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ABSTRACT 
 
 

AN EVALUATION OF CITIZEN SCIENCE-BASED INDICES FOR MONITORING THE 

DISTRIBUTION AND ABUNDANCE OF BOBCATS (LYNX RUFUS) 

by 

Tyler J. Mahard 

University of New Hampshire, December, 2014 

 

 Carnivores substantially impact humans, but are elusive and difficult to monitor. 

Although less precise than intensive methods (e.g., capture-recapture), indices of relative 

abundance are widely used to monitor carnivore numbers. This study assessed public sightings 

and hunter surveys as approaches to monitoring the distribution and relative abundance of 

bobcats (Lynx rufus) in New Hampshire. To validate indices, I used a telemetry-based model of 

habitat suitability and information from camera surveys conducted by volunteers in three study 

areas. Bobcats were found widely distributed in New Hampshire with lower abundance in 

northern and mountainous regions. Public sightings and hunter surveys (both effort-corrected) 

were strongly correlated to each other and the suitability model when summarized by Wildlife 

Management Unit. Detection rates from camera surveys were correlated to other indices and 

the model within the three study areas. I suggest future research validate indices using absolute 

abundance, and assess influences of confounding variables.  
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 
 Monitoring changes in the distribution and abundance of wildlife populations is vital for 

managing relationships between wildlife and people. Monitoring is achieved through repeated 

documentation of the occurrence of animals throughout an area of interest (Thompson et al. 

1998). Distribution (where a species occurs) and abundance (number of individuals) indicate a 

population’s status and responses to environmental factors. Factors including harvests (Litvaitis 

et al. 2006), urban development (Fahrig 1997), road traffic (Seiler and Helldin 2006), pollution 

(Newman 1979), and prevalence of invasive species (Pimentel et al. 2005) cause observable 

changes in wildlife populations and are anthropogenic in origin. Natural factors, such as winter 

severity (Delgiudice et al. 2002), changes in habitat composition (Hodorff et al. 1988), predation 

(Bulmer 1974), and competition (Litvaitis and Harrison 1989) may also elicit responses. 

Detecting fluctuations in distribution and abundance through monitoring can reveal how these 

factors influence wildlife and reach a point of concern that warrants management action. 

 Due to their profound interactions with humans, carnivores represent an important taxon 

to monitor (Treves and Karanth 2003, Inskip and Zimmermann 2009), but present substantial 

challenges due their elusive natures and low population densities (Gompper et al. 2006, Long et 

al. 2008). Assessing their distribution requires logging locations of occurrence. These may be 

based on kills (Richens and Hugie 1974), observations (Broman et al. 2014), or physical 

evidence (e.g., tracks or feces; McDaniel et al. 2000). A comprehensive assessment of 

distribution also requires knowing where a species does not occur. This is achieved through 

systematic surveys that assess presence versus absence (e.g., Long et al. 2011). For 
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carnivores, this may involve searching for tracks (Zielinski et al. 1995), scats (Palomares et al. 

2002), or other evidence of occurrence. Recently, motion-triggered cameras have become a 

popular and cost-effective tool for detecting carnivores (O’Connell et al. 2011).  

 In contrast, assessing abundance generally requires more information. Capture-

recapture, a common approach, involves sampling multiple groups of individuals and uses the 

proportion of resampled individuals in subsequent samples to estimate population size (White et 

al. 1982). Intensive approaches such as this provide accurate estimates of abundance, but 

generally are limited in spatial scope due to high effort and costs (e.g., Mowat and Strobeck 

2000, Trolle and Kéry 2003, Coster et al. 2011, Goswami et al. 2011).  

 Extensive approaches frequently rely on an index of relative abundance that involves 

monitoring a parameter assumed to be correlated to abundance (Thompson et al. 1998, 

Engeman 2005, O’Brien 2011). Examples include occurrences of frog calls (Royle 2004), 

bandicoot road-kills (Mallick et al. 1998), and bobcat harvest counts (Nunley 1978). Because 

such variables are usually easy to tally, indices are used for large areas (Rolley 1985, Barea-

Azcón et al. 2006, Cooper et al. 2012). However, confounding variables (i.e., factors other than 

animal abundance) may influence index values, and are often difficult to control (Pollock and 

Nichols 2002, MacKenzie 2006). For example, bandicoot road-kill rates could be influenced by 

factors such as road density, traffic volume, and the tendency of bandicoots to cross roads, all 

of which may change over time or vary from one region to the next. However, Mallick et al. 

(1998) incorporated traffic volume to standardize the index, and comparisons were made across 

equal-length stretches of road. As a result, they observed substantial agreement between 

numbers of bandicoots killed on roads (adjusted for traffic volume) and those captured in 

trapping grids over a four-year period. Similar to this, time spent hunting has been documented 

as ‘survey effort’, and used to standardize indices of abundance based on numbers of wildlife 

sightings by hunters (Solberg and Saether 1999, Cooper et al. 2012).  
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 Geographic models that use environmental variables to predict abundance or habitat 

suitability are an additional extensive approach. Locations of individuals obtained from telemetry 

collars (Roberts et al. 2010), incidental observations (Woolf et al. 2002, Linde et al. 2011), or 

both (Reed 2013) have been used to characterize relationships between environmental 

variables and habitat suitability. Environmental variables are generally restricted to those easily 

described throughout an area of interest (e.g., elevation, forest type, road density). This allows 

for modeling of abundance, distribution, or habitat suitability throughout an entire area of 

interest, and the species of interest needs to be documented in only a portion of that area 

(DeCesare et al. 2012, Sequeira et al. 2014).  

 A system for collecting information on species occurrence is an essential component of 

any monitoring effort. This may be costly when assessing abundance across a large area. 

However, recent advances in technology (i.e., internet, geographic positioning systems, 

smartphones) have made it easier for members of the public to become citizen scientists and 

participate in data collection (Silvertown 2009, Dickinson et al. 2012). Citizen science offers a 

means for boosting survey effort with low cost, making it a boon for the detection of elusive 

species (Watkins and Moskowitz 2007, Erb et al. 2012, Nagy et al. 2012, Sequeira et al. 2014). 

Often, hunters are solicited, as they do not need additional incentives to enter wildlife habitats 

(Woolf et al. 2002, Kindberg et al. 2009, Rich et al. 2013). Because hunters are often required to 

correspond with state wildlife agencies (e.g., obtaining permits or harvest tags), much of the 

infrastructure for data collection is in place. Such is the case in New Hampshire, where hunters 

and other members of the public have been enlisted to collect information on bobcats (Lynx 

rufus).  

 After a suspected decline in bobcat numbers that coincided with land-use changes in the 

1900s (Litvaitis et al. 2006), public sightings and vehicle collisions suggested that populations 

had since expanded in New Hampshire (Broman et al. 2014), as in other regions (Roberts and 

Crimmins 2010). Establishment of baseline data on the current distribution and abundance of 
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bobcats in New Hampshire is needed to determine how these populations are responding to 

ongoing environmental changes.  

 New Hampshire’s mean annual temperature has been steadily increasing over the past 

century (NOAA, Silver Spring, MD). Because cold temperatures (Mautz and Pekins 1989) and 

deep snow (McCord 1974) may limit bobcats (Fox 1990), warming is expected to result in 

further range expansions, and possibly encroachment into the range of federally-threatened 

Canada lynx (Lynx canadensis). Bobcats are believed to displace lynx in areas of sympatry 

(Peers et al. 2013), and hybridization, though rare (Koen et al. 2014), could facilitate absorption 

of lynx into expanding bobcat populations. Expansion and migration of bobcat populations in 

northern New Hampshire could pose a threat to conservation plans in neighboring Maine, where 

the US Fish and Wildlife Service has designated areas of critical habitat for lynx (Fish and 

Wildlife Service 2014).  

 Wildlife conservation efforts for numerous species can benefit from information on the 

distribution and abundance of bobcats. As top carnivores, the presence of bobcats indicates 

habitat that supports prey, particularly deer (Odocoileus virginianus) and smaller mammals 

(e.g., lagomorphs) (Litvaitis et al. 1984). This, and the fact that bobcats require large areas to 

procure enough prey make them an appropriate focal species for conservation efforts (Crooks 

2002, Rubino and Hess 2003). The Nature Conservancy’s “Staying Connected” initiative, which 

seeks to preserve habitat linkages in the northeastern United States, has identified bobcats as a 

“Species of Greatest Conservation Need” in this region (The Nature Conservancy 2013). The 

initiative identified habitat fragmentation, degredation, and conversion, as well as transportation 

corridors, as major drivers of habitat loss for bobcats and other carnivores. The steady increase 

in New Hampshire’s human population over the past century (U.S. Census Bureau, Suitland, 

MD) suggests that these drivers will likely continue to threaten wildlife habitat.  

 In addition to potential impacts on lynx, and relevance to conservation planning, changes 

in the distribution and abundance of bobcats are important because bobcats have an impact on 
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people. Anecdotal evidence in New Hampshire and other regions (Harrison 1998) suggests that 

people living in areas with bobcats are mostly fond of them. Regarded as rare and beautiful, 

bobcats invoke a sense of awe and wonder in humans that encounter them. On the other hand, 

bobcats may invoke fear, frustration, and hatred as they are occasionally predators of livestock 

and pets (Hansen 2007, Inskip and Zimmermann 2009). This notion of bobcats as varmints, 

along with the fur trade, encouraged trapping in the past (Litvaitis et al. 2006). If bobcat 

populations increase in New Hampshire, members of the public may push for trapping and 

hunting seasons to reopen. The listing of bobcats under Appendix II of the Convention on the 

Trade in Endangered Species of Wild Fauna and Flora requires that sufficient information exists 

to indicate that harvests do not jeopardize bobcat populations (Convention on the Trade in 

Endangered Species of Wild Fauna and Flora, 2014). Thus, a monitoring program for bobcats in 

New Hampshire will become essential if harvests resume. 

 Over the past five years, the New Hampshire Fish and Game Department has collected 

numerous records of bobcat observations through hunter surveys. Concurrently, researchers at 

the University of New Hampshire have been logging incidental observations of bobcats reported 

by the general public (public sightings). Both datasets are statewide in scope and convenient for 

generating indices of relative abundance. However, because relationships between parameters 

for abundance and animal abundance tend to change across time and space, indices should not 

be assumed to reflect relative abundance unless validated by intensive estimates of absolute 

abundance (Conn et al. 2004, O’Brien 2011). Due to high costs, a common approach is to 

validate an index in a few disjunct study areas, rather than an entire area of interest (Rovero 

and Marshall 2009). But, when the species of interest is elusive, costs may still be too great. For 

example, searches for bobcat scats in an effort to generate DNA-based capture-recapture 

abundance estimates for New Hampshire revealed that scat detection rates were too low to 

make the approach cost-effective (J. Litvaitis, University of New Hampshire, unpublished data).  



6 

 Photographic capture-recapture estimates using individual recognition have been used 

to estimate bobcat abundance in other regions (Heilbrun et al. 2006, Larrucea et al. 2007), and 

may be more cost effective than DNA-based approaches (Clare 2013). However, low detection 

rates of bobcats by camera surveys in Vermont (adjacent to New Hampshire) suggest this could 

be infeasible as well (Moruzzi et al. 2002, Long et al. 2007, 2011). In lieu of rigorous abundance 

estimates, comparison of indices to each other and to predictive geographic models (e.g., 

Cooper et al. 2012) is the most appropriate approach to validate indices. 

 Based on the logistical difficulties associated with estimating the absolute abundance of 

bobcats in New Hampshire, comparison of indices based on hunter surveys and public sightings 

to indices based on detection rates from camera surveys, and a model of bobcat habitat 

suitability, may be the most practical method to evaluate current monitoring systems. 

Conveniently, a model of bobcat suitability has recently been developed for New Hampshire 

(Reed 2013). The model used the relationship between locations of bobcats (from GPS-collars 

and public sightings) and several environmental variables to describe habitat suitability 

statewide. 

 

Objectives 

 Through assessment of indices, my goal was to provide information useful in the 

development of monitoring protocols that would be practical, low cost, and able to reveal 

changes in the distribution and abundance of bobcats in New Hampshire. I evaluated citizen 

science-based indices (public sightings and hunter surveys) in an assessment of the current 

distribution and relative abundance of bobcats in New Hampshire. Citizen observations of 

bobcats were logged by township to determine distribution and by larger wildlife management 

units to determine relative abundance. To validate indices from citizen observations, volunteers 

conducted camera surveys over an expected gradient in bobcat abundance across three study 
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areas. Abundance indices were also compared to a habitat suitability index for New Hampshire 

developed by Reed (2013), under the assumption that abundance would be higher in more 

suitable habitat. Agreement among indices was assessed by correlation. Specific objectives 

included the following: 

 

1. Evaluate the utility of citizen observations to assess the statewide distribution of bobcats. 

2. Develop methods to account for sampling effort for citizen observations of bobcats. 

3. Compare agreement among indices of bobcat abundance based on public sightings, 

hunter surveys, camera surveys, and a model of bobcat habitat suitability. 

4. Provide recommendations to enhance the precision of statewide bobcat monitoring 

efforts. 
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CHAPTER 2 
 
 
 

METHODS 
 
 
 

Study Area 

 New Hampshire (24,217-km2) is near the northern limit of the geographic range of 

bobcats (Fig. 2-1) and contains uninhabited townships in the White Mountains as well as 

densely populated cities (e.g., Manchester, Nashua). The state’s human population increased 

from 1,316,470 in 2010 to 1,323,459 in 2013 (U.S. Census Bureau). The White Mountains span 

central New Hampshire and contain the state’s maximum elevation, 1917 m at the summit of 

Mount Washington. The state is approximately 78% forested, with an abundance of mixed 

forests including white pine (Pinus strobus), eastern hemlock (Tsuga canadensis), red oak 

(Quercus rubra), and American beech (Fagus gradifolia) as dominant species (Justice et al. 

2002). Development, agriculture, open water, wetlands, and cleared land each account for ~3-

6% of total area (Justice et al. 2002). 

 Sympatric carnivores that may affect the distribution and abundance of bobcats in New 

Hampshire include lynx (Lynx canadensis), coyotes (Canis lantrans), red foxes (Vulpes vulpes), 

gray foxes (Urocyon cinereoargenteus), and fishers (Martes pennanti). White-tailed deer 

(Odocoileus virginianus), cottontails (Sylvilagus spp.), snowshoe hares (Lepus americanus), 

gray squirrels (Sciurus carolinensis), red squirrels (Tamiasciurus hudsonicus), and other small 

mammals constitute the bulk of bobcat prey (Litvaitis et al. 1984). 
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Figure 2-1. New Hampshire within the geographic range of bobcats (adapted from Hansen 2007). 
Satellite imagery (right) derived from Landsat 7 data and National Elevation Dataset, acquired July 1999 
– September 2002, U.S. Geological Survey. Purple indicates developed land. 
 

Spatial Scales for Distribution and Relative Abundance 

 Distribution, or where a species is found, may be expressed as either the ‘extent of 

occurrence’ or ‘area of occupancy’ (Gaston 1991). Extent of occurrence is the area bounded by 

the outermost limits beyond which a species is no longer found, whereas area of occupancy 

describes where the species exists within the extent of occurrence. In contrast to these, relative 

abundance is a measure related to the number or density of individuals such that differences in 

abundance between regions or over time may be inferred. 

 As New Hampshire is contained within the extent of occurrence for bobcats, I sought to 

describe the area of occupancy statewide. Because citizen observations included township of 

occurrence, townships served as convenient spatial units to identify regions where bobcats 
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existed and regions where they may have been absent. Due to its irregularly large size (754 

km2), the township of Pittsburgh was divided into two spatial units using the WMU boundary 

between A1 and A2 (Appendix G). This provided 260 spatial units ranging in area from 2 to 393 

km2 (𝑥 = 88 km2; Complex Systems Research Center, Durham, NH). Because a township of 

average size could contain at most 3-4 exclusive female bobcat home ranges of average size 

(23.8 km2; Reed 2013), I expected random variation among the frequencies at which individual 

bobcats were observed to confound abundance indices at this scale. Given the small size of 

townships, and the small number of bobcat observations produced by each, presence-absence 

was the most appropriate monitoring approach (Pollock 2006). I could not control or sufficiently 

estimate the distribution of survey effort by citizen observers within townships, thus townships 

that did not produce bobcat observations were considered to have unknown status.  

 Larger wildlife management units (WMU; 302–2407 km2; 𝑥 = 1002 km2) were used to 

describe relative abundance. This allowed for index values based on larger sample sizes, and I 

expected less influence from confounding variables. Further, WMUs are predominantly bounded 

by major highways, which may act as substantial barriers to bobcat dispersal (Riley et al. 2006). 

Many factors that affect bobcat abundance (e.g., land use, climate, forest types, topography, 

and human densities) were used to delineate WMUs. Thus, WMUs provide convenient strata for 

managing and assessing the abundance of bobcats because conditions relevant to bobcats are 

expected to be similar within a given WMU.  

 

Sources of Information 

 I obtained citizen observations of bobcats from incidental public sightings (PS) and 

hunter surveys (HS) statewide from 2009 through 2013. To validate these indices, camera 

surveys (CS) for bobcats were conducted in a restricted portion of the state in 2013, and a 

habitat-based index was generated from a model of bobcat habitat suitability (MHS) for New 
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Hampshire developed by Reed (2013). Although indices should be calibrated using rigorous 

estimates of absolute abundance, this was financially and logistically infeasible. Because some 

regions of the state produced scarce PS and HS, citizen observations were summed over the 

five-year period to maximize the spatial scope within which distribution and abundance could be 

inferred. For some regions, distribution and abundance could not be estimated due to low 

survey effort and few bobcat observations. A potential disadvantage of aggregating 5 years of 

data is that temporal variation in abundance and effort could have resulted in inaccurate indices 

of relative abundance. For example, if effort in a given region was skewed toward the early 

portion of the 5-year period, and bobcat numbers were consistently increasing in that region, the 

resulting index value would be more representative of the first few years rather than the entire 

period.  

Public sightings (PS) 

 Reports of observations of bobcats were collected from the general public through 

emails solicited by a university website (mlitvaitis.unh.edu/Research/BobcatWeb/bobcats.htm) 

from April 2009 through March 2014. Observers were requested to report their name and the 

date, time, township, exact location, observation type (i.e., seen, tracks, trapped, road kill, 

other), and bobcat’s activity for each observation. Multiple observations from the same observer 

in the same location on the same day were counted as one sighting, as were sightings of 

multiple bobcats by one observer at one time. Sightings that occurred outside of the collection 

period or for which the date was not indicated were excluded. Township and WMU (Appendix 

G) of each occurrence were determined based on the reported township and location 

description provided by the observer (Appendix D). Records for which the location described by 

the observer did not match the reported township were excluded, unless the location was just 

outside of the reported township and it was obvious that the observer had unknowingly crossed 
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a township boundary. In this scenario I recorded the township that corresponded to the location 

described by the observer.  

 Observations were screened to remove records that were more likely to be a product of 

an observer witnessing something (or the sign of something) other than a bobcat (McKelvey et 

al. 2008). Reports of bobcats based on sound or tracks were excluded. Reports for which the 

observer expressed uncertainty that the observed animal was a bobcat, and reports for which 

the observer described physiological features that were not bobcat features were also excluded. 

Photographs of bobcats and information to assist observers in identifying bobcats were provided 

on the project website. Screened sightings that occurred from April 1, 2009 through March 31, 

2014 were summed by township and by WMU to assess distribution and abundance, 

respectively 

Hunter surveys (HS) 

 New Hampshire Fish and Game Department (NHFG) mailed survey cards to registered 

deer hunters before the start of each deer season from 2009 through 2013 (Appendix E). 

Hunters were asked to record the date, WMU, township, duration in hours, and number of deer, 

bears, moose, and bobcats seen for each of their hunting outings during the season. Records 

for which the reported WMU and township were not spatially coincident, or for which the entry in 

the “town” field could not be matched to a township in the New Hampshire Political Boundaries 

spatial dataset (Complex Systems Research Center, Durham, NH), were excluded from 

analyses. When summarizing by WMU, records for which the WMU was not fully specified (e.g., 

“A” instead of “A1” or “A2”) were excluded unless the fully specified WMU could be inferred 

based on the reported township and the geography of its boundary (Appendix G). The number 

of hunter outings during which one or more bobcats were observed were summed by township 

and by WMU to assess distribution and abundance, respectively.  
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Camera surveys (CS) 

 Trail-camera surveys were conducted by citizen scientists in WMU H2S, I2, and M in 

November and December of 2013. These WMUs were selected as study areas based on hunter 

survey data collected from 2009 through 2012 (Appendix B). Relative to other WMUs, I2, H2S, 

and M had high, medium, and low observation rates of bobcats (bobcats observed per hunter 

hour), respectively, from 2009 through 2012. I expected to observe the same trend in camera 

detection rates of bobcats. Although I expected substantial volunteer recruitment based on high 

public interest in bobcat research (P. Tate, New Hampshire Fish and Game Department, 

personal communication), low detection rates of bobcats were anticipated, making a capture-

recapture approach impractical. Thus, detection rates were used as an index of relative 

abundance. This was a major concern because use of an index to validate other indices (i.e., 

those based on hunter surveys and public sightings) is far from an ideal approach, as 

confounding variables that are difficult to estimate and control influence all indices.  

 Volunteers were recruited through emails and press releases from NHFG, and 

announcements on the bobcat project webpage (mlitvaitis.unh.edu/Research/BobcatWeb/ 

bobcats.htm) and NHFG Facebook page. Prior to camera surveys, volunteers attended training 

sessions where they received attractant kits, watched a demonstration of camera setup, and 

asked questions. All volunteers received a protocol that explained camera and attractant setup 

(Appendix C). I selected attractants that successfully detected bobcats in this region (Long et al. 

2011, Wellington et al. 2014). Attractants included Caven’s “Gusto” Long Distance Call Lure 

(Minnesota Trapline Products, Pennock, MN) mixed with petroleum jelly and smeared to a tree, 

a fiberglass wick soaked in catnip oil imitation (F&T Fur Harvesters Trading Post, Alpena, MI), 

and half of a 15-cm foil pie tin suspended from a tree branch. 

 Prior to volunteer recruitment, 60 13.3-km2 survey units were selected for each study 

area in an effort to promote even camera distribution and standardize study area size between 

the three WMUs. In an effort to maximize detection rates, survey units were selected by overlay 
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with a model of bobcat habitat suitability (Reed 2013) and selection of the 60 grid cells that 

contained the most land area with a habitat suitability ranking >0.4 (Fig. 2-2, suitability model 

description to follow). Efforts were organized into three survey periods (Nov 1st–16th, Nov 15th–

Dec 2nd, Nov 29th–Dec 16th). Volunteers were asked to identify a survey unit to deploy one 

camera station in prior to the start of each survey period. Volunteers who wished to deploy 

multiple cameras simultaneously were asked to select multiple survey units. Updated maps that 

showed available survey units were continually provided to volunteers to avoid multiple camera 

stations in one unit. Volunteers were asked to move their cameras to a new survey unit for each 

subsequent survey period, and were encouraged to select units that had not yet been surveyed.  

 For each camera station deployed, volunteers were asked to report the study area, 

survey unit, make and model of the camera, deployment and collection dates, geographic 

coordinates of the camera with an error estimate if available, a written description of the 

camera’s location, comments on camera settings, and confirmation that the protocol was 

followed. Verbal descriptions of locations and hyperlinks to online mapping sources were 

accepted from volunteers who were unable to obtain coordinates from a GPS unit and spatial 

uncertainty was estimated using the methods described for determining coordinates of PS 

locations (Appendix D). Photos were primarily collected via internet cloud; some volunteers 

preferred to mail a CD containing image files. Volunteers were asked to submit all photographs 

collected by their cameras during the survey.  



15 

 

Figure 2-2. Method for determining locations of grid cells selected by citizen scientists for trail camera 
surveys. The map shows 60 13.3-km2 grid cells arranged about WMU M (Study Area C) and overlain on a 
model of bobcat habitat suitability (Reed 2013) such that the amount of land area with habitat suitability 
>0.4 is roughly maximized. This was repeated in WMU H2S and I2 (Appendix B). 
 

Model of habitat suitability (MHS) 

 A model of habitat suitability (MHS) for bobcats in New Hampshire was developed by 

Reed (2013). The model ranked 30-m raster cells covering the state on a scale of increasing 

suitability from 0 to 1. At a coarse resolution, raster rank was influenced by the locations of 665 

public sightings (collected December 2007 through January 2013) in relation to mean monthly 

snow depth and elevation. At a fine resolution, raster rank was influenced by habitat selections 

of 18 GPS-collared bobcats in relation to 10 environmental variables expected to influence 

probability of bobcat use (see Table 2-1 of Reed 2013). The MHS was used to determine a 

habitat suitability index (HSI) value for each township and WMU by taking the average raster 

value of all raster cells coincident with land area in each WMU. Open water was excluded using 

NH Land Cover Assessment 2001 data (Complex Systems Research Center, Durham, NH). 

Processing of geospatial data was accomplished using ArcMap 10 software (ESRI, Redlands, 

CA) and the Spatial Analyst extension.  
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Sources of Error and Sampling Effort  

 Because township and WMU boundaries did not coincide, it was often necessary to 

pinpoint locations of PS on a map to determine corresponding WMUs. Due to wide variability in 

the amount of location detail provided by observers, I used a modification of methods developed 

by Wieczorek et al. (2004) to estimate a measure of spatial uncertainty for each pinpointed 

location (see Appendix D for details). If the spatial uncertainty was greater than the distance 

between the pinpointed location and the nearest WMU boundary, WMU was marked “unknown”. 

In accordance with the methods of Wieczorek et al. (2004), records that contained dubious, 

unidentifiable, or contradicting locality descriptions (e.g., “town of Concord?”) were excluded. 

 Location bias in favor of roads and human developments was anticipated among PS 

(Broman et al. 2014). Preliminary analyses indicated that most PS occurred in backyards and 

where bobcats crossed roads. Thus, total road length was used as a parameter for effort for 

each WMU. Because major highways defined many WMU boundaries, I excluded roads that ran 

along boundaries when calculating total road length for each WMU.  

 For HS, the number of outings during which bobcats were observed (OB) was used as a 

parameter for abundance, and number of hunter outings (O) was used as a parameter for effort. 

Using OB instead of the number of bobcats observed was expected to reduce bias due to 

chance encounters of bobcat family groups, and from repeated observations of the same 

individual during one hunting outing. Although hunters reported the number of hours they spent 

during each outing, I felt that O was a better parameter for effort (contrary to Kindberg et al. 

2009, Linde et al. 2011, and Cooper et al. 2012). This was based on the notion that a high 

number of hunter outings in different locations would produce more bobcat observations than a 

lower number of longer outings, given an equal number of total hunter hours in each scenario. 

With fewer outings, the probability of a bobcat being in an area covered by a hunter would be 

lower. Supporting this, linear least squares regression revealed that O explained variation in OB 
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(r 2=0.84, P<0.05) slightly better than did hours (r 2=0.83, P<0.05), using 24 summaries of HS 

records as observations (summed across all five years for each of 24 WMUs).   

 For CS, detection rate was calculated as the number of bobcat detections per trap night 

(TN). A detection was counted for each sequence of bobcat photographs in which all 

photographs were separated by <0.5 hours from others (similar to Kelly and Holub 2008). TN 

were calculated by summating the number of 24-hour periods of surveillance accomplished by 

each camera (similar to Karanth et al. 2006).  

 For PS, HS, and CS, parameters for effort were positively correlated to parameters for 

abundance (Fig. 2-3, 2-4, 2-5), supporting the idea that effort parameters were substantially 

driving abundance parameters.  

 

 

Figure 2-3. Correlation between a parameter for bobcat abundance (Sightings) and a parameter for effort 
(Total road length, km) for the public sightings index. Sample units consisted of 24 WMUs (left), and 260 
townships (right), with the town of Pittsburg divided into two units. ‘Sightings’ include all screened 
descriptions of bobcat observations sent to University of New Hampshire website from April 2009 through 
March 2014. Data on road lengths were obtained from the New Hampshire Department of Transportation 
(Concord, NH).  
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Figure 2-4. Correlation between a parameter for bobcat abundance (Outings with bobcat observed) and 
a parameter for effort (Outings) for the hunter survey index. Sample units consisted of 24 WMUs (left), 
and 260 townships (right), with the town of Pittsburg divided into two units. All parameters were 
summarized from records of hunter outings collected by the New Hampshire Fish and Game Department 
from 2009 through 2013.  
 

 

 

Figure 2-5. Correlation between a parameter of bobcat abundance (Detections) and a parameter for 
effort (Trap nights) for three study areas in southern New Hampshire. Data was derived from camera 
surveys conducted by citizen scientists in southern New Hampshire from 1 November 2013 through 16 
December 2013.   
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Assessing Distribution of Bobcats from Indices 

 Townships that had 1 or more records of bobcat observations from PS or HS were 

considered occupied. Townships for which presence and unknown status of bobcats were 

declared by both indices were identified and totaled. PS and HS were combined to create a final 

distribution map depicting all townships in which bobcats were observed. Because the 

distribution of HS effort within each township was unknown, and because lack of PS for a given 

township could have been due to lack of reporting rather than lack of bobcats, bobcat absence 

was not presumed for any township. However, townships with high effort and no bobcat 

observations were identified to provide a sense of where bobcats were most likely to be absent 

or scarce. 

 

Comparing Indices of Relative Abundance 

 For PS, HS, and CS, indices of relative abundance were created by dividing the 

respective parameters for abundance by effort. Relative abundance from the MHS was taken as 

the land-area HSI mean of each WMU, under an assumption of direct correlation between 

bobcat abundance and habitat suitability. An index value of relative abundance from PS, HS, 

and MHS was calculated for each WMU.  

 Spearman’s rank correlation among PS, HS, and MHS indices was determined in a 

pairwise fashion by WMU. Among PS and HS indices, WMU that received a small amount of 

sampling effort were expected to have had a smaller percentage of their area sampled, and thus 

produce index values less representative of the entire WMU. To determine which WMU were 

not adequately sampled, and to reduce the influences of confounding variables due to small 

sample sizes, WMU were only included in analyses if they received enough sampling effort for 5 

bobcat observations at the average statewide rate. For PS and HS indices, average statewide 

rates were determined by dividing the summation of the effort parameter from all WMUs by that 
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of the abundance parameter (e.g., total hunter outings divided by total outings with bobcat 

observed, statewide).  

 Because CS produced limited data and did not occur statewide, Pearson correlation 

coefficients were calculated between the CS index and the PS, HS, and MHS indices using the 

three study areas as sample units and records from 2013 only. For this analysis, data from all 

indices were restricted to townships that contained camera stations. Logistic regression was 

used to compare the CS and MHS indices at a finer resolution. Mean HSI value of all land area 

within a 1-km radius about each camera station was assessed as a predictor variable for bobcat 

detection. A radius of 1 km was selected as a compromise such that values from the MHS 

would be representative of the camera’s immediate surroundings while allowing for some spatial 

uncertainty (i.e., discrepancy between actual location of camera and location defined by 

reported coordinates; Appendix D). The maximum uncertainty among camera locations where 

bobcats were detected was 800 m. Because the number of camera stations that detected 

bobcats limited the statistical power of the analysis, 800 m was the maximum allowable 

positional uncertainty for inclusion of location records. The probability of a camera station 

detecting a bobcat was expected to increase with mean MHS value. All statistical analyses in 

this study were performed in JMP 11.0 (SAS Institute, Cary, NC).
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CHAPTER 3 
 
 
 

RESULTS 
 
 
 
 I received 938 public sightings (PS) from April 2009 through March 2014. Of these, 886 

were successfully screened from 187 townships, and 819 were assigned to 23 WMU. NHFG 

received 83,406 records of hunter outings through hunter surveys (HS) over the 5-year period. 

Of these 82,796 were successfully screened from 173 townships, and 80,146 were assigned to 

24 WMUs.  

 Of >77 prospective citizen scientists who reserved survey units or expressed interest in 

participating, 55 sent photographs from 180 completed camera surveys. Of these, 13 surveys 

were excluded from analyses due to incorrect camera positioning, camera malfunction, and 

unaccounted for images missing from photograph sequences (see Appendix C).  The remaining 

167 surveys collectively produced 2264 trap nights (TN; 𝑥 ≈13.6). When volunteers failed to 

report deployment and collection dates, I used date stamps on the first and last photographs of 

the attractant setup to calculate TN. When there was a photo of a volunteer setting up or 

removing attractants with a date stamp before or after the respective reported date, I used the 

date stamp to calculate TN. If a volunteer failed to report one or both dates and their photos 

lacked date stamps, I assumed a survey duration of 14 days. I disregarded all photos and TN 

generated after Dec 16th. Camera surveys that detected bobcat (n=14, 8%) produced a total of 

15 detections (Fig. 3-1), yielding an overall detection rate of 0.66 detections per 100 TN. Study 

areas included 48 townships and bobcats were detected in 11 of these.
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Figure 3-1. Camera locations (n=164) including those with bobcat detections (n=13) and restricted study 
area boundaries for camera surveys conducted by citizen scientists in November and December of 2013. 
Coordinates were not received for one camera station in each study area. 
 

Statewide Distribution of Bobcats 

 Collectively, PS and HS detected bobcats in 211 of New Hampshire’s 259 townships 

(Fig. 3-2). Although there was substantial overlap among bobcat detection from the two 

sources, PS seemed to provide more information on the statewide distribution of bobcats. 

Specifically, PS occurred in 187 townships and 86% of the townships where hunters reported 

bobcats, while HS detected bobcats in 173 townships and 79% of the townships where PS 

occurred. However, PS and HS complement one another. PS occurred in 24 southeastern 

townships, and 15 closer to the White Mountains, that HS failed to detect bobcats in. HS 

detected bobcats in 13 northern and 12 southern townships that PS failed to detect bobcats in. 

There was an obvious lack of bobcat detections by both indices in central New Hampshire and 

in several northern and southeastern townships. 
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Figure 3-2. Distribution of bobcats in New Hampshire based on public sightings (PS) and hunter surveys 
(HS) that occurred from April 2009 through March 2014. Sample units are townships. Township of 
Pittsburg (northernmost township) was divided into two units because of large size. Townships with 
bobcat detected by PS and HS, PS only, HS only, and neither PS nor HS are shaded accordingly. 
Number of townships in each category are indicated.  
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Figure 3-3. Left: number of public sightings overlaid on total road length (km) for each New Hampshire 
township. Right: number of hunter outings with bobcat observations overlaid on total number of hunter 
outings for each New Hampshire township. Five categories for effort ≥1 (total road length, total hunter 
outings), and four categories for detection (public sightings, hunter outings with bobcat observations) 
were determined by natural breaks.  
 

 Overlay of bobcat observations on effort for PS and HS revealed that most townships 

without bobcat observations also had low effort (Fig. 3-3). For PS, the exceptions to this were 

the western half of Pittsburgh, two townships in the vicinity of the White Mountains, and four 

southern townships that had >152 km of road but no sightings. All but one township (Auburn) 

with >328 hunter outings had bobcat observations. 
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Relative Abundance of Bobcats 

 Statewide, PS were received at a rate of 1 per 41.6 km of road over the five-year period 

(based on 819 sightings assigned to WMUs). PS values for WMU A1, C1, D2E, and E1 were 

not calculated because these each had less than 208 km of road (i.e., amount for five sightings 

at statewide rate). Index values of remaining WMUs ranged from 0.3 to 5.4 sightings per 100 km 

of road (𝑥 =1.9, 𝑠 =1.2). Among HS, outings with bobcat observations (OB) occurred at a 

statewide rate of 1 per 122 outings over the five-year period (based on 80,146 outings assigned 

to WMUs). HS values for WMU D2E, E1, E2, and E3 were not calculated because fewer than 

610 outings were logged (i.e., amount for five OB at statewide rate). Index values of remaining 

WMUs ranged from 1.4 to 12.0 OB per 1000 outings (𝑥 =7.7, 𝑠 =3.3). The model of bobcat 

habitat suitability (MHS) provided land-area habitat suitability index (HSI) means that ranged 

from 0.20 to 0.59 (𝑥 =0.47, 𝑠 =0.12) for all 24 WMUs. 

 Considerable variation among relative abundance indices for WMUs was observed (Fig. 

3-4). No WMU was placed in the highest relative abundance category by all three indices. 

However, all indices placed WMUs A2 and B in the lowest category, and J2 was consistently 

placed in the medium category. WMUs D1, D2W, H2S, J2, and K seemed to be subjects of the 

most disagreement among indices. In general, WMU M was ranked lower than surrounding 

WMUs, and northern and central New Hampshire had lower relative abundance than the 

remainder of the state. 
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Figure 3-4. Relative abundance of bobcats in New Hampshire based on public sightings (Sightings of 
bobcats per 100 km of road), hunter surveys (Outings with bobcat observed per 1000 outings), and the 
model of bobcat habitat suitability (Mean habitat suitability of land area). Five abundance categories were 
determined using quantiles. WMUs with low total road length or low hunter outings (Low effort) were 
excluded to facilitate comparison of ranking between indices.  
 

 

Agreement Among Indices of Relative Abundance 

 Despite various ranking orders by WMU (Fig. 3-4), all statewide indices of abundance 

were positively correlated (Fig. 3-5). The PS and MHS indices had the strongest monotonic 

relationship. WMU K was an obvious outlier (2.8 standard deviations above mean) in the PS 

index, and was also ranked highest by the HS index. MHS index values were strongly left 

skewed, indicating a different ranking behavior than PS and HS in which WMUs with high 

suitability occupied a narrow range of values and those with low suitability were distributed 

across a wider range. 



27 

 

Figure 3-5. Pairwise correlations among public sightings (PS), hunter survey (HS), model of bobcat 
habitat suitability (MHS) indices using WMUs as spatial units. P<0.05 in all cases. For PS and HS, WMUs 
with low effort have been excluded. PS is expressed as the number of bobcat sightings per 100 km of 
road. HS is expressed as the number of hunter outings with bobcat observed per 1000 hunter outings. 
Spearman’s-rank (𝑟s) correlation coefficients are provided in the upper left corner of each scatterplot. 
MHS is expressed as the mean habitat suitability index value of all raster cells coincident with land area in 
each WMU. 
 

 Although the relative abundances of bobcats determined from camera surveys were as 

expected based on hunter surveys from 2009 through 2012 (i.e., C=low, A=med, B=high; Fig. 3-

6), a different ranking was observed for PS and HS index values within restricted study areas 
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during 2013 and in the MHS index (i.e., C=low, B=med, A=high). Although all indices ranked 

Study Area C lowest, there was disagreement between CS and all other indices regarding the 

relative abundance of bobcats in study area A versus B. Despite this discrepancy, correlation 

coefficients for pairwise comparisons between indices of abundance in restricted study areas 

were positive and ranged from 0.45 to 1.00 (Table 3-1). CS were weakly correlated with HS and 

PS, and moderately correlated with the MHS. 

 

Figure 3-6. Relative abundance index values in study areas A, B, and C in 2013 for camera surveys (CS; 
bobcat detections per 100 trap nights), public sightings (PS; number of sightings per 100 km of road), 
hunter surveys (HS; number of hunter outings with bobcat observed per 100 hunter outings), and a model 
of bobcat habitat suitability (MHS; mean suitability value of all land area). 
 

 Logistic regression testing land-area MHS means of camera station locations as a 

predictor for bobcat presence was not statistically significant (P=0.48), but produced a model 

displaying increasing probability of bobcat detection with increasing land-area HSI means (Fig. 

3-7). The HSI mean for camera station locations with detections (0.59) was barely higher than 

the HSI mean for those without (0.57). The range of MHS means for locations with bobcat 

detections (0.52 to 0.71) was restricted to higher HSI means, whereas the range for locations 

without detections included lower HSI means (0.21 to 0.69). Non-significance is likely 

attributable to a low sample size of camera locations with bobcat detections (n=13).  
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Table 3-1. Matrix of Pearson’s correlation coefficients for pairwise comparisons of index values from 
camera surveys (CS), hunter surveys (HS), public sightings (PS), and a model of bobcat habitat suitability 
(MHS). Restricted study areas were used as sample units; refer to Fig. 3-6 for index values. 
 

 

 
 
 
 
 
 
 
 
 

 

Figure 3-7. Results of logistic regression assessing land-area habitat suitability index (HSI) means within 
1 km of camera stations as a predictor for the probability of a camera station detecting a bobcat. P=0.48. 
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CHAPTER 4 
 
 
 

DISCUSSION 
 
 
 
 Public sightings (PS) and hunter surveys (HS) revealed that bobcats were widely 

distributed throughout New Hampshire (Fig. 3-2). Although regions in the White Mountains and 

northern townships likely lacked the amount of roads and hunter surveys needed to detect 

bobcats (Fig. 3-3), snow depth and winter severity are expected to substantially limit bobcat 

populations here (Broman et al., 2014; Mautz & Pekins 1989; McCord, 1974). Fox (1990) 

observed substantially lower population densities for bobcats in northern New York’s 

Adirondack Mountains relative to those in southern New York’s Catskill region, where winters 

were less severe. The presence of lynx (with large feet adapted for snow) in northern New 

Hampshire indicates harsher environments for bobcats. Recent surveys by Sirén (2014) 

primarily in New Hampshire’s White Mountain National Forest and northern Vermont produced 

102 and 19 bobcat detections via track and camera surveys, respectively, including five track 

observations and two camera detections at high elevations. Track surveys and cameras 

documented lower detection rates of bobcats at high elevations. Thus, I suspect that a 

combination of low effort and low bobcat densities were responsible for the failure of PS and HS 

to detect bobcats in several townships in the White Mountains and northern New Hampshire.  

 I believe that HS provided a better index of relative abundance than PS. First, HS 

provided reports of presence and absence that were spatially and temporally coincident with 

reported measures of effort. For PS, non-detections were not reported and effort was more 

loosely tied to the parameter for abundance. The PS index was also confounded by variation in 

the probability that a given observation would be reported. For HS, it is safe to assume that
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most hunters who reported effort also reported all of their bobcat observations. For PS, I 

suspect that residents in some regions were more likely to report bobcats than in others. This 

discrepancy cannot be accounted for without conducting some type of public survey. An 

additional advantage of HS is that the system is already in place, and hunters are willing to 

participate in surveys. For PS, effort is needed to solicit observations and maintain interest such 

that the public is compelled to report observations when they occur.       

 When considering future monitoring efforts, it is important to note that distribution and 

relative abundance are determined using the same information. For distribution, locations of 

observations are logged to determine a geographic range. For relative abundance, locations of 

observations are logged and totaled by geographic units to represent the relative density of 

individuals. When assessed at the same spatial resolution (e.g., by township), the two measures 

differ in that distribution requires only one observation to assert that a township is occupied, 

whereas relative abundance requires multiple observations and a measure of effort such that 

the number of individuals may be gauged. If observational effort can be assumed to be constant 

through space and time, it does not need to be measured. This is hardly the case for PS and 

HS, as indicated by spatial variation in the density of roads and hunter surveys (Fig. 3-3). 

Knowledge of relative abundance is needed to thoroughly assess the status of bobcats over 

time. If only enough records were collected to assert distribution, shifts in density could go 

undetected, while the area of occupancy would appear relatively unchanged at the resolution of 

township. However, if distribution were described at a spatial resolution of home range-size or 

finer, the proportion area occupied may provide a good index of relative abundance for any 

spatial unit larger than several home ranges (MacKenzie and Royle 2005).  
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Indices and Confounding Variables 

 Despite cautions against use of indices to monitor wildlife populations (MacKenzie 2006, 

O’Brien 2011), they are prominently employed by wildlife management agencies (e.g., for 

bobcats, see Roberts and Crimmins 2010) and in research-oriented studies (Conn et al. 2004, 

Evangelista et al. 2009, Kindberg et al. 2009, Bengsen et al. 2011, Letnic et al. 2011). Thus, 

increased understanding of the problems associated with indices is needed (Sollmann et al. 

2013). Studies that rely on indices of relative abundance should acknowledge these problems 

(Linde et al. 2011, Cooper et al. 2012). To infer changes in abundance from an index, variation 

in the value of the index must be caused by variation in animal abundance. No factors other 

than animal abundance (i.e., confounding variables), neither singly nor in concert, should 

overpower variation in animal abundance as a driver of the index. An important, but 

unmeasured factor influencing the PS, HS, and CS indices was the detection probability of 

bobcats (Conn et al. 2004, MacKenzie 2006).  

 The probability that a bobcat observation will occur is influenced by the nature and 

amount of detection effort, by the behavior and abundance of bobcats, and by the 

environmental setting. Factors such as hunting techniques, number of potential observers, and 

time spent with bobcat habitat in view likely influence detection effort. Habitat preferences of 

bobcats and wariness of human activities are factors expected to influence bobcat detectability. 

Factors such as vegetation density, terrain ruggedness, amount of human development, and 

climate describe the environmental setting. It is difficult to determine the ultimate influence that 

these factors have on detection probability because they also influence the nature of and 

amount of detection effort and the behavior and abundance of bobcats. For example, dense 

vegetation would make bobcats difficult to observe, but detection probability may be higher if 

bobcats frequently visited areas with dense vegetation to prey on rabbits living there.  
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 PS and HS indices in this study each incorporated one effort-related parameter. If 

effective, the simplicity of this approach may make it a more efficient management tool than 

indices that may achieve higher accuracy by accounting for several variables simultaneously 

(see Appendix F, which combines the number of hunter outings and hunter hours in one index). 

However, investigating the influence of other variables on detection probability could reveal 

alternative parameters that allow for more accurate indices no more complex than those used in 

this study. Further, such investigations could lead to the development of numerous indices that 

managers could select from, with more complex indices providing more accurate relative 

abundance estimates at the expense of more data collection and processing. 

 For PS, road length was used to indicate effort. Strong linear correlation between total 

road length and human population among 24 WMUs (r =0.94, P<0.05) indicated an index based 

on either parameter would have revealed similar trends in relative abundance. However, it is 

worth noting that WMU L had 3456 km of road and a human population of 216 thousand 

residents, while WMU K had a similar total road length (3409 km) but about 77 thousand fewer 

human residents (i.e., potential bobcat observers). This likely had a substantial influence on the 

number of reported bobcat observations. An index that accounted for both human population 

and total road length would likely yield more accurate estimates of relative abundance. In 

addition, factors related to housing density and bobcat observations reported by non-residents 

have not been considered, but likely influence this index as well.   

 The accuracy with which the PS index described relative abundance depended on 

similar distribution of survey effort in each WMU. Although road length and total human 

population were strongly correlated among WMU, factors such as traffic volume and total length 

of road traversing suitable habitat were not accounted for. Clearly, a road that is infrequently 

used, or is located in a city, would have a lower potential for producing an observation than a 

road with moderate traffic bisecting bobcat habitat.   
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 For HS, number of hunter outings indicated how many surveys were conducted in a 

given study area. Total hunter outings and total hunter hours for 24 WMUs were linearly 

correlated extremely well (r =0.997, P<0.05). However, in theory, the duration of surveys varies 

independently of the number of outings. Discrepancy would occur if there were WMUs with a 

ratio of total hours to total outings that differed substantially from the mean. If this were the 

case, both of these factors should be accounted for in the index. A WMU that consistently 

received longer hunting outings would have received more effort than one with the same 

number of shorter outings (Appendix F). In this study, hours and outings were so closely 

correlated that this discrepancy was presumed negligible.  

 In an exploratory investigation that occurred after the primary analyses of this study, PS 

and HS indices that each incorporated two parameters for effort were more strongly correlated 

than PS and HS indices using one parameter for effort. I repeated the analysis comparing 

Sightings per 100 km of road and Outings with bobcat observed per 1000 outings exactly (Fig. 

3-5), but used the following as a PS-based index: 

𝑆!

𝑅𝑃
 

where 𝑆 is the total number of public sightings, 𝑅 is total road length, and 𝑃 is total human 

population. The following was used as a HS-based index: 

𝑂!!

𝑂𝐻
 

where 𝑂! is the number of hunter outings with bobcat observed, 𝑂 is the number of hunter 

outings, and 𝐻 is the total number of hunter hours. The numerators of each formula were 

squared to counteract the influence of two parameters in the denominator. Using the new 

formulas, the Spearman’s correlation coefficient increased from 0.69 to 0.81, indicating that PS 

and HS indices ranked WMUs in a more similar order. Further research is needed to determine 

if indices incorporating multiple parameters for effort are better indicators of the relative 
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abundance of bobcats, or if other factors were responsible for my observation of improved 

agreement in this case.  

 In addition to the nature and amount of effort from citizen observers, the probability that 

an observation will occur depends on the detectability of the species (Sollmann et al. 2013). 

Detectability is influenced by variables that describe habitat and the behavior and distribution of 

bobcats. For HS, bobcats may be more detectable in regions where they frequent open 

woodlands or patrol field edges and less detectable in regions where they occupy denser 

vegetation. For PS, detectability may be lower in regions where bobcats avoid roads and human 

developments relative to those where bobcats frequently cross roads and enter backyards 

(perhaps to prey on gray squirrels Sciurus carolinensis at birdfeeders; Broman et al., 2014). 

 Other than the probability of a bobcat observation occurring, the number of PS is 

influenced by the probability that a given observation will be reported (report rate). Because HS 

documented presence and absence, this confounding variable was avoided. I expect the report 

rate of PS was higher in areas recently colonized by bobcats and lower in areas where bobcat 

observations have been occurring for several decades (possibly WMUs D1 and D2W, see Fig. 

3-4). So, I believe I observed bias in this index toward areas in southern New Hampshire (WMU 

K, L, M) where bobcats have recently expanded to (Fig 3-3; Broman et al. 2014).  

 Public surveys that ask recipients to report presence or absence of bobcats may offer a 

means of avoiding bias from variation in report rate. Like HS, abundance could be inferred from 

public surveys as the ratio of surveys with bobcat observations to all returned surveys. 

However, recipients who observed bobcats would likely be more motivated to respond than 

those who did not observe bobcats (similar to Barker 1991). To avoid this, public surveys could 

be generalized and request reports of presence or absence for an array of species (van Strien 

et al. 2013), similar to hunter survey cards (Appendix E).  

 An important distinction is that public sightings are only generated when residents 

incidentally observe bobcats whereas the generation of hunter survey records is presumably 
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uninfluenced by the abundance of bobcats. Including species commonly seen (e.g., bear, deer, 

turkey, rabbit, squirrel) and offering incentives (e.g., entry into a raffle) for pubic surveys could 

eliminate this discrepancy and help achieve high survey response rates. Constraining 

observations to those that occurred within a timeframe and in the citizen scientist’s township of 

residence should allow for detection of gradients in relative abundance across space and time. 

This approach could also potentially offer a source of absence data for occupancy modeling. 

 Spatial distribution of survey effort within sampling units was an additional confounding 

variable for PS, HS, and CS indices. Within a given WMU, PS and HS are not expected to have 

occurred in the same areas. The vast majority of public sightings occurred along roads and in 

close proximity to homes (Broman et al. 2014). Hunters likely observed bobcats in larger 

woodlots on unprotected or privately owned land. If a given WMU had bobcats that primarily 

resided in close proximity to residential areas, but all hunting occurred in an area with few 

bobcats, the PS index would be higher. If another WMU had hunting that occurred in an area 

rich with bobcats, and bobcats in that WMU avoided development, the HS index would be 

higher. PS and HS indices complement each other in this way, and disagreement between them 

may indicate the distribution or habitat selection preferences of bobcats in the sampled area. 

 Multiple observations of the same individual also cause issues for indices. Ideally, an 

index of relative abundance should reflect the number of individuals within each region of the 

study area (O’Brien 2011). Among PS, I received multiple sightings from the same observers in 

the same location over multiple months and years. I suspect that most of these were cases of 

the same bobcat visiting the same backyard. 

 Even with numerous confounding variables at work, PS, HS, CS, and MHS were all 

positively correlated (Fig. 3-5, Table 3-1). Correlation between two indices is often interpreted 

as an indication that they successfully describe abundance of the species in question (e.g., 

Rolandsen et al. 2011). However, disagreements still existed. My study supports others that rely 

on hunter survey indices to gauge density (Linde et al. 2011, Rolandsen et al. 2011) by 
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demonstrating positive correlation with other indices. However, camera survey efforts lacked the 

rigor needed to directly estimate bobcat density and only offered weak validation of other 

indices. Based on their continued use, I recommend further efforts to refine indices by 

concurrent monitoring with capture-recapture or minimum counts of individuals and assessment 

of how well discrepancy is explained by confounding variables. This may involve development 

of methods for parameterizing confounding variables such as report rate, hunting techniques, or 

habitat type, which could be a challenging endeavor. I suspect these investigations would find it 

appropriate to introduce several variables into index equations (e.g., Appendix F), creating more 

complex and accurate models for the relative abundance of bobcats. For example, a more 

accurate PS index may be constructed by incorporating total road length, human population, an 

estimate of report rate, and traffic volume into a single index.  

 

Considerations for Occupancy Modeling 

 Although occupancy modeling has become a popular method for inferring carnivore 

distribution (e.g., O’Connell et al., 2006; Rich et al., 2013), it was not an appropriate approach 

given the data available and is unlikely to be used for monitoring bobcats in New Hampshire in 

the immediate future. PS did not produce a viable dataset for this approach due to a lack of non-

detection information. Spatial variation in the ratio of reported observations to non-reported 

observations likely existed, and would have invalidated models. CS directly gauged a parameter 

for effort (trap nights). However, over the three sampling periods, the average probability of a 

camera station-survey detecting a bobcat was 0.08. Mackenzie and Royle (2005) recommended 

>3 surveys per sampling unit when detection probability is below 0.5. Aggregating camera 

survey units to achieve higher detection probabilities would have yielded a spatial resolution too 

coarse to provide useful information (see Appendix B). Thus, some combination of greater 

survey effort from citizen scientists (e.g., increasing numbers of cameras or survey periods) and 

higher detection probabilities (e.g., more effective attractants, strategic camera placement, 
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optimizing season for bobcat detection) would be needed to produce sound occupancy models. 

Clare et al. (2014) succeeded in using camera traps and occupancy modeling to predict bobcat 

distribution, but experienced much higher detection rates (3.8/100 TN compared to 0.66/100 TN 

in New Hampshire). For HS, the average detection probability among surveyed townships 

during any one hunting season was 0.37 (number of townships in which bobcats were observed 

for each year summed across all five years and divided by total number of townships surveyed 

each year and summed across all five years), and in this case there were 5 seasons. This 

makes the HS dataset most suitable for occupancy analysis; however, issues arise because the 

distribution of survey effort is unknown within townships and is non-random between townships. 

 The major utility of an occupancy model for the distribution of bobcats in New Hampshire 

would be to estimate the probability of occupancy, which is also interpretable as proportion of 

area occupied (MacKenzie 2006), for areas that were not sufficiently surveyed. But, the non-

random distribution of hunter effort among townships prevents a probabilistic sampling scheme. 

In which case, there would be no basis for use of covariates to estimate probability of 

occupancy for sites that were not sampled (MacKenzie 2006). This is because covariates that 

influence bobcats (e.g., mean snow depth, deer density, distance from roads, elevation) also 

influence the distribution of hunter effort, and likely have values beyond which hunting did not 

occur. Prediction of occupancy using covariate values beyond those for which their relationship 

to bobcat occupancy is known (i.e., extrapolation) would yield an unreliable model. Further, the 

distribution of hunter effort within townships is unknown, and its relationship to potential 

covariates could vary geographically or temporally. To make HS most conducive to occupancy 

modeling, hunters would need to focus efforts on randomly selected survey units, which is 

unlikely to occur.  
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Improving Calibration of Indices 

 Despite enthusiastic response from citizen scientists and numerous camera surveys, the 

utility of this index was hampered by low detection rates. Detection rate of bobcats across all 

study areas was 0.7 detection events per 100 TN, which was lower than those observed for 

unbaited camera surveys in Wisconsin (3.8; Clare 2013) and Virginia (1.5; Kelly and Holub 

2008). Use of attractants was expected to increase detection rate (du Preez et al. 2014). The 

percentage of camera stations that detected bobcats (8%) was higher than observed among 

stations in adjacent southern Vermont with similar attractants (1%; Moruzzi et al. 2002). Use of 

cameras triggered by pressure-plates was likely responsible for lower rates in Vermont. 

Detection rates are higher for cameras with passive infrared triggers (Swann et al. 2011) used 

by volunteers in the New Hampshire study.   

 Photos collected by volunteers in New Hampshire indicated that bobcats were enticed 

by our attractants (Fig. 4-1). Further, detections rates (i.e., detection events per 100 TN) among 

coyote (Canis lantrans; 1.06) and gray fox (Urocyon cinereoargenteus; 1.55) were higher than 

those observed among unbaited stations in Virginia (coyote, 1.01; fox, 0.56; Kelly and Holub 

2008). Percentage of camera stations that detected these species and fisher (Martes pennanti) 

were also higher in New Hampshire (coyote, 13%; fox, 14%; fisher, 23%) than in Vermont 

(coyote, 6%; fox 1%; fisher 16%; Moruzzi et al. 2002). Detection rates of bobcats in New 

Hampshire and Vermont may be low in comparison to those in other parts of the specie’s range. 

This could be due to the animal’s behavior, density, or habitat in New Hampshire. 

 By enlisting citizen scientists who owned trail cameras, I achieved 15 detections with the 

only expenses being attractants and time spent coordinating the project and volunteers 

(although 6 university-owned cameras were loaned to volunteers). Coordinating volunteers by 

email was extremely time consuming. Although an automated, or web-based data collection 

system would likely be more efficient, interactive training sessions and direct communications 
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were often enjoyable and educational for both the volunteers and biologists involved. 

Educational outcome may not have been as high if automated training sessions (e.g., online 

videos) and data collection were used (Bonney et al. 2009). Direct interaction with researchers 

may boost volunteer motivation and perhaps the rigor and data quality achieved by the citizen 

scientists as well.  

 

Figure 4-1. Bobcats investigating catnip oil (left), head rubbing near Caven’s gusto lure (center; 
Minnesota Trapline Products, Pennock, MN), and rolling on ground below catnip oil. Photos captured by 
Debra Dunlop and Maria Colby (left), Andy Fisher (center), and Susan Parmenter (right) during camera 
surveys conducted in southern New Hampshire from November to December 2013. 
 

 I suggest that future camera surveys in New England assess trap rates of bobcats when 

no attractants are used, as another means of minimizing cost. The attractants used in this study 

were effective but costly. There were a few prospective volunteers who did not participate 

because they were unable to attend training sessions and I could not get attractant kits to them. 

Longer sampling periods and strategic placement of cameras (e.g., along linear features) could 

allow for functional detection rates without attractants (Clare et al. 2014). Placement along linear 

features could also minimize occurrences of bobcats moving across the field of view faster than 

camera’s trigger delay (Bengsen et al. 2011). If detection rates without attractants are too low, 

low-cost attractants (e.g., cat food, sardines) may allow for an increase in the number of 

bobcats detected by accommodating more citizen scientists, while lowering material costs spent 

by researchers. 

 Further, I experienced many concerns over the integrity of data reported by volunteers. 

Volunteers removed photos of themselves setting up attractants, and photos that did not contain 
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wildlife, despite requests to submit all photographs. In a few instances, volunteers modified their 

attractant setup despite receipt of a protocol that stressed the importance of standardization 

among all camera stations (Appendix C). Concerns over data integrity stemmed largely from 

contradictory data. For example, volunteers reported camera coordinates that were not within 

the reported survey unit (Appendix B) and camera deployment and collection dates that did not 

match date stamps on photographs documenting attractant setup and breakdown. I did a 

considerable amount of work to obtain correct data from volunteers when I was able to identify 

contradictions, and to obtain data that volunteers failed to report upon first request. 

 As a potential alternative to camera surveys, it may be possible to generate minimum 

counts of individuals through genetic analysis of bobcat scat. Kindberg et al. (2009) found a 

strong relationship between an index based on hunter observations of brown bears and 

minimum counts of individuals from DNA in scats. In New Hampshire, hunters, trappers, and 

naturalists who already track bobcats may be willing to collect scats for this purpose. The major 

challenge of this approach would be achieving enough sampling effort to thoroughly cover 

multiple areas that are large enough to reveal differences in bobcat density.  

 

Establishing a Monitoring Protocol 

 Management decisions are often based on temporal trends in indices of relative 

abundance. To monitor bobcat populations in New Hampshire using data collection systems 

currently in place, which are HS, PS, and bobcat-vehicle collisions (VC), there are certain time 

periods for which index values may be appropriately calculated based on amount of available 

data. Strong linear correlation (r  =0.91, P<0.05) between HS and VC indicate that these two 

sources of information may be appropriate for assessing annual changes in bobcat numbers 

statewide (Fig. 4-2). However, annual rates calculated here are based on an uneven spatial 

distribution of effort (see Fig. 3-3). This could be avoided by randomly sampling hunter outings 
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at a constant density from each WMU or township. Of course, some WMUs and townships 

would have to be excluded due to lack of hunter outings, and these areas would not be 

represented in annual trends.  

 Although the distribution of hunter outings within townships is not controlled or known, 

areas where they do not occur may be identified by assessing the geography of land cover 

types and boundaries of various recognized natural areas that may or may not permit hunting 

(e.g., wildlife management areas, state parks, land trusts). Total land area for regions where 

hunting may occur in each township could then be calculated, and used to determine the 

number of hunter outings necessary for thorough coverage. The number of outings to be 

sampled from each township could be determined using an estimate of the maximum number of 

bobcats expected to occupy the land area where hunting may occur. This could be estimated 

based on the possible number of exclusive female home ranges (23.8 km2; Reed 2013). Then, 

the number of outings to be sampled could be selected based on the average rate at which 

hunters have observed bobcats in the WMU containing the township (which may vary 

substantially from the statewide rate of (1 OB per 122 outings for some WMUs). Sampling 

enough hunter outings for each bobcat in the township to be observed multiple times should 

ensure adequate effort, provided that all hunter outings are not occurring within the same 

bobcat’s home range.  

 Assessment of trends in some portions of the state may be restricted to longer 

timeframes due to lower numbers of hunter outings. It seems reasonable to consider index 

values meaningful only once enough effort for five bobcat observations at the average statewide 

rate has been logged. A requirement of 610 hunter outings, based on a statewide rate of 1 OB 

per 122 outings (calculated from 80,146 outings assigned to WMUs and occurring from 2009-

2013), would likely allow for WMUs D2W, H1, H2N, H2S, I1, J2, K, and L to be assessed 

annually, while the others would require multiple years of data (Table 4-1). When aggregating 

multiple years of data, it would be important to consider temporal fluctuations in effort, as 
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dynamics in bobcat numbers could influence results. I would suggest randomly sampling a 

constant number of hunter outings from each year to avoid bias. 

 Alternatively, data may be summarized from regions larger than WMUs to facilitate use 

of software such as MONITOR (Gibbs and Ene 2010). In this application multiple samples of 

hunter outings from each region would be used to generate a variance, allowing the software to 

estimate the statistical power of a various monitoring schemes. Collection and processing of 

hunter survey records could then be adjusted to detect a given percent change in the index, 

based on monitoring needs.     

 Until the influences of report rate and other confounding variables are understood, I 

advise that trends in abundance not be based on incidental PS. However, bobcat observations 

from PS, HS, CS, and VC may be agglomerated by township to describe the known area of 

occupancy for bobcats to the fullest extent possible. All townships without bobcat observations 

would have unknown status barring assessment of detection effort. The abundance and 

complementary nature of PS and HS data make these sources particularly convenient for 

assessing distribution, and for assessing the distribution and quantity of effort within townships 

to infer absence. If needed for management purposes, information on the relative abundance 

and distribution of bobcats in regions where roads and HS are scarce could be obtained by 

providing some incentive for citizen scientists to conduct CS or HS. Further specifics of the 

potential monitoring activities I have loosely described depend on specific management 

objectives, and should be developed under close cooperation between managers and research 

scientists. 
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Figure 4-2. Annual statewide trends in the total number of documented bobcat road mortalities and the 
number of hunter outings with bobcats observed per 1000 hunter outings, from 2009 through 2013. 
Hunters’ observation rates were calculated using 83,357 records of hunter outings collected by NHFG. 
Records with <0.5 or null hunter hours were excluded (n=49). 
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Table 4-1. Number of hunter outings logged by WMU from annual hunter surveys in New Hampshire, 
from 2009 through 2013.   
 

WMU 2009 2010 2011 2012 2013 Total 
A1 243 275 243 319 335 1415 
A2 457 427 614 485 423 2406 
B 410 375 301 316 367 1769 
C1 114 133 169 103 191 710 
C2 243 164 205 152 176 940 
D1 296 308 425 314 199 1542 
D2E 4 1 9 25 37 76 
D2W 1023 948 847 897 924 4639 
E1 37 27 36 30 15 145 
E2 52 39 78 42 58 269 
E3 25 5 13 23 30 96 
F 220 202 265 207 227 1121 
G1 513 373 604 772 761 3023 
G2 244 220 202 180 242 1088 
H1 1293 1270 1197 940 1066 5766 
H2N 920 837 907 1024 1009 4697 
H2S 734 849 864 940 935 4322 
I1 613 625 588 613 637 3076 
I2 600 602 537 526 559 2824 
J1 607 551 677 609 611 3055 
J2 2572 2512 2456 2566 2466 12572 
K 2026 2033 2041 1953 2086 10139 
L 2063 2035 1972 1996 1985 10051 
M 565 542 437 354 2459 4357 
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 APPENDIX A. IACUC APPROVAL 
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 APPENDIX B. CAMERA SURVEY STUDY AREAS 
 
Maps of three study areas for camera surveys conducted by citizen scientists in November and 
December of 2013. Study areas A, B, and C corresponded to wildlife management units H2S, 
I2, and M, respectively. Each contained 60 13.3-km2 survey units. 
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 APPENDIX C. CAMERA SURVEY PROTOCOL 

Camera survey protocol provided to all camera survey participants. “Skunk lure” refers to 
Caven’s “Gusto” Long Distance Call Lure (Minnesota Trapline Products, Pennock, MN)”.  
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 APPENDIX D. POSITIONAL ERROR FOR LOCATION DESCRIPTIONS 

The following are methods developed to estimate geographic coordinates and associated 
positional error for exact locations of observed bobcats and camera stations based on location 
descriptions provided by citizen scientists. 

In general, studies that rely on sightings of wildlife from the public lack detailed methods used to 

identify geographic coordinates based on descriptions provided by observers, and 

acknowledgement of positional error that may be associated with coordinates inferred from 

verbal descriptions, if present, is limited (e.g., Quinn 1995, Harrison 1998, Woolf et al. 2002, 

Webster and DeStefano 2004, Poessel et al. 2013). In this study, estimates of positional error 

helped to assess the spatial accuracy of sightings and camera survey data, and were necessary 

to determine which wildlife management units 

observations occurred within. These methods 

should also be used when assessing environmental 

features within the proximity of an observation (e.g., 

Broman et al. 2014, Sequeira et al. 2014). For 

example, habitat suitability (derived from a spatial 

model) values within a 1-km radius of a sighting 

location could be completely unrepresentative for 

locations with a spatial error of 2 km or more (Fig. 

D1). I used Google Earth to determine (when 

observer provided location description) or verify 

(when observer provided coordinates) coordinates 

representative of each sighting location. Using the 

point-radius method and many of the techniques of 

Wieczorek et al. (2004), I recorded an estimate of 

positional uncertainty to account for spatial 

discrepancy between the recorded coordinates and the true location of the animal at the time of 

the observation (Fig. D1). To accomplish this, locations provided by observers were regarded as 

areas rather than points (Fig. D2). Areas were defined according to location details provided by 

the observer. If not included with a locality description, coordinates were taken for the 

approximate centroid of the area in which the bobcat was observed and uncertainty was 

recorded as the distance from the centroid to the furthest point on the area’s boundary. 

Figure D1. Example of an erroneous 
proximity analysis. In this case, variables are 
assessed within a 1-km radius of the 
recorded coordinates. However, the actual 
location of the observed animal was 2 km 
away from the recorded location.  
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Determination of uncertainty varied according to the type of location description and the amount 

of detail provided by the observer (Table D1).  

 

 
Figure D2. Example of method used to obtain coordinates and error estimate based on observer's 
location description. Example statement from observer: "bobcat was seen between Pike's Pond and 
Route 202". This statement defines the area shaded in light gray. The centroid and the furthest point on 
the area’s boundary from the centroid are labeled. Error was recorded as the distance between these two 
points.  
  

 Coordinates of observation locations measured in the field from a GPS unit received an 

error estimate of 30 m. Coordinates obtained from mobile phones received an error estimate of 

1000 m. These quantities are based on studies that tested the positional accuracy of GPS-

equipped mobile phones and low-cost GPS units. Zandbergen and Barbeau (2011) found a 95th 

percentile of 23.9 m for horizontal positional error among samples of stationary fixes for two 

brands of mobile phone and two low-cost GPS units. Another study compared 6 commercial-

grade GPS units and found that average error never exceeded 20 m (Wing et al. 2005). An error 

30 m was suggested by (Wieczorek et al. 2012) and selected for this study as a conservative 

estimate. In testing positional error of the iPhone, Zandbergen (2009) found horizontal error 

under 15 m at the 95th percentile when the phone used satellites directly to determine its 

location. However, when the phone determined its location using WiFi or using cell towers 

rather than a direct satellite link, the 68th percentiles for horizontal error were 88 m (WiFi) and 

827 m (cell towers). 1000 m was selected as a conservative estimate of uncertainty associated 

with coordinates obtained from mobile phones. Mobile phones are suspected to use these 

methods when satellite reception or dilution of precision is poor. Additional potential sources of 

error that could not be estimated included the observer’s ability to recall an observation location 

when measuring coordinates post-sighting and typos during communication with researchers. 
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Table D1. Method for determining coordinates of bobcat locations and associated positional errors for 
different types of location descriptions provided by citizen scientists. Location descriptions included 
coordinates from GPS units and mobile phones, coordinates (or hyperlinks) from online mapping sources 
(e.g., Google Maps) and unknown sources, road names, street addresses, and offsets from landmarks or 
named places (e.g., street intersections, buildings, addresses, water bodies, parks).  
Location description Coordinates Uncertainty 
Coordinates from GPS 
unit 

Provided by 
volunteer 

30 m 

Coordinates from mobile 
phone 

Provided by 
volunteer 

1000 m 

Coordinates from online 
mapping or unknown 
source 

Provided by 
volunteer, recorded 
if verifiable 

Distance from coordinates to 
furthest point on edge of verified 
feature 

Street address or road Closest point on 
road to its centroid 

Destance from coordinates to 
furthest point on road 

Offset from landmark or 
named place 

Specified location Methods of Wieczorek et al. (2004, 
2012) 

 

 Coordinates from unknown sources, or from online mapping sources (e.g., Google 

Maps) that were not accompanied by a written description of the location were not recorded. 

Accuracy beyond the township resolution was impossible to assess in these cases. If 

coordinates were supplemented with a matching written description that identified some feature 

in which the sighting occurred (e.g., back yard, frozen pond, state park, road, hayfield, wetland) 

coordinates for the centroid of that feature were recorded and error was taken as the distance 

from those coordinates to the furthest point on the feature’s edge (Wieczorek et al. 2004; Fig. 

D2). 

 When observers reported a road as a location (e.g., “seen crossing Wildcat Lane in 

Barrington, NH”), coordinates were taken for the point on the road closest to its centroid and 

uncertainty was taken as the distance from the point to the furthest point on the road. I assumed 

that Google Earth correctly identified roads and that observers did not mistake the road they 

observed a bobcat on for another road. 

 Studies that obtain coordinates of sightings from street addresses (Webster and 

DeStefano 2004, Nagy et al. 2012, Broman et al. 2014) employ some sort of geocoding (i.e., 

matching geographic features such as addresses to geographic coordinates). There are a 

variety of geocoding methods and known accuracy issues associated with them (Goldberg et al. 

2007). The Topographically Integrated Geographic Encoding and Referencing (TIGER) 

database (U.S. Census Bureau), a frequently used geocoding source, uses an interpolation 

algorithm to estimate the geographic coordinates of an address along a street (Karimi et al. 

2004).  For TIGER, and the Google Maps API (Application Programming Interface) used by 

Google Maps and Google Earth, geocoding of addresses may have significant spatial error, 
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particularly along longer streets and in rural areas (Cayo and Talbot 2003, Goldberg et al. 

2007). This error is a result of assumptions inherent in the geocoding algorithms (e.g., 

homogeneous property parcel size and distribution along streets). Further, sightings that come 

from particularly large property parcels would have limited accuracy, unless the observer 

provided more descriptive location information than an address. On the other hand, accurate 

coordinates can likely be obtained for sightings that come from small, evenly spaced property 

parcels on short roads. Because of the uncertainties associated with the spatial error of 

geocoded addresses, and because many of the provided addresses occurred in rural areas and 

on long streets, I ignored postal address numbers and used street names only to determine 

locations (Table D1).  

 The methods of Wieczorek et al. (2004) were used to determine coordinates and spatial 

error when observers provided a location description as an offset from a landmark or named 

place that was identifiable on Google Maps or Google Earth (e.g., street intersection, water 

body, wetland, state park, mountain). Coordinates were taken at the specified distance and 

direction from the centroid of the landmark (e.g., “two kilometers northeast of Nippo Pond”) 

using methods for estimating uncertainty based on precision as described by Wieczorek et al. 

(2004). If observers provided a distance from a landmark without a direction, the coordinates of 

the centroid of the landmark were recorded. If an observer provided a location relative to an 

identifiable landmark and included a direction with no distance, coordinates were recorded at 

the halfway point between the landmark and the township boundary in the specified direction. 

Error was taken as the distance between the centroid of the landmark and the recorded 

coordinates. If the observer reported that a sighting occurred “near” a landmark and provided 

the township of occurrence, but provided no distance or direction, the coordinates of the 

landmark’s centroid were recorded and error was taken as half of the distance from the 

landmark to the furthest point on the township boundary.  

 Coordinates were not recorded if the location provided by the observer did not match the 

reported township, unless the location was just outside of the reported township and it was 

obvious that the observer had unknowingly crossed a township boundary. In this scenario I 

recorded the township that corresponded to the location described by the observer.  
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 APPENDIX E. HUNTER SURVEY LETTER AND CARD 

Hunter survey letter and cards mailed to registered deer hunters in New Hampshire, 2012. 

 

New Hampshire 
Fish and Game Department
11 Hazen Drive, Concord, NH 03301-6500                                            TDD Access: Relay NH 1-800-735-2964                                          
Headquarters: (603) 271-3421 FAX (603) 271-1438
Web site:  WildNH.com             E-mail: wildlife@wildlife.nh.gov

Glenn Normandeau,
Executive Director

Dear White-tailed Deer Hunter:

 This is the 21st  year the New Hampshire Fish and Game Department is asking a portion of our 
GHHU�KXQWHUV�WR�NHHS�D�GLDU\�RI�KRXUV�KXQWHG�DQG�JDPH�VHHQ�GXULQJ�PX]]OHORDGHU�VHDVRQ�DQG�WKH�¿UVW����
GD\V�RI�WKH�UHJXODU�¿UHDUP�VHDVRQ���7KLV�VXUYH\�LV�H[WUHPHO\�YDOXDEOH�LQ�WUDFNLQJ�PRRVH��GHHU��EREFDW�
DQG�EHDU�DEXQGDQFH�DQG�GLVWULEXWLRQ���$V�WKLV�LQIRUPDWLRQ�LV�YLWDO�WR�RXU�PDQDJHPHQW�SURJUDPV��,�KRSH�
WKDW�\RX�ZLOO�VXSSRUW�WKLV�HIIRUW�E\�DVVLVWLQJ�ZLWK�WKLV�YHU\�YDOXDEOH�VXUYH\�
 
� :KHQ�¿OOLQJ�RXW�WKH�VXUYH\��LW�LV�LPSRUWDQW�WKDW�\RX�¿OO�LW�RXW�FRPSOHWHO\�DQG�OHJLEO\���,Q�SDU-
WLFXODU��ZH�PXVW�KDYH�WKH�GDWH��:08�DQG�WRZQ�KXQWHG��KRXUV�KXQWHG��DQG�GHHU��PRRVH��EREFDW�DQG�EHDU�
VHHQ�IRU�HDFK�GD\�KXQWHG��3OHDVH�XVH�WKH�:08�PDS�RQ�WKH�EDFN�RI�WKH�FDUG�ZKHQ�GHVLJQDWLQJ�WKH�:08�
LQ�ZKLFK�\RX�KDYH�KXQWHG��1RWH�WKDW�WR�EHWWHU�PDQDJH�GHHU�SRSXODWLRQV��:08V�'��DQG�*�KDYH�EHHQ�
VSOLW�LQWR�'�(��'�:�DQG�*���*���,I�\RX�QHHG�DGGLWLRQDO�VSDFH��SOHDVH�PDNH�FRSLHV�RI�WKH�VXUYH\�FDUG��
3OHDVH�VHQG�\RXU�FDUG�RU�FDUGV�LQ�DV�VRRQ�DV�\RX¶UH�¿QLVKHG�KXQWLQJ�RU�QR�ODWHU�WKDQ�'HFHPEHU�����������
7KLV�DOORZV�XV�WR�HQWHU�DQG�DQDO\]H�WKH�LQIRUPDWLRQ�LQ�D�WLPHO\�PDQQHU��3OHDVH�¿OO�RXW�\RXU�FDUG�IRU�
HYHU\�GD\�KXQWHG�HYHQ�LI�\RX�GLG�QRW�VHH�DQ\�DQLPDOV��

� 2QFH�DJDLQ�WKLV�\HDU��7KRPSVRQ�&HQWHU�$UPV�&R���,QF���DQG�6WXUP��5XJHU�	�&R��KDYH� 
JHQHURXVO\�GRQDWHG�UDIÀH�SUL]HV�IRU�WKRVH�UHWXUQLQJ�D�XVDEOH�GLDU\�FDUG���7KHVH�SUL]HV�DUH�OLVWHG�RQ�WKH�
EDFN�RI�\RXU�VXUYH\�FDUG��7KHLU�FRQWLQXLQJ�VXSSRUW�RI�WKLV�HIIRUW�WR�FROOHFW�KXQWHU�EDVHG�JDPH� 
PDQDJHPHQW�LQIRUPDWLRQ�LV�JUHDWO\�DSSUHFLDWHG���7R�SDUWLFLSDWH�LQ�WKH�UDIÀH��\RX�PXVW�¿OO�RXW�WKH�QDPH�
DQG�DGGUHVV�SRUWLRQ�RI�WKH�VXUYH\�FDUG��DV�ZHOO�DV�WKH�GLDU\�SRUWLRQ�RI�WKH�FDUG�ZLWK�this year's deer  
KXQWLQJ�LQIRUPDWLRQ��

� ,I�\RX�KDYH�DQ\�TXHVWLRQV�RQ�WKH�SURJUDP��SOHDVH�FDOO�PH�DW�����������������7KDQN�\RX�DJDLQ�
IRU�\RXU�SDUWLFLSDWLRQ�LQ�WKLV�SURJUDP�DQG�JRRG�OXFN�WKLV�VHDVRQ��+DSS\�KXQWLQJ�

� � � � � � � 5HVSHFWIXOO\�

� � � � � � � .ULVWLQH�0��5LQHV
� � � � � � � 0RRVH�3URMHFW�/HDGHU
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TO MAIL: FOLD AND SEAL THIS EDGE - NO POSTAGE NECESSARY

P
lease use these W

M
U

 designations 
w

hen filling in your card.

RETURN YOUR SURVEY AND WIN A PRIZE!

If you participate in this survey and send your legible and completed card in 
by December 1, 2012, you will be entered into a June drawing to win either 
a model M77 Hawkeye deer rifle with the caliber of your choosing donated 
by Sturm, Ruger & Co. or a Thompson/Center Arms muzzleloader.

The New Hampshire Fish and Game Department thanks  
Thompson/Center Arms Co.,Inc., 

and Sturm, Ruger & Co. 
for their generous donations 

and support of our wildlife heritage.
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 APPENDIX F. HUNTER SURVEY DATA AND RATES 
 
Summary of hunter survey data and observation rates of bobcats based on numbers of outings, 
hours, and outings*hours for each wildlife management unit (WMU) in New Hampshire. Use of 
outings*hours as a parameter for effort may provide a better index of bobcat relative abundance 
by accounting for two factors that both influence effort independently. In this case, squaring the 
number of outings with bobcat observed maintains a linear relationship between the abundance 
and effort parameters. For each WMU in the table below, O = number of hunter outing records; 
H = summation of hours hunted; OB = number of outings during which 1 or more bobcat were 
seen.  
 

WMU O H OB H/O [OB/O] 
x103 

[OB /H] 
x103 

[OB
2/OH] 

x105 
A1 1,415 9,824 2 6.94 1.41 0.20 0.03 
A2 2,406 15,850 8 6.59 3.33 0.50 0.17 
B 1,769 9,950 8 5.62 4.52 0.80 0.36 
C1 710 3,705 8 5.22 11.27 2.16 2.43 
C2 940 5,139 7 5.47 7.45 1.36 1.01 
D1 1,542 6,909 17 4.48 11.02 2.46 2.71 
D2E 76 475 0 6.25 0.00 0.00 0.00 
D2W 4,639 22,425 49 4.83 10.56 2.19 2.31 
E1 145 725 0 5.00 0.00 0.00 0.00 
E2 269 1,573 0 5.85 0.00 0.00 0.00 
E3 96 611 1 6.36 10.42 1.64 1.70 
F 1,122 5,986 6 5.33 5.35 1.00 0.54 
G1 3,023 16,732 29 5.53 9.59 1.73 1.66 
G2 1,088 5,573 3 5.12 2.76 0.54 0.15 
H1 5,766 32,079 45 5.56 7.80 1.40 1.09 
H2N 4,697 25,712 48 5.47 10.22 1.87 1.91 
H2S 4,322 24,258 38 5.61 8.79 1.57 1.38 
I1 3,076 15,331 31 4.98 10.08 2.02 2.04 
I2 2,824 14,629 32 5.18 11.33 2.19 2.48 
J1 3,055 16,782 28 5.49 9.17 1.67 1.53 
J2 12,572 66,430 113 5.28 8.99 1.70 1.53 
K 10,139 51,454 122 5.07 12.03 2.37 2.85 
L 10,051 51,831 46 5.16 4.58 0.89 0.41 
M 4,357 21,079 14 4.84 3.21 0.66 0.21 

 Hunter survey data was collected by the New Hampshire Fish and Game Department 
from 2009 through 2013. Records for which the reported WMU and town were not spatially 
coincident, or for which the entry in the “town” field could not be matched to a town in the New 
Hampshire Political Boundaries layer (Complex Systems Research Center, Durham, NH), were 
excluded from analyses. Records for which the WMU was not fully specified (e.g., “A” instead of 
“A1” or “A2”; Appendix G) were excluded unless the fully specified WMU could be inferred 
based on the reported township and the geography of its boundaries. Hunter survey records 
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with null entries or <0.5 in the ‘# HOURS HUNTED’ column (n=43), were excluded (see 
Appendix E), as have entries with contradicting WMU and town designations. 
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 APPENDIX G. MAP OF TOWNSHIP AND WMU BOUNDARIES 

Boundaries for New Hampshire townships (n=259) with Wildlife Management Units for deer 
(n=24) overlain. 
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