Fall 1974

SUBMERSIBLE MANEUVERING AND CONTROL

GREGORY JOHN SCHOENAU

Follow this and additional works at: https://scholars.unh.edu/dissertation

Recommended Citation
https://scholars.unh.edu/dissertation/1073

This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms
300 North Zeeb Road
Ann Arbor, Michigan 48106
SCHOENAU, Gregory John, 1945-
SUBMERSIBLE MANEUVERING AND CONTROL.

University of New Hampshire, Ph.D., 1974
Engineering, mechanical

Xerox University Microfilms, Ann Arbor, Michigan 48106

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED.
SUBMERSIBLE MANEUVERING AND CONTROL

by

Gregory J. Schoenau

B.Sc., University of Saskatchewan, 1967
M.Sc., University of Saskatchewan, 1969

A THESIS

Submitted to the University of New Hampshire
In Partial Fulfillment of
the Requirement for the Degree of

Doctor of Philosophy
Graduate School
Engineering Ph.D. Program
Systems Design Area
October 1974
This thesis has been examined and approved.

Robert W. Corril, Professor of Mechanical Engineering

David E. Limbert, Associate Professor of Mechanical Engineering

Charles K. Taft, Professor of Mechanical Engineering

Robin D. Willits, Associate Professor of Business Administration

John A. Wilson, Associate Professor of Mechanical Engineering
ABSTRACT

Improving the maneuverability of a submersible offers a number of advantages. Principal among these is a reduction in the amount of manhours spent operating the submersible, thus freeing the operator's time for other tasks. This also enhances the capability of the submersible to perform tasks where precise control is required.

Feedback control laws are derived in this thesis to aid the operator in controlling the motion of a submersible. The objective of these control laws is to automatically compensate for the coupling effects between the motions in the various degrees of freedom, thus providing the operator with single-output control. To accomplish this, a general theory for decoupling some classes of nonlinear systems is derived. Decoupling is achieved by nonlinear feedback of measurements of the states of the system. For a submersible, the system states are the velocities and displacements in each degree of freedom. Within certain practical constraints, nonlinear unstable coupled systems can be compensated to behave as stable decoupled systems exhibiting linear input-output transfer relationships.

The theory is used to successfully decouple the roll and surge equations for a particular submersible; the U.S. Navy's Deep Submergence Rescue Vehicle (DSRV). Computer simulations are conducted to verify the results. These results are extended to develop a set of generalized feedback equations for the complete decoupling of the motion of the DSRV in all six degrees of freedom. Some limitations associated with implementing this scheme, such as the effect of control input saturation, are discussed. Methods of satisfactory control system design within these limitations are proposed.
Submersible maneuverability can also be improved by adhering to a vessel design which offers a high degree of geometric symmetry. The wake steering nozzle (WSN) is a new method of steering submersibles which has the potential of improving the geometric symmetry of a submersible as well as reducing the number of thrusters required. The WSN consists basically of a conventional propeller surrounded by an accelerating type flow nozzle. In a properly designed flow nozzle, opening a port located just aft of the propeller plane induces flow into the nozzle deflecting the wake producing a steering force.

The operation of several propeller-nozzle combinations is investigated at zero and nonzero forward velocity. A series of tests are conducted at zero forward velocity to determine the effects of major parameters of propeller-nozzle geometry on reliability, propeller torque and the axial and radial thrusts developed. The parameters varied in the tests are nozzle length, nozzle divergence and propeller pitch. These tests reveal that the radial steering thrust of the nozzles increases with the nozzle divergence. However, higher nozzle divergence results in an unreliable mode of operation where the wake remains deflected after the control port is closed producing an erratic radial thrust. The tests do define a set of nozzles which operate reliably while producing reasonably large radial thrusts. These combinations are the longer nozzles and are about midrange in terms of divergence and propeller pitch.

Two nozzles from the static tests which were midrange in terms of divergence are chosen for forward velocity testing. The reliability of these nozzles shows an increase with forward velocity. Locating a series of ports axially along the nozzle surface is shown to be an effective means of controlling the magnitude of the radial steering force.
Based on the test results, a preliminary comparison is made between the WSN and some conventional submersible propulsion and steering systems. The comparison is made using computer simulations. The WSN is shown to possess the same steering characteristic as a conventional tail mounted steering device. Although the efficiency of the WSN as a basic thruster is less than that of a conventional nozzled propeller, it can be expected to improve with further optimization of the basic design.

The research on the wake steering nozzle reported in this thesis represents the organized efforts of a number of people. The role of the author in this project was that of project co-ordinator. In this dissertation, the writer's experience in the management structure of the project is related to certain aspects of organizational behavior theory to formulate some key concepts considered relevant in managing research projects of this type. This covers concepts on the organizational level such as project planning and goal setting, to interpersonal considerations such as the type and style of leadership provided.
ACKNOWLEDGEMENTS

The author wishes to express his deep appreciation and gratitude to Dr. C.K. Taft for his guidance and encouragement during the research presented in this thesis. The author is also indebted to Dr. R.W. Corell, Dr. D.E. Limbert, Dr. J.A. Wilson and Dr. R.D. Willits for their interest and advice during various phases of the research. The faculty and students who participated in the wake steering project are thanked for their efforts and understanding.

The research was made possible by the financial assistance of the Advance Research Projects Agency, contract no. N00014-67-A-0158-0006, and National Aeronautics and Space Administration, grant no. 30-002-056. Financial assistance from the University of New Hampshire through the Mechanical Engineering Department in the form of Teaching Assistantships is also gratefully acknowledged.

Last but not least, the author is deeply grateful to his wife Jeanette for her continuous emotional and financial support and for typing most of this manuscript. The author also wishes to thank his parents for their patience and encouragement through the years.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1-A General</td>
<td>1</td>
</tr>
<tr>
<td>1-B Decoupled Control</td>
<td>4</td>
</tr>
<tr>
<td>1-C The Wake Steering Nozzle</td>
<td>7</td>
</tr>
<tr>
<td>1-D Project Management</td>
<td>13</td>
</tr>
<tr>
<td>2. A THEORY FOR THE DECOUPLING OF NONLINEAR SYSTEMS</td>
<td>15</td>
</tr>
<tr>
<td>2-A General</td>
<td>15</td>
</tr>
<tr>
<td>2-B Class 1 Systems</td>
<td>17</td>
</tr>
<tr>
<td>2-B.1 Definitions and Notations - Class 1</td>
<td>17</td>
</tr>
<tr>
<td>2-B.2 The Decoupling Procedure - Class 1</td>
<td>22</td>
</tr>
<tr>
<td>2-B.3 A Synthesis Procedure - Class 1</td>
<td>28</td>
</tr>
<tr>
<td>2-C Class 2 Systems</td>
<td>31</td>
</tr>
<tr>
<td>2-C.1 Definitions and Notations - Class 2</td>
<td>31</td>
</tr>
<tr>
<td>2-C.2 Decoupling Procedure - Class 2</td>
<td>35</td>
</tr>
<tr>
<td>2-C.3 Synthesis Procedure - Class 2</td>
<td>38</td>
</tr>
<tr>
<td>2-D Extension and Modification of the Theory</td>
<td>39</td>
</tr>
<tr>
<td>2-D.1 Regulatory Feedback Control</td>
<td>40</td>
</tr>
<tr>
<td>2-D.2 Stability of Decoupled Systems</td>
<td>42</td>
</tr>
<tr>
<td>2-D.3 Other Constraints</td>
<td>45</td>
</tr>
<tr>
<td>2-D Summary</td>
<td>47</td>
</tr>
</tbody>
</table>
5-B Forward Velocity Test Facility 113
5-C Effect of Forward Velocity on WSN Performance
Characteristics 118
5-D Radial Force Control: Preliminary Tests 124
5-E Summary 126

6. AN EVALUATION OF THE PROPULSION - STEERING CHARACTERISTICS OF THE WAKE STEERING NOZZLE 129
6-A General 129
6-B The Propulsive Efficiency of the WSN 130
6-C An Evaluation of the Steering Effectiveness of the WSN 133
6-D A Proposed System for Hovering Control 138
6-E Summary 140

7. ORGANIZATIONAL ASPECTS OF THE WAKE STEERING PROJECT 141
7-A General 141
7-B Project Organized Research 142
7-C Planning for Research 147
7-C.1 Establishing Objectives 147
7-C.2 The Planning Function 149
7-D The Leadership Role 151
7-D.1 Responding to Individual Needs 151
7-D.2 The Functional Aspects of Leadership 153
7-D.3 The Role of the Project Coordinator 155
7-E Summary 157

8. CONCLUSIONS AND RECOMMENDATIONS 159
LIST OF REFERENCES 169
APPENDIX A DSRV Equations of Motion 179
APPENDIX B Numerical Examples of Decoupling 192
APPENDIX C Computer Programs 203
APPENDIX D Comparison of a WSN and a Tiltable Shroud 208
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The Propulsion and Steering System of the DSRV</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>A Block Diagram representation of a nonlinear Decoupled System</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>The Wake Steering Nozzle</td>
<td>9</td>
</tr>
<tr>
<td>4.</td>
<td>Proposed Submersible Propulsion and Steering System Using Two WSN</td>
<td>11</td>
</tr>
<tr>
<td>5.</td>
<td>Representation of a Class 1 Nonlinear Decoupled System</td>
<td>19</td>
</tr>
<tr>
<td>6.</td>
<td>Representation of a Class 2 Nonlinear Decoupled System</td>
<td>34</td>
</tr>
<tr>
<td>7.</td>
<td>Representation of a Nonlinear Regulated System</td>
<td>43</td>
</tr>
<tr>
<td>8.</td>
<td>Propeller Force Versus Propeller Speed and Surge Velocity</td>
<td>57</td>
</tr>
<tr>
<td>9.</td>
<td>Surge Response</td>
<td>60</td>
</tr>
<tr>
<td>10.</td>
<td>Roll Response</td>
<td>60</td>
</tr>
<tr>
<td>11.</td>
<td>Decoupled System Surge Input as a Function of Surge Velocity</td>
<td>63</td>
</tr>
<tr>
<td>12.</td>
<td>Block Diagram Representation of Input Rate Limiting Filters</td>
<td>66</td>
</tr>
<tr>
<td>13.</td>
<td>Surge Response-System Input Constraints Included</td>
<td>68</td>
</tr>
<tr>
<td>14.</td>
<td>Roll Response-System Input Constraints Included</td>
<td>69</td>
</tr>
<tr>
<td>15.</td>
<td>Nozzle Force and Moment Measurement System</td>
<td>82</td>
</tr>
<tr>
<td>16.</td>
<td>Motor Control Circuit</td>
<td>84</td>
</tr>
<tr>
<td>17.</td>
<td>Nozzle Variation System</td>
<td>85</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>Cross Sections of Aluminum Nozzles</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>a) Nozzle No.1, b) Nozzle No.2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Identification of Nozzle Geometric Parameters</td>
<td>89</td>
</tr>
<tr>
<td>20</td>
<td>Thrust Versus Propeller Speed for Nozzle No.2</td>
<td>94</td>
</tr>
<tr>
<td>21</td>
<td>Rotation of the Thrust Vector</td>
<td>95</td>
</tr>
<tr>
<td>22</td>
<td>Closed Port Pressure Distribution for Nozzle No.2</td>
<td>98</td>
</tr>
<tr>
<td>23</td>
<td>Open Port Pressure Distribution for Nozzle No.2</td>
<td>99</td>
</tr>
<tr>
<td>24</td>
<td>Flow Field of the Wake Steering Nozzle</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>a) Without Propeller Hub</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) With Propeller Hub</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Port Closed Axial Pressure Distribution for Nozzles No.1 and No.2</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>with Propeller No.2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Water Channel Used For Testing Forward Velocity Nozzles</td>
<td>114</td>
</tr>
<tr>
<td>27</td>
<td>The Basic Configuration of the Wake Steering Nozzles Used for the Forward Velocity Tests</td>
<td>114</td>
</tr>
<tr>
<td>28</td>
<td>Geometric Parameters of the Forward Velocity Wake Steering Nozzles</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>a) Front Section b) Aft Section</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Flow Pattern of Nozzle A3 with Propeller No.2 Observed by Injecting Air Bubbles at the Nozzle Exit</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>a) All Ports Closed b) Top Port Open</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Forward Velocity Test Results for Nozzle A3 with Propeller No.4</td>
<td>120</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>31.</td>
<td>Forward Velocity Test Results for Nozzle A2 with Propellers No.2, 4 and 5</td>
<td>121</td>
</tr>
<tr>
<td>32.</td>
<td>Forward Velocity Test Results for Nozzle A3 with Propellers No.1, 2, 4 and 5</td>
<td>122</td>
</tr>
<tr>
<td>33.</td>
<td>Steering Ratio Versus Advance Ratio for Nozzles A2 and A3 a) Nozzle A2 b) Nozzle A3</td>
<td>125</td>
</tr>
<tr>
<td>34.</td>
<td>Effect on the Coefficient of Radial Thrust of Axial Location of the Control Port</td>
<td>127</td>
</tr>
<tr>
<td>35.</td>
<td>A Comparison of the Axial Thrust Coefficient and Efficiency of the Wake Steering Nozzle and Nozzle 19a</td>
<td>131</td>
</tr>
<tr>
<td>36.</td>
<td>Turning Circle Simulation of DSRV Comparing WSN and Tiltable Shroud</td>
<td>135</td>
</tr>
<tr>
<td>37.</td>
<td>Simulated 90° Accelerated Turn Comparing Wake Steering Nozzle and Tiltable Shroud</td>
<td>136</td>
</tr>
<tr>
<td>38.</td>
<td>Simulated 90° Decelerated Turn Comparing Wake Steering Nozzle and Tiltable Shroud</td>
<td>136</td>
</tr>
<tr>
<td>39.</td>
<td>Thrust Vectors Obtained by Mounting WSN on the Tail and Bow of a Submersible</td>
<td>139</td>
</tr>
<tr>
<td>40.</td>
<td>A Project Flow Diagram</td>
<td>144</td>
</tr>
<tr>
<td>41.</td>
<td>Lift and Drag Coefficients for the Tiltable Shroud</td>
<td>211</td>
</tr>
<tr>
<td>42.</td>
<td>Tiltable Shroud Lift and Drag Forces Relative to the Motions of the DSRV</td>
<td>211</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Magnitude of Acceleration Cross-coupling Forces as a Percentage of Main Control Force</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>Propeller Dimensions</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>Description of Wax Nozzles</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Thrust Coefficients for Nozzle No.1 and No.2</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>Effects of Major Parameters on Nozzle Performance Characteristics - Series A</td>
<td>107</td>
</tr>
<tr>
<td>6</td>
<td>Effects of Major Parameters on Nozzle Performance Characteristics - Series B</td>
<td>108</td>
</tr>
<tr>
<td>7</td>
<td>Aft Section Shapes of Nozzles for Forward Velocity Testing</td>
<td>118</td>
</tr>
<tr>
<td>8</td>
<td>Vehicle Constants</td>
<td>190</td>
</tr>
<tr>
<td>9</td>
<td>Hydrodynamic Derivatives</td>
<td>190</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_c</td>
<td>Characteristic surface area of the tiltable shroud (ft^2)</td>
</tr>
<tr>
<td>b_s</td>
<td>Shroud span (ft)</td>
</tr>
<tr>
<td>C_d</td>
<td>Shroud drag coefficient</td>
</tr>
<tr>
<td>C_l</td>
<td>Shroud lift coefficient</td>
</tr>
<tr>
<td>C_s</td>
<td>Shroud chord (ft)</td>
</tr>
<tr>
<td>D</td>
<td>Propeller/nozzle inside diameter (in)</td>
</tr>
<tr>
<td>F</td>
<td>Thrust (lbs)</td>
</tr>
<tr>
<td>F_d</td>
<td>Drag force developed by shroud (lbs)</td>
</tr>
<tr>
<td>F_l</td>
<td>Lift force developed by shroud (lbs)</td>
</tr>
<tr>
<td>I_x</td>
<td>DSRV roll moment of inertia (slug*ft2)</td>
</tr>
<tr>
<td>I_y</td>
<td>DSRV pitch moment of inertia (slug*ft2)</td>
</tr>
<tr>
<td>I_z</td>
<td>DSRV yaw moment of inertia (slug*ft2)</td>
</tr>
<tr>
<td>J</td>
<td>Advance ratio</td>
</tr>
<tr>
<td>K_{TA}</td>
<td>Axial thrust coefficient of propeller and nozzle</td>
</tr>
<tr>
<td>K_{TR}</td>
<td>Radial thrust coefficient of propeller and nozzle</td>
</tr>
<tr>
<td>K_{TR-A}</td>
<td>Steering ratio of propeller and nozzle</td>
</tr>
<tr>
<td>K_p</td>
<td>Roll moment due to DSRV main propeller (ft-lbs)</td>
</tr>
<tr>
<td>K_{pc}</td>
<td>Pressure coefficient of propeller and nozzle</td>
</tr>
<tr>
<td>K_t</td>
<td>Roll moment due to DSRV ducted thrusters (ft-lbs)</td>
</tr>
<tr>
<td>K_Q</td>
<td>Torque coefficient of propeller and nozzle</td>
</tr>
<tr>
<td>L</td>
<td>Nozzle length (in)</td>
</tr>
<tr>
<td>L_a</td>
<td>Length of nozzle aft section (in)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>L_b</td>
<td>Distance from the origin of the axis system to the tip of the bow of the submersible (ft)</td>
</tr>
<tr>
<td>L_p</td>
<td>Axial length of the propeller hub (in)</td>
</tr>
<tr>
<td>L_s</td>
<td>Distance from the tip of the bow of the submersible to the leading edge of the shroud (ft)</td>
</tr>
<tr>
<td>L_v</td>
<td>DSRV overall length (ft)</td>
</tr>
<tr>
<td>m</td>
<td>DSRV mass in the submerged state including entrained water (slugs)</td>
</tr>
<tr>
<td>M_p</td>
<td>Pitch moment due to DSRV main propeller (ft-lbs)</td>
</tr>
<tr>
<td>M_t</td>
<td>Pitch moment due to DSRV ducted thrusters (ft-lbs)</td>
</tr>
<tr>
<td>n</td>
<td>Propeller speed (rev/sec)</td>
</tr>
<tr>
<td>N_p</td>
<td>Yaw moment due to DSRV main propeller (ft-lbs)</td>
</tr>
<tr>
<td>N_t</td>
<td>Yaw moment due to DSRV ducted thrusters (ft-lbs)</td>
</tr>
<tr>
<td>p</td>
<td>Angular velocity relative to the DSRV roll axis (radians/sec)</td>
</tr>
<tr>
<td>P</td>
<td>Propeller pitch (in)</td>
</tr>
<tr>
<td>P_a</td>
<td>Ambient pressure of fluid (lbs/in2)</td>
</tr>
<tr>
<td>P_s</td>
<td>Pressure at any point on the nozzle surface a distance Z_a from the nozzle entrance (lbs/in2)</td>
</tr>
<tr>
<td>P_v</td>
<td>Vapor pressure of fluid (lbs/in2)</td>
</tr>
<tr>
<td>q</td>
<td>Angular velocity relative to the DSRV pitch axis (radians/sec)</td>
</tr>
<tr>
<td>Q</td>
<td>Torque (ft-lbs)</td>
</tr>
<tr>
<td>r</td>
<td>Angular velocity relative to the DSRV yaw axis (radians/sec)</td>
</tr>
<tr>
<td>r_h</td>
<td>Radius of the propeller hub (in)</td>
</tr>
<tr>
<td>R_c</td>
<td>Radius of curvature of the nozzle aft section inside surface (in)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>R_{cc}</td>
<td>Radius of curvature of nozzle aft section outside surface (in)</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>t_p</td>
<td>Propeller blade thickness (in)</td>
</tr>
<tr>
<td>u</td>
<td>Linear velocity along the DSRV surge axis (ft/sec)</td>
</tr>
<tr>
<td>\bar{u}</td>
<td>$m \times 1$ vector representing the inputs of a system with components u_1, u_2, \ldots, u_m</td>
</tr>
<tr>
<td>v</td>
<td>Linear velocity along the DSRV sway axis (ft/sec)</td>
</tr>
<tr>
<td>V</td>
<td>Fluid velocity (ft/sec)</td>
</tr>
<tr>
<td>w</td>
<td>Linear velocity along the DSRV heave axis (ft/sec)</td>
</tr>
<tr>
<td>\bar{w}</td>
<td>$m \times 1$ vector representing the new inputs to a decoupled system with components w_1, w_2, \ldots, w_m</td>
</tr>
<tr>
<td>x</td>
<td>$n \times 1$ vector representing the states of a system with components x_1, x_2, \ldots, x_n</td>
</tr>
<tr>
<td>\bar{y}</td>
<td>$m \times 1$ vector representing the outputs of a system with components y_1, y_2, \ldots, y_m</td>
</tr>
<tr>
<td>X_G, Y_G, Z_G</td>
<td>Coordinates of the center of mass relative to the body axes (ft)</td>
</tr>
<tr>
<td>X_{oi}, Y_{oi}, Z_{oi}</td>
<td>Initial values of the DSRV position in the fixed coordinate frame (ft)</td>
</tr>
<tr>
<td>X_p, Y_p, Z_p</td>
<td>Forces due to the main propeller along the surge, sway and heave axes respectively (lbs)</td>
</tr>
<tr>
<td>X_s, Y_s, Z_s</td>
<td>Forces produced by the tiltable shroud along the surge, sway and yaw axes respectively (lbs)</td>
</tr>
<tr>
<td>t', t'', t</td>
<td>Forces due to the ducted thrusters along the surge, sway and yaw axes respectively (lbs)</td>
</tr>
<tr>
<td>X_{ti}, Y_{ti}, Z_{ti}</td>
<td>Coordinates of the ballast tanks relative to the vehicle axes (ft)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>(z_a)</td>
<td>Axial distance along the nozzle surface (in)</td>
</tr>
<tr>
<td>(\alpha_s)</td>
<td>Angle of attack of the fluid relative to the shroud (degrees)</td>
</tr>
<tr>
<td>(\delta_y)</td>
<td>Angle of deflection of the shroud relative to the DSRV surge axis (degrees)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Angular displacement relative to the DSRV pitch axis (radians)</td>
</tr>
<tr>
<td>(\theta_d)</td>
<td>Nozzle divergence angle (degrees)</td>
</tr>
<tr>
<td>(\theta_r)</td>
<td>Angle of rotation of the thrust vector (degrees)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Angular displacement relative to the DSRV roll axis (radians)</td>
</tr>
<tr>
<td>(\psi)</td>
<td>Angular displacement relative to the DSRV yaw axis (radians)</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Fluid density (slugs)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Fluid viscosity (lbs-sec/ft(^2))</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Efficiency</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1-A. General

There has been a recent expanded usage of small submersibles such as Alvin, Dolphin and Deep Quest for research, rescue and recovery operations. These Deep Submergence Vehicles (DSV) belong to a new class of submersibles. Characteristic of this group are mission requirements calling for control with precise spatial orientation and maneuverability of the vehicle in all the six degrees of freedom. Precise positional navigation is essential for such operations as search for and recovery of objects from the ocean bottom. With the resulting emphasis on control as opposed to speed, the DSV is generally equipped with more thrusters and steering surfaces than the fleet or attack submarines.(1-2)*

The propulsion-steering system of one of the more sophisticated submersibles, the U.S. Navy's Deep Submergence Rescue Vehicle (DSRV) is shown in Figure 1. The reversible main propeller provides for thrusts along the vehicle surge axis. The tiltable shroud provides yaw and pitch turning moments during cruising. For hovering maneuvers, the tiltable shroud is largely ineffective and the ducted thrusters are used to provide yaw and pitch moments as well as sway and heave forces. Steady state roll and pitch moments are achieved by pumping mercury between the tanks. Vehicle neutral buoyancy at any depth is achieved by controlling the amount of water in the variable ballast tanks.

*Numbers in brackets refer to references.
Figure 1 The Propulsion and Steering System of the DSRV
It has been observed that even when equipped with sufficient thrusters to maneuver in six degrees of freedom, a submersible such as the DSRV, cannot be controlled by a human operator within the prescribed error envelope for some maneuvers regardless of the degree of sophistication built into the operator display system. The primary reason for this is that the operator is unable to continuously compensate for the hydrodynamic and inertial cross coupling between the various motions.\(^{(3-4)}\) A familiar example of inertial coupling between the motions is the centripetal force exerted on the vessel during a turning maneuver. An example of hydrodynamic coupling is that which exists between the roll and surge degrees of freedom. Rotation of the main propeller to produce a force in the surge direction also produces a roll moment which the operator must offset by pumping mercury between the roll control tanks.

To summarize, although motion in only one degree of freedom is desired, motion in several degrees of freedom may occur with the result that the operator is required to manipulate several inputs simultaneously to eliminate these cross-coupling effects. To perform effectively, the operator should be concerned with a minimum of coupled control tasks, hopefully only a single axis uncoupled control task. This could be achieved by designing a feedback control system to dynamically compensate the system with the primary design objective of having one system input controlling one and only one motion in each degree of freedom. This would relieve the operator of the burden of continuously controlling the DSRV thus increasing the payload objectives by freeing his time to carry out other tasks.
Compensating multivariable systems, such as the DSRV, to achieve independent or decoupled input-output control has been the objective of researchers in feedback control systems.\(^{(5-7)}\) However, the results published to date are limited by the lack of a unified body of knowledge concerning the decoupling of multivariable systems. Significant progress towards the development of a unified theory for the decoupling of linear multivariable systems has occurred in the last few years. Morgan was the first to study the problem using the state space approach.\(^{(8)}\) He developed sufficient conditions under which certain systems described by linear time-invariant differential equations could be compensated to behave as noninteracting or decoupled systems. Using different approaches, Falb and Wolovich\(^{(9)}\) and Gilbert\(^{(10)}\) significantly extended decoupling theory by developing necessary and sufficient conditions for decoupling a large class of linear time-invariant systems. As a consequence of these papers, numerous results have appeared dealing with various facets of linear decoupling theory and applications.\(^{(11-19)}\)

The currently existing forms of equations considered adequate for describing the motion of the DSRV are a complex, coupled and highly nonlinear set of equations.\(^{(20)}\) The linear decoupling procedure of Wolovich and Falb has been evaluated by applying it to a linearized version of the equations for roll-surge motion of the DSRV.\(^{(21)}\) The theory was shown to be effective when applied to the roll-surge equations only if an excessive number of linearized operating points were used in the development of decoupling feedback controllers.
These results prompted the investigation and the subsequent development of a theory for the direct decoupling of nonlinear systems. Two classes of nonlinear systems are considered in Chapter II and conditions under which these systems can be decoupled are developed separately. The distinguishing characteristic between these two classes is that the first class (Class 1) is restricted to systems in which the inputs or forcing functions appear linearly while the second class (Class 2) includes systems which have nonlinear inputs. Class 2 systems are the general class of systems which can be modelled by nonlinear time-varying ordinary differential equations.

Using the theory, decoupling is achieved by nonlinear feedback of measurements of the states of the system. For the DSRV, the system states are the velocities and displacements in each degree of freedom. Within certain practical constraints, nonlinear unstable interacting systems can be compensated to behave as stable decoupled systems exhibiting linear input-output transfer relationships. A block diagram representation of a decoupled system is shown in Figure 2. For this decoupled system each input \(w_i \) effects only one output \(y_i \).

The inputs to the DSRV system consist of propeller speeds and mercury pump rates. Since the propeller forces are quadratic functions of propeller speed, the DSRV equations of motion must be analyzed as a Class 2 system. In Chapter III the decoupling theory for Class 2 systems is used to successfully decouple the roll-surge equations. Some practical limitations associated with imple-
Figure 2 A Block Diagram Representation of a Nonlinear Decoupled System
menting this scheme are presented and satisfactory control system
design within these limitations is discussed. This discussion
includes such factors as guaranteeing system stability subject to
physical constraints on the system inputs. A set of generalized
feedback equations are also derived for the complete decoupling
of the dynamic motion in all six degrees of freedom.

1-C The Wake Steering Nozzle

Another approach to reduce the degree of cross-coupling
between the motions is to adhere to a high degree of geometric
symmetry in the vehicle design. This reduces the amount of hydro-
dynamic coupling which is basically proportional to the distance
between the vehicle center of gravity and center of geometry.
Asymmetrically mounted steering surfaces tend to increase this
distance because of their low weight to area ratio. For example,
the use of tail mounted thrusters and steering surfaces such as
the main propeller and shroud of the DSRV, results in a vehicle
fore and aft asymmetry. It has, in fact, been shown that the use
of only tail mounted thrusters and steering surfaces can result in
the submersible becoming dynamically unstable during a hovering
maneuver.\(^{(22)}\)

In order to improve the geometric symmetry of a sub-
mersible and reduce the number of thrusters required, an alternative
method of obtaining thrusts and steering moments was devised, known
as the wake steering nozzle. The wake steering nozzle (WSN) is a
new method of steering submersibles. It offers the potential to reduce the number of thrusters as compared with a conventional system while maintaining a comparable level of maneuverability and increasing vessel geometric symmetry. The WSN, shown in Figure 3, consists of a propeller surrounded by an accelerating type flow shroud. This nozzle or shroud has the effect of increasing the velocity through the duct enabling it to operate under a favorable loading criterion. The use of shrouded propellers as thrusters is not new and has been explored both experimentally and analytically. What is unique about the WSN as proposed by Wozniak, Taft and Alperi is its ability to develop a steering force as well as an axial thrust. The concept is based on the fact that a shrouded propeller can be designed which has a pressure distribution downstream of the propeller plane which is lower than ambient pressure. Providing an open slot or control port downstream of the propeller thus allows flow to be induced into the shroud causing a separation of the wake from one side of the nozzle. This is illustrated by the streamlined pattern shown in Figure 2. This results in an asymmetry in the pressure distribution inside the shroud producing a radial steering force. From another viewpoint, the wake is deflected through an angle relative to the propeller axis causing a radial momentum force. Thus by locating a set of slots downstream from the propeller and opening and closing these slots, the wake can be steered.

Assuming a strategy for controlling the direction of the wake, two WSN mounted on a submersible, one fore and one aft, would provide the same capability to generate independent control
Figure 3 The Wake Steering Nozzle
forces and moments in each degree of freedom as the thrusters now on the DSRV. The resulting increase in submersible fore and aft geometric symmetry is apparent in Figure 4 which shows the configuration. The ability of the wake steering shroud to generate steering forces at vessel zero forward velocity is an additional advantage over steering surfaces such as rudders.

The objective of the research on the WSN was to gain an improved understanding of the phenomena to enable assessment of its potential use in a propulsion-steering system for submersibles. The performance of the WSN was evaluated experimentally at both zero and nonzero forward velocity.

Wozniak, in his static or zero forward velocity tests on the WSN, found a propeller shroud combination which appeared to work reasonably well.\(^{(29)}\) Wozniak calculated the thrusts being produced by this WSN from pressure measurements on the inside surface of the shroud. This method was cumbersome and time consuming. Therefore the first goal was to design and build a test system which would enable the direct measurement of the WSN radial and axial thrusts. The system basically consists of a beam with strain guages mounted on the surface.\(^{(31)}\) The necessary peripheral equipment was provided for dynamic recording. A shroud holder into which wax inserts could be placed was also designed and constructed. The use of these wax inserts enabled the shroud inside shape to be changed easily. The measurement system is described in detail in Chapter IV.

Using this system, preliminary static tests were conducted
Figure 4 Proposed Submersible Propulsion and Steering System Using Two Wake Steering Nozzles
on a group of highly divergent shrouds. Many of these shrouds exhibited uncontrolled separation of the wake from the inside surface of the shroud producing an erratic radial force. These tests led to the definition of a number of states of operation and the emergence of the concept of reliability of operation of the WSN. Roughly speaking, a shroud is said to operate reliably if, only when a control port is open, does it develop a radial thrust.

A further series of static tests were then conducted to determine the effects of major parameters of propeller-shroud geometry on reliability, propeller torque and the axial and radial thrusts developed. The parameters varied in the tests were shroud length, shroud curvature or divergence and propeller pitch. This testwork served to define a number of propeller-shroud combinations which operate reliably. The static test results are contained in Chapter IV.

To extend these results to include the effects of forward velocity, a water tunnel was designed and constructed. A set of propeller-shroud combinations which exhibited reliable operation during the static testing were selected for evaluation at nonzero velocity. To minimize the fluid drag on the shroud, the outside surface and force balance beam were streamlined. Tests were conducted over a range of forward velocities and the results non-dimensionalized for comparison with the results of other researchers on shrouded propellers used for propulsion. This enabled a comparative evaluation of the WSN for use as an axial thruster.
In Chapter VI, the steering effectiveness of the WSN is compared with a conventional steering device. The comparison is made using computer simulations of the DSRV equations of motion in the horizontal plane. The simulations were first conducted using the existing DSRV propeller-tiltable shroud and then replacing it with a WSN and the simulations repeated. Three basic maneuvers are considered; an accelerating turn, a decelerating turn and a constant velocity turn. The axial thrusting efficiency of the WSN is examined by comparing it to the efficiency of some of the combinations of propellers and nozzles tested by Van Manen.

1-D Project Management

The investigation of the WSN reported herein was a project involving a number of people. The role of the writer of this thesis was that of a project coordinator. Therefore, the results on the WSN presented in this thesis are, for the most part, an overview of this project.

Most of today's research problems require a combination of effort from many people. The ability of these people to work together requires considerable integrated effort and managerial skill. Most engineers gain this skill as a result of purely experience based learning. In Chapter VII, the writer's experience in the management structure of the wake steering project is combined
with certain aspects of organizational behavior theory to formulate some key concepts considered relevant in managing research projects of this type. This includes the evaluation of such elements as project planning and leadership style.
CHAPTER II

A THEORY FOR THE DECOUPLING OF NONLINEAR SYSTEMS

2-A General

One of the more severe forms of hydrodynamic cross-coupling in a submersible occurs between the roll and surge motions.\(^{(2,3,35)}\) This particular type of coupling is a problem in fleet or attack submarines as well as submersibles such as the DSRV. Decoupling of the DSRV roll and surge motions was first attempted using existing linear theory. The nonlinear equations of motion were linearized about several operating points and the linear decoupling theory of Wolovich and Falb was applied to develop decoupling controllers.\(^*\) The linear theory was found to be satisfactory only if a very large number of operating points were used. Application of the linear theory was further complicated by the fact that each maneuver required a different set of operating points thus requiring operating points to be established for the set of all possible combinations of variables. These difficulties, combined with the fact that calculating some of the operating point values required solving nonlinear algebraic equations, led to exploring the possibility of direct decoupling of nonlinear systems.

Two classes of nonlinear systems are considered and conditions for the design of decoupled systems are developed

* The details of the application of the linear theory by the author are contained in Reference 21.
separately for each class. Both classes of systems fall into the general class of systems which can be modelled by nonlinear time-varying or nonautonomous ordinary differential equations. The first class (Class 1) is restricted to systems for which the input variables or forcing functions appear linearly in the differential equations. This class of systems has recently been considered by other authors\(^{(37-38)}\). The end results are similar to those derived in this thesis but the method by which they are derived is different. Necessary and sufficient conditions for decoupling are developed herein using an approach which in one respect parallels that used by Wolovich and Falb for linear systems; the system outputs are differentiated. Other aspects of the development are based on matrix algebra. The derivation herein is relatively simple and straightforward compared with the derivation of Tokumaru and Iwai\(^{(38)}\) who flatly state that the approach taken here will not work and proceed to solve the problem by introducing a concept of relative orders.

Sufficient conditions for decoupling to be possible are derived in a similar manner for a class of systems in which the input variables appear nonlinearly in the differential equations (Class 2). The equations of motion for the DSRV are of this class. This class of systems has also been investigated by Tubalkain and Limbert\(^{(39)}\). By expressing the system equations in vector form, conditions for decoupling are developed in this thesis in a more direct manner to include systems which may not be decoupled by
the methods presented in Reference 39.

Decoupling is achieved in each class of systems by nonlinear feedback of measurements of the states of the system. A synthesis procedure is given which enables the poles of the closed loop input-output transfer relationships to be chosen by the designer. The theory is extended to develop a feedback control law for the regulatory control of both classes of nonlinear systems. A method is also outlined for the investigation and guarantee of system stability subject to certain practical constraints.

2-B Class 1 Systems

This is the class of systems which can be adequately modelled by a set of nonlinear time-varying ordinary differential equations in which each term involving the forcing function is linear.

2-B.1 Definitions and Notations - Class 1

The class of systems under consideration can be represented in state variable vector form as

\[\dot{x} = a(x, t) + B(x, t)u \]

\[y = c(x, t) \]

(2.1)
where \bar{x} is a real nxl vector representing the state of the system, $a(\bar{x},t)$ and $c(\bar{x},t)$ are nxl and mxl vector functions of \bar{x} and time t, $B(\bar{x},t)$ is an nxm matrix function of \bar{x} and t and \bar{u} and \bar{y} are mxl vectors representing the system inputs and outputs respectively. The input vector \bar{u} is assumed to be unbounded.

The vector functions $a(\bar{x},t)$ and $c(\bar{x},t)$ are assumed to have entries which are continuous or piecewise continuously differentiable functions of the state vector \bar{x} and time t. The entries of all vector and matrix functions of \bar{x} and t are finite for finite \bar{x} and t.

The general nonlinear state variable feedback equation for a system such as (2.1) is

$$\bar{u} = f(\bar{x},t) + G(\bar{x},t)\bar{w} \quad (2.2)$$

where $f(\bar{x},t)$ is an mxl vector function of \bar{x} and t, $G(\bar{x},t)$ is an mxm matrix function of \bar{x} and t, and \bar{w} is a new m dimensional input vector.

Combining (2.1) and (2.2) gives the following closed loop system equations

$$\dot{\bar{x}} = a(\bar{x},t) + B(\bar{x},t)f(\bar{x},t) + B(\bar{x},t)G(\bar{x},t)\bar{w}$$

$$\bar{y} = c(\bar{x},t) \quad (2.3)$$

A block diagram representation of a decoupled Class 1 system is shown in Figure 5.
Figure 5 Representation of a Class 1 Nonlinear Decoupled System
It is the objective of the subsequent theory to develop a procedure for specifying the entries of \(f(\bar{x}, t) \) and \(G(\bar{x}, t) \) which decouple the system. To aid in the theoretical development, a decoupled system is mathematically defined.

Definition 1

The system of (2.3) is said to be decoupled if the \(i \)'th output \(y_i \) is only a function of the initial state \(x^0 \) and has a nonzero correspondence with the \(i \)'th input \(w_i \). Thus it is invariant with respect to the inputs \(w_1, w_2, \ldots, w_{(i-1)}, w_{(i+1)}, \ldots, w_m \).

Conditions for decoupling the system will be derived through a process involving differentiation of the \(i \)'th output variable \(y_i \). From (2.3), the \(i \)'th output \(y_i \) is a function of \(\bar{x} \) and \(t \).

\[
y_i = c_i(\bar{x}, t) \tag{2.4}
\]

To make \(y_i \) a function of the input \(w_i \) and thus be in a position to decouple the system according to Definition 1, it is logical to assume that we need an equation functionally relating \(y_i \) and \(w_i \). Since \(y_i \) is a function of \(\bar{x} \), which by (2.3) is a function of \(\bar{w} \) containing \(w_i \), the necessary equation can be obtained by differentiating \(y_i \) in (2.4) giving

\[
\frac{Dy_i}{Dt} = \nabla c_i(\bar{x}, t) \dot{\bar{x}} + \frac{\partial c_i(\bar{x}, t)}{\partial t} \tag{2.5}
\]
where $\mathbf{v} = \text{Gradient} = \left[\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_n} \right]_{1\times n}$

Equation (2.3) containing \bar{w} can be substituted for \bar{x} to give

$$\frac{Dy_i}{Dt} = \mathbf{v} c_i(\bar{x}, t) \left[a(\bar{x}, t) + B(\bar{x}, t)f(\bar{x}, t) + B(\bar{x}, t)G(\bar{x}, t)\bar{w} \right] + \frac{\partial c_i(\bar{x}, t)}{\partial t}$$

(2.6)

If $\mathbf{v} c_i(\bar{x}, t) B(\bar{x}, t) = 0$, then the first derivative of y_i will not contain \bar{w} and it will be necessary to differentiate again. The following definition is introduced to generalize this process.

Definition 2

Let the integer constants $\rho_1, \rho_2, \ldots, \rho_m$ be given by $\rho_i = \text{smallest } a \text{ such that}$

$$\mathbf{v} y_i^{(a-1)} B(\bar{x}, t) \neq 0, \ a = 1, 2, \ldots, n \text{ and } \rho_1 = n$$

if $\mathbf{v} y_i^{(a-1)} B(\bar{x}, t) = 0$ for all a

and $y_i^{(a-1)}$ is the $(a-1)'th$ total derivative with respect to time of the i'th component of \bar{y}.

2-B.2 The Decoupling Procedure - Class 1

Repeated differentiation up to the p_i'th derivative of the i'th output variable y_i and application of Definition 2 yields

$$y_i = c_i(x,t)$$

$$y_i^{(1)} = \nabla c_i(x,t)x + \frac{\partial c_i(x,t)}{\partial t}$$

$$= \nabla y_i a(x,t) + \nabla y_i B(x,t)f(x,t) + \nabla y_i B(x,t)G(x,t)\tilde{w} + \frac{\partial y_i}{\partial t}$$

$$y_i^{(2)} = \nabla y_i^{(1)} a(x,t) + \frac{\partial y_i^{(1)}}{\partial t}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$y_i^{(p_i-1)} = \nabla y_i^{(p_i-2)} a(x,t) + \frac{\partial y_i^{(p_i-2)}}{\partial t}$$

$$y_i^{(p_i)} = \nabla y_i^{(p_i-1)} a(x,t) + \nabla y_i^{(p_i-1)} B(x,t)f(x,t)$$

$$+ \nabla y_i^{(p_i-1)} B(x,t)G(x,t)\tilde{w} + \frac{\partial y_i^{(p_i-1)}}{\partial t}$$

(2.7)

Note that $y_i^{(p_i)}$ is the lowest order derivative which involves \tilde{w}.
These derivatives of y_i for $i = 1, \ldots, m$ can be collected and written in vector-matrix form as

$$
\begin{bmatrix}
\rho_1 \\
\vdots \\
\rho_m
\end{bmatrix}
\begin{bmatrix}

\nabla y_1 \
\nabla y_2 \\
\vdots \\
\nabla y_m
\end{bmatrix}
\begin{bmatrix}
\frac{\partial (\rho^{-1})}{\partial x} a(x,t) + \frac{\partial y_i}{\partial t} \\
\frac{\partial (\rho^{-1})}{\partial x} a(x,t) + \frac{\partial y_i}{\partial t}
\end{bmatrix}
+
\begin{bmatrix}

\nabla y_1 \
\nabla y_2 \\
\vdots \\
\nabla y_m
\end{bmatrix}
\begin{bmatrix}
\frac{\partial (\rho^{-1})}{\partial x} B(x,t) \\
\frac{\partial (\rho^{-1})}{\partial x} B(x,t)
\end{bmatrix}
=
\begin{bmatrix}

w_1 \\
w_2 \\
\vdots \\
w_m
\end{bmatrix}
$$

Inspection of (2.8) provides most of the insight necessary to select an $f(x,t)$ and $G(x,t)$ which will decouple the system. It should be apparent that if $G(x,t)$ is chosen to be inverse of the
matrix premultiplying it in the second term on the RHS of (2.8),
then the product of these two matrices will be the identity matrix
with the result that this term will contain only the input vector
\(\bar{w} \). Similarly, if \(f(\bar{x},t) \) is made equal to the product of \(G(\bar{x},t) \) and
a column matrix whose rows are chosen to cancel the rows of the
first term in (2.8), then \(y_1 \) will depend only on \(w_1 \) and the
system will be decoupled according to Definition 1. This motivates
the following theorem.

Theorem 1

There exists an \(m \) dimensional vector \(f^* (\bar{x},t) = f(\bar{x},t) \)
and an \(mxm \) matrix \(G^* (\bar{x},t) = G(\bar{x},t) \) which decouple the system of
(2.3) on a space \(H \), which is a subspace of the state space \(\bar{x} \), if
and only if \(\det D^* (\bar{x},t) \neq 0 \) on \(H \). Thus \(H \) is the set of points for
which \(\det D^* (\bar{x},t) \neq 0 \) over the time interval \((t_0 \leq t \leq t_f) \).

\[
\begin{bmatrix}
(\rho_1 - 1)_{B(\bar{x},t)} \\
\nabla y_1 \\
(\rho_2 - 1)_{B(\bar{x},t)} \\
\nabla y_2 \\
\vdots \\
(\rho_m - 1)_{B(\bar{x},t)} \\
\nabla y_m \\
\end{bmatrix}
\]

where \(D^* (\bar{x},t) = \)

\[
(2.9)
\]
It is claimed that the pair \([f^*(\tilde{x},t), G^*(\tilde{x},t)]\) are given by

\[G^*(\tilde{x},t) = D^{*-1}(\tilde{x},t) \] \hspace{1cm} (2.10)

and \(f^*(\tilde{x},t) = -D^{*-1}(\tilde{x},t)a^*(\tilde{x},t)\) \hspace{1cm} (2.11)

where \(a^*(\tilde{x},t) = \begin{bmatrix} (\rho_1 - 1) & (\rho_1 - 1) \\ \nabla y_1 & a(\tilde{x},t) + \frac{\partial y_1}{\partial t} \\ \vdots & \vdots \\ (\rho_m - 1) & (\rho_m - 1) \\ \nabla y_m & a(\tilde{x},t) + \frac{\partial y_m}{\partial t} \end{bmatrix}_{mx1} \) \hspace{1cm} (2.12)

Proof of Sufficiency

Substituting \(f(\tilde{x},t) = f^*(\tilde{x},t)\) and \(G(\tilde{x},t) = G^*(\tilde{x},t)\) into the \(\rho_i\)'th derivative of \(y_i\) in (2.7) and making use of (2.9) - (2.12) results in the following

\[y_i^{(\rho_1)} = \nabla y_i a(\tilde{x},t) - \nabla y_i B(\tilde{x},t) D^{*-1}(\tilde{x},t)a^*(\tilde{x},t) \]

\[+ \nabla y_i B(\tilde{x},t) D^{*-1}(\tilde{x},t)w + \frac{\partial y_i}{\partial t} \]

\[= \nabla y_i a(\tilde{x},t) - D_i^*(\tilde{x},t) D^{*-1}(\tilde{x},t)a^*(\tilde{x},t) + D_i^*(\tilde{x},t) D^{*-1}(\tilde{x},t)w \]

\[+ \frac{\partial y_i}{\partial t} (\rho_i - 1) \]
\[
\begin{align*}
\left(\rho_i\right)_{y_i} &= \nabla y_i \left(\rho_i-1\right) a(\bar{x},t) + \frac{\partial y_i}{\partial t} - a_i^*(\bar{x},t) + w_i \\
\left(\rho_i\right)_{y_i} &= w_i \text{ for } i = 1, 2, \ldots, m \quad (2.13)
\end{align*}
\]

and the system is decoupled by Definition 1. Thus \(f(\bar{x},t) = f^*(\bar{x},t) \)
and \(G(\bar{x},t) = G^*(\bar{x},t) \) decouple the system in (2.3).

Proof of Necessity

Suppose that there exists an \(f^*(\bar{x},t) \) and \(G^*(\bar{x},t) \) that
decouple (2.3) on a set of points \(\bar{x} \), over the interval \((t_0 \leq t \leq t_f) \).
To be decoupled the last term in \(y_i \) must depend only on \(w_i \), that is
\[
\begin{align*}
\nabla y_i B(\bar{x},t)G(\bar{x},t)\bar{w} &= w_i
\end{align*}
\]
which is by (2.9)
\[
D^*_i(\bar{x},t)G(\bar{x},t)\bar{w} = w_i
\]
Thus
\[
D^*_i(\bar{x},t)G(\bar{x},t) = e_i
\]
where \(e_i = [00\ldots010\ldots00] \)
the "1" being in the \(i \)'th column.
Suppose \(D^*(\bar{x},t) \) is singular for some \(\bar{x} \in H \) over \((t_0 \leq t \leq t_f) \) then either

\[
D_i^*(\bar{x},t) = \sum_{j \neq i} d_j D_j^*(\bar{x},t) \quad \text{for some } i, i=1,\ldots, m, \quad (2.14)
\]

not all \(j \)

or \(D_i^*(\bar{x},t) = 0 \) for some \(i, i=1,\ldots, m \) \((2.15) \)

If (2.14) is true then

\[
D_i^*(\bar{x},t)G(\bar{x},t)\bar{w} = \sum_{j \neq i} d_j D_j^*(\bar{x},t)G(\bar{x},t)\bar{w}
\]

\[
= \sum_{j \neq i} d_j w_j \neq w_i
\]

and \(y_i \) does not depend on \(w_i \) alone so the system is not decoupled; a contradiction.

If (2.15) is true then

\[
D_i^*(\bar{x},t)G(\bar{x},t)\bar{w} = 0
\]

and \(y_i \) has no dependence on \(w_i \) so the system is not decoupled; a contradiction.

Therefore, \(D^*(\bar{x},t) \) must be nonsingular everywhere on \(H \).

The space \(H \) over which the system (2.3) can be decoupled is uniquely defined as those values of the state vector \(\bar{x} \) and time \(t \) for which \(\det D^*(\bar{x},t) \neq 0 \). If \(\det D^*(x,t)=0 \), then the entries of \(G(\bar{x},t) \) become infinite requiring infinite values for the inputs \(\bar{u} \) in Equation (2.2).
From (2.9), it is apparent that $D^*(\bar{x}, t)$ is not a function of the feedback vector $f(\bar{x}, t)$ making the region in the state space H over which the system can be decoupled $f(\bar{x}, t)$ invariant. Thus it may be possible to choose entries of $f(\bar{x}, t)$ to obtain a desired set of closed loop system dynamics.

2-B.3 A Synthesis Procedure - Class 1

Procedures for decoupling the system and specifying the system closed loop dynamics are developed. Using these procedures the system may be made to exhibit input-output transfer relationships which are linear or nonlinear depending on the choice of feedback.

We can generalize (2.10) by letting

$$G(\bar{x}, t) = \Lambda D^{-1}(\bar{x}, t) \quad (2.16)$$

where Λ is a matrix of gain constants acting on the input vector \bar{w} and is given by

$$\Lambda = \begin{bmatrix}
\xi_1 & 0 & \cdots & 0 \\
0 & \xi_2 & \cdots & 0 \\
0 & 0 & \cdots & \xi_m
\end{bmatrix}_{m \times m} \quad (2.17)$$

Since Λ is diagonal and nonsingular (2.16) still decouples the system by making each output component y_i depend on $\xi_i w_i$.
Similarly we can generalize (2.11) to give

\[f(\bar{x},t) = D^* (\bar{x},t) \left[r(\bar{x},t) - a^*(\bar{x},t) \right] \] \hspace{1cm} (2.18)

where \(r(\bar{x},t) \) is an \(mx1 \) vector function of \(\bar{x} \) and \(t \).

From the previous proof of sufficiency, we know that \(f(\bar{x},t) \) given by (2.18) will map in the \(i \)'th rows of \(r(\bar{x},t) \) and \(a^*(\bar{x},t) \). The entries of \(a^*(\bar{x},t) \) have already been chosen to decouple the system. Now the row entries of \(r(\bar{x},t) \) can be chosen to specify the system closed loop dynamics. One possibility is to choose the \(i \)'th row of \(r(\bar{x},t) \) so that it contains, in linear progression, each of the derivatives of the \(i \)'th output variable \(y_i \) up to the \(\rho_i \)'th derivative. This would result in linear input-output transfer relationships. The following equation illustrates this choice:

\[r_i(\bar{x},t) = m_{i0}c_i(\bar{x},t) + \sum_{v=1}^{(\rho_i-1)} m_{iv} \left\{ \nabla y_i^{(v-1)} a(\bar{x},t) + \frac{\partial y_i^{(v-1)}}{\partial t} \right\} \]

for \(i = 1, 2, \ldots, m \) \hspace{1cm} (2.19)

where the \(m \)'s are suitably chosen constants. By definition the series shall terminate if the lower index is greater than the upper one. Note from (2.7) that each term in the series represents a derivative of \(y_i \). Combining (2.7), (2.17) and (2.19) gives for the \(\rho_i \)'th derivative of \(y_i \)
\[
\begin{align*}
(\rho_i)_{\scriptscriptstyle{y_i}} & = m_0 y_i + m_1 y_i^{(1)} + \ldots + m_i (\rho_i^{-1})_{\scriptscriptstyle{y_i}} + \zeta_i w_i \\
\text{for } i = 1, 2, \ldots, m
\end{align*}
\]

thus \(f(\vec{x},t) \) and \(G(\vec{x},t) \) decouple the system of (2.3) and \(\sum_{i=1}^{m} \rho_i \) of the system closed loop poles can be specified.

It is apparent from (2.20) that \(r(\vec{x},t) \) as given by (2.19) and \(\Lambda \) by (2.17) result in linear input-output transfer relationships. A more general form would be

\[
\begin{align*}
\rho_i(\vec{x},t) & = g(y_i, y_i^{(1)}, \ldots, y_i^{(\rho_i-1)}) \\
\text{for } i = 1, 2, \ldots, m
\end{align*}
\]

and

\[
\Lambda(\vec{x},\vec{w},t) = \text{diag}[\zeta_1(y_1, \ldots, y_1^{(\rho_1-1)} w_1, t), \ldots, \zeta_m(y_m, \ldots, y_m^{(\rho_m-1)} w_m]
\]

which, depending on the choice of \(r_i \) and \(\zeta_i \), would make the system have a specified nonlinear relationship between the input \(w_i \) and output \(y_i \).

These results for Class 1 systems are equally applicable to linear systems with constant and time-varying coefficients.

A word of caution should be injected here concerning system realizability. Equation (2.20) does not completely represent
the decoupled system but only the input-output relationships. Since the output function \tilde{y} is a function of the state \tilde{x}, then in general the closed loop equation for \tilde{x} in (2.3) must be examined for stability and controllability before the input-output relationships of (2.20) can be guaranteed. This will be discussed in more detail later in the thesis.

A numerical example of the decoupling procedure for a Class 1 system is given in Appendix B. It serves to illustrate the details of applying the decoupling and synthesis procedures. Note that in this example even though the closed loop decoupled system input-output relationships are linear, the input-state relationships are not.

2-C Class 2 Systems

This class of systems is similar to Class 1 except that the terms in the differential equations involving the forcing functions or input vector \bar{u} are nonlinear.

2-C.1 Definitions and Notations - Class 2

This class of systems can be represented as

$$\dot{x} = a(x,t) + b(x,\bar{u},t)$$

$$\tilde{y} = c(x,t)$$

(2.23)
where \(b(\bar{x}, \bar{u}, t) \) is an \(n \) vector function of \(\bar{x}, \bar{u} \) and \(t \). All other quantities are as defined for Class 1 systems.

The system of (2.23) will decouple by solving for all the components of the input vector \(\bar{u} \) in the following general vector feedback equation:

\[
d(\bar{x}, \bar{u}, t) = f(\bar{x}, t) + \bar{w} \tag{2.24}
\]

where \(d(\bar{x}, \bar{u}, t) \) is an \(m \) vector function of \(\bar{x}, \bar{u} \) and \(t \), \(f(\bar{x}, t) \) is an \(m \) vector function of \(\bar{x} \) and \(t \) and \(\bar{w} \) is the new input vector as in (2.3). In general the terms in \(d(\bar{x}, \bar{u}, t) \) containing the components of \(\bar{u} \) will be nonlinear.

Unlike Class 1 systems, we cannot directly combine (2.23) and (2.24) to eliminate \(\bar{u} \) and obtain an expression for the closed loop system similar to (2.3). The reason for expressing the feedback equation by (2.24) is that we want to decouple the system by state variable feedback thus eliminating \(\bar{u} \) completely from the equations for the closed loop system response. It should be pointed out that another approach is possible.

If \(b(\bar{x}, \bar{u}, t) \) was written instead as \(B(\bar{x}, \bar{u}, t) \bar{u} \) in (2.23) and if the feedback equation of (2.24) was written as

\[
\bar{u} = f(\bar{x}, \bar{u}, t) + G(\bar{x}, \bar{u}, t)\bar{w} \tag{2.25}
\]

then the equations could be combined, as for Class 1 systems, to obtain the equations for the closed loop system. Conditions for
decoupling could then be developed in almost exactly the same manner as they were for Class 1 systems.

The main reason for not adopting this approach is that by this approach we introduce a set of hidden variables, the $u_i e \bar{u}$, into the internal dynamics of the closed loop system. This introduces further complications in terms of the stability of the decoupled system.

The procedure to determine the entries of $d(\bar{x}, \bar{u}, t)$ and $f(\bar{x}, t)$ which will decouple the system of (2.23) follows along somewhat the same lines as for Class 1 systems. The i'th output variable y_i is differentiated until the input vector \bar{u} is introduced. A definition similar to Definition 2 is given to generalize the differentiation process.

Definition 3

Let $\rho_1, \rho_2, \ldots, \rho_m$ be given by

$$\rho_i = \text{smallest } a \text{ such that } \nabla y_i^{(a-1)} b(\bar{x}, \bar{u}, t) \neq 0$$

for $a = 1, 2, \ldots, n$

$$\rho_i = n \text{ if } \nabla y_i^{(a-1)} b(\bar{x}, \bar{u}, t) = 0 \text{ for all}$$
Figure 6 Representation of a Class 2 Nonlinear Decoupled System
2-C.2 Decoupling Procedure - Class 2

Differentiating the i'th output y_i of the system of

(2.23) gives

$$y_i = c_i(\bar{x}, t)$$

$$y_i^{(1)} = \nabla y_i \bar{x} + \frac{\partial y_i}{\partial t} = \nabla y_i \{ a(\bar{x}, t) + b(\bar{x}, \bar{u}, t) \} + \frac{\partial y_i}{\partial t}$$

$$y_i^{(1)} = \nabla y_i a(\bar{x}, t) + \frac{\partial y_i}{\partial t}$$

$$y_i^{(2)} = \nabla y_i^{(1)} a(\bar{x}, t) + \frac{\partial y_i^{(1)}}{\partial t}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$(\varphi_i - 1) y_i = \nabla y_i a(\bar{x}, t) + \frac{\partial y_i}{\partial t}$$

$$(\varphi_i - 2) y_i = \nabla y_i a(\bar{x}, t) + \frac{\partial y_i}{\partial t}$$

$$(\varphi_i) y_i = \nabla y_i a(\bar{x}, t) + \nabla y_i b(\bar{x}, \bar{u}, t) + \frac{\partial y_i}{\partial t}$$

(2.26)

Insight into the choice of $d(\bar{x}, \bar{u}, t)$ and $f(\bar{x}, t)$ to achieve
decoupling is obtained by inspection of the φ_i'th derivative of y_i
in (2.26). If the i'th row of $d(\bar{x}, \bar{u}, t)$ is chosen to be the term
containing \bar{u} and if the i'th row of $f(\bar{x}, t)$ is chosen to cancel the
remaining terms then the result should be an equation relating the
i'th output y_i to the i'th input, w_i. This motivates the following
theorem.
Theorem 2

There exist m dimensional vectors \(d^*(\bar{x}, \bar{u}, t) = d(\bar{x}, \bar{u}, t) \) and \(f^*(\bar{x}, t) = f(\bar{x}, t) \) which decouple the system of (2.24) by state variable feedback if the Jacobian \(J_d(\bar{x}, \bar{u}, t) \neq 0 \) on a space \(H \). The space \(H \) is the set of points \(x \) and \(u \) over time interval \((t_0 < t < t_f) \), for which \(J_d(\bar{x}, \bar{u}, t) \neq 0 \).

\[
\begin{vmatrix}
\frac{\partial d_1(\bar{x}, \bar{u}, t)}{\partial u_1} & \cdots & \frac{\partial d_1(\bar{x}, \bar{u}, t)}{\partial u_m} \\
\frac{\partial d_m(\bar{x}, \bar{u}, t)}{\partial u_1} & \cdots & \frac{\partial d_m(\bar{x}, \bar{u}, t)}{\partial u_m}
\end{vmatrix}
\]

where \(J_d(\bar{x}, \bar{u}, t) = \) (2.27)

To decouple the system, \(d^*(\bar{x}, \bar{u}, t) \) and \(f^*(\bar{x}, t) \) are

\[
d^*(\bar{x}, \bar{u}, t) = \begin{bmatrix}
(\rho_1-1) \\
\nabla y_1 b(\bar{x}, \bar{u}, t)
\end{bmatrix} \\
\begin{bmatrix}
(\rho_2-1) \\
\nabla y_2 b(\bar{x}, \bar{u}, t)
\end{bmatrix} \\
\vdots \\
\begin{bmatrix}
(\rho_m-1) \\
\nabla y_m b(\bar{x}, \bar{u}, t)
\end{bmatrix}
\]

\[m \times 1 \] (2.28)
and \(f^*(\bar{x}, t) = -a^*(\bar{x}, t) = \)

\[
\begin{bmatrix}
-\nabla y_1^{(p_1-1)} a(\bar{x}, t) - \frac{\partial y_1^{(p_1-1)}}{\partial t} \\
-\nabla y_2^{(p_2-1)} a(\bar{x}, t) - \frac{\partial y_2^{(p_2-1)}}{\partial t} \\
\vdots \\
-\nabla y_m^{(p_m-1)} a(\bar{x}, t) - \frac{\partial y_m^{(p_m-1)}}{\partial t}
\end{bmatrix}
\]

\text{(2.29)}

Proof:

With \(d^*(\bar{x}, \bar{u}, t) = d(\bar{x}, \bar{u}, t) \) and \(f^*(\bar{x}, t) = f(\bar{x}, t) \) and using (2.28) and (2.29), the \(i \)'th component of (2.24) can be written as

\[
\nabla y_i^{(p_i-1)} b(\bar{x}, \bar{u}, t) = -\nabla y_i^{(p_i-1)} a(\bar{x}, t) - \frac{\partial y_i^{(p_i-1)}}{\partial t} + w_i
\]

\text{(2.30)}

Combining (2.30) and the equation for the \(p_i \)'th derivative of \(y_i \) in (2.26) gives

\[
y_i^{(p_i)} = w_i \quad \text{for } i=1, 2, \ldots, m
\]

\text{(2.31)}

Thus \(d(\bar{x}, \bar{u}, t) \) and \(f(\bar{x}, t) \) as given by (2.27) and (2.28) are sufficient to decouple the system of (2.23).
The vector feedback equation of (2.24) constitutes a set of \(m \) nonlinear algebraic equations. To decouple the system by nonlinear state variable feedback it is necessary to solve (2.24) for all the components of \(\bar{u} \). A sufficient condition for a solution set to exist is that \(J_d(\bar{x}, \bar{u}, t) \neq 0 \).

The condition \(J_d(\bar{x}, \bar{u}, t) \neq 0 \) is sufficient only for the existence of a set of solutions. Since decoupling in the practical sense can only be achieved if the solutions to (2.24) for all the components of \(\bar{u} \) are real and finite, the space \(H \) is redefined to be

\[
H = \left\{ \bar{x} : J_d(\bar{x}, \bar{u}, t) \neq 0, \, t_0 \leq t \leq t_f, \, \bar{u} \in \mathbb{R}^m, \, |\bar{u}| < \infty \right\} \tag{2.32}
\]

where \(\mathbb{R}^m \) is the real \(m \) space.

Note that Class 2 systems contain Class 1 systems and linear time-invariant systems since \(J_d(\bar{x}, \bar{u}, t) = \det D^*(\bar{x}, t) \) and \(J_d(\bar{x}, \bar{u}, t) = \det B^* \) where \(B^* \) is defined in Reference 9.

2-C.3 Synthesis Procedure - Class 2

The synthesis procedure for Class 2 systems is similar to that for Class 1 systems. Let

\[
f(\bar{x}, t) = r(\bar{x}, t) - a^*(\bar{x}, t) \tag{2.33}
\]

and the input vector \(\bar{w} \) in (2.24) be premultiplied by the diagonal
matrix Λ. Thus for linear decoupling the vector feedback equation which must be solved for all the components of \bar{u} becomes

$$d(\bar{x},\bar{u},t) = r(\bar{x},t) - a^*(\bar{x},t) + \Lambda \bar{w}$$

(2.34)

Since (2.34) is nonlinear in \bar{u}, the space H is not necessarily invariant with respect to $f(\bar{x},t)$ implying that, unlike Class 1 systems, the region over which the system can be decoupled is influenced by the entries of $f(\bar{x},t)$. Thus a choice of $r(\bar{x},t)$ in (2.33) to achieve good dynamic response could greatly reduce the region of effectiveness of the control law.

For a nonlinear decoupled system, the matrices in the synthesis procedure would be given by (2.21) and (2.22).

A numerical example illustrating the details in applying the decoupling and synthesis procedures to a Class 2 system are contained in Appendix B.

2-D Extension and Modification of the Theory

In this section feedback control laws are derived for the self-regulation of nonlinear time-varying systems. This is accomplished by a direct extension of the results of the previous two sections. In addition, alterations of the theory to include practical considerations such as system stability and saturation of inputs are discussed.
2-D.1 Regulatory Feedback Control

Considering first the Class 1 systems defined previously in Section 2-B and given by

\[\dot{x} = a(x,t) + B(x,t)u \]
\[y = c(x,t) \]

It is desired to develop a feedback control law which will automatically regulate the output \(\bar{y} \), to some prescribed values, \(\bar{y}_d \), where \(\bar{y}_d \) is an \(m \) dimensional vector whose entries must be continuously differentiable functions of time. This regulatory control will be achieved using state variable feedback of the form

\[\bar{u} = f(x, \bar{y}_d, t) \quad (2.35) \]

which combined with the equations for the Class 1 systems results in the closed loop system

\[\dot{x} = a(x,t) + B(x,t)f(x, \bar{y}_d, t) \]
\[\bar{y} = c(x,t) \quad (2.36) \]

Define as an error vector the difference between the actual and desired system outputs due to a disturbance in the states of the system

\[\bar{e} = \bar{y} - \bar{y}_d \quad (2.37) \]
Applying Definition 2, the i'th component of the error is differentiated as before up to the p_i'th derivative

$$e_i = c_i(x, t) - y_{di}$$

$$e_i^{(1)} = \nabla y_i a(x, t) + \nabla y_i B(x, t)f(x, t) + \frac{\partial y_i}{\partial t} - y_{di}$$

$$e_i^{(1)} = \nabla y_i a(x, t) + \frac{\partial y_i}{\partial t} - y_{di} = y_i - y_{di}$$

$$e_i^{(2)} = \nabla y_i^{(1)} a(x, t) + \frac{\partial y_i^{(1)}}{\partial t} - y_{di}$$

$$\vdots$$

$$e_i^{(p_i-1)} = \nabla y_i^{(p_i-2)} a(x, t) + \frac{\partial y_i^{(p_i-1)}}{\partial t} - y_{di}$$

$$e_i^{(p_i-1)} = \nabla y_i^{(p_i-1)} a(x, t) + \frac{\partial y_i^{(p_i-1)}}{\partial t} - y_{di} + \nabla y_i^{(p_i-1)} B(x, t)f(x, \bar{y})$$

(2.38)

It is desired to choose an $f(x, \bar{y}_d, t)$ so that the error vector will converge to zero from any initial state driving the system to the desired output levels. One possibility is to choose a form of feedback which would make each of the error terms behave as a linear stable homogeneous differential equation. This can be achieved by the following choice for $f(x, \bar{y}_d, t)$ based on Theorem 1 and the synthesis procedure for Class 1 systems:

$$f(x, \bar{y}_d, t) = D^*(x, t) \left[r(x, t) - a^*(x, t) \right]$$

(2.39)
where \(D^*(\bar{x}, t) \) and \(a^*(\bar{x}, t) \) are given by (2.9) and (2.12) and the \(i \)th component of \(r(\bar{x}, t) \) is given by

\[
 r_i(\bar{x}, t) = m_{i0} \left[c_i(\bar{x}, t) - y_{di} \right] + \sum_{v=1}^{(v-1)} \sum_{\nu=1}^{(\nu-1)} m_{iv} \nu_{\nu} a(\bar{x}, t) - y_{di} \\
 + y_{di} \\
 \text{for } i = 1, 2, \ldots, m
\]

This results in the following

\[
 e_i = m_{i0}e_i + m_{i1}e_i + \ldots + m_{i(\rho_i-1)}e_i
\]

By choosing the \(m \)'s \(< 0 \) in (2.41), the feedback control will tend to drive the error to zero. The rate at which this occurs will depend on the choice of \(m \)'s. Note that for the error to converge the rate of variation in \(\dot{y}_d \) would have to be small compared to the system dynamics. The procedure was applied to develop a control policy for the regulation of nonlinear population dynamics. Development of a regulatory feedback control law for Class 2 systems would proceed along similar lines according to the results of Section 2-C. A regulated Class 1 system is depicted in Figure 7.

2-D.2 Stability of Decoupled Systems

From the synthesis procedure given in Section 2-B.3 it
Figure 7 Representation of a Nonlinear Regulated System
is apparent that the decoupled system input-output relationships can be made linear by proper choice of m's. This is particularly evident in Equation (2.20). As previously mentioned, these results are somewhat misleading. The output vector \(\tilde{y} \) is some combination of the internal states \(\tilde{x} \) of the system. The states are in turn affected by \(\tilde{w} \) and there is no guarantee that these closed loop input-state relationships will be stable. A similar problem was encountered in the decoupling of linear systems. It was shown that if, and only if the open loop system was both controllable and observable could the system be decoupled and the input-output dynamics realized independent of the input-state relationships.\(^{(42-44)}\)

A system is said to be controllable if all the states \(\tilde{x} \) of the system can be transferred from any initial state \(\tilde{x}^0 \) to any final state \(\tilde{x}^f \) in a finite time by some control input \(\tilde{u} \). In other words, the control input must affect each state variable. A system is said to be observable if every state \(\tilde{x}^0 \) can be determined from measurements of the output vector \(\tilde{y} \) over a finite time interval.\(^{(45)}\)

Conditions enabling the determination of controllability and observability of nonlinear systems are scarce and those that do exist are cumbersome to apply.\(^{(46-50)}\) This lack of generality is not overly restrictive but requires, as with linear systems which are not controllable and observable, that the input-state closed loop dynamics and stability be investigated as a special case for each system. For Class 1 systems this means examining the expres-
sion for \(\dot{x} \) in (2.3). For Class 2 systems, the expression for \(\dot{x} \) given in (2.19) is examined after the elimination of \(\bar{u} \) by solving the vector feedback equation. If the closed loop input-state relationships are linear, as in Example 2, Appendix B, then the well known techniques for determining the stability of linear multi-variable systems can be used.\(^{(45-51)}\) On the other hand, if as in Example 1, Appendix B, the input-state relations are nonlinear and the system is not controllable, then determining the closed loop system dynamics and stability will be more difficult. Fortunately the DSRV decoupled system dynamics are both linear and controllable.

It should be pointed out that to ensure system input-state stability, it could be necessary to place restrictions on the m's chosen in the synthesis procedure.

2-D.3 Other Constraints

The decoupling theory defines regions in the state space where the system cannot be decoupled using the procedures outlined. The reason is that some of the inputs \(u_i \) required to ensure decoupling are infinite and/or are not real (contained in a complex subspace). In the development of the theory the input vector \(\bar{u} \) was assumed unbounded as long as it remained finite. In practice, the system inputs or forcing functions have bounded magnitudes considerably less than infinity. Therefore the actual region over which decoupling is possible in the practical sense may be substantially
reduced over that defined by the theory.

The above considerations, together with the stability considerations of the previous section, can be formulated as a set of constraint relationships. These serve to define the physically realizable region in the state space over which the decoupling control law applies. The constraint relationships are as follows:

The preceding decoupling theory gives the feedback control law which decouples the system. It can be expressed generally as

$$\bar{u} = g(\bar{x}, \bar{w}, M, t) \tag{2.42}$$

where M is the set of coefficients (m's) which determine the decoupled system dynamics as given in the synthesis procedure.

The region over which a system can be decoupled is constrained by the theory to the space H which is defined by the set of \bar{x} and t for which $\det D^*(\bar{x}, t) \neq 0$ for Class 1 systems and by (2.32) for Class 2 systems.

As indicated previously in this section, the space H may be further constrained by physically bounded input magnitudes which can be written as

$$K_v \leq \bar{u} \leq K_u \tag{2.43}$$

where K_v and K_u are m dimensional vectors whose entries are constants representing the lower and upper bounds respectively of the set of acceptable or physically realizable inputs.
To implement the preceding, a set of \(m \)'s would have to be selected to give the desired input-output response characteristics while simultaneously satisfying the stability constraints of Section 2-D.2. A numerical search routine would then be employed, varying \(\bar{x}, \bar{w} \) and \(t \) over the range of interest, to determine the region in the state space over which the feedback control law applies. It may be necessary to relax or reduce the closed loop system speed of response by choosing different \(m \)'s thus increasing the region \(H \) over which the decoupling control law is effective.

2-D Summary

Conditions for decoupling two classes of nonlinear systems have been developed. Necessary and sufficient conditions for decoupling a class of nonlinear time-varying systems in which the forcing functions appeared linearly were developed (Class 1). Sufficient conditions were derived for decoupling a larger class of systems in which the inputs appeared nonlinearly (Class 2). Decoupling in each class was achieved by nonlinear feedback of the states \(\bar{x} \) of the system. For both classes of systems a synthesis procedure was provided for the specification of the system closed loop dynamics. The results were extended to develop feedback control laws for the regulatory control of these nonlinear systems.

The theory was derived using basic principles of differentiation and matrix manipulations. The ability to decouple Class 1 systems was shown to depend on the invertibility of a matrix.
D^{*}(\ddot{x},t). For the inverse of this matrix to exist, the determinant must be nonzero. Values of the system states \ddot{x} over time t where this condition is not met serve to define regions in the state space where the system cannot be decoupled. In an analogous fashion, the decoupling of Class 2 systems by state variable feedback was shown to depend on the ability to solve a set of nonlinear algebraic equations for all the components of \dddot{u}. Decoupling is theoretically possible where these solutions are real and finite. The conditions for decoupling developed herein contain the previously developed results for linear systems, indicating they are a valid extension of the linear theory.

Two factors which could reduce the regions of applicability of the decoupling control laws were discussed. The first deals with system stability and realizability. It is emphasized that the system closed loop input-output dynamics given by the synthesis procedure do not completely describe the decoupled system. It is necessary to investigate the stability and controllability of the input-state relationships before definitive claims can be made concerning the input-output dynamics.

The second factor is the effect on the decoupled system of the potential saturation of the inputs \dddot{u}. The theory delineates those regions where the inputs become infinite. In practice, saturation of the inputs would occur at values considerably less than infinity. This will act to further reduce the system realizability. The system inputs defined by the decoupling feedback control law
are functions of several variables \((\bar{x}, m's, \bar{w})\). For complex higher order systems, a numerical search routine would have to be employed to ensure that the region of operation of these variables did not result in input saturation. Both of these aspects are potential areas of future research.
CHAPTER III
DECOUPLING THE MOTIONS OF A SUBMERSIBLE

3-A General

In this Chapter the theory developed in Chapter II for decoupling nonlinear systems is applied to decouple the motions of the DSRV. The theory is first applied to decouple the roll-surge equations to which linear theory has been applied. The saturation of inputs such as mercury pump rates is shown to adversely affect the decoupled system response. Methods for resolving these difficulties are provided. Using the theory, a set of general feedback equations are derived for complete decoupling of the dynamic motion in all six degrees of freedom.

The dynamic equations considered necessary for adequately describing the motion of a submersible, such as the DSRV, are a complex set of nonlinear differential equations. The equations of motion in all six degrees of freedom for the DSRV relative to an axis system located in the vehicle center of gravity are given in Appendix A. The numerical values of the various parameters and constants in these equations are also given in Appendix A.

3-B Decoupling the Roll and Surge Motions

One of the prime motivating factors in developing a theory for decoupling nonlinear systems was the failure of the
linear theory to decouple a reduced or simplified set of roll-surge equations. The nonlinear theory of Chapter II is applied to those same equations in this section.

A number of assumptions are used to simplify Equations A.1 and A.2 of Appendix A which describe the roll and surge motions respectively. These assumptions are listed below:

1. The vehicle is restricted to motion in the roll and surge directions. Thus the terms for motion in all other degrees of freedom are zero.

2. Only forward motion in the surge direction is considered. Describing reverse motion requires changing some of the coefficients in the equations according to Table 9 in Appendix A.

3. The propeller is constrained to rotate in only the direction which produces a forward surge motion of the submersible. Thus the propeller force X_p in Equations A.1 and A.2 are given by Equation A.16. A different equation would be necessary to predict the force resulting from rotation in the opposite direction. This assumption and the preceding one are not particularly restrictive since the feedback control laws could be adapted to take into account these changes in the mathematical model.

4. The mercury roll control pump and main propeller dynamics are not included in the equations. The speed of response of the propeller and mercury shift system to input commands
are assumed very fast compared to the vehicle dynamics.

5. Mercury roll weight and main propeller speed are assumed to have unbounded magnitudes.

Assumptions 4 and 5 are not completely valid for all maneuvers. These assumptions will be considered in detail later in this chapter.

Under these assumptions, the roll-surge dynamic equations of motion can be written in state vector form as a Class 2 system

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\dot{x}_3
\end{bmatrix} =
\begin{bmatrix}
-4.55(10)x_1^3 \\
x_3 \\
-.444 \sin x_2 - .0443x_1x_3 - .781x_3x_3 - .958(10)x_1^4
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
-.0129x_1u_1 + .168u_1^2 \\
0 \\
-1.54(10)x_1u_1 + .0125u_1^2 + 1.05(10)x_1^4 \cos x_2u_2
\end{bmatrix}
\]

(3.1)

where \(x_1 = \) surge velocity (ft/sec)

\(x_2 = \) roll angle (radians)

\(x_3 = \) roll rate (radians/sec)

\(u_1 = \) main propeller speed (revs/sec)

\(u_2 = \) moment due to displaced weight of mercury (ft - lbs)
The outputs of interest are surge velocity and roll angle.

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix} =
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix}
\]

(3.2)

The next step is to apply the decoupling theory for Class 2 systems derived in Chapter II to the roll-surge equations. A representative example illustrating how the theory is applied to Class 2 systems is contained in Appendix B. Application of the theory to the roll-surge equations closely parallels this example. The objective is to generate the components of a vector feedback equation

\[
d(\bar{x}, \bar{u}, t) = r(\bar{x}, t) - a^*(\bar{x}, t) + \Lambda \bar{w}
\]

(3.3)

and to solve this equation for all the components of \(\bar{u} \).

Using these solutions for \(\bar{u} \) as inputs results in a decoupled system and enable the closed loop input-output dynamics to be specified.

According to the theory, the components of \(a^*(\bar{x}, t) \) and \(d(\bar{x}, \bar{u}, t) \) are obtained by differentiating the outputs \(y_1 \) and \(y_2 \). This gives

\[
d(\bar{x}, \bar{u}, t) =
\begin{bmatrix}
 -0.0129 x_1 u_1 + 0.168 u_1^2 \\
 -1.54(10) x_1 u_1 + 0.0125 u_1^2 + 1.05(10) \cos x_2 u_2
\end{bmatrix}
\]
\[a^*(\bar{x}, t) = - \begin{bmatrix}
4.55(10) x_1^2 \\
.444 \sin x_2 + .0443 x_1 x_3 + .781 x_3 x_3 + .958(10) x_1^4
\end{bmatrix} \]

(3.5)

To be able to solve (3.3) for the components of \(\bar{u} \), it is a sufficient condition that the Jacobian \(J_d(\bar{x}, \bar{u}, t) \neq 0 \)

\[J_d(\bar{x}, \bar{u}, t) = \begin{bmatrix}
.336 u_1 + .0129 x_1 & 0 \\
.025 u_1 - 1.54(10) x_1 & 1.05(10) \cos x_2
\end{bmatrix} \neq 0 \]

Therefore a solution to the vector feedback equation exists.

The components for the feedback matrices \(r(\bar{x}, t) \) and which specify the form of the closed loop transfer function are chosen to give linear input-output transfer relationships according to the synthesis procedure of Chapter II. This gives

\[r(\bar{x}, t) = \begin{bmatrix}
m_{10} x_1 \\
m_{20} x_2 + m_{21} x_3
\end{bmatrix} \]

(3.6)

and

\[\Lambda = \begin{bmatrix}
\zeta_1 & 0 \\
0 & \zeta_2
\end{bmatrix} \]

(3.7)
Without affecting the results, the constants ζ_1 and ζ_2 can be set equal to unity.

Equations (3.4) to (3.7) give the following two non-linear algebraic equations for the components of the vector feedback equation (3.3):

\[
-.0129x_1^u + .168u_1^2 = m_{10}x_1 + 4.55(10)^{-3}x_1^2 + w_1 \tag{3.8}
\]

\[-1.54(10)x_1^u + .0125u_1^2 + 1.05(10) \cos x_2^u + 1.05(10) \sin x_2 + .043x_1^3 + .781x_3^3 + .948(10)x_1^2 + w_2 \tag{3.9}
\]

To decouple the roll-surge system using only measurements of surge velocity x_1, roll angle x_2 and roll rate x_3, (3.8) must be solved for the main propeller speed u_1 and mercury moment u_2. The solution for u_1 is given

\[
u_1 = \frac{.0129x_1^u + \sqrt{(0.0129x_1)^2 + 0.672(m_{10}x_1 + 4.55(10)^{-3}x_1^2 + w_1)}}{.336}
\]

This result can be substituted into (3.8) to give a solution for u_2.

Note that the input u_1 must be real to have any physical meaning and therefore decouple the system. This requires the
quantity under square root sign in (3.9) to be equal to a greater than zero.

Examination of (3.9) also reveals that there are two possible roots for \(u_1 \). Since the main propeller is restricted to rotation in the positive direction by a previous assumption, the positive root is chosen. Note, however, that there will be two positive roots if the quantity under the square root (3.9) is less than \(0.0129x^1 \), thus generating two possible values for propeller speed \(u_1 \).

This apparent anomaly is due to an inaccuracy in Equation (A.16) for the main propeller force \(X_p \) given by

\[
X_p = 775u_1^2 - 58x_1u_1 - 3.8x_1^2
\]

(3.10)

This equation has a minimum which is a function of \(x_1 \) and \(u_1 \) shown in Figure 8. Because this minimum does not lie along the \(x_1 \) axis, a region exists where the propeller force is bivalued indicating that there are two propeller speeds which will produce the same propeller force. This is a situation which physically cannot exist and is therefore due to an inaccuracy in the describing equation (3.10) at very low propeller speeds. For these speeds the largest positive root is used.

The system closed loop input-state relationships are obtained by substituting the solutions for \(u_1 \) and \(u_2 \) into (3.1)
$X_p = \text{Propeller Thrust (lbs)}$

Maximum Propeller Speed

$X_p = 1300$

$X_p = 700$

$X_p = 300$

$X_p = 100$

$X_p = 0$

$X_p = -100$

$X_p = \text{minimum}$

Figure 8 Propeller Force Versus Propeller Speed and Surge Velocity
giving
\[\begin{align*}
\dot{x}_1 &= m_{10} x_1 + w_1 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= m_{20} x_2 + m_{21} x_3 + w_2
\end{align*} \]
(3.11)

and the input-output transfer relations from the decoupling theory are
\[\begin{align*}
\dot{y}_1 &= m_{10} y_1 + w_1 \\
\dot{y}_2 &= m_{20} y_2 + m_{21} \dot{y}_2 + w_2
\end{align*} \]
(3.12)

The closed loop system is obviously linear and choosing the m's \(\leq 0 \) in (3.11) and (3.12) give a stable system which is completely controllable and observable.

Simulations were conducted on the digital computer using the IBM Continuous System Modelling Program (52) to verify the preceding conclusions. Printouts of all the computer programs are contained in Appendix C. The decoupling feedback control law was applied to the roll-surge system described by (3.1). The submersible was accelerated from rest a number of times using different step inputs to the surge command \(w_1 \). This type of maneuver produces the maximum amount of surge to roll coupling in the open loop system.

The results of these simulations are shown in Figures 9 and 10. The open loop or coupled system response to surge input
is shown for comparison. Also shown is the system response using feedback control laws based on the linear theory. The nonlinear theory exactly decoupled the system, as predicted, compared with the linear theory which showed only a marginal improvement over the original coupled system response. (See Figure 10). The m's used in the simulation were selected to give closed loop dynamics approximately equivalent to the coupled system. This is evident in comparing the rise time of the surge velocity of the coupled system and decoupled system in Figure 9. It should be noted that input u_1 was at all times real valued.

3-C Input Constraints

Two assumptions were made in the previous section concerning the input vector \bar{u}. Briefly restated, these were:

1) The input dynamics have a negligible effect and can therefore be ignored.

2) The input magnitudes are unbounded.

In this section the validity of these two assumptions is examined for both the roll and surge inputs. Methods are presented for modifying the feedback control laws to resolve any adverse effects on the decoupled system. Computer simulations were conducted to determine the decoupling effectiveness of the modified feedback control laws with the input dynamics and bounds on inputs included.
Figure 9 Surge Response

Figure 10 Roll Response
3-C.1 The Surge Input

3-C.1.1 Surge Input Dynamic Constraints

For input u_1 corresponding to the main propeller speed, the assumption was that the input dynamics had only a small effect on the total system dynamics and therefore could be ignored. In effect, this is saying that the rise time of the propeller speed to a command input is much faster than the rise time of surge velocity to a change in propeller speed. The transfer function for the propeller speed is given as

$$ u_1(s) = \frac{(1 + .49s)u_{1c}(s)}{(1 + .7s)(1 + .245s)} \quad (3.13) $$

where $s = \text{Laplace operator}$

$u_{1c} = \text{command propeller speed}$

The rise time associated with this transfer function is small ($\approx .5$ sec) compared with the rise time of the surge velocity (≈ 17 sec) to a step change in propeller speed. Therefore, ignoring surge dynamics should not have an appreciable effect on the validity of the feedback control laws.

3-C.1.2 Surge Input Magnitude Constraints

Some of the constraints on main propeller speed u_1 were
derived previously, such as the requirement that the positive root to Equation (3.9) be chosen to ensure the values for \(u_1 \) are always positive. Another constraint is the physical limitation on the maximum speed of rotation of the main propeller to 1.64 rev/sec. Thus the positive root in Equation (3.9) becomes a constraint equation by setting \(u_1 = 1.64 \) giving

\[
\frac{.0129x_1 + \sqrt{(.0129x_1)^2 + .672(m_{10}x_1 + 4.55(10)^{-3}x_1^2 + w_1)}}{.336} \leq 1.64
\]

(3.14)

Also the input \(u_1 \) is required to be real valued to have any physical significance. This restricts the magnitude of the quantity under the square root sign to

\[
(.0129x_1)^2 + .672(m_{10}x_1 + 4.55(10)^{-3}x_1^2 + w_1) \geq 0
\]

(3.15)

The closed loop surge time constant \(m_{10} \) in (3.14) and (3.15) can be chosen to give a rise time approximately equal to the open loop system as was done for the simulations in Section 2-B \((m_{10} = -0.059) \). Constraint Equations (3.14) and (3.15) can then be used to map out the region of acceptable values of the new system input \(w_1 \) as a function of surge velocity \(x_1 \). This region is shown in Figure 11.

The upper boundary, described by setting \(u_1 = 1.64 \) in (3.14) is not restrictive in terms of desired system behavior
Figure 11 Decoupled System Surge Input as a Function of Surge Velocity
since \(w_1 = .47 \) gives the same maximum surge velocity as the open
loop system. The lower bounds are described by setting the quanti-
ty on the LHS of (3.15) equal to zero. The positive values of
\(w_1 \) reflect in part the inaccuracy of the equation describing
propeller force \(X_p \) discussed in Section 3-B since positive values
of \(u_1 \) produce minimum propeller force. The values are also influen-
ced by the choice of \(m_{10} \) as indicated in (3.15). Thus choosing \(w_1 \)
within the limits indicated by Figure 11 should satisfy all con-
straints thus yielding an acceptable decoupled linear system
response.

3-C.2 The Roll Input

3-C.2.1 Roll Input Dynamic Constraints

The input \(u_2 \) in the roll-surge equation (3.1) represents
the displaced weight of mercury causing a roll moment. Since this
mercury is controlled by pumping it from tank to tank, the actual
system input is the pumprate \(W_p \). The transfer function defining
the dynamic relationship between \(u_2 \) and \(W_p \) is given by

\[
 u_2(s) = \frac{W_p(s)}{s(1 + .083s)}
\]

(3.16)

The pole at \(s = -12 \) represents the time constant of the
pump and reflects the pump inertia. As with the main propeller
dynamics, it can be ignored without significantly affecting vehicle
response characteristics and (3.16) becomes
The decoupling theory gives the equation for the roll weight of mercury \(u_2 \) to dynamically decouple the system. As evident in (3.17) it will be necessary to differentiate the equation for \(u_2 \) to obtain the pump rate. Since \(u_2 \) is a function of \(\bar{x} \) and \(\bar{w} \) this becomes

\[
W_p = \frac{Du_2}{Dt} = \mathbf{v} u_2 \dot{x} + \mathbf{v}_w u_2 \dot{w}
\]

(3.18)

where \(\mathbf{v}_w = \left[\frac{\partial}{\partial w_1}, \frac{\partial}{\partial w_2}, \ldots, \frac{\partial}{\partial w_m} \right]_{1 \times m} \)

and \(\mathbf{v} \) has been defined previously.

The value for \(u_2 \) obtained by substituting the solution for \(u_1 \) into (3.8) is rather lengthy. The operations on \(u_2 \) described by (3.18) make it even more cumbersome. As a result these equations will not be written here.

3-C.2.2 Roll Input Magnitude Constraints

As indicated in (3.18), the equation for the pump rate \(W_p \) will contain derivatives of the input vector \(\bar{w} \). Thus rapid or
step changes in the inputs will have extremely large derivatives calling for large magnitudes of the pump rate. Since the pump rate is limited to 56.4 lbs/sec, saturation will likely occur reducing the effect of the decoupling feedback. This can be offset by limiting the rate change of the inputs \bar{w} using first order filters. A block diagram representation is shown in Figure 12.

![Block Diagram Representation of Input Rate Limiting Filters](image)

Figure 12 Block Diagram Representation of Input Rate Limiting Filters

3-C.3 Simulations

The roll-surge equations including all the input dynamics and bounds on the input magnitudes were programmed on the digital computer. The roll feedback was modified according to Equation (3.18). Simulations were conducted both with and without first order filters to compensate the inputs \bar{w}. The time constants t_{c1} and t_{c2} of the first order filters for the compensated case were set equal to 1.5.
The results for the surge and roll responses are shown in Figures 13 and 14. The maximum amount of coupling was reduced by about half for the uncompensated case as evident in comparing the roll response for this case with the coupled system response. By compensating the inputs, the amount of cross-coupling was practically eliminated. However, the use of input compensation causes a more sluggish response in the surge velocity to an input command as shown in Figure 13. Thus a tradeoff exists between minimizing the degree of cross-coupling while maintaining adequate response dynamics.

3-D Decoupling the Six Degrees of Freedom

In this section the complete set of equations describing submersible motion in all six degrees of freedom are considered. Some simplifying assumptions are made to enable these equations to be written in a general state vector form as a Class 2 system. The feedback control laws for decoupling the motions of the submersible during hovering are derived with the terms appearing as general functions.

Although the decoupling problem can be approached in degree of freedom pairs such as roll-surge, this method is satisfactory only for maneuvers involving those two degrees of freedom. Where much of the submersible motion involves only the pair and a relatively high degree of coupling exists, as in the roll-
Figure 13 Surge Response - System Input Constraints Included
Figure 14 Roll Response - System Input Constraints Included
surge motions, the approach is justified. For the case of "in-tight" hovering maneuvers where positioning accuracy is desired, dynamic motion in several degrees of freedom may be required. In this instance, simultaneous decoupling between all six degrees of freedom is required to ensure complete single degree of freedom control.

3-D.1 The Simplified Equations

A set of coupled nonlinear equations describing the DSRV motion in the six degrees of freedom is given in Appendix A. These equations can be simplified by dropping the acceleration terms contributing to the coupling in each degree of freedom. Although not strictly necessary, this eliminates the excessive algebraic manipulations otherwise required to express each equation in terms of only one derivative for state variable representation. The error introduced by dropping these terms is given in Table 1 as a maximum percentage of the principal control thrust or moment in each degree of freedom. The errors are small and could be represented as disturbance inputs.

By dropping the acceleration terms it is possible to write the equations of Appendix A directly in state variable form as a Class 2 system:
TABLE 1

MAGNITUDE OF ACCELERATION CROSS-COUPLING FORCES AS A PERCENTAGE OF MAIN CONTROL FORCE

<table>
<thead>
<tr>
<th>Degree of Freedom</th>
<th>Acceleration Coupling Terms</th>
<th>Percentage of Control Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surge</td>
<td>$\frac{m_y G^r}{m y G^q}$</td>
<td>$0.023%$ 0.53%</td>
</tr>
<tr>
<td>Sway</td>
<td>$\frac{(m z G + Y_p)^\dot{p}}{(m x G - Y_r)^\dot{r}}$</td>
<td>$1.26%$ 1.71%</td>
</tr>
<tr>
<td>Heave</td>
<td>$\frac{(m x G + Z_q)^\dot{q}}{m y G^p}$</td>
<td>$1.49%$ 1.53%</td>
</tr>
<tr>
<td>Yaw</td>
<td>$\frac{m y G^u}{(m x G - N_v)^\dot{v}}$</td>
<td>$0.43%$ 0.47%</td>
</tr>
<tr>
<td>Roll</td>
<td>$\frac{m y G^w}{(m z G + K_v)^\dot{v}}$</td>
<td>$0.35%$ 2.81%</td>
</tr>
<tr>
<td>Pitch</td>
<td>$\frac{m z G^u}{(m x G + M_w)^\dot{w}}$</td>
<td>$1.53%$ 0.52%</td>
</tr>
</tbody>
</table>
where

\[x_1 = u \text{(surge velocity)}, \quad x_2 = v \text{(sway velocity)}, \quad x_3 = w \text{(heave velocity)} \]
\[x_4 = \theta \text{(roll angle)}, \quad x_5 = \rho \text{(roll rate)}, \quad x_6 = \theta \text{(pitch angle)} \]
\[x_7 = q \text{(pitch rate)}, \quad x_8 = \psi \text{(yaw angle)}, \quad x_9 = r \text{(yaw rate)} \]

and

\((h_1(\vec{x}), h_2(\vec{x}), \ldots, h_6(\vec{x})) \) - represent all the terms involving only velocities and displacements in Equations (A.1) to (A.6) respectively.

\((X, Y, Z) \) - represent the terms containing the control forces or inputs in Equations (A.1) to (A.3)
(N,K,M) - represent the terms containing control moments in Equations (A.4) and (A.6).

The outputs we want to control independently are the surge, sway and heave velocities and the roll, pitch and yaw angles. Therefore the output vector \(\vec{y} \) is given by

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 y_5 \\
 y_6
\end{bmatrix}
= \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
 x_6
\end{bmatrix}
\]

(3.20)

3-D.2 Application of the Decoupling Theory

Leaving the input vector in the form of (3.19) and again applying the decoupling procedure for Class 2 systems as was done previously for the roll-surge equations, the following matrices are generated:
For a linear decoupled system:

\[
\begin{bmatrix}
X \\
y \\
Z \\
N \\
K \\
M
\end{bmatrix}
= a^*(\vec{x})
\]

and \(\Lambda = I \) (Identity Matrix)

This gives the following equations for the decoupling
vector feedback equation (3.3)

\[
\begin{align*}
X &= m_{10}x_1 - h_1(\vec{x}) + w_1 \\
y &= m_{20}x_2 - h_2(\vec{x}) + w_2 \\
Z &= m_{30}x_3 - h_3(\vec{x}) + w_3 \\
N &= m_{40}x_4 + m_{41}x_5 - h_4(\vec{x}) + w_4 \\
K &= m_{50}x_6 + m_{51}x_7 - h_5(\vec{x}) + w_5 \\
M &= m_{60}x_8 + m_{61}x_9 - h_6(\vec{x}) + w_6
\end{align*}
\]
To decouple in all six degrees of freedom by state feedback, it is necessary to solve for the control force inputs \(\mathbf{u} \), such as propeller speeds and pump rates, that make up the terms on the LHS of (3.21). These are lengthy nonlinear equations. Typical of these is the equation for the control force in the surge direction \(x \) (20):

For \(u_1 \geq 0, \quad x_1 \geq 0 \)

\[
X = 0.168u_1^2 - 1.54 \cdot 10^{-4} x_1 u_1 + g_1(x_2, x_3, x_7, x_9)u_1 + g_2(x_1)u_2^2 \\
+ g_3(x_1)u_3^2 + g_4(x_1)u_4^2 + g_5(x_1)u_5^2
\]

(3.22)

where \(u_1 \) = main propeller rotational speed.

\(u_2 \) = forward horizontal ducted thruster rotational speed.

\(u_3 \) = forward vertical ducted thruster rotational speed.

\(u_4 \) = aft horizontal ducted thruster rotational speed.

\(u_5 \) = aft vertical ducted thruster rotational speed.

and the \(g \)'s are nonlinear functions of the velocities.

A simplification of the terms on the LHS of (3.21) is possible if decoupling of the motions in only the hovering mode is considered. Hovering maneuvers for a submersible such as the DSRV, require a high degree of accuracy, particularly for rescue and recovery operations. It is during these types of maneuvers
that a decoupling control strategy would be of most benefit to the operator.

Since the hovering mode is essentially dynamic positioning in a very localized region, it is reasonable to assume that the velocities attained in any of the degrees of freedom will be quite small. This particularly is true for the translational velocities. On the other hand, the initial control forces and moments used during this type of maneuvering are usually quite large, requiring high speed rotation of the propellers. In view of these considerations, the thrust deduction terms in the forcing function equations such as (3.22) will be small compared to the velocity squared terms and can be ignored. The terms on the LHS of (3.21) then become

\[X = \begin{cases}
-0.0812u_1^2 & (u_1 < 0) \\
0.168u_1^2 & (u_1 \geq 0)
\end{cases} \]

\[Y = 5.5(10)^{-4}u_2|u_2| + 5.5(10)^{-4}u_4|u_4| \]

\[Z = 5.95(10)^{-4}u_3|u_3| + 5.95(10)^{-4}u_5|u_5| \quad (3.23) \]

\[N = 1.06(10)^{-4}u_2|u_2| - 1.0(10)^{-4}u_4|u_4| \]

\[K = \begin{cases}
-0.0111u_1^2 + 1.05(10)^{-4}\cos u_6 & (u_1 < 0) \\
0.0125u_1^2 + 1.05(10)^{-4}\cos u_6 & (u_1 \geq 0)
\end{cases} \]

\[M = 1.14(10)^{-4}u_3|u_3| - 1.08(10)^{-4}u_5|u_5| \]

* These terms appear in the propeller force equations to account for the loss in propeller thrust with speed of advance through the fluid (53). These terms usually appear as first order cross products \((x_iu_i)\).
Equation (3.23) can be combined with (3.22) to give the components of the vector feedback equation which must be solved for all the u's to decouple the system.

\[
\begin{align*}
\begin{cases}
-0.0812u_1^2 \\
0.168u_1^2
\end{cases} = m_{10}^x - h_1(x) + w_1 \\
5.5(10)^{-4}(u_2|u_2| + u_4|u_4|) = m_{20}^x - h_2(x) + w_2 \\
5.95(10)^{-4}(u_3|u_3| + u_5|u_5|) = m_{30}^x - h_3(x) + w_3 \\
-0.0111u_1^2 \\
0.0125u_1^2
\end{cases} + 1.05(10)^{-4} \cos x_4u_6 = m_4^x + m_{41}^x - h_4(x) + w_4 \\
1.14(10)^{-4} u_3|u_3| - 1.08(10)^{-4} u_5|u_5| = m_{50}^x + m_{51}^x - h_5(x) + w_5 \\
1.06(10)^{-4} u_2|u_2| - 1.0(10)^{-4} u_4|u_4| = m_{60}^x + m_{61}^x - h_6(x) + w_6
\end{align*}
\]

(3.24)

A solution to this set exists since $J_d(x,\bar{u},t)=0$ for (3.24). The absolute value signs indicate the directional characteristics of the propeller forces and serve to distinguish between the two roots that exist when (3.24) is solved for each propeller speed. The h's in (3.24) could likely be simplified according to the previous assumption concerning the thrust deduction terms. Once again the set of all (\bar{x},\bar{w}) would have to be examined to
determine input constraints. Since the solutions for the u's will likely be much more lengthy than those for the roll-surge problem, numerical search routines would have to be used. With the exception of roll pump rate, input dynamics in each degree of freedom can likely be ignored without appreciably affecting system response.

The detailed development of the feedback control laws by solving (3.24) for all the u's and taking into account input constraints will not be pursued. The procedure, although very lengthy, would be fairly mechanistic from here on in. The development would follow along lines similar to that used for the roll-surge equation.

3-E Summary

The nonlinear decoupling theory developed in Chapter II was applied to the equations describing the motion of the DSRV.

The theory was first applied to exactly decouple a reduced form of the roll-surge equations. The use of linear theory had previously failed to satisfactorily decouple the system. Including the input dynamics and limitations on input magnitudes in the equations required modification of the theory to decouple the system. Although successful, some of these modifications were arrived at in a somewhat heuristic manner. Further development of the decoupling theory to more completely take into account input constraints would be useful. One approach might be to formulate the decoupling
problem as a type of mathematical programming problem. The input
dynamics, input magnitudes and feedback control laws would act as
system constraint equations and an objective function would be
formulated. This function could serve to enlarge the decoupled
space and response characteristics by selecting optimal values of
\(f(\bar{x},t) \) and \(\Lambda \) in the synthesis procedure.

Decoupling the complete six degrees of freedom was also
investigated. By considering only hovering maneuvers, the equations
of motion were simplified and the feedback equations necessary to
decouple the motions were developed. A method of obtaining explicit
solutions to these equations, subject to input constraints, was
outlined.

The decoupling strategies investigated require the
manipulation of lengthy nonlinear equations and therefore could
not be easily implemented using analog controllers. This means
that an onboard digital computer is required. In addition, sensors
would be required to provide continuous measurement of the velo­
cities and angular displacements. The potential application to
actual submersible operation of the control laws developed in
this chapter is good. Although the DSRV is one of the few submer­sibles to currently possess the above mentioned capabilities, this
is likely to change. The recent technological advances in dedicated
computers coupled with new and improved sensors of all types are
now beginning to place submersible control strategies, such as
those developed in this chapter, well within the realm of the
practical.
CHAPTER IV

THE WAKE STEERING NOZZLE - STATIC PERFORMANCE

4-A General

The wake steering nozzle (WSN) is a new method of developing propulsion and steering forces for submersibles. It has the potential advantages over conventional systems of increasing vessel geometric symmetry and reducing the number of thrusters. (See Figure 4, Chapter 1).

Most submersibles require precise control at very low forward speeds. This control is not easily achieved using conventional movable surfaces such as rudders. Thus, one of the prime advantages of the WSN over the movable surfaces is its ability to develop steering forces at zero forward velocity.

This chapter deals with the experimental investigation of a number of geometric parameters of the WSN at zero forward velocity or static operation. The experimental facility constructed for testing the WSN is described. Several nondimensional numbers are developed to enable a reduction of the data for comparison of the axial thrust characteristics of the WSN with those of conventional shrouded propellers.\(^{(24-25)}\) A preliminary series of exploratory tests were run. These served to define a number of important parameters of shroud geometry which were investigated in a more extensive set of tests. Mathematical modelling of the observed flow field used as an aid in guiding the experimental effort is also discussed.
4-B The WSN Test Facility

4-B.1 The Measurement System

In the experimental system used by Wozniak, the axial and radial forces produced by a WSN were determined indirectly, using measurements of the pressure on the inside shroud surface. These pressure measurements were converted to forces using a computer program which took into account shroud shape. This method was time consuming and cumbersome. Our first task therefore was to develop a means for direct measurement of the forces being produced by a WSN.

To this end, a five component dynamic force balance or dynamometer was designed and constructed. It essentially consists of a vertical beam instrumented with strain gages. (See Figure 15). The gages and associated instruments allow the axial force and the horizontal component of radial force to be measured and recorded as functions of time on an oscillograph. To completely specify the radial force, another component must be measured. This other component is obtained by repeating the test run and opening a port located at 90° from the first port. The two components are then added vectorially to determine the radial force magnitude and direction. In addition, the system can also measure and record all three moments. The beam is damped in the horizontal plane by two mechanical dampers, manufactured by Airpot Corporation, mounted along axes orthogonal to each other. The WSN to be tested were mounted on the end of the beam and emmerssed in a tank 3.0 feet by 8.0 feet with
Figure 15 Nozzle Force and Moment Measurement System
the water depth kept at about 2.0 feet. The tank was baffled to reduce recirculation eddies in the region of the shroud occurring as a result of the pumping action of the propeller and the constriction imposed by the tank.

The propeller is driven by a DC motor through a flexible shaft. Propeller torque is measured by measuring and recording armature current and propeller torque. Motor speed was controlled by varying the armature current with speed measured by a tachometer. A schematic of the motor control circuit is shown in Figure 16.

Pressures inside the aluminum shrouds were measured by means of a manometer bank connected to the shroud by tubing through the tank.

The aluminum shrouds were time consuming to make and difficult to machine. As a result, a special shroud holder was designed and constructed by Clark which enabled the shroud shape to be easily and rapidly changed. The shroud holder was mounted on the same dynamometers used for testing the aluminum shrouds. The system is shown in Figure 17. The shroud holder has a cylindrical inner surface of fixed diameter in the region of the control port. This ring contains a port valve assembly which is rotatable. This valve is actuated by means of an air cylinder. The shroud surface fore and aft of the holder can be changed by switching inserts. These inserts are machined out of wax stiffened by a section of aluminum pipe. The machining of the wax was done on a lathe using a forming tool constructed from heavy gage metal cut to the desired nozzle shape.
Figure 16 Motor Control Circuit
OUSTING FLEXIBLE SHAFT FOR PROPELLER DRIVE
EXISTING STRAIN GAGE DYNAMOMETER
FLEXIBLE SHAFT FOR NOZZLE ROTATION
AIR CYLINDER TO ACTUATE FLAPPER VALVE ON PORT

PROPELLER AXIAL POSITION ADJUSTMENT
FWD NOZZLE INSERT

AFT NOZZLE INSERT

Figure 17 Nozzle Variation System
4-B.2 Propellers and Nozzles

A series of two bladed propellers were used. The principle difference between the propellers is in their pitch to diameter ratios which varied from 1.24 to 2.06 (measured at 7/10 the radius). The propellers also differed in blade length L_p, blade thickness t_p and propeller diameter D. The dimensions of the six propellers used in the tests are given in Table 2. Drawings showing the profiles of each of the propellers are contained in Reference 32.

The two aluminum nozzles tested, designated No.1 and No.2, are shown to full scale in Figures 18(a) and 18(b) respectively. The inside shape of nozzle No.1 is based on nozzle No.32 developed by the Netherlands Ship Model Basin$^{(24)}$ and nozzle No.2 has the inside shape of an NACA-16-021 airfoil at zero angle of attack.$^{(53)}$

Two series of wax nozzles were developed for extensive testing. Figure 19 identifies the parameters varied in this series of nozzles. This series utilized the shroud variation system and was therefore made up of fore and aft inserts machined from wax. Both series used the same fore insert having a length of 2.0 inches and the same inside profile as aluminum nozzle No.2. The rear inserts of both series were varied as shown in Table 3. Series A was generated by varying the radius of curvature R_c and Series B by varying the length of the aft section L_a.
TABLE 2

PROPELLER DIMENSIONS

<table>
<thead>
<tr>
<th>Propellers</th>
<th>(2r_p/D)</th>
<th>(L_{p/d})</th>
<th>(t_p/D)</th>
<th>(P) in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop. No. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D = 1.74) in.</td>
<td>.930</td>
<td>.374</td>
<td>.014</td>
<td>2.10</td>
</tr>
<tr>
<td>(r_h = 0.37) in.</td>
<td>.818</td>
<td>.496</td>
<td>.022</td>
<td>2.17</td>
</tr>
<tr>
<td>(P/D = 1.24)</td>
<td>.702</td>
<td>.609</td>
<td>.034</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>.565</td>
<td>.620</td>
<td>.040</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>.468</td>
<td>.541</td>
<td>.041</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>.351</td>
<td>.397</td>
<td>.039</td>
<td>2.13</td>
</tr>
<tr>
<td>Prop. No. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D = 1.74) in.</td>
<td>.936</td>
<td>.316</td>
<td>.007</td>
<td>2.96</td>
</tr>
<tr>
<td>(r_h = 0.39) in.</td>
<td>.818</td>
<td>.487</td>
<td>.015</td>
<td>2.61</td>
</tr>
<tr>
<td>(P/D = 1.41)</td>
<td>.702</td>
<td>.607</td>
<td>.017</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td>.585</td>
<td>.620</td>
<td>.028</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>.468</td>
<td>.541</td>
<td>.031</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td>.351</td>
<td>.458</td>
<td>.024</td>
<td>2.29</td>
</tr>
<tr>
<td>Prop. No. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D = 1.70) in.</td>
<td>.936</td>
<td>.468</td>
<td>.022</td>
<td>2.79</td>
</tr>
<tr>
<td>(r_h = 0.41) in.</td>
<td>.818</td>
<td>.594</td>
<td>.032</td>
<td>2.82</td>
</tr>
<tr>
<td>(P/D = 1.64)</td>
<td>.702</td>
<td>.629</td>
<td>.029</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>.585</td>
<td>.577</td>
<td>.043</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>.468</td>
<td>.495</td>
<td>.043</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>.351</td>
<td>.419</td>
<td>.049</td>
<td>2.61</td>
</tr>
<tr>
<td>Prop. No. 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D = 1.74) in.</td>
<td>.936</td>
<td>.346</td>
<td>.010</td>
<td>3.47</td>
</tr>
<tr>
<td>(r_h = 0.41) in.</td>
<td>.818</td>
<td>.462</td>
<td>.014</td>
<td>3.18</td>
</tr>
<tr>
<td>(P/D = 1.73)</td>
<td>.702</td>
<td>.475</td>
<td>.024</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>.585</td>
<td>.449</td>
<td>.076</td>
<td>2.86</td>
</tr>
<tr>
<td></td>
<td>.468</td>
<td>.402</td>
<td>.034</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>.351</td>
<td>.348</td>
<td>.043</td>
<td>2.61</td>
</tr>
<tr>
<td>Prop. No. 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D = 1.72) in.</td>
<td>.936</td>
<td>.488</td>
<td>.020</td>
<td>3.45</td>
</tr>
<tr>
<td>(r_h = 0.40) in.</td>
<td>.818</td>
<td>.540</td>
<td>.034</td>
<td>3.38</td>
</tr>
<tr>
<td>(P/D = 1.97)</td>
<td>.702</td>
<td>.514</td>
<td>.036</td>
<td>3.29</td>
</tr>
<tr>
<td></td>
<td>.585</td>
<td>.480</td>
<td>.036</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>.468</td>
<td>.428</td>
<td>.052</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td>.351</td>
<td>.376</td>
<td>.051</td>
<td>3.25</td>
</tr>
<tr>
<td>Prop. No. 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D = 1.74) in.</td>
<td>.936</td>
<td>.316</td>
<td>.011</td>
<td>3.65</td>
</tr>
<tr>
<td>(r_h = 0.42) in.</td>
<td>.818</td>
<td>.445</td>
<td>.016</td>
<td>3.53</td>
</tr>
<tr>
<td>(P/D = 2.06)</td>
<td>.702</td>
<td>.513</td>
<td>.026</td>
<td>3.59</td>
</tr>
<tr>
<td></td>
<td>.585</td>
<td>.474</td>
<td>.030</td>
<td>3.46</td>
</tr>
<tr>
<td></td>
<td>.468</td>
<td>.439</td>
<td>.036</td>
<td>3.49</td>
</tr>
<tr>
<td></td>
<td>.354</td>
<td>.372</td>
<td>.037</td>
<td>3.41</td>
</tr>
</tbody>
</table>
Figure 18 Cross Sections of Aluminum Nozzles
Figure 19 Identification of Nozzle Geometric Parameters
TABLE 3
DESCRIPTION OF WAX NOZZLES

<table>
<thead>
<tr>
<th>Nozzle Numbers</th>
<th>θ_d (Degrees)</th>
<th>R_c/D</th>
<th>L_a/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>12.5</td>
<td>5.28</td>
<td>1.14</td>
</tr>
<tr>
<td>A2</td>
<td>19.4</td>
<td>3.43</td>
<td>1.14</td>
</tr>
<tr>
<td>A3</td>
<td>22.9</td>
<td>2.93</td>
<td>1.14</td>
</tr>
<tr>
<td>A4</td>
<td>28.1</td>
<td>2.43</td>
<td>1.14</td>
</tr>
<tr>
<td>A5</td>
<td>31.5</td>
<td>2.19</td>
<td>1.14</td>
</tr>
<tr>
<td>Series B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>12.5</td>
<td>2.19</td>
<td>0.47</td>
</tr>
<tr>
<td>B2</td>
<td>19.4</td>
<td>2.19</td>
<td>0.72</td>
</tr>
<tr>
<td>B3</td>
<td>22.9</td>
<td>2.19</td>
<td>0.85</td>
</tr>
<tr>
<td>B4</td>
<td>28.1</td>
<td>2.19</td>
<td>1.02</td>
</tr>
<tr>
<td>B5</td>
<td>31.5</td>
<td>2.19</td>
<td>1.14</td>
</tr>
</tbody>
</table>

D = 1.75 inches

4-C Dimensionless Numbers

To reduce the number of parameters to be varied in the testing and nondimensionalize the data, some dimensionless numbers are developed in this section.

For a given propeller and nozzle design, it can be shown that the thrust, torque and pressure difference between the inside and outside shroud surfaces of the nozzle are a function of the
velocity of the nozzle relative to the fluid.

That is:

\[
\text{Thrust} = F = g_1(V, n, D, \rho, \mu) \\
\text{Torque} = Q = g_2(V, n, D, \rho, \mu) \\
\text{Pressure} = P_s - P_a = P = g_3(V, n, D, \rho, \mu, Z_a, \theta)
\]

where \(V \) = velocity of nozzle relative to fluid.
\(n \) = propeller rotational speed (rev/sec).
\(\rho \) = density of the fluid.
\(\mu \) = viscosity of the fluid.
\(P_s \) = pressure at any point \((Z_a, \theta)\) inside the shroud.
\(P_a \) = ambient pressure of the fluid outside the shroud.
\(Z_a \) = distance from the shroud entrance.
\(\theta \) = angle measured ccw from the control port.

A dimensional analysis yields:

\[
\frac{F}{\rho n^2 D^4} = g_1(V/nD, \rho n D^2/\mu) \\
\frac{Q}{\rho n^2 D^5} = g_2(V/nD, \rho n D^2/\mu) \\
\frac{P}{\rho n^2 D^2} = g_3(V/nD, \rho n D^2/\mu, Z_a/D, \theta)
\]

This is one set of dimensionless numbers; others are also possible.

In most submersible and ship designs, Reynolds number is very high so that the flow is essentially turbulent and independent of Reynolds number. In the testing program, Reynolds number based on tip speed = \(\rho n D^2/\mu \), varied from \(1.00(10)^5 \) to \(3.75(10)^5 \) over the range of propeller speeds of interest indicating operation in a turbulent regime. In addition, the cavitation number based on tip speed = \(2(P_a - P_v)/(\rho n D^2) \), where \(P_v \)
is the fluid vapor pressure, has a minimum value of 1.63 which is large enough to ensure that propeller cavitation is not occurring in the tests. Hence, the dimensionless equations can be simplified to

\[F/\rho n^2 D^4 = \phi_1 (V/nD) \] \hspace{1cm} (4.1)
\[Q/\rho n^2 D^5 = \phi_2 (V/nD) \] \hspace{1cm} (4.2)
\[P/\rho n^2 D^2 = \phi_3 (V/nD, z_a/D, \theta) \] \hspace{1cm} (4.3)

where

- \(F/\rho n^2 D^4 \) = coefficient of thrust, \(K_T \)
- \(Q/\rho n^2 D^5 \) = coefficient of torque, \(K_Q \)
- \(P/\rho n^2 D^2 \) = coefficient of pressure, \(K_P \)
- \(V/nD \) = coefficient of advance, \(J \)

as defined by previous researchers on nozzled propellers. (23-28)

The ratio of the radial (\(K_{TR} \)) to axial (\(K_{TA} \)) coefficients of thrust is a measure of the ability of the WSN to produce steering moments on a vessel and will be defined as the steering ratio

\[K_{TR}/K_{TA} = \text{steering ratio, } K_{TR-A} \]

In practice, we would want this ratio to be as large as possible. The radial thrust obtained from the WSN is dependent on the axial thrust developed. Therefore, by maximizing this ratio, we minimize the space required for a submersible to turn thus increasing its maneuverability.
Another parameter of equal importance is the thrusting efficiency η of the WSN. This can be expressed in terms of the nondimensional coefficients as

$$\eta = \frac{J \pi K_T}{2 \pi K_Q}$$

(4.4)

Since in this chapter we are concerned only with tests on the WSN at zero forward velocity, the advance coefficient was zero throughout. Thus the thrust coefficient and pressure coefficient distribution along the nozzle inside surface characterize the static performance of a given WSN.

4-D Preliminary Experimental Investigation

The axial and radial thrusts of aluminum nozzles No.1 and No.2 using propeller No.2, were measured with a control port open and closed. Analysis of the thrust data reveal that the thrust very nearly varies with the square of propeller speed as was expected from the dimensional analysis. This is evident in Figure 20. The results also revealed that an angular displacement Θ_r of the radial thrust vector relative to the open port occurs. The rotation occurs in the direction of propeller rotation according to Figure 21.
Figure 20 Thrust Versus Propeller Speed for Nozzle No.2
Figure 21 Rotation of the Thrust Vector

The relative angle of the thrust vector decreases only slightly with propeller speed. The results are summarized in Table 4.

TABLE 4

THrust COEFFICIENTS FOR NOZZLE NO.1 AND NO.2

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>K_{TA}</th>
<th>K_{TR}</th>
<th>K_{TR-A}</th>
<th>Θ_r 25 rev/sec</th>
<th>Θ_r 90 rev/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>.71</td>
<td>.38</td>
<td>.54</td>
<td>22.4</td>
<td>18.0</td>
</tr>
<tr>
<td>No.2</td>
<td>.79</td>
<td>.28</td>
<td>.36</td>
<td>35.2</td>
<td>33.5</td>
</tr>
</tbody>
</table>
Moments about the three mutually perpendicular axes of nozzle No.2 were measured. These were found to be small and insignificant when compared with vessel turning moments produced by nozzle radial thrust and propeller torque. The measurement of the moments revealed that the point of location of the thrust vector was inside the aft section of the nozzle at $2a/L = 0.84$ and that the variation in location of this vector was less than $\pm 3.8\%$ over the full range of propeller speed. (See Reference 32). Hence, the errors in vessel turning moments which occur due to variation in the location of the radial thrust vector will be small. In view of this, it was decided to discontinue making moment measurements.

A set of circumferential pressure taps at each of five axial locations along the inside surface of nozzle No.1 enabled the pressure to be measured during operation. Measurements were made for both the port closed and port open modes of operation. The pressure coefficient K_p was computed and plotted versus angular position with respect to the control port for each normalized axial location z/L. The plots for the port closed and port open cases are shown in Figures 22 and 23 respectively. The port is located at an axial position z/L of 0.39 to 0.45. The axial location of the propeller is such that the trailing edge of the propeller is flush with the leading edge of the port. It is apparent from Figure 22, in which the values of K_p at each axial location do not change with angular position, that the wake flow is symmetric with respect to the propeller axis. Thus, no radial force is being produced. Opening the port results in separation
of the wake downstream of the port, producing a radial thrust in the approximate direction of the port. This is evident by comparatively higher (near zero) values of K_p in Figure 23. Note that the pressures ahead of the propeller plane ($Z_a/L = .12$) and in the vicinity of the propeller plane ($Z_a/L = .31$) are not appreciably affected. The slight antisymmetrical distribution in the pressure coefficient about the port in Figure 23 is attributed to the rotational motion imparted to the fluid by the propeller. This accounts for the measured rotation of the radial thrust vector for nozzles No.1 and No.2 given in Table 4.

From the data on WSN No.1 and No.2 in Table 4, nozzle No.1 appears to be the best choice as a propulsion-steering device since it has an appreciably higher steering ratio while producing almost the same axial thrust. However, there is another important factor to be taken into consideration.

Observation of separation and reattachment of the wake from inside nozzle No.1 and No.2 revealed an inconsistency in the behavior pattern of the wake. The wake from nozzle No.2 remained attached to the inside surface except when a port was opened, at which time it would switch, producing a radial force. The wake would reattach when the port was closed. Nozzle No.1 followed the same pattern except that the wake would not reattach after the port was closed. Instead the wake from nozzle No.1 would remain separated and oscillate in an erratic manner and would not reattach unless the propeller speed was reduced. This necessitated a means for interpreting the reliability of the WSN.
Figure 22 Closed Port Pressure Distribution for Nozzle No.2
Figure 23 Open Port Pressure Distribution for Nozzle No.2
To be reliable, a WSN must develop a radial force when a control port is open. This force must disappear when the port is closed. Allowances are made for the transition time or time for the flow field to re-establish after a port has been opened then closed. A WSN is defined as reliable if the transition time is less than 3 seconds, marginally reliable if it is greater than 3 seconds and unreliable if the time is greater than 15 seconds or if the wake separates when the port is not opened.

It should also be pointed out that some circumferential separation of the flow at the trailing edge of both nozzles was observed using flow visualization techniques. This separation was much more pronounced in nozzle No.1 than for nozzle No.2. In preliminary tests on nozzle A3, a long streamlined hub was added. It was found that the addition of this hub created or promoted separation of the flow at the trailing edge to the point where the shroud operated unreliably.\(^{(33)}\) Two models were sketched from observations of the flow field using air bubbles and streamers entrained in the flow. Figures 24(a) and 24(b) depict the flow field of a WSN without the hub and with the hub, respectively. One plausible explanation for this behavior is that the hub provides a smooth continuous surface for the flow near the propeller axes to follow. Thus the fluid velocity with the hub is greater along the propeller axis and lower along the shroud surface. The resulting lower momentum of the fluid at the shroud surface causes separation to occur earlier in the flow. It was also observed for some nozzles that increasing vibration by removing the dampers improved nozzle reliability.\(^{(32, 33)}\)
Figure 24 Flow Field of the Wake Steering Nozzle
4-E Analytical Modelling of the Nozzle Flow Field

The experimental work in the previous section gives some indication of the complexity of the flow field of the WSN. To assist us in our investigation of the WSN, the development of a mathematical model capable of describing the flow field of the WSN was considered.

The problem of mathematically modelling the flow field in and around conventional shrouded or nozzled propellers is difficult. Some hydrodynamic models have been developed but in spite of their sophistication, agreement with the test results over a range of operating conditions has only been fair. In addition, these models are valid only for axisymmetric flows and therefore apply only to the port closed case. Still, the possibility of using these analyses to predict the pressure distribution along the inside of the nozzle surface was considered. By designing the nozzle shape aft of the propeller plane to have as negative a pressure distribution as possible, it was felt that a maximum radial thrust could be produced. According to Figure 23, the pressure downstream of the port is essentially ambient for the open port case, thus, by making the pressure distribution as negative as possible, a large radial thrust should result when the control port is opened.

In axisymmetric hydrodynamic models developed in the literature, the approach used is to model the flow by means of a distribution of ring vortices and ring sources. Most of these
models are based on linear theory which means the ring vortices and sources lie along a cylinder and the model is only valid for shroud shapes which do not deviate greatly from a cylindrical shape. It is also assumed that the flow does not separate from the nozzle.

The preceding two assumptions limit the applicability of the models since most of the shrouds investigated herein deviate substantially from a cylindrical shape and exhibit some separation along the trailing edge. Aside from these considerations the utility of the pressure predictions for the closed port case as a means of maximizing the radial thrust is questionable. This is apparent from the pressure plots in Figure 25.

Figure 25 is a plot of the pressure coefficients as a function of axial location for nozzles No.1 and No.2 with all ports closed. Since the pressure distribution is axisymmetric, the pressure coefficient is a function of axial location alone. Comparing the two profiles, it is not obvious that the open port radial thrust of nozzle No.1 would be about 40% greater than for nozzle No.2 as indicated in Table 4. The length of the shroud aft of the propeller plane is almost the same for each nozzle: 2.22 inches for No.1 versus 2.06 inches for No.2. The magnitude of the pressures in the vicinity of the ports is almost the same while the pressure downstream of the ports is even more negative for nozzle No.2 than for No.1, leading one to believe that No.2 would produce a greater radial thrust. Thus, the port closed pressure distribution is of little use in predicting WSN radial thrust.
Figure 25 Port Closed Axial Pressure Distribution for Nozzles No.1 and No.2 with Propeller No.2
It would appear then, that to be of any real benefit, the mathematical model used must be capable of modelling the flow field with the port open. Because of the immense mathematical difficulties posed by the non-symmetric and separated nature of such flow, both within and around the outside of a shroud operating in this mode, it was felt that a useful hydrodynamic model was not within the scope of this project based on the resources and time available. It was therefore decided to concentrate our efforts on experimentally evaluating and developing the wake steering nozzle. Certainly, if the concept proves feasible and highly applicable, then one of the next steps should involve both extensive theoretical and experimental work.

4-F Experimental Investigation of Major Parameters

The preliminary tests revealed that to develop a high radial thrust requires shrouds of comparatively high divergence. However, separation and thus reliability becomes a problem with the more divergent shrouds. Clearly a trade-off exists between the two conflicting divergence requirements of small divergence for no separation and large divergence for useful deflection of the flow in the steering mode. It was our objective in this set of tests to determine this trade-off and how it is affected by propeller pitch and nozzle length. Previous researchers, principally Van Manen, have shown propeller type and nozzle length to be highly significant factors affecting nozzle-propeller performance.
The arc of a circle was chosen to describe the nozzle aft section. The circle was chosen because it is easier to standardize than for example, a parabola. Also it turns out that the arc of a circle is a good approximation for the inside surface of nozzle No.1 and No.2 tested previously. The divergence angle of the nozzles was then varied by simply varying the radius of curvature R_c shown in Figure 19. This generated nozzle series A. Nozzle series B was generated by cutting the most divergent shroud in series A to various lengths to generate the same divergence angles as series A. These two series, described in Table 3, were tested over the complete range of propeller pitch given in Table 2. The data from these tests is presented in Table 5 and Table 6.

The values of K_{TA} in Tables 5 and 6 are based on the axial thrust measured with the port closed and the wake flow symmetrical such that no radial thrust is produced. The absence of measurements of K_{TA} in the tables indicates that this state did not exist. A small decrease between the port open and port closed values of K_{TA} was observed for nozzles which were reliable and marginally reliable (1-5%). For unreliable nozzles where the wake failed to reattach when the port was closed, K_{TA} increased slightly.\(^{32, 33}\)
TABLE 5

EFFECTS OF MAJOR PARAMETERS ON NOZZLE PERFORMANCE CHARACTERISTICS - SERIES A

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>$R_{c/D}$</th>
<th>$L_{a/D}$</th>
<th>P/D</th>
<th>K_{TA}</th>
<th>K_{TR}</th>
<th>$K_{TR/A}$</th>
<th>Θ_r</th>
<th>Rel*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5.28</td>
<td>1.14</td>
<td>1.24</td>
<td>.417</td>
<td>.053</td>
<td>.127</td>
<td>40.5</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>.614</td>
<td>.104</td>
<td>.169</td>
<td>44.9</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>.607</td>
<td>.067</td>
<td>.110</td>
<td>47.4</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>.807</td>
<td>.092</td>
<td>.114</td>
<td>55.2</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>.942</td>
<td>.098</td>
<td>.104</td>
<td>57.0</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>.907</td>
<td>.080</td>
<td>.088</td>
<td>61.3</td>
<td>R</td>
</tr>
<tr>
<td>A2</td>
<td>3.43</td>
<td></td>
<td>1.24</td>
<td>.380</td>
<td>.070</td>
<td>-</td>
<td>33.8</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>.578</td>
<td>.138</td>
<td>.239</td>
<td>37.5</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>.566</td>
<td>.133</td>
<td>.235</td>
<td>40.4</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>.751</td>
<td>.175</td>
<td>.233</td>
<td>42.4</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>.891</td>
<td>.177</td>
<td>.199</td>
<td>55.1</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.192</td>
<td>-</td>
<td>48.0</td>
<td>U</td>
</tr>
<tr>
<td>A3</td>
<td>2.93</td>
<td></td>
<td>1.24</td>
<td>.352</td>
<td>.101</td>
<td>-</td>
<td>35.5</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>.542</td>
<td>.186</td>
<td>.343</td>
<td>35.8</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>.498</td>
<td>.168</td>
<td>.337</td>
<td>47.0</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>.713</td>
<td>.228</td>
<td>.320</td>
<td>34.7</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>.833</td>
<td>.216</td>
<td>-</td>
<td>48.1</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.214</td>
<td>-</td>
<td>50.4</td>
<td>U</td>
</tr>
<tr>
<td>A4</td>
<td>2.43</td>
<td></td>
<td>1.24</td>
<td>.339</td>
<td>.128</td>
<td>-</td>
<td>33.0</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>.518</td>
<td>.193</td>
<td>.373</td>
<td>31.8</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>.524</td>
<td>.204</td>
<td>.389</td>
<td>34.6</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>.670</td>
<td>.242</td>
<td>.361</td>
<td>34.5</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>.733</td>
<td>.236</td>
<td>-</td>
<td>41.1</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.247</td>
<td>-</td>
<td>45.9</td>
<td>U</td>
</tr>
<tr>
<td>A5</td>
<td>2.19</td>
<td></td>
<td>1.24</td>
<td>.326</td>
<td>.152</td>
<td>-</td>
<td>27.8</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>.492</td>
<td>.243</td>
<td>.494</td>
<td>30.7</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>.479</td>
<td>.241</td>
<td>.503</td>
<td>33.6</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>.619</td>
<td>.312</td>
<td>.504</td>
<td>36.2</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>.735</td>
<td>.332</td>
<td>-</td>
<td>41.0</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.305</td>
<td>-</td>
<td>42.3</td>
<td>U</td>
</tr>
</tbody>
</table>

Reliability: R = reliable, M = marginally reliable, U = unreliable
TABLE 6

EFFECTS OF MAJOR PARAMETERS ON NOZZLE PERFORMANCE

CHARACTERISTICS - SERIES B

<table>
<thead>
<tr>
<th>Nozzle</th>
<th>(R_c/D)</th>
<th>(L_a/D)</th>
<th>(P/D)</th>
<th>(K_{TA})</th>
<th>(K_{TR})</th>
<th>(K_{TR/A})</th>
<th>(\theta_r)</th>
<th>Rel*</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>2.19</td>
<td>0.47</td>
<td>1.24</td>
<td>-</td>
<td>.035</td>
<td>-</td>
<td>27.6</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>-</td>
<td>.051</td>
<td>-</td>
<td>28.3</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>-</td>
<td>.054</td>
<td>-</td>
<td>26.9</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>-</td>
<td>.059</td>
<td>-</td>
<td>27.8</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>-</td>
<td>.082</td>
<td>-</td>
<td>33.4</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.079</td>
<td>-</td>
<td>33.7</td>
<td>U</td>
</tr>
<tr>
<td>B2</td>
<td>0.72</td>
<td></td>
<td>1.24</td>
<td>-</td>
<td>.102</td>
<td>-</td>
<td>25.9</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>-</td>
<td>.112</td>
<td>-</td>
<td>27.0</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>-</td>
<td>.168</td>
<td>-</td>
<td>29.8</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>-</td>
<td>.211</td>
<td>-</td>
<td>31.5</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>-</td>
<td>.259</td>
<td>-</td>
<td>32.7</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.223</td>
<td>-</td>
<td>36.6</td>
<td>U</td>
</tr>
<tr>
<td>B3</td>
<td>0.85</td>
<td></td>
<td>1.24</td>
<td>-</td>
<td>.130</td>
<td>-</td>
<td>28.2</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>.599</td>
<td>.183</td>
<td>-</td>
<td>28.0</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>.609</td>
<td>.207</td>
<td>-</td>
<td>29.8</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>.702</td>
<td>.224</td>
<td>-</td>
<td>31.5</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>-</td>
<td>.307</td>
<td>-</td>
<td>32.8</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.256</td>
<td>-</td>
<td>36.4</td>
<td>U</td>
</tr>
<tr>
<td>B4</td>
<td>1.02</td>
<td></td>
<td>1.24</td>
<td>.351</td>
<td>.144</td>
<td>-</td>
<td>26.5</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>.521</td>
<td>.194</td>
<td>.372</td>
<td>31.2</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>.524</td>
<td>.216</td>
<td>-</td>
<td>34.1</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>.678</td>
<td>.263</td>
<td>.388</td>
<td>35.9</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>.802</td>
<td>.307</td>
<td>-</td>
<td>37.6</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.274</td>
<td>-</td>
<td>36.7</td>
<td>U</td>
</tr>
<tr>
<td>B5</td>
<td>1.14</td>
<td></td>
<td>1.24</td>
<td>.326</td>
<td>.152</td>
<td>-</td>
<td>27.8</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>.492</td>
<td>.243</td>
<td>.494</td>
<td>30.7</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.64</td>
<td>.479</td>
<td>.241</td>
<td>.503</td>
<td>33.6</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.73</td>
<td>.619</td>
<td>.312</td>
<td>.504</td>
<td>36.2</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.97</td>
<td>.735</td>
<td>.332</td>
<td>-</td>
<td>41.0</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.06</td>
<td>-</td>
<td>.305</td>
<td>-</td>
<td>42.3</td>
<td>U</td>
</tr>
</tbody>
</table>

Reliability: R = reliable, M = marginally reliable, U = unreliable
The data in Tables 5 and 6 reveal some general trends:

Axial thrust - decreases with nozzle divergence.
 - decreases with nozzle length.
 - increases with propeller pitch to diameter ratio.

Radial thrust - increases with nozzle divergence.
 - increases with nozzle length.
 - exhibits a slight maximum when plotted against propeller pitch to diameter ratio.

Steering ratio - increases with nozzle divergence.
 - remains almost constant with propeller pitch to diameter ratio.

Thrust angle - decreases slightly with nozzle divergence.
 - remains almost constant with nozzle length.
 - increases with propeller pitch to diameter ratio.

Reliability - decreases with nozzle divergence.
 - increases with nozzle length.
 - appears greatest for propellers which are "mid-range" in terms of pitch to diameter ratio.
4-G Summary

The performance of the WSN at zero forward velocity was investigated. The preliminary tests revealed that the radial thrust of the WSN could be increased by increasing nozzle divergence. However, higher nozzle divergence resulted in an unreliable mode of operation where the wake remains deflected after closing the control port, producing an erratic radial thrust.

A further set of tests were conducted varying nozzle divergence and length and propeller pitch to diameter ratio to determine their effects on the thrusting and steering characteristics of the nozzle. A number of propeller-nozzle combinations were found which exhibited reliable or marginally reliable operation.

This set of shrouds is almost exclusively confined to the longer nozzles of series A. Nozzle A1 was the most reliable overall, as it worked well with all the combinations of propellers. However, for use as a steering device, it is the least desirable since it also produces the smallest steering ratio. According to the combined criteria of large steering ratio and reliable operation, nozzle A5 is the optimum choice.

The best propeller to use would appear to be propeller No.4 with $P/D = 1.73$ which operated most reliably. It should be pointed out that the reliability of all the propellers was sensitive to the axial location of the propeller with the optimum
location of the propeller being at the point where the trailing edge of the propeller was flush with the leading edge of the port. Propeller location became more critical as nozzle divergence was increased. Propellers No.2 and 3 also performed reasonably well. Propeller No.3 operated somewhat less reliably than No.2 and also produced a lower axial thrust. This could be due to the smaller diameter and therefore larger tip clearance of propeller No.3. (D = 1.70 inches versus 1.74 inches). Too large a tip clearance enables backflow around the tips of the propeller blades lowering propeller efficiency.

(24)

The static tests have demonstrated that the concept is feasible, but much more information is required to enable an assessment of the potential of the WSN as a submersible propulsion-steering device. Most important is the effect of forward velocity on reliability and steering ratio. In addition, forward velocity data would enable the propulsion efficiency of the WSN to be compared to more conventional nozzled propellers.
CHAPTER V

FORWARD VELOCITY TESTING OF THE WAKE STEERING NOZZLE

5-A General

The previous chapter dealt with the experimental investigation of the static performance of the WSN. One of the prime requirements in evaluating any propulsion-steering system for marine vessels is a knowledge of its behavior over a range of forward velocities. This is true also for rescue submersibles where the typical rescue mission calls for a rapid transport leg between the mother ship and the site of the distressed submarine.

This chapter is concerned with evaluating the effect of forward velocity on the performance characteristics of the WSN identified in Chapter II, particularly the radial steering force, nozzle reliability and an additional performance parameter, the efficiency of the WSN as a thruster. Two nozzles from the static tests, nozzles A2 and A3, were chosen for evaluation with a number of propeller types over a range of forward velocities. These nozzles were chosen because they were about "mid-range" in terms of reliability and steering force in the static tests, thus enabling a shift in either direction in their performance characteristics to be detected. A forward velocity tunnel and measurement system were designed and constructed to enable these tests to be carried out. The shrouds used were manufactured out of aluminum and streamlined to reduce the fluid drag forces. Some preliminary tests were also conducted to
investigate controlling the wake separation to produce a proportionally controlled steering force by locating several ports axially along the shroud surface downstream of the propeller.

5-B Forward Velocity Test Facility

To simulate forward velocity, a water tunnel was designed and constructed by Hudson and Wilson. The tunnel consisted of an open channel (2 feet high x 1 foot wide). For a water depth of 1 foot, the system is capable of producing water velocities of up to 4 feet/second based on a maximum pump capacity of 2000 gallons/minute. Water enters the channel, shown in Figure 26, through a pipe. To minimize entrance effects and straighten the flow downstream, a short section at the beginning was fitted with screens and a honeycomb mesh of small tubing. Preliminary testing of the water tunnel revealed that the axial flow velocity downstream of this section is nearly uniform, varying at most ± 5% across the channel, except at points very near the channel walls and water surface. The sides of the channel were constructed out of plexiglass to enable the use of flow visualization techniques.

The nozzles tested were constructed out of aluminum and the outside surface streamlined to minimize drag and inhibit flow separation. Figure 27 shows the basic WSN configuration used in forward velocity tests. Three nozzles were constructed having
Figure 26 Water Channel Used for Testing Forward Velocity Nozzles

Figure 27 The Basic Configuration of the Wake Steering Nozzles Used for the Forward Velocity Tests
the same inside shapes as nozzles A2, A3 and A4 used in the static tests. The front section of these nozzles is the same for all three, and only the aft sections were varied. This was accomplished by providing a tongue and groove type of fitting between the front and aft sections enabling the aft sections to be easily changed and providing a smooth surface between the two sections. The front section of the test nozzle is shown to full scale in Figure 28(a). The outside surface of the nozzle is cylindrical except for the last 2.0 inches of the aft section which was streamlined by making it converge. The convergence of the outside surface is described by the arc of a circle as indicated in the schematic of Figure 28(b). The numerical values for the geometric parameters describing the nozzle aft sections are given in Table 7.

The radial and axial thrust, motor speed and propeller torque were measured using the same basic system as in the static tests except a streamlined strut was added to the dynamometer to reduce the drag. The propeller bushings and struts were also streamlined.

Nozzle A3 with propeller No.2 is shown in operation with all ports closed in Figure 29(a). Air bubbles injected upstream of the nozzle show that the wake flow is symmetrical about the propeller axis. Figure 29(b) shows the degree of wake deflection when a port near the top of the shroud is opened.
Figure 28 Geometric Parameters of the Forward Velocity Wake Steering Nozzles
Figure 29 Flow Pattern of Nozzle A3 with Propeller No. 2

a) All Ports Closed

b) Top Port Closed
TABLE 7

AFT SECTION SHAPES OF NOZZLES FOR FORWARD VELOCITY TESTING

<table>
<thead>
<tr>
<th>Nozzles</th>
<th>(L_a/D)</th>
<th>(R_{c/D})</th>
<th>(R_{co/D})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>1.43</td>
<td>3.43</td>
<td>3.68</td>
</tr>
<tr>
<td>A3</td>
<td>1.43</td>
<td>2.93</td>
<td>4.72</td>
</tr>
<tr>
<td>A4</td>
<td>1.43</td>
<td>2.43</td>
<td>4.65</td>
</tr>
</tbody>
</table>

\[D = 1.75 \text{ inches} \]

5-C Effect of Forward Velocity on WSN Performance Characteristics

The previous described test facility was used to evaluate the performance of nozzles A2 and A3 over a range of fluid velocities. Nozzle A4 was used in the investigation of radial force control. A representative variety of propeller types were selected from those used in the static tests. The propellers used for the forward velocity testing were numbers 1, 2, 4 and 5 and are described in Table 2. These two shrouds were tested by Hudson over a range of motor speeds from 23.6 rev/sec to 63.6 rev/sec and at tunnel velocities of from 0.69 ft/sec to 2.6 ft/sec. The results from the tests are represented in normalized form by plotting the axial thrust coefficient \(K_{TA} \), radial thrust coefficient \(K_{TR} \) and efficiency \(\eta \) against the nondimensionalized velocity or advance coefficient \(J \).\(^{(24)}\)
Typical curves showing the spread of data points for one nozzle-propeller combination, nozzle A3 with propeller No.4, are shown in Figure 30. Figures 31 and 32 summarize the test results for the complete series of propellers tested with nozzles A2 and A3, respectively.

It should be pointed out that the values of axial thrust coefficient are based on the values of system thrust where the only drag force included is the drag of the shroud. In other words, the dynamometer and propeller struts and bushing are not considered part of the basic system and the drag of these components was subtracted from the axial force before calculating the axial thrust coefficient and WSN efficiency. This is the same approach used by Van Manen and other researchers in analyzing the performance of nozzled propellers.\(^{(23-25)}\) No difference between the drag forces of the nozzles could be detected.\(^{(34)}\) The axial thrust coefficient decreases with velocity or advance ratio as would be expected from basic propeller theory.\(^{(57)}\) The values of \(K_{TA}\) are based on thrust measured with the control port closed. Axial thrust was observed to increase slightly when a control port was opened. The increase was greatest for those shrouds which operated with a high degree of circumferential flow separation from the inside shroud surface at the trailing edge. Except for propeller No.4 operating in nozzles A2 and A3, all combinations showed some degree of circumferential separation with all ports closed.

The radial thrust generally exhibits an increase with
Figure 30 Forward Velocity Test Results for Nozzle A3 with Propeller No. 4
Figure 31 Forward Velocity Test Results for Nozzle A2 with Propeller Nos. 2, 4 and 5
Figure 32 Forward Velocity Test Results for Nozzle A3
with Propeller Nos. 1, 2, 4 and 5
forward velocity as evident in Figures 31 and 32. This increase could be due to the observed rudder-like characteristics of the WSN. Tests conducted over a range of forward velocities on a nozzle without a propeller showed that the nozzle developed a small radial thrust which increased with forward velocity. This increase is due to the fact that when a control port was opened, the flow through the shroud became asymmetric causing a radial thrust on the shroud even with no propeller.

The only propeller-nozzle which did not show an increase in radial thrust with advance ratio was propeller No. 1 operating in nozzle A. Flow visualization techniques revealed that this combination was operating with the flow almost fully separated from the inside surface with all ports closed. This was a much higher degree of circumferential separation than was observed for any of the other combinations. This could account for the drop in radial thrust since previous pressure measurements revealed that the pressures were higher for separated flow. The reduced pressures would act to reduce control port flow and thus wake deflection.

All of the propeller-nozzle combinations worked reliably, that is they all produced a radial thrust only when the control port was open and this thrust disappeared in less than three seconds after closing the port. This improvement in reliability over the static tests could be due to two factors. The momentum of the fluid flowing along the outside surface of
the shroud is directed along the propeller axis. This flow would tend to force the deflecting wake to return to an axisymmetric flow after closing the port. Also some leakage was observed to be occurring through the closed port in the static tests which would tend to make nozzle operation less reliable.\(^{(32)}\)

Figure 33 is a plot of the steering ratio for nozzles A2 and A3. Taken by themselves, these curves can be somewhat misleading since they would favor operation at a high advance ratio and using propeller No.2. There are other considerations such as efficiency. Propellers No.2 and No.4 are the most efficient as indicated by Figures 20 and 21. From an efficiency standpoint, the choice between propeller No.2 and No.3 would depend on the advance ratio at which the vessel cruises. These aspects of propeller-nozzle selection from the design curves will be covered in more detail in the next section.

5-D Radial Force Control: Preliminary Tests

The tests so far have demonstrated that a number of reliable propeller-nozzle combinations exist which develop radial thrusts of reasonable magnitude. However, for a given control port this radial steering force is single valued, changing only with motor speed. To compete with other steering systems, the WSN should be capable of developing a steering force for which the magnitude can be controlled at any speed. As a result, a preliminary series of tests were conducted on nozzle A4 to inves-
Figure 33 Steering Ratio Versus Advance Ratio for Nozzles A2 and A3
tigate a method of controlling the magnitude of the radial force.*

A series of ports were placed along the shroud, from just aft of the propeller plane up to the exit plane. It was felt that the magnitude of the radial force could be varied by varying the location at which a control port was opened, based on the assumption that a port near the exit plane would deflect the wake a smaller amount than a port just aft of the propeller plane. To test this out, three slotted ports were drilled to the same dimensions as the ports used in the previous tests (.25 inches x .75 inches).

The nozzle was tested with propeller No.2 over a range of forward velocities. The results are given in Figure 34. As expected, the radial force magnitude decreases with the distance of port location from the propeller plane. Thus, the technique has potential for providing at least some degree of control over the radial force magnitude. Precise control might be possible if a system were designed to provide a control flow at any axial location. Additional test work is required to study the effect of axial port location and shape on the other propeller-nozzle combinations.

5-E Summary

The results revealed that the reliability of the WSN performance at nonzero forward velocity was improved over the

* This investigation was conducted by Mr. R. Gauthier as part of an Engineering Undergraduate Projects Course at the University of New Hampshire.
Figure 34 Effect on the Coefficient of Radial Thrust of Axial Location of the Control Port
static tests. The radial thrust coefficient showed a favorable increase with advance ratio while the axial thrust decreases as is the cases with all shrouded propellers. A method was developed for controlling the radial force magnitude by locating a series of slots at different axial locations along the aft section of the shroud.

Additional test work is required to further extend the set of reliable propeller-nozzle combinations and to verify the method of radial force control for other WSN. Development work is also required to explore such factors as directional control of radial force. However, before proceeding with more testwork, an assessment of the potential of the WSN should be made. The combined static and forward velocity test results have provided the necessary information. This can be accomplished by comparing the thrusting and steering characteristics to those of conventional submersible propulsion-steering systems.
CHAPTER VI

AN EVALUATION OF THE PROPULSION-STEERING CHARACTERISTICS
OF THE WAKE STEERING NOZZLE

6-A General

The previous two chapters have demonstrated the feasibility of the wake steering concept. Enough information on the operating characteristics of the WSN has been obtained to enable at least a preliminary evaluation of the WSN as a propulsion-steering device.

In this chapter, the efficiency of the WSN as a thruster is evaluated by comparing the WSN efficiency to existing data for nozzled propellers.(23-25) The steering effectiveness of the WSN is investigated for both cruising or forward velocity mode and hovering mode. The steering effectiveness during cruising is evaluated by comparing the WSN with a conventional submersible propulsion-steering device, a propeller surrounded by a tiltable shroud. The comparison is made by means of computer simulations of the submersible DSRV. This comparison is based on preliminary forward velocity tests on a model propeller and nozzle. The capability of the two WSN, one mounted fore and another aft, as shown in Figure 4, to provide independent force and moment generation in the various degrees of freedom during hovering is discussed.
The Propulsive Efficiency of the WSN

Considerable experimental work on propellered nozzles has been conducted at the Netherlands Ship Model Basin (NSMB).\(^{(23-25)}\)

As a result of these efforts, a number of propellered nozzles have been developed which are highly efficient thrusters. Some of the test results showing the axial thrust coefficient and efficiency plotted as a function of advance ratio for one of the most efficient nozzles, nozzle 19a taken from Reference 24, Figure 22, are shown in Figure 35. This nozzle was tested with a series of four bladed propellers ranging in pitch to diameter P/D ratio from 0.6 to 1.6. The test results for two of the propellers having P/D ratios of 0.6 and 1.4, are shown in Figure 24 for comparison with one of the better performing wake steering nozzles tested at forward velocity, nozzle A3 with propeller No.2. The test results for 19a with propeller P/D ratio of 1.4 are used for comparison with the WSN because propeller No.2 has a nearly identical P/D ratio of 1.41. The results with the propeller P/D ratio of 0.6 were chosen because the peak efficiency of 19a with this propeller occurs at very nearly the same advance ratio as for the WSN.

One deficiency is apparent in comparing the WSN with nozzle 19a; the efficiency is lower. However, this is to be expected since nozzle 19a is a highly developed nozzle design representing the state of the art in conventional non-steering propellered nozzles, whereas the WSN design has not yet been
Figure 35 A Comparison of the Axial Thrust Coefficient and Efficiency of the Wake Steering Nozzle and Nozzle 19a
The lower efficiency is also due to limitations in the experimental facility, particularly the propellers which had a blade profile opposite that of most conventional propellers. The blades have a sharp leading edge and blunt trailing edge. The blunt trailing edge would tend to produce a turbulent wake, thus lowering propeller efficiency. Higher efficiencies could probably be obtained by testing larger diameter nozzles where more propeller types are commercially available and manufacturing tolerances can be more easily controlled. In addition, the WSN was tested with a two bladed propeller whereas the propellers used in 19a were four bladed. The four bladed propeller would tend to increase propulsive efficiency by minimizing the unsteady flow. WSN efficiency could also likely be increased by further streamlining the nozzles and supporting struts, thus minimizing the drag forces.

Significant differences in axial thrust coefficient are also apparent in Figure 35. The axial thrust coefficient of the WSN is higher at lower advance ratios but decreases more rapidly with advance ratio than nozzle 19a. The increased axial thrust at low advance ratios could be due to differences in propeller type. Kaplan type propellers which have a wider and flatter blade near the propeller tip were used in 19a. The higher thrust could also be due to the fact that flow through the more divergent WSN tends to separate circumferentially from the inside trailing edge. The resulting high pressure acting on the inside surface of the nozzle aft section would increase the WSN axial thrust coefficient. This separated flow would also increase the
drag force, contributing to the rapid decrease in K_{TA} with advance ratio. Another factor causing the rapid decrease in K_{TA} is the larger length to diameter ratio L/D of the WSN. Van Manen and Oosterveld found that the axial thrust and efficiency of nozzled propellers rapidly decreased with length due to increased nozzle drag.\(^{(24)}\) This was particularly evident when the nozzle was lightly loaded (low K_{TA}, high J).

At the present stage of development, it appears that the long highly divergent nozzles are an inherent part of the WSN design required in order to develop large radial thrusts for steering. These same parameters tend to decrease its efficiency and effective range of advance ratios as a forward thruster. Consequently, further development and optimization of the WSN should be directed towards minimizing shroud length and divergence while maintaining comparable steering characteristics.

6-C An Evaluation of the Steering Effectiveness of the WSN

The steering forces developed by movable control surfaces, such as rudders and tiltable shrouds, are usually represented in nondimensional form as lift and drag coefficients by dividing the forces by a term containing rudder area and fluid velocity. The steering characteristics of different control surfaces can then be compared by simply comparing their representative lift and drag coefficients. The WSN steering force,
being a function of propeller thrust, is nondimensionalized by dividing the steering force by a term containing the propeller diameter and rotational speed and therefore a direct comparison is not possible. However, a comparison of the WSN and a conventional control surface is possible for a specific vessel since the propeller thrust and fluid velocity are related through the vehicle dynamics.

The steering characteristics of the WSN are evaluated by comparing it to the tiltable shroud used in the DSRV. This comparison is made by means of computer simulations of the equations of motion of the DSRV given in Appendix A. These were simplified in Appendix D by considering only motion in the horizontal plane. It is, however, assumed that the vehicle is submerged during all maneuvers in the simulation.

Nozzle A3 with propeller No.4 was chosen on the basis of maximum steering ratio K_{TR}/K_{TA} subject to the constraints of efficiency, size and propeller speed. The WSN used in the simulation had a diameter D of 2.7 feet and length to diameter ratio L/D of 2.5 giving it a greater area overall than the tiltable shroud which has a diameter of 6.06 feet and L/D ratio of 0.31. The procedure in selecting this particular WSN is contained in Appendix D. The DSRV equations, together with the equations for tiltable shroud propeller and WSN given in Appendix D were programmed on the IBM System 360 computer using CSMP. The computer programs are contained in Appendix C.
Three types of maneuvers were simulated; a full 360° turn, a 90° accelerating turn and a 90° decelerating turn. The results of the 360° turn are shown in Figure 36. The 360° turning circle maneuver is a standard comparative maneuver for marine vessels and is a steady state or constant velocity maneuver. The tiltable shroud was deflected a maximum amount which is also standard for this maneuver. The accelerating and decelerating turns are not standard maneuvers. They were chosen because they are considered to reflect the dynamic maneuvering characteristics of the steering devices. In the accelerating turns, the submersible is accelerated from rest by a constant vehicle axial thrust. In the decelerating turns, the submersible is decelerated from a near maximum cruise velocity of 6 feet/second by adjusting propeller speed to maintain a near zero axial thrust on the submersible. The simulation was halted in both cases after the submersible had achieved a 90° change in yaw angle. The results for the accelerating and decelerating turns are shown in Figures 37 and 38 respectively. The numbers in brackets represent the position of the vessel in the axis system at the completion of the 90° turns. The time to complete each maneuver is also given in the figures.

In the case of the standard turning circle maneuver, the performance of the two steering devices is about the same. The accelerating and decelerating turns, however, reveal noticeable differences, with the WSN out performing the tiltable shroud in the accelerating turn but performing less effectively in the
Figure 36 Turning Circle Simulation of DSRV Comparing
WSN and Tiltable Shroud
Figure 37 Simulated 90° Accelerated Turn Comparing Wake Steering Nozzle and Tiltable Shroud

Figure 38 Simulated 90° Decelerated Turn Comparing Wake Steering Nozzle and Tiltable Shroud
decelerating turn. This is to be expected since the high propeller-nozzle thrust of the accelerating turn creates a comparatively high WSN radial or steering thrust while the high forward velocity and low propeller-nozzle thrust of the decelerating turn favor the tiltable shroud.

It should be pointed out that the steering effectiveness of the WSN could be improved by choosing a larger diameter WSN. For example, using a 3.4 foot diameter nozzle as opposed to the 2.7 foot diameter nozzle used, increases steering effectiveness K_{TR-A} by about 15% according to the analysis of Appendix D. However, this is done at a sacrifice of a larger shroud size and a lower axial thrusting efficiency.

6-D A Proposed System for Hovering Control

The proposed use of two WSN, one mounted fore and the other aft, was introduced in Chapter I and is illustrated in Figure 4. This system has the potential capability of replacing the existing thruster-steering system for a submersible such as the DSRV, which has a main propeller, tiltable shroud and four ducted thrusters.

The arrangement is capable of generating independent forces and moments through cancellation of the axial thrust generated by the two opposing WSN. The resulting thrust cones
generated by operating in this configuration are shown in Figure 39. By reversing the propeller on the front WSN during cruising, a push-pull type of thrusting is possible.

Figure 39 Thrust Vectors Obtained by Mounting WSN on the Tail and Bow of a Submersible

An additional advantage of this system is the potential ability of the WSN mounted on the front of the submersible to produce a radial thrust for both forward and reverse propeller operation. This would improve the submersible steering effectiveness for cruising and for hovering in a current. This would require additional ports on the nozzle fore section. Future testwork must be conducted on both the forward and reverse operation of the WSN.

The magnitude of the radial thrusts and thus the control forces and moments generated are a function of the WSN size, propeller speed and the characteristic thrust coefficients. Considering
a WSN having the same dimensions as the nozzle used in the simulation and using a maximum propeller speed of 5 rev/sec, the maximum radial thrust of this WSN at low advance ratios is about 2,750 pounds. This is the same order of magnitude as the maximum thrust of the ducted thrusters on the DSRV. Thus two WSN could produce the same yaw and heave forces as the four ducted thrusters. Because the WSN would be located further from the vehicle center of gravity than the ducted thruster, the pitch and yaw moments generated would be increased an average of about 40%, based on the dimensions of the WSN and DSRV.

6-E Summary

A comparison of the WSN with some conventional propulsion-steering systems has been conducted. The results reveal that one tail mounted WSN is capable of providing submersible steering forces comparable to a tiltable shroud and that mounting another WSN on the front can provide the same forces and moments as the four ducted thrusters, main propeller and tiltable shroud of the DSRV. Although the axial thrusting efficiency of the WSN is lower than some of the conventional ducted thrusters, it can no doubt be increased, as can the range of forward velocity operation of the device, through optimization of the propeller and nozzle design. Shapes other than the arc of a circle need to be investigated. Additional testwork is required to investigate methods of controlling radial force direction and the effect on WSN performance of flows around the nozzle which are not symmetric to the propeller axis.
CHAPTER VII

ORGANIZATIONAL ASPECTS OF THE WAKE STEERING PROJECT

7-A General

The research of the wake steering project involved the coordinated efforts of a number of people. This approach typifies the current trend towards the use of project groups, as an alternative to the lone investigator, as a means of solving today's more complex research problems. The success of the project group approach depends to a great extent on the ability of the group to work together effectively. This is often hampered by nontechnical issues which require considerable managerial skill and understanding in order to be resolved. Thus, those concerned with the management of the project, who are traditionally scientists and engineers, must acquire and develop new skills to manage these situations.

The purpose of this chapter is to examine some of the organizational aspects of research projects which the author has found particularly relevant in the management of groups as a consequence of his role in the management of the wake steering project. The main focus of this chapter is on the project's inter-group and interpersonal dynamics. However, as a prelude, there is a brief discussion of project organized research and in particular the various phases in the life cycle of a project. This serves to define an overall framework or continuum into which any project, but more specifically the wake steering project, can be placed.
Projects, as defined by Archibald and Flaks(58) are "unique well-defined efforts to produce certain specified results at a particular point in time". A project is characterized by a carefully bounded limit. There is a beginning, intermediate stage and an end, therefore it has a life cycle. This life cycle can be separated into at least four distinct phases:

\textbf{Phase 1 - Conceptualization}

The conceptualization stage is the generation of concepts or "paper ideas" to fulfill needs; existing or anticipated. The recognition and definition of these needs can come from several sources; those directly involved with the research, those in the management of the organization or from someone outside the organization. Very few people are involved at this stage and the project exists primarily on paper. A cursory evaluation or screening of ideas is also part of this phase which can be viewed as the initial "brainstorming". In the university environment, this phase is often conducted without funding or is funded under an open-ended type of grant with broadly defined objectives.

\textbf{Phase 2 - Preliminary Evaluation}

A funded program is planned and executed around the most promising idea or concept to emerge from Phase 1. The purpose of the program is to conduct a preliminary evaluation of the concept. More people are involved and organization and management
problems therefore increase. The project objectives are more clearly and precisely defined. The time and resource requirements are estimated. Specifications, such as physical characteristics, performance criteria and cost limits are established for the end product. A model of the basic concept is constructed for experimental evaluation. The model is modified to meet initial performance criteria.

Phase 3 - Prototype Evaluation

Using design information obtained from the results of the preliminary evaluation, a prototype is built and tested. This phase is for working any bugs out of the new system or product. If any flaws are discovered, the design may have to be further modified and evaluated by revising and retesting the model. The prototype design is studied for production operations and testing may be conducted in its ultimate working environment. The whole project is given a final and thorough evaluation at this point. Does the end product meet the standards of performance identified at the outset? Can it be produced within a specified budget and time period? If the results of this evaluation are positive, the project enters its final phase.

Phase 4 - Utilization

This phase represents commercial production of the concept and close-out of the project. The product can now be put to its intended use. The transition from Phase 3 to this phase often gives the most serious management problems because of the
magnitude of the organizational changes involved. The manufacture of the product must be integrated into the company, often carrying with it portions of the project organization.

A flow chart of this whole process is diagrammed in Figure 40. Each of the circular nodes represents an evaluation point in the project where a decision must be made. The project may proceed to the next phase, continue with the phase it is already in, stop altogether or return to one of the preceding phases. This decision is obviously influenced by many factors such as a change in the project's goals, the technical success or failure of the project or a change in the available resources. Consideration should be given to predicted future values of these factors as well as the current values.

Fig. 40 A Project Flow Diagram
Research on the subject of creativity has shown that a loosely structured and informal type of atmosphere is the most fertile source of ideas.\(^{(59,60)}\) Gordon\(^{(59)}\) emphasizes the importance of removing people from the day to day tasks of their immediate work environment and creating a shirt sleeve type of setting. The contention being that this type of atmosphere is more conducive to idea formulation rather than a purely production oriented atmosphere. He also feels the group should have an interdisciplinary flavor to provide the fresh approach to problems so often needed. In the conceptualization phase where the creation of a good core idea to form the basis of a project is the primary concern, the project manager might consciously try to adopt some of these techniques. On the other hand in Phase 3, which is concerned with prototype evaluation, more effort directed towards the detailed planning and scheduling of activities with an increased awareness of deadlines and costs would likely be more effective. This is not meant to imply that creativity is any less important in Phase 3, only that it is directed more towards the problems at hand. Phase 2 would lie somewhere in between these two phases, but probably closer to Phase 3 than Phase 1.

It is also important to those concerned with the final outcome of the project to realize which phase a project is in. This recognition is an aid in leading to a common agreed to set of goals and expectations on the part of all concerned. In the wake steering project it was generally agreed that Phase 1 had
previously been completed by Wozniak, Taft and Alperi who had originated the basic concept after examining a number of possibilities. Consequently, it was apparent to our group that it would be unwise to discard their original concept and begin reconceptualizing before completing a thorough investigation of their concept. This consensus did not always hold as there was a tendency for the group to reconceptualize, particularly when faced with discouraging results such as the failure of the aluminum shrouds to operate reliably.

It was also apparent to our group that Phase 2 of this project had not yet been completed. Therefore, the investigation of the wake steering nozzle reported in chapters 4 to 6 constitutes, for the most part, our development of Phase 2.

Phase 3 was examined and it was felt that it would be unrealistic for us to devote time and resources to the design and construction of a full scale prototype of the nozzle.

The main goal in any phase of a project is usually to achieve a technical success. The contribution of management towards this objective is through the best utilization of the project's resources, the most important of these being its personnel. The next two sections are devoted to relating certain concepts of management which, based on the writer's experience, are considered important in ensuring the success of a project.
7-C Planning for Research

7-C.1 Establishing Objectives

The planning and successful completion of a project requires a base or a set of congruent objectives and goals. The term congruent does not imply that all the goals are basically the same but rather that they act in a complementary fashion thus minimizing any conflict. The first step in achieving this degree of congruency is a common awareness of just what the goals of the organization or group are.

Groups typically have multiple goals and some of these are not very obvious. Litterer makes a distinction between official and operative goals (61). Official goals are for the public consumption and are openly stated. Operative goals are those actually pursued and determine the operation of the organization. Operative goals are not necessarily different from the official ones but often are much less specific. It is a matter of distinguishing between a group's stated goals and its real goals.

In the wake steering project the official goals were established by the Advanced Research Projects Agency who funded the project *, and were based on a proposal by Dr. Charles K. Taft, the principle investigator and project director. The basic objective was to conduct an experimental and analytical investigation of the potential of the wake steering concept. This objective was communicated to the group members by Dr. Taft

* The contract was administered by the Office of Naval Research under contract number N00014-67-A-0158-006.
during the recruiting phase of the project and in the initial group meetings.

These official goals were also part of the operative goals of our project. That is, they were very real goals to which the members of the group were directing their efforts. Other operative goals were the provision of thesis topics for graduate students, publications for students and faculty and continued project funding. These goals were eventually discussed by our group with a view to establishing as high a degree of congruency as possible in the efforts directed towards these goals. Consequently, most of the project related work of the graduate students also provided thesis or M.Sc. project topics. In addition, one paper has been written with more likely to follow.

It is the writer's conviction that the recognition and open discussion of all the operative even though unstated goals of the project increased our group's productivity by minimizing goal conflict. A particular example was the initial frustration of some of the students as to how to direct their research efforts in a way which was in the best interests of the project but which would also lead to a thesis topic. In one instance this was resulting in a student spending time researching in a completely different area. Since most of the faculty on our project were also advisors to the students, a discussion of this difficulty led to a definition of work that
would simultaneously achieve both goals.

7-C.2 The Planning Function

Achieving the goals of an organization involves a certain amount of planning at some stage. This plan may only exist in an abstract sense in the minds of management. Planning for research may be objected to by the people involved in research because it is viewed as setting boundaries or guidelines on creativity. It seems somehow to run counter to imagination, genius and insight. Planning is also objectionable perhaps because trying to translate possible eventualities into concrete actions is such a difficult mental process, particularly when the need for such actions may never arise. Yet, planning is important to achieving one's goals and in deciding among the various alternatives.\(^{(62,63)}\)

Acting as project coordinator for the wake steering project, the planning function was one of the prime concerns of the writer of this dissertation. Several plans were developed around project networks similar to PERT. The first schedules developed were not very successful. That is to say that little attention was given to doing the tasks as outlined and often with total disregard to completion times. Consequently, the wake steering project fell far behind on most of its early commitments. Later schedules were much more successful. The construction of these later schedules differed from the earlier ones in a number of important aspects:
1) There was an increased awareness by our group that such schedules could serve a useful purpose. Initially, many of the members of the project were apathetic to any sort of detailed planning and general scheduling of activities. After the project had been underway for a few months, the group became increasingly frustrated with our relatively slow rate of progress. As a result people were more receptive to their use.

2) There was also an increased input to the planning by the people who were conducting the work. One contributing factor to this change was that the project coordinator was planning with the people involved rather than for them as was the case in the earlier schedules. Churchman(64) points out that one of the most critical problems in organizing for planning is the potential alienation of the planning function. He and others(65,66) emphasize the importance of active involvement of the people who will be doing the work.

3) The task time estimates associated with each activity were more realistic. This was achieved thanks to Mr. Fellows, an M.Sc. student on the project, who helped ensure that a careful examination of the various interactions was conducted and sufficient detail describing the various tasks included. Assistance was also provided by Mr. O'Connel an MBA student participating in the project.*

An example of the success of one of the later schedules is that it assisted Mr. Hudson, an M.Sc. student, in completing a substantial set of the forward velocity tests on time. The

*Mr. O'Connel acted as an observer and management consultant to the author during the later part of the project.
project schedule enabled the project coordinator to assist Mr. Hudson in completing this work because the areas or tasks where assistance was required were evident and provisions could be made ahead of time.

An additional benefit of planning is that by necessity it leads to clarification of the goals of the project since in planning out what is to be done consideration must be given to where one is going. This aspect of planning helped identify and clarify the subgoals of the wake steering project.

7-D The Leadership Role

7-D.1 Responding to Individual Needs

Classical management theories tended to stress the importance of control of subordinates by authoritative means. It was assumed that the average human being had no interest in the organization's goals, an inherent dislike for work and a need to be continually directed.

Recent management theory is directed more towards providing an atmosphere which makes possible the satisfaction of individual goals and needs through achievement of the organization's goals. Typical examples are McGregor's Theory y type of manager and the "9.9" manager described by Blake and Mouton. These authors stress the importance of recognizing that the individual has a set of needs, many of which are continually changing. It has been demonstrated that sensitive and supportive attitudes by management towards employee needs is a contributing factor in achieving high performance.
One framework suitable for examining individual needs in work groups is that proposed by Herzberg. He has divided individual needs into two categories: satisfiers and dissatisfiers. The satisfiers are motivators in that they motivate the individual to superior performance and effort. They are all task oriented and consist of achievement, recognition, work itself, responsibility and advancement. The dissatisfiers are in the environment. They include such things as company policies, salary and the type of supervision received. The dissatisfiers serve primarily to prevent satisfaction while having little effect on positive job attitudes. They are of relatively short duration in contrast with the motivators which were found to have a long lasting effect in motivating employees to superior job performance. Thus one of the primary functions of management should be to create or enhance the potential job satisfiers. Too often this is not the case and it is the dissatisfiers that get most of the attention.

The primary reason for this is the dissatisfiers constitute a more tangible and often less personal category of needs and therefore tend to be the focal point of both management and workers. How often have you heard employees complaining about company "red tape", their salary or their supervisor when really they were asking for a more fulfilling job through increased responsibility and recognition? The effective project manager will be aware that much more significant factors underly what often may appear on the surface as petty and
easily resolved employee complaints.

The atmosphere created in the wake steering project was one which was generally responsive and supportive to individual needs, particularly the more task oriented motivators. An example of this was the case of Mr. Clark, an M.Sc. student on our project, who had a number of ideas relating to the experimental testing of the nozzles. These ideas reflected Mr. Clark's background as a machinist and his current interests in mechanical instrumentation design. Mr. Clark was encouraged by the leadership of the project to present his ideas to the group. One of the proposed ideas, the variable nozzle holder, was enthusiastically received by the group. Mr. Clark was encouraged to pursue the idea and given responsibility for its development. Out of this evolved the nozzle variation system illustrated in Figure 17, Chapter 4. This system enabled the nozzle inside shape to be rapidly varied at a much lower cost compared to some of the other methods considered. It is fair to say that Mr. Clark received a good deal of satisfaction from this accomplishment and the project an excellent piece of equipment. This may not have been possible under a leadership style which was unresponsive to individual needs.

This does not mean to imply that every individual on our project obtained a high degree of satisfaction. In the case of one individual there was extreme discouragement and frustration. The main reason for this, which finally became apparent to the author, was that this person felt he was not getting
adequate recognition for the results he had achieved, particularly from the project director. This was resulting in a complete breakdown in communications and an increasing amount of tension between this individual and the project director. Some discussions were held with these individuals during which this issue was raised. These discussions helped to correct the situation somewhat but it still remained unsatisfactory. An earlier realization by the author as to the reason for the high level of dissatisfaction of this individual perhaps could have avoided this situation.

7-D.2 The Functional Aspects of Leadership

People are in leadership positions because they were appointed to that position (formal) or because they emerged (informal). At any rate they have the ability to influence the group and they exercise it. This power to influence others can be viewed as stemming from five bases: legitimate, expert, referent, reward and penalty. Leadership can be based on one or all of the preceding sources of influence. For example, a formal leader would have legitimate power because of his officially designated position. Along with this he would likely have the ability to dispense organizational rewards or penalties. The emergent leader, on the other hand, derives his support from his special knowledge or expertise and/or because project personnel feel personally attracted to him.

The leadership positions of the group, both formal and informal can be held by one or several persons in the group.
In an authoritative setting the designated leader is usually the only leader. All leadership functions are performed by him. The expertise of others in the group is not utilized. This is contrasted with the functional concept of shared leadership which recognizes and utilizes the special abilities of others in the group. It focuses attention on what must be done to move the group towards its goals rather than who must do it. Studies conducted by Gemmill and Thamain have demonstrated that a functional approach to project management based on expert power is the most effective in gaining the support of project personnel.

This functional concept of group leadership was recognized by Professor Taft. In his role as the official leader of our project, he was influential in creating an environment where the leadership was shared. This enabled our group to utilize the talents and expertise in fluid mechanics of Professors Wilson and Alperi and the machine design capabilities of Mr. Clark to mention a few. As an example, at the instigation and under the direction of Professor Wilson, a water tunnel was rapidly constructed to provide a facility for the forward velocity testing.

7-D.3 The Role of the Project Coordinator

The role of project coordinator is vital to the leadership and management of a project. A description of the type of project coordinator role that the writer assumed in the management of the wake steering project is a combination
of what Archibald and Flaks describe as a project expediter and a project coordinator.

As project expediter:

1) He deals with all persons involved with the work to expedite and ensure that schedules are kept.

2) He is a center of communication and is able to supply information to higher management on request.

As project coordinator:

1) He has independent authority to act and is therefore responsible for results.

2) He exercises leadership of the project through personal interaction rather than through actual authority.

3) He controls disbursement of funds but does not establish the budget.

An additional dimension to the writer's role of project coordinator was that of "team member". In the early stages of our project, the activities of the writer were confined almost exclusively to this role. This soon proved ineffective in terms of the overall project as Professor Taft was becoming overburdened with the leadership duties of the project. Although this was apparent to the project coordinator, some time elapsed before the assumption of a very active role in the leadership of the project. A contributing factor to this delay was the tendency to avoid the difficulty and risks involved in such a change in the established role. As Zaleznik points out, this changes many of the basic interpersonal relationships. This situation was leading to increased levels of frustration.
Professor Taft was becoming frustrated with the project coordinator because he felt that the project coordinator should be assuming a more active role in the leadership of the project. The project coordinator now felt that he could do more to assist the group in achieving its goals in a management role than as a team member. These feelings were heightened by a lack of communication and had the situation continued it could have become a real problem. Fortunately, this misinterpretation of roles was discussed. The role of the project coordinator was more clearly defined. Some common expectations were established leading to a more active management role for the project coordinator.

It is recommended in the future that the role of the student manager is discussed with both the key project personnel and the student's Ph.D. committee prior to commencement of the student's managerial role. This provides at least an initial clear cut starting point. What happens to this "official" role during the remainder of the project is then part of the learning experience.

The author also found that to continue his individual research while simultaneously coordinating the activities of the project was generally not in the best interests of both. Too often matters were let slide in the project with the hope that they would work themselves out which they rarely did. Not enough time was spent on "housekeeping" chores, such as the development of good bookkeeping, filing and accounting systems, essential to well organized management. In short, project management is a full time job and this should be taken into
Certain organizational aspects of project or group oriented research were examined in this chapter. These are based on the writer's experience as project coordinator for the wake steering project. This experience has provided a set of key concepts considered by the writer to be important in managing projects of this type. These concepts range from topics at the larger organizational level, such as goals and objectives, to a consideration of interpersonal factors, such as leadership roles.

At the larger or macro-level, projects can be viewed as having a life cycle, which can be divided into various phases. Each phase has distinguishing characteristics which influence such managerial considerations as the planning and scheduling of work and setting the project's goals. Recognition of which phase a project is in should lead to a common set of goals and expectations for the group, thus improving their effectiveness.

It must be recognized that project groups have goals other than their official goals. Recognition and open discussion of these operative goals increases the productivity of the group by minimizing goal conflict and establishing a high degree of congruency between the goals.

Planning is required at all phases of a project but becomes more extensive in the later phases. To be most
effective, this planning is best carried out by those who will be doing the work. Care must be taken to ensure enough detail is included to provide an adequate description of the various tasks.

The successful outcome of a project depends on the ability of the group to work together effectively. A climate of responsible freedom must be created where the individual is encouraged to extend himself. Probably the single most important factor influencing the creation of this environment is the leadership of the group. The truly effective project manager must be able to recognize the individual need satisfiers and work to create the opportunity for the individual to realize these task oriented needs. Leadership must also be responsive to the overall needs of the project as well as individual needs. It must recognize where the pressure points are and know how to relieve them. Operating out of a functional concept and democratic style, the leadership role can be shared by the whole group thereby making maximum utilization out of the pooled leadership abilities of the group.
CONCLUSIONS AND RECOMMENDATIONS

Some methods of improving the maneuverability of a submersible have been examined. The main thrust of this investigation was the development of techniques for generating independent control forces and moments in the various degrees of freedom. As part of the effort to achieve this goal, decoupling feedback control laws were derived and applied to decouple some of the motions of the DSRV.

The equations of motion of the DSRV are a complex coupled nonlinear set of differential equations. Existing linear decoupling theory was shown to be unsatisfactory as a means of developing control laws which would enable single input-output control. These results motivated the development of a nonlinear theory for the direct decoupling of nonlinear systems. Conditions for decoupling two classes of systems were developed; Class 1 systems in which the inputs appear linearly in the describing equations and Class 2 systems in which the inputs are nonlinear. The Class 1 systems have recently been treated by other authors using different approaches. The end results are basically the same and the choice is largely one of individual preference. Readers familiar with the linear theory of Wolovich and Falb for linear systems are likely to prefer the approach used in this thesis.

As far as decoupling the motions of the submersible are concerned, the Class 2 systems are really of more interest since the submersible is of this class. Except for the work of Tubalkain and Limbert, this area of systems has not been
considered in any detail by other authors. By expressing the
equations in vector form, conditions were developed in a more
direct manner to include systems which could not be decoupled
using their method. However, the principle advantage is that
decoupling is achieved using only state feedback rather than
state plus input feedback. Feeding back the inputs \(\bar{u} \) intro­
duces a set of hidden variables into the closed loop system
which further complicates an evaluation of the closed loop
stability of the system.

The ability to decouple Class 1 systems was shown to
depend on the invertibility of a matrix \(D^*(\bar{x},t) \). Values of
the system states where this condition is not met serve to
define regions where the system cannot be decoupled. The
decoupling of Class 2 systems was shown to depend on the
ability to solve a set of nonlinear algebraic equations for
all the components of the input vector \(\bar{u} \). Decoupling is pos­
sible where these solutions are real and finite. The results
for Class 1 and Class 2 systems were extended to develop
feedback control laws for the on-line regulation of these
systems.

The main difficulty complicating the practical appli­
cation of the decoupling theory in general, both linear and
nonlinear, is that it is ineffective if saturation of any of
the inputs \(\bar{u} \) occurs. The theory delineates those regions where
the inputs become infinite. In practice saturation will occur
at finite values. This can act to greatly reduce the region
in state space over which the decoupling control laws are
applicable. Redefining the region over which the control laws
are effective could require an extensive search procedure since the inputs are functions of several variables; the new system inputs, system states and the specified closed loop dynamics. The development of numerical search routines incorporating the decoupling theory would advance the state of the art considerably.

The nonlinear decoupling theory developed in Chapter II was successfully applied to exactly decouple the roll-surge equations which the linear theory had previously failed to satisfactorily decouple. The nonlinear theory was then applied to a more exact set of roll-surge equations which included the input dynamics and constraints on the input magnitudes. By introducing rate limiting filters on the new system inputs, the amount of roll-surge cross-coupling was reduced almost to zero without appreciably slowing the dynamic response of the submersible.

The method of solving the problem of completely decoupling the six degrees of freedom of the DSRV during hovering maneuvers was also established. The explicit solutions to this problem were not obtained by the procedure one would follow is basically the same as was done for the roll-surge motions. The main difference and difficulty is that a more extensive search routine would have to be employed since the inputs are functions of more variables. Additional research in this area is required if the full benefits of the decoupling theory are to be realized.

Although the control laws have been developed for a
specific submersible; the DSRV, they are quite readily ex-
tendable to other submersibles. The potential application
of the control laws developed in this thesis is promising.
The extremely rapid developments in recent years in the
areas of signal processing and digital computers are greatly
reducing the time and cost of employing some of these more
elaborate control techniques.

The thrusting and steering characteristics of the
wake steering nozzle were also investigated. This device has
the potential of reducing the amount of submersible hydro-
dynamic cross-coupling between the motions by increasing vessel
geometric symmetry. This may be done using fewer thrusters
but still maintaining comparable levels of maneuverability
overall.

The performance of the wake steering nozzle was first
investigated at zero forward velocity. Preliminary tests
revealed that the radial steering thrust of the nozzles in-
creases as the nozzle divergence increases. However, higher
nozzle divergence resulted in an unreliable mode of operation
where the wake remains deflected after closing the control
port producing an unwanted component of radial thrust.

A further set of tests of several propeller and
nozzle combinations served to define a set of shrouds which
operated reliably while producing reasonably large radial
thrusts. These combinations tended to be the longer nozzles
and were about midrange in terms of divergence and propeller
pitch of those tested.
Two nozzles from the static tests which were midrange in terms of divergence were chosen for forward velocity testing. The reliability of these nozzles showed an improvement over the static tests. Also, the radial thrust coefficient was found to increase with forward velocity. Locating a series of slots at different axial locations along the aft section of the shroud was demonstrated to be a realistic means of controlling the magnitude of the radial force.

Based on the static and forward velocity test results, a preliminary comparison of the WSN with some conventional submersible propulsion and steering systems was conducted. The WSN was found to be somewhat less efficient as a forward thruster than a conventional nozzled propeller, Nozzle 19a. However this is to be expected since nozzle 19a is a highly developed nozzle design representing the state of the art in conventional non-steering nozzles, whereas the WSN design has not yet been optimized. The real significance of the comparison is that it provides the impetus and direction for future work on the WSN indicating that parameters such as nozzle length and propeller type must be optimized from the point of view of efficiency as well as radial thrust. In terms of steering effectiveness, the WSN was shown to be as effective as a conventional tail mounted steering device, a tiltable shroud. By mounting a WSN on the bow of a submersible, in addition to one on the tail, the WSN can be considered a potential candidate for replacing the propulsion and steering system of a conventional submersible such as
the DSRV which has a main propeller, tiltable shroud and four ducted thrusters.

Future work on the WSN should be directed towards maximizing the radial thrust of the WSN subject to the constraints of reliable operation and acceptable thrusting efficiency. Other factors must also be taken into consideration. The following is a list of recommendations concerning future investigations of the wake steering nozzle:

1) The test work should be conducted on model sizes larger than those used in our test program. This would enable the investigation of a much wider range of commercially available propeller types.

2) Propellers having more than two blades should be tested and the effect on performance of propeller hubs be studied more closely.

3) Inside shapes other than the arc of a circle must be investigated. The effect of the outside shape of the nozzle also needs to be considered.

4) Additional test work on the effect of control port location is required.

5) The effect of control port configuration should also be investigated. By proper port sizing and the use of retractable inlet scoops, an increase in both the radial thrust and nozzle reliability could possibly be achieved.

6) The effect on WSN performance characteristics of fluid flow at nonzero angles of attack should also be part of any future test program. The reliability of the
device could be greatly affected by flow at right angles to the nozzle.

The research on the wake steering nozzle reported in this thesis represents the organized efforts of a number of people. As such the results are significantly more than could be accomplished by the author working alone. This group approach to research is fast becoming the accepted method of tackling today's more complex problems. Group research introduces another dimension to the problem; the effective management of the activities of the group.

To the uninitiated researcher with a very limited experience in administration, such as the case of the writer of this dissertation, involvement in the administration of the wake steering project as part of an academic program was an ideal opportunity. Combining course work in organizational behavior and consultation with experts in this field with ongoing project management experience provided an accelerated type of learning. This program has provided the author with a set of key concepts considered important in project management. Briefly, these are:

1) Projects are viewed as having a life cycle which can be divided into various phases. These act to influence the project's goals and the planning and scheduling of activities.

2) Goals must be established early in a project. Recognition and discussion of all these goals can increase the productivity of the group by establishing a high degree of congruency between these goals.
3) To achieve the goals of a project requires careful planning. This planning is best conducted by those who will be doing the work.

4) The key factor in the success of a research group is the type and style of leadership provided. Leadership must be sensitive to individual needs and maximize the opportunity for satisfaction of those needs within the project framework while meeting the objectives of the project. Leadership which recognizes the special abilities of individuals in the group and which actually utilizes these abilities should have the greatest likelihood of accomplishing this seemingly impossible task.

To further improve and accelerate the management learning experience, some recommendations are offered for designing programs of this type:

1) At least some of the formal course work in organizational behavior theory should precede the actual project management experience. Otherwise too much of the useful knowledge is gained too late to be applied. Preferably these initial courses would be a condensed overview type of course geared specifically to this type of program.

2) The specific role that the student manager will assume in the project should be discussed in depth by those involved prior to commencement of the project. This provides an initial and immediate starting point.

3) A person outside of the project with some expertise in
organizational behavior should participate in the project as a managerial consultant and source of feedback to the student manager.

4) The student manager should keep a complete diary for the project to provide the data later required for an objective overview.

5) Recognition must be given to the fact that the management of a project is a full time job. Engineers, especially those with limited management experience such as the author, tend to underestimate the amount of time required to manage a project. This factor must be taken into account in determining the length of the program and the individual research expectations of the student manager. The project management part of the program might best be conducted completely separate from the student's individual research effort. That is, the student would act as a full time project manager for a specific time during his Ph.D. program while the remaining time would be devoted to course work and individual research.
LIST OF REFERENCES

Figure 41 Lift and Drag Coefficients for the Tiltable Shroud

\[\alpha_S = \delta_y - \theta_w \]

Figure 42 Tiltable Shroud Lift and Drag Forces Relative to the Motions of the DSRV

APPENDIX A

DSRV EQUATIONS OF MOTION

The dynamic equations considered necessary for adequately describing the motion of a submersible such as the DSRV are a complex coupled set of nonlinear differential equations. The equations of motion for the DSRV in all six degrees of freedom, relative to an axis system located at the vehicle center of gravity, are given in this appendix. These equations are taken from Reference 20. A detailed derivation of the terms in these equations is contained in References 4 and 20. General information on the standard naval architecture approaches to modelling submersibles is given in Reference 35. To keep track of the large number of terms, the nomenclature for the equations is provided in this appendix.

Definitions and Nomenclature

The DSRV's axis coordinate system is located at the vehicle center of gravity as shown in Figure 1, Chapter 1.

The \textit{x-axis} is defined to be on the longitudinal centerline, the positive direction being forward, toward the bow.

The \textit{y-axis} is defined to be perpendicular to the \textit{x-axis}, the positive direction being to starboard.

The \textit{z-axis} is defined to be perpendicular to both the \textit{x-axis} and the \textit{y-axis} with positive direction being down, toward the transfer skirt.
X, Y and Z are used to describe forces in the direction of the x, y and z axes respectively. K, M and N are used to describe moments about the x, y and z axes. Angular displacements are taken as positive in accordance with the "right hand rule".

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>b_s</td>
<td>Shroud span (ft.)</td>
</tr>
<tr>
<td>c_s</td>
<td>Shroud chord (ft.)</td>
</tr>
<tr>
<td>I_x, I_y, I_z</td>
<td>Vehicle roll, pitch and yaw moments of inertia, respectively (slug-ft2)</td>
</tr>
<tr>
<td>K_p, M_p, N_p</td>
<td>Moments due to main propeller (ft. - lbs.)</td>
</tr>
<tr>
<td>K_t, M_t, N_t</td>
<td>Moments due to ducted thrusters (ft. - lbs.)</td>
</tr>
<tr>
<td>L_v</td>
<td>Vehicle overall length (ft.)</td>
</tr>
<tr>
<td>L_b</td>
<td>Distance from the origin of the axis system to the tip of the bow of the vessel (ft.)</td>
</tr>
<tr>
<td>L_s</td>
<td>Distance from the tip of the bow of the vessel to the leading edge of the shroud (ft.)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>k_s</td>
<td>L_b/L_s</td>
</tr>
<tr>
<td>m</td>
<td>Vehicle mass in the submerged state including entrained water (slugs)</td>
</tr>
<tr>
<td>n</td>
<td>Main propeller speed (rev/sec)</td>
</tr>
<tr>
<td>ϕ, θ, ψ</td>
<td>Angular displacement components relative to the body axes roll, pitch and yaw, respectively (radians)</td>
</tr>
<tr>
<td>p, q, r</td>
<td>Angular velocity components relative to the body axes roll, pitch and yaw, respectively (rad/sec)</td>
</tr>
<tr>
<td>$\dot{p}, \dot{q}, \dot{r}$</td>
<td>Angular acceleration components relative to the body axes roll, pitch and yaw, respectively (rad/sec²)</td>
</tr>
<tr>
<td>u, v, w</td>
<td>Velocity components of the origin of the body axes: x, y and z, relative to the fluid (ft/sec)</td>
</tr>
<tr>
<td>$\ddot{u}, \ddot{v}, \ddot{w}$</td>
<td>Acceleration components of the origin of the body axes: x, y and z, relative to the fluid (ft/sec²)</td>
</tr>
<tr>
<td>V</td>
<td>Velocity of the origin of the body axes relative to the fluid</td>
</tr>
<tr>
<td>x_G, y_G, z_G</td>
<td>Coordinates of the center of mass relative to the body axes (ft)</td>
</tr>
</tbody>
</table>
Vehicle Equations of Motion

Note that in the following equations all single subscripted capital letters preceding the acceleration terms in the equations are constants and subscripted according to the terms they precede. For example, the constant \(X_u \) in the term \(X_u \dot{u} \). Note also that all double subscripted capital letters preceding the velocity terms in the equations are constants and are subscripted according to the terms they precede. For example, the constant \(X_{rv} \) in the term \(X_{rv} v \). The values for all these constants are contained in Table 9 in this appendix.

* For additional information refer to Reference 20.
Vehicle Equations of Motion

Surge:

\[
m \left(\dot{u} + qw - rv - x_G (q^2 + r^2) + y_G (pq - r) + z_G (pr + q) \right) =
\]
\[
X_u \dot{u} + X_{qw} qw + X_{rv} rv + X_u |u||u| + X_{rr} r^2 + X_{qq} q^2 +
\]
\[
X_{rp} rp - W_{ti} \sin \theta + X_s + X_p + X_t
\]

(A.1)

Roll:

\[
I_x \dot{p} + (I_z - I_y) qr + m \left(y_G (\dot{w} + pv - qu) - z_G (\dot{r} + ru - pw) \right) =
\]
\[
K_p \dot{p} + K_v \dot{v} + K_q qr + K_v qv + K_v w + K_{qw} w + K_{qv} v +
\]
\[
K_{pw} pw + K_v |u| v |u| + K_r |v| v |v| + K_p |u| p |u| + K_r |u| r |u| +
\]
\[
K_p |p| p |p| + W_0 v G \cos \theta \cos \phi - z_{ti} W_{ti} \cos \theta \sin \phi + K_p
\]

(A.2)

Sway:

\[
m \left(\dot{v} + ru - pw - y_G (r^2 + p^2) + z_G (qr - p) + x_G (qp + r) \right) =
\]
\[
Y_v \dot{v} + Y_r \dot{r} + Y_p \dot{p} + Y_r |u| r |u| + Y_{pw} pw + Y_{qp} qp +
\]
\[
Y_v |w| v |w| + Y_p |u| p |u| + Y_v |u| v |u| +
\]
\[
\left(c_{1v} v + c_{2v} r + c_{3v} \frac{v}{|v|} r^2 \right) +
\]
\[
\left(c_{4v} \frac{r}{|r|} \frac{v^3}{r} + c_{5v} \frac{r}{|r|} v^2 + c_{6v} v |r| + c_{7v} r |r| \right)^*
\]
\[
+ W_{ti} \cos \theta \sin \phi + Y_s + Y_p + Y_t
\]

(A.3)

* Terms are cancelled when \(\frac{v}{-rL_s} > k_s \) or \(\frac{v}{-rL_s} < k_s -1 \)

** Terms are cancelled when \(k_s \frac{v}{-rL_s} \leq k_s -1 \)
where

\[C_{1v} = \frac{1}{2} \rho L_s^2 Y_v \left| \frac{v}{v} \right| \]
\[C_{5v} = \frac{1}{2} \rho L_s^2 (2k_s - 1) Y_v \left| \frac{v}{v} \right| \]
\[C_{2v} = \frac{1}{2} \rho L_s^3 (2k_s - 1) Y_v \left| \frac{v}{v} \right| \]
\[C_{6v} = \frac{1}{2} \rho L_s^3 \left((1-k_s)^2 + k_s^2 \right) Y_v \left| \frac{v}{v} \right| \]
\[C_{3v} = \frac{1}{2} \rho L_s^4/3 (1-3k_s + 3k_s^2) Y_v \left| \frac{v}{v} \right| \]
\[C_{7v} = \frac{1}{2} \rho L_s^4/3 (1-k_s + k_s^2) (2k_s-1) Y_v \left| \frac{v}{v} \right| \]
\[C_{4v} = \frac{1}{2} \rho \frac{2L_s}{3} Y_v \left| \frac{v}{v} \right| \]

Heave:

\[
m \left(\dot{w} + pv - qu - z_G (p^2 + q^2) + x_G (rp - \dot{q}) + y_G (r q + \dot{p}) \right) = \\
z_w \dot{w} + z_q \dot{q} + z_{pp} p^2 + z_{pv} pv + z_{pr} pr + \\
z_{vv} v^2 + z_{rv} rv + z_{rr} r^2 + z_u u |u| + z_w w |w| + \\
z_q |u| q |q| + w_{ti} \cos \theta \cos \phi \\
+ \left(C_{1w} \frac{w}{|w|} + C_{2w} q \frac{q}{|q|} + C_{3w} \frac{w}{|w|} q^2 \right) ** \\
+ \left(C_{4w} \frac{q}{|q|} \frac{w^3}{q} + C_{5w} \frac{q}{|q|} w^2 + C_{6w} w |q| + C_{7w} q |q| \right) * \\
+ Z_s + Z_p + Z_t \tag{A.4}
\]

where

\[C_{1w} = \frac{1}{2} \rho L_s^2 Z_w \left| \frac{w}{w} \right| \]
\[C_{2w} = \frac{1}{2} \rho L_s^3 (1-2k_s) Z_w \left| \frac{w}{w} \right| \]

* Terms are cancelled when \(w/qL_s > k_s \) or \(w/qL_s < k_s-1 \)

** Terms are cancelled when \(k_s \geq w/qL_s \geq k_s -1 \)
\[c_3w = \frac{1}{2}\rho L_s 4 \zeta_w (1-3k_s + 3k_s^2) \zeta_w |w| \]
\[c_4w = \frac{1}{2}\rho 2L_s 3 \zeta_w |w| \]
\[c_5w = \frac{1}{2}\rho L_s 2 (1-2k_s) \zeta_w |w| \]
\[c_6w = \frac{1}{2}\rho L_s 3 \left((1-k_s)^2 + k_s^2\right) \zeta_w |w| \]
\[c_7w = \frac{1}{2}\rho L_s 4 (1-k_s + k_s^2) (1-2k_s) \zeta_w |w| \]

\[
\text{Yaw,}
\]
\[
\dot{I}_z + (I_y - I_x)pq + m \left(x_G(\dot{v} + ru - pw) - y_G(\dot{u} + qw - rv) \right) =
\]
\[
N_r \dot{r} + N_r \dot{v} + N_p pq + N_u |u|v |u|v + N_r |u|r |u| + N_{wp} wp +
\]
\[
N_v q v + N_p |u| p |u| + N_{w} |v| w |v| +
\]
\[
W_{ti} \cos \theta \sin \theta + W_{oy} \sin \theta + x_s v s +
\]
\[
N_t + N_p +
\]
\[
\left(c_{1r} \frac{r}{|r|} v^2 + c_{2r} \frac{r}{|r|} \frac{v^4}{r^2} + c_{3r} \frac{r}{|r|} \frac{v}{r^2} + c_{4r} r |v| \right)^*
\]
\[
+ \left(c_{5r} v |r| + c_{6r} v |v| + c_{7r} \frac{v}{|v|} r^2 \right)^**
\]

\[(A.5)\]

* Terms are cancelled when \(-\frac{v}{rL_s} > k_s\) or \(-\frac{v}{rL_s} < k_s-1\)

** Terms are cancelled when \(k_s \geq -\frac{v}{rL_s} \geq k_s-1\)
\[
C_{1r} = \frac{1}{2} \rho L_{s/4}^5 \left(k_s^4 + (1-k_s)^4 \right) \frac{\dot{Y}_v}{|v|} \\
C_{2r} = \frac{1}{2} \rho L_{s/2}^3 \left(k_s^2 + (1-k_s)^2 \right) \frac{\dot{Y}_v}{|v|} \\
C_{3r} = \frac{1}{2} \rho L_{s/6} \frac{\dot{Y}_v}{|v|} \\
C_{4r} = \frac{1}{2} \rho \frac{2L_s}{3} \left(k_s^3 - (1-k_s)^3 \right) \frac{\dot{Y}_v}{|v|} \\
C_{5r} = \frac{1}{2} \rho \frac{2L_s}{3} \left(k_s^3 - (1-k_s)^3 \right) \frac{\dot{Y}_v}{|v|} \\
C_{6r} = \frac{1}{2} \rho L_{s/2}^5 \left(k_s^2 - (1-k_s)^2 \right) \frac{\dot{Y}_v}{|v|} \\
C_{7r} = \frac{1}{2} \rho L_{s/4}^5 \left(k_s^4 - (1-k_s)^4 \right) \frac{\dot{Y}_v}{|v|}
\]

Pitch:

\[
I_y \ddot{q} + (I_x - I_z) \omega r + m \left(z_G (\dot{u} + q \omega - r v) - x_G (\dot{w} + p \omega - q u) \right) = \\
M_q \ddot{\omega} + M_w \dot{\omega} + M_\omega \dot{\omega} + M_{u|w|} \dot{u} |w| + M_{q|u|} \dot{q} |u| + M_{v_p} \dot{v} + \\
M_{u|u|} \dot{u} |u| + M_{v_v} \dot{v}^2 + M_{r_r} \dot{r} v + M_{r_r} r^2 - (W o z_G + W_t \zeta t_i) \sin \theta - x_{t_i}^t W_{t_i} \cos \theta \cos \phi - x_s Z_s + M_p + M_t \\
+ \left(C_{1q} q |q| + C_{2q} \frac{q}{|q|} w^2 + C_{3q} \frac{q}{|q|} \frac{|w|^4}{q^2} + C_{4q} q |w| \right)^* \\
+ \left(C_{5q} w |q| + C_{6q} w |w| + C_{7q} \frac{w}{|w|} q^2 \right)^{**}
\]

* Terms are cancelled when \(w/qL_s > k_s \) or \(w/qL_s < k_s-1 \)
** Terms are cancelled when \(k_s \geq w/qL_s \geq k_s-1 \)
where

\[
\begin{align*}
C_{1q} &= \frac{1}{2} \rho L_s^5/4 \left(k_s^4 + (1-k_s)^4 \right) z_w^* \mid w \mid \\
C_{2q} &= \frac{1}{2} \rho L_s^3/2 \left(k_s^2 + (1-k_s)^2 \right) z_w^* \mid w \mid \\
C_{3q} &= \frac{1}{2} \rho L_s/6 \ z_w^* \mid w \mid \\
C_{4q} &= \frac{1}{2} \rho L_s^2/4 \left(-k_s^3 + (1-k_s)^3 \right) z_w^* \mid w \mid \\
C_{5q} &= \frac{1}{2} \rho L_s^3/2 \left(k_s^3 + (1-k_s)^3 \right) z_w^* \mid w \mid \\
C_{6q} &= \frac{1}{2} \rho L_s/2 \left(-k_s^2 + (1-k_s)^2 \right) z_w^* \mid w \mid \\
C_{7q} &= \frac{1}{2} \rho L_s^5/4 \left(-k_s^4 + (1-k_s)^4 \right) z_w^* \mid w \mid \\
\end{align*}
\]

Euler Angle Rates

\[
\begin{align*}
\dot{\psi} &= \frac{r \cos \phi + q \sin \phi}{\cos \theta} \quad (A.7) \\
\dot{\theta} &= q \cos \beta - r \sin \phi \quad (A.8) \\
\dot{\phi} &= p + \dot{\psi} \sin \theta \quad (A.9)
\end{align*}
\]

Trajectory Rates in the Fixed Axes

\[
\begin{align*}
\dot{x}_o &= u \cos \psi \cos \theta + v(\cos \psi \sin \theta \sin \phi - \sin \psi \cos \phi) \\
&\quad + w(\sin \psi \sin \phi + \cos \psi \sin \theta \sin \phi) \quad (A.10) \\
\dot{y}_o &= u \sin \theta \cos \psi + v(\cos \psi \cos \phi + \sin \psi \sin \theta \sin \phi) \\
&\quad + w(\sin \psi \sin \theta \cos \phi - \cos \psi \sin \phi) \quad (A.11) \\
\dot{z}_o &= u \sin \psi + v \cos \theta \sin \phi + w \cos \psi \cos \phi \quad (A.12)
\end{align*}
\]
Displacements in the Fixed Axes

\[X_o = \int X_o \, dt + X_{oi} \quad (A.13) \]
\[Y_o = \int Y_o \, dt + Y_{oi} \quad (A.14) \]
\[Z_o = \int Z_o \, dt + Z_{oi} \quad (A.15) \]

Main Propeller Forces

\[X_p = 755 \, n^2 \, n - 58 \, u^2 + 26n \left(v_p^2 + w_p^2 \right)^{1/2} \]
\[\quad \text{for } u \geq 0, \, n \geq -0.21 \quad (A.16) \]
\[= -365n^2 - 45u^2 + 26n \left(v_p^2 + w_p^2 \right)^{1/2} \]
\[\quad \text{for } u \geq 0, \, n \leq -0.21 \quad (A.17) \]
\[= 755n^2 + 60u^2 + 22u^2 + 26n \left(v_p^2 + w_p^2 \right)^{1/2} \]
\[\quad \text{for } u < 0, \, n \geq 0 \quad (A.18) \]
\[= -365n^2 - 13u^2 + 22u^2 + 26n \left(v_p^2 + w_p^2 \right)^{1/2} \]
\[\quad \text{for } u < 0, \, n < 0 \quad (A.19) \]

\[Y_p = -30nv_p \quad \text{for } n \geq 0 \quad (A.20) \]
\[= -12nv_p \quad \text{for } n < 0 \quad (A.21) \]

\[Z_p = -30nw_p \quad \text{for } n \geq 0 \quad (A.22) \]
\[= -12nw_p \quad \text{for } n < 0 \quad (A.23) \]
\[K_p = 530n |n| - 6.5un - 4.05u^2 + 22n \left(v_p^2 + w_p^2 \right)^{\frac{1}{2}} + 131n \]
for \(u \geq 0, \frac{n}{n} \leq -0.21 \) \hspace{1cm} (A.24)
\[= -468n^2 - 155un - 38u^2 + 22n \left(v_p^2 + w_p^2 \right)^{\frac{1}{2}} + 131n \]
for \(u \geq 0, \frac{n}{n} \leq -0.21 \) \hspace{1cm} (A.25)
\[= 530n^2 + 80un + 15.2u^2 + 22n \left(v_p^2 + w_p^2 \right)^{\frac{1}{2}} + 131n \]
for \(u < 0, n \geq 0 \) \hspace{1cm} (A.26)
\[= -468n^2 - 8un + 15.2u^2 + 22n \left(v_p^2 + w_p^2 \right)^{\frac{1}{2}} + 131n \]
for \(u < 0, n < 0 \) \hspace{1cm} (A.27)

\[M_p = -765nw_p \]
for \(n \geq 0 \) \hspace{1cm} (A.28)
\[= -306nw_p \]
for \(n < 0 \) \hspace{1cm} (A.29)

\[N_p = 765nv_p \]
for \(n \geq 0 \) \hspace{1cm} (A.30)
\[= 306nv_p \]
for \(n < 0 \) \hspace{1cm} (A.31)

where \(v_p = v - 25.5r \)
\(w_p = w + 25.5q \)
TABLE 8

VEHICLE CONSTANTS

in	4.363 slugs
l_1	30.224 slug - ft^2
g	477.270 slug - ft
l_2	475.888 slug - ft^2
g	133.5 ft
L_V	46.33 ft
L_e	48.89 ft
L_1	23.4 ft

TABLE 9

HYDRODYNAMIC DERIVATIVES

<table>
<thead>
<tr>
<th>COEFF.</th>
<th>NON DIM.</th>
<th>FACTOR</th>
<th>DIMENSIONAL</th>
<th>COEFF.</th>
<th>NON DIM.</th>
<th>FACTOR</th>
<th>DIMENSIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_u</td>
<td>-1.583 \times 10^{-3}</td>
<td>\frac{-1.9 \times 10^2}{L_V^3}</td>
<td></td>
<td>Y_rulj</td>
<td>6.6 \times 10^{-3}</td>
<td>\frac{L_V^3}{2}</td>
<td>7.92 \times 10^2</td>
</tr>
<tr>
<td>X_{rw}</td>
<td>3.358 \times 10^{-2}</td>
<td>\frac{4.03 \times 10^3}{L_V}</td>
<td></td>
<td>Y_p(w)</td>
<td>-1.9 \times 10^{-3}</td>
<td>\frac{-3.3 \times 10^3}{L_V}</td>
<td>2.3 \times 10^3</td>
</tr>
<tr>
<td>X_{uw}</td>
<td>-3.200 \times 10^{-2}</td>
<td>\frac{-3.64 \times 10^3}{L_V}</td>
<td></td>
<td>Y_p(w)</td>
<td>3.0 \times 10^{-3}</td>
<td>\frac{3.6 \times 10^3}{L_V}</td>
<td>6.3 \times 10^3</td>
</tr>
<tr>
<td>X_{rr}</td>
<td>-1.81 \times 10^{-4}</td>
<td>\frac{-1.071 \times 10^3}{L_V^4}</td>
<td></td>
<td>Y_w</td>
<td>-5.2 \times 10^{-3}</td>
<td>\frac{-3.84 \times 10^3}{L_V^5}</td>
<td>-4.14 \times 10^2</td>
</tr>
<tr>
<td>X_{ru}</td>
<td>-7.0 \times 10^{-5}</td>
<td>\frac{-4.14 \times 10^3}{L_V^4}</td>
<td></td>
<td>Y_{w2}</td>
<td>-7.0 \times 10^{-5}</td>
<td>\frac{-4.14 \times 10^3}{L_V^4}</td>
<td>-6.14 \times 10^2</td>
</tr>
<tr>
<td>X_{pr}</td>
<td>-1.8 \times 10^{-4}</td>
<td>\frac{-9.47 \times 10^3}{L_V^4}</td>
<td></td>
<td>Y_{w2}</td>
<td>-3.358 \times 10^{-3}</td>
<td>\frac{-3.358 \times 10^3}{L_V^4}</td>
<td>-4.03 \times 10^3</td>
</tr>
<tr>
<td>X_{unul}</td>
<td>-5.97 \times 10^{-3}</td>
<td>\frac{-1.234 \times 10^3}{L_V^2}</td>
<td></td>
<td>Y_{w2}</td>
<td>-3.84 \times 10^3</td>
<td>\frac{-3.84 \times 10^3}{L_V^5}</td>
<td>-4.03 \times 10^3</td>
</tr>
<tr>
<td>X_{u2}</td>
<td>-1.1 \times 10^{-2}</td>
<td>\frac{-2.076 \times 10^3}{L_V}</td>
<td></td>
<td>Y_{w2}</td>
<td>1.81 \times 10^{-4}</td>
<td>\frac{1.81 \times 10^{-4}}{L_V}</td>
<td>1.071 \times 10^3</td>
</tr>
<tr>
<td>Y_{w2}</td>
<td>-3.358 \times 10^{-2}</td>
<td>\frac{-4.03 \times 10^3}{L_V}</td>
<td></td>
<td>Z_{p2}</td>
<td>1.81 \times 10^{-4}</td>
<td>\frac{1.81 \times 10^{-4}}{L_V}</td>
<td>1.071 \times 10^3</td>
</tr>
<tr>
<td>Y_{w2}</td>
<td>1.81 \times 10^{-4}</td>
<td>\frac{1.071 \times 10^3}{L_V^2}</td>
<td></td>
<td>Z_{w2}</td>
<td>-6.408 \times 10^{-2}</td>
<td>\frac{-6.408 \times 10^{-2}}{L_V^2}</td>
<td>-2.088 \times 10^3</td>
</tr>
<tr>
<td>Y_{w3}</td>
<td>1.80 \times 10^{-4}</td>
<td>\frac{9.47 \times 10^2}{L_V}</td>
<td></td>
<td>Z_{nulj}</td>
<td>2.34 \times 10^{-3}</td>
<td>\frac{2.34 \times 10^{-3}}{L_V}</td>
<td>8.693</td>
</tr>
<tr>
<td>Y_{w4}</td>
<td>7.0 \times 10^{-2}</td>
<td>\frac{4.14 \times 10^2}{L_V}</td>
<td></td>
<td>Z_{nulj}</td>
<td>2.34 \times 10^{-3}</td>
<td>\frac{2.34 \times 10^{-3}}{L_V}</td>
<td>-5.893</td>
</tr>
<tr>
<td>Y_{w5}</td>
<td>3.2 \times 10^{-2}</td>
<td>\frac{3.84 \times 10^2}{L_V}</td>
<td></td>
<td>Z_{w2}</td>
<td>-7.59 \times 10^{-1}</td>
<td>\frac{-7.59 \times 10^{-1}}{L_V}</td>
<td>-4.10 \times 10^3</td>
</tr>
<tr>
<td>Y_{w6}</td>
<td>3.2 \times 10^{-2}</td>
<td>\frac{-1.22 \times 10^2}{L_V}</td>
<td></td>
<td>Z_{w2}</td>
<td>-1.07 \times 10^3</td>
<td>\frac{-1.07 \times 10^3}{L_V}</td>
<td>-4.10 \times 10^3</td>
</tr>
<tr>
<td>Y_{w7}</td>
<td>-1.082 \times 10^{-1}</td>
<td>\frac{-2.39 \times 10^2}{L_V}</td>
<td></td>
<td>Z_{w2}</td>
<td>-2.39 \times 10^2</td>
<td>\frac{-2.39 \times 10^2}{L_V}</td>
<td>-4.10 \times 10^3</td>
</tr>
<tr>
<td>Y_{w8}</td>
<td>-3.6 \times 10^{-2}</td>
<td>\frac{-1.302 \times 10^2}{L_V}</td>
<td></td>
<td>Z_{w2}</td>
<td>-2.39 \times 10^2</td>
<td>\frac{-2.39 \times 10^2}{L_V}</td>
<td>-4.10 \times 10^3</td>
</tr>
<tr>
<td>Y_{w9}</td>
<td>-9.4 \times 10^{-2}</td>
<td>\frac{-2.29 \times 10^2}{L_V}</td>
<td></td>
<td>Z_{w2}</td>
<td>-2.39 \times 10^2</td>
<td>\frac{-2.39 \times 10^2}{L_V}</td>
<td>-4.10 \times 10^3</td>
</tr>
</tbody>
</table>

\(\text{\#}\) Forward motion, \(u > 0 \)
\(\text{\#}\) Backward motion, \(u < 0 \)
\(\text{\#}\) (Splitter board is in DSRV hull wake, when \(w < 0 \) no lift occurs; this coefficient value is then zero)
Table 9

HYDRODYNAMIC DERIVATIVES, Continued

<table>
<thead>
<tr>
<th>COEFF.</th>
<th>NON DIM.</th>
<th>FACTOR</th>
<th>DIMENSIONAL</th>
<th>COEFF.</th>
<th>NON DIM.</th>
<th>FACTOR</th>
<th>DIMENSIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_u</td>
<td>-7.0×10^{-5}</td>
<td>$\frac{\partial c}{\partial \psi^u}$</td>
<td>-4.14×10^{2}</td>
<td>$K_{\psi [\psi]}$</td>
<td>2.0×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^u}$</td>
<td>3.6×10^{2}</td>
</tr>
<tr>
<td>M_q</td>
<td>-1.174×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^q}$</td>
<td>-3.43×10^{5}</td>
<td>$K_{\psi [\psi]}$</td>
<td>5.75×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^q}$</td>
<td>6.0×10^{2}</td>
</tr>
<tr>
<td>$M_{\psi \psi}$</td>
<td>-1.0×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-1.071×10^{3}</td>
<td>$K_{\psi [\psi]}$</td>
<td>-3.42×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-2.02×10^{3}</td>
</tr>
<tr>
<td>$M_{\psi \psi}$</td>
<td>1.185×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>3.46×10^{5}</td>
<td>$K_{\psi [\psi]}$</td>
<td>-6.55×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-3.88×10^{3}</td>
</tr>
<tr>
<td>$M_{\psi \psi}$</td>
<td>1.6×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>0.47×10^{2}</td>
<td>$K_{\psi [\psi]}$</td>
<td>-2.06×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-1.219×10^{3}</td>
</tr>
<tr>
<td>$M_{\psi [\psi]}$</td>
<td>-2.7×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-3.24×10^{1}</td>
<td>$K_{\psi [\psi]}$</td>
<td>-8.0×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-4.75×10^{3}</td>
</tr>
<tr>
<td>$M_{\psi [\psi]}$</td>
<td>-5.23×10^{-6}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-6.28×10^{1}</td>
<td>$K_{\psi [\psi]}$</td>
<td>-6.73×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>6.87×10^{2}</td>
</tr>
<tr>
<td>$M_{\psi [\psi]}$</td>
<td>2.71×10^{-2}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>3.252×10^{2}</td>
<td>N_{ψ}</td>
<td>-1.302×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-3.51×10^{5}</td>
</tr>
<tr>
<td>$M_{\psi [\psi]}$</td>
<td>-2.3×10^{-2}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-2.76×10^{3}</td>
<td>N_{ψ}</td>
<td>1.81×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>1.071×10^{3}</td>
</tr>
<tr>
<td>$M_{\psi [\psi]}$</td>
<td>-8.3×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-4.915×10^{4}</td>
<td>N_{ψ}</td>
<td>-1.157×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-3.38×10^{5}</td>
</tr>
<tr>
<td>$M_{\psi [\psi]}$</td>
<td>-1.19×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-7.06×10^{4}</td>
<td>$N_{\psi \psi}$</td>
<td>-7.0×10^{-5}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-4.14×10^{2}</td>
</tr>
<tr>
<td>K_p</td>
<td>-1.815×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-5.3×10^{3}</td>
<td>$N_{\psi \psi}$</td>
<td>-1.6×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-5.47×10^{3}</td>
</tr>
<tr>
<td>K_p</td>
<td>1.8×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>0.47×10^{2}</td>
<td>$N_{\psi \psi}$</td>
<td>6.4×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>7.7×10^{2}</td>
</tr>
<tr>
<td>$K_{\psi \psi}$</td>
<td>-1.11×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-8.57×10^{2}</td>
<td>$N_{\psi \psi}$</td>
<td>-2.24×10^{-2}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-3.02×10^{3}</td>
</tr>
<tr>
<td>$K_{\psi \psi}$</td>
<td>1.11×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>8.57×10^{2}</td>
<td>$N_{\psi \psi}$</td>
<td>3.01×10^{-2}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>3.60×10^{3}</td>
</tr>
<tr>
<td>$K_{\psi \psi}$</td>
<td>-1.6×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-9.47×10^{2}</td>
<td>$N_{\psi \psi}$</td>
<td>-1.1×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-8.5×10^{2}</td>
</tr>
<tr>
<td>$K_{\psi \psi}$</td>
<td>-2.74×10^{-5}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-9.0×10^{3}</td>
<td>$N_{\psi \psi}$</td>
<td>-1.31×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-7.1×10^{2}</td>
</tr>
<tr>
<td>$K_{\psi \psi}$</td>
<td>-1.42×10^{-4}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-4.148×10^{4}</td>
<td>$N_{\psi \psi}$</td>
<td>-8.29×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-4.82×10^{4}</td>
</tr>
<tr>
<td>$K_{\psi \psi}$</td>
<td>1.42×10^{-3}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>1.704×10^{2}</td>
<td>$K_{\psi \psi}$</td>
<td>-1.32×10^{-2}</td>
<td>$\frac{\partial c}{\partial \psi^\psi}$</td>
<td>-7.8×10^{4}</td>
</tr>
</tbody>
</table>

+ Forward Motion, $u > 0$
+ Backward motion, $u < 0$
+ (Splitter-board is in DSMV hull wake, when $u < 0$ no lift occurs; this coefficient value is then zero)
APPENDIX B

NUMERICAL EXAMPLES OF DECOUPLING

In this appendix representative examples of the decoupling procedure applied to Class 1 and Class 2 systems are given.

Class 1 System Example

The Class 1 system of Chapter 2 is written in state vector form as

\[
\begin{align*}
\dot{x} &= a(x,t) + B(x,t)u \\
y &= c(x,t)
\end{align*}
\](B.1)

which is decoupled using feedback of the form

\[
\begin{align*}
\tilde{u} &= f(x,t) + G(x,t)\tilde{w} \\
\end{align*}
\](B.2)

giving the general closed loop system equation

\[
\begin{align*}
\dot{x} &= a(x,t) + B(x,t)(f(x,t) + G(x,t)\tilde{w}) \\
y &= c(x,t)
\end{align*}
\](B.3)

The entries for the vector and matrix functions used in this example are
The terms in the vector feedback equation (B.2) to decouple the system, as given in Theorem 1 and the synthesis procedure in Chapter 2, are

\[G(\bar{x}, t) = \Lambda \left(\bar{x}, t \right)^{(1)} (r(\bar{x}, t) - a^*(\bar{x}, t)) \]

(B.4)

The entries of \(\Lambda \) and \(r(\bar{x}, t) \) are chosen by the designer in the synthesis procedure. \(D^*(\bar{x}, t) \) and \(a^*(\bar{x}, t) \) are given in the decoupling theorem generated by differentiating the outputs.

Differentiating the first output:

\[y_1 = x_1 \]

\[y_1^{(1)} = \nabla y_1 \bar{x} = [1 \ 0 \ 0] \bar{x} \]

\[= x_1^2 + e^{-2t}e^{x_2} + (x_1 - 1) 0 \ (f(\bar{x}, t) + G(\bar{x}, t)w) \]

\[\nabla y_1 B(\bar{x}, t) = [(x_1 - 1) \ 0] \neq 0 \]

\[\rho_1 = 1 \]

\[\nabla y_1 a(\bar{x}, t) = x_1^2 + e^{-2t}e^{x_2} \]
Differentiating the second output:

\[y_2 = x_3 \]

\[y_2^{(1)} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \dot{x} = x_2 \]

\[\nabla y_2 B(\bar{x}, t) = \begin{bmatrix} 0 & 0 \end{bmatrix} = 0 \]

continue

\[y_2^{(2)} = \begin{bmatrix} 0 & 2x_2 & 0 \end{bmatrix} \dot{x} \]

\[= 2x_2 \tan x_2 + \begin{bmatrix} 2x_2^e & x_1 \\ 2x_2^e & 2x_2 \end{bmatrix} (f(\bar{x}, t) + G(\bar{x}, t)w) \]

\[\nabla y_2 B(\bar{x}, t) = \begin{bmatrix} 2x_2^e & x_1 \\ 2x_2^e & 2x_2 \end{bmatrix} = 0 \]

\[\rho_2 = 2 \]

\[\nabla y_2^{(1)} a(\bar{x}, t) = 2x_2 \tan x_2 \]

From (2.6) and Theorem 1

\[D^*(\bar{x}, t) = \begin{bmatrix} (x_1 - 1) & 0 \\ 2x_2^e & x_1 \\ 2x_2^e & 2x_2 \end{bmatrix} \]

(B.6)

\[\det D^*(\bar{x}, t) = 2x_2(x_1 - 1) \]

\[H = [\bar{x} : x_2 \neq 0, x_1 \neq 1] \]

Thus the system can theoretically be decoupled over the entire state space except the points \(x_2 = 0 \) and \(x_1 = 1 \).
Collecting the terms from the differentiation process for \(a^*(\bar{x},t) \) given by (2.9)

\[
a^*(\bar{x},t) = \begin{bmatrix} x_1^2 + e^{-2t}x_2 \\ 2x_2 \tan x_2 \end{bmatrix}
\]

(B.7)

From (2.16) in the synthesis procedure, \(r(\bar{x},t) \) for a linear input-output decoupled system is given by

\[
r(\bar{x},t) = \begin{bmatrix} m_{10}x_1 \\ m_{20}x_3 + m_{21}x_2^2 \end{bmatrix}
\]

(B.8)

Letting \(A = I \) (Identity matrix) in the synthesis procedure then (B.4) and (B.5) become

\[
G(\bar{x},t) = D^{-1}(\bar{x},t) = \frac{1}{2x_2(x_1-1)} \begin{bmatrix} 2x_2 & 0 \\ -2x_2^2e^{x_1} & (x_1-1) \end{bmatrix}
\]

(B.9)

and \(f(\bar{x},t) = \begin{bmatrix} f_1(\bar{x},t) \\ f_2(\bar{x},t) \end{bmatrix} \)

(B.10)

where

\[
f_1(\bar{x},t) = m_{10}x_1/(x_1-1) - (x_1^2 + e^{-2t}x_2)/(x_1-1)
\]
Substituting for \(f(\tilde{x}, t) \) and \(G(\tilde{x}, t) \) into the system closed loop equation (B.3) gives the following input-state relationships.

\[
\begin{align*}
\dot{x}_1 &= m_{10}x_1 + w_1 \\
\dot{x}_2 &= m_{20}x_3/2x_2 + m_{21}x_2 + w_2/2x_2 \quad (B.11) \\
\dot{x}_3 &= x_2
\end{align*}
\]

Note that, besides being nonlinear, the input-state relationships of (B.11) do not constitute a completely controllable system since \(\dot{x}_3 \) can only be driven in a positive direction. This is evident from the fact that \(\dot{x}_3 = x_2^2 \) in (B.11).

The input-output relationships from the synthesis procedure are

\[
\begin{align*}
\dot{y}_1 &= m_{10}y_1 + w_1 \quad (B.12) \\
\dot{y}_2 &= m_{20}y_2 + m_{21}\dot{y}_2 + w_2
\end{align*}
\]
The input-output relationships can be made stable by choosing the \(m' \)'s \(\geq 0 \) in (B.12). However, for the decoupled system to be stable, the input-state relationships must also be stable.

From (B.11), it is apparent that \(x_1 \) will be stable if \(m_{10} > 0 \). The stability of the equations for \(\dot{x}_2 \) and \(\dot{x}_3 \) in (B.11) is not so obvious. If we consider only constant values of input \(w_2 \), the equations for \(\dot{x}_2 \) and \(\dot{x}_3 \) constitute an autonomous system and can be represented as a single first order differential equation by

\[
\frac{dx_2}{dx_3} = \frac{1}{2} \left(m_{20} x_3/x_2^3 + m_{21}/x_2 + w_2/x_2^3 \right) \tag{B.13}
\]

The stability of this equation can now be determined for different values of \(m_{20} \), \(m_{21} \) and \(w_2 \) using phase plane analysis. Trajectories are located on the \(x_2 - x_3 \) plane by solving for the slope from \(\frac{dx_2}{dx_3} \) at a number of points.

The technique is fairly straightforward and the interested reader is referred to Cunningham.\(^{56}\)
Class 2 System Example

The Class 2 system of Chapter 2 is given by

\[
\begin{align*}
\dot{x} &= a(x,t) + b(x,u,t) \\
y &= c(x,t)
\end{align*}
\] (B.14)

This system is decoupled by solving the following vector feedback equation for all the components of \(\tilde{u} \):

\[
d(x,\tilde{u},t) = f(x,t) + \tilde{w} \] (B.15)

For linear decoupling, (B.15) becomes

\[
d(x,\tilde{u},t) = r(x,t) - a^*(x,t) + \Lambda \tilde{w} \] (B.16)

as given in the synthesis procedure for Class 2 systems.

The entries for vector functions of (B.14) are

\[
a(x,t) = \begin{bmatrix} \tan x_1 \\ x_2 \end{bmatrix}, \quad b(x,\tilde{u},t) = \begin{bmatrix} u_1 + u_1 u_2 \\ u_2 \end{bmatrix}, \quad c(\tilde{x},t) = \begin{bmatrix} x_1 \\ 2x_1 + x_2 \end{bmatrix}
\]

According to the theory for Class 2 systems, the entries of \(d(x,\tilde{u},t) \) and \(a^*(x,t) \) are generated by differentiating the outputs.
Differentiating the first output:

\[y_1 = x_1 \]

\[y_1^{(1)} = \nabla y_1 \dot{x} = [1 \ 0] \dot{x} = \tan x_1 + u_1 + u_1 u_2 \]

\[\nabla y_1^b(\bar{x}, \bar{u}, t) = u_1 + u_1 u_2 \]

Therefore \(\rho_1 = 1 \)

\[\nabla y_1^a(\bar{x}, t) = \tan x_1 \]

Differentiating the second output:

\[y_2 = 2x_1 + x_2 \]

\[y_2^{(1)} = \begin{bmatrix} 2 & 1 \end{bmatrix} \dot{x} = 2\tan x_1 + x_2 + 2u_1 u_2 + 2u_1 + u_2^2 \]

\[\nabla y_2^b(\bar{x}, \bar{u}, t) = 2u_1 u_2 + 2u_1 + u_2^2 \neq 0 \]

Therefore \(\rho_2 = 1 \)

\[\nabla y_2^a(\bar{x}, t) = 2\tan x_1 + x_2 \]

From the above differentiation process and Theorem 2 in Chapter 2, the entries for \(d(\bar{x}, \bar{u}, t) \) and \(a^*(\bar{x}, t) \) are
\[d(\bar{x}, \bar{u}, t) = \begin{bmatrix} u_1 + u_1 u_2 \\ 2u_1 u_2 + 2u_1 + u_2^2 \end{bmatrix} \] (B.17)

and \[a^*(\bar{x}, t) = \begin{bmatrix} \tan x_1 \\ 2\tan x_1 + x_2 \end{bmatrix} \] (B.18)

Application of the sufficient condition for decoupling given in Theorem 2 to (B.17) gives

\[J_d(\bar{x}, \bar{u}, t) = \begin{vmatrix} 1 & 1 \\ 2 + 2u_2 & 2u_1 + 2u_2 \end{vmatrix} = 2u_1 - 2 \neq 0 \]

Therefore a solution set exists to the vector feedback equation of (B.15) and also for (B.16).

Applying the synthesis procedure to linearly decouple the system gives

\[r(\bar{x}, t) = \begin{bmatrix} m_{10}x_1 \\ m_{20}(x_1 + x_2) \end{bmatrix} \] (B.19)
and for simplicity we let $\Lambda = I$. In a physical system where the input vector \bar{w} consisted of say pressures and voltages whose magnitudes were not large enough to yield the desired system response, then we would not choose $\Lambda = I$.

Combining (B.17), (B.18) and (B.19), the components of the vector feedback equation (B.16) are

$$ u_1 + u_2 = m_{10}x_1 - \tan x_1 + w_1 \tag{B.20} $$

$$ u_2^2 + 2u_1u_2 + 2u_1 = m_{20}(2x_1 + x_2) - 2\tan x_1 - x_2 + w_2 \tag{B.21} $$

The above equations must be solved for u_1 and u_2 to decouple the system by state variable feedback. Solution of these two equations results in rather lengthy expressions for u_1 and u_2 which will not be included here. The solution set does impose some restrictions. For the solution to be real, the space H is restricted to

$$ H = \bar{x}: (2m_{10}x_1 - 2m_{10}\tan x_1 + 2w_1)^2 - 12(2m_{10}x_1 - 2m_{10}\tan x_1 + 2w_1 + 2x_2 - w_2) \geq 0 \tag{B.22} $$

Substituting the solution for the inputs u_1 and u_2 into (B.14)
for the input-state relationships gives

\[\dot{x}_1 = m_{10}x_1 + w_1 \]

\[\dot{x}_2 = (m_{20} - 2m_{10})x_1 + m_{20}x_2 - 2w_1 + w_2 \]

and for the input-output relationships

\[\dot{y}_1 = m_{10}y_1 + w_1 \]

\[\dot{y}_2 = m_{20}y_2 + w_2 \]

Choosing the m's > 0 in (B.23) and (B.24) will give a decoupled linear system which is completely stable, controllable and observable.\(^{(45,51)}\)
APPENDIX C

COMPUTER PROGRAMS

PROGRAM NO. 1

TITLE ROLL-SURGE COUPLED SYSTEM RESPONSE
INITIAL
 U1=1.64
 U2=0.
DYNAMIC
X1 IS THE SURGE VELOCITY
X2 IS THE ROLL ANGLE
X1DOT=-4.55E-3*X1*X1-.0129*X1*U1+.168*U1*U1
 C1=-.444*X2-.0443*X1*X3-.781*X3*ARS(3)-.955E-4*X1*X1
X3=INTGRL(0.0, X3DOT)
X2=INTGRL(0.0, X3)
X1=INTGRL(0.0, X1DOT)

TIMER PRTDFL=2.1, PFINITM=40.
PRINT X1, X2, X3
PRTPLT X1, X2
END
STOP
END JOB

PROGRAM NO. 2

TITLE DECOUPLED ROLL - SURGE WITH INPUT CONSTRAINTS NOT INCLUDED
PARAMETER W1=(.2, .3, .45)
 M10=-1./17.
 M20=-.4
 M21=-.RA
 W2=.35
DYNAMIC
X1DOT=-4.55E-3*X1*X1-.0129*X1*U1+.143*U1*U1
 C1=-.444*X2-.0443*X1*X3-.781*X3*ARS(3)-.955E-4*X1*X1
X3=INTGRL(0.0, X3DOT)
X2=INTGRL(0.0, X3)
X1=INTGRL(0.0, X1DOT)
 C3=1.0124*X1**2+.672*(.610*X1+4.55E-3*X1*X1+U1)
U1=1.0129*X1+SOR(3))/.336
U2=(-C1-.0125*U1*.1+1.548E-4*X1*U1+.20*X2+.21*X3)/1.E58-4*ARS(3)

TIMER PRTDFL=2.1, PFINITM=30.
PRINT U1, U2, X1DOT, X1, X2
PRTPLT X1, X2
END
STOP
END JOB

PROGRAM NO. 3

TITLE DECOUPLED ROLL-SURGE, INPUT CONSTRAINTS INCLUDED.
PARAMETER W1=.47
 M10=-1./17.
 M20=-.4
 M21=-.RA
 W2=0.
DYNAMIC
X1DOT=-4.55E-3*X1*X1-.0129*X1*U1+.168*U1*U1
MODIFICATIONS TO COMPENSATE THE NEW SYSTEM INPUTS W1 AND W2.
NOTE W1C AND W2C ARE THE NEW SYSTEM INPUTS.

WINOT=.5*(WIC-W1)
W1=INTGRL(0.,WINOT)
WINOT=.5*(W2C-W2)
W2=INTGRL(0.,W2NT)

PROGRAM 4

TITLE DSRV TURNING CIRCLE SIMULATION FULL 360 DEGREE TURN

INITIAL ASSIGNMENT OF NUMERICAL VALUES TO CONSTANTS

C4=1.4045E3
C1=903.*C4
C2=16.7*C4
C3=-930.*C4
LS=46.05
L1=23.4
KS=L1/LS
C14=1./8683.
C5=3323.*C14
C6=-124.*C14
R4=1.492
C7=RO*LS*(LS*(-.142)/2.
C8=C7*LS*(2.*KS-1.)
C9=C7*LS*LS*(1.*KS+3.*KS*KS)/3.
C10=2.*C7/(3.*LS)
C11=17.*(2.*KS-1.)
C12=C7*LS*(1.-KS)**2+KS*KS)
C13=C7*LS*LS*(1.-KS+KS*KS)*(2.*KS-1.)
C14=1.*/6E5
C15=3600.*C24
C16=(-3.7E4)*C24
C17=R1*LS*LS*(-.142)*C24/2.
C19=C8*LS*LS*(KS+KS*(1.-KS)**4)/2.2.2.
\[
C_{19} = CA/(2\times LS) \\
C_{20} = CA/(2\times LS)\times (KS+(1-LS)\times 3)/2 \\
C_{21} = CA/(2\times LS)\times (KS+(1-LS)\times 3)/3 \\
C_{22} = CA/(KS-(1-LS)\times 2)/2 \\
C_{23} = CA/(KS-4-1-KS\times 4)/4 \\
X_S = (23.55+1.3302) \\
C_S = R/(1.43) \\
TS = 0.5
\]

\[U_1 = 5.5 \\
N = 1.5 \\
DELY = 15.0 \\
TR = 3.0 \\
C_P = 3.14159/180 \\
D = 7.0 \\
FSX = R(0.003\times N\times (0.95\times N\times (1.19\times I)) \\
FI = 75.5 \times N \\
\]

\[\text{DYNAMIC} \\
EQUATION \text{ FOR SURGE} \\
(V) = C_{10} \times V + C_{20} \times U + C_{30} \times R + C_{40} \times (FPX + FSX) \\
(V) = \text{INTEGRAL}(V) \\
\]

\[\text{EQUATION \text{ FOR SWAY}} \\
(V) = C_{11} \times R + C_{12} \times U + C_{13} \times V + C_{14} \times (FPY + FSY) \\
(V) = \text{INTEGRAL}(V) \\
\]

\[\text{EQUATION \text{ FOR YAW}} \\
(R) = C_{15} \times R + C_{16} \times U + C_{17} \times R \times U + C_{18} \times R \times V \\
(R) = \text{INTEGRAL}(R) \\
\]

\[\text{DECISION BLOCK FOR CONSTANTS IN YAW - SWAY DRAG TERMS} \\
\]

\[IF(AHS(V) \lt L.1.E-7) \text{ GO TO 14} \\
IF(AHS(V) \lt L.1.E-7) \text{ GO TO 15} \\
\]

\[11 \text{ C1V = C10} \times V \times V \times V \times AHS(R) + C11 \times R \times V \times AHS(R) + C12 \times V \times AHS(R) + C2 \times R \times AHS(R) \\
CR2 = 0. \\
CR1 = C11 + R \times AHS(R) + C12 \times V \times AHS(R) \\
CR1 = CR1 + C19 \times AHS(R) \times V \times V \times V \times 3 \times C20 \times AHS(R) \times V \\
\text{ GO TO 9} \\
\]

\[5 \text{ C1V = 0.} \\
C2V = AHS(V) \times (C7 \times V + C8 \times R + C9 \times R \times R \times V) \\
CR1 = 0. \\
CR2 = AHS(V) \times (C21 \times R + C22 \times V + C23 \times R \times R \times V) \\
\text{ GO TO 9} \\
\]

\[14 \text{ C1V = 0.} \\
C2V = C7 \times AHS(V) \times V \\
CR1 = C7 \times AHS(V) \times V \\
\text{ GO TO 9} \\
\]

\[16 \text{ C1V = 0.} \\
C2V = C13 \times R \times AHS(R) \\
CR1 = 0. \\
CR2 = C17 \times R \times AHS(R) \\
\]

\[\text{CONTINUE} \\
\]

\[\text{CONSTANT FORWARD VELOCITY CONTROL BLOCK} \\
\]

\[\text{IF(N GT 5.6) N = N + 0.0001} \\
\text{IF(N GT 5.7) N = N + 0.0002} \\
\text{IF(N GT 5.8) N = N + 0.0003} \\
\text{IF(N GT 5.9) N = N + 0.0004} \]
IF(ULT.5.4)N=1,N+0.001
IF(ULT.5.3)N=1,N+0.002
IF(ULT.5.2)N=1,N+0.003
IF(ULT.5.1)N=1,N+0.004
IF(N.GT.1.80)N=1.6
IF(N.LT.1.0)N=0.4

CALCULATION OF FORCES FOR PROPELLER AND TILTARLE SHROUD

SORT

THETA=ATAN((V+XS*R)/U)
ALPHS=DFLY+THETA
AD=ALPHS/CP
IF(ABS(AD).LT.1.E-6)GO TO 15
IF(ABS(AD).LE.15.0)GO TO 2
CL=1.21*ABS(AD)/AD-.21*(AD-15.0)*ABS(AD)/AD/14.
GO TO 3
2 CL=1.21*AD/15.0
3 CONTINUE
V2=U*U+(V+XS*R)**2
IF(AD.GT.26.0)CL=1.0
LIFT=CL*CS*V2
IF(ABS(AD).LT.10.0)GO TO 12
CD=.12+(ABS(AD)-10.0)*.68/30.
GO TO 12
12 CD=.05+(7.0-4.0)*AD/AD
GO TO 13
13 CONTINUE
DRAG=CD*CS*V2
FSX=-LIFT*CS(THETA)-DRAG*CS(THETA)
FSY=LIFT*CS(THETA)-DRAG*CS(THETA)
VP=V+XS*R
FPX=755.*EXP(-5*AD)*[EXP(-3.3*AD)-1]
FPY=0.
WP=FPY*VP
SORT

TRANSFORMATIONS TO FIXED AXIS SYSTEM
CHI=INTGP(CHI)
X=INTGP(CHI)-V*STP(CHI)
Y=INTGP(CHI)+V*CTP(CHI)
=INTGP(CP)
VAVE=INTGP(CP)
YC=VAVE

FINISH: YC=105.
PRINT X,Y,N,II,UP,P,YAW,YAVE
END
STOP
END...
SORT

PROGRAM 4-A

THE ACCELERATING FORCE CONTROL BLOCK. THIS BLOCK REPLACES THE FORWARD VELOCITY CONTROL BLOCK FOR THE 90 DEGREE ACCELERATED TURN.

NPO=N
FT=FPX+FSX
IF(FT.GT.(FI+2.)) N=NPO+.0002
IF(FT.GT.(FI+4.)) N=NPO+.0005
IF(FT.GT.(FI+6.)) N=NPO+.0008
IF(FT.LT.(FI+2.)) N=NPO+.0002
IF(FT.LT.(FI-2.)) N=NPO+.0005
IF(FT.LT.(FI-6.)) N=NPO+.0008
IF(N.GT.7.) N=7.
IF(N.LT.1.0) N=1.0

SORT

PROGRAM 4-C

THE DECELERATING FORCE CONTROL BLOCK. THIS BLOCK REPLACES THE FORWARD VELOCITY CONTROL BLOCK FOR THE 90 DEGREE DECELERATED TURN.

NO SORT

NPO=N
FT=FPX+FSX
IF(FT.GT.(FI+5.)) N=NPO+.0002
IF(FT.GT.(FI+10.)) N=NPO+.0005
IF(FT.LT.(FI-5.)) N=NPO+.0002
IF(FT.LT.(FI-10.)) N=NPO+.0005

SORT

THE END
APPENDIX D

COMPARISON OF A WSN AND TILTABLE SHROUD

In this appendix, equations are developed which enable a comparison of the steering characteristics of a WSN and the tiltable shroud on the DSRV. The equations of motion given in Appendix A are simplified by a number of assumptions to describe vehicle motion in the horizontal plane. Information on the steering forces developed by the DSRV tiltable shroud is taken from the Lockheed report (20). Data on the steering characteristics of the WSN is taken from Chapter V of this thesis describing forward velocity tests.

The Reduced Equations of Motion

For the purpose of comparing the tiltable shroud and a WSN, the equations of motion for the DSRV are simplified by the following assumptions:

1) Only motion in the horizontal plane is considered and motion in the roll degree of freedom is assumed zero. Therefore, \(w = p = q = \phi = \theta = 0 \). This assumption is not overly restrictive since most standard turning maneuvers are performed in the horizontal plane.

2) The center of mass and the center of gravity of the vessel are assumed to coincide in the horizontal plane. Therefore, \(x_G = y_G = 0 \).
3) The cross-coupling acceleration terms Y^r_r and N^v_v in Equations A.3 and A.5 respectively, can be neglected as indicated in Table 1, Chapter III.

4) The ducted thrusters are not used in any of the maneuvers. Therefore, $X_t = Y_t = Z_t = 0$

With these simplifying assumptions, the equations of motion in the remaining three degrees of freedom are:

Surge:

$$m(\ddot{r} - rv) = X^*_u \dot{u} + X^*_r \dot{r}v + X^*_u |u|u|u| + X^*_r |r|v + X^*_p + X^*_s$$ \hspace{1cm} (D.1)

Sway:

$$m(\ddot{v} + ru) = Y^*_v \dot{v} + Y^*_r |u|r |u| + Y^*_v |u|v|u| + (C^v_1 v|v| + C^r_2 v|v|$$
$$+ C^v_3 v|v| r^2) + (C^v_4 v |r| \frac{v^3}{r} + C^v_5 v |r| v^2 + C^v_6 v |r|$$
$$+ C^v_7 v |r|) + Y^*_p + Y^*_s$$ \hspace{1cm} (D.2)

Yaw:

$$I_z \ddot{\gamma} = N_u |v| \dot{u} |v| + N_r |u| r |u| + \left(C^{v}_1 r |r| + C^{r}_2 |r| \frac{v^2}{r}
ight)$$
$$+ C^r_3 |r| \frac{v^4}{r^2} + C^r_4 |r| v |v|) \hspace{1cm} + \left(C^r_5 v |r| + C^r_6 v |v|$$
$$+ C^r_7 |v| r^2 \right) + x_s Y_s + N_p$$ \hspace{1cm} (D.3)

* Terms are cancelled when $- \frac{v}{rL} > k_s$ or $- \frac{v}{rL} < k_s - 1$

** Terms are cancelled when $k_s \geq - \frac{v}{rL} \geq - k_s - 1$
Propeller-Nozzle Characteristics

The Tiltable Shroud-Main Propeller

The tiltable shroud lift and drag forces, F_L and F_d, are given by

$$F_L = \frac{\rho}{2} C_l A_c V^2$$

and

$$F_d = \frac{\rho}{2} C_d A_c V^2$$

where A_c = characteristic area

C_l = lift coefficient

C_d = drag coefficient

V = velocity of the fluid

The characteristic area A_c is given as 52.3 ft2. (20)

The shroud lift and drag coefficients as a function of the angle of attack of the fluid α_s are plotted in Figure 41 from data in the Lockheed report. (20) The relevant geometric angles and fluid velocities used to describe the steering forces of the tiltable shroud are shown in Figure 42.

The angle θ_w is the angle of approach of the fluid measured relative to the vessel surge axis and observed from a point on the tail of the submersible. The angle δ_y represents the angular mechanical deflection of the shroud relative to the vehicle sway axis.
With these definitions, the equations for X_s in (D.1) and Y_s in (D.2) and (D.3) become

\[X_s = -F_k \sin \theta_w - F_d \cos \theta_w \quad (D.6) \]

\[Y_s = F_k \cos \theta_w - F_d \sin \theta_w \quad (D.7) \]

The main propeller force X_p in the surge direction in (D.1) is given by (A.16). The main propeller force in the sway direction Y_p and the yaw moment due to the main propeller N_p are small by comparison and these terms were dropped from (D.2) and (D.3).

Selection of a WSN Size and Type

Figures 31 and 32 in Chapter V show the efficiency of and axial and radial thrust coefficients, K_{TA} and K_{TR}, plotted as a function of advance ratio J for a number of different propeller pitch to diameter ratios in Nozzles A2 and A3. Based on these test results, a nozzle and propeller combination must be selected for use in the simulations which is compatible with the operating characteristics of the DSRV and as optimum as possible in terms of efficiency and steering ratio K_{TR-A}.

The procedure in selecting a WSN is basically the same as that used by a submersible designer in selecting a thruster for any vessel, except for the additional parameter, the steering
The procedure is largely trial and error where the designer must select a propulsor to satisfy specified thrust requirements efficiently within certain constraints such as size and rotational speed.

One immediately apparent constraint which must be placed on the WSN is the physical size of the device. The diameter of the tiltable shroud is 6 feet and its length is 1.83 feet. Since the WSN tested have a length to diameter ratio of 2.5, a 6 foot diameter WSN would have the unwieldy length of 15 feet. The full length of the DSRV is only 50 feet. Consequently, the choice of diameter was restricted to a range of 2 to 3 feet. This results in comparable shroud external surface areas.

The necessary insight for selecting the best nozzle-propeller combination is gained by considering the equations relating the WSN thrust and the thrust required to propel the submersible.

From Figures 31 and 32, the equations for axial thrust for each WSN can be derived from the curves for the axial thrust coefficient K_{TA}. The equation for K_{TA} for a particular nozzle-propeller combination is given by

$$K_{TA} = C_0 - C_1 J$$ \hspace{1cm} (D.8)

where the C_0 and C_1 are positive constants representing the intercept and slope of the thrust coefficient curve.
Using the equations defining the axial thrust coefficient \(K_{TA} = \frac{F_x}{\rho n^2 D^4} \) and advance ratio \(J = \frac{u}{nD} \) given in Chapter IV, (D.8) becomes

\[
F_x = \rho C_{o,D}^4 n^2 - \rho C_{1,D}^3 u n \quad (D.9)
\]

The thrust \(F_x \) must be sufficient to propel the submersible during cruising in straight ahead motion. For straight ahead, constant velocity motion, (D.1) becomes

\[
X_p = F_x = X_u |u|^2 \quad (D.10)
\]

Combining (D.9) and (D.10) and substituting the numerical values for the fluid density \(\rho \) and coefficient of drag \(X_u |u| \), taken from Table 9, Appendix A, gives

\[
C_{o,D}^4 n^2 - C_{1,D}^3 u n - 6.17 u^2 = 0 \quad (D.11)
\]

Equation (D.11) can be rewritten in terms of the advance ratio \(J \) as

\[
J^2 + 0.162 C_{1,D}^2 J - 0.162 C_{o,D}^2 = 0 \quad (D.12)
\]

The two variables, \(u \) and \(n \), do not appear directly in this equation but are contained in \(J \). This is particularly advantageous since the two parameters we want to maximize, the efficiency and steering ratio \(K_{TR-A} \), are both plotted as functions of advance ratio \(J \).
Equation (D.12) can be solved for \(J \) as a function of nozzle diameter \(D \) giving

\[
J = D^2 \left(-0.081 C_1 + \sqrt{(0.041 C_1)^2 + 0.162 C_q/D^2} \right)
\]

(D.13)

where only the positive root has been retained since we are considering only motion in the forward direction.

The next step in the procedure of selecting an optimum WSN is essentially a trial and error iteration back and forth between the curves of Figures 31, 32, and 33 and Equation (D.13).

The procedure is as follows:

1) A nozzle-propeller combination is selected from either Figure 31 or Figure 32 and the constants, \(C_q \) and \(C_1 \), are determined from the \(K_{TA} \) curve for this combination.

2) Values of advance ratio \(J \) for this WSN are calculated using Equation (D.13) over the constrained range of nozzle diameters of 2 feet to 3 feet.

3) The efficiency and steering ratio for the WSN over this range of advance ratios is obtained from the curves of Figures 31, 32 and 33 and is used as the basis of comparison.

Repeating this procedure for the nozzle-propeller combinations in Figures 31 and 32 led to the selection of nozzle A3 operating with propeller no.4 at a diameter of 2.75 feet as the
optimum choice. This choice results in operation at an advance ratio of about .43.

The equations developed in this appendix were simulated on the digital computer using CSMP. The programs are given in Appendix C. The results of these simulations are presented in Figures 36,37 and 38 in Chapter 6.