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ABSTRACT  

 

EFFECTS OF GROUND FLAXSEED SUPPLEMENTATION ON 

ANIMAL PRODUCTION AND MILK FATTY ACID PROFILE IN 

ORGANICALLY-CERTIFIED LACTATING JERSEYS DURING THE 

GRAZING SEASON 

by 

Brianna J. Isenberg 

University of New Hampshire, December, 2014 

 

The objective of this thesis was to evaluate the effects of supplementing a pasture-

based diet with ground flaxseed (GFLAX) on milk production and composition, blood 

parameters, digestibility, ruminal characteristics, nitrogen excretion, methane (CH4) and 

carbon dioxide (CO2) production, and income over feed cost (IOFC).  Twenty 

organically-certified lactating Jerseys were blocked by milk production and days in milk 

(DIM) and randomly assigned to 1 of 2 treatments: 1) control (soybean meal and ground 

corn grain as 10% of total diet dry matter (DM) or 2) GFLAX as 10% of total diet DM. 

Treatments were top-dressed onto a 25% mixed grass-legume baleage, 23% grain meal, 

and 2% liquid molasses total mixed ration (TMR) (% of diet DM); pasture composed the 

remaining 40% diet DM. The study extended from June 8 to September 27, 2013 with 4, 

28-d periods with the last 7 d used for data and sample collection. Dry matter intake, milk 

production, and milk component yields and concentrations were not affected by GFLAX 
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supplementation. Feed efficiencies, energy corrected milk, and 4% fat corrected milk did 

not differ between treatments. Body weight, body condition score, plasma nonesterified 

fatty acids, and serum cortisol showed no difference due to GFLAX supplementation. 

Apparent total tract DM digestibility was lower (P = 0.04) in cows on the 10% GFLAX 

treatment. Dietary treatment did not affect ruminal pH, individual or total volatile fatty 

acid concentrations. Cows receiving the 10% GFLAX diet had (P < 0.01) higher 

proportions of propionic acid in collected ruminal fluid. However, enteric CH4 and CO2 

production did not differ between diets. Nitrogen intake (P = 0.01) and urinary urea N 

excretion (P = 0.03) were higher in cows on the 10% GFLAX diet due to higher crude 

protein concentrations of GFLAX. Milk fatty acid composition was altered by dietary 

flaxseed supplementation. Increases in concentrations of monounsaturated fatty acids (P 

< 0.0001) and n-3 fatty acids (P < 0.0001) with decreases in n-6 fatty acids (P < 0.0001) 

were detected in cows consuming 10% GFLAX creating a nutritionally enriched fatty 

acid profile in regards to human health. A lower IOFC was noted when GFLAX was 

included in the diet compared to the control ($4.61 vs. $5.53/cow/d, respectively), if 

premiums for nutritionally enriched milk are offered in the future, it may help offset the 

price differential.  
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INTRODUCTION 

Growing interest in organically-produced food has contributed to an increase in 

organically-certified dairy production systems. While organic production composes only 

just over 4% of total U.S. food sales, dairy products are responsible for 15% of those 

sales (USDA-ERS, 2014). In 2008, the organic dairy industry sold over 1.25 million 

metric tons of milk (USDA-NASS, 2014). The 71% average annual increase in number 

of organic certified dairy cows reflects this trend with the national herd expanding from 

38,000 cows in 2000 to over 254,000 cows in 2010 (USDA-ERS, 2014).  

A survey completed by Hardie et al. (2014) indicated that Wisconsin organic 

dairies have a range of organizational and management structures. The surveyed farms 

were grouped into 1 of 4 categories, ranging from a large herd size, with heavy reliance 

on supplemental feed during the grazing season to a small herd size with seasonal calving 

using pasture and hay as the only forage source throughout the entire year. The results of 

this survey illustrate the diversity of organizational structures and practices adopted by 

organically-certified operations, emphasizing the need for additional research that can be 

directly related to improving management practices. Additionally, Wisconsin organic 

farms share similarities in size and structure with northeastern dairy farms (McBride and 

Greene, 2009).    

Organically-certified dairies in the northeastern U.S. enable producers to meet a 

specific consumer demand. However, organic management practices can also present a 

set of challenges. In a survey of the needs of organic producers in the Northeast, Pereira 

et al. (2013) indicated that 79% of respondent farmers viewed balancing diets for energy 
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as a challenge, taking into consideration that 73.1% of participants are dependent upon 

purchased grains, which contribute approximately 36% of total cash expenses on farms in 

the northeast (Dalton et al., 2008). In addition, grain prices are subject to purchasing 

competition from other organic livestock sectors (Dalton et al., 2008). The same survey 

(Pereira et al., 2013) reveals 63% of respondents viewed additional focus on development 

of value-added products as an important research and educational need. 

Supplementation with ground flaxseed (GFLAX; Linum usitatissimum) during the 

grazing season has a 3-fold benefit: 1) flaxseed is an oilseed high in energy, often a 

limiting component in pasture-based systems (Kolver and Muller, 1998), 2) flaxseed 

supplementation increases human health-promoting fatty acids in milk fat (Petit and 

Côrtes, 2010), and 3) flaxseed supplementation decreases enteric methane emissions 

(Beauchemin et al., 2009). Flaxseed may be used as an alternative to corn, however, 

during the period of current study, market prices for organic flaxseed and organic corn 

were $0.96 and $0.48/kg, respectively (USDA-AMS, 2014). The prices indicate organic 

flaxseed may be less available than organic corn. In addition, although flaxseed 

supplementation decreases enteric CH4, it has also been reported to decrease diet 

digestibility (Scholljegerdes and Kronberg, 2010; Soder et al., 2012) and may be a 

concern for the current study.  

The objective of this thesis was to supplement organically-certified lactating 

Jerseys with GFLAX during the grazing season to determine the effects on milk 

production, milk components, milk fatty acid composition, and ruminal metabolism. 

Additionally, the economic viability of supplementing GFLAX was considered in order 

to determine practical application for producers. In an assessment of operating costs by 



3 

 

 

the Agricultural Resource Management Survey of dairy operations (USDA-ERS, 2010), 

total gross value of production for organic operations in the Northeast was determined to 

be $30.82/cwt of milk sold. Average operating costs for these operations was assessed at 

$20.11/cwt, thus creating a profit of $10.71/cwt. These results emphasize the importance 

of cost-benefit analysis because results were widely varied based upon region. Briefly, 

guidelines and requirements of organically-certified dairies will be outlined, followed by 

a discussion on the use of pasture, including the challenges and effects of oilseed 

supplementation. Supplementing diets with GFLAX, and the subsequent effects on dairy 

cattle production, including milk fatty acid modification and methane production, will be 

explored. A brief overview of ruminal biohydrogenation under the influence of lipid 

supplementation will also be presented in the literature review. 
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CHAPTER I. REVIEW OF LITERATURE 

 

Organic dairying 

 

The term organic is defined as, “a labeling term that refers to an agricultural 

product produced in accordance with the [Organic Foods Production] Act and the 

regulations in this part.” Organic agriculture is defined to be “a production system that is 

managed in accordance with the Act and regulations in this part to respond to site-

specific conditions by integrating cultural, biological, and mechanical practices that foster 

cycling of resources, promote ecological balance, and conserve biological diversity” 

(USDA-NOP, 2014). All organic products are certified by a third party agency to ensure 

products meet the indicated standards. Any use of the term organic throughout this thesis 

is intended to be consistent with these definitions.  

The USDA organic regulations are outlined in the Guide for Organic Livestock 

Producers (Coffey and Baier, 2012). A key portion of the guideline is that animals cannot 

be raised in a continuous total confinement operation. Specifically, ruminant animals 

must be maintained on pasture with daily grazing throughout the grazing season and have 

nearly continuous access to the outdoors throughout the year. The current grazing 

standard is a minimum of 120 days per calendar year with the goal of achieving not less 

than 30% of the dry matter intake (DMI) from grazing. The total feed ration must contain 

only organically produced and certified feeds. Urea, manure, mammalian and poultry 
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slaughter by-products, and antibiotics (including ionophores) are prohibited from diet 

formulations of organic animals (USDA-NOP, 2014).  

An additional component of the organic requirements specifies animals may not 

be given growth-promoting drugs, including hormones. Animal health regulations are 

strict and prevent sale and labeling of any product as “organic” from an animal that has 

been treated with antibiotics. Although some vaccines are permitted, routine use of 

synthetic parasiticides is prohibited (USDA-NOP, 2014). Although both conventional 

and organic producers strive for preventative health management, the organic guidelines 

in place make preventative livestock health care a requirement in order to maintain a 

successful operation.  

McBride and Greene (2009), using data from the annual Agricultural Resource 

Management Survey, categorized U.S. organic dairies based on size, region, and pasture 

utilization. Results of the survey indicated that over 80% of the organic dairies in the U.S. 

are located in the Northeast and Upper Midwest and are generally smaller and produce 

less milk at higher total economic cost per quantity of milk produced, than those found in 

the western U.S. Survey information also indicated that 45% of organic dairies milk less 

than 50 cows and 87% milk less than 100 cows. Farms in the Northeast have an average 

of 53 cows, while farms in the Upper Midwest have an average of 64 cows.  

  

Pasture utilization 

 

A survey of 987 farms across 4 northeastern U.S. states indicated approximately 

13% of surveyed dairy farms use management-intensive or rotational grazing practices in 
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which the lactating herd is moved to a fresh pasture every 12 to 24 h (Winsten et al., 

2010). Utilizing pasture as a forage source can be economically viable, and under the 

correct conditions, more cost effective than stored forage (Elbehri and Ford, 1995; 

Hanson et al., 1998). Although grazing systems may be less profitable than traditional 

forage systems (Parker et al., 1992; Tozer et al., 2003) due to a decrease in milk 

production that is often observed (Kolver and Muller, 1998; Agenäs et al., 2002; Bargo et 

al., 2002b), a corresponding decrease in DMI can create lower feeding costs than 

traditional forage systems (Tozer et al., 2003). Supplementation with additional forage 

(Phillips and Leaver, 1985) and concentrates (Stockdale et al., 1987; Stockdale, 2000, 

Bargo et al., 2002a), including fats (King et al., 1990; Schroeder et al., 2004), may 

alleviate some of the observed decrease in milk production. Supplementation with a total 

mixed ration (TMR) is also an option (Bargo et al., 2002b, Soder et al., 2003). An 

additional challenge of incorporating pasture into the ration is estimating DMI; a few 

available methods will be discussed later. Estimation of actual nutrient intake due to 

variability in dietary selection during grazing also presents a challenge.  

 

Economics 

Elbehri and Ford (1995) developed an economic simulation to evaluate the 

economic aspects associated with intensive grazing situations on typical Pennsylvania 

dairy farms. The Farm Level Income and Policy Simulator model was used with 10 

farms, each with differing feeding systems; 6 utilized pasture while 4 did not. Each farm 

was structured to maintain 50 lactating cows, 10 dry cows, and 27 replacements as young 

stock. To mimic seasonal effects, 3 levels of pasture production were accounted for in the 
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model and each herd was grazed for 6 months. Results indicated that farms utilizing 

intensive grazing scenarios produced a net cash farm income of $140 to $207/cow per yr 

more than farms without intensive grazing. However, an assumption made with this 

simulation was all cows produced the same amount of milk, regardless of forage system. 

Two of the 6 grazing simulations remained more profitable than the non-grazing farms if 

milk production fell only 4-5%, comparatively. However, this analysis did not account 

for potential savings in ration costs that may be realized with the decrease in DMI that 

contributes to the fall in milk production.  

Hanson et al. (1998) used two data sets to evaluate profitability of farms using 

moderately intensive grazing practices in the Northeast. The first data set used compiled 

results from a USDA study of New York and Pennsylvania farms while the second data 

set was based on 50 farms in Pennsylvania. In the USDA data set, moderate intensive 

grazing farms were defined as those in which cows received at least 15% of the forage 

from grazing, while extensive farms were those in which cows received less than 15% of 

the forage from grazing and included some confinement herds. Although the farms with 

moderate intensive grazing had 23% fewer cows with a 14% lower milk production per 

cow, they also received higher returns per cow than those farms with extensive grazing, 

$642 vs. $460, respectively, as well as a higher net farm income by $2,166. The higher 

net farm income of moderately intensive grazing systems was attributed to lower feed 

costs, lower cash expenses such as veterinary care, medicine costs, and hired labor, and 

lower overhead, interest, and capital investments.  

The data set evaluated from the 50 Pennsylvania farms (Hanson et al., 1998) was 

separated based on moderate intensive grazing (cows moved to new pasture every 7 d or 
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fewer, pasture was ≥ 50% of herd forage needs for grazing season, and utilized more than 

4 paddocks) and extensive grazing (farms that did not use all 3 parameters). In this data 

set, both moderate intensive and extensive grazing systems yielded higher net returns to 

management and owner equity when compared with corn silage and hay operations. 

While the moderate intensive grazing systems did have a significantly lower milk 

production per cow (9.5%) when compared to the extensive grazing systems, they also 

yielded a marginally higher profit ($61/cow). The evaluation of these data sets (i.e., the 

USDA and PA farms) indicates under the correct conditions, moderate intensive grazing 

systems can be profitable.  

Parker et al. (1992) modeled both a traditional Pennsylvania dairy farm and a 

pasture-based farm. The pasture-based farm had a lower level of total operating expenses 

which translated to a $121/cow higher income compared with the traditional confined 

system. However, model inputs assumed average milk production was the same for both 

farms. Further evaluation indicates that overall income for the pasture-based dairy would 

not be higher than the confinement system if average milk production dropped by 450 kg/ 

lactation.  

A whole farm analysis using the Dairy Forage System model was used to evaluate 

the economic impact of 4 levels of concentrate supplementation on a representative 

grazing dairy farm compared to a traditional confinement farm that did not use pasture 

but had similar land area, soil type and cow numbers (Soder and Rotz, 2001). The grazing 

farm used a spring seasonal calving strategy and animals were maintained on pasture all 

year, if pasture was unavailable or limited, animals were supplemented with hay or 

silage. In the model scenarios, the 4 levels of concentrate were provided at 0, 3, 6, or 9 kg 
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DM/cow/d, while annual milk production was set at 5000, 6068, 6968, and 7770 kg/cow, 

respectively, for each supplement level. Diet ingredients on the confinement farm 

included hay, silages, grain, and protein supplements and annual milk production was set 

at 9000 kg/cow. Additional factors that were taken into account included specific 

machinery, fertilizer, and labor costs associated with each farm. Production was 

estimated using 3 farm management scenarios: 1) all farms adjusted to similar milk 

production by increasing or decreasing animal numbers, 2) 100 mature animals on each 

farm, and 3) cow numbers are matched with forage production potential of each farm. 

When level of concentrate supplementation increased for the grazing farm, net returns to 

management increased, however, returns increased at a decreasing rate. The lower input 

costs associated with the grazing system indicated that the grazing systems with the high 

level of supplementation had a higher profitability compared to the confinement system 

despite a lower farm income.  

A study conducted by Tozer et al. (2003) evaluated economic viability of 3 

feeding systems: 1) TMR in confinement, 2) pasture with only a concentrate supplement, 

and 3) a partial TMR plus pasture (pTMR) diet. A partial budget analysis indicated that 

the pasture plus concentrate diet had the lowest feeding cost ($1.94/cow) followed by the 

pTMR ($2.70) and the TMR ($3.42). However, the pasture plus concentrate and the 

pTMR system experienced reduced milk production, 25% and 16%, respectively, when 

compared to the TMR system. The TMR system had the highest daily net income of 

$5.61/cow, followed by the pasture plus concentrate ($5.31) and the pTMR system 

($5.28). The authors noted that the pasture used during the study was high in protein and 

the TMR used was identical for the TMR and pTMR systems. If the TMR had been 
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reformulated to reduce the protein and create a more realistic match with the protein 

supplied by the pasture, the net income for the pTMR system would increase to $5.53. 

Additionally, in both the pasture plus concentrate and the pTMR partial budgets, it was 

assumed that paddock fencing and water systems were not established and needed to be 

installed, creating a higher cost for these feeding systems. In both systems, costs 

associated with the fencing and water systems were allocated all at once and assumed to 

have an average use of 20 and 10 yr, respectively.  

An evaluation of two grazing systems supplemented with either concentrate or 

TMR was compared with a similar sized confinement dairy feeding alfalfa and corn-

based diets (Soder and Rotz, 2003). The Dairy Forage System Model was used to model 

the farm systems, and indicated that although the confinement system has the greatest 

profitability due to higher milk yield, the pTMR was only slightly less profitable than the 

confinement system. The grazing systems had lower production costs due to differences 

in machinery, storage, seed, and fertilizer costs as well as lower economic risk due to less 

reliance on corn yields.  

Rotz et al. (2007) used the Integrated Farm System Model to evaluate 4 organic 

farms in PA as case studies and compared the results to conventional production 

practices. Under the conditions of the simulations, using 2005 market prices, organic 

management practices were noted as having an economical advantage over conventional 

production systems when production systems were scaled to a common land area, herd 

size, soil type, and weather conditions. However, the authors noted that the advantage is 

dependent upon organic milk prices and production per cow vs. organic and conventional 

systems.  



11 

 

 

Results from an Agricultural Resource Management Survey of U.S. organic farms 

(McBride and Greene, 2009) indicated that farms located in the Northeast and Upper 

Midwest have lower average feed costs per cow due to higher utilization of home-grown 

feeds and pastures. In addition, dairies that used more pasture had lower feed costs per 

cow. However, results indicated that decreased inclusion of pasture in the diet led to 

lower feed costs per unit of milk produced because average milk production per cow was 

30% higher.  

The results of Marston et al. (2011) agree with those of Rotz et al. (2007) and 

illustrate that even when similar feeding practices are followed on 2 separate farms, 

differing economic returns should be expected. Two separate herds, Holsteins at the 

University of Maine, and Jerseys at the University of New Hampshire, were maintained 

under organic management conditions for 3 consecutive years. The study used 4 diets; 

corn silage- or haylage-based supplemented with a complete concentrate pellet or 

commodity concentrate mix. Results of the study indicated that although feeding 

practices were the same, corn silage-based diets were significantly more costly than 

haylage-based diets at UNH, however, feed costs did not differ due to dietary treatment at 

the University of Maine. Although income over feed cost (IOFC) demonstrated numerical 

differences among diets at each location, diet did not significantly alter IOFC.  The 

authors suggested the numerical difference between locations was due to differences in 

DMI as well as breed, confirming that profitability is related to many factors.  

Hardie et al. (2014) surveyed 69 organically-certified Wisconsin dairy farms and 

classified the farms into 4 main operational structures or clusters detailed in the list 

below: 
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 Cluster 1 (n = 8) – Farms had larger herd sizes, used extensive feed 

supplementation during the grazing season, had a rolling herd average 

(RHA) production of 6,878 kg/cow/yr, and an IOFC of $10.17/cow/d.  

 Cluster 2 (n = 5) – Farms were seasonal dairies that followed low-input 

methods, used only pasture and hay as forages during the grazing and non-

grazing season, largely used breeds other than Holsteins, had an RHA 

production of 3,632 kg/cow/yr, and an IOFC of $5.76/cow/d.  

 Cluster 3 (n = 32) – Farms utilized feed supplementation during the 

grazing season, however, were smaller in size than farms in cluster 1. 

These farms had an RHA of 7,457 kg/cow/yr and an IOFC of 

$8.59/cow/d.  

 Cluster 4 (n = 24) – Farms were partially seasonal, moderate-input 

operations that utilized more pasture during the grazing season than farms 

in clusters 1 and 3. These farms had an RHA of 5,417 kg/cow/yr with an 

IOFC of $5.92/cow/d.   

The lowest feed costs, for all 4 clusters, were observed during the grazing season 

when pasture was included in the ration. The authors suggested the higher RHA and 

IOFC in clusters 1 and 3 could largely be due to breed differences and feeding 

management practices. Although all the farms in each cluster used grazing practices, 

responses were varied based upon structural and managerial decisions.  

Pasture feeding systems have widely varied economical results. The studies 

discussed illustrate that economic success is highly correlated to feeding and 

management strategies, including level of pasture inclusion in the diet, use of 
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supplementation, breed selection, and number of lactating cows. Although several of the 

studies have indicated that intensively grazed systems can be more profitable, calculating 

actual economic markers such as IOFC for each operation is a critical part of managerial 

assessment.  

 

Production  

When high producing Holstein cows were fed either TMR or pasture only, a 19% 

decrease in DMI was observed on the pasture diet (Kolver and Muller, 1998). The 

decrease in intake translated to a 33% reduction in milk production from the cows on 

pasture compared with those receiving the TMR diet. In addition, cows on pasture 

experienced higher rates of body weight (BW) and body condition score (BCS) losses. 

Mobilization of body fat was higher in grazing cows, as indicated by higher blood 

concentrations of beta-hydroxybutyrate and nonesterified fatty acids (NEFA). Cows on 

the pasture-only diet had a DMI of 3.39% of BW compared with those on the TMR diet 

with a DMI of 3.93% of BW. The limited DMI directly depressed milk production, 

specifically by failing to provide an adequate supply of energy. Pasture and TMR 

provided similar concentrations of energy when expressed as net energy of lactation, 

however, pasture was slightly higher than TMR, 1.65 vs. 1.63 Mcal/kg. This further 

indicates that intake limited energy rather than availability of energy in the diet. Agenäs 

et al. (2002) also observed a significant decrease in milk production and BW when cows 

were turned out to pasture. In the same study, plasma insulin decreased and NEFA values 

increased at pasture turn-out suggesting that limited nutrient intake minimized production 

potential. 
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Supplementation during the grazing season can be used to optimize production 

while maintaining pasture in the ration. Phillips and Leaver (1985) conducted 2 studies in 

which a pasture-only diet served as the control in each experiment. In experiment 1, 

pasture formed the basal diet while the 3 treatment groups were offered 45 min of grass 

silage at a rate to achieve 10% orts, restricted grass silage overnight (4 kg DM/d), or ad 

libitum grass silage overnight at a rate to achieve 10% orts. In experiment 2, pasture 

again formed the basal diet while the 2 treatment groups were offered 45 min of grass 

silage or ad libitum grass silage overnight both at a rate to achieve 10% orts. In 

experiment 1, milk yield was decreased by offering silage, however, milk production was 

increased in experiment 2. Although the energy concentration of pasture was higher than 

that of the silage, the decrease in milk yield observed in experiment 1 is likely due to 

lower vitro digestible organic matter of the silage compared with pasture because energy 

intake was similar among diets. Silage supplementation also increased rumination time, 

milk fat concentration and milk fat yield, further indicating that fiber content contributed 

to differences in milk production in experiment 1. Grazing conditions were less favorable 

during experiment 2 than experiment 1 and silage supplementation increased dietary 

energy intake when compared to the pasture-only diet. The increase in energy intake from 

silage supplementation contributed to increases in milk production. In addition, 

fluctuations in daily mean milk production were minimized by silage supplementation 

through maintenance of DMI.  

In 5 experiments, Stockdale et al. (1987) fed different levels of pelleted, high 

energy barley or wheat-based supplement to complement a basal ration of forage-

harvested pasture for stall-fed dairy cows. Results showed a positive linear relationship 
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between milk production and pellet intake in each experiment. For each additional 

kilogram of pellets consumed, 0.7 to 1.8 kg of milk was produced. The marginal return 

tended to be higher early in lactation and decreased later in lactation. The decrease in 

milk production response is consistent with the law of diminishing returns in which each 

additional increase in input results in smaller increase in output. The authors attributed 

the diminishing returns to decreased digestibility as pellet level increased in the diet and 

this was supported by increased fecal starch. Although milk fat concentration tended to 

be depressed with higher pellet intake, higher milk fat yield was observed. The higher 

milk fat yield may be attributed to higher milk production that created a dilution effect, 

thus decreasing milk fat concentration.   

Reis et al. (2000) reported increases in milk production when grazing cows were 

provided with a ground dry shelled corn supplement at 0, 5, and 10 kg of DM/d. Cows in 

the study grazed for approximately 20 h/d. Cows consuming 5 and 10 kg of DM/d of 

supplement produced 18.7 and 28.3% more milk than cows on the pasture only treatment. 

A linear increase in DM and organic matter (OM) intake and digestibility was noted 

when cows consumed increasing levels of grain supplement, however, pasture DMI was 

decreased by supplement consumption. This effect of decreased pasture intake in 

response to supplementation is known as substitution rate.   

Stockdale (2000) conducted 2 experiments. In experiment 1, cows were divided 

into low BCS or high BCS groups and assigned to a pasture-only or a pasture 

supplemented with a pelleted barley/wheat-based (75 and 25% of DM, respectively) 

mixture at a rate of 5 kg DM/d. Cows receiving the supplement demonstrated an increase 

(P = 0.05) in milk production and maintained BCS. In experiment 2, supplementation 
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with the same pelleted barley/wheat mixture also increased (P = 0.05) milk production of 

cows that were assigned to high or low BW groups while on pasture. In addition, 

supplementation promoted BW gain during the study.  

Bargo et al. (2002a) provided a dry shelled corn-based concentrate (at a rate of 1 

kg concentrate/4 kg milk production) to cows grazing at a high or low pasture allowance. 

Cows were assigned to 1 of 4 treatments: 1) low pasture allowance and no supplement, 2) 

low pasture allowance plus supplement, 3) high pasture allowance and no supplement, 

and 4) high pasture allowance plus supplement. Cows receiving the corn supplement 

demonstrated increased milk production, with greater increases observed in cows on the 

low pasture allowance treatment. Low pasture allowance may have limited DMI because 

higher pasture intake (P < 0.01) was observed when pasture allowance was higher. In 

agreement with Stockdale et al. (1987), supplementation decreased milk fat 

concentration, but increased milk fat yield for both groups receiving concentrate. 

Although supplementation did not affect BW or BCS, NEFA values were elevated for 

unsupplemented cows. Elevated NEFA values suggest that unsupplemented cows were 

mobilizing more body fat than their supplemented counterparts.  

King et al. (1990) evaluated a barley-based concentrate supplement on 

performance of grazing cows. The control group consumed a pasture-only diet, a second 

group grazed and received the barley-based concentrate (3.3 kg/d) without added free 

fatty acids (FA), and the third group grazed and received the barley-based concentrate 

(3.8 kg/d) with added free, long-chain FA (mostly palmitic, stearic, and oleic acid). 

Concentrate supplementation tended to increase milk production in both groups 

compared with the pasture-only group. A trend for higher milk production was observed 
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when additional FA were included in the supplement in comparison to the group 

receiving concentrate with no added FA.  

Bargo et al. (2003) reviewed the effects of supplementation on animal production 

parameters for dairy cows on pasture. The review indicated that supplementing cows on 

pasture decreased time spent grazing which may account for the decrease in pasture DMI, 

thus contributing to the substitution rate. However, total DMI was typically increased by 

supplementation. Studies included in the review indicated that supplementation increased 

milk production by an average of 4.4 kg/d when compared with cows consuming a 

pasture-only diet. Concentration of milk fat was reduced in several studies when 

concentrates were included in pasture diets, whereas milk fat yield increased in a number 

of studies. When the effects of supplementation of fat were evaluated in relation to milk 

production, the studies included in the review showed inconsistent results. While some 

studies showed no effect on milk production, others resulted in positive effects.  

A review by Schroeder et al. (2004) summarized several studies in which cows on 

pasture had been supplemented with fat sources. The review suggested that supplying fat 

to cows on pasture would be a beneficial way to meet energy requirements and observed 

that fat supplementation increased milk production by 4.5% when supplied to grazing 

cows. Potential disadvantages of supplementing grazing diets with fat included 

modification of ruminal function leading to decreased fiber digestion and possible 

depression of milk fat production.  

  Three feeding systems were evaluated by Bargo et al. (2002b). Cows were 

assigned to 1 of 3 treatment groups: 1) TMR, 2) pasture plus supplemental concentrate, or 

3) pTMR. Relative to the TMR treatment group, milk production was reduced in both 
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grazing treatments. However, the pTMR treatment led to additional 3.5 kg/d of milk 

production compared with pasture plus concentrate.  

Rego et al. (2008) evaluated the effects of supplementation using 4 different 

feeding strategies: 1) grazing 20 h/d with 6 kg/d of a corn-based concentrate, 2) grazing 

20 h/d with 6 kg/d of a corn soybean meal-based concentrate, 3) grazing 7 h/d with 6 kg/d 

corn-based supplement and 13 h/d ad libitum grass silage at night, and 4) grazing 7 h/d 

with 6 kg/d corn soybean meal-based supplement. Total DMI was not affected by silage 

supplementation, however, an interaction between silage supplementation and 

concentrate supplementation suggests that soybean inclusion coupled with grass silage 

supplementation led to higher DMI. Milk yield and energy corrected milk (ECM) did not 

differ among all 4 treatments, however, soybean meal inclusion tended to increase milk 

yield. The authors suggested that silage supplementation at night may be a useful 

alternative during times of reduced pasture availability.  

Although results of supplementing pasture with concentrates, fats, or forages are 

quite variable, the overall trends demonstrate improved total DMI and milk production. If 

supplementation can be achieved in a cost efficient way, it could make pasture-based 

feeding a more attractive option for producers interested in alternative management 

techniques. 

  

Estimation of pasture intake  

Determining total DMI for cows grazing pasture presents a challenge, 

specifically, estimating pasture DMI. Bargo et al. (2003) reported that a significant 

disadvantage of estimating pasture intake via pasture measurement methods (i.e., pre- and 
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post-grazing herbage mass) is that the method provides group intakes rather than 

individual cow intakes. Another option for estimating intake is dosage with an external 

marker like chromium oxide or alkanes to estimate fecal production and diet digestibility.  

Macoon et al. (2003) evaluated 3 methods for estimating pasture intake of grazing 

dairy cows. The 3 methods used were: 1) inference from animal performance, 2) 

evaluation from fecal output using a pulse-dose marker, and 3) estimation from herbage 

disappearance methods. Animal parameters such as average daily BW gain and energy 

expended walking to pasture were used to calculate net energy of lactation and used to 

estimate forage intake. In the pulse-dose method, animals were dosed with chromium 

mordanted fiber and the concentration in feed and feces was used with digestibility 

parameters to estimate fecal output. The herbage disappearance calculated the difference 

between pre-grazing and post-grazing herbage mass to determine forage intake. Inference 

from animal performance and herbage disappearance were positively correlated and led 

to similar estimates of DMI. A challenge of the animal performance method is individual 

animal characteristics may be lost because general equations are used in the calculations. 

The pulse-dose method estimated higher forage DMI and a portion of the difference may 

be due to the limitation in which accurate estimates can only be made when the marker is 

being dosed and samples collected, rather than being projected onto the entire 

experimental period.  

Smit et al. (2005) compared 3 techniques to estimate pasture intake in grazing 

dairy cows during 2 grazing seasons. The first technique measured the difference 

between pre- and post-grazing herbage mass. In the second method, cattle were dosed 

with an even-chain n-alkane that served as a fecal marker. Grasses are high in odd-chain 
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length alkanes and the amount of alkane contained in the sampled herbage can be used in 

combination with the ratio of dosed and naturally occurring alkanes in the feces to 

determine herbage intake. In the third method, DMI was calculated based on animal 

parameters such as cow energy requirements for lactation and maintenance and energy 

intake from the grazed forage. The pre- and post-grazing method demonstrated the 

highest coefficient of variation and was not consistent between study years. Using n-

alkanes produced results with less variation and the authors concluded that n-alkanes are 

the preferred way to estimate pasture intake among the three evaluated methods.  

Ferreira et al. (2004) also used n-alkanes and chromium oxide in controlled-

release capsules to estimate feed intake. The cattle were individually fed a diet of 

meadow hay only and dosed with either n-alkane or chromium oxide capsules. The 

concentration of the selected n-alkanes in the collected fecal samples and meadow hay, as 

well as the capsule release rate, were used to calculate estimated DMI. Diet digestibility, 

measured as acid insoluble ash (AIA) and fecal output (calculated using the release rate 

of the marker and the concentration in the collected feces) were used to estimate forage 

intake when cows were dosed with chromium oxide. No significant differences between 

the actual DMI and estimated DMI were noted when n-alkanes were used, however, 

based on the chain-length of n-alkane selected for analysis, a 10 to 15% overestimation in 

DMI was observed. Estimation using chromium oxide and AIA as a digestibility marker 

did not differ from the measured DMI.  

Chromium oxide may be used in combination with in vitro dry matter digestibility 

(Holden et al., 1994; Detmann et al., 2001) and indigestible acid detergent fiber 

(Detmann et al., 2001) to estimate intake. Detmann et al. (2001) used multiple methods to 
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evaluate pasture intake in crossbred steers. When chromium oxide was used in 

combination with in vitro dry matter digestibility, estimated DMI was higher (3.16% of 

BW) than that calculated using indigestible acid detergent fiber (2.72% of BW). 

However, 1 limitation of using in vitro dry matter digestibility is the assumption that all 

cows have the same level of digestibility.  

Although several methods for estimating pasture intake may be used, each method 

offers a set of benefits and challenges. Careful consideration and use of multiple 

methodologies may be appropriate depending upon the measurements required for each 

situation.  

 

Flaxseed supplementation 

 

To date, no studies have evaluated supplementing pasture with GFLAX. 

However, 1 study replaced orchardgrass with GFLAX in dual flow continuous culture  

(Soder et al., 2012), 3 evaluated the effects of extruded flaxseed on grass-based diets 

(Lerch et al., 2012a; Lerch et al., 2012b; Lerch et al., 2012c), and several evaluated 

flaxseed, in various forms, as a supplement for lactating cows in confinement (Gonthier 

et al., 2005; Bell et al., 2006; da Silva et al., 2007; Petit and Côrtes, 2010; Chilliard et al., 

2009; Neveu et al., 2013). The effects of flaxseed supplementation on production will be 

discussed below. 

Gonthier et al. (2005) reported a non-significant decrease of 1.8 kg of milk 

production per d observed in cows consuming ground, raw, micronized, or extruded 

flaxseed compared with the control diet without flaxseed. The diets were formulated to 

contain flaxseed at 12.6% of DM and treatment did not affect DMI. Flaxseed 
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supplementation did not alter concentration of milk fat, protein or lactose. However, milk 

protein yield was reduced when cows received flaxseed compared with the control diet.   

Bell et al. (2006) did not observe a shift in milk production or DMI between 

treatments when flaxseed oil was included in the diet at a rate of 6% of DM (in 

combination with 150 IU vitamin E/kg of DM). A significant decrease in milk fat 

concentration was noted between wk 0 and 2, however, milk fat concentration in cows 

receiving flaxseed oil plus vitamin E was recovered to the original level of production by 

wk 4 and maintained throughout the remainder of the study.  

A trend for higher milk production (+6.5%) was observed when cows were 

supplemented with GFLAX (12% of DM) compared with whole flaxseed (12% of DM) 

(da Silva et al., 2007). Although 4% fat corrected milk (FCM) did not differ between 

GFLAX or whole flaxseed treatments, a slight trend for lower milk fat concentration was 

observed when cows received GFLAX as opposed to whole flaxseed.   

Flowers et al. (2008) reported no difference in milk production when grazing 

cows consumed a cracked corn and soybean meal-based supplement containing added 

flaxseed oil. Cows in the control group received the supplement but no flaxseed oil while 

the cows in the 3 treatment groups received the supplement with 170, 340, or 510 g/d of 

added flaxseed oil. Although milk production was not affected, milk fat and protein 

concentrations showed quadratic increases.  

Chilliard et al. (2009) fed 4 corn silage-based diets: 1) a control diet without 

flaxseed, 2) whole flaxseed, 3) extruded flaxseed, and 4) flaxseed oil. Flaxseed was 

added to the diet to compose 5% of diet DM and replaced a portion of the concentrate. 

Milk yield of cows consuming flaxseed oil was significantly lower than cows on the other 
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3 diets. In addition, yields of milk fat, protein, and lactose were significantly lower when 

cows consumed extruded flaxseed and flaxseed oil compared with the control diet.  

A decrease in DMI was observed when cows were fed a GFLAX diet (7.2% diet 

DM) compared to a control diet with calcium salts of palm oil, a diet supplemented with 

whole flaxseed (7.2% diet DM), or a diet supplemented with an even mixture of whole 

flaxseed and GFLAX (Petit and Côrtes, 2010). The observed decrease in DMI did not 

translate to decreased milk yields, resulting in similar production for all diets throughout 

the study. Milk fat and milk protein concentrations and yields were not affected by 

dietary treatments.  

A long-term study by Lerch et al. (2012a) investigated supplementation of canola 

seed or flaxseed in grass-based diets for 2 consecutive lactations. At the start of lactation, 

cows were housed indoors and received a basal diet of 75% grass silage and 25% grass 

hay ad libitum. Cows were gradually adjusted to pasture over the period of a week and 

eventually had access to grazing 20 h per d. Oilseeds were included in the diet to achieve 

a rate of 2.5 to 3.0% additional oil in ration DM compared with the control diet during 

both the indoor and outdoor periods. Treatment groups included extruded flaxseed, 

extruded canola, cold-pressed fat rich canola meal, or whole, unprocessed canola seeds. 

In the first year of the experiment (indoor and outdoor period), no significant effects of 

oilseed supplementation were observed on milk production. No effects were observed on 

fat, protein, or lactose yields when cows receiving extruded flaxseed were compared with 

those on the control treatment. Compared with the control diet, a trend for decreased 

forage DMI during the indoor period was observed in cows supplemented with oilseeds. 

Body weight and BCS were not affected by treatments during indoor or outdoor periods.  
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Results from the second year of the experiment (Lerch et al., 2012a) were 

reported comparatively to the first year to evaluate within-cow differences. Milk 

production increased significantly in the second year of the study, however, the increase 

was not due to dietary treatments and the observed increases did not differ between the 

control and flaxseed supplemented groups. Although cows receiving extruded flaxseed 

demonstrated decreased concentration of milk protein from year 1 to year 2 during the 

indoor and outdoor periods, the change was not different from that observed in control 

cows. Milk fat concentration also decreased during the indoor period and showed a slight 

increase during the outdoor period, but it was similar to the results obtained with the 

control cows. Milk protein and milk fat yields were increased during the indoor and 

outdoor periods of year 2 compared with year 1 for both control and extruded flaxseed 

supplemented cows, but there were no differences between the 2 treatment groups.   

When extruded flaxseed was fed or not as a part of a high (60%) or low forage 

(40%) diet, milk production was not different between treatments (Neveu et al., 2013). 

Energy corrected milk, 4% FCM, and solids corrected milk production were all higher 

when cows received a high forage diet, but were not affected by flaxseed 

supplementation.  

The studies summarized above illustrate various responses to flaxseed 

supplementation, under various feeding and management strategies. The variation 

indicates that although positive production responses can be achieved, they are influenced 

by many factors including flaxseed processing, composition of the basal diet, and level of 

flaxseed inclusion. Additionally, because no studies have been conducted using GFLAX 
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during the grazing season, research in this area could provide useful results for farms 

evaluating GFLAX as a feeding option.  

 

Milk fat depression 

 

Several of the studies previously cited indicated that pasture feeding, concentrate 

supplementation, and flaxseed feeding can lead to decreased milk fat content. A review 

by Bauman and Griinari (2003) indicates that decreased milk fat can be separated into 2 

broad categories: 1) diets that provide large amounts of readily digestible carbohydrates 

and reduced amounts of fibrous components and 2) diets supplemented with 

polyunsaturated fatty acids (PUFA). The review suggests 3 theories to explain the 

decrease in milk fat content. The underlying principle is that feeding either of the 2 

categories of diets alters ruminal function and microbial processes. The first suggested 

mechanism is that feeding increased levels of concentrate and lower levels of forages 

leads to decreased ruminal acetic and butyric acid production. Acetic and butyric acid are 

major building blocks used for milk FA synthesis in the mammary gland. In addition, 

rapidly fermentable substrates may cause a low ruminal pH and unfavorable conditions 

for ruminal cellulolytic bacteria, which are the main producers of acetic and butyric acid. 

Although pasture provides fiber, high quality pasture is rapidly digestible and may not 

provide an adequate amount of slowly degradable fiber to maintain steady ruminal pH by 

promoting rumination and saliva production, which provides a buffering effect. 

The second suggested mechanism (Bauman and Griinari, 2003) is an increase in 

propionic acid production that leads to up-regulated hepatic gluconeogenesis rates and 
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insulin rates, creating competition for substrates in the mammary gland. The theory 

indicates that increased circulating insulin levels may direct nutrients such as acetate, β-

hydroxybutyrate, and diet-derived long-chain FA, which are substrates for milk FA 

production to non-mammary tissues.  

The third proposed mechanism (Bauman and Griinari, 2003) suggests that 

ruminal function is altered by dietary supplementation with unsaturated FA and creates 

intermediate FA products that inhibit milk fat synthesis. An example of an intermediate 

that can be produced is trans-10, cis-12 CLA which can cause a 25% reduction in milk 

fat yield when dosed at 3.5 g/d (Baumgard et al., 2001). The fat contained in pasture and 

flaxseed is high in unsaturated FA (NRC, 2001; Schroeder et al., 2004) and could 

contribute to modification of ruminal processes.  

It should also be noted that although some studies reported decreases in milk fat 

concentration, an increase in milk fat yield was also observed as indicated in a review of 

supplementation of pasture cows by Bargo et al. (2003). This suggests that an increase in 

milk production created a dilution effect that led to decreased milk fat concentration, but 

overall increase in milk fat yield.  

 

 

Ruminal function and biohydrogenation 

 

Crude fat composes 3 to 8% of fresh pasture DM, with 1 to 3% FA in temperate 

pastures (Schroeder et al., 2004). Fat concentration in pasture varies based upon species, 

maturity, and season (Bauchart et al., 1984). Less mature plants during the spring and fall 

have higher fat concentration and a shorter time between cuttings will also increase fat 
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levels. The fat found in pasture is mostly unsaturated and 2 of the main FA are linoleic 

(C18:2) and linolenic (C18:3) acids. Flaxseed is also high in unsaturated FA containing 

53 g linolenic/100 g FA and 12.7 g linoleic/100 g FA (NRC, 2001).  

Ruminal microbes modify feeds to a great extent after they have been ingested. 

When unsaturated fats, such as those found in pasture and flaxseed, enter the rumen, 

microbes begin to metabolize the fat. Ruminal modification of fat is also called 

biohydrogenation; this is the process where double bonds are replaced by hydrogen to 

convert unsaturated FA to saturated FA (Jenkins and McGuire, 2006). As lipids enter the 

rumen, microbial lipases hydrolyze the ester linkages to release FA (Jenkins et al., 2008). 

Once the FA have been released, they are isomerized by the ruminal microbes, generally 

changing the conformation of the double bond from cis- to trans-FA (Chilliard et al., 

2000). Following isomerization, the FA are hydrogenated to remove double bonds with 

the most common end product being C18:0 or stearic acid.  

In the biohydrogenation of linoleic acid, it enters the rumen as cis-9, cis-12 C18:2 

and no trans double bonds. Bacterial isomerases alter the double bond configurations to 

include one or more trans double bonds, creating cis-9, trans-11 C18:2, or conjugated 

linoleic acid (CLA). Bacterial reductases then desaturate the double bonds to yield trans-

11 C18:1 and a second reduction hydrogenates the FA to form the final product stearic 

acid (Chilliard et al., 2000; Jenkins and McGuire, 2006). The biohydrogenation path for 

linolenic acid is similar to that of linoleic acid, however, more steps are required due to 

its 3 double bonds (Lourenço et al., 2010). The rate-limiting step is the conversion of 

trans-11 C18:1 to C18:0. Due to the high concentrations of linoleic and linolenic acid in 

flaxseed and fresh pasture, this could lead to an accumulation of the biohydrogenation 
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intermediate trans-11 C18:1, increasing the amount that passes out of the rumen to be 

absorbed in the small intestine (Schroeder et al., 2004). An average of 80 and 92% of 

linoleic and linolenic acids, respectively, are biohydrogenated (Chilliard et al., 2000), 

however, the rate and extent can be influenced by diet, type and amount of fat, and 

ruminal pH (Jenkins et al., 2008).  

Ruminal biohydrogenation when cows consume forages may also vary based 

upon botanical species. In a review by Lourenço et al. (2008), red clover vs. ryegrass-

based diets led to higher linolenic acid flows and ruminal proportions in most studies. 

When red clover diets were compared to white clover diets, a tendency for lower 

linolenic acid apparent biohydrogenation was reported. Lower biohydrogenation of 

linolenic acid is associated with the plant metabolite polyphenol oxidase (PPO) found in 

red clover. The metabolite has 3 proposed mechanisms: 1) lower plant lipase activity, 2) 

inhibition of microbial lipases, and 3) phenol bound proteins that protect the plant FA 

from lipases (Lourenço et al., 2008). A final comparison revealed that grass-based diets 

produced lower proportions of C18:1 and CLA when compared to botanically diverse 

diets that included herbs.  

 

Volatile fatty acid production 

Ruminal volatile fatty acids (VFA) production is altered based upon dietary 

parameters, including supplementation of fats (Schroeder et al., 2004), supplementation 

of concentrates (Stockdale et al., 1987), and pasture consumption (Bargo et al., 2003).  

Total ruminal VFA production was not significantly different when cows were 

supplemented with micronized, extruded, or crushed flaxseed (Gonthier et al., 2004; 
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Beauchemin et al., 2009; Neveu et al., 2013; Neveu et al., 2014). However, molar 

proportions of VFA showed varying results. Gonthier et al. (2004) reported that diets 

containing micronized or extruded flaxseed decreased molar proportions of acetic acid 

and increased molar proportions of propionic acid relative to control diets. When crushed 

flaxseed was included in the diet, only butyric acid concentration was lowered 

(Beauchemin et al., 2009). Extruded flaxseed supplementation did not influence molar 

proportions of any reported VFA (Neveu et al., 2013). The molar proportion of acetic 

acid was not affected by extruded flaxseed supplementation (Neveu et al., 2014). 

However, lower propionic acid and higher butyric acid molar proportions were noted 

with flaxseed consumption.  

Scholljegerdes and Kronberg (2010), using beef heifers, fed a pasture-only diet as 

the control along with 2 treatments: 1) grazing plus a corn/soybean meal concentrate at 

0.32% of BW once daily and 2) grazing plus GFLAX at 0.18% of BW once daily. A 

trend for decreased ruminal VFA production was observed when cattle were 

supplemented with either concentrate. A decrease in molar proportion of acetic acid was 

observed in supplemented cattle and the greatest decrease was noted in cattle consuming 

GFLAX. Molar proportions of propionic acid were not significantly different between 

diets, however, butyric acid proportions were increased in supplemented cattle and the 

greatest increase was in the corn/soybean meal-based supplement.  

Soder et al. (2012) used continuous culture fermenters to evaluate 

supplementation of an orchardgrass-based diet with 0, 5, 10, or 15% of DM replaced with 

GFLAX. Ground flaxseed treatments did not change total VFA concentration, however, 

an increase in molar proportions of acetic and propionic acid was observed with GFLAX 
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inclusion. Additionally, GFLAX decreased molar proportions of butyric and valeric 

acids.  

Ruminal VFA results have demonstrated a wide range of responses that are 

sensitive to changes in diet. The wide variation in responses indicates that effects on 

ruminal VFA should be evaluated when possible in diets supplemented with flaxseed.  

 

Methane production 

Methane (CH4), and carbon dioxide (CO2) are by-products of ruminal 

fermentation (Moss et al., 2000). Hydrogen, in the form of H2, is removed from the 

rumen via production of CH4. Methane is a potent greenhouse gas and the U.S. EPA 

(2012) has estimated that animal agriculture contributes 3.8% of national production. 

Methane production is an environmental concern as well as a production concern. In fact, 

CH4 production represents a loss of 5 to 7% of gross energy to the animal (Hristov et al., 

2013). Methane is produced in the anaerobic conditions of the rumen and the process is 

carried out by methanogens called archaea. Although production can vary based upon 

DMI and animal size, the average cow produces 60 to 160 kg CH4/yr (Hristov et al., 

2013). High forage diets, especially those with low digestibility, lead to increased CH4 

production, 6 to 7% vs. 2 to 3% of energy intake, when compared with high grain 

concentrate diets, respectively (Moss et al., 2000).  

Hristov et al. (2013) determined that grazing management has a CH4 mitigating 

potential of less than 10%, however, this strategy can be effective if higher quality 

pastures are maintained. Supplementing ruminant diets with fat has been investigated as a 

method of reducing CH4 production. A review by Hristov et al. (2013) has rated lipid 
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supplementation an effectiveness level of “medium” for mitigating CH4 emissions. This 

translates to a 10 to 30% mitigating effect when compared to standard practice. In 

addition, the authors do recommend the use of dietary lipids for mitigation, when 

economically viable, because it has been deemed effective and is safe for both the 

environment and the animal. The proposed mechanism for decreasing CH4 is by 

decreasing DMI with a combined increase in milk production, which results in an 

increased feed efficiency. A second proposed mechanism is that unsaturated fats serve as 

a method for eliminating H2, however, this contribution is expected to be small (Jenkins 

et al., 2008). In addition, supplemental fats also decrease the amount of OM digested in 

the rumen and lower the activity and functionality of ruminal archaea and protozoa 

(Beauchemin et al., 2009). 

The effects of flaxseed supplementation on CH4 output were evaluated by Martin 

et al. (2008). The control diet was used as the basal diet for each of the 3 treatment 

groups. Treatments included whole flaxseed, extruded flaxseed, and flaxseed oil, and 

they replaced a portion of the concentrate in the basal diet at a rate to achieve a 

theoretical level of 5% oil of diet DM. Methane production was measured for 5 days 

using the sulfur hexafluoride (SF6) technique. A significant difference was detected for 

all diets when comparing CH4 production. Cows on the control diet had the highest CH4 

emissions followed by whole flaxseed, extruded flaxseed, and flaxseed oil. The same was 

true when CH4 was expressed as g/kg OM intake or as a percentage of gross energy 

intake. Although cows receiving flaxseed (whole, extruded, or oil) did demonstrate 

decreases in DMI, a 7% reduction in neutral detergent fiber (NDF) digestibility was 

likely the main cause of reduced CH4 production.  
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Calorimetric chambers were used to measure the CH4 emissions of cows 

supplemented with varying sources of long-chain FA (Beauchemin et al., 2009). The 

control diet contained calcium salts of long chain FA while the 3 treatment diets 

consisted of crushed sunflower seed, crushed flaxseed, or crushed canola seed.  Oilseeds 

provided a range of 3.1 to 4.2% additional fat to diet DM. Cows receiving the flaxseed 

supplement demonstrated an 18% decrease in CH4 production (g/cow/d) compared with 

the control diet. However, g CH4 production per kg digestible DMI was not different 

between control or flaxseed supplemented cows.  

In vitro work with GFLAX indicates that supplementation does decrease CH4 

production in conjunction with pasture (Soder et al., 2012). Freeze-dried orchard grass in 

vegetative stage was used to feed continuous culture fermenters along with GFLAX at 0, 

5, 10, or 15% of total DMI. Methane production demonstrated a linear decrease as 

flaxseed increased in the diet, however, linear decreases in apparent DM, OM, and NDF 

digestibilities were also observed. The decrease in diet and nutrient digestibility may 

limit the practical application of flaxseed in CH4 mitigation.  

Resende et al. (2013) evaluated supplementation of GFLAX on CH4 production 

using 20 cows consuming GFLAX at 0, 5, 10, or 15% of diet DM. Methane production 

was measured using the SF6 tracer technique. A significant linear decrease (285, 262, 

259, and 225 g CH4/cow/d) was observed when cows were fed increasing levels of 

flaxseed 0, 5, 10, and 15% of diet DM, respectively. However, a significant linear 

decrease in DMI translated to reduced milk production, indicating that higher levels of 

flaxseed may have impaired ruminal digestion.  
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Milk fatty acid composition 

 

Potential human health benefits 

Interest in modifying food products to contain more human health-promoting 

components has been increasing over the years. Modification of the bovine milk FA 

profile has received a great deal of attention and many attempts have been made to shift 

the FA to a profile more favorable for human health. Ip et al. (1994) documented results 

that indicated feeding CLA (i.e., cis-9, trans-11 and trans-10, cis-12) at incremental 

levels of 0.05, 0.10, 0.25, and 0.50% of the basal diet inhibited mammary carcinogenesis 

in a dose-dependent relationship in rats that had been administered a known carcinogen. 

It was also observed that feeding a diet containing 1% CLA for 5 wk (weaning to 50 d; 

the period of mammary gland maturation in rats) prior to carcinogen dosing provided a 

protective effect and decreased tumor development 34 to 39% (Ip et al., 1994). The 

authors provided an extrapolation in which 0.10% CLA in the diet was proposed as the 

most effective dosage, translating to a daily CLA intake of 3 g/d for a 70 kg human to 

obtain protective benefits.   

Ritzenthaler et al. (2010) used 3 methods to estimate relative intakes of CLA in 

men and women aged 18 to 60. Based upon these results, average CLA intake was less 

than 500 mg/d for both genders and all age groups. The study also indicated that dairy 

products are the major source (60%) of CLA consumed in the diet, with cheese being the 

biggest contributor. Using milk fat concentration and CLA concentration, an estimate of 

average consumption of CLA per serving of milk (250 g) can be calculated. When the 

results of Lerch et al. (2012b), in which cows consumed extruded flaxseed during the 
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grazing season were used, average CLA consumption per serving of milk was calculated 

to be 160 mg CLA. Resende et al. (2013) fed GFLAX (15% of diet DM) to cows 

consuming a TMR and observed 88 mg CLA per serving of milk. An additional 

consideration is that low-fat dairy products contain less fat which translates to lower 

levels of CLA provided with each serving of dairy. Based on the results of Lerch et al. 

(2012b) and Resende et al. (2013), in order to achieve the suggested dietary intake of 3 g 

CLA/d, an individual would need to consume 19 or 38 servings, respectively, of whole 

milk per day.  

Omega-6 (n-6) and omega-3 (n-3) PUFA are essential FA that must be included 

in the human diet and are found in low levels (Kennelly, 1996) in bovine milk. The 

American Dietetic Association (Kris-Etherton et al., 2007) recommendations for intake, 

as based on a 2,000 calorie diet, suggest 7 to 22 g/d of n-6 and 1.8 to 3.2 g/d of n-3 

PUFA. n-3 FA are associated with health benefits for humans (Simopoulos, 2002) while 

high intakes of n-6 FA, as commonly found in Westernized diets, are associated with 

increased production of proinflammatory agents. n-3 FA may have anti-inflammatory 

effects, decreasing incidence of cardiovascular disease, rheumatoid arthritis, diabetes, and 

inflammatory bowel disease (Simopoulos, 2002). Increased intake of n-3 FA while 

decreasing intake of saturated FA is also recommended (Vannice and Rasmussen, 2014). 

A survey of 500 customers indicated that 98% of respondents were aware of 

health benefits of n-3 FA and n-3 enrichment of products would have a substantial impact 

on food purchasing decisions (Feedstuffs Foodlink, 2014).  Dairy products contribute the 

majority of CLA in the diet as well as a portion of the n-3, n-6, and saturated FA, 
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providing an excellent opportunity to modify milk FA composition in an attempt to 

provide a more healthful FA profile with each serving of dairy.  

 

Milk fatty acid synthesis 

The main components of milk fat are triglycerides, which compose 96 to 99% of 

the lipids, with phospholipids and sterols composing less than 1 and 0.5%, respectively 

(Timmen and Patton, 1988). Milk fat synthesis can be separated into 2 general pathways: 

1) FA synthesized in the mammary gland, or de novo, and 2) those arising from the diet 

or body stores. Short-chain FA (C4:0 to C8:0) and medium-chain FA (C10:0 to C14:0) 

are synthesized de novo, C16:0 FA may be synthesized de novo or originate from the 

diet, while long-chain FA (> C16:0) are attributed to dietary sources or body stores 

(Bauman and Griinari, 2003).  

De novo FA synthesis in the mammary gland epithelial cells uses glucose, 

glycerol, and FA, as well as acetate and butyrate. Glucose can be used in 1 of 3 ways as it 

enters the mammary gland (Neville and Picciano, 1997). It may be used to generate 

acetyl-coenzyme A (CoA) through pyruvate and citrate synthesis, which will then be 

converted to malonyl-CoA and used as a carbon source for FA synthesis. Glucose may be 

converted to ribulose-5-phosphate through the pentose phosphate cycle to produce 

NADPH, a reducing equivalent. Glucose can also be used to generate glyceraldehyde-3-

phosphate from the glycolytic chain which is then converted to glycerol-3-phosphate and 

used for triacylglycerol synthesis. Acetate and butyrate (converted to β-hydroxybutyrate 

by the ruminal epithelium) from ruminal fermentation serve as the main carbon sources. 

Acetate is used as the starting component to form acetyl-CoA. Acetyl-CoA carboxylase 
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catalyzes the reaction to convert acetate to malonyl-CoA. The conversion of acetate to 

malonyl-CoA is the rate-limiting step in the reaction (Neville and Picciano, 1997). The 

FA synthase enzyme condenses and adds carbon units to the chain (including butyryl Co-

A), 2 at a time up to a length of C16:0. The addition of units is terminated by the enzyme 

thioesterase I (Barber et al., 1997).  

Initial components of long-chain FA are absorbed from the blood stream as 

preformed lipids in the form of triglyceride-rich lipoproteins (chylomicra or very-low 

density lipoproteins) or NEFA (Bauman and Griinari, 2003). Lipoprotein lipase is active 

in bovine mammary tissue and is a key component in triglyceride uptake from the blood 

stream. Due to the activity of lipoprotein lipase, uptake of triglycerides is strongly related 

to plasma concentrations (Chilliard et al., 2000). Preformed FA absorbed from the blood 

stream are usually products of dietary consumption or microbial fermentation. High 

plasma NEFA concentrations correlate to higher NEFA uptake by the mammary gland. 

When a cow is in positive energy balance, less than 10% of milk FA is derived from 

NEFA, however, the proportion shifts when the cow enters negative energy balance 

(Bauman and Griinari, 2003). Bauman et al. (1988) treated cows in early lactation with 

recombinant bovine somatotropin, which causes shifts in nutrient partitioning, and 

observed an increase in milk energy yield and a 41% increase in milk fat yield. More than 

90% of the increase in fat yield was associated with an increase in long-chain FA that are 

commonly derived from plasma NEFA and body fat reserves.  

Preformed FA enter the mammary alveoli via diffusion or a saturatable membrane 

transport system (Neville and Picciano, 1997). Once the FA have entered the epithelial 

cells, acyl-CoA acts as a catalyst to begin the formation of triglycerides. Fatty acids from 
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de novo synthesis and those absorbed as pre-formed FA are esterified in the endoplasmic 

reticulum of mammary epithelial cells to form triglycerides. The FA are activated to their 

acyl-CoA esters and transacylases incorporate the FA onto a glycerol-3-phosphate 

(Neville and Picciano, 1997) to form a triglyceride.  

A high delta-9 desaturase activity found in differentiated mammary epithelial 

cells is responsible for the conversion of saturated FA to monounsaturated FA (MUFA). 

Approximately 40% of mammary-absorbed stearic acid (C18:0) is desaturated to oleic 

acid (cis-9 C18:1) by delta-9 desaturase (Chilliard et al., 2000). The main isomer of CLA 

in ruminant milk is cis-9, trans-11 C18:2. Vaccenic acid (trans-11 C18:1) is formed in 

the rumen and absorbed into the blood stream through the intestine. After it has been 

absorbed from the blood by the mammary tissue, it is desaturated by delta-9 desaturase to 

form rumenic acid or cis-9, trans-11 C18:2 (Chilliard et al., 2000). 

 

Milk fatty acid composition on pasture 

The bovine milk FA profile is most commonly modified via a dietary route. One 

such method of modification is including pasture as a main component in the diet. 

Significant changes in milk FA composition when cows grazed pasture was observed by 

Jahreis et al. (1997), Kelly et al. (1998), Dhiman et al. (1999), White et al. (2001), 

Agenäs et al. (2002), Loor et al. (2003), and Ferlay et al. (2008) . 

Milk samples were collected once a month for a year from the bulk tanks of 3 

farms, each with different management practices (Jahreis et al., 1997). The first farm was 

a conventional operation with confinement feeding of corn silage the entire year. The 

second farm used conventional pasture without supplementation during the grazing 
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season and fed corn and grass silage in confinement during the other seasons. The third 

farm followed organic farming practices and grazed during the summer without 

supplementation and fed corn, grass, and alfalfa silage that had been produced in 

accordance with organic guidelines during the remainder of the year. Significant 

differences in milk FA composition were observed among all 3 production systems. Milk 

sample results for the year indicated that trans-11 C18:1 and CLA were significantly 

higher in bulk milk samples of both the conventional pasture system and the organic 

pasture system compared with the conventional farm, particularly during the grazing 

season (May to September).  

Kelly et al. (1998) used 16 Holstein cows; 8 remained on a TMR diet and 8 were 

transitioned to a pasture-only diet. At the start of the study (May 12
th
), both groups 

received the same TMR, the pasture-only treatment group was transitioned from 

confinement feeding to grazing over the following 2 wk and remained on a pasture-only 

diet until the completion of the study on June 9
th

. A decrease in de novo FA synthesis was 

observed in cows on the pasture-only diet. Cows receiving TMR produced milk with 

17.6% short- and medium-chain FA (of total milk FA), while cows consuming pasture 

produced milk with 12.8% short- and medium-chain FA (of total milk FA). Significant 

increases in oleic (+ 8.2%) and linolenic acid (+ 0.7%) and CLA (+ 0.63%) as a percent 

of total milk FA were observed in the final period for cows that grazed compared to 

consuming TMR.  

Milk FA concentrations are related to the amount of pasture consumed (Dhiman 

et al., 1999). Holstein cows were assigned to 1 of 3 treatment groups and consumed 1/3 

pasture, 2/3 pasture, or all pasture. Cows not on an all-pasture diet also received a 
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supplement of coarsely ground high moisture ear corn, alfalfa hay, roasted cracked 

soybeans, and soybean meal. Although concentrations of C10:0 to C16:0 did not differ 

between diets, a higher concentration of C16:1 was detected in the milk of cows on the 

pasture-only diet. Stearic acid was higher in the milk fat of cows receiving supplement, 

but oleic acid was not altered by diet. A linear increase in CLA concentration was 

observed as pasture increased from 1/3 to 2/3 to 100% of the diet resulting in 8.9, 14.3, 

and 22.1 g CLA/100 g FA, respectively. An increase in linolenic acid was also observed 

as pasture increased in the diet.   

A TMR and grazing system was used to compare milk FA of Holsteins and 

Jerseys (White et al., 2001). The breeds were managed together while the treatment 

groups were managed separately. The TMR diet was composed of corn silage, alfalfa 

silage, ground corn, soybean meal, whole cottonseed, vitamins, and minerals. The cows 

on pasture grazed crabgrass and received a supplement mix with ground corn, soybean 

meal, whole cottonseed, vitamins, and minerals. Both breeds on the TMR treatment had a 

higher milk fat concentration than the breeds grazing pasture. However, the pasture cows 

produced significantly higher concentrations of CLA than the cows receiving TMR. 

Specifically, Jerseys consuming pasture produced milk with a CLA content of 0.59% of 

total FA compared to 0.32% of total FA for Jerseys consuming TMR. A similar increase 

in CLA was observed in Holsteins consuming pasture vs. Holsteins consuming TMR, 

0.72 vs 0.41% of total FA, respectively. A significant increase in C10:0, C12:0, C14:0, 

C14:1, C16:1, and linolenic acid was noted in milk from the grazing cows compared to 

those receiving TMR.  
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Agenäs et al. (2002) noted significant increases in C18 FA 8 days after pasture 

turnout. Cows were assigned to either a concentrate supplement with high or low fat 

levels that were adjusted using soybean oil. Further, the cows were separated into 2 

distinct populations: high fat indexed and low fat indexed. The Swedish Red cows used 

in the study were selected from a genetic program in which high producing cows were 

selected for high or low milk fat percentage, but the same amount of energy in the milk 

(Agenäs et al., 2003). The short-term study lasted 29 d with cows evaluated on d 1 as the 

indoor system, d 8 as the pasture transition period, and d 29 as the pasture period. During 

the transition period (d 8), when adaptation to pasture was occurring, a decrease in de 

novo FA was observed, while at the same time an increase in long chain FA was shown. 

Pasture is high in unsaturated FA (NRC, 2001) and the high level of unsaturated FA in 

combination with a higher rate of ruminal passage often observed with pasture-based 

diets (Kelly et al., 1998; Bargo et al., 2003) may have led to incomplete saturation of the 

FA and could have contributed to the shift in milk fat composition. Stearic acid was not 

altered by turnout to pasture. However, an increase in linoleic and linolenic acid was 

observed during the adaptation period (d 1 to d 8). After turnout to pasture, the sum of all 

cis-C18:1 isomers increased and remained elevated through the remainder of the study. In 

addition, the sum of all trans-C18:1 isomers and CLA were higher on d 8 and d 29 than 

on d 1. Cows in the low fat indexed population receiving the high fat concentrate 

demonstrated the highest trans-C18:1 and CLA contents. The authors suggested the 

difference was due to cows in the low fat indexed population having a lower ability for de 

novo FA synthesis.  In a previous study (Murphy et al., 2000), low fat indexed cows 
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tended to have higher ruminal fluid passage rates compared to high fat indexed cows, 

which could increase the amount of incompletely saturated FA passing from the rumen.  

Milk FA composition may be affected by time of day that grazing takes place and 

is significantly altered by 8 h of grazing (Loor et al., 2003). Three treatment groups 

(TMR only, TMR plus 8 h grazing following morning milking, or TMR plus 8 h grazing 

following afternoon milking) were established with 10 cows each. Although DMI 

differed between the 3 treatments, there was no difference detected in milk production, or 

percentage and yield of milk fat, protein, and lactose. Significant decreases in C14:0 and 

trans-10 C18:0 were observed when cows grazed for 8 h compared to a complete TMR 

diet. Vaccenic acid (trans-11 C18:1) was significantly increased in cows grazing 8 h and 

was significantly higher in the milk of cows grazing in the afternoon. Linoleic acid was 

significantly decreased in cows consuming pasture but the trans-11, cis-15 C18:2 isomer 

was significantly increased as was linolenic acid. Conjugated linoleic acid was also 

increased with 8 h of grazing and was significantly higher when cows grazed afternoon 

compared to morning. The authors suggested that increased DMI from pasture when 

cows grazed in the afternoon compared to the morning contributed to the difference, 

although pasture intake was not quantified. Cows grazing in the afternoon had a 

significantly lower TMR DMI than those grazing in the morning. However, milk yield 

did not differ between the 2 groups, suggesting that cows maintained production via 

increased pasture intake.  

Soder et al. (2006) grazed 20 lactating cows on 4 different forage mixtures for 2 

grazing seasons to evaluate the effects of increased forage species. The 4 forage mixtures 

were: 1) 2 species: orchardgrass and white clover, 2) 3 species: orchardgrass, white 
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clover, and chicory, 3) 6 species: orchardgrass, tall fescue, perennial ryegrass, birdsfoot 

trefoil, red clover, and chicory, 4) 9 species: all species included in the 6 species mix plus 

white clover, alfalfa, and Kentucky bluegrass. Forage mix did not affect DMI, milk 

production, or 4% FCM. The milk fat of cows consuming the forage mix with only 2 

species produced significantly lower levels of linoleic acid and CLA than those 

consuming the mixes containing more species. The mixes containing more than two 

species also contained chicory, which was reported to have increased unsaturated FA 

concentration and may have contributed to the differences in milk FA. However, 

sesquiterpene lactones (Foster et al., 2002) found in chicory can cause a bitter taste and 

cows may have avoided grazing the mature leaves and bolting stem. The authors 

suggested higher legume intake, due to chicory avoidance in the treatment groups grazing 

more than 2 species, may have contributed to the difference in milk FA because legumes 

are higher in linoleic acid than cool-season grasses. 

Ferlay et al. (2008) evaluated variability of pooled bulk tank milk samples 2 times 

during the winter and 3 times during the grazing season. A region located in south central 

France was separated into 10 areas and farms within each area (n = 10 to 36) contributed 

to the pooled milk sample on a basis of production percentage within that area. 

Significantly higher production of C10:0 to C14:0 was observed during the winter 

feeding season as compared to the grazing season. A linear decrease of C10:0 to C14:0 

was observed when winter herds feeding a high percentage of preserved forages was 

compared to summer grazing herds feeding a low percentage of preserved forages. The 

sum of trans-C18:1 FA isomers (including trans-11 C18:1) were significantly increased 

in milk samples collected during the grazing season than those collected during the 
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winter. Cis-9, trans-11 CLA was significantly increased during the grazing season 

compared to the winter season.  

Pasture consumption has marked effects on milk FA composition, increasing 

MUFA and PUFA concentrations as well as CLA and n-3 FA. Improvements in the milk 

FA profile holds potential benefits for human health and may encourage more extensive 

use of pasture in modern dairy operations.  

 

Milk fatty acid composition with flaxseed supplementation 

Significant differences in milk FA composition were detected when a control diet 

was supplemented or not with ground, raw flaxseed, micronized flaxseed, or extruded 

flaxseed (Gonthier et al., 2005). Micronized flaxseed is a method of processing flaxseed 

to produce smaller particle size and may reduce ruminal degradability while increasing 

post-ruminal digestibility. Extrusion of flaxseed is a heat treatment that may help to 

protect the product from ruminal degradation by the microbes. A decrease in short- and 

medium-chain FA along with an increase in long-chain FA was observed in cows 

receiving flaxseed supplementation. An average increase of 193 and 51% was noted for 

linolenic acid and CLA, respectively, when flaxseed was fed. In addition, daily yield of 

CLA was increased by an average of 4 g/d due to all flaxseed treatments.  

Bell et al. (2006) supplemented flaxseed oil at a rate of 6% of diet DM in 

conjunction with Vitamin E at 150 IU/kg of DM to a control diet of barley silage, alfalfa 

silage, alfalfa hay, ground corn, barley, soybean meal, and corn gluten meal. Cows 

receiving the flaxseed/vitamin E supplemented diet had significantly higher levels of 

linoleic acid, linolenic acid, and CLA in the milk fat than cows on the control diet. In 
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addition, saturated FA were notably decreased while unsaturated FA were increased in 

the milk fat of cows consuming flaxseed oil compared to the unsupplemented cows.  

A quadratic increase in milk cis-9, trans-11 CLA content was reported by Flowers 

et al. (2008) when grazing cows were supplemented with increasing levels of flaxseed 

oil. Flaxseed oil was added to a corn-based supplement to yield 4 treatment groups: 1) 0 

g/d flaxseed oil, 2) 170 g/d flaxseed oil, 3) 340 g/d flaxseed oil, and 4) 510 g/d flaxseed 

oil. Additionally, n-3 FA and linolenic acid concentrations increased as flaxseed oil in the 

diet increased.  

Rego et al. (2009) supplemented cows grazing pasture for 20 h per d with 5 kg of 

corn concentrate, 4.5 kg concentrate plus 0.5 kg canola oil, 4.5 kg concentrate plus 0.5 kg 

sunflower oil, or 4.5 kg concentrate plus 0.5 kg flaxseed oil. Oil supplementation 

decreased short- and medium-chain milk FA. However, flaxseed oil supplementation also 

decreased linoleic and linolenic acid. A 19% increase in cis-monounsaturated FA was 

noted with the flaxseed oil diet.  

Petit and Côrtes (2010) evaluated milk FA composition when a TMR diet was 

supplemented with calcium salts of palm oil (control diet), 7.2% DM whole flaxseed, 

7.2% DM GFLAX, or 3.6% DM whole flaxseed plus 3.6% DM GFLAX. The cows 

receiving GFLAX and the combination treatment of whole flaxseed plus GFLAX 

produced higher proportions of linolenic acid when compared with the whole flaxseed 

treatment. Cows on the GFLAX treatment produced higher proportions of total n-3 FA 

compared to the cows on the whole-ground flaxseed diet, but no other effects of 

processing were observed. Cows consuming the control diet produced milk with higher 

proportions of palmitic acid and cis-7 C16:1 and lower proportions of stearic and oleic 
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acid than cows on flaxseed treatments. Conjugated linoleic acid production did not differ 

among the 4 treatments.  

Long-term supplementation with extruded flaxseed was evaluated by Lerch et al. 

(2012b) during a confinement as well as a grazing period for 2 consecutive lactations. 

During the confinement period of the first year, supplementation with extruded flaxseed 

decreased milk saturated FA, and increased total cis-C18:1 and trans-C18:1 

concentrations compared with the control in which the basal diet was supplemented with 

a pelleted wheat and solvent-extracted rapeseed meal.  During the grazing period, an 

increase of 8.3 g PUFA/100 g FA was observed when the control diet was compared to 

the indoor period. Extruded flaxseed supplementation during the grazing period increased 

milk total PUFA by 1.6 g PUFA/100 g FA compared to the indoor period. In the second 

year of the study, extruded flaxseed supplementation led to greater increases in total 

trans-C18:1, PUFA, and linolenic acid during the confinement period when compared to 

the first year. When the second grazing period was compared to the first grazing period, 

cows receiving extruded flaxseed demonstrated greater increases in linoleic acid and n-3 

PUFA. Changes of milk FA due to supplementation were more notable during 

confinement periods than grazing periods. An unexpected observation was reported by 

Lerch et al. (2012c) during both grazing periods. Cows receiving extruded flaxseed 

produced significantly lower concentrations of CLA compared with the cows on the 

control diet, which was attributed to a higher starch content in the control diet from the 

pelleted concentrate supplementation than the extruded flaxseed diet.  

 Forage to concentrate ratio, in addition to flaxseed supplementation, impacts milk 

FA composition (Neveu et al., 2013). Four diets were fed: 1) high forage (60% of DM) 
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without flaxseed, 2) high forage (60% of DM) with extruded flaxseed (9% of DM), 3) 

low forage (40% of DM) without flaxseed, and 4) low forage (40% of DM) with extruded 

flaxseed (9% of DM). Flaxseed supplementation did not affect short-chain FA C4:0 to 

C14:0, however, significantly higher concentrations of C4:0 to C8:0 and significantly 

lower concentrations of C12:0 and C14:0 were detected when cows were fed high forage 

diets. When cows were fed high forage diets, an increase in C16:0 was noted and C16:0 

was decreased when extruded flaxseed was fed. High forage diets containing flaxseed, 

high forage diets, and diets containing flaxseed all resulted in significant increases in 

stearic acid. A 100 and 54% increase in linolenic acid and CLA, respectively, was 

reported when flaxseed was fed. Conjugated linoleic acid was increased in high forage 

diets, but linolenic acid did not increase. The results of this study indicate that 

supplementing high forage diets with flaxseed may be beneficial for increasing FA with 

potential human health benefits. 

Flaxseed contains high levels of unsaturated FA and feeding flaxseed in various 

forms has been shown to alter milk FA composition. The degree to which milk FA is 

altered may vary depending on basal diet, flaxseed form, and intake level.  

 

Premiums for nutritionally enriched milk fat  

In a relatively new program, the Organic Valley Family of Farms cooperative 

currently markets and sells a product labeled “100% grassmilk” in which the cows 

producing the milk consume only fresh pasture herbage or dried forages such as hay and 

no grain is included in the diet (Organic Valley, 2014). This milk is marketed as 

providing “naturally occurring omega-3 and CLA” other marketed products such as the 
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“pasture butter” and “grass milk cheese” also indicate they contain higher levels of n-3 

and CLA. New England farmers who are a part of the grass milk program at Organic 

Valley cooperative are currently (December 2014) receiving a premium of $5/cwt higher 

($4 as a premium, $1 credit dedicated to soil amendments) than farmers utilizing 

conventional organic practices, $36.05 and 30.80, respectively (CROPP Cooperative, 

2014).  

Organic Valley does currently offer a premium to poultry producers for n-3 

enriched eggs (+ $0.14/dozen) compared to conventional organic eggs (CROPP 

Cooperative, 2014). Although the dairy products being marketed advertise enriched n-3 

and CLA content, there is not currently a premium in place for achieving specific levels 

of n-3 or CLA. Organic Valley indicated a premium for enriched n-3 and CLA 

concentrations has been considered in the past and may develop in the future because 

farmers have expressed interest in a program. (H. Chappell, Organic Valley, La Farge, 

WI; personal communication).  

 

Conclusions 

 

Evaluating the impacts of flaxseed supplementation during the grazing season is 

an important area for future research. Supplementation may promote increased 

production of FA that are beneficial to human health and may minimize season variations 

due to shifting of pasture species throughout the grazing season. If flaxseed 

supplementation is economically viable, it may contribute to an emerging specialty 

market featuring health-enriched dairy foods.   



48 

 

 

 

CHAPTER II. EFFECTS OF GROUND FLAXSEED 

SUPPLEMENTATION ON PRODUCTION, MILK FATTY ACID 

COMPOSITION, AND ENTERIC METHANE PRODUCTION 

DURING THE GRAZING SEASON 

 

MATERIALS AND METHODS 

 

Experimental design and treatments 

Twenty multiparous organically-certified lactating Jersey cows were assigned to 1 

of 2 treatments using a randomized complete block design. One cow on the flaxseed 

treatment died due to reasons unrelated to experimental diets during the second month of 

the study and was replaced by a multiparous cow of similar days in milk (DIM). Organic 

flaxseed, ground via a cold milling process, was obtained from AgMotion Inc., 

(Minneapolis, MN). Dietary treatments were 0 or 10% of GFLAX in diet DM. All cows 

were fed the same basal diet (Table 1). Cows on the control treatment (0% GFLAX) were 

fed a ground corn-soybean meal mixture at 10% of diet DM (Table 2). Dietary treatments 

were weighed separately, top dressed, and manually mixed into the individual TMR for 

each cow at each feeding. Diets were formulated to provide similar net energy of 

lactation (NEL) concentrations and 60% of DMI from TMR with the remaining 40% from 

pasture.  

At the start of the trial, cows averaged 111 ± 49 DIM. The replacement cow 

assigned to the study during the second month was 128 DIM. The study extended from 
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June 8 to September 27, 2013. The study was conducted over 4, 28-d periods with the last 

7 d of each period used for data and sample collection. Total mixed ration intake was 

measured daily, with TMR DM determined once weekly during the first 3 wk and daily 

during the final wk of each period. Cows were fed in individual Calan doors (American 

Calan, Northwood, NH). 

  

Management of cows 

All procedures related to animal care were conducted with the approval of the 

University of New Hampshire Institutional Animal Care and Use Committee (Appendix 

A). Cows were housed in a bedded pack barn with an open lot and covered feeding area. 

Cows were milked and fed twice daily at 0630 and 1730 h. Cows were milked in a 4-stall 

step-up parlor with headlocks (Agromatic; Fond DuLac, WI), automatic take-offs, and 

milk meters (Westfalia Surge; GEA Farm Technologies Inc., Naperville, IL). Milk 

weights were recorded every day (DairyPlan C21, Version 5.2; GEA Farm Technologies 

Inc., Naperville, IL). Cows were weighed (Northeast Scale Co., Inc., Hooksett, NH) on 3 

consecutive days at the beginning of the experiment and during the last week of each 

period. Three independent scorers assigned BCS at the beginning of the experiment and 

in the last week of each period. The mean BW and BCS at the start of the experiment was 

408 ± 44 kg and 2.93 ± 0.31, respectively.  

The basal diet was fed as a TMR and was prepared by weighing each ingredient 

and mixing in a vertical mixer (V-Mix 400; ValMetal, Tomah, WI) using a Maxxum 

series tractor (MX 135; Case IH, Sturtevant, WI). The TMR was prepared fresh in the 

evening, dispensed onto concrete, and weighed into barrels using a portable digital scale 
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(Pelouze 4010; Rubbermaid, Saratoga Springs, NY). The remaining TMR was fed during 

feeding the following morning. Orts were weighed and collected daily at 1500 h. Cows 

were allowed approximately 60 to 90 min to consume the TMR in both daily feedings 

and were then moved to pasture. Pasture was strip-grazed using a temporary fencing 

system (polywire and step-in fence posts) and cows had access to water throughout the 

experiment.   

Chromium oxide was incorporated into a pelleted grain mash (Morrison’s Custom 

Feeds, Barnet, VT) with similar composition to that of the basal concentrate mix (Table 

2), and was used as an external marker to estimate pasture DMI. During the last 10 d of 

each period, a portion of the grain in the basal diet was substituted for 833 g (DM basis) 

of the Cr2O3 pellets, which were offered twice daily before each feeding in rubber pans 

and placed into the Calan doors to ensure complete consumption of all pellets. Target 

intake was 10 g of Cr2O3/d.  

 

Pasture management and sampling  

During the first 3 wk of each period, cows used in the study (n = 20) and the 

remaining lactating animals (n = 30) of the herd grazed in the same group. During the 

sample collection weeks, cows assigned to the study grazed separately. In the first 3 wk 

of each period, pasture herbage samples were collected once weekly and pasture area was 

recorded. Herbage samples were collected each time cows were moved to a new strip of 

fresh herbage during the sample collection weeks. Cows were moved to a new strip once 

daily. Pasture sections were mapped with a GPS device (Garmin Ltd., Olathe, KS) and 

total area (m
2
) was recorded. Pre-grazing and post-grazing herbage mass (kg DM/ha) was 
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measured by cutting 10 quadrats (0.25 m
2
/quadrat) of herbage to ground level using hand 

shears. Herbage quality was evaluated by hand-plucking 10 quadrats (0.25 m
2
/quadrat) of 

herbage to a level approximating the post-grazing herbage mass (Kolver and Muller, 

1998). Quadrats were thrown in a “zig-zag” pattern in each pasture section for both 

herbage mass and quality. Biomass and quality samples were collected adjacent to one 

another in areas containing similar forages to maintain consistency. If the locations of the 

quadrat throw contained manure, it was thrown again. After collection, 500 g (wet 

weight) of herbage was separated from the pre-grazing herbage mass sample by hand-

mixing and quartering the total sample until only 500 g remained. The remaining 500 g 

was sorted into 1 of 4 categories: 1) grass, 2) legume, 3) weed, or 4) dead and used to 

estimate herbage composition. The weights of sorted herbage composition samples were 

included in total calculations of pre-grazing herbage biomass. All herbage samples were 

dried at 55°C in a forced air oven (Sheldon Manufacturing, Inc., Cornelius, OR; BINDER 

Inc., Bohemia, NY; VWR Scientific, Bridgeport, NJ).  

Herbage biomass was calculated by multiplying total area harvested in the 

quadrats (2.5 m
2
) by the total area of the paddock. Total pre-grazing herbage biomass was 

used to calculate the pasture allowance on a per cow basis. 

  

Feed sampling and analysis 

Concentrates were sampled once during each of the 4 sample collection weeks for 

nutrient analysis. Each bale of baleage was sampled via core-sampling with an electric 

drill (Hilti Inc., Tulsa, OK) and a 45-cm stainless steel forage sampler barrel (Nasco, Fort 

Atkinson, WI). Total mixed ration and orts were sampled daily during each sample 
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collection week. All feed samples were dried for 48 h in a forced hot air oven at 55°C 

(Sheldon Manufacturing, Inc., Cornelius, OR; BINDER Inc., Bohemia, NY; VWR 

International, Bridgeport, NJ). The dried baleage, concentrates, TMR, orts, and pasture 

samples were ground to pass through a 1-mm screen using a Wiley Mill (Thomas 

Scientific, Swedesboro, NJ). Composites were made of each dried feed across each 

sample collection week. Composites were analyzed for CP, ADF, NDF, crude fat, ash, 

acid insoluble ash, Ca, P, Mg, K, Fe, Zn, Cu, Mn, S, and Cr (Analab, Agri-King, Inc., 

Fulton, IL). Crude protein was determined using the combustion method (AOAC, 990.03, 

1990), ADF was determined using acid detergent solution (AOAC 973.18, 1990), NDF 

was determined using amylase-treated neutral detergent solution (AOAC 2002.04, 1990), 

and crude fat was determined using ether extraction (AOAC 920.39, 1990). Ash was 

determined using the combustion method (AOAC 942.05, 1990), AIA was determined 

using techniques described in Van Keulen et al. (1977), and minerals were determined 

using the inductively coupled plasma spectroscopic method (AOAC 985.01, 1990) with 

the exception of sulfur determined by magnesium nitrate methodology (AOAC 923.01, 

1990) and chromium determined by atomic absorption (Williams et al., 1962; Binnerts et 

al., 1968). Indigestible acid detergent fiber (iADF) was also measured in composite feed 

samples. Composited feeds (0.45 – 0.55 g/bag) that had been dried and ground as 

previously described, were incubated in triplicate in the rumen of a cannulated Holstein 

cow consuming a TMR diet (40.4% corn silage, 11.4% soybean meal, 11.2% grass-

legume haylage, 9.86% ground corn grain). Bags (F57, ANKOM, Macedon, NY) were 

incubated in the rumen for 12 d using the filter bag technique. Following incubation, bags 

were removed, washed, and analyzed for ADF using ANKOM Method 8 (ANKOM, 
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Macedon, NY). Composited feed samples were evaluated for FA content (Dr. Kevin 

Harvatine Laboratory; The Pennsylvania State University, University Park, PA) 

following the procedure of Rico et al. (2014). In vitro dry matter digestibility (IVDMD) 

of composited feed samples was measured by Cumberland Valley Analytical Services 

(Hagerstown, MD) using the methodology described by Tilley and Terry (1963). Grains 

and forages were assessed for 48 and 72 h IVDMD, respectively.  

 

Rumen sampling and analysis 

Ruminal samples were collected from 10 cows after the a.m. milking for 3 

consecutive days during each sample collection week. During sample collection, the 

cows were restrained in a head chute (Zimmerman, PBZ LLC., Lititz, PA) with belly 

straps to minimize movement. Samples were collected using an oral lavage tube passed 

through the esophagus and into the rumen. Ruminal fluid was extracted by applying a 

manual vacuum and the initial portion of the sample was discarded to minimize saliva 

contamination. The sample was strained through 4 layers of cheesecloth and pH (VWR 

International, Bridgeport, NJ) was recorded immediately. A 40-mL aliquot of strained 

ruminal fluid was added to 2.4 mL of 6 N HCl, stored at -20°C, and retained for analysis 

of ammonia. Analysis of ruminal ammonia was performed by adding 1 mL of ionic 

strength adjuster (Ammonia pH adjusting ISA; Orion 951211, Thermo Fisher Scientific, 

Chelmsford, MA) to 10 mL of ruminal fluid and measuring the released ammonia with a 

benchtop pH/ISE meter (Orion Star A214; Thermo Fisher Scientific, Chelmsford, MA). 

A 40-mL aliquot of strained ruminal fluid was added to 0.18 mL of 50% H2SO4, stored at 

-20°C, and retained for VFA analysis. Analysis of ruminal fluid for VFA was done at 
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West Virginia University (Morgantown, WV) using gas chromatography (Anonymous, 

1975). The gas chromatograph was a Varian model 3300 with a flame ionization detector 

(Varian, Inc., Palo Alto, CA). The column was a 2-m × 2-mm glass column packed with 

10% stationary phase 1200/1 H3PO4 on 80/100 Chromosorb W-AW media (Supelco Inc., 

Bellefonte, PA).   

 

Blood sampling and analysis 

Blood was sampled by venipuncture of the coccygeal vein or artery before the 

a.m. and p.m. milking for the first two consecutive days (d 1 and 2) of each sampling 

week. Blood was collected in 10 mL evacuated-glycerin coated red stopper tubes 

(Monoject; Covidien, Mansfield, MA) with a 20-gauge blood collection needle 

(Monoject; Covidien, Mansfield, MA). Blood samples clotted at room temperature for 

approximately 1 to 2 h and then were centrifuged for 20 min at 1,200 × g at room 

temperature. Serum was collected with a.m. and p.m. samples pooled in equal amounts 

by day. Samples for analysis of serum cortisol were stored at -80°C while remaining 

samples were frozen at -20°C until analysis. The BioVendor (BioVendor LLC, Asheville, 

NC) cortisol ELISA kit was used to evaluate serum cortisol. Analysis of serum NEFA 

was performed using the Wako HR Series NEFA-HR(2) kit (Wako Chemicals USA, Inc., 

Richmond, VA) modified for bovine use. A chromate microplate reader (Awareness 

Technology, Inc., Palm City, FL) was used to read absorbance of both NEFA (550 nm) 

and cortisol (450 nm) assays. Serum urea was determined via colorimetric analysis using 

a UV/visible spectrophotometer (Beckman Coulter Inc., Brea, CA) set at a wavelength of 

540 nm.  
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Urine and fecal sampling and analysis 

Urine samples were collected twice daily before the a.m. and p.m. milking for 3 

consecutive days (d 3, 4, and 5 of the sampling week). Samples were composited to 

create 1 sample per cow/period by adding 8 mL of urine and acidifying with 400 µL of 6 

N HCl per each time point. Urine samples were stored at -20°C until later analysis for N, 

ammonia, creatinine, urea, allantoin, and uric acid. Urinary N concentration was assessed 

by Dairy One Cooperative Inc. (Ithaca, NY) using a Leco TruMac N Macro Determinator 

(Leco Corporation, St. Joseph, MI) using the combustion method (AOAC 990.03, 1990). 

A benchtop pH/ISE meter (Orion Star A214; Thermo Fisher Scientific, Chelmsford, MA) 

was used to measure urine ammonia following the same methodology used for ruminal 

samples. Creatinine concentration was measured using the Cayman Chemical Company 

(Ann Arbor, MI) creatinine colorimetric kit on a Chromate microplate reader (Awareness 

Technology, Inc., Palm City, FL) at 492 nm. Urinary urea was determined via 

colorimetric analysis. Allantoin concentration was determined through a modified 

procedure (Chen, 1989). Measurement of uric acid was performed using the Stanbio Uric 

Acid LiquiColor kit (Procedure no. 1045; Stanbio Laboratory, Boerne, TX). Urinary urea, 

allantoin, and uric acid were read at wavelengths of 540, 522, and 520 nm, respectively, 

on a UV/visible spectrophotometer (Beckman Coulter Inc., Brea, CA). 

Fecal samples were collected twice daily before the a.m. and p.m. milking during 

the last 5 d of each sample collection week. Samples were pooled by cow and dried in a 

forced air oven at 55°C (Sheldon Manufacturing, Inc., Cornelius, OR). Samples were 

ground to pass through a 1-mm screen using a Wiley mill (Thomas Scientific, 

Swedesboro, NJ). Samples were analyzed for CP, ADF, NDF, ash, acid insoluble ash, 



56 

 

 

and Cr by Analab (Agri-King, Inc., Fulton, IL) as previously reported. Fecal samples 

were also analyzed for iADF as previously reported.  

Fecal chromium concentration was used to calculate fecal output using the 

equation: fecal output = (g per day of Cr) ÷ (g of Cr/g of fecal DM) according to Kolver 

and Muller (1998). Pasture DMI was estimated using the following equation (Bargo et 

al., 2002): pasture DMI = [(g Cr/d) ÷ (g Cr/g of fecal DM) – concentrate DMI × (1 – 

IVDMD of concentrate) – TMR DMI × (1 – IVDMD of TMR)] ÷ (1 – IVDMD of 

pasture).  

 

Milk sampling and analysis 

Milk samples were collected during both a.m. and p.m. milking times for 2 

consecutive days (d 1 and 2) during each sample collection week. Samples were 

composited by day based on individual production, preserved with a 2-bromo-2-

nitropropan-1,3 diol tablet (D&F Control Systems, Inc., Norwood, MA) and analyzed for 

fat, protein, lactose, somatic cell count, and MUN by Dairy One Cooperative (Ithaca, 

NY). A composite of all 4 time points, based on individual milk yield by day, was 

retained for analysis of milk FA and stored at -80°C. Milk FA were analyzed in the same 

laboratory used for feed FA following a modified procedure (Rico and Harvatine, 2013). 

The oven program was modified to an initial temperature of 80°C and increased 2°C per 

minute to 190°C and held for 10 min. The temperature was then increased 8°C per 

minute to 215°C and held for 25 min.  
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Energy corrected milk yield was estimated according to Orth (1992) and 4% FCM 

was estimated according to Gaines and Davidson (1923).  Feed efficiency was 

determined by using the following ratios: milk yield/DMI, ECM/DMI, and FCM/DMI. 

 

Methane and carbon dioxide measurements 

Expired CH4 and CO2 were measured using a portable automated gas 

quantification system (GreenFeed; C-lock, Rapid City, SD). The gas quantification 

system was mounted on a trailer and moved to each new paddock location with the cows. 

The cows were identified with radio frequency identification tags to permit access to the 

unit; 18 cows used the system and all recorded measurements for at least one month. The 

unit was set for 4 daily visits with alfalfa pellets (Table 5) being dispensed a maximum of 

5 times per visit (50 g/dispense).  

 

Collection of covariate period samples 

One week prior to the start of the study, selected covariate samples were 

collected. These samples included milk, blood, urine, and feces. Dry matter intake of 

TMR was also recorded. The covariate samples were analyzed according to the same 

procedures detailed above and were used in statistical analysis of most of the data sets.  

 

Calculations 

Nitrogen excretion was calculated as total manure N excretion as the sum of fecal 

N and urinary N. Creatinine concentration was calculated using one mean daily creatinine 

excretion rate (29 mg/kg of BW per d) according to Valadares et al. (1999): BW × 29 ÷ 
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creatinine concentration (mg/L). Total purine derivative (PD) excretion was calculated 

according to Chizzotti et al. (2008) as: PD:creatinine (mmol/L) × creatinine excretion 

(mmol/d), where PD is the sum of the concentration of allantoin and uric acid (mmol/L). 

Temperature-humidity index (THI) was calculated according to Dikmen and Hansen 

(2009): (1.8 × td) – [(0.55 – 0.0055 × RH)(1.8 × td – 26.80)], where td is the dry bulb 

temperature in °C and RH is the relative percent humidity.  

 

Income over feed cost analysis 

Income over feed cost was calculated by using the actual milk price to calculate 

milk income and subtracting the feed cost to determine IOFC per cow/d. Actual data 

obtained from farm records for the time period of the experiment was used to calculate 

IOFC. Actual data obtained from farm prices included: milk price receipts, grain mix 

costs, ground flaxseed costs, and molasses costs (Table 12). The price of home-grown 

forages (baleage and pasture) were obtained from the Penn State Feed Price List (Ishler, 

2013).  

 

Statistical models 

Covariate data and data collected in June from the cow that died in July remained 

in the model and the last 3 months of the experiment were entered as missing values. 

Data collected in July was used to establish covariate values for the replacement cow and 

data collected in the last 2 months of the experiment were used as experimental results. 

Data for milk components and blood parameters were analyzed using the REPEATED 
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procedure of SAS 9.3 (2010) according to the following model to determine if day was 

significant;  

Yijklp = µ + Bi + Tj + Mk + Dl + MDkl + KCijklp + Eijklp  

Where:  

Yijklp = is the dependent variable 

µ = overall mean 

Bi = is the fixed effect of the i
th
 block; i = 1…10 

Tj = is the fixed effect of the j
th
 treatment; j = 1…2 

Mk = is the fixed effect of the k
th
 month; k = 1…4   

Dl = is the fixed effect of the l
th

 day; l = 1…2 

MDkl = is the fixed effect of the interaction between the k
th
 month and the l

th
 day 

K = is the regression coefficient of the covariate C 

Cijklp = is the value of the covariate variable for the p
th

 cow within the i
th
 block 

within the l
th

 day of the j
th
 treatment; p = 1…20 

Eijklp = is the random residual ~N(0, σ
2

e) 

In this model, the random effect of cow was used as the error term for the effect 

of treatment.  Degrees of freedom were calculated using the Kenward-Roger option of 

MIXED procedure (SAS, 2010).  Significant treatment levels were noted at P ≤ 0.05 

while 0.05 < P ≤ 0.10 was declared as a trend. 

Data were analyzed for effect of block, which was not significant and removed 

from the final model.  Day was not significant for any milk or blood parameters and the 

means for the 2 d were calculated. Milk, blood, urine, ruminal VFA, and DMI data were 
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analyzed using the PROC MIXED procedure of SAS 9.3 (2010) according to the 

following model:  

Yijk = µ + Li + Mj + L × Mij + KCijk + Eijk 

Where:  

Yijk = is the dependent variable 

µ = overall mean 

Li = is the fixed effect of the i
th
 treatment; i = 1…2 

Mj = is the fixed effect of the j
th

 month; j = 1…4 

L × Mij = is the interaction between the i
th

 treatment and the j
th
 month 

K = is the regression coefficient of the covariate C 

Cijk = is the value of the covariate variable for the l
th
 cow within the k

th
 treatment; 

l = 1…20 

Eijk = is the random residual ~N(0, σ
2

e)  

In this model the random effect of cow nested within treatment was used as the 

error term for the effect of treatment. Degrees of freedom were calculated using the 

Kenward-Roger option of MIXED procedure (SAS, 2010). Least square means were 

determined for treatments. The pdiff option of LSM was used to determine differences 

between treatments and months. Significant levels were noted at P ≤ 0.05 while 0.05 < P 

≤ 0.10 was declared a trend.   

The PROC MIXED procedure of SAS 9.3 (2010) was selected because the data 

set contains fixed- and random-effects parameters. In addition, the PROC MIXED 

procedure allows for evaluation of several covariance structures (ie.; compound 

symmetry, unstructured, autoregressive and etc.) to determine the one best fitted to the 
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data as well as inclusion of blocks and the ability to handle unbalanced data as seen in 

this data set where several values were missing.   
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RESULTS 

 

Weather data 

Weather data was collected from the Portsmouth International Airport, 

Portsmouth, NH. The average daily temperature throughout the study was 20.0°C, and 

the average low and average high temperatures were 14.9°C and 25.4°C, respectively. 

The average temperatures for June, July, August, and September were 20.1, 22.7, 20.5, 

and 16.8°C, respectively. The average THI throughout the study was 66.9 and the 

average THI for June, July, August, and September was 67.0, 71.2, 67.2, and 62.0, 

respectively. The average daily precipitation throughout the study was 4 mm and the total 

precipitation was 456 mm.  

 

Nutrient composition 

The ingredient composition of the diet is detailed in Table 1 and the ingredient 

composition of the grain mixes is shown in Table 2. The chemical composition of the 

feeds is listed in Table 3 and the chemical composition of the pasture as well as pasture 

management data are listed in Table 4. The NRC (2001) evaluation of the diet is 

presented in Table 5. The NEL supplied by the 0 and 10% GFLAX diets was 26.4 and 

28.4 Mcal/d, respectively (Table 5). The FA composition of the feeds is listed in Table 6.  

 

Production and nutrient digestibility 

Total dry matter intake, milk yield, and milk component yields and concentrations 

were not affected by GFLAX supplementation (Table 7). Similarly, ECM and 4% FCM 

were not affected by dietary treatment (Table 7). A trend for increased milk urea N 
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(MUN) (P = 0.10) was noted for cows on the 0% GFLAX diet. Feed efficiencies did not 

differ between treatments (Table 7). There were no differences in somatic cell score 

(SCS), BW, BCS, plasma NEFA, or serum cortisol in the 2 treatments (Table 7). Plasma 

urea N was higher (P = 0.01) in cows on the 10% GFLAX diet.  

Differences among months were observed for total DMI, milk yield, and milk 

protein and lactose concentrations (Table 7). Differences among months were also 

reported for milk protein yield. In addition, MUN, feed efficiency, SCS, BW, BCS, 

plasma urea nitrogen (PUN), and plasma NEFA showed differences among months. The 

only variable with a significant treatment × month interaction was MUN.  

Apparent total tract nutrient digestibility, calculated using chromium oxide and 

IVDMD are presented in Table 8. Total DMI was not different between the 2 treatment 

groups, however, a trend (P = 0.07) for higher pasture intake was observed in the 10% 

GFLAX diet. Dry matter digestibility was significantly lower (P = 0.01) in cows fed the 

10% GFLAX diet. Organic matter (P = 0.01) and CP (P = 0.05) digestibility were 

significantly lower in the 0% GFLAX diet. A trend (P = 0.10) for higher NDF 

digestibility was observed with the 10% GFLAX treatment. All digestibility parameters 

(Table 8) varied due to effects of month and treatment × month interactions were 

observed for OM (P < 0.05) and ADF (P = 0.05) digestibility.   

Apparent total tract nutrient digestibility, calculated using chromium oxide and 

AIA, are presented in Table 8. Total DMI did not differ between the 2 treatment groups, 

however, a trend (P = 0.07) for higher pasture intake was detected with the 10% GFLAX 

treatment. Dry matter and ADF digestibility were higher (P < 0.001) in the 0% GFLAX 

diet.  Organic matter digestibility was lower (P < 0.001) on the 0% GFLAX treatment. 
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Differences due to month were noted for all factors (Table 8) and a treatment × month 

interaction was observed for OM digestibility.  

Apparent total tract nutrient digestibility, calculated using chromium oxide and 

iADF are listed in Table 8. Total DMI was not different between treatment groups and a 

trend (P = 0.07) for higher pasture intake was observed in the 10% GFLAX diet. Organic 

matter (P < 0.01), NDF (P = 0.05), and CP (P < 0.01) digestibility were higher in the 

10% GFLAX diet. A trend (P = 0.07) for higher DM digestibility was observed in the 0% 

GFLAX treatment group. Differences due to month were noted for all factors. Treatment 

× month interactions were observed for OM (P < 0.05) and CP (P < 0.05) digestibility.  

 

Ruminal pH and volatile fatty acids  

Ruminal pH and VFA results are presented in Table 9. No effects of diet on 

ruminal pH were detected. The ratios of acetic to propionic acid and acetic+butyric to 

propionic acid were both higher (P < 0.01) in the 0% GFLAX diet. Diet did not affect 

individual or total VFA concentrations as shown in Table 9. When expressed as a 

proportion of total VFA concentration, acetic acid showed a trend (P = 0.06) for 

increased proportion, and butyric acid was increased (P = 0.02) in the 0% GFLAX diet. 

The proportion of propionic acid was higher (P < 0.01) in the ruminal fluid of cows on 

the 10% GFLAX diet. Effects of month were observed for all ruminal parameters with 

the exception of acetic acid concentration which demonstrated a trend (P = 0.07) for 

monthly flucuations. No interactions of treatment × month were noted for ruminal pH or 

VFA concentrations or proportions.  
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Enteric methane production  

Enteric CH4 and CO2 production were not affected by dietary treatment with 

GFLAX (Table 9). An effect of month was noted for both parameters, however, no 

interaction of treatment × month was detected.  

 

Nitrogen intake and excretion 

Nitrogen intake (Table 10) was higher (P = 0.01), 470 vs. 446 g/d, in 10% 

GFLAX diets compared to 0% GFLAX because of the higher CP found in GFLAX 

compared to corn/soybean control treatment. Urinary creatinine concentration 

demonstrated a trend (P = 0.08) for higher excretion in the 10% GFLAX diet. Excretion 

of purine derivatives was not affected by dietary inclusion of GFLAX (Table 10). Urea N 

excretion was higher (P = 0.03) for cows on the 10% GFLAX diet, however, no other N 

excretion parameters were affected by dietary treatment. Differences due to month were 

observed for N intake, urinary concentration and excretion of purine derivatives, urinary 

excretion of N, urea N, and NH4. Increased N intake during July and September is 

correlated to higher legume content of pasture herbage which translated to higher herbage 

CP content. Higher N intake due to increased herbage CP is supported by increased N 

excretion parameters during July and September. No treatment × month interactions were 

observed for any of the parameters.  

 

Milk fatty acid concentration 

Milk FA proportions are presented in Table 11. Excluding C4:0, iso C14:0, cis-9, 

trans-11 CLA, C22:0, and total PUFA, differences in milk fat proportions were detected 
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for all FA measured. Short- and medium-chain FA (< C16:0), odd-branched chain FA 

(OBCFA), saturated FA (SFA), and n-6 concentrations decreased with GFLAX 

supplementation. Long-chain FA (with the exception of C18:2, n-6; C18:3, n-6; C20:2, 

C20:3, n-6; C20:4, n-6, which decreased), MUFA, linolenic acid, and n-3 showed  

increases in concentration with the 10% GFLAX treatment. Trends for decreases in 

C15:0, iso C15:0, C16:0, and increases in trans-11 C18:1 due to GFLAX treatment were 

observed.  

 

Income over feed cost 

Income over feed cost analysis results are shown in Table 12. Cows on the 0% 

GFLAX diet had a higher IOFC ($5.53/cow/d) compared with cows fed the 10% GFLAX 

($4.61/cow/d).  
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DICUSSION 

 

Dry matter intake, milk production and milk composition  

Pasture intake was higher (P = 0.01) when estimated by difference and showed a 

trend (P = 0.07) for higher estimated pasture intake, as estimated with all three methods 

(IVDMD, AIA, and iADF) using chromium oxide, when cows received the 10% GFLAX 

diet. However, this did not translate to a difference in total DMI because cows on the 

control diet consumed more (P = 0.01) DM as TMR. Although GFLAX was included in 

the diet at a level of 10% of diet DM, total DMI was not affected by supplementation. 

The similar DMI may be attributed to similar NEL concentration values and positive 

energy balance in both diets indicating that energy needs were met for cows regardless of 

dietary treatment. Moreover, the NRC (2001) predicted DMI was also similar.  

Gonthier et al. (2004) supplemented GFLAX to confined lactating dairy cows at a 

similar level (12.7% of diet DM) to that used in the present experiment and did not 

observe a decrease in DMI compared with the control treatment. Extruded flaxseed, fed 

at 9% of dietary DM to lactating dairy cows in combination with a high forage basal diet 

(60% of DM) did not decrease DMI (Neveu et al., 2013).  

Resende et al. (2014, unpublished data) observed a significant linear decrease in 

DMI in dairy cows fed incremental amounts (0, 5, 10, or 15% of diet DM) of GFLAX. 

However, the difference in total DMI (-1.1 kg/d) between the 0 and 10% GFLAX diet 

was relatively small. Decreases in DMI (-1.5 kg/d) were also reported by Lerch et al. 

(2012a) when lactating cows consuming grass-based diets during the winter and grazing 

during the summer were supplemented with extruded flaxseed for 2 consecutive 

lactations. Throughout the literature, variations in DMI have been reported and may be 
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attributed to flaxseed processing, basal diet composition, level of inclusion in the diet, 

and forage-to-concentrate ratio. 

Milk production as well as milk component yields and concentrations were not 

affected by feeding GFLAX. These results are similar to those of Gonthier et al. (2004) in 

which a non-significant decrease of 1.8 kg milk/d was observed when cows were 

supplemented with GFLAX, micronized flaxseed, or extruded flaxseed at 12.6% of diet 

DM compared with the control diet. In addition, Gonthier et al. (2004) did not observe 

any effects of flaxseed supplementation on milk fat, protein, or lactose concentrations. 

Petit and Côrtes (2010) included GFLAX at 7.2% of dietary DM for lactating cattle fed 

TMR and no differences due to diet were observed for milk production or milk 

components. The lack of change in milk production in the present study is likely 

explained by similar DMI across treatments.   

Energy corrected milk (P = 0.23) and 4% FCM (P = 0.23) in cows receiving 0 or 

10% GFLAX averaged 21.2 vs. 19.9 kg/d and 19.5 vs. 18.3 kg/d, respectively. Feed 

efficiencies, calculated based on milk yield, ECM, and 4% FCM were not affected by the 

dietary treatments. These results can be explained by similar DMI, milk production, and 

yields and concentrations of milk components between diets.  

Differences in milk production as well as some milk component concentrations 

and milk component yields across months were observed. Milk production was highest in 

August followed by June, July, and September and averaged 19.25, 18.29, 17.44 and 

16.50 kg/d, respectively. Higher milk production in August was likely due to higher 

DMI. In addition, August pasture allowance was higher by at least 11 kg DM/cow/d than 

all other months and increased pasture allowance is correlated with higher DMI and 
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higher milk production (Stockdale, 2000; Bargo et al., 2003). Decreased DMI in June 

was attributed to lower quality baleage, which averaged 8.5% lower CP, 5.3% higher 

ADF, and 8.5% higher NDF than the remaining months. In addition, pasture allowance 

was lower in June than in August and September. Despite the lower DMI observed in 

June, milk production was higher in June than in July and September. This can partially 

be explained by the cows being earlier in lactation than the following months. Pasture 

herbage allowance was very low in July compared to the other three months and may also 

have contributed to the lower milk production. Another contributing factor for higher 

milk production in both August and June was a lower pasture CP concentration and a 

corresponding decrease in PUN concentrations was observed. In July and September, 

pasture samples collected for botanical composition indicated that 23.5 and 17.1% of 

pasture was composed by legumes. The high legume content directly translated to a 

higher pasture CP of 21.3 and 22.7% for July and September, respectively. Higher CP in 

the pasture coupled with higher CP baleage (average +8.5% CP compared to June) may 

have led to inefficient rumen microbial utilization of CP (Colmenero and Broderick, 

2006) and generated high levels of blood urea (Hodgson and Brookes, 1999). 

Significantly higher concentrations of MUN and PUN during July and September support 

this hypothesis. Excess rumen degradable protein is converted to ammonia, which is 

absorbed through the rumen wall and finally converted to urea in the liver (NRC, 2001). 

It is noteworthy that ureagenesis is an energy-costly reaction (NRC, 2001) that has a 

potential cost of 1 ATP for conversion of each N atom to urea (Dijkstra et al., 2005). In 

addition, the cost of protein deamination to provide an extra N atom for urea formation, 
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while not directly involved in the reaction, must be taken into account (Dijkstra et al., 

2005).  

Milk yield efficiency was increased (P <0.001) in June and August compared to 

the other two months. Higher efficiency in August was likely due to high milk production 

and similar DMI to July and September. Higher efficiency in June may be attributed to 

lower DMI (P <0.01) than the other three months combined with the second highest milk 

production. Although milk fat yield did not differ among months, 4% FCM efficiency 

decreased throughout the study. The highest efficiency observed in June is likely due to 

low DMI with relatively high milk production. As the study progresses, DMI remains the 

same between the months of July to September, however, milk production fluctuates, 

leading to the differences in 4% FCM efficiency.  

 

Blood parameters, BW, and BCS  

Plasma NEFA, BW, BCS and serum cortisol were not affected by dietary 

treatment.  The similar plasma NEFA concentrations, BW, and BCS between dietary 

treatments in the current study can be explained by similar NEL values and similar DMI 

between treatments. Petit and Côrtes (2010) observed similar results when lactating cows 

receiving TMR were supplemented with GFLAX (7.2% of diet DM). Lerch et al. (2012a) 

fed extruded flaxseed (+2.5 to 3.0% additional oil in ration DM compared with control 

diet) to cows on grass-based diets for 2 consecutive lactations and reported that dietary 

treatment did not affect BW, BCS, or plasma NEFA concentrations between cows 

receiving extruded flaxseed or the control diet. Gonthier et al. (2005) observed similar 

DMI with increased plasma NEFA concentrations in lactating cows supplemented with 
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ground, micronized, or extruded flaxseed (12.6% of diet DM) compared with those in the 

control diet. The authors suggested the increase in plasma NEFA was due to increased 

dietary FA intake. In the present study, ether extract was higher (+2.6% of DM) in the 

10% GFLAX treatment, however, it did not impact plasma NEFA concentration as 

suggested by Gonthier et al. (2005).  

 

Apparent total tract digestibility of nutrients  

Apparent total tract DM digestibility was significantly lower for cows on the 10% 

GFLAX diets when calculated using chromium oxide and IVDMD or AIA and 

demonstrated a trend to be lower when calculated using chromium oxide and iADF. Only 

AIA methodology indicated decreased ADF digestibility in the 10% GFLAX diets. 

Decreased apparent total tract nutrient DM and ADF digestibility suggests that increased 

fat in the diet may have marginally affected ruminal function. Maia et al. (2007) 

evaluated metabolism of PUFA on the function of ruminal microbes in vitro. Growth was 

inhibited in 5 of the 26 bacterial species studied when linoleic acid was dosed at 50 

µg/mL and damage to cell membranes was noted in all species. When linolenic acid was 

added to 24 different species, 11 demonstrated decreased growth. Linolenic acid was 

shown to have higher toxicity to cell growth than linoleic acid (Maia et al., 2007). 

Decreased DM digestibility with flaxseed supplementation may be attributed to the 

influences of increased fat (+ 2.6% of DM) in the flaxseed treatment and higher levels of 

linolenic acid. Total fat in the diet was slightly higher than commonly recommended in 

the diets of dairy cows. The high level of PUFA with the 10% GFLAX in the current 
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study may have impaired bacterial growth and contributed to reduced ruminal 

fermentation.  

All 3 methodologies indicated that OM digestibility was significantly higher when 

cows received the 10% GFLAX diet. Two methods (IVDMD; P = 0.10 and iADF; P = 

0.05) indicated that NDF digestibility was higher in the 10% GFLAX treatment. Both 

IVDMD (P = 0.05) and iADF (P = 0.01) indicated higher CP digestibility in cows 

receiving the 10% GFLAX treatment. The trend for higher pasture intake may partially 

explain the increased NDF and CP digestibility with the 10% GLFAX treatment. The 

average concentration of pasture NDF and ADF was lower while that of pasture CP was 

higher than the NDF, ADF, and CP of the baleage.  

Similar to the results of the current study, Gonthier et al. (2004) observed 

increases in total tract OM digestibility when lactating cows consuming TMR were 

supplemented with GFLAX (12.6% of DM). In agreement with the IVDMD and iADF 

methodology used in the current study, higher total tract NDF and CP digestibility was 

observed for cows receiving flaxseed compared to those in the control group (Gonthier et 

al., 2004). Although total tract ADF digestibility was not affected by treatment, ruminal 

ADF digestibility was decreased by flaxseed supplementation in the study of Gonthier et 

al. (2004).   

Doreau et al. (2009) did not observe differences in apparent total tract digestibility 

of DM, OM, NDF, or ADF when various forms of flaxseed (rolled, extruded, oil) were 

supplemented to dry cows in confinement. However, Martin et al. (2008) noted decreases 

in OM and fiber digestibility when the control diet was compared with diets 

supplemented with various forms of flaxseed (whole, extruded, oil).  
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Scholljegerdes and Kronberg (2010) fed GFLAX (0.18% of BW) or cracked 

corn/soybean meal (0.32% of BW) to beef cattle grazing summer native range in the 

northern Great Plains and observed significantly lower total tract apparent digestibility of 

OM and NDF consuming GFLAX than cattle consuming the corn-based supplement. 

Continuous culture work (Soder et al., 2012) also indicates that supplementation with 

GFLAX at 0, 5, 10, or 15% of the diet, linearly decreased total tract DM, OM, and NDF 

apparent digestibility. Conversely, when GFLAX, canola, or sunflower seed were 

supplemented at 10% of diet DM with an herbage-based diet in continuous culture (Soder 

et al., 2013) apparent digestibility of DM, OM, NDF, and CP were not significantly 

different between diets.  

A final factor to be considered in the interpretation of apparent total tract 

digestibility of nutrients is that each method of digestibility estimation includes 

challenges that can lead to disagreement among methodologies. The variation across 

methods in the current study illustrates that apparent total tract digestibility can be largely 

influenced by the chosen methodology and conclusions should be drawn with caution. 

Based on the apparent total tract digestibility reported in the current study and others 

reported in the literature, the form of flaxseed, the amount supplied, and the basal diet 

affect the digestibility of the diet.  

 

Ruminal pH and volatile fatty acids 

Lodge-Ivey et al. (2009) compared the collection method on ruminal sample 

characteristics using an oral lavage tube and ruminal cannula with cattle and sheep. The 

authors noted that after technicians gain experience, saliva contamination can be 
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eliminated and results indicated that total VFA, molar proportions of individual VFA, and 

ruminal ammonia concentrations were not affected by sampling method. Ruminal pH in 

the current study was not affected by dietary treatment, however, these results should be 

interpreted with caution. Although an attempt to minimize saliva contamination during 

collection was made, saliva contamination was noted in at least two samples.   

A shift for lower lipogenic to glucogenic ratios of VFA production was observed 

for cows on the 10% GFLAX diet. This shift may be attributed to the previously 

mentioned toxicity of PUFA on rumen microbial species (Maia et al., 2007). Of the 25 

species dosed with linoleic and linolenic acid in culture, growth of 2 cellulolytic 

fermenter species and 3 butyrate-producing species was inhibited. Inhibitory effects of 

PUFA in the 10% GFLAX treatment on the ruminal microbes may have led to decreased 

digestion of fiber. Acetic and butyric acid (both lipogenic building blocks in the 

mammary gland) are 2 main products of fiber digestion via cellulolytic fermenting 

bacterial species. The work of Maia et al. (2007) also supports the trend for decreased 

acetic and increased propionic acid proportions in the 10% GFLAX treatment.  

The results of the current study agree with Gonthier et al. (2004) in which ruminal 

pH and total VFA were not affected by dietary treatments of ground, micronized, or 

extruded flaxseed fed at 12.7% of dietary DM. The ratio of acetic to propionic acid was 

significantly higher in the control diet (no flaxseed) than in the 3 diets containing 

flaxseed, similar to the results of the current study. Also similar to the current study, cows 

receiving the flaxseed supplemented diets had higher proportions of propionic acid and 

lower proportions of acetic acid than cows on the control diet. However, the authors 

reported that the changes in molar proportions of acetic and propionic acid may have 
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been due to higher forage intake (+8% of DM) in the control diet, rather than the flaxseed 

supplementation. The effects of GFLAX supplementation on ruminal microbes in relation 

to the current study is further supported by the work of Soder et al. (2012). When 

GFLAX was fed at 0, 5, 10, or 15% in continuous culture fermenters, the molar 

proportion of propionic acid increased linearly. The ratio of acetic to propionic acid and 

the molar proportion of butyric acid also decreased linearly (Soder et al., 2012).  

 

Methane and carbon dioxide production 

Enteric CH4 and CO2 production were not affected by dietary treatment. Enteric 

CH4, expressed per unit of DMI or OM intake, was not affected by supplementation with 

GFLAX. All of the factors were affected by month, likely due to changes in pasture 

composition and maturity, baleage quality, and fluctuations in DMI. One possible 

explanation for the lack of effect on greenhouse gas emissions due to GFLAX 

supplementation could be the highly digestible nature of the pasture consumed. One 

proposed mechanism of action for oilseed CH4 mitigation is through toxicity to 

cellulolytic ruminal bacteria and inhibition of fiber digestibility (Beauchemin et al., 

2009). However, in the present study, fiber digestibility was not compromised by 

GFLAX supplementation. Another proposed mechanism of action is by decreasing DMI 

with a combined increase in milk production to increase efficiency (Hristov et al., 2013). 

However, feed efficiency was not increased with GFLAX supplementation in this study. 

Intensive management of pastures to maintain forage immaturity and decrease fiber 

content can be utilized as a CH4 mitigation technique (Hristov et al., 2013). Cows in the 
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present study were maintained on intensively managed pastures with an approximate 

rotation schedule of 3 to 4 wk, which maintained pasture at the desired maturity level.  

The results of this study are in contrast to those of Resende et al. (2013) in which 

GFLAX was fed at 0, 5, 10, or 15% of the diet DM and a linear reduction in both DMI 

and enteric CH4 was observed. An 18% decrease in enteric CH4 was observed by 

Beauchemin et al. (2009) when dairy cows fed a TMR diet supplemented with crushed 

flaxseed was compared with the control diet. Martin et al. (2008) also observed decreases 

in CH4 production when dairy cows consuming TMR diets supplemented with various 

forms of flaxseed were compared with a control diet. Results of the Martin et al. (2008) 

study indicated that crude flaxseed, extruded flaxseed, and flaxseed oil decreased CH4 

emissions by 12, 38, and 64%, respectively, when compared with the control diet. The 

authors suggested that the reduction was due to reduced NDF digestibility which 

disagrees with the results of the current study in which 10% GFLAX increased NDF 

digestibility. Also contrary to the results of the current study, a linear reduction in CH4 

production was observed when GFLAX was fed to fermenters in continuous culture at 0, 

5, 10, or 15% of diet DM (Soder et al., 2012).  

Jiao et al. (2014) did not observe differences in daily CH4 emissions when varying 

levels of a corn/wheat/soybean meal supplement was provided to lactating dairy cows on 

pasture. However, decreases in CH4/DMI and CH4/ECM were observed during at least 1 

of the 4 treatment periods when levels of supplement in the diet were increased. These 

results indicate that although concentrate supplementation can reduce CH4 emissions 

during the grazing season, the results may not be consistent throughout the study and can 
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be influenced by similar factors observed in the current study such as stage of lactation, 

pasture species composition, and weather conditions.  

O’Neill et al. (2012) observed that DMI differences between grazing groups can 

lead to differences in CH4 production. Lactating dairy cows consuming a pTMR on a low 

pasture allowance emitted the highest levels of CH4 compared with cows on either low or 

high pasture allowance. The cows consuming the pTMR had higher DMI than those on 

pasture-only. Similar DMI between treatment groups in the current study helps to explain 

the lack of difference in CH4 production.  

  

Nitrogen metabolism  

Cows on 10% GFLAX treatment had higher N intake and urea N excretion than 

those on the 0% GFLAX treatment. A trend for higher urinary creatinine concentration 

was observed for cows on the 10% GFLAX diet but diet did not affect any other 

measured N metabolism parameters, including purine derivative excretion, N excretion, 

and NH4 excretion. These results suggest that cows receiving 10% GFLAX may be more 

efficient in N utilization due to higher CP apparent total tract digestibility than cows on 

0% GFLAX. However, higher PUN values and a trend for higher ruminal NH4 

concentration for the 10% GFLAX treatment group contradict the hypothesis of 

improved N efficiency. Altogether, these results indicate that N was shifted from feces to 

urine (in the form of urea N) in cows fed 10% GFLAX.  

Rego et al. (2008) supplemented grazing dairy cows with a corn/soybean meal 

mixture and diets supplemented with the corn/soybean meal mixture resulted in higher 

PUN when compared with the diets supplemented with the corn-only concentrate, which 
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indicates inefficient capture of pasture N. This is similar to the results of the current study 

in which cows on the 10% GFLAX treatment had higher N intake due to higher CP 

concentration of GFLAX (+ 6.4% of DM) which caused elevated PUN. In addition, the 

0% GFLAX treatment likely provided higher levels of starch facilitating better ruminal 

synchronization and utilization of available CP.  

Corn-based supplementation to dairy cows grazing at 2 pasture allowances (high 

and low) can lead to more efficient N utilization as in Bargo et al. (2002). Concentrate 

supplementation provided increased levels of starch and decreased PUN at both pasture 

allowances, indicating more efficient N utilization. Additionally, allantoin and creatinine 

were increased by concentrate supplementation at both pasture allowances and indicated 

that concentrate supplementation led to more rumen microbial protein supply to the 

intestines. In the present study, cows on the 0% GFLAX diet demonstrated more efficient 

N utilization, similar to the results of Bargo et al. (2002), that can be attributed to more 

fermentable energy from the corn/soy mix.  

 

Milk fatty acid composition 

Ground flaxseed supplementation during the grazing season led to significantly 

decreased proportions of short- and medium-chain FA (<C16:0). This was supported by 

the ruminal VFA data that showed decreased proportions of acetic and butyric acid, the 

building blocks of de novo milk FA synthesis in the mammary gland. Significant 

increases in MUFA due to GFLAX supplementation were also observed. A portion of the 

increase in MUFA may be attributed to increased amounts of fat in the diet from the 10% 

GFLAX treatment. Scholljegerdes and Kronberg (2010) observed increased intestinal 
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flow of 10 out of 28 identified FA including MUFA, linolenic acid, and CLA, when 

grazing beef heifers were supplemented with GFLAX. Although the milk proportion of 

PUFA was not increased by GFLAX supplementation in the current study, the 

proportions are similar to those of other grazing studies utilizing various forms of 

supplementation including grass silage, corn, soybean meal, and extruded flaxseed (Rego 

et al., 2008; Lerch et al., 2012b).  

The observed results of Lerch et al. (2012b) support the proposed mechanism that 

increased duodenal flow of ruminal biohydrogenation intermediates by supplying 

increased levels of dietary PUFA can modify milk FA. Lerch et al. (2012b) fed extruded 

flaxseed for 2 consecutive lactations. In the first year, milk SFA decreased and MUFA  

increased by extruded flaxseed supplementation. During the grazing period, linolenic acid 

and C20:5 n-3, were also increased by extruded flaxseed supplementation, similar to 

differences observed in the current study. 

Mohammed et al. (2011) observed similar results when crushed flaxseed, 

sunflower, or canola was included the TMR of dairy cows. Saturated FA proportions 

were lower in oilseed supplemented diets than the control (calcium salts of long-chain 

FA) and MUFA were higher in the diet supplemented with crushed flaxseed compared to 

the control. 

Vaccenic acid (i.e., trans-11 C18:1), which is a precursor to cis-9, trans-11 CLA, 

showed a trend for increased proportions in the 10% GFLAX treatment, however, it did 

not translate to an increase in cis-9, trans-11 CLA. When 26 strains of bacteria were 

dosed with linoleic acid in culture, 11 strains metabolized the FA and demonstrated 
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accumulations of vaccenic acid (Maia et al., 2007) and linolenic acid was metabolized by 

mostly the same species.  

Lerch et al. (2012c) reported results similar to the current study in which CLA 

was not increased by flaxseed supplementation during the grazing period. It was noted by 

Lerch et al. (2012c) that the control diet was relatively rich in PUFA and starch and both 

components have been associated with accumulation of trans-9, cis-11 CLA, trans-10, 

cis-12 CLA, and trans C18:1 isomers in the rumen. Additionally, the changes in FA 

composition due to flaxseed supplementation were more notable during the indoor 

periods rather than the outdoor periods (Lerch et al., 2012c). The factors in the current 

study; a control diet relatively high in PUFA and starch, as well as reduced milk FA 

differences while on pasture, may have contributed to the similar milk CLA 

concentrations between diets of the current study.  

When the grazing period of the second year (Lerch et al., 2012b) was compared 

with the first, it was found that extruded flaxseed supplementation had a reduced effect 

on OBCFA and total trans C18:1 concentrations. However, n-3 concentrations were 

increased to a greater extent by extruded flaxseed supplementation in the second grazing 

season than they had been in the first. The increase in n-3 FA observed by Lerch et al. 

(2012b) was similar to that found in the current study in which GFLAX supplementation 

increased n-3 and decreased n-6 FA proportion in milk fat.  

 

Income over feed cost  

Cows on the 0% GFLAX diet had a higher IOFC than those on the 10% GFLAX 

diet, $5.53 vs. $4.61, respectively. In addition, total milk income between the 2 diets was 
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similar, but slightly less for cows on the 10% GFLAX diet. Under the conditions of this 

study, the 10% GFLAX diet appears to be the less favorable option, however, if 

producers are offered a premium for enriched milk FA, it may contribute to offsetting the 

price differential. If Organic Valley were to offer a premium similar to that currently 

being offered for “100% grassmilk,” $5/cwt higher than conventional organic milk, IOFC 

for cows on the 10% GFLAX diet would increase to $6.57/cow/d and make feeding 

GLFAX more favorable. Under the conditions of this study, any premium over $2.38/cwt 

would create a higher IOFC in the 10% GFLAX diet.  
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CONCLUSIONS 

Ground flaxseed, supplemented at 10% of diet DM during the grazing season did 

not decrease DMI, milk production, milk component yields or concentrations. Plasma 

NEFA, BW, and BCS were not affected by GFLAX supplementation, indicating that 

GFLAX is an acceptable supplement for maintaining BW and BCS under grazing 

management systems. Apparent total tract digestibility results indicate that 10% GFLAX 

did decrease DM digestibility, however, OM and NDF digestibility were increased. 

Supplementation altered ruminal VFA proportions of propionic and butyric acid, likely 

by effects of PUFA on ruminal bacteria. Significantly higher N intake, PUN 

concentration, and urea N excretion by cows on the 10% GFLAX treatment indicate that 

reformulating the diet throughout the grazing season may be needed to improve N 

efficiency in cows fed GFLAX. Fatty acid composition was successfully modified by 

GFLAX supplementation, decreasing SFA and n-6 FA and increasing n-3 FA. This offers 

a promising method of manipulating milk parameters to provide more health benefits to 

humans in each serving of dairy. More research is needed to determine if consumer 

demand is present to create a “designer-milk” via flaxseed supplementation. Additional 

research with varying levels of GFLAX while on pasture would be useful in determining 

the ideal feeding rate that correlates optimum milk production with optimum FA 

composition. 
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Table 1. Ingredient composition of the diets.  

 Diet (% GFLAX
1
) 

Ingredient (% of DM) 0 10 

 % of DM 

Pasture, mixed mostly grass 40.00 40.00 

Baleage, mixed mostly grass 25.00 25.00 

Ground flaxseed 0.00 10.00 

Ground corn 23.10 16.20 

Roasted soybeans 2.50 2.50 

Liquid molasses 1.87 1.87 

Soybean meal (47.5%) 1.70 1.25 

Calcium carbonate 1.15 1.15 

Cane molasses 0.45 0.45 

Redmond salt 0.42 0.42 

Bicarbonate 0.41 0.41 

Trace mineral premix 0.34 0.34 

Magnesium oxide 0.24 0.24 

Magnesium sulfate 0.07 0.07 

Vitamin E 0.06 0.06 

Yeast 0.04 0.04 
1
GFLAX; diets supplemented with ground flaxseed at 0 or  

  10% of diet DM.  
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Table 2. Ingredient composition of grain mixes.  

Ingredient (% of DM) 

Basal 

concentrate 

mix
1 

Corn/soy 

mix
2 

Chromium 

pellet
3 

Alfalfa 

pellets
4 

Alfalfa meal -- -- 4.50 100.00 

Ground corn 71.15 69.45 49.56 -- 

Roasted soybean 10.39 30.55 10.00 -- 

Wheat midds -- -- 15.00 -- 

Barley -- -- 7.75 -- 

Soybean meal (47.5%) 5.37 -- 2.33 -- 

Calcium carbonate 4.54 -- 1.75 -- 

Molasses 2.38 -- 2.38 -- 

Redmond salt 1.64 -- 1.28 -- 

Sodium bicarbonate 1.63 -- 1.60 -- 

Trace mineral premix 1.30 -- -- -- 

Chromium oxide
5 

-- -- 1.10 -- 

Magnesium oxide 0.97 -- 0.45 -- 

Magnesium sulfate 0.26 -- 0.47 -- 

AB20
6 

-- -- 0.60 -- 

Yeast 0.15 -- 0.50 -- 

Vitamin A-D-E premix -- -- 0.32 -- 

CDF TM # 303
7 

-- -- 0.26 -- 

Vitamin E 0.23 -- -- -- 

Selenium -- -- 0.13 -- 
1
Basal concentrate mix was included in the TMR for both 0 and 10% GFLAX diets.  

2
Corn/soy mix was top-dressed as the control treatment.  

3
Chromium pellet (Morrison’s Custom Feeds, Barnet, VT). 

4
Alfalfa pellets (Green Mountain Feeds, Bethel, VT).  

5
Chromium oxide (Cr2O3); (Fisher Scientific, Fair Lawn, NJ).   

6
AB20 is an advanced anti-caking agent and pelleting aid (Phibro Animal Health 

Corporation, Teaneck, NJ).  
7
CDF TM #303 is a trace mineral premix containing Cu, Co, Fe, Zn, and Mn (Morrison’s 

Custom Feeds, Barnet, VT).  
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Table 3. Chemical composition of consumed feeds.  

Item (% DM) TMR
1
 

Corn/soy 

mix
2
 

Ground 

flaxseed 

Chromium 

pellets
3 

Alfalfa 

pellets
4 

Baleage 

Basal 

concentrate 

mix
5 

CP 13.42 ± 2.15 21.72 ± 0.82 28.13 ± 0.38  14.06 ± 0.43 13.38 ± 2.55 14.00 ± 4.34 12.96 ± 0.69 

ADF 24.24 ± 1.34 4.17 ± 0.28 23.81 ± 6.33 6.74 ± 0.44 35.49 ± 2.19 35.13 ± 2.81  4.00 ± 0.60 

NDF 39.37 ± 2.66 10.48 ± 0.58 33.94 ± 5.91 16.38 ± 0.49 50.84 ± 5.03 53.74 ± 7.30 10.63 ± 1.13 

EE 3.42 ± 0.77 5.77 ± 0.22 30.78 ± 2.49 2.27 ± 0.42 2.21 ± 0.43 2.61 ± 0.46 3.37 ± 0.91 

Ash 9.13 ± 0.99 2.96 ± 0.21 3.79 ± 0.31 10.62 ± 0.57 9.64 ± 1.91 6.88 ± 1.44 14.03 ± 0.43 

Ca 1.04 ± 0.12 0.19 ± 0.05 0.30 ± 0.01 1.29 ± 0.02 -- -- -- 

P 0.30 ± 0.04 0.40 ± 0.02 0.57 ± 0.01 0.41 ± 0.02 -- -- -- 

Mg 0.52 ± 0.06 0.20 ± 0.01 0.36 ± 0.01 0.47 ± 0.03 -- -- -- 

K 1.74 ± 0.29 0.98 ± 0.03 0.86 ± 0.01 0.89 ± 0.02 -- -- -- 

S 0.27 ± 0.02 0.19 ± 0.00 0.26 ± 0.01 0.24 ± 0.01 -- -- -- 

Fe, ppm 270 ± 42 92 ± 18 80 ± 8 354 ± 31 -- -- -- 

Zn, ppm 136 ± 4 40 ± 4 55 ± 1 173 ± 80 -- -- -- 

Cu, ppm 27 ± 3 7 ± 1 13 ± 1 20 ± 5 -- -- -- 

Mn, ppm 111 ± 14 24 ± 1 46 ± 1 104 ± 7 -- -- -- 

Cr, ppm 2 ± 1 1 ± 1 2 ± 1 7063 ± 486 -- -- -- 

AIA
6
 0.55 ± 0.12 0.03 ± 0.01 0.09 ± 0.02 1.36 ± 0.13 -- -- -- 

IVDMD
7
, % DM        

48 h -- 84.90 ± 1.22 50.43 ± 1.89 81.37 ± 0.95 55.39 ± 5.53 -- -- 

72 h 74.26 ± 1.05 -- -- -- -- -- -- 
1
TMR is composed of baleage and basal concentrate mix but does not include top-dressed ground flaxseed or corn/soy treatments.  

2
Corn/soy mix was top-dressed as the control treatment.  



 

 

 

9
7
 

3
Chromium pellet (Morrison’s Custom Feeds, Barnet, VT). 

4
Alfalfa pellets (Green Mountain Feeds, Bethel, VT).  

5
Basal concentrate mix was included in the TMR for both 0 and 10% GFLAX diets.  

6
AIA; acid insoluble ash.  

7
IVDMD; in vitro dry matter digestibility was determined using the methods described by Tilley and Terry (1963).  
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Table 4. Pasture management and chemical composition of hand-plucked herbage 

samples.  

 Month 

 June July Aug. Sept. X̅ 

Pasture management      

Pasture allowance, kg DM/cow/d 15.0 10.5 28.4 17.4 17.8 

Area, m
2
/cow/d 70 77 137 121 101 

Pregrazing herbage mass, kg DM/ha 2159 1374 2072 1441 1761 

Postgrazing herbage mass, kg DM/ha 1800 921 1543 1180 1361 

Grass, % of DM 67.3 55.2 58.6 59.7 60.2 

Legume, % of DM 10.5 23.5 14.6 17.1 16.4 

Weed, % of DM 4.6 12.1 6.8 8.9 8.1 

Dead, % of DM 17.6 9.2 20.1 14.3 15.3 

      

Chemical composition       

DM, % of fresh matter 19.12 17.93 26.48 21.89 21.35 

% of DM      

CP 17.65 21.30 17.99 22.70 19.91 

ADF 35.77 28.85 29.70 26.26 30.15 

NDF 59.32 46.67 48.76 45.43 50.05 

EE 3.48 3.98 3.68 4.10 3.81 

Ash 8.90 8.22 7.42 8.01 8.14 

Ca 0.41 0.76 0.64 0.69 0.63 

P 0.33 0.41 0.36 0.35 0.36 

Mg 0.21 0.33 0.31 0.30 0.29 

K 2.72 2.29 2.21 2.27 2.37 

S 0.22 0.25 0.22 0.25 0.24 

Fe, ppm 153 93 85 86 104 

Zn, ppm 33 34 29 32 32 

Cu, ppm 8 11 8 9 9 

Mn, ppm 76 48 51 45 55 

Cr, ppm 0.95 0.84 0.47 1.23 0.87 

AIA
1 

1.44 0.79 0.90 1.03 1.04 

IVDMD
2
, % DMD (72 h) 70.37 73.25 71.8 74.7 72.53 

NEL
3
, Mcal/kg DM 1.51 1.62 1.58 1.64 1.59 

1
AIA; acid insoluble ash.  

2
IVDMD; in vitro dry matter digestibility was determined using the methods 

described by Tilley and Terry (1963).  
3
NEL; net energy of lactation was estimated using the NRC model (NRC, 2001) 

and chemical composition of hand-plucked herbage samples. 
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Table 5. NRC (2001) evaluation of consumed diets.  

 Diet (% of GFLAX
1
) 

Item
2 

0 10 

NDF, % DM 37.6 39.2 

Forage NDF, % DM 34.4 33.5 

ADF, % DM 22.8 24.3 

NFC, % DM 37.0 31.8 

ME
3
, Mcal/kg DM 2.50 2.62 

EE, % DM 3.9 6.5 

DCAD
4
, mEQ/kg 275 271 

NEL
5
, Mcal/kg DM 1.58 1.63 

   

NEL required, Mcal/d 25.5 24.7 

NEL supplied, Mcal/d 26.4 28.4 

NEL balance, Mcal/d 0.9 3.6 

MP
6
 required, g/d 1538 1515 

MP supplied, g/d 1652 1829 

MP balance, g/d 115 314 

DM intake-actual
7
, kg/d

 
16.8 16.9 

DM intake-predicted, kg/d 15.6 15.1 

   

NEL allowable milk, kg/d 19.3 22.2 

MP allowable milk, kg/d 20.4 23.5 

Actual milk, kg/d 18.2 17.5 

   

CP, % DM 16.0 17.5 

RDP
8
, % DM 10.7 11.3 

RUP
9
, % DM 5.3 6.2 

RDP balance, g/d 134 184 

RUP balance, g/d 151 406 
1
GFLAX; diets supplemented with ground flaxseed at 0 or 10% of diet DM.  

2
Values predicted from previously described diets and animal inputs from each 

treatment using the NRC (2001) model.  
3
ME; metabolizable energy.  

4
DCAD; dietary cation-anion difference.  

5
NEL; net energy of lactation.  

6
MP; metabolizable protein.  

7
Actual DMI estimated using chromium oxide and iADF methodology.  

8
RDP; rumen degradable protein.  

9
RUP; rumen undegradable protein.  
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Table 6. Fatty acid composition of ground flaxseed, corn/soy mix
1
, TMR

2
, and pasture. 

 
Ground 

flaxseed 
Corn/soy mix TMR

 
Pasture 

FA ------------------------ g/100 of total feed FA ------------------------ 

14:0 0.05 0.07 0.33 0.48 

16:0 5.26 13.14 18.06 15.17 

16:1 0.12 0.12 0.24 0.26 

17:0 0.07 0.09 0.19 0.20 

18:0 4.83 3.15 3.54 1.70 

cis-9 18:1  24.48 21.57 17.44 2.25 

cis-11 18:1 0.62 1.12 1.04 0.39 

cis-9, cis-12 18:2 (LA)
3 

15.84 51.20 31.69 15.49 

cis-6, cis-9, cis-12 18:3 (GLA)
4 

ND* ND 0.03 ND 

cis-9, cis-12, cis-15 18:3 (ALA)
5 

42.20 5.05 15.57 46.64 

20:0 0.20 0.37 0.78 0.65 

20:1 0.18 0.23 0.27 0.07 

20:2 0.04 0.04 0.06 0.16 

22:0 0.26 0.31 0.79 0.75 

20:3 0.01 ND ND 0.08 

24:0 0.16 0.21 0.76 0.72 

24:1 4.93 0.10 0.37 0.20 

22:4 0.03 2.42 0.12 0.15 

Unidentified 0.70 0.80 8.72 14.64 

*ND; not detected. 
1
Corn/soy mix was top-dressed as the control treatment.  

2
TMR is composed of baleage and basal concentrate mix but does not include top-dressed ground flaxseed or corn/soy treatments. 

3
LA; linoleic acid.  

4
GLA;

 
γ-linolenic acid.  

5
ALA;

 
α-linolenic acid.  
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Table 7. Milk yield, concentrations and yields of milk components, feed efficiency, body weight (BW), body condition score (BCS), 

and plasma concentrations of urea N (PUN), nonesterified fatty acids (NEFA), and cortisol in cows fed 0 or 10% GFLAX
1
. 

 Diet (% GFLAX)*  Month**  P-value
2 

Item 0 10 SEM June July Aug. Sept. SEM T
 

M
 

T×M
 

Total DMI
3
, kg/d 16.79 16.86 0.19 16.33

b 
16.90

a 
17.11

a 
16.97

a 
0.19 0.79 <0.01 0.98 

TMR intake, kg/d 10.92 10.53 0.09 9.98
d
 10.64

c 
11.30

a 
10.99

b 
0.09 0.01 <0.001 0.01 

Pasture intake, kg/d
4 

5.88 6.32 0.16 6.35
a
 6.26

a,b 
5.81

c 
5.99

b,c 
0.16 0.07 0.01 0.98 

Pasture intake, kg/d
5 

6.78 7.17 0.09 7.72
a 

7.06
b 

6.41
d 

6.72
c 

0.09 0.01 <0.001 0.01 

Milk yield
6
, kg/d 18.20 17.54 0.62 18.29

b 
17.44

c 
19.25

a 
16.50

d 
0.49 0.45 <0.001 0.94 

Milk fat
7
, % 4.30 4.15 0.15 4.10 4.32 4.24 4.21 0.15 0.50 0.55 0.84 

Milk fat, kg/d 0.79 0.75 0.03 0.77
 

0.81
 

0.78
 

0.73
 

0.03 0.27 0.16 0.72 

Milk protein, % 3.44 3.49 0.07 3.18
c 

3.42
a 

3.47
a 

3.79
b 

0.05 0.66 <0.001 0.93 

Milk protein, kg/d 0.64 0.62 0.02 0.60
b 

0.64
a 

0.63
a,b 

0.66
a 

0.02 0.52 0.03 0.97 

Milk lactose, % 4.77 4.78 0.02 4.79
a 

4.73
c 

4.80
a 

4.77
a,b 

0.02 0.65 0.01 0.17 

Milk lactose, kg/d 0.90 0.86 0.03 0.91 0.89 0.88 0.84 0.03 0.36 0.07 0.98 

Milk SNF
8
, % 9.12 9.23 0.08 8.90

d 
9.06

c 
9.21

b 
9.53

a 
0.06 0.31 <0.001 0.89 

Milk SNF, kg/d 1.72 1.65 0.06 1.68 1.70 1.68 1.67 0.05 0.42 0.91 0.99 

Milk TS
9
, % 13.48 13.32 0.17 13.00

b 
13.42

a 
13.45

a 
13.73

a 
0.16 0.52 <0.01 0.87 

Milk TS, kg/d 2.52 2.39 0.08 2.45 2.51 2.46 2.39 0.07 0.28 0.48 0.90 

4% FCM
10

, kg/d 19.54 18.31 0.70 19.15 19.63 18.99 17.93 0.64 0.23 0.08 0.79 

ECM
11

, kg/d 21.16 19.93 0.70 20.50 21.20 20.60 19.89 0.64 0.23 0.29 0.82 

MUN, mg/dL 14.54 13.33 0.49 11.84
c 

15.01
b 

11.77
c 

17.13
a 

0.41 0.10 <0.001 0.03 

SCS
12

 2.4 2.2 0.30 2.1
b 

3.0
a 

1.9
b 

2.3
b 

0.28 0.68 <0.01 0.53 

Milk yield/DMI, kg/kg 1.08 1.05 0.05 1.13
a 

1.03
b 

1.13
a 

0.98
c 

0.04 0.71 <0.001 0.36 

4% FCM/DMI, kg/kg 1.13 1.11 0.05 1.17
a 

1.14
b 

1.11
c 

1.05
d 

0.04 0.72 0.04 0.97 

ECM/DMI, kg/kg 1.22 1.20 0.05 1.26 1.23 1.20 1.17 0.04 0.77 0.20 0.97 

BW, kg 431.6 429.5 5.35 421.3
c 

427.3
b 

431.9
b 

441.7
a 

3.99 0.79 <0.001 0.60 

BCS
13 

3.01 2.97 0.05 2.97
b,c 

2.90
c 

3.01
a,b 

3.08
a 

0.05 0.66 0.02 0.18 

PUN, mg/dL 12.67 14.42 0.45 10.04
d 

14.02
b 

12.86
c 

17.26
a 

0.44 0.01 <0.001 0.82 

Plasma NEFA, mEq/L 217.4 204.2 11.16 298.2
a 

245.0
a 

136.3
c 

163.7
b 

22.39 0.32 <0.001 0.60 

Serum cortisol, ng/mL 63.78 66.95 8.96 67.88 67.63 63.91 62.04 7.89 0.80 0.89 0.35 
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*n = 10, **n = 20. 
1
GFLAX; diets supplemented with ground flaxseed at 0 or 10% of diet DM.  

2
T = control vs. flaxseed, M = month, T×M = interaction of treatment with month.  

3
Total DMI calculated with the use of the external fecal marker chromium oxide and indigestible acid detergent fiber.  

4
Pasture intake estimated using the external fecal marker chromium oxide and indigestible acid detergent fiber.  

5
Pasture intake = [Expected DMI (kg/d)] – [TMR DMI (kg/d)].  

6
Milk yield is based on 7 d sampling period average of recorded milk weights.   

7
Milk component percentages and yields are based on 2 d milk sampling average.  

8
SNF; solids non-fat.  

9
TS; total solids.  

10
4% FCM; 4% fat corrected milk = [0.4 × milk yield (kg/d)] + [15 × fat yield (kg/d)] (Gaines and Davidson, 1923).  

11
ECM; energy corrected milk = [0.327 × milk yield (kg/d)] + [12.95 ×fat yield (kg/d)] + [7.2 × protein yield (kg/d)] (Orth, 1992).  

12
SCS; somatic cell scores were determined from somatic cell counts using a linear scoring system (DRMS, 2014).   

13
BCS; body condition score was evaluated using the guidelines of Wildman et al. (1982).  
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Table 8. Apparent total tract digestibility of cows fed 0 or 10% GFLAX
1
 during the grazing season. Calculated with the use of the 

external fecal marker chromium oxide
2
 in combination with IVDMD

3
, AIA

4
, or iADF

5
 methodology.  

 Diet (% GFLAX)*  Month**  P-value
6 

Item 0 10 SEM June July Aug. Sept. SEM T M T×M 

IVDMD    
    

    

Total DMI, kg/d 16.79 16.86 0.19 16.33
b 

16.90
a 

17.11
a 

16.97
a 

0.19 0.79 <0.01 0.24 

Pasture intake, kg/d 5.88 6.32 0.16 6.35
a  

6.26
a 

5.81
b 

5.99
a,b 

0.16 0.07 0.01 0.98 

DM digestibility, % 65.01 62.47 0.63 61.13
c 

63.04
b 

66.02
a 

64.76
a 

0.60 0.01 <0.001 0.73 

OM digestibility, % 55.68 56.90 0.31 57.99
a 

58.31
a 

52.13
c 

56.72
b 

0.32 0.01 <0.001 0.02 

NDF digestibility, % 57.30 59.14 0.76 57.21
b,c 

56.30
c 

60.14
a 

59.24
a,b 

0.95 0.10 0.01 0.56 

ADF digestibility, % 53.28 52.81 0.96 52.64
b 

52.76
b 

54.83
a 

51.95
b 

0.91 0.73 0.02 0.05 

CP digestibility, % 62.81 65.44 0.91 58.87
a 

65.55
b 

65.00
b,c 

67.08
c 

0.81 0.05 <0.001 0.27 

            

AIA            

Total DMI, kg/d 16.82 16.89 0.19 16.35
b 

16.88
a 

17.05
a 

17.05
a 

0.19 0.79 <0.01 0.24 

Pasture intake, kg/d 5.91 6.35 0.16 6.37
a 

6.24
a 

5.75
b 

6.15
a 

0.16 0.07 0.01 0.97 

DM digestibility, % 76.78 73.43 1.07 74.09
b 

79.64
a 

70.70
c 

76.01
b 

0.94 0.04 <0.001 0.07 

OM digestibility, % 55.72 56.94 0.31 58.03
a 

58.28
a 

52.04
c 

56.98
b 

0.32 0.01 <0.001 0.02 

NDF digestibility, % 71.62 71.22 1.10 71.50
b 

76.12
a 

65.67
c 

72.39
b 

1.09 0.80 <0.001 0.13 

ADF digestibility, % 71.41 66.65 1.25 70.13
b 

74.96
a 

62.42
c 

68.61
b 

1.14 0.01 <0.001 0.16 

CP digestibility, % 75.27 75.92 1.11 72.43
c 

81.27
a 

70.74
d 

77.95
b 

1.09 0.66 <0.001 0.33 

       
 

    

iADF       
 

    

Total DMI, kg/d 16.79 16.86 0.19 16.33
b 

16.90
a 

17.11
a 

16.97
a 

0.19 0.79 <0.01 0.24 

Pasture intake, kg/d 5.88 6.32 0.16 6.35
a 

6.26
a,b 

5.81
c 

5.99
b,c 

0.16 0.07 0.01 0.98 

DM digestibility, % 62.64 60.80 0.66 54.53
d 

61.50
c 

64.35
b 

66.49
a 

0.72 0.07 <0.001 0.47 

OM digestibility, % 55.68 56.90 0.31 57.99
a 

58.32
a 

52.13
c 

56.72
b 

0.32 0.01 <0.001 0.02 

NDF digestibility, % 54.62 57.35 0.94 49.83
d 

54.61
c 

58.18
b 

61.34
a 

1.03 0.05 <0.001 0.85 

ADF digestibility, % 50.42 50.84 0.74 44.51
c
 50.84

b
 52.65

a,b
 54.52

a
 0.87 0.70 <0.001 0.93 

CP digestibility, % 59.79 63.16 0.82 51.31
c
 63.23

b
 63.35

b
 68.01

a
 0.87 0.01 <0.001 0.01 

*n = 10, **n = 20. 
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1
GFLAX; diets supplemented with ground flaxseed at 0 or 10% of diet DM. 

2
Chromium oxide; Cr2O3 was dosed in a pelleted form twice daily with a target intake of 10 g/d.  

3
IVDMD; in vitro dry matter digestibility was determined using the methods described by Tilley and Terry (1963); concentrates and 

forages were incubated for 48 and 72 h, respectively.  
4
AIA; acid insoluble ash.  

5
iADF; indigestible acid detergent fiber.  

6
 T = control vs. flaxseed, M = month, T×M = interaction of treatment with month.  
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Table 9. Ruminal pH†, volatile fatty acid concentrations† and proportions†, and enteric CH4 and CO2 production of cows fed 0 or 

10% of GFLAX
1
 during the grazing season.  

 Diet (% GFLAX)*  Month**  P-value
2 

Item 0 10 SEM June July Aug. Sept. SEM T M T×M 

pH 6.87 6.93 0.08 7.04
a 

6.93
a,b 

6.77
c 

6.87
b,c 

0.07 0.60 0.02 0.83 

A:P
3 

4.08 3.67 0.08 4.58
a 

3.93
b 

3.55
c 

3.43
c 

0.07 <0.01 <0.001 0.32 

A+B:P
4 

4.79 4.29 0.09 5.24
a 

4.63
b
 4.22

c 
4.07

c 
0.09 <0.01 <0.001 0.36 

mmol/L    
    

    

Acetic acid 52.87 49.25 2.56 46.58
b 

50.77
a,b 

56.87
a 

50.03
b 

2.76 0.35 0.07 0.72 

Propionic acid 13.27 13.64 0.54 10.18
c 

12.95
b 

16.05
a 

14.64
a,b 

0.67 0.64 <0.001 0.83 

Butyric acid 9.46 8.58 0.49 6.71
c 

9.11
b 

10.83
a 

9.42
b 

0.50 0.24 <0.001 0.75 

Isobutyric acid 0.81 0.76 0.04 0.52
c 

0.78
b 

0.93
a 

0.92
a 

0.04 0.40 <0.001 0.56 

Valeric acid 0.89 0.85 0.05 0.51
c 

0.85
b 

1.11
a 

1.02
a,b 

0.06 0.59 <0.001 0.83 

Isovaleric acid 0.60 0.53 0.03 0.35
c 

0.51
b 

0.70
a 

0.71
a 

0.04 0.20 <0.001 0.46 

Total VFA 77.89 73.63 3.62 64.85
c 

74.98
b 

86.48
a 

76.73
b 

3.98 0.43 0.01 0.76 

mol/100 mol    
    

    

Acetic acid 68.00 67.20 0.25 71.81
a 

67.71
b 

65.71
c 

65.17
c 

0.29 0.06 <0.001 0.54 

Propionic acid 16.96 18.43 0.23 15.75
b 

17.30
b 

18.62
a 

19.09
a 

0.26 <0.01 <0.001 0.88 

Butyric acid  12.10 11.51 0.15 10.31
b 

12.12
a 

12.50
a 

12.29
a 

0.15 0.02 <0.001 0.42 

Ruminal NH4, mg/dL 11.31 12.83 0.49 6.97
c 

10.51
b 

15.29
a 

15.52
a 

0.62 0.06 <0.001 0.16 

Enteric CO2, g/cow/d 8705 9012 158 8459
c 

7839
d 

9867
a 

9269
b 

168 0.18 <0.001 0.97 

Enteric CH4, g/cow/d 314 303 8.22 308
b 

287
c 

341
a 

298
b,c 

7.98 0.36 <0.001 0.81 

CH4/DMI, g/kg 18.6 18.1 0.41 19.0
a 

17.0
b 

19.9
a 

17.4
b 

0.45 0.38 <0.001 0.73 

CH4/OM intake, g/kg 16.9 16.8 0.24 16.3
b 

16.9
a 

17.2
a 

17.0
a 

0.23 0.97 0.01 0.35 

†Covariate values were not used in the statistical model for ruminal pH or VFA concentrations or proportions. 

*n = 10, **n = 20. 
1
 GFLAX; diets supplemented with ground flaxseed at 0 or 10% of diet DM. 

2
 T = control vs. flaxseed, M = month, T×M = interaction of treatment with month. 

3
A:P; acetic acid to propionic acid ratio.  

4
A+B:P; acetic acid plus butyric acid to propionic acid ratio.  
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Table 10. N intake, urinary concentration and excretion of purine derivatives (PD = allantoin plus uric acid), N excretion (total 

manure
1
) and urea N, and urinary ammonia (NH4) of cows fed 0 or 10% GFLAX

2
 during the grazing season. 

 Diet (% GFLAX)*  Month**  P-value
3 

Item 0 10 SEM June July Aug. Sept. SEM T M T×M 

N intake, g/d 446.30 470.42 5.76 381.37
d 

481.34
b 

461.90
c 

508.83
a 

5.77 0.01 <0.001 0.31 

Creatinine, mmol/L 2.26 2.48 0.08 2.72
a 

2.31
b 

2.33
b 

2.12
b 

0.10 0.08 <0.001 0.31 

PD
4
, mmol/L 5.76 6.23 0.24 6.11

b 
7.24

a 
5.16

c 
5.48

b,c 
0.35 0.17 <0.001 0.66 

PD:creatinine ratio 2.64 2.51 0.10 2.28
b,c 

3.19
a 

2.24
c 

2.59
b 

0.14 0.31 <0.001 0.27 

Allantoin, mmol/d 264.61 258.35 9.76 231.23
b 

319.68
a 

232.07
b 

262.96
b 

15.14 0.65 <0.001 0.47 

Uric acid, mmol/d 19.74 21.17 1.85 15.68
c 

23.62
b 

13.56
c 

28.97
a 

2.01 0.58 <0.001 0.18 

Allantoin:Uric Acid 18.64 16.85 1.92 22.14
a,b

 14.45
b 

24.22
a 

10.17
c 

3.82 0.36 <0.001 0.57 

PD
4
, mmol/d 285.00 279.75 9.97 246.66

c 
343.73

a 
246.87

c 
292.24

b 
15.35 0.71 <0.001 0.34 

N excretion, g/d 318.65 340.68 9.60 284.69
c 

403.66
a 

288.49
c 

341.81
b 

11.08 0.12 <0.001 0.17 

N excretion, % of N intake 71.59 72.38 1.50 74.65
b 

83.98
a 

62.49
c 

66.84
c 

2.17 0.72 <0.001 0.58 

Urea N excretion, g/d 178.64 201.66 7.15 133.70
c 

178.62
b 

194.16
b 

254.12
a 

6.97 0.03 <0.001 0.97 

Urea N excretion, % of N intake 39.55 42.56 1.43 35.13
c 

37.14
c 

42.02
b 

49.93
a 

1.42 0.15 <0.001 0.95 

NH4 excretion, g/d 0.35 0.36 0.03 0.36
b 

0.47
a 

0.26
c 

0.32
b,c 

0.03 0.91 <0.001 0.73 

NH4, % of N intake 0.08 0.08 0.01 0.09
a 

0.10
a 

0.06
b 

0.06
b 

0.01 0.76 <0.001 0.67 

*n = 10, **n = 20. 
1
Total manure N excretion = fecal + urinary N excretion.  

2
GFLAX; diets supplemented with ground flaxseed at 0 or 10% of diet DM. 

3
T = control vs. flaxseed, M = month, T×M = interaction of treatment with month.  

4
PD; purine derivatives calculated with PD:creatinine excretion ratio (Chizzotti et al., 2008) using a standard value of 29 mg creatinine 

excretion/kg BW (Valadares et al., 1999).  
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Table 11. Milk fatty acid composition (% of total FA) of cows fed 0 or 10% GFLAX
1
 during the grazing season.  

 Diet (% GFLAX)*  Month**  P-value
2 

FA (% of total FA) 0 10 SEM June July Aug. Sept. SEM T M T×M 

4:0 5.30 5.24 0.071 5.61
a 

5.25
b
 5.17

b
 5.05

c
 0.060 0.59 <0.0001 0.95 

6:0 2.52 2.22 0.045 2.42
a
 2.42

a
 2.31

b
 2.34

b
 0.035 0.0001 <0.0001 0.03 

8:0 1.43 1.16 0.028 1.29
b
 1.35

a
 1.23

c
 1.31

ab
 0.024 <0.0001 0.0001 0.02 

10:0 3.09 2.27 0.073 2.57
b
 2.87

a
 2.51

b
 2.77

a
 0.062 <0.0001 <0.0001 0.94 

10:1 0.33 0.24 0.009 0.25
c
 0.28

b
 0.29

ab
 0.31

a
 0.009 <0.0001 <0.0001 0.71 

11:0 0.04 0.03 0.002 0.02
b
 0.04

ab
 0.03

b
 0.04

a
 0.002 0.001 <0.0001 0.93 

12:0 3.48 2.45 0.092 2.76
b
 3.18

a
 2.80

b
 3.12

a
 0.076 <0.0001 <0.0001 0.25 

13:0 0.08 0.07 0.002 0.07
b
 0.08

a
 0.07

b
 0.08

a
 0.002 0.0002 <0.0001 0.77 

14:0 11.29 8.62 0.222 9.38
c
 10.27

a
 9.82

b
 10.34

a
 0.182 <0.0001 <0.0001 0.06 

iso 14:0 0.26 0.27 0.006 0.29
a
 0.25

c
 0.28

ab
 0.26

c
 0.007 0.23 0.0001 0.57 

14:1 0.88 0.62 0.027 0.59
c
 0.74

b
 0.81

a
 0.87

a
 0.029 <0.0001 <0.0001 0.48 

15:0 0.25 0.23 0.006 0.27
a
 0.23

c
 0.25

b
 0.22

c
 0.006 0.09 <0.0001 0.85 

iso 15:0  0.31 0.27 0.012 0.31
a
 0.28

b,c
 0.30

ab
 0.27

c
 0.011 0.06 <0.01 0.78 

anteiso 15:0  0.43 0.38 0.010 0.43
a
 0.41

b
 0.40

b
 0.40

b
 0.010 <0.01 0.001 0.82 

16:0 0.43 0.41 0.011 0.44
a
 0.42

a,c
 0.43

ab
 0.38

c
 0.013 0.10 0.001 0.05 

iso 16:0 0.13 0.11 0.004 0.11
b
 0.11

b
 0.13

a
 0.12

b
 0.005 0.02 0.013 0.57 

16:1 0.28 0.22 0.010 0.27
a
 0.26

a,b
 0.24

ac
 0.22

c
 0.012 0.001 0.04 0.29 

17:0 0.02 0.03 0.001 0.03
a
 0.03

b
 0.02

b
 0.02

b
 0.001 <0.0001 0.002 0.56 

iso 17:0 12.05 16.40 0.364 16.52
a
 13.75

b
 13.65

b
 12.98

b
 0.439 <0.0001 <0.0001 0.31 

anteiso 17:0 0.02 0.04 0.001 0.04
a
 0.03

b
 0.02

b
 0.03

b
 0.001 <0.0001 <0.0001 0.69 

17:1 0.28 0.45 0.006 0.42
a
 0.36

b
 0.34

b
 0.33

c
 0.006 <0.0001 <0.0001 0.85 

18:0 0.21 0.32 0.004 0.29
a
 0.26

b
 0.26

b
 0.26

b
 0.004 <0.0001 <0.0001 0.42 

cis-9 18:1 16.51 21.90 0.562 19.53
a,b

 18.09
c
 20.01

a
 19.20

b
 0.425 <0.0001 <0.0001 0.54 

∑ cis 18:1
3 

17.17 22.92 0.574 20.38
a,b

 18.92
c 

20.84
a
 20.04

b 
0.434 <0.0001 <0.0001 0.57 

trans-10 18:1 0.27 0.35 0.007 0.35
a
 0.31

b
 0.30

bc
 0.28

c
 0.007 <0.0001 <0.0001 0.02 

trans-11 18:1 2.43 2.63 0.080 2.84
a
 2.48

b
 2.45

b
 2.35

b
 0.069 0.09 <0.0001 0.96 

∑ trans 18:1
4
 3.23 3.84 0.090 3.97

a
 3.47

b
 3.42

b
 3.27

c
 0.078 <0.001 <0.0001 0.99 

cis-9, trans-11 CLA 0.92 0.95 0.026 0.89
b
 0.89

b
 1.00

a
 0.97

a
 0.023 0.45 <0.0001 0.65 
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Table 11. Milk fatty acid composition continued.  

 Diet (% GFLAX)*  Month**  P-value
2 

FA (% of total FA) 0 10 SEM June July Aug. Sept. SEM T M T×M 

∑18:2, n-6 2.12 1.82 0.042 2.11
a
 1.95

b
 1.86

c
 1.96

b
 0.038 <0.0001 <0.0001 0.59 

∑ 18:3, n-6 0.03 0.02 0.002 0.03
a
 0.02

a,b
 0.02

a,b
 0.02

b
 0.002 0.0001 0.13 0.21 

∑18:3, n-3 0.62 1.16 0.030 0.87
b
 0.89

a,b
 0.89

a,b
 0.91

a
 0.024 <0.0001 0.10 0.14 

20:0 0.18 0.19 0.003 0.20
a
 0.18

b
 0.18

b
 0.18

b
 0.003 0.01 <0.0001 0.39 

20:2 0.04 0.03 0.001 0.03 0.03 0.03 0.03 0.001 <0.0001 0.58 0.01 

20:3, n-6 0.09 0.06 0.004 0.07
b
 0.08

a,b
 0.07

b
 0.08

a
 0.003 <0.0001 0.01 0.61 

20:4, n-6 0.08 0.06 0.003 0.07 0.07 0.07 0.07 0.002 <0.0001 0.59 0.02 

20:5, n-3 0.04 0.05 0.001 0.05
a
 0.04

b
 0.04

b
 0.04

b
 0.002 0.03 0.0001 0.40 

22:0 0.07 0.07 0.002 0.07
a
 0.07

b
 0.07

b
 0.07

b
 0.002 0.12 <0.0001 0.79 

22:5, n-3 0.10 0.11 0.003 0.11 0.11 0.10 0.11 0.003 0.03 0.40 <0.01 

24:0 0.05 0.07 0.002 0.06 0.06 0.06 0.06 0.002 <0.0001 0.38 <0.0001 

∑ OBCFA
5 

1.70 1.52 0.042 1.72
a 

1.57
c 

1.66
b 

1.50
d 

0.033 0.01 <0.0001 0.03 

∑SFA
6 

67.55 59.89 0.742 63.50
b,c 

64.88
a 

62.81
c 

63.69
b 

0.574 <0.0001 <0.0001 0.19 

∑ n-6 2.33 1.96 0.047 2.28
a
 2.13

b
 2.03

c
 2.13

b
 0.041 <0.0001 <0.0001 0.64 

∑ n-3 0.77 1.32 0.032 1.03 1.04 1.04 1.06 0.026 <0.0001 0.26 0.13 

n-6/n-3 3.02 1.51 0.048 2.43
a 

2.27
b 

2.17
c 

2.18
b,c 

0.042 <0.0001 <0.0001 0.01 

∑ MUFA
7 

22.63 28.40 0.562 25.98
a,b 

24.30
c 

26.31
a 

25.48
b 

0.426 <0.0001 <0.0001 0.16 

∑ PUFA
8 

4.06 4.26 0.083 4.24
a 

4.09
b 

4.10
b 

4.20
a,b 

0.069 0.11 0.02 0.61 

∑ 4:0 to 14:0 27.19 22.13 0.424 24.13
b
 25.48

a
 23.98

b
 25.06

a
 0.357 <0.0001 <0.0001 0.07 

∑ < 16:0 28.09 22.94 0.419 24.94
b 

26.36
a 

24.82
b 

25.93
a 

0.356 <0.0001 <0.0001 0.07 

∑ Unknown FAs 4.34 5.91 0.200 4.70
b
 5.28

a
 5.26

a,b
 5.26

a,b
 0.235 <0.0001 0.18 0.10 

*n = 10, **n = 20. 
1
GFLAX; diets supplemented with ground flaxseed at 0 or 10% of diet DM. 

2
 T = control vs. flaxseed, M = month, T×M = interaction of treatment with month.  

3
∑ cis 18:1; cis-9 18:1 + cis-11 18:1 + cis-12 18:1.  

4
∑ trans 18:1; trans-4 18:1 + trans-5 18:1 + trans-6-8 18:1 + trans-9 18:1 + trans-10 18:1 + trans-11 18:1.  

5
OBCFA;

 
Odd-branched chain fatty acids.  

6
SFA; saturated fatty acids.  
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7
MUFA; monounsaturated fatty acids.  

8
PUFA; polyunsaturated fatty acids.   
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Table 12. Received milk price, feed costs, and income over feed cost of cows fed 0 or 10% GFLAX
1
 during the grazing season.  

 Month 

Item  June July Aug. Sept. 

Milk, $/kg  0.75 0.72 0.74 0.75 

Baleage, $/kg DM 0.23 0.22 0.22 0.20 

Pasture, $/kg DM 0.19 0.18 0.18 0.17 

Ground flaxseed, $/kg DM 1.32 1.36 1.36 1.35 

Corn/soy mix
2
, $/kg DM 0.92 0.88 0.89 0.88 

Basal concentrate mix
3
, $/kg DM 0.80 0.79 0.80 0.78 

Liquid molasses, $/kg DM 0.84 0.84 0.84 0.84 

  

  Diet (% GFLAX)  

  0 10  

Total milk income, $/cow/d  13.41 13.07  

Total feed cost, $/cow/d  7.84 8.47  

TMR
4
 cost, $/cow/d  6.79 7.33  

Pasture cost, $/cow/d  1.06 1.14  

IOFC
5
, $/cow/d  5.53 4.61  

1
GFLAX; diets supplemented with ground flaxseed at 0 or 10% of diet DM. 

2
Corn/soy mix was top-dressed as the control treatment.  

3
Basal concentrate mix was included in the TMR for both 0 and 10% GFLAX diets.  

4
TMR is composed of baleage, basal concentrate mix, and top-dressed ground flaxseed or corn/soy treatments.  

5
IOFC = income over feed cost calculated by [total milk income ($/cow/d) – total feed cost ($/cow/d)].  
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