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ABSTRACT 
 

VEGETATION INFLUENCES ON THE EBULLITION OF METHANE IN A TEMPERATE 
WETLAND 

 
by 
 

Samantha Roddy 
 

University of New Hampshire, December, 2014 
 
 

Ebullition, or bubbling, is one pathway of methane (CH4) emission to the 

atmosphere from wetland ecosystems. Rates of ebullition vary spatially and temporally 

according to dominant vegetation type, peat density and time of year or season. We 

studied the continuous and episodic nature of ebullition and how it varies with species 

composition using six acoustic and manual sensors deployed in a temperate wetland, 

Sallie’s  Fen,  Barrington,  NH, in 2011 and 2012. Six additional sensors were installed in 

June 2013 and all sensors ran from typically June to October. A subsample of the 

manual bubble collections at each sensor was analyzed for 13C-CH4 to help us 

determine whether fractionation was occurring during the formation of bubbles. Our 

results indicate that the sedge-dominated and shrub-dominated sites show seasonal 

patterns and variability from year to year, but higher rates of ebullition in the shrub-

dominated sites occurred in two of the three years. Methane in bubbles from both 

vegetation types does not appear to undergo fractionation while it is being formed into a 

bubble.  
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I. INTRODUCTION 
 
 
 

1.1 Peatlands and the Role of Carbon 

 Peatlands are defined as an ecosystem where over thousands of years net 

primary production (NPP) has surpassed decomposition, resulting in the accumulation 

of organic matter that is rich in carbon forming peat (Vitt, 2006). Peatlands are 

ecosystems that have 30-40 cm of a surface layer consisting of peat (Frolking et al., 

2011). These ecosystems can be classified as fens and bogs. Fens are generally wetter 

and receive water and nutrients from runoff or other sources other than their own. Bogs, 

on the other hand, are drier and nutrient-poor systems that receive water and nutrients 

mainly from atmospheric sources (Frolking et al., 2011). Peatlands globally make up 

approximately 4 x 106 km2 of  the  Earth’s  surface  (Gorham, 1991; Joosten and Clark, 

2002). While  this  is  a  small  fraction  of  the  Earth’s  land  area,  peat  holds about 400 to 

600 Pg carbon (Frolking et al., 2011; Lappalainen, 1996; Rydin and Jeglum, 2006; 

Tarnocai et al., 2009; Page and Dalal, 2011; Yu et al., 2010). Boreal and subarctic 

peatlands consist of about 3.46 x 106 km2 of this total, accounting for around 87% (Vitt, 

2006). Other studies suggest a slightly lower estimate for boreal and subarctic 

peatlands of between 75-80%, tropical peatlands with 10-15%, and the remaining 10% 

in temperate peatlands (Frolking et al., 2011; Andriesse, 1998; Lappalainen, 1996). 

Northern peatlands are found to have low production rates compared with other upland 
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ecosystems (Frolking et al., 1998), but their decomposition rates are even lower (Moore 

et al., 1998). 

 One third of the terrestrial pool of soil carbon is stored in northern peatlands 

(Gorham, 1991). These ecosystems have been accumulating around 100 kg C m-2 

since the last deglaciation (Turunen et al., 2002). While they are mainly a sink of 

carbon, northern peatlands have been shown to switch from a carbon dioxide (CO2) 

sink to a source on short timescales of months to years due to changes in soil 

temperature or water table depth (Oechel et al., 1993; Shurpali et al., 1995; Waddington 

and Roulet, 1996; Johnson et al., 1996; Goulden et al., 1998). Peatlands have small 

annual accumulation rates of about 10-30 g C m-2 (Turunen et al., 2002; Gorham, 1991) 

and high interannual variability (Lafleur et al., 2001; Griffs et al., 2000), also making the 

transition from a sink to source possible. It has even been found that different plant 

communities within peatlands may alternate from sinks to sources within a year 

(Waddington and Roulet, 1996). 

 

1.2 Methane Significance in Wetlands 

 Methane (CH4) is an important greenhouse gas (GHG) because of its global 

warming potential (GWP). GWP represents the lifespan of the GHG in the atmosphere 

and its radiative forcing (Ramaswamy et al., 2001). Atmospheric methane levels are at 

about 1.803 ppm, compared to CO2 levels now at 390.5 ppm and N2O levels around 

324.2 ppb (IPCC, 2013). Recent estimates show that CH4 has a lifetime of 9.1 +/- 0.9 

years (Prather et al., 2012). The GWP of CH4 is 28-34 times greater than that of CO2 on 

a 100 year timescale (Myhre et al., 2013). Aside from CO2, the radiative forcing potential 
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is stronger than any other GHG (Ramaswamy et al., 2001) at 0.48 (IPCC 2013), 

meaning that it has the greatest capability to trap radiation in the atmosphere. 

Methane emissions are at 678 Tg (CH4) yr-1, with a range of 542-852 Tg of CH4  

yr-1 from both natural and anthropogenic sources (IPCC, 2013). Natural sources emit 

between 238-484 Tg CH4 yr-1 of this CH4, The largest natural source of these emissions 

is wetlands, which release about 62.5% of all natural CH4 at 217 Tg CH4 yr-1, with a 

range of 177- 284 Tg CH4 yr-1 (IPCC, 2013) (Figure 1). The majority of northern 

wetlands are peatlands and their estimated contribution to annual CH4 emissions is 30 

Tg CH4 (Frolking et al., 2011).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Methane Emissions of Natural Sources. Pie chart of the percentage of 
natural sources of CH4 emissions calculated from bottom-up averages in Tg CH4 yr-1 
from IPCC (2013). 
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1.3 Methanogenesis 
 

Methane is produced in anoxic environments, such as wetlands, through 

methanogenic microbial activity (LeMer and Roger, 2001). The net emission from CH4 in 

an ecosystem is the difference between production (methanogenesis) and oxidation 

(methanotrophy). Both processes must be measured in order to understand the net 

emission from wetlands and its variability. Methanogens, specifically archaea (Paul et 

al., 2012; Garcia, 1990), are methane-producing bacteria. These microbes metabolize 

only in anoxic conditions at redox levels of Eh < -200 mV (Whiticar, 1999).  When there 

are competitive substrates present, such as CO2, acetate and formate, carbonate 

reduction (also known as CO2 reduction) and acetate fermentation are the two main 

pathways for CH4 formation. 

 

The general reaction for carbonate reduction is: 

CO2  + 8H+ + 8e-  CH4  + 2H20 

The general reaction for acetate fermentation is: 

CH3COOH  CH4 + CO2 

 

Methanogens in the acetate fermentation pathway are referred to as acetoclastic 

methanogens and methanogens in the carbonate reduction pathway are 

hydrogenotrophic methanogens (Whiticar, 1999). Most methane production occurs via 

these two pathways and by measuring the C and H isotope signatures of the CH4 

emitted, the production pathway can be identified. Whiticar et al. (1986) classified these 

different compositional fields of the methanogenic pathways based on C and H isotope 
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data of CH4, along with bicarbonate and water species. It was found that if 𝛿13C is more 

negative, the source is more depleted in 13C. If it is less negative, it is more enriched in 

13C. This is the same understanding for deuterium (D or 2H), the heavy isotope of 

hydrogen. If 𝛿D is more negative, the CH4 source is more depleted in D. If 𝛿D is less 

negative, it is more enriched in D. Chanton (2005) noted that stable carbon and 

hydrogen isotopes are essential in determining CH4 production mechanisms. 

Methanogenesis can be influenced by various factors. Lower water tables were 

hypothesized in the past to result in lower CH4 fluxes because CH4 oxidation and 

aerobic respiration are likely to occur there (Aerts and Ludwig, 1997; Bubier et al., 1995; 

Dise et al., 1993; Moore and Dalva, 1993). Inverse relationships, however, have been 

found in some locations. Treat et al. (2007), and Bellisario et al. (1999) noticed higher 

CH4 fluxes with a lower water table. The reasoning behind this may be due to greater 

production rates in warmer peats and the release of methane bubbles from a drop in 

water table (Glaser et al., 2004; Strack et al., 2005). A drop in water table has coincided 

with increasing temperature, leading to a greater CH4 flux. This drop can change the 

pressure gradient belowground also releasing stored CH4. It can also lead to a decline 

in CH4 production and influence the oxidation occurring there (Treat et al., 2007). Treat 

et al. (2007) noticed that the CH4 concentrations found in the dissolved porewater 

samples taken at a fen (Sallie’s  Fen) in Barrington, NH were the same throughout May 

through August from 2000 to 2004. This suggests that water table may not be the 

primary influence on CH4 production, but rather peat temperature and soil moisture 

content play a larger role. The same idea has been documented by Lafleur et al. (2005). 
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With this temperature influence in effect, seasonal variability is expected to occur in 

methane production rates. 

 

1.4 Transport Pathways of CH4 

Methane is released into the atmosphere from wetlands through diffusion, plant-

mediated transport, and ebullition. Diffusion is the movement of molecules across a 

concentration gradient and occurs through water or gas filled pores in peat 

(Schlesinger, 1997). This pathway is the smallest contributor to CH4 emissions 

(Schlesinger, 1997). Factors influencing diffusion rates include the steepness of the CH4 

gradient, porosity of the peat, tortuosity of the gas flow path, and peat-pore water 

content (Arah and Stephen, 1998). Chanton (2005) also noted that the diffusion 

coefficient influences diffusive rates as well. 

Plant-mediated transport can account for 30-100% of total CH4 emissions 

(Bridgham et al., 2013; Whiting and Chanton, 1992; Shannon et al., 1996; van der Nat 

and Middelburg, 1998; Cheng et al., 2006; Dorodnikov et al., 2011; Noyce et al., 2014). 

Because wetlands are waterlogged and therefore anoxic, plants have developed 

pathways through their stems to allow for oxygen to travel down to the roots (Thomas et 

al., 1996; Rydin and Jeglum, 2006). Through these plant tissues, CH4 can then be 

emitted to the atmosphere once released from belowground (Thomas et al., 1996). 

Aerenchymous plants, specifically the sedge Carex rostrata, are responsible for the 

transport of CH4 into the atmosphere. Carbon in the form of root exudates from these 

vascular plants is created and undergoes CH4 production through acetate fermentation.  
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The third transport pathway, ebullition, of which this thesis is based on, will be 

discussed in more detail in section 1.4.1. 

 

1.4.1 Ebullition  

Ebullition, or bubbling, occurs when bubbles in the anoxic zone move up through 

the peat and are released to the atmosphere. Because CH4 isn’t very soluble in water 

(Chanton, 2005; Yamamoto et al., 1976), there can be a buildup of dissolved CH4 in the 

saturated layer. When the partial pressure of dissolved CH4 exceeds the hydrostatic 

pressure above, aqueous CH4 can transfer into a gaseous phase. This results in the 

formation of bubbles containing high concentrations of CH4 that are then released into 

the atmosphere. These bubbles have been found to contain up to 70% CH4 (Tokida et 

al., 2007; Schlesinger, 1997; Shannon et al., 1996; Rothfuss and Conrad, 1994). 

Factors that can cause this release in some wetlands have been identified as changes 

in atmospheric pressure or dropping water table (Rothfuss and Conrad, 1994; Goodrich 

et al., 2011). Wet and warm soils are found to have the greatest CH4 emission rates 

from ebullition due to significant amounts of trapped CH4 from high production and 

lower solubility (Kellner et al., 2006). Measuring ebullition is a challenge as it is spatially 

and temporally heterogeneous. Ebullition can occur on a continuous basis or 

episodically (Comas and Slater, 2007). Until recently, the focus on ebullition had been 

with episodic events. Tokida et al. (2007) studied ebullition using a chamber method 

where CH4 fluxes were recorded at certain times of the day when a chamber manually 

closed over a site, trapping the air within it. This experiment was done in a wetland in 

northern Japan that was sedge and Sphagnum spp. dominated. Spikes in CH4 fluxes 
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were found in the data and could be attributed to ebullition. It was noted that these 

spikes occurred with drops in atmospheric pressure (Figure 2). 

 

 
 
 
 
Figure 2. Episodic Ebullition Events. Graph taken from Tokida et al. (2007) showing 
episodic ebullition events during a period of a couple days using a chamber method. 
Results showed a correlation between drops in atmospheric pressure and spikes in CH4 
flux rates, which can be identified as episodic ebullition events. 

 

 

 Using automated flux chambers and integrated cavity output spectroscopy at a 

wetland in Barrington, NH (Sallie’s  Fen), Goodrich et al. (2011) found that while there is 

an episodic occurrence of ebullition, it also occurs on a continuous basis, adding that 

ebullition occurring during the night may be significant. It was also noted that episodic 
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events tended to occur during periods of decreasing water table (Figure 3). This study 

showed that there was variability on ebullition rates on hourly to seasonal time scales. 

Peak ebullition occurred between 8:00pm and 6:00am, possibly because there is a lag 

seen in CO2 uptake during that time. This can lead to a decrease in CO2 oxidation and 

an increase in CH4 flux and ebullition. Peak ebullition was also observed in mid-August 

when there was a peak peat temperature and typically decreasing water table depth. 

Lack of instrumentation to measure continuous ebullition and short sampling periods 

were the two major challenges faced with studying ebullition in the past. While the 

chamber method showed large changes in CH4 fluxes with atmospheric pressure 

change and water table drop, it was not able to quantify lower levels of ebullition that 

could be occurring on a continuous basis. 
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Figure 3. Daily Bubble Count Response to Water Table Depth and Peat 
Temperature. Graph from Goodrich et al. (2011) showing a correlation between water 
table drop and ebullition events. The data also shows that ebullition occurs on a 
continuous basis. 
 

 

 A study conducted in mesocosms of peat from bog sites located in Scotland and 

Wales by Green and Baird (2013) examined episodic ebullition and continuous ebullition 

along with diffusion and plant-mediated transport. A flux chamber showed a steady 

linear increase to account for continuous ebullition and the other transport pathways, in 

contrast with episodic ebullition. The study suggests that models of peatland CH4 

dynamics may need to be corrected for episodic ebullition since it may be a dominant 

pathway for CH4 to the atmosphere (Green and Baird, 2013; Coulthard et al., 2009).   
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Klapstein et al. (2014) researched the depth of bubble production and controls on 

ebullition from three collapse bogs, due to permafrost thaw and flooding of the peat 

plateaus, in Alaska. Bubble traps were installed at 20 cm and 60 cm into the peat and it 

was found that episodic events were the most prevalent due to atmospheric pressure 

changes. Most of production of the bubbles occurred at the peat surface. It was noted 

that bubbles have been found to form deep in the peat where it is water-saturated 

(Glaser et al., 2004), but other studies show that the surface peat is the main source for 

the production of CH4 and formation of bubbles. This is because of methanogenesis 

from the root exudates at the surface (Baird et al., 2004; Kellner et al., 2006; Couthard 

et al., 2009). Klapstein et al. (2014) found that the 20 cm traps had significantly greater 

ebullition rates than the 60 cm traps. Seasonal variations were seen on a monthly basis 

as soil moisture, temperature, and ice depth changed. Previous studies suggested that 

plant presence did not impact ebullition (Chanton 2005; Strack et al., 2006, Green and 

Baird, 2013). Klapstein et al. (2014) found a positive trend between sedge density and 

total seasonal bubble capture. 

 

1.5 Vegetation Influence on CH4 Emissions and Ebullition 

 Vegetation is important to consider because it can contribute to production rates 

and transport, therefore influencing CH4 flux rates. Field experiments were carried out in 

Eastern Switzerland by Bhullar et al. (2014) to determine whether vegetation influenced 

CH4 emissions. This site had its top 0.5 meters of soil removed five years prior, which 

left a substrate containing low methanogenic activity (Bhullar et al., 2014). Varying 

species were found to influence CH4 emission rates, with some causing very little 
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impact. It was found that the emission rates were lower in this site compared to 

temperate wetlands, suggesting that the removal of the topsoil reduced the labile 

carbon concentrations, therefore reducing the amount of CH4 that could be produced 

(Bhullar et al., 2014). 

Studies have shown that sites dominated by sedge plants and other 

aerenchymous type plants show higher CH4 emissions than shrub-dominated sites. 

Shannon and White (1994) found in two peatlands in Michigan, the sites dominated by 

Chamaedaphne calyculata had mean daily fluxes ranging from 0.6 to 68.4 mg CH4 m-2 

d-1. The sedge-dominated sites, specifically containing Carex oligosperma and 

Scheuchzeria palustris had mean daily fluxes of 11.5 to 209 mg CH4 m-2 d-1. Large CH4 

fluxes were seen by Bubier (1995) who found similar results in Canadian peatlands, 

noting that the vascular plants present, Carex limosa, Carex rostrata, and Menyanthes 

trifoliata, had high CH4 flux rates. The shrub species, Rubus chamaemorus, Carex 

trisperma, and Gaultheria hispidula, had low CH4 flux rates.  

Noyce et al. (2014) performed a clipping experiment where sedge plants, 

specifically Carex rostrata, were completely removed from three plots to compare it with 

three other plots containing sedge plants over a four year study. Methane fluxes in the 

summer of all four years were higher in the plots containing the sedges compared to the 

clipped plots. A large portion of the CH4 flux took place during the peak growing season.  

Other clipping experiments showed similar results of CH4 flux reductions when sedges 

were removed (Kelker and Chanton, 1997; Waddingtion et al., 1996). An increase in 

CH4 fluxes has been seen during sedge growth in the beginning of the season and a 

decrease in CH4 fluxes has been observed during senescence (Noyce et al., 2014; 
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Wilson et al., 1989; Dise et al., 1993; Leppälä et al., 2011). High CH4 emissions have 

been seen in sedge-dominated sites compared to shrub-dominated sites (Shannon and 

White, 1994; Bubier et al., 1995; Bellisario et al., 1999; Joabsson and Christensen, 

2001; Ström and Christensen, 2007; Miao et al., 2012). 

 Methanogens receive substrate from vegetation. This allows for productivity to 

occur belowground leading to the production of CH4 (Turetsky et al., 2008). The type of 

vegetation present, however, makes a difference in how much production can occur. 

Sedges provide high-quality carbon from their root biomass (Thomas et al., 1996), 

where as shrubs contribute a substrate that is more acid-insoluble carbon and less 

labile for acetate reduction. Methanogens have a more difficult time using this substrate 

(Shannon and White, 1994). It has been shown that acetate fermentation is likely to 

occur at higher rates in areas dominated by sedge species, specifically Carex, 

compared to areas dominated by Sphagnum (Noyce et al., 2014; Bellisario et al., 1999; 

Prater et al., 2007; Rooney-Varga et al., 2007; Popp et al., 1999; Bellisario et al., 1999).  

 Williams and Yavitt (2010) were interested in exploring whether plant species 

controlled methanogenesis. Plant roots in wetlands occur at different depths in the soil; 

some may be shallow and completely avoid the anoxic environment. Therefore, root 

respiration occurs through the diffusion of atmospheric O2. Where the roots are deeper, 

O2 enters the roots through air spaces in stems and rhizomes that are buried (Willams 

and Yavitt, 2010). Methanogenesis can be hindered by plants who release O2 from their 

roots (Colmer, 2003), and anaerobic respiration, also known as fermentation, can occur 

in species where O2 is limited and aerobic respiration is not possible (Williams and 

Yavitt, 2010; Waters et al., 1989; Gibbs and Greenway, 2003). The study found that 
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plant type does create variability in methanogenesis and is important to be considered 

when studying CH4 production in wetlands (Williams and Yavitt, 2010). 

 Vegetation type has been shown to produce varying isotopic signatures in 

regards to CH4. McCalley et al. (2014) collected isotope measurements at Stordalen 

Mire in Abisko, Sweden, a permafrost region, to examine isotopic signatures with 

species composition. Looking at 13CH4/12CH4 isotopologue ratios in Eriophorum (sedge- 

dominated) and Sphagnum sites, CH4 isotopes in the Eriophorum sites were more 

acetoclastic and fell in correlation with the acetate fermentation pathway while the CH4 

isotopes in the Sphagnum sites were more hydrogenotrophic and plotted towards the 

carbonate reduction pathway isotopic signature.  

 

1.6 Using Isotopes to Understand Ebullition 

Stable isotopes can tell us a lot about CH4 production processes (Chanton 2005; 

Whiticar et al., 1986; Whiticar, 1993; Whiticar, 1999; Hornibrook et al., 1997; Hornibrook 

et al., 2000; Lansdown et al., 1992). They can also define how much CH4 oxidation 

occurred (Barker and Fritz, 1981; Coleman et al., 1981) and determine the sources of 

CH4 (Martens et al., 1991). By looking at shifts in δ13CH4, fractionation due to oxidation 

while CH4 is being transported across landfill and wetland soils can be understood 

(Borjesson et al., 2001; Happell et al., 1994). Acetate fermentation and CO2 reduction 

have differing isotopic signatures. By looking at the fraction of 13CH4/12CH4 and 

CH3D/CH4, the pathway that ebullition undergoes can be determined. Acetate 

fermentation  has  δ13CH4 values ranging from -65 to -50  ‰. CO2 reduction has  δ13CH4 

values from -110 to -60  ‰  (Popp  et  al.,  1999).  As  mentioned  in  section  1.5,  McCalley et 
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al. (2014) looked at 13CH4/12CH4 isotopologue ratios and found variations between 

Sphagnum and Eriophorum sites. Noting that varying species provide different isotopic 

signatures, it is important to consider these stable isotopes since there may be different 

production pathways occurring depending on what vegetation is present. 

The gas composition and δ13C value of CH4 of the released bubbles have been 

found to be the same as the bubble within the sediment before it is released (Chanton 

and Martens, 1988; Martens and Chanton, 1989). Chanton (2005) noted that ebullition 

released may contain CH4 that is depleted in 13C because the gas is released into the 

atmosphere at a rapid rate, allowing it to bypass areas that could allow for 

methanotrophy, or oxidation (Happell et al., 1994). If vegetation type does influence 

ebullitive rates occurring, isotope analysis will help determine whether or not oxidation is 

occurring. 

 

1.7 Research Questions and Approach 

 My research is focused on understanding the ebullitive pathway of CH4 emission 

at  Sallie’s  Fen,  a  temperate  wetland,  and  how  vegetation, if at all, influences the rate of 

ebullition. My hypotheses are 

1. Sedge-dominated areas will have higher rates of ebullition than shrub-dominated 

areas. 

2. Fractionation does not occur as porewater CH4 is converted into bubbles.  

 

To test these hypotheses, I measured ebullition using manual and acoustic sensors 

and determined the percent species cover of twelve plots from 2011 through 2013. 
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Isotopic analysis was also performed on a subset of bubbles collected and provides 

information on the isotopic signature of the methane in the bubble. This research is the 

first data set that compares manual and episodic ebullition data with vegetation for 

multiple years. 
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II. MATERIALS AND METHODS 
 
 
 

2.1 Site Description 
 

Sallie’s  Fen is  a  temperate  peatland  located  in  Barrington,  NH  (43°12.5’N,  

71°3.5’W) (Frolking and Crill, 1994; Treat et al., 2007). This mineral poor fen, spanning 

approximately 1.7 ha, receives its water intake mainly from runoff, rainfall, and a small 

ephemeral stream (Frolking and Crill, 1994; Melloh and Crill, 1996; Treat et al., 2007). 

The average temperature annually is 8.1°C and the average temperature during 

growing  season  is  17.1°C.  The  pH  at  Sallie’s  Fen  ranges  from  4.1  to  5.7  (Treat  et  al., 

2007) and about 1100 mm of precipitation is recorded here annually (Frolking and Crill, 

1994). The growing season typically spans April to October, with senescence beginning 

toward  the  end  of  August.  Sallie’s  Fen  is  dominated  by  Sphagnum mosses and Carex 

spp. in hollow or lower lying areas and is shrub-dominated, specifically Chamaedaphne 

calyculata, Vaccinium oxycoccus, Maianthemum trifolium, Pinus strobus, and Kalmia 

angustifolia, in higher or hummock areas. Vegetation varies throughout the site, with it 

being wetter in the middle and drier towards the edges of the fen. Research on CO2 and 

CH4 fluxes has been ongoing at this site since 1989, producing a 25-year data set on 

the exchange of greenhouse gases (Carroll and Crill, 1997; Treat et al., 2007).  
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2.2 Manual Sensor Design 

Six manual ebullition sensors were installed into the fen on July 8, 2011. The 

sensors are made from a three-inch PVC pipe. In the pipe, a lower funnel is located 

below a hydrophone, an underwater microphone, that is attached to the acoustic 

sensors (Figure 4). The hydrophone is placed below an upper funnel. The upper funnel 

is connected to a manual sampling tube that is fed through the top of the PVC pipe and 

out of a PVC elbow that is on top of the pipe to eliminate rainwater and some noise 

interference. The sensors are installed into the ground so the upper funnel is 

submerged in water. This allows the bubbles in the anoxic zone to travel through the 

manual sampling tube so they can be collected with a syringe. The hydrophone records 

the sound of the bubble as it is being released. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Manual Sensor Design. A. Three inch PVC pipe. B. Lower funnel. C. Hydrophone . 
D. Upper funnel. E. Manual sampling tube with stopcock. F. PVC elbow to eliminate 
rainwater and some noise interference. 
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2.3 Acoustic Sensor Design 
 
 The hydrophone in the manual sensor is plugged into a handheld Zoom recorder 

model H4n. Each recorder has two channels, channels 1 and 2. This allows for two 

hydrophones that are in the manual sensor to be plugged in per recorder. It is important 

to note which channel each sensor is plugged into. To format the recorder each time an 

SD card was inserted, SD card was selected using the scrolling button on the side of 

the recorder, from the menu screen, which  was  located  by  pressing  the  “MENU”  button  

on the side of the recorder, then format was pressed. Once it was verified that the 

format was complete, the date and time were selected and programmed under the 

system selection in the main menu. For correct recording mode, stereo in the mode 

section in the main menu was selected, bringing you to the main recording screen. 

Verification  of  the  monomix  being  off  was  confirmed  by  checking  that  “1”  and  “2”  were  lit  

up on the recorder, and not  “mic”.  Under  the  input  section  in  the  main  menu,  I  scrolled  

down to monomix to verify that it was off. The file name was programmed by selecting 

“rec”  under  the  main  menu.  “Date”  was  selected,  rather  than  “default”.  From  the  main  

menu,  “rec”  was  selected  again  and  “160  kbps  MP3”  was  selected  under  “RecFormat”.  

Lastly, from the main recording screen, the input level was put at 100% by pressing the 

“+”  sign on  the  “REC  LEVEL”  button  on the side of the recorder. To begin recording, the 

play/pause button was pressed twice. The recorders record the sound of the bubbles 

heard by the hydrophone twenty four hours a day and the data is stored on a 32 

gigabyte SD card. The SD cards hold 19 days of data.  
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2.4 Sensor Locations and Vegetation Grouping 
 

In addition to the six original sensors that were installed in 2011, six more 

sensors were constructed and installed throughout the fen on June 19, 2013 to more 

accurately identify differences between two vegetation groups: sedge-dominated and 

shrub-dominated. The percentage of vegetation coverage for each sensor was 

determined using quadrats at half-meter plots (Appendix A.1). The shrub species were 

then grouped together to create a total for the shrub group (Appendix A.2). From this, 

we were able to determine the vegetation percentage of moss, sedge, and shrub at 

each sensor (Table 1). Each site was classified as shrub-dominated or sedge-

dominated by statistical analysis using K-means (Appendix A.3). This did a cluster 

analysis and divided the data into two categories based on the two variables, that being 

sedge and shrub. From this analysis, the sedge-dominated sites were sensors 

1,2,3,4,7,11, and 12. The shrub-dominated sites were sensors 5,6,8,9, and 10 (Table 2) 

(Figure 5).  
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Percent Dominant Species 
  Moss Sedge Shrub 
Sensor 1 27.5 37.5 35 
Sensor 2 75 5 20 
Sensor 3 60 7.5 35 
Sensor 4 52.5 17.5 30 
Sensor 5 27.5 5 67.5 
Sensor 6 50 0 50 
Sensor 7 77.5 5 17.5 
Sensor 8 62.5 0 37.5 
Sensor 9 47.5 10 42.5 
Sensor 10 42.5 7.5 52.5 
Sensor 11 62.5 10 27.5 
Sensor 12 55 17.5 22.5 

 
Table 1. Percent Vegetation Coverage at Each Sensor. Quadrats at half-meter plots 
were used to determine the percent vegetation coverage at each sensor. All shrub 
species were grouped together, as seen in Appendix B. 
 
 
 
 
 
 

Sensor Dominant Vegetation Type Classification 
Sedge-Dominated Shrub-Dominated 

1 5 
2 6 
3 8 
4 9 
7 10 
11  
12 

 
Table 2. Dominant Vegetation Type Classification. Table of sensors categorized by 
dominant vegetation type. 
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Figure 5. Aerial Photo of Sensor Locations  at  Sallie’s  Fen. The dark and light blue 
dots represent the sensors. Sedge-dominated sites are dark blue and shrub-dominated 
sites are light blue. 

 

 
 
 

2.5 Sampling 
 
 Manual sampling of the sensors occurred weekly. At each sensor, a 60 mL 

syringe was attached to the stopcock and the air at the top of the tubing was drawn into 

the syringe until water started to enter. Excess water was ejected and the date and 

time, along with the volume of the sample accumulated, were recorded. During the 

summer of 2013, water table depth was also measured from the top of the PVC pipe to 
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the peat and to the top of the PVC pipe to the water, as well as peat surface and 10 cm 

temperature. If the sample pulled from the manual sensors was greater than 2mL, a 

portion of the sample was stored in vials for C isotope analysis. Using 30 mL vials that 

were flushed and evacuated, a certain amount of the sample was injected and 

recorded, and helium was then injected and its volume was recorded so that the vial 

contained 45 mL total of the sample and helium so that it was over pressurized. 

Data collected from the acoustic sensors was recorded on SD cards. These were 

replaced every 14 to 19 days in the acoustic sensors. The stop time of the acoustic 

sensors was recorded when the SD card was taken out, and the start time was 

recorded when the new SD card was inserted and the sensor began recording again. 

Each time SD cards were replaced, proper protocol was carried out by checking to 

make sure the recorder programming was set up correctly. 

 

2.6 Analysis 

 Samples collected from the manual sensors were analyzed using a gas 

chromatograph equipped with a flame ionization detector (GC-FID; Shimadzu 8A). 

Twelve replicates of a 1000 ppm standard were run before samples were analyzed on 

each sampling day. The results from the gas chromatograph gave the CH4 

concentration of the sample. A flux was then calculated using the following equation: 

 

(𝑉𝑜𝑙𝑢𝑚𝑒   ×   𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)
𝐴𝑟𝑒𝑎  𝑜𝑓  𝑠𝑒𝑛𝑠𝑜𝑟൘

𝑇𝑖𝑚𝑒  𝑜𝑓  𝑠𝑎𝑚𝑝𝑙𝑒  
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The vials of the samples stored for C isotope analysis were sent to the Stable Isotope 

Laboratory at Florida State University. 

 The SD cards pulled from the acoustic sensors were downloaded and the MP3 

files were chopped in six-minute intervals using Direct WAV (Direct WAV MP3 Splitter), 

an MP3 splitter software. In MATLAB, channel 1 and channel 2 were analyzed 

independently. Channel 1 was analyzed first, followed by channel 2. Each six-minute 

section was converted into a WAV audio file to determine the number of samples per 

second (frequency) and the bit depth (amplitude). MATLAB then looks at each half-

second throughout the file and uses a fast fourier transform (FFT) to examine at the 

different frequencies of the signal. This determines which frequencies are the loudest 

and creates a spectrograph to show the power of the different frequencies. We know 

bubbles have a specific frequency range, so we used that as a threshold to determine 

the bubbles present (Figure 6). From this analysis, daily bubble count could be 

determined. This system is very efficient because all source data are present; therefore 

audio data have never been lost or changed. While we cannot tell the exact size of the 

bubbles, we believe that the lower the frequency, the bigger the bubbles. 
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Figure 6. Appearance of Bubble on Spectrograph in MATLAB. The x-axis is the 
time and the y-axis is the frequency. 
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III. RESULTS 
 

 
 
 

3.1 2011 Manual and Acoustic Data 
 

In 2011, sensors 1, 2, and 3 were classified as sedge-dominated and sensors 5 

and 6 were shrub-dominated. Sensor 4 had a leak and was not repaired during that 

sampling season. Sensor 4 would have been classified as sedge-dominated. In the first 

year, flux rates ranged from 11.8 mg m-2 d-1 to 87 mg m-2 d-1 for the sedge-dominated 

sites (Figure 7a). The CH4 flux rates from the manual data show a steady increase from 

the beginning of the season until the beginning of September. A slight drop occurs in 

mid-September, and then the flux rate increases in the end of September before 

decreasing again until mid-October. Another peak occurs towards the end of October 

and eventually levels out for the rest of the season. The average flux rate for the sedge-

dominated sites was 43.5 mg m-2 d-1. Acoustic data were present from mid-September 

to the end of November (Figure 7a). Power outages and recorder complications limited 

the collection of acoustic data earlier in the sampling season. Peak bubble counts 

occurred in mid-September, with one day reaching around 60 bubbles. Ebullition levels 

then stayed around 30 bubbles a day in general, with the exception of a peak in mid-

October and the end of October of around 40 bubbles. 

 Flux rates at the shrub-dominated sites ranged from 38.5 mg m-2 d-1 to 134.3 mg 

m-2 d-1 (Figure 7b). Methane flux rates were low from July to August. In the beginning of 

August, flux rates peaked until mid-August and then decreased. In the beginning of 
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October, another peak occurred that was as great as the first peak in August. After that, 

flux rates declined until mid-October where a small increase occurred, coinciding with a 

peak in the sedge-dominated sites. Levels then became steady for the remainder of the 

season. The average flux rate for the shrub-dominated sites was 78.9 mg m-2 d-1. Daily 

bubble counts from acoustic data were greater in the shrub-dominated sites than the 

sedge-dominated sites during 2011. Bubble counts peaked at about 275 on one day in 

the end of September, but most of the background ebullition stayed around 150 bubbles 

a day (Figure 7b). The lowest bubble counts occurred in the end of September and 

remained slightly higher throughout October. Another observed peak took place in mid-

October, with a daily bubble count of approximately 230. 
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Figure 7. 2011 Manual and Acoustic Data of Sedge-Dominated and Shrub-
Dominated sites. Figure 7a is the sedge-dominated sites. The gray bar graph 
represents the daily bubble count at the sedge-dominated sites from the acoustic data. 
The black line represents the flux rates of the sedge-dominated sites from the manual 
data. Figure 7b is the shrub-dominated sites. The red bar graph is the daily bubble 
count at the shrub-dominated sites. The red line is the average flux rates of the shrub-
dominated sites from the manual data. The left y-axis on both graphs is the acoustic 
bubble count per day and the right y-axis is the CH4 flux. The x-axis is the date. 
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3.2 2012 Manual and Acoustic Data 

 
In 2012, these same five sensors measured fluxes for the sedge-dominated sites 

that ranged between 0 to 226.9 mg CH4 m-2 d-1 (Figure 8a). Manual data from the 

sedge-dominated sites show low flux rates in June but then peak flux rates occur 

between July and August. Flux rates decline between August and September, then 

another peak, lower than the previous one in July, occurs in September before it 

declines again towards the end of the month. The average flux rate for the sedge-

dominated sites in 2012 was 46.7 mg m-2 d-1.  Daily bubble count from the acoustic data 

at the sedge-dominated sites was the highest in the very beginning of the season, 

reaching about 1600 bubbles on one day in the beginning of June (Figure 8a). Daily 

bubble counts stayed fairly consistent throughout the season after that spike at around 

200-400 bubbles daily, with the exception of a few events. A spike was observed in mid-

August of about 800 bubbles on one day, and on a day at the very end of September of 

about 600 bubbles. The highest averages occurred between the end of July and end of 

August. 

Fluxes from the manual data in the shrub-dominated sites ranged from 0 to 259.6 

mg CH4 m-2 d-1 (Figure 8b). Flux rates were very low in the beginning of the season, but 

then a significant increase was seen between the end of July to the beginning of 

August. A decline then occurred until the beginning of September and, similar to the 

sedge sites, another peak was seen. This peak was smaller than the first peak 

observed in the end of July. By mid-September, flux rates began a gradual decline for 

the rest of the season. The average flux rate for the shrub-dominated sites was 45.9 mg 

m-2 d-1.  Acoustic data show a daily bubble count peak occurring for the shrub-
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dominated sites in the beginning of June; spiking to about 250 on one day (Figure 8b). 

Daily bubble counts were a bit higher in the end of May to the beginning of June, 

averaging around 80-100 bubbles a day. From mid-June to mid-September, the amount 

of bubbles decreased slightly to about 60 bubbles a day, with the exception of a peak 

on a day in mid-August of about 110 bubbles. During the end of September to the end 

of October, average bubble counts increased slightly, averaging closer to 100 bubbles 

per day. A peak during that time of about 140 bubbles occurred on one day in the end of 

September. 
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Figure 8. 2012 Manual and Acoustic Data of Sedge-Dominated and Shrub-
Dominated Sites. Figure 8a is the sedge-dominated sites. The gray bar graph 
represents the daily bubble count at the sedge-dominated sites from the acoustic data. 
The black line represents the flux rates of the sedge-dominated sites from the manual 
data. Figure 8b is the shrub-dominated sites. The red bar graph is the daily bubble 
count at the shrub-dominated sites. The red line is the average flux rates of the shrub-
dominated sites from the manual data. The left y-axis on both graphs is the acoustic 
bubble count per day and the right y-axis is the CH4 flux. The x-axis is the date. 
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3.3 2013 Manual and Acoustic Data 

 
  In 2013, six additional sensors were constructed and installed throughout the fen 

in the beginning of this season and sensor 4 was also repaired and installed back in its 

site. The sedge-dominated sensors were 1, 2, 3, 4, 7, 11, and 12 and the shrub- 

dominated sensors were sensors 5, 6, 8, 9, and 10. During 2013, the manual data from 

the sedge-dominated sites had flux rates ranging from 8.9 to 89.3 mg CH4 m-2 d-1 

(Figure 9a). During the beginning of the season, starting in the beginning of July, flux 

rates were the highest. There was one drop in flux rates observed in the end of July, but 

then it increased again before declining for the remaining months. A small peak was 

observed in the end of September. The average flux rate for the sedge-dominated sites 

was 38.5 mg m-2 d-1.  Acoustic data show daily bubble counts reaching up to about 600 

bubbles in the sedge-dominated sites (Figure 9a). Throughout the season, bubble 

counts tend to fall between 100-250 bubbles a day, but there are many occurrences of 

higher counts throughout the season. The highest bubble counts happened on a day in 

the end of July and on a day in the beginning of October. A smaller, but still significant, 

peak also occurred the day after the large peak observed in October.  

Shrub-dominated sites had flux rates from 5.9 to 141.7 mg CH4 m-2 d-1 based on 

the manual measurements (Figure 9b). Very low emission rates were observed in the 

beginning of the season until mid-July. At that time, fluxes began to gradually increase 

until the beginning of September and then started declining at a fairly dramatic rate. 

However, there was a small peak observed in the end of September. The average flux 

rate for the shrub-dominated sites was 61.6 mg m-2 d-1. Acoustic results indicate bubble 

counts reaching up to about 2100 daily (Figure 9b). The average amount of bubbles 
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per day stayed between 200-350, but there were several peaks throughout the season. 

The most significant peaks occurred in the end of July, with one day reaching about 

2100 bubbles and another at around 1750 bubbles. These two days were the highest 

bubble counts observed this season. A small, but noteworthy, peak occurred in the 

beginning of October, followed by another smaller peak the following day. 
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Figure 9. 2013 Manual and Acoustic Data of Sedge-Dominated and Shrub-
Dominated Sites. Figure 9a is the sedge-dominated sites. The gray bar graph 
represents the daily bubble count at the sedge-dominated sites from the acoustic data. 
The black line represents the flux rates of the sedge-dominated sites from the manual 
data. Figure 9b is the shrub-dominated sites. The red bar graph is the daily bubble 
count at the shrub-dominated sites. The red line is the average flux rates of the shrub-
dominated sites from the manual data. The left y-axis on both graphs is the acoustic 
bubble count per day and the right y-axis is the CH4 flux. The x-axis is the date. 
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3.4 Sedge and Shrub Manual Flux Rate Results for All Years 

 When comparing the manual measurements from sedge-dominated sites 

between all three years, we observed varying flux rates (Figure 10a). In all three years, 

low flux rates were seen in the very beginning of the season. Beginning in July for 2012 

and 2013, flux rates started to increase. 2011 gradually increased in the beginning of 

August, with its peak occurring in the beginning of September. 2012 had the highest flux 

rates of all the years. It dropped dramatically in the end of July, but then another, 

smaller, peak occurred in mid-September before gradually declining for the rest of the 

season. 2013 reached its peak in mid-July and then gradually declined, with one small 

peak occurring in the end of September. Some similar trends were noticed between the 

three years. For example, 2012 and 2013 both experienced an increase around July 3rd, 

a decrease around July 24th, and another increase around July 31st, followed by a drop 

around August 7th. 2011 and 2013 had similar patterns when a drop occurred around 

September 11th, followed by a peak around September 24th. 2012 tends to follow the 

same pattern as 2011 a few days later, from mid-August to mid-September. 

The shrub-dominated sites also show low CH4 flux rates in the beginning of the 

season for all three years (Figure 10b). Low levels were observed until mid-July. Like 

the sedge-dominated sites, 2012 had the highest peak flux rate, which occurred from 

the end of July to mid-August. 2012 and 2013 show similar trends beginning in mid-July 

to mid-August. 2013 follows a similar trend to 2011, it just occurs a few days later from 

the end of July to the end of September. 2012 decreased gradually at the end of the 

season, where as 2011 and 2013 had some fluctuations. The average CH4 flux rates for 

the sedge-dominated and shrub-dominated sites for all three years are shown in Figure 
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11. The average flux rate of all three years of the sedge-dominated sites was lower, at 

42.9 mg CH4 m-2 d-1, than the shrub-dominated flux rates, at 62.1 mg CH4 m-2 d-1. 

Shrub-dominated sites in 2011 and 2013 had higher flux rates. Sedge-dominated sites 

had slightly higher flux rates in 2012. Sedge-dominated sites had fairly consistent flux 

rates between 2011 and 2013. Shrub-dominated sites, on the other hand, had more 

variability in flux rates between the years. 
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Figure 10. Average CH4 Flux Rates of the Sedge-Dominated and Shrub-Dominated 
Sites for Each Year. Figure 10a represents the sedge-dominated flux rates. Figure 
10b represents the shrub-dominated flux rates. Fluctuations and similarities are 
observed in sedge-dominated sites and shrub-dominated sites for the three years. The 
y-axis represents the CH4 flux and the x-axis is the date for both graphs.  
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Figure 11. Methane Flux Rates for Sedge-Dominated and Shrub-Dominated Sites 
for Each Year. This graph looks at yearly differences in total flux rates between sedge-
dominated sites and shrub-dominated sites. Sedge-dominated sites show fairly 
consistent flux rates between the three years. Shrub-dominated sites have greater 
variability throughout the years. 
 

 

 

3.5 Sedge and Shrub Manual CH4 Concentration Results for All Years 

 The concentration of CH4 in the manual bubble samples gives us an idea about 

how this varies both in time and by vegetation type (Figure 12). Both the sedge-

dominated and shrub-dominated sites had their highest average concentration in 2012 

and lowest concentration in 2013. In 2011, the shrub-dominated sites had slightly higher 

CH4 concentrations, but the difference is almost too small to determine. The 
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concentration of the sedge-dominated sites was higher than the shrub-dominated sites 

in 2012. 2013 showed very similar average concentrations in both the sedge and shrub-

dominated sites. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. Concentration of CH4 in a Bubble per Year and by Vegetation Type. The 
average concentration of bubbles each year, grouped together by dominant vegetation 
type, is represented here. 
 

 

3.6 Sedge and Shrub Acoustic Daily Bubble Count for All Years 

Daily bubble count differed between years and between dominant vegetation 

types (Figure 13). For all three years, the sedge-dominated sites had daily bubble 

counts ranging from 0 to about 350 bubbles per day. The shrub-dominated sites ranged 

from 0 to 375 bubbles per day. In 2011, sedge-dominated sites had lower bubble counts 
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than shrub-dominated sites. This year, sedge-dominated sites experienced its lowest 

total. The following year, in 2012, the opposite results were seen. Sedge-dominated 

sites had significantly higher daily bubble counts than shrub-dominated sites and had its 

highest total of the three years. Shrub-dominated sites had their lowest daily bubble 

count in 2012. In 2013, shrub-dominated sites had the higher bubble counts per day 

and their highest daily bubble count of all three years. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Daily Bubble Count for all Three Years. Daily bubble count is compared 
between sedge-dominated sites and shrub-dominated sites for each year. 
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3.7 Manual and Acoustic Results Summary 

 Bubble count, average CH4 ebullition flux rates, and bubble concentrations for all 

three years were used to determine which vegetation group had the highest rates of 

ebullition (Table 3). In 2011, the shrub-dominated sites had the greatest daily bubble 

count, highest average flux rates, and very similar CH4 concentrations compared to the 

sedge-dominated sites. In 2012, the sedge-dominated sites had greater daily bubble 

counts, slightly larger average flux rates, and higher CH4 concentrations. In 2013, 

sedge-dominated sites had lower background ebullition daily counts than the shrub-

dominated sites, similar concentrations, and lower flux rates. Overall, the shrub-

dominated sites have greater daily bubble counts over the three years. The average flux 

rates were greater in the shrub-dominated sites. The CH4 concentrations were very 

similar between the sedge and shrub-dominated sites, with the exception of 2012 where 

sedge-dominated sites had higher averages. 

 

Year Average CH4 
Flux Rates Concentration Daily Bubble 

Count 
2011 Shrub>Sedge Shrub≈Sedge Shrub>Sedge 

2012 Sedge≈Shrub Sedge>Shrub Sedge>Shrub 

2013 Shrub>Sedge Shrub≈Sedge Shrub>Sedge 
 

Table 3. Summary of Dominant Vegetation Type Ranking in Ebullition Rates for 
All Years. This table summarizes how the sedge-dominated and shrub-dominated sites 
compare in average CH4 flux rates, concentration, and daily bubble count. 
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3.8 Isotope Results 

 As discussed, a portion of the 2013 manual bubble sample was stored and sent 

to  Florida  State  University  for  δ13CH4 analysis. These results were compared with 

porewater samples taken in 2011 for another experiment to compare sites clipped of 

sedge plants (Noyce et al., 2014). The porewater samples represent where the bubble 

originally started. The clipped sites will represent shrub-dominated sites because the 

sedge plants were removed, leaving only peat and shrubs. The unclipped sites will 

represent sedge-dominated sites. Ebullition isotope results at the sedge-dominated 

sites are documented in Table 4, while porewater isotope results at the sedge-

dominated sites are in Table 5. Ebullition isotope results at the shrub-dominated sites 

are in Table 6 and porewater isotope results from the shrub-dominated (clipped) sites 

are in Table 7. Any results that were greater than -50  δ13CH4 were eliminated because it 

was assumed that the sample was contaminated with the atmosphere. The mean of the 

sedge-dominated sites for the manual sensors was -54.09 ‰with a standard deviation 

of 3.07. The porewater samples at the sedge-dominated sites (unclipped) had a mean 

of -57‰  and a standard deviation of 3.80. For the shrub-dominated manual sensor 

sites, the mean was -54.42‰  and the standard deviation was 1.99. At the porewater 

shrub-dominated (clipped) sites, the mean was -57‰  and the standard deviation was 

3.66. Comparing between the sedge-dominated and shrub-dominated manual sensor 

results, the means of the two types were very similar, differing only by 0.33 ‰. The 

most  negative  del  δ13CH4 value occurred on September 23, 2013 for both the sedge and 

shrub sites, meaning that is when it is most depleted. The sedge-dominated site had a 

δ13CH4 value of -59.81‰ and the shrub-dominated  site  had  a  δ13CH4 value of -57.57‰. 
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The  time  δ13CH4 was most positive, or most enriched was on July 30, 2013 for the both 

the sedge-dominated and shrub-dominated sites. The sedge-dominated value was        

-50.22‰  and the shrub-dominated value was -50.83‰. 

 

Sallie's Fen Bubbles- Sedge-Dominated 
Dominant Vegetation Type Date Sensor δ13C-CH4 

Sedge 7/25/13 1 -52.67 
Sedge 8/8/13 1 -52.67 
Sedge 7/18/13 2 -56.65 
Sedge 8/8/13 2 -56.96 
Sedge 9/23/13 2 -59.81 
Sedge 7/25/13 3 -58.58 
Sedge 7/30/13 3 -57.47 
Sedge 8/8/13 3 -55.30 
Sedge 8/30/13 3 -53.87 
Sedge 9/13/13 3 -53.94 
Sedge 9/23/13 3 -57.30 
Sedge 7/30/13 4 -51.59 
Sedge 7/18/13 7 -53.39 
Sedge 7/25/13 7 -50.53 
Sedge 7/30/13 7 -50.22 
Sedge 8/8/13 7 -50.54 
Sedge 8/30/13 7 -51.38 
Sedge 8/8/13 11 -50.78 

Mean -54.09 
Standard Deviation 3.069775084 

 
Table 4.  δ13C-CH4 values  of  Sallie’s  Fen  Bubbles  in  Sedge-Dominated Sites.δ13C-
CH4 values of manual bubble samples at sedge-dominated sites in 2013. 
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Sallie's Fen Porewater- Sedge-Dominated (Not Clipped) 

Dominant Vegetation Type Date 
Depth 
(cm) δ13C-CH4 

Sedge 4/26/11 30 -69.5 
Sedge 4/26/11 40 -66.3 
Sedge 4/26/11 60 -68.4 
Sedge 5/13/11 10 -57.1 
Sedge 5/13/11 20 -55.0 
Sedge 5/13/11 30 -57.0 
Sedge 5/26/11 10 -59.6 
Sedge 5/26/11 20 -55.0 
Sedge 5/26/11 30 -54.3 
Sedge 5/26/11 40 -59.6 
Sedge 5/26/11 50 -56.4 
Sedge 6/10/11 20 -53.4 
Sedge 6/10/11 30 -54.1 
Sedge 6/10/11 40 -58.0 
Sedge 6/10/11 50 -59.1 
Sedge 6/10/11 60 -58.2 
Sedge 6/21/11 20 -53.6 
Sedge 6/21/11 30 -53.7 
Sedge 6/21/11 40 -57.8 
Sedge 6/21/11 50 -55.5 
Sedge 6/21/11 60 -54.8 
Sedge 7/7/11 20 -52.7 
Sedge 7/7/11 30 -53.1 
Sedge 7/7/11 40 -55.6 
Sedge 7/7/11 50 -56.7 
Sedge 7/7/11 60 -56.9 
Sedge 7/21/11 30 -53.3 
Sedge 7/21/11 40 -55.5 
Sedge 7/21/11 50 -57.5 
Sedge 7/21/11 60 -58.8 
Sedge 8/10/11 40 -56.1 
Sedge 8/10/11 50 -57.0 
Sedge 8/10/11 60 -57.2 
Sedge 9/1/11 20 -53.4 
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Sedge 9/1/11 30 -54.9 
Sedge 9/1/11 40 -56.5 
Sedge 9/1/11 50 -56.6 
Sedge 9/1/11 60 -56.5 

Mean -57.0 
Standard Deviation 3.801579488 

 
Table 5.  δ13C-CH4 values  of  Sallie’s  Fen  Porewater in Sedge-Dominated Sites.δ13C-
CH4 values of porewater samples at the sedge (not-clipped) sites taken in 2011. 
 
 
 
 
 
 

Sallie's Fen Bubbles- Shrub-Dominated 
Dominant Vegetation Type Date Sensor δ13C-CH4 

Shrub 7/30/13 5 -54.63 
Shrub 8/8/13 5 -57.52 
Shrub 8/30/13 5 -55.95 
Shrub 9/13/13 5 -55.13 
Shrub 9/23/13 5 -57.57 
Shrub 7/18/13 6 -52.87 
Shrub 7/25/13 6 -55.16 
Shrub 8/8/13 6 -54.80 
Shrub 8/30/13 6 -52.24 
Shrub 9/13/13 6 -53.93 
Shrub 9/23/13 6 -55.36 
Shrub 7/30/13 9 -54.07 
Shrub 7/25/13 10 -51.79 
Shrub 7/30/13 10 -50.83 

Mean -54.42 
Standard Deviation 1.987481918 

 
Table 6.  δ13C-CH4 values  of  Sallie’s  Fen  Bubbles  in  Shrub-Dominated Sites. δ13C-
CH4 values of manual bubble samples at shrub-dominated sites in 2013. 
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Sallie's Fen Porewater- Shrub-Dominated (Clipped) 
Dominant Vegetation Type Date Depth (cm) δ13C-CH4 

Moss 4/26/11 30 -66.8 
Moss 4/26/11 50 -64.7 
Moss 4/26/11 60 -64.4 
Moss 5/13/11 20 -54.5 
Moss 5/13/11 30 -55.6 
Moss 5/26/11 20 -54.2 
Moss 5/26/11 30 -56.8 
Moss 5/26/11 40 -59.9 
Moss 5/26/11 50 -62.0 
Moss 6/10/11 20 -53.0 
Moss 6/10/11 30 -54.6 
Moss 6/10/11 40 -58.8 
Moss 6/10/11 50 -59.1 
Moss 6/10/11 60 -62.2 
Moss 6/21/11 20 -50.8 
Moss 6/21/11 30 -54.3 
Moss 6/21/11 40 -57.1 
Moss 6/21/11 50 -57.8 
Moss 6/21/11 60 -59.8 
Moss 7/7/11 20 -51.6 
Moss 7/7/11 30 -53.0 
Moss 7/7/11 40 -57.3 
Moss 7/7/11 50 -57.2 
Moss 7/7/11 60 -59.2 
Moss 7/21/11 30 -51.3 
Moss 7/21/11 40 -57.3 
Moss 7/21/11 50 -57.4 
Moss 7/21/11 60 -59.0 
Moss 8/10/11 30 -54.1 
Moss 8/10/11 40 -56.3 
Moss 8/10/11 50 -57.1 
Moss 8/10/11 60 -59.3 
Moss 9/1/11 20 -55.0 
Moss 9/1/11 30 -54.6 
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Moss 9/1/11 40 -56.3 
Moss 9/1/11 50 -57.2 
Moss 9/1/11 60 -58.4 

Mean -57.2 
Standard Deviation 3.663483333 

 
 
Table 7.  δ13C-CH4 values  of  Sallie’s  Fen  Porewater in Shrub-Dominated Sites. 
δ13C-CH4 values of porewater samples at shrub (clipped) sites taken in 2011. 
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IV. DISCUSSION 
 
 

4.1 Ebullition from Sedge versus Shrub-Dominated Sites 
 

 2011 and 2013 both showed lower average flux rates in the sedge-dominated 

sites than the shrub-dominated sites. This may indicate that in sedge-dominated areas, 

there is less CH4 released through ebullition because more CH4 is released through 

plant transport. Vascular plants like sedges act as a way to transport dissolved CH4 to 

the atmosphere (Chanton, 2005; Strack et al., 2006, Noyce et al. 2014). Green and 

Baird (2013) documented similar results in peat mesocosms from a Scottish bog site, 

finding that CH4 emissions were higher in static chambers with sedges and that 

ebullition was a small percentage of the total emissions in all cores.  

Klapstein et al. (2014) found a positive correlation between sedge density and 

the total seasonal bubble capture. This is contrary to our results from 2011 and 2013. It 

does however agree with our results in 2012, which had slightly higher average CH4 flux 

rates from sedge-dominated sites. While Klapstein et al. (2014) reports a relationship 

between sedge density and ebullition rates, they admit being unable to disentangle the 

relationship between permafrost thaw/collapse, ebullition and sedge density.  

We believe that the peak flux seen in our sedge-dominated sites in 2012 at the 

beginning of July can be attributed to seasonal patterns related to sedges. In both the 

sedge-dominated and shrub-dominated sites, a high flux rate, followed by a drop, then 

dramatic peak in mid-July to the beginning of August likely due to weather patterns 
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(Figure 14). Atmospheric pressure drops lead to the release of bubbles. As 

atmospheric pressure begins to rise again, it takes time for CH4 to build up, leading to 

low flux rates after the event. Rainfall events are also responsible for horizontally 

moving CH4, creating a low ebullitive flux while CH4 builds up again in the pore water. A 

huge rain event that occurred in the beginning of August is likely to be responsible for 

the drastic drop in flux rates seen during that time in both the sedge-dominated sites 

and the shrub-dominated sites.  

 

Figure 14. Weather Influence on CH4 Flux Rates in 2012. A dramatic drop in 
CH4 flux rates occurred in August, due to a rain event during that time.  

 

In 2013, we observed ebullition rates in the pattern we expect in a typical year 

(Figure 15). Peak flux rates occur in the beginning of the season for the sedge-

dominated sites, then gradually decreases likely because the roots of the sedge plants 

produce high-quality carbon as they are growing in the beginning of the season. This 

carbon then has the potential to be converted to CH4 in the porewater and then form 
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bubbles. As the plants begin to senesce later in the season, CH4 production by this 

pathway decreases. The shrub-dominated sites, on the other hand, experienced their 

peak flux rates later in the season. This is because these areas do not have the carbon 

available from the root exudates of the sedges. Instead, the shrub sites store CH4 in the 

beginning of the season until enough has accumulated to be released. This is evident in 

the CH4 concentration data that shows an increase in concentration in bubbles collected 

over the season at these sites. This follows the diffusive flux pattern, where the highest 

CH4 levels build up late in the season when the environment has warmed and has a 

strong microbial community. These results are consistent with results from Klapstein et 

al. (2014) where they found that ebullition occurred more in August, rather than June or 

July, 

 

 

Figure 15. Seasonal Pattern Influence on CH4 Flux Rates in 2013. Sedge-dominated 
sites have peak flux rates in the beginning of the season. Peak flux rates occur later in 
the season in the shrub-dominated sites. 
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 The daily bubble count showed varying results each year (Figure 13). In 2011, 

the shrub-dominated sites had higher bubble counts than the sedge-dominated sites. 

Following the understanding that the shrub-dominated sites have the ability to store CH4 

over the season and therefore emit it later in the season once it has built up, it is likely 

that daily bubble counts would be higher for the shrub-dominated sites later in the 

season compared to the beginning of the season. 2012 had higher daily bubble counts 

in the sedge-dominated site compared to the shrub-dominated sites. While ebullition 

counts are higher, both sites follow a fairly consistent pattern, with peaks seen around 

the same dates. It could be that in 2012, episodic events driven by weather changes 

overwhelmed the background ebullition signal. 2013 had overall higher daily bubble 

counts in the shrub-dominated sites, although there are a significant amount of peaks 

seen in the sedge-dominated sites. Both vegetation groups display similar patterns 

throughout the season. The fact that the shrub-dominated sites had higher daily bubble 

counts than the sedge-dominated sites throughout this season supports our 

interpretation that more CH4 was released through plant transport rather than ebullition 

in the sedge sites. 

 Each year showed varying results by vegetation type for average CH4 flux rates, 

CH4 concentration, and daily bubble count. For these three categories, shrub-dominated 

sites had greater values in 2011, sedge-dominated had higher rates and concentrations 

in 2012, and values in the shrub-dominated sites were greater in 2013. There is a clear 

indication that patterns can change on a yearly basis likely due to environmental factors 
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which indicates that these are important to consider because they will influence both the 

production and transport of CH4. 

 The first hypothesis for this study stated that sedge-dominated sites would have 

greater rates of ebullition than the shrub-dominated sites. From this study, each year 

gave different results but two of the years resulted in shrub-dominated sites having 

greater rates of ebullition. Research completed in the past by Chanton (2005), Strack et 

al. (2006), and Green and Baird (2013) showed that porewater CH4 transport could be 

mainly through the plants in the sedge-dominated regions, rather than through 

ebullition. Chanton (2005) indicated that the presence of vascular plants can reduce 

porewater CH4 concentrations by up to 50%. This would lead to smaller amount of 

bubble formation and therefore lower ebullition rates. However, Coulthard et al. (2009) 

argued that because sedges increase CH4 production through their root exudates, 

ebullition rates could go either way. Their study suggests that porewater concentrations 

of CH4 and bubbles formation rates could decrease but on the other hand, the greater 

rates of CH4 production from root exudates could also increase bubble production rates 

(Christensen et al. 2003). These results support our findings that the presence of sedge 

plants could either increase or decrease ebullition rates. We add that environmental 

factors, such as weather, need to be included to determine the vegetation influence. 

Goodrich (2010) found that ebullition rates had no correlation with sedge fractional 

cover. Noyce et al. (2014) also noted that ebullition is not a significant factor in CH4 

emissions from their clipping experiment, however static chambers were used to 

measure net fluxes and could have masked low rates of ebullitive flux.  
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4.2 Using Stable Isotopes to Understand CH4 Ebullition 
 

The use of stable isotopes to understand production, consumption and transport 

of CH4 in wetlands is well known. This study hypothesized that fractionation does not 

occur as porewater CH4 is converted into a bubble. In comparing isotope results from 

porewater samples at sites nearby the ebullition sites to isotope results of a subsample 

pulled from the manual ebullition sensor, we can address this hypothesis. These 

porewater sites are part of a clipping experiment that had sedge-dominated and shrub-

dominated areas where sedges were removed (Noyce et al., 2014). If the isotope 

results of the bubble samples are similar to the porewater samples, that would indicate 

that fractionation did not occur. This was the case for both the sedge-dominated sites 

and shrub-dominated sites. These results are consistent with my second hypothesis. 

We expect these results because ebullition occurs at a rapid rate, allowing it to bypass 

any oxidation that could took place if there were more time during its conversion from 

dissolved CH4 to a bubble. Vegetation also did not influence fractionation. Our results 

support Frolking et al. (2002), who stated that ebullition bypasses methanotrophy and 

therefore does not undergo any oxidation however we did collect bubbles at the water 

surface and therefore there could be oxidation of small bubbles as they are released 

into the oxic zone of the peat. Coulthard et al. (2009) suggests that steady ebullition 

rates may be susceptible to methanotrophy in the region above the water table.  

Interestingly, sedge-covered sites have porewater δ13C-CH4 values ranging from 

-65 to -47.5‰ and sites with less than 15% sedge cover had porewater δ13C-CH4 

values ranging from -95 to -55‰ (Bellisario et al., 1999; Prater et al., 2007). If 

fractionation does not occur in ebullition and we can assume these porewater ranges 
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are similar to what would be seen for the bubble isotopic signatures, it is compelling that 

the results in this study did not show differences in isotope values between the sedge-

dominated sites and the shrub-dominated sites. 
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V.CONCLUSIONS, IMPLICATIONS AND FUTURE WORK 
 

 
5.1 Conclusions 

 
 By measuring ebullition in a temperate wetland, we are able to understand 

patterns across a region that experiences seasonal and temporal changes. Vegetation 

plays a key role in controlling ebullition fluxes, however we observe that episodic events 

can occur with water table fluctuations and atmospheric pressure changes. Weather 

patterns also influence ebullitive rates. In this study we report higher emissions through 

ebullition from shrub-dominated sites unless large episodic emissions occur in the mid-

season. The use of both manual and automated measurement of ebullition is critical in 

understanding this process so that it can be adequately described for different types of 

wetlands and ultimately represented properly in models of these ecosystems. 

 

5.2 Implications 

Permafrost regions have been a focus of recent research, given that they contain 

50%  of  the  Earth’s  soil  carbon  (Tarnocai  et  al.,  2009)  and are experiencing thaw. 

Compared to the permafrost regions, temperate wetlands are a more controlled 

environment, experiencing less dramatic changes. Here in the temperate regions, we 

are seeing that ebullition releases significant CH4 emissions. In the permafrost regions, 

where landscape, soil moisture, and temperature are changing, there is a possibility of 

higher amounts of CH4 to be emitted. With these environmental changes, vegetation will 

shift (McCalley et al., 2014; Johansson et al., 2006). To understand how vegetation will 
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affect ebullition and CH4 emissions at all regions, it is also necessary to research its 

microbial community.  

 McCalley et al. (2014) have begun working to understand how microbial 

community influences CH4 emissions, specifically in a permafrost region in Northern 

Sweden, Stordalen Mire. Because methanogens, the microbes that produce CH4, have 

distinct isotopic signatures, they were able to use isotopes across a thaw gradient, 

which would have varying vegetation, to understand how the microbial community 

changes. Methane produced by hydrogenotrophic methanogens typically has a lower 

δ13C and higher δD compared to CH4 produced by acetoclastic methanogens. If CH4 is 

oxidized, the methanogens consume the lighter molecules over the heavier ones. The 

leftover CH4 after oxidation tends to be enriched in 13C and D, the heavier isotopes. This 

oxidation process is important to understand because vegetation will be a factor in how 

much, if any oxidation occurs.  The results of their work show that with knowledge 

provided by the microbial community, specifically the methanogens at the varying thaw 

gradients, different isotopic signatures are seen, resulting in a different fractionation and 

production pathway that the CH4 undergoes depending on the vegetation present. 

  

5.3 Future Work 

Many factors are relevant in understanding CH4 dynamics. This thesis aimed to 

understand how ebullition varies among vegetation type, but more can be done to 

further understand the ebulltive processes occurring. It is evident that vegetation will 

influence CH4 emissions. The mode of transport that CH4 is emitted into the atmosphere 

is dependent on the vegetation present. Therefore, it is important to understand the 
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processes that will occur given the environment and plant species. Weather is another 

factor that could alter a system. There may be a year that could have large rainfall 

events, affecting the typical patterns that are seen. It is important to understand the role 

weather could have on an environment and how it could change what is usually seen. 

Bubble volume is another area to further investigate. Currently, bubble volume 

represents an accumulated sample from our manual sensors each time we collect the 

bubble sample. Because flux is dependent on the concentration and volume of the 

bubble, it would be useful in trying to determine the volume of the individual bubble with 

the use of acoustic sensors. Additional statistical analyses, such as MANOVA and a t-

test, would be beneficial to add as well. These tests can tell us if the two vegetation 

types are changing in a similar or different pattern each year. 

If the microbial community is studied at these sites, we should be able to 

determine which production pathway is occurring and how that could change in the 

future with environmental impacts that could alter vegetation. More can be carried out to 

determine what is happening belowground with these plant species that could be the 

reason for the differences. Further isotope investigation should occur by adding δD to 

the analysis. This addition would be a helpful tool, as it could tell us how much, if any 

fractionation is occurring, and which production pathway the CH4 produced by the 

microbial community is taking. Adding porewater sampling at each ebullition sensor 

should be included in future isotope analysis. This will give us an even greater 

explanation of how ebullition is being transported out into the atmosphere and also what 

production pathway occurs belowground. As mentioned in Section 4.2, previous studies 

showed that porewater samples in sedge sites and shrub sites had different isotopic 
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signatures, while our results did not show variation between the two vegetation types. 

Perhaps a larger data set would be beneficial in this study to determine if the different 

vegetation shows varying isotopic signatures. 
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APPENDIX A 
 
 

 
Vegetation grouping of the sites using quadrats and a k-means cluster analysis. 
 
 
1. 
 
 
 

Percent Species Composition at Each Sensor 

  

Sphagnum
 

C
arex 

Leatherleaf 

C
ranberry 

False 
solom

on's 
Seal 

W
hite Pine 

Sheep's 
Laurel 

Sensor 1 27.5 37.5 5 30 0 0 0 
Sensor 2 75 5 7.5 12.5 0 0 0 
Sensor 3 60 7.5 12.5 22.5 0 0 0 
Sensor 4 52.5 17.5 20 10 0 0 0 
Sensor 5 27.5 5 32.5 30 5 0 0 
Sensor 6 50 0 35 12.5 0 0 2.5 
Sensor 7 77.5 5 12.5 2.5 0 2.5 0 
Sensor 8 62.5 0 37.5 0 0 0 0 
Sensor 9 47.5 10 35 7.5 0 0 0 
Sensor 10 42.5 7.5 5 47.5 0 0 0 
Sensor 11 62.5 10 7.5 20 0 0 0 
Sensor 12 55 17.5 10 12.5 0 0 0 
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2. 
 

Shrub Species Total 

  Leatherleaf Cranberry 

False 
solomon's 

Seal 
White 
Pine 

Sheep's 
Laurel Total 

Sensor 1 5 30 0 0 0 35 
Sensor 2 7.5 12.5 0 0 0 20 
Sensor 3 12.5 22.5 0 0 0 35 
Sensor 4 20 10 0 0 0 30 
Sensor 5 32.5 30 5 0 0 67.5 
Sensor 6 35 12.5 0 0 2.5 50 
Sensor 7 12.5 2.5 0 2.5 0 17.5 
Sensor 8 37.5 0 0 0 0 37.5 
Sensor 9 35 7.5 0 0 0 42.5 
Sensor 10 5 47.5 0 0 0 52.5 
Sensor 11 7.5 20 0 0 0 27.5 
Sensor 12 10 12.5 0 0 0 22.5 

 
3. 

 
Sedge/Shrub K-Means Statistics 

Sensor 
% 
Moss 

% 
Sedge 

% 
Shrub 

Cluster 
2 Distance 2 Classification 

Sensor 1 27.5 37.5 35 1 8.364338 sedge 
Sensor 2 75 5 20 1 1.853251 sedge 
Sensor 3 60 7.5 35 1 1.616172 sedge 
Sensor 4 52.5 17.5 30 1 0.292392 sedge 
Sensor 7 77.5 5 17.5 1 2.440207 sedge 
Sensor 11 62.5 10 27.5 1 0.258938 sedge 
Sensor 12 55 17.5 22.5 1 0.409783 sedge 
Sensor 5 27.5 5 67.5 2 4.477336 shrub 
Sensor 6 50 0 50 2 0.277262 shrub 
Sensor 8 62.5 0 37.5 2 2.55987 shrub 
Sensor 9 47.5 10 42.5 2 1.23592 shrub 
Sensor 10 42.5 7.5 52.5 2 0.214532 shrub 
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APPENDIX B 
 

 
 
Manual Flux data for 2011, 2012, and 2013. 

 
 

 
2011 

Date Sampled Time Sampled Sensor 
Volume flux     
(mL m-2d-1) 

Methane flux     
(mg CH4 m-2d-1) 

7/27/11 12:00 1 34.6 17.8 
7/27/11 12:00 6 57.7 29.6 
7/27/11 12:00 2 23.1 11.8 
7/27/11 12:00 3 11.5 5.9 
7/27/11 12:00 4     
7/27/11 12:00 5 92.4 47.3 
8/18/11 16:20 1 98.9 50.7 
8/18/11 16:20 6     
8/18/11 16:20 2 128.6 65.9 
8/18/11 16:20 3 49.5 25.3 
8/18/11 16:20 4     
8/18/11 16:20 5 262.1 134.3 
9/8/11 9:25 1 21.2 10.9 
9/8/11 9:25 6 211.9 108.6 
9/8/11 9:25 2 137.7 70.6 
9/8/11 9:25 3 211.9 108.6 
9/8/11 9:25 4     
9/8/11 9:25 5 127.1 65.1 

9/15/11 12:00 1 30.9 15.8 
9/15/11 12:00 6 169.8 87.0 
9/15/11 12:00 2 185.2 94.9 
9/15/11 12:00 3 293.2 150.3 
9/15/11 12:00 4     
9/15/11 12:00 5 185.2 94.9 
9/23/11 17:00 1 26.7 12.3 
9/23/11 17:00 6 106.9 58.1 
9/23/11 17:00 2 173.7 70.6 
9/23/11 17:00 3 147.0 78.5 
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9/23/11 17:00 4     
9/23/11 17:00 5 120.3 74.4 
10/4/11 15:00 1 60.3 22.0 
10/4/11 15:00 6 221.1 185.0 
10/4/11 15:00 2 140.7 126.9 
10/4/11 15:00 3 80.4 54.6 
10/4/11 15:00 4     
10/4/11 15:00 5 120.6 80.4 
10/14/11 15:00 1 11.0 5.6 
10/14/11 15:00 6 120.7 62.0 
10/14/11 15:00 2 120.7 62.0 
10/14/11 15:00 3 21.9 11.3 
10/14/11 15:00 4     
10/14/11 15:00 5 87.8 45.1 
10/21/11 17:15 1 15.5 1.7 
10/21/11 17:15 6 92.8 43.0 
10/21/11 17:15 2 61.9 25.7 
10/21/11 17:15 3 61.9 18.1 
10/21/11 17:15 4     
10/21/11 17:15 5 92.8 37.4 
11/9/11 3:50 PM 1 34.7 1.3 
11/9/11 3:50 PM 6 57.9 45.5 
11/9/11 3:50 PM 2 69.5 44.4 
11/9/11 3:50 PM 3 86.9 59.9 
11/9/11 3:50 PM 4     
11/9/11 3:50 PM 5     

 
 
 

2012 

Date Sampled  Time Sampled Sensor 
Volume flux     
(mL m-2d-1) 

Methane flux     
(mg CH4 m-2d-1) 

5/23/12   1 0.0 0.0 
5/23/12   2 0.0 0.0 
5/23/12   3 43.9 7.0 
5/23/12   4     
5/23/12   5 314.5 0.0 
5/23/12   6 18.3 0.1 
5/29/12 8:22 1 0.0 0.0 
5/29/12 8:22 2 0.0 0.0 
5/29/12 8:22 3     
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5/29/12 8:22 4     
5/29/12 8:22 5 241.9 0.0 
5/29/12 8:22 6 0.0 0.0 
6/7/12 8:17 1 73.2 0.4 
6/7/12 8:17 2 97.5 9.7 
6/7/12 8:17 3     
6/7/12 8:17 4     
6/7/12 8:17 5 61.0 1.5 
6/7/12 8:17 6     

6/12/12 8:15 1 0.0 0.0 
6/12/12 8:15 2 0.0 0.0 
6/12/12 8:15 3 0.0 0.0 
6/12/12 8:15 4     
6/12/12 8:15 5 197.5 0.7 
6/12/12 8:15 6 0.0 0.0 
6/19/12 8:50 1 0.0 0.0 
6/19/12 8:50 2 0.0 0.0 
6/19/12 8:50 3 0.0 0.0 
6/19/12 8:50 4     
6/19/12 8:50 5 0.0 0.0 
6/19/12 8:50 6 62.5 0.1 
6/27/12 8:15 1 302.6 0.0 
6/27/12 8:15 2 110.0 0.0 
6/27/12 8:15 3 82.5 0.0 
6/27/12 8:15 4     
6/27/12 8:15 5 0.0 0.0 
6/27/12 8:15 6 0.0 0.0 
7/3/12 9:10 1 508.7 14.1 
7/3/12 9:10 2 1271.7 21.8 
7/3/12 9:10 3 109.0 1.9 
7/3/12 9:10 4     
7/3/12 9:10 5 1380.7 22.0 
7/3/12 9:10 6 1780.4 32.6 

7/16/12 9:15 1 911.1 28593.5 
7/16/12 9:15 2 75.9 2188.5 
7/16/12 9:15 3 151.8 26676.9 
7/16/12 9:15 4     
7/16/12 9:15 5 92.8 1362.5 
7/16/12 9:15 6 135.0 2229.4 
7/23/12 10:50 1 683.1 257.6 
7/23/12 10:50 2     
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7/23/12 10:50 3 186.3 59.6 
7/23/12 10:50 4     
7/23/12 10:50 5 93.1 26.5 
7/23/12 10:50 6 248.4 95.9 
7/30/12 9:10 1 348.2 575.4 
7/30/12 9:10 2 31.7 2.2 
7/30/12 9:10 3 142.5 151.2 
7/30/12 9:10 4     
7/30/12 9:10 5     
7/30/12 9:10 6 158.3 220.9 
8/6/12 10:06 1 1901.3 1554.1 
8/6/12 10:06 2 202.6 291.3 
8/6/12 10:06 3 124.7 162.5 
8/6/12 10:06 4     
8/6/12 10:06 5 155.8 181.7 
8/6/12 10:06 6 2275.3 73755.4 

8/13/12 11:08 1 218.1 0.1 
8/13/12 11:08 2 233.6 14.9 
8/13/12 11:08 3 93.5 1.3 
8/13/12 11:08 4     
8/13/12 11:08 5 327.1 250.9 
8/13/12 11:08 6 3161.7 268.3 
8/29/12 8:30 1 110.5 44.1 
8/29/12 8:30 2 41.4 15.6 
8/29/12 8:30 3 13.8 4.0 
8/29/12 8:30 4     
8/29/12 8:30 5 27.6 8.1 
8/29/12 8:30 6 55.2 22.0 
9/12/12 9:05 1 248.7 92.8 
9/12/12 9:05 2 111.1 39.7 
9/12/12 9:05 3 140.8 45.6 
9/12/12 9:05 4     
9/12/12 9:05 5 206.5 51.0 
9/12/12 9:05 6 359.8 134.2 
9/17/12 10:38 1 515.5 215.6 
9/17/12 10:38 2 130.0 47.8 
9/17/12 10:38 3 86.6 26.4 
9/17/12 10:38 4     
9/17/12 10:38 5 130.0 33.9 
9/17/12 10:38 6 216.6 97.6 
9/26/12 8:55 1 184.3 72.3 
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9/26/12 8:55 2 49.1 18.7 
9/26/12 8:55 3 73.7 23.3 
9/26/12 8:55 4     
9/26/12 8:55 5     
9/26/12 8:55 6 172.0 78.5 
10/3/12 11:12 1 92.8 3.6 
10/3/12 11:12 2 61.8 10.1 
10/3/12 11:12 3 61.8 14.6 
10/3/12 11:12 4     
10/3/12 11:12 5 46.4 11.7 
10/3/12 11:12 6 64.9 14.9 
10/10/12 10:22 1 15.7 0.0 
10/10/12 10:22 2 23.6 0.1 
10/10/12 10:22 3 31.5 0.3 
10/10/12 10:22 4     
10/10/12 10:22 5 31.5 1.4 
10/10/12 10:22 6 63.0 15.2 
11/2/12 9:50 1 31.1 2.2 
11/2/12 9:50 2 0.0 0.0 
11/2/12 9:50 3 0.0 0.0 
11/2/12 9:50 4     
11/2/12 9:50 5 0.0 0.0 
11/2/12 9:50 6 31.1 0.1 

 
 

2013 

Date Sampled Time Sampled Sensor 
Volume flux     
(mL m-2d-1) 

Methane flux     
(mg CH4 m-2d-1) 

7/1/13 13:50 1     
7/1/13 13:50 2 397.6 0.2 
7/1/13 13:50 3 345.8 39.8 
7/1/13 13:50 4 69.2 26.2 
7/1/13 13:50 5 380.4 38.5 
7/1/13 13:50 6 495.6 96.9 
7/1/13 13:50 7 23.1 3.8 
7/1/13 13:50 8 11.5 1.1 
7/1/13 13:50 9 11.5 0.7 
7/1/13 13:50 10 23.1 0.7 
7/1/13 13:50 11 92.2 23.4 
7/1/13 13:50 12 582.1 24.8 

7/10/13 10:38 1 0.0 0.0 
7/10/13 10:38 2 0.0 0.0 
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7/10/13 10:38 3 86.6 6.3 
7/10/13 10:38 4 296.9 36.7 
7/10/13 10:38 5 49.5 19.5 
7/10/13 10:38 6 0.0 0.0 
7/10/13 10:38 7 74.2 5.2 
7/10/13 10:38 8 24.7 2.8 
7/10/13 10:38 9 37.1 5.3 
7/10/13 10:38 10 24.7 2.1 
7/10/13 10:38 11 173.2 53.1 
7/10/13 10:38 12 1187.7 345.5 
7/18/13 9:45 1 688.8 222.1 
7/18/13 9:45 2 192.9 59.0 
7/18/13 9:45 3 82.7 22.8 
7/18/13 9:45 4 385.7 162.5 
7/18/13 9:45 5 55.1 22.0 
7/18/13 9:45 6 468.4 164.8 
7/18/13 9:45 7 110.2 37.0 
7/18/13 9:45 8 55.1 15.4 
7/18/13 9:45 9 82.7 19.8 
7/18/13 9:45 10 55.1 10.8 
7/18/13 9:45 11 192.9 32.7 
7/18/13 9:45 12     
7/25/13 9:15 1 691.6 243.1 
7/25/13 9:15 2 47.2 16.0 
7/25/13 9:15 3 188.6 53.6 
7/25/13 9:15 4 314.4 124.8 
7/25/13 9:15 5 31.4 13.3 
7/25/13 9:15 6 345.8 143.2 
7/25/13 9:15 7 125.7 50.9 
7/25/13 9:15 8 0.0   
7/25/13 9:15 9 62.9 21.5 
7/25/13 9:15 10 125.7 33.6 
7/25/13 9:15 11 220.0 49.7 
7/25/13 9:15 12     
7/30/13 13:06 1 170.1 5.2 
7/30/13 13:06 2 212.6 49.1 
7/30/13 13:06 3 85.0 23.9 
7/30/13 13:06 4 297.6 82.6 
7/30/13 13:06 5 1530.5 219.0 
7/30/13 13:06 6 233.8 17.0 
7/30/13 13:06 7 127.5 33.7 
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7/30/13 13:06 8 42.5 11.6 
7/30/13 13:06 9 127.5 29.1 
7/30/13 13:06 10 127.5 29.2 
7/30/13 13:06 11 170.1 41.8 
7/30/13 13:06 12     
8/8/13 10:34 1 666.0 191.9 
8/8/13 10:34 2 222.0 57.2 
8/8/13 10:34 3 123.3 29.1 
8/8/13 10:34 4     
8/8/13 10:34 5 74.0 17.5 
8/8/13 10:34 6 246.7 92.8 
8/8/13 10:34 7 148.0 60.6 
8/8/13 10:34 8 49.3 14.9 
8/8/13 10:34 9 172.7 37.4 
8/8/13 10:34 10 197.3 43.6 
8/8/13 10:34 11 74.0 16.5 
8/8/13 10:34 12 98.7 25.3 

8/30/13 12:50 1     
8/30/13 12:50 2 407.1 50.2 
8/30/13 12:50 3 168.8 14.9 
8/30/13 12:50 4     
8/30/13 12:50 5 89.4 23.9 
8/30/13 12:50 6 595.8 259.6 
8/30/13 12:50 7 119.2 42.2 
8/30/13 12:50 8     
8/30/13 12:50 9     
8/30/13 12:50 10     
8/30/13 12:50 11     
8/30/13 12:50 12     
9/13/13 12:22 1 0.0 0.0 
9/13/13 12:22 2 517.9 64.1 
9/13/13 12:22 3 102.0 13.4 
9/13/13 12:22 4     
9/13/13 12:22 5 78.5 20.3 
9/13/13 12:22 6 455.1 199.5 
9/13/13 12:22 7     
9/13/13 12:22 8     
9/13/13 12:22 9     
9/13/13 12:22 10     
9/13/13 12:22 11     
9/13/13 12:22 12     
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9/23/13 9:32 1 66.6 11.9 
9/23/13 9:32 2 133.2 25.2 
9/23/13 9:32 3 44.4 8.6 
9/23/13 9:32 4 22.2 4.4 
9/23/13 9:32 5 44.4 10.5 
9/23/13 9:32 6 122.1 39.2 
9/23/13 9:32 7 44.4 3.9 
9/23/13 9:32 8     
9/23/13 9:32 9 66.6 16.2 
9/23/13 9:32 10 44.4 10.3 
9/23/13 9:32 11 44.4 6.0 
9/23/13 9:32 12 22.2 2.0 
10/7/13 11:14 1 101.3 38.6 
10/7/13 11:14 2 46.8 16.3 
10/7/13 11:14 3 15.6 5.5 
10/7/13 11:14 4 31.2 8.4 
10/7/13 11:14 5 608.1 64.8 
10/7/13 11:14 6 241.7 96.9 
10/7/13 11:14 7 93.6 18.5 
10/7/13 11:14 8     
10/7/13 11:14 9 46.8 8.5 
10/7/13 11:14 10 93.6 11.4 
10/7/13 11:14 11 62.4 19.0 
10/7/13 11:14 12 31.2 10.1 
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