{53-54}\) The reaction involves forming a carbon-carbon bond between carbonyl compounds to generate 1,2-diols. The commonly accepted mechanism proceeds through radical-radical coupling (Scheme 25). The efficiency of the coupling depends on reaction conditions, such as what type of metal is used, temperature, time, and concentration. Commonly used metals are zinc,\(^{55-58}\) aluminum,\(^{59-60}\) and magnesium\(^{61-63}\) due to their low cost and efficiency. Other metals like titanium are highly efficient, but expensive and potentially lead to olefination.\(^{64-66}\) Pinacol coupling via photochemistry is also well known.\(^{67-68}\) Certain pinacol coupling methods require anhydrous and inert reaction conditions because reagents needed are moisture and air sensitive. Recently, a focus has been placed on improving the pinacol reaction by utilizing low cost metals, as well as aqueous media which has economical and environmental advantages.\(^{61, 69-71}\) These 1,2-diols are useful precursors in a variety of other reactions involving ring expansions and rearrangements.

\[
\begin{align*}
\text{O} & \quad \text{Zn} \\
\text{Zn} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{H}_2\text{O}/\text{HCl} & \quad \text{OH} \quad \text{OH}
\end{align*}
\]

\textit{Scheme 25.} General pinacol coupling mechanism.

Using a classic carbocation rearrangement approach, pinacolone synthesis is achieved by the acid-catalyzed loss of water and a 1,2-shift within a pinacol (Scheme 26). Pinacolone formation can be catalyzed using acids such as H\(_2\)SO\(_4\),\(^{72-75}\) AcOH,\(^{76-77}\) p-TsOH,\(^{76, 78}\) and there have also been reports of using solid state chemistry in the presence of a Lewis acid like...
AlCl₃. The rearrangement is of interest in cyclic systems because instead of an alkyl group migration, the carbon of the ring migrates, leading to a ring expanded product. This is useful for the synthesis of compounds such as spiroketones.

![Scheme 2. Pinacol-pinacolone rearrangement.](image)

Stone-Wales Rearrangement of Polycyclic Aromatic Hydrocarbons

Alder and Whittaker reported the thermal rearrangement of 4 to 1 (Scheme 2) via a radical pathway in 1975. In 1986, Stone and Wales proposed the isomerization of fullerene molecules via a similar 1,2-carbon rotation of 90°. This is an uncommon thermal rearrangement which transposes a two carbon fragment. The best studied example studied in the literature is the rearrangement of pyracyclene (61) (Figure 5).

![Figure 5. Stone-Wales rearrangement of pyracyclene (61).](image)

The Stone-Wales rearrangement has been used to hypothetically describe fullerene synthesis, isomerization, as well as possible graphene precursor formation. The exact mechanism of this reaction is still under scrutiny, however several different pathways have been proposed. Stone and Wales suggested the concerted reaction would involve a 4 electron process to reach the transition state, which is a forbidden transformation according to orbital symmetry (Figure 6a). Scuseria *et. al.* described a stepwise carbene, or sp³, mechanism, but calculations concluded the energy barriers were similar to the concerted pathway (Figure 6b). More recently, Karney *et.al.* reported a computational study that
suggests compounds that do not contain a pyracyclene moiety are more likely to follow the carbene mechanism, while those which do contain a pyracyclene moiety follow a stepwise mechanism by means of a cyclobutyl intermediate. Although the computational results displayed lower energy barriers than what was previously reported, they are still high. In search of lower energy barrier pathways, investigators have discovered this rearrangement can occur under radical-catalyzed99-101 and cationic conditions.5,12

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{(A) Concerted and (B) stepwise Stone-Wales rearrangement pathways.}
\end{figure}

Previous work by Cahill12 supported a cationic pathway for the Stone-Wales rearrangement of 4 to 1. This was first investigated with DFT using the B3LYP/6-31+G(d,p) level of theory (Figure 7). It was found that the highest transition state barrier was 24.2 kcal/mol above the initial cation 62, which is much lower than the 43.8 kcal/mol barrier for the radical-catalyzed pathway calculated by Alder and Harvey for the same transformation.100 This indicates the cationic pathway is plausible.
When 4 was treated with TfOH in DCE and heated in the microwave, Cahill reported a 30% yield of 1 (Scheme 27). This proves the cationic Stone-Wales rearrangement is feasible, however it is not an efficient route towards 1.

Scheme 27. Cationic Stone-Wales rearrangement of 4.12

Research Objective

While the pinacol-pinacolone reaction and the Stone-Wales rearrangement have been widely studied, utilizing the three reactions together as a stepwise approach to polycyclic aromatic hydrocarbons has only been explored a few times.102-103 One goal of this research was
to utilize acid-catalyzed rearrangements under mild conditions to efficiently synthesize 1. It was observed that the pinacol-pinacolone Stone-Wales (PPSW) sequence was a scalable and efficient route towards 1. This synthetic route could then be applied to synthesize other PAHs from aromatic ketones.

Results and Discussion

Synthesis of Dibenzo[g,p]chrysene

Synthesis of 1 from 4 was previously studied in our group by Cahill12 using a cationic pathway under superacid conditions.104 The cationic oxidative cyclization of tetraphenylethylene (65) to 1 was also studied. Using 3 equivalents of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 1.3 M TfOH in room temperature DCE for 4 hours, conversion to 1 was observed in a 58% yield (Scheme 28). Although this reaction reported a higher yield than the cationic Stone-Wales route, the yield could still be improved, as well as exploring a more scalable synthetic route.

\begin{center}
\textbf{Scheme 28.} Cationic oxidative cyclization of 65.12
\end{center}

In search of a more efficient acid-catalyzed route towards 1, it has been reported that 9-fluorenyl alcohols can rearrange to PAHs under acidic conditions. Brown and Bluestein have reported the rearrangement of 9-fluorenylmethanol to 12 in high yield using Wagner-Meerwein rearrangement conditions.105 Yang \textit{et. al.} expanded this reaction to include benzofluorene methanols which rearrange to phenanthrene derivatives using phosphorus pentoxide (P\textsubscript{2}O\textsubscript{5}) in xylene (Scheme 29).106
We explored the synthesis of 1 starting from a pinacol precursor. Homocoupling of 2 using zinc powder and zinc chloride (ZnCl$_2$) led to the formation of 9, 9'-bifluorenyl-9, 9'-dih (68) (Scheme 30).

Reaction of 68 with P$_2$O$_5$ led to a mixture of products (Scheme 31). Dehydration and pinacol rearrangement were observed. This mixture also included the expected ketone from pinacol rearrangement, along with small amounts of 1.

Sōda et. al. reported the synthesis of a DBC derivative from the pinacolone after reduction to the spirofused alcohol, followed by rearrangement (Scheme 32). Using this
technique, the pinacolone 3 could be isolated to explore if rearrangement to the parent DBC would occur.

![Scheme 32. Synthesis of dibromo-substituted DBC.](image)

Free-energy calculations of this rearrangement pathway were investigated with DFT at B3LYP/6-31+G(d,p) level of theory. As shown in Figure 8, the barrier for the transition state is 7.9 kcal/mol, indicating a facile rearrangement.

![Figure 8. Free-energies of the cationic rearrangement towards DBC (B3LYP/6-31+G(d,p)).](image)

This combined approach yielded an efficient and scalable route to 1 as shown in Scheme 33. All of the synthetic steps give high yields, do not require harsh reaction conditions,
and can be scaled up, making this the most efficient pathway to 1, with an overall yield of 64%.

In the largest scale reaction to date, 4 g of pinacol 68 yielded 2 g of DBC (1).

![Scheme 33. Pinacol-pinacolone Stone-Wales route towards 1.](image)

Progress Towards Polycyclic Aromatic Hydrocarbons via PPSW Pathway

With these results in hand, the next question was whether the same pinacol-pinacolone Stone-Wales sequence would yield other polycyclic aromatics. Following the same approach, these conditions were applied to 1-indanone (73). The pinacol was not successfully isolated using the conditions for the coupling of 2, so another variation of the pinacol reaction was used.\(^6\) In the presence of aluminum powder, potassium hydroxide (KOH), and methanol (MeOH), 1-indanopinacol (74) was isolated in a 72% yield (Scheme 34).

![Scheme 34. Synthesis of 1-indanopinacol (74).](image)

Ourisson et al.\(^{103}\) previously studied the rearrangement of 74 via treatment with m-cresol and 2,4-dinitrosulfonic acid (2,4-DNSA) to yield pinacolone 75 (Scheme 35). It should be noted that these are quite unusual reaction conditions. The pinacolone 75 was reduced and the spirofused alcohol 76 was treated with acid at reflux to afford tetrahydrochrysene (77). Dehydrogenation with selenium yields chrysene (78).
Attempts to synthesize 75 using acetic acid (AcOH) and sulfuric acid (H₂SO₄) were not successful. Cyclization of aromatic alcohols using polyphosphoric acid (PPA) has been studied in our group. Using this approach, 74 was added to PPA and placed in a CEM microwave (MW) at 100 °C for 5 minutes. After a work up and characterization via ¹H NMR, both 75 and chrysene (78) were observed. With these results, the next step was to determine if the reaction could be completed on a larger scale without the MW and to provide a higher conversion to 78. As shown in Scheme 36, 74 can rearrange to 78 in about a 10% yield. An oxidation with DDQ is needed because after purification of the reaction, the column fraction containing 78 also contains the tetra- and dihydro-derivatives. The yield of 78 could be improved by transforming 75 to 78 using the PPSW conditions.

To further explore if these conditions could be applied to other pinacol cyclizations, the reaction was also completed with 68 (Scheme 37). Similar results were observed, where 3 and
1 were isolated in a 2:1 ratio respectively. Although this is an interesting result and is another way to synthesize 1, the pinacol-pinacolone Stone-Wales sequence is a more efficient route for this pinacol.

![Scheme 37. PPA reaction with 68.](image)

Scheme 38 summarizes the strategy that developed in this work. The Stone-Wales rearrangement can be thermal, or hydrogen radical catalyzed, as shown by Alder5, or cationic, as shown by Cahill.12 A synthetically efficient, but more complex route starts with a pinacol and proceeds by two consecutive aryl group migrations to cationic centers. This sequence can be accomplished in one step (Scheme 37), but affords low yields. A stepwise pathway (Scheme 33) is longer, but higher yields are obtained. This provides a scalable and efficient synthesis of 1. We have shown that a similar route yields chrysene (78) beginning from 1-indanone (73).
Conclusions

The acid-catalyzed rearrangement of pinacols can be used as a facile and efficient route to synthesize certain PAHs which typically are expensive or difficult to isolate. In particular, the pinacol-pinacolone Stone-Wales sequence can be applied to synthesize 1 in high yield without harsh reaction conditions. Another pathway involves the rearrangement of pinacols using PPA, which can generate their pinacolone, as well as an aromatic hydrocarbon derivative, as seen with chrysene (78). These reaction conditions are still under investigation to optimize the yield. Alternatively, the pinacolone could be easily separated, submitted to the conditions in the last two steps of the PPSW sequence, and produce the PAH. Applying these pathways to various aromatic ketones is under investigation to generate a variety of PAHs.

Scheme 38. Comparison of Stone-Wales and pinacol-pinacolone Stone-Wales sequence.
Chapter III. Progress Towards Zethrene

Introduction

Synthesis of Zethrene and Zethrene Derivatives

Zethrene (79) is a PAH which gets its name from the fact its structure appears as a z-shape. Zethrenes are of interest due to their potential diradical character and for applications in non-linear optics, organic semiconductors, and near-infrared dyes.109-111 The center rings lack aromaticity, with fixed double bonds as in 79. The diradical character (79a) suggests applications in organic electronics; however this substance is reported to be oxygen sensitive. Expanding along the m- or n-axis of 79 generates larger homologues such as heptazethrene (80) and 1,2:9,10-dibenzooctazethrene (81), which are also of interest (Figure 9).

![Diagram of Zethrene and Derivatives](image)

Figure 9. Extension of 79.

Zethrene was first synthesized by Clar in 1955.112 More convenient cross-coupling routes were reported by Ipaktschi et al.113 in 1968 and again by Sondheimer and Mitchell114 in 1970 while both were attempting to synthesize tetradehydrodinaphtho[10]annulene (82). Annulene 82 is not stable and it undergoes transannular cyclization to 79 after hydrogen abstraction by an intermediate diradical. In 2009, coupling of 1,8-diodonaphthalene (83) and
1,8-bis(trimethylsilylethynyl)naphthalene (84) produced 82 as a pure compound which was characterized by Tobe et al.111 After treatment with iodine, this undergoes transannular cyclization to zethrene derivative 85 (Scheme 39). The majority of zethrene syntheses in the literature involve substitution at the bay region or peri-position because it enhances the stability, as well as solubility. With this being said, reports of the synthesis of the parent zethrene 79 are scarce.

![Scheme 39. Synthesis of zethrene derivative 85.111](image1)

In 2010, Wu et al.115 reported a metal-catalyzed annulation of halonaphthalenes to afford zethrene derivatives. The reaction involves treatment of 1-iodo-8-(phenylethynyl)naphthalene (86) with Pd(OAc)$_2$, Ag$_2$CO$_3$, and ligand tri-(2-furyl)phosphine (TFP) in o-xylene to form phenyl-substituted zethrene 87 in 73% yield (Scheme 40). These conditions were applied to various other iodoarenes to synthesize a collection of substituted zethrenes.115

![Scheme 40. Metal-catalyzed annulation to afford zethrene derivatives.115](image2)
Another route towards zethrene derivatives was developed by Wu and Sun.116 This Stille cross-coupling of dihaloarene 88 and bis(tri-\textit{n}-butylstannyl)acetylene (89) to form an annulene which undergoes transannular cyclization to afford dicarboximide-substituted zethrene 90 (Scheme 41). Substitution at the \textit{peri}-position makes 90 a stable compound with interesting photophysical properties.

\textbf{Scheme 41.} Stille cross-coupling route for zethrene synthesis.116

Parent zethrene 79 was prepared by Miao \textit{et. al.}117 using a Wittig-Heck pathway. The bis(triphenylphosphonium) salt 91 undergoes a Wittig reaction with 8-bromo-1-naphthaldehyde (92) to yield dinaphthyl-derivative 94, which under Heck reaction conditions is treated with Pd(OAc)\textsubscript{2} to generate 79 in 67-72\% yield (Scheme 42). Applying the Heck conditions from Scheme 42 to 83 and 1,8-divinylnaphthalene, 79 was isolated in only a 10\% yield. This same reaction failed with more typical Heck conditions which involve only a catalytic amount of palladium catalyst. It was concluded that more than one equivalent of Pd(OAc)\textsubscript{2} is required to isolate an acceptable yield of 79 for this reaction pathway.
Scheme 42. Synthesis of 79 via a Wittig-Heck approach.117

Experimental and computational studies provide conflicting information on the biradical character of zethrenes. Early theoretical calculations predict 79 and its substituted derivatives to be closed-shell.118-120 More recently, Wu et al.121 report an experimental study which concludes 79 actually possesses singlet open-shell biradical character. The study reports analysis via X-ray crystallography shows bond shortening and a slight enhancement in aromaticity of the center rings, along with electron spin resonance measurements showing signals characteristic of compounds with singlet open-shell biradical character. The electrochemical and photophysical properties were also studied to further confirm the biradical character. Analysis of substituted zethrenes and π-extended derivatives has also been reported.

Factors which influence if a zethrene derivative is open- or closed-shell are ring substituents and the extended π-conjugation. Substitution at the bay region of 79 reportedly favors a closed-shell compound.121 By contrast, vertical or horizontal π-extension enhances the singlet open-shell biradical character of the molecule.119-124 These extended zethrenes have larger biradical character because aromaticity is being reestablished in the biradical resonance form (Figure 10). In general, extending along the m- or n-axis of zethrene creates an increase in biradical character, but this decreases the kinetic stability.
Dibenzozethrene 94 exemplifies the impact substituents and π-extension have on the biradical properties of a molecule. The biradical resonance form 94a contains three sextets, while parent 94 contains two. The synthesis involves the nickel-catalyzed cyclodimerization of ethynyl-iodoanthracene analogs 95a and 95b (Scheme 43).121 The phenyl and TMS-substituted dibenzozethrenes (96a and 96b) display closed-shell character, while unsubstituted 94 is believed to be singlet open-shell. Computational studies support these conclusions.

Computational analysis can predict electronic character using biradical character indices as well as the relative energies of open and closed-shell compounds. Wu \textit{et. al.}121 demonstrated using DFT at the CAM-B3LYP/6-31G** level, the open-shell biradical form of 94 is lower in energy than the closed-shell, which signifies the open-shell is more stable. The same
is observed with 79, however the difference is not as great. The biradical character indices display the same trend, supporting the conclusion that 79 and 94 are singlet open-shell biradicals. Open-shell biradical character would make these compounds candidates for two-photon absorption (TPA) which is very useful for nonlinear optical materials, near-infrared dyes, and organic photovoltaics.

Research Objective

There have been various reports of the successful synthesis of substituted zethrenes, however isolation of parent zethrene 79 has proven to be difficult. Also, although zethrene derivatives can be obtained in moderate yields, the syntheses are typically long because of the requirement to prepare 1,10-disubstituted naphthalenes. The goal of this research was to develop a facile, efficient, low cost synthetic pathway towards 79. This would make 79 more readily available for studies in the field of nonlinear optics and near-infrared dyes. Once optimized, the synthesis could be applied to generate larger homologues of 79, which have not received as much attention in the literature.

Results and Discussion

A Pinacol Precursor to Zethrene

The synthesis of 79 has proven to be difficult and has not been as widely reported as its substituted homologues. In an attempt to avoid the use of metal catalysts or long synthetic procedures, alternative routes towards 79 were explored. Another aspect to avoid from previously reported syntheses is using 82 as an intermediate. The synthesis of 82 is not efficient and the compound itself is not very stable, so developing a synthesis without it is desired. The first step in most reported syntheses of 79 and its derivatives involves various coupling reactions of naphthalene compounds using metal catalysis, however there are other coupling reactions that have not yet been investigated.
Following our successful synthesis of dibenzo[g,p]chrysene (1) via the pinacol-pinacolone Stone-Wales sequence, the same process can provide a plausible route to 79. The synthesis would involve the pinacol coupling reaction of readily available 1-acenaphthenone (97), followed by a pinacol rearrangement, reduction, and acid-catalyzed rearrangement to 101, followed by aromatization (Scheme 44).

Scheme 44. Proposed synthetic pathway towards 79.

Efficient pinacol coupling of 97 proved to be elusive. The previous conditions used for 2 and 73 were unsuccessful, as were various other methods such as Mg/MgI$_2$,125 sonication,62 and photochemical coupling.126 Applying pinacol coupling conditions reported by Li et. al.127 using titanium(IV) chloride (TiCl$_4$) and Mg, the pinacol 98 was successfully isolated in a 31% yield (Scheme 45).
Scheme 45. Pinacol coupling of 97.

To determine if the pinacol-pinacolone Stone-Wales sequence was feasible for 98, calculations for the pinacol rearrangement were completed. The computations were done with DFT at the B3LYP/6-31+G(d,p) level. The calculations show the free-energies, where the barrier for the transition state is 17.5 kcal/mol (Figure 11). This barrier is not high; however this is larger than what was observed for the rearrangement of 68 which underwent a facile rearrangement. This suggested that 98 may not rearrange to its pinacolone 99 as readily as 68.
Figure 11. Free-energies of the cationic rearrangement of 98.

The next step was the synthesis of 99. Typical conditions using AcOH and H$_2$SO$_4$ were applied for pinacol rearrangement of 98, however the desired product was not observed and instead a very dark, insoluble solid was isolated (Scheme 46). The Wagner-Meerwein rearrangement conditions with P$_2$O$_5$ were applied and 98 was observed in 1H NMR, but purification by column chromatography was unsuccessful because of oligomerization (Scheme 46). Attempts to alter both reaction routes in Scheme 46 for the formation of 99 did not provide any improvements in isolating pure product. Although the pinacol-pinacolone Stone-Wales was very successful for the synthesis of 1, the conditions need to be altered and optimized for synthesis of 79 by improving the pinacol coupling of 97 and the pinacol rearrangement of 98.
As this project neared completion, polyphosphoric acid catalyzed reactions were further explored in our research group. PPA cyclization of 74 to 78 was observed. Pinacol 98 was treated with PPA in the MW at 100 °C for 5 minutes (Scheme 47). Analysis via 1H NMR displayed 97, 99, and peaks which correspond to 79 in a 1:1:1.5 ratio respectively, however many impurities were also observed. The presence of 79 within the 1H NMR was identified by comparing to the reported spectrum. The reaction was run on a small scale and the yield was so low that the crude product mixture was not submitted to further purification. Further optimization of these reaction conditions could lead to a simple route towards 79.
Scheme 47. Microwave PPA reaction with 98.

Route Towards Zethrene: An Acylation Approach

Previously reported syntheses of 79 involve coupling of substituted naphthalenes. There have not been reports of coupling naphthalene (46) with some type of linker. It was predicted that acylation of 46 could lead to a precursor to 79. The acylated compound 104 could undergo acid-catalyzed cyclization to enedione 105, followed by reduction to dihydrozethrene 101, and lastly aromatization leading to 79 (Figure 12).

Figure 12. General proposed route towards 79.

The Friedel-Crafts reaction is one of the most common acylation pathways. Kong et al.128 reported the sodium sulfinate mediated coupling of 2-bromo-1’-acetonaphthone (106) to generate acylated compound 104 in a 54% yield (Scheme 48). Due to the fact 106 is expensive and the sodium sulfinate mediated route only gave a moderate yield, the Friedel-Crafts acylation pathway was first investigated for synthesis of 104.
In order to synthesize 104 using a Friedel-Crafts approach, an acyl chloride needed to be chosen. Fumaryl chloride (107) contains two acyl chloride moieties, allowing for the reaction to occur for two naphthalene units at once. Naphthalene 46 and 107 were treated with aluminum chloride (AlCl₃) in DCE to yield a crude reaction mixture containing starting material, 1,1-isomer 104, and a substance believed to be the 1,2-isomer 108. This was tentatively identified by comparison to the predicted ¹H NMR using Spartan '08. This may be formed from isomerization of 104 (Scheme 49). Various other Lewis acids, temperatures, reaction times, and orders of addition were tested, however the conditions in Scheme 49 provided the best results. The issue with this reaction is the synthesis of the two isomers of the acylated compound. Both are observed under all reaction conditions and did not separate via column chromatography. A cyclization of the isomer mixture was attempted using iron (III) chloride (FeCl₃), however mostly starting material was recovered.
Going back to Kong’s synthesis of 104, the sodium sulfinate mediated approach was investigated. The first route involved bromination of 1-acetonaphthone (109) using liquid bromine (Br₂) in AcOH or Et₂O, however a mixture of 106, the dibromoketone 110, and starting material were observed in a 11:1:1 ratio respectively (Scheme 50). Separation of the starting material from the brominated compounds was not difficult, but isolating pure 106 from 110 was unsuccessful. Another route involved bromination using N-bromosuccinimide and pTsOH in acetonitrile (MeCN), where 106 and 110 were observed in a 2:1 ratio via ¹H NMR (Scheme 50). Again, obtaining a pure sample of 106 proved elusive. Altering the reaction conditions of both routes did not improve the conversion to 106.
The bromination pathways require optimization before proceeding to the sodium sulfinate mediated coupling. Attempts of submitting the crude mixtures to the coupling conditions only provided complex product mixtures. This reaction route does show promise due to the reported synthesis of \textbf{104}, however more work needs to be done.

Conclusions

In this research, two routes were explored for the synthesis of the elusive hydrocarbon zethrene (79). The first route involved our pinacol-pinacolone Stone-Wales method. To start, the pinacol coupling of 1-acenaphthenone was studied. This proceeded in only modest (31\%) yield. The anticipated pinacol rearrangement (Scheme 46) was inefficient as the pinacolone was difficult to isolate. In search of an alternative approach, a brief investigation of the cyclization of 98 in PPA provided a low yield of 79; this route needs to be further explored. The second route involved formation of an acylated naphthalene compound which would undergo cyclization. This began with a Friedel-Crafts acylation of naphthalene (46) with fumaryl chloride (107) to provide a mixture of acylated naphthalenes 104 and 108, where 108 may be due to
isomerization of 104. The separation of isomers by chromatography proved inefficient. Another acylation pathway used a sodium sulfinate mediated coupling of α-bromoketone 106 to acylated compound 104, which was previously isolated in a 54% yield.128 Several approaches to isolate 106 proved unsuccessful because both mono- and dibromination occurred. The bromination conditions need to be optimized and applied to the synthesis of enedione 104, which can potentially be cyclized (Figure 12).131 Once optimized, these conditions can potentially be applied to the synthesis of larger zethrene homologues.
Chapter IV. Experimental

General Experimental Section

Solvents

Anhydrous solvents [diethyl ether, dichloromethane (DCM), tetrahydrofuran (THF), toluene, and dimethylformamide (DMF)], passed through drying agent with nitrogen pressure, were obtained from an Innovative Technology, Inc. Solvent Delivery System prior to use and stored over 4 Å molecular sieves. Other solvents, including 1,2-dichloroethylene (DCE), hexanes, ethyl acetate, benzene, and methanol were purchased from EMD Serono, Inc. or Pharmco-AAPER.

Reagents

All reagents were received from commercial sources and were used as received unless otherwise noted. Reagents were obtained from the following sources: Fisher Scientific (Acros), Alfa Aesar, TCI America, Sigma-Aldrich, and Cambridge Isotope Laboratories. Note: Many of the polycyclic aromatic hydrocarbons used here have some level of carcinogenicity. All reactions were carefully conducted in a hood to limit exposure.

Reactions

Glassware and magnetic stir bars were dried in an oven at 75 °C prior to use. Sigma-Aldrich natural rubber septa were used. Unless otherwise noted, nitrogen gas was introduced to the reaction vessel through a Tygon® tube with a needle or glass inlet adapter. Henke Sass Wolf Norm-ject® plastic syringes were used for volumetric addition of reagents with oven-dried Popper & Sons needles, Precision Glide sterile needles, or Sterican® sterile needles unless otherwise noted.
Chromatography

Flash column chromatography was performed with Silicycle SiliaFlash P60 Flash Silica Gel or with a Teledyne Isco CombiFlash Rf 200 purification system. Purifications using CombiFlash Rf used RediSep® pre-packed silica gel columns (20-70 µm particle size). Preparative chromatography was completed with Analtech Uniplate Silica Gel GF 100 micron UV 254 glass-backed plates. Thin Layer Chromatography (TLC) analysis used Whatman polyester-backed Silica Gel, 60 Å, 250 µm thickness, on flexible plates with a fluorescent indicator. Mobile phases were prepared per-use as described in the detailed experimental section.

Instrumentation

Nuclear Magnetic Resonance (NMR) spectra were measured on a Varian Mercury Plus 400 FT-NMR operating at 400 MHz for \(^1\)H and 100 MHz for \(^{13}\)C spectroscopy. Deuterated solvents for NMR analysis were purchased from Cambridge Isotope Laboratory and stored over 4 Å molecular sieves. All \(^1\)H resonances were reported relative to an internal standard tetramethylsilane (TMS, \(\delta\) 0 ppm), unless otherwise noted. Microwave-assisted reactions were conducted in a CEM Discover single-mode microwave reactor in capped 10 mL or 35 mL vessels. Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was performed on a Shimadzu Kratos Axima-CFR running in reflection mode.

Detailed Experimental Section

Chapter I

General Procedure for MFP.

The substrate (0.05 g) and phthalic anhydride (14) (0.034 g, 0.23 mmol) were combined with graphite (ca. 0.25 g) in a quartz tube. Glass wool was placed above the mixture and the quartz tube was inserted into a Pyrex tube where it was purged with nitrogen and capped. The
reaction mixture was heated in a MW reactor at a constant power. Reaction time was typically 30 s to 1 min, but depended on how fast the reaction mixture reached the MW temperature limit (300 °C). The crude product mixture was extracted with CDCl₃ and filtered through a small silica plug before being characterized by ¹H NMR.

Microwave Flash Pyrolysis of Perylene (13) and Phthalic Anhydride (14).

Compound 13 (54 mg, 0.21 mmol) and 14 (34 mg, 0.23 mmol) were mixed with graphite (0.25 g) and reacted following the general MFP procedure at 150 W for 1 minute. Analysis via ¹H NMR indicated 13 and 1,12-phenyleneperylene (16) in a 2:1 ratio. The crude product was concentrated under vacuum to a yellow solid (34 mg, 63% recovery).

Microwave Flash Pyrolysis of Phenanthrene (12) and Phthalic Anhydride (14).

Compound 12 (51 mg, 0.28 mmol) and 14 (51 mg, 0.34 mmol) were mixed with graphite (0.25 g) and reacted following the general MFP procedure at 150 W for 50 s. Analysis via ¹H NMR indicated 12 (95%) and benzo[e]pyrene (5%). The crude product was concentrated under vacuum to a light yellow solid (26 mg, 51% recovery).

Microwave Flash Pyrolysis of Phenanthrene (12) and Maleic Anhydride (49).

Compound 12 (52 mg, 0.28 mmol) and maleic anhydride (56 mg, 0.56 mmol) were mixed with graphite (0.24 g) and reacted following the general MFP procedure at 300 W for 30 s. The reaction vessel was allowed to cool and again, the general MFP procedure was followed at 300 W for 30 s. Analysis via ¹H NMR indicated 12 (98%) and pyrene (8, 2%). The crude product was concentrated under vacuum to a light yellow solid (17 mg, 33% recovery).

Photochemical Reaction of Diphenylmaleic Anhydride (50).

Diphenylmaleic anhydride (50) (1.01 g, 3.9 mmol) and iodine (4.1 mg, 15.9 mmol) were dissolved in acetone (60 mL) in a Pyrex tube. The tube was inserted into a photochemical reactor with 300 nm lamps for 4 days. A yellow solid precipitated which was collected via
vacuum filtration (0.251 g, 26% yield). \(^1\)H NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 9.13 – 9.07 (m, 2H), 8.89 – 8.83 (m, 2H), 8.07 – 7.93 (m, 4H).

Microwave Flash Pyrolysis of Biphenyl (47) and 9,10-Dicarboxyphenanthrene Anhydride (10).

Compound 47 (0.301 g, 1.9 mmol) and 9,10-dicarboxyphenanthrene anhydride (10) (0.105 g, 4.2 mmol) were mixed with graphite (0.29 g) and reacted following the general MFP procedure at 300 W for 1 minute. Analysis via \(^1\)H NMR indicated 47, phenanthrene (12), and dibenzo[g,p]chrysene (1) in a 2:5:1 ratio respectively. The crude product was concentrated under vacuum to an off-white solid (0.01 g, 3.5 % recovery).

Microwave Flash Pyrolysis of Dibenzo[g,p]chrysene (1) and 9,10-Dicarboxyphenanthrene Anhydride (10).

Compound 1 (20 mg, 0.061 mmol) and 10 (23 mg, 0.091 mmol) were mixed with graphite (0.12 g) and reacted following the general MFP procedure at 100 W for 1 minute. Analysis via \(^1\)H NMR indicated 1, phenanthrene (12), and hexabenzotetracene (7) in a 20:1.5:1 ratio respectively. The crude product was concentrated under vacuum to an off-white solid (12 mg, 60% recovery). The crude product was analyzed by MALDI-TOF-MS, confirming the presence of hexabenzotetracene (7, \(m/z\) = 501.4), as well as DBC (1, \(m/z\) = 328.5) and higher oligomers (\(m/z\) = 627.2).

Dibromoolefination of 9-Fluorenone (2).

9-Fluorenone (2) (1.05 g, 5.8 mmol) and carbon tetrabromide (3.41 g, 10.2 mmol) were added to an oven dried 250 mL round bottom flask. Dry dichloromethane (50 mL) was added. Triphenylphosphine (5.36 g, 20.4 mmol) was added portionwise and the reaction was stirred at room temperature for 24 hours. Hexanes (100 mL) was added and the mixture was filtered through a silica pad and concentrated to a yellow solid. The crude product was purified via
CombiFlash with hexanes to yield 55 as a light yellow solid (1.82 g, m.p. 119-121 °C, lit. 122-123 °C, 96% yield). ¹H NMR (400MHz, CDCl₃) δ 8.62 (d, 2H), 7.69 (d, 2H), 7.42 (t, 2H), 7.30 (td, 2H).

Silylation of 9-(Dibromomethylidene)fluorene (55).

Compound 55 (0.801 g, 2.4 mmol) was added to an oven dried 250 mL round bottom flask and purged with nitrogen. Anhydrous THF (80 mL) was added via syringe. The flask placed in a dry ice bath (-78 °C) and 2.5 M n-BuLi in hexanes (1.0 mL, 2.5 mmol) was added slowly via syringe. After stirring under nitrogen for 40 minutes, TMSCI (1.2 mL, 9.5 mmol) was added slowly via syringe and the solution was stirred at room temperature for 24 hours. Sat. aq. NaHCO₃ (80 mL) was added and reaction extracted with ethyl acetate (3 x 30 mL). The combined extracts were dried over Na₂SO₄ and concentrated to an orange solid. The crude product was purified via column chromatography using silica and hexanes as an eluent to yield a yellow solid (0.182 g). Analysis via ¹H NMR indicated desired product 56 by correlation with predicted chemical shifts, however 57 was also present in a 1.5:1 ratio. Compound 57 was identified from the reported ¹H NMR.⁵¹

Fluoride-Induced Elimination for Phenanthryne Formation.

Potassium fluoride (0.075 g, 1.25 mmol), 18-crown-6 (0.341 g, 1.25 mmol), and anthracene (0.095 g, 0.52 mmol) were added to an oven dried 25 mL round bottom flask which was purged with nitrogen. Anhydrous THF (2 mL) was added via syringe and the flask placed in ice bath. The crude mixture of 56 and 57 (0.182 g) was dissolved in anhydrous THF (0.5 mL) and added to the flask via syringe. The solution was stirred at room temperature for 15 hours. Water (15 mL) was added to the reaction which was then extracted with dichloromethane (3 x 15 mL). The combined extracts were dried over Na₂SO₄ and concentrated to a yellow residue (0.440 g). Analysis via ¹H NMR displayed starting material with very minor peaks which correspond to the predicted chemical shifts of Diels-Alder product 58 in the baseline.
Grignard Reaction of 9-(Dibromomethylidene)fluorene.
Magnesium turnings (44 mg, 1.7 mmol) ground with a mortar and pestle were transferred to an oven dried 25 mL two-neck round bottom flask and purged with nitrogen. Anhydrous THF (2 mL) was added and the solution was brought to reflux. 9-(Dibromomethylidene)fluorene (55) (0.513 g, 1.49 mmol) dissolved in anhydrous THF (2 mL) was added dropwise via an addition funnel and the reaction was stirred at reflux for 90 minutes. After cooling to room temperature, 10% aq. HCl (10 mL) was added and the reaction was extracted with dichloromethane (4 x 20 mL). The combined extracts were dried over Na$_2$SO$_4$ and concentrated to yield 60 as a red solid (0.364 g, 69% yield). The product was analyzed by MALDI-TOF-MS, which showed m/z = 352.1. 1H NMR (400 MHz, CDCl$_3$) δ 7.86-7.84 (m, 4 H), 7.72-7.70 (m, 4H), 7.42-7.36 (8 H).

Chapter II

Synthesis of 9,9'-Bifluorenyl-9,9'-diol (68).
9-Fluorenone (2) (1.03 g, 5.70 mmol) and 50% aq. THF (10 mL) were added to a 250 mL round bottom flask, followed by zinc chloride (1.07 g, 7.80 mmol). The reaction flask was placed into a water bath and zinc powder (5.0 g, 0.076 mol) was added portionwise over 5 minutes. The reaction was stirred for 1 hour under nitrogen. 3M HCl (5 mL) was added and the reaction stirred for 20 minutes, where it was then filtered to remove the residual zinc, which was rinsed with toluene, followed by water. The filtrate was extracted with toluene (4 x 10 mL) and the combined organics were dried over MgSO$_4$. The solution was filtered and concentrated to yield a white solid (0.82 g, m.p. 180-183 °C, lit. 190-192 °C, 83% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.39-7.37 (m, 5H), 7.27-7.26 (m, 6H), 7.07 (m, 5H), 3.16 (s, 2H).

Pinacol Rearrangement to Form Spiro[9H-fluorene-9,9'(10'H)-phenanthren]-10'-one (3).
9,9'-Bifluorenyl-9,9'-diol 68 (0.79 g, 0.0022 mol) was put in a 250 mL round bottom flask. Concentrated sulfuric acid (0.1 mL) and acetic acid (10 mL) were added to the reaction flask.
The solution was stirred at reflux for 30 minutes. After cooling to room temperature, a white solid formed which was isolated by vacuum filtration (0.66 g, m.p. 248-252 °C, lit 256-258 °C, 88% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.20 (d, 1H), 8.10 (d, 1H), 7.99 (dd, 1H), 7.82-7.75 (m, 3H), 7.45 (td, 1H), 7.41-7.34 (m, 3H), 7.18 (td, 2H), 7.10-7.02 (m, 3H), 6.62 (dd, 1H).

Synthesis of Spiro[9\(H\)-fluorene-9,9'(10'\(H\))-phenanthren]-10'-ol (72).

Compound 3 (0.94 g, 2.6 mmol) was dissolved in THF (15 mL) and water (0.5 mL) in a 50 mL round bottom flask. Sodium borohydride (0.22 g, 5.8 mmol) was added slowly. The solution was stirred at reflux under nitrogen for 90 minutes. After cooling to room temperature, water was added (15 mL) and the solution was stirred for 5 minutes. The reaction was extracted with dichloromethane (3 x 10 mL) and the combined extracts were dried over Na\(_2\)SO\(_4\) and concentrated to a white solid (0.87 g, m.p. 164-167 °C, lit. 174-175 °C, \(^{132}\) 92% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.94 (td, 2H), 7.79 (dt, 1H), 7.74 (dt, 1H), 7.53-7.49 (m, 2H), 7.44-7.19 (m, 7H), 7.02 (dtd, 2H), 6.80 (d, 1H), 6.67 (dd, 1H), 5.31 (d, 1H).

Synthesis of Dibenzochrysene (1).

Compound 72 (1.97 g, 5.7 mmol) and toluene (50 mL) were added to a 250 mL round bottom flask. \(p\)-Toluenesulfonic acid (2.98 g, 17.3 mmol) was added to the reaction mixture, and it was stirred at reflux under nitrogen for 90 minutes. After cooling to room temperature, water (5 mL) was added, and the reaction solution was extracted with toluene (4 x 15 mL). The combined extracts were dried over Na\(_2\)SO\(_4\). The crude product showed very minor impurities and was recrystallized in ethanol to yield a white solid (1.38 g, m.p. 216-217 °C, lit. 218 °C, 74% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.73 – 8.67 \text{ (m, 8H)}, 7.66 \text{ (dddd, 8H)}

Pinacol Coupling of 1-Indanone (73).

1-Indanone (73) (0.51 g, 3.8 mmol), potassium hydroxide (1.91 g, 34.0 mmol), and methanol (10 mL) were added to a 25 mL round bottom flask. The solution was stirred while aluminum
powder (0.31 g, 11.5 mmol) was added slowly. The flask was placed in a water bath where it stirred under nitrogen for 20 hours. The solution was filtered to remove excess aluminum and water (25 mL) was added to the filtrate. A solid formed which was filtered off and the filtrate was extracted with dichloromethane (3 x 15 mL). The combined extracts were dried over MgSO$_4$ and concentrated to a white solid (0.36 g, m.p. 139-142 °C, lit. 154-156 °C, 72% yield). 1H NMR (400 MHz, CDCl$_3$) δ 7.82-7.80 (m, 1H), 7.31-7.21 (m, 6H), 7.14-7.12 (d, 1H), 3.09-3.01 (m, 2H), 2.98 (s, 2H), 1.97-1.93 (td, 4H).

Reaction of 1-Indanopinacol (74) in PPA.

PPA (18 mL) were added to an oven dried 100 mL round bottom flask. The flask was heated in an sand bath to 120 °C with stirring. Pinacol 74 (1.20 g, 4.5 mmol) was added to the flask and the reaction was heated to 180 °C under nitrogen. After 45 minutes, the reaction was cooled to room temperature, quenched with sat. aq. NaHCO$_3$, and extracted with ethyl acetate (5 x 40 mL). The combined extracts were dried over Na$_2$SO$_4$. The crude material was purified via CombiFlash with 100% hexanes to yield a light yellow/orange solid (0.903 g). Analysis via 1H NMR displays a mixture of chrysene (78), dihydrochrysene, and tetrahydrochrysene in a 1:3.5:2 ratio, respectively.

The crude mixture (0.091 g) was dissolved in benzene (5.5 mL) and purged with nitrogen. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 0.17 g, 0.78 mmol) was added and the mixture was stirred at reflux for 20 h. The reaction mixture was concentrated under vacuum and filtered through a silica plug with hexanes to yield chrysene (78) as an off-white solid (0.086 g, 8.4% overall yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.80-8.78 (d, 2H), 8.74-8.7 (d, 2H), 8.02-7.98 (dd, 4H), 7.73-7.69 (t, 2H), 7.66-7.62 (t, 2H).

Reaction of 9,9'-Bifluorenyl-9,9'-diol (68) in PPA.

Pinacol 68 (0.104 g, 0.29 mmol) and PPA (4 mL) were added to an oven dried 35 mL quartz MW tube. The viscous mixture was stirred with a glass stir rod to evenly disperse solid and the
quartz tube was placed in a Pyrex tube. The reaction vessel was purged with nitrogen, capped, and heated in the MW reactor at 100 °C for 5 minutes. Once cool, the reaction was quenched with sat. aq. NaHCO₃ and extracted with ethyl acetate (4 x 15 mL). The combined extracts were dried over Na₂SO₄ and concentrated to a tan solid (0.067 g). Analysis via 1H NMR displayed a mixture of pinacolone (3) and dibenzo[g,p]chrysene (1) in a 2:1 ratio.

Chapter III

Synthesis of Acenaphthenopinacol (98).
An oven dried 50 mL 2-neck round bottom flask was charged with dry ethyl acetate (7 mL) and titanium tetrachloride (0.4 mL, 3.7 mmol). The flask was placed in an ice water bath and magnesium turnings (0.23 g, 8.9 mmol) were added. The flask was purged with nitrogen and allowed to warm to room temperature. 1-Acenaphthenone (97) (0.25 g, 1.5 mmol) dissolved in dry ethyl acetate (1 mL) was added via syringe. After 90 minutes, 10% aq. potassium carbonate (15 mL) was added to quench. A solid formed which was filtered off and the filtrate was extracted with ethyl acetate (3 x 15 mL). The combined organics were washed with sat. aq. NaHCO₃ and brine respectively and dried over MgSO₄. The crude material was purified via CombiFlash with 10% EtOAc:hexanes to yield a white solid (0.079 g, 31% yield). 1H NMR(400 MHz, CDCl₃) δ 7.98-7.96 (d, 2H), 7.82-7.80 (d, 2H), 7.67-7.65 (d, 2H), 7.62-7.58 (t, 2H), 7.43-7.40 (dd, 2H), 7.06-7.04 (d, 2H), 3.48 (s, 2H), 3.13-3.03 (d, 2H), 2.92-2.87 (d, 2H).

Reaction of Acenaphthenopinacol (98) in PPA.
Pinacol 98 (0.068 g, 0.201 mmol) and PPA (2.1 mL) were added to an oven dried 35 mL quartz MW tube. The viscous mixture was stirred with a glass stir rod to evenly disperse solid and the quartz tube was placed in a Pyrex tube. The reaction vessel was purged with nitrogen, capped, and heated in the MW reactor at 100 °C for 5 minutes. Once cool, the reaction was quenched with sat. aq. NaHCO₃ and extracted with ethyl acetate (3 x 20 mL). The combined organics
were dried over Na$_2$SO$_4$ and concentrated to a dark orange/red solid (0.036 g). Analysis via 1H NMR displayed a mixture of 1-acenaphthenone (97), pinacolone 99, and zethrene (79) in a 1:1:1.5 ratio, as well as oligomers.

Friedel-Crafts Acylation of Naphthalene.

Aluminum chloride (1.03 g, 7.6 mmol) and DCE (50 mL) added to oven dried 250 mL round bottom flask. The flask was purged with nitrogen and placed in an ice bath. Fumaryl chloride (107) (0.45 mL, 4.2 mmol) was added via syringe and the solution was stirred for 10 min. Naphthalene (46) (1.07 g, 8.2 mmol) was added and the reaction was stirred at room temperature for 24 hours. Water (150 mL) was added and the mixture was diluted with DCE (50 mL). The organics were washed with 2 M HCl (2 x 25 mL), dried over Na$_2$SO$_4$, and concentrated to dark brown residue. The crude material was purified via CombiFlash with 5% EtOAc:hexanes to yield a pale yellow solid (0.15 g). Analysis via 1H NMR indicated the 1,1'-isomer (104) and 1,2'-isomer (108) in a 3.5:1 ratio respectively.
List of References

(46) Best, W.; Collins, P.; McCulloch, R.; Wege, D. Deoxygenation of 1,4-epoxy-1,4-

(50) Spartan 08; Wavefunction Inc., I., CA.

(132) Suszko, J.; Schillak, R. *Roczniki Chem.* 1934, 14, 1216.
Appendices

Appendix A: Spectra