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Research

Predictability matters: role of the hippocampus
and prefrontal cortex in disambiguation
of overlapping sequences

Justine E. Cohen,1,2 Robert S. Ross,3 and Chantal E. Stern1,2
1Center for Memory and Brain, Rajen Kilachand Center for Integrated Life Sciences and Engineering, Boston University, Boston,
Massachusetts 02215, USA; 2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown,
Massachusetts 02129, USA; 3Psychology Department, University of New Hampshire, Durham, New Hampshire 03824, USA

Previous research has demonstrated that areas in the medial temporal lobe and prefrontal cortex (PFC) show increased ac-

tivation during retrieval of overlapping sequences. In this study, we designed a task in which degree of overlap varied

between conditions in order to parse out the contributions of hippocampal and prefrontal subregions as overlap

between associations increased. In the task, participants learned sequential associations consisting of a picture frame, a

face within the picture frame, and an outdoor scene. The control condition consisted of a single frame-face-scene sequence.

In the low overlap condition, each frame was paired with two faces and two scenes. In the high overlap condition, each frame

was paired with four faces and four scenes. In all conditions the correct scene was chosen among four possible scenes and

was dependent on the frame and face that preceded the choice point. One day after training, participants were tested on the

retrieval of learned sequences during fMRI scanning. Results showed that the middle and posterior hippocampus (HC) was

active at times when participants acquired information that increased predictability of the correct response in the overlap-

ping sequences. Activation of dorsolateral PFC occurred at time points when the participant was able to ascertain which set

of sequences the correct response belonged to. The ventrolateral PFC was active when inhibition was required, either of

irrelevant stimuli or incorrect responses. These results indicate that areas of lateral PFC work in concert with the HC to

disambiguate between overlapping sequences and that sequence predictability is key to when specific brain regions

become active.

We often rely on contextual information to retrieve specific events
or sequences of events. Accumulating evidence indicates that in-
teractions between the hippocampus (HC) and prefrontal cortex
(PFC) are critical to the retrieval of events with overlapping
elements that rely on contextual information (Rich and Shapiro
2009; Brown et al 2010, 2012). While some items or places
have only one or two associations connected to them, other
items may have multiple overlapping associations. For example,
Chicago’s O’Hare airport may have two distinct events connected
to it—the time you were forced to stay in the airport overnight due
to a snowstorm and when you got food poisoning from the sushi
restaurant in the food court—whereas the local hospital has
many associations—it is where you gave birth to each of your chil-
dren and had a broken leg and visited your dadwhenhewas sick. Is
there a difference in howwe retrievememories that have fewversus
multiple overlapping associations? In this study wewere interested
in investigating the following questions: As relational load increas-
es how does activation of the HC and PFC and their associated net-
works change? How does ability to predict or think through an
upcoming sequence affect neural activation at both regional and
whole brain levels? Disambiguating between similar events or asso-
ciations is thought to rely on pattern separation, a process depen-
dent on the dentate gyrus of the HC and related medial temporal
lobe structures. Pattern separation involves the creation of distinct
neural representations for stimuli that are the same but used in dif-
ferent contexts (Yassa et al. 2011; Yassa and Stark 2011; Reagh and

Yassa 2014; Bennett and Stark 2016). A series of studies in rodents
have shown that theHC forms distinct representations for overlap-
ping sequences in both spatial and nonspatial tasks (Frank et al.
2000; Wood et al. 2000; Agster et al. 2002). Human neuroimaging
studies have also shownhippocampal activation during the encod-
ing and retrieval phases of both spatial and nonspatial context-
dependent memory tasks with overlapping stimuli, including sin-
gle items and sequences (Bakker et al. 2008; Ross et al. 2009; Brown
et al. 2010; Lacy et al. 2011; Newmark et al. 2013). Recently, multi-
voxel pattern analyses of functional magnetic resonance imaging
(fMRI) in the HC has shown that learning causes differentiation
of hippocampal activation patterns for overlapping stimuli
(LaRocque et al. 2013; Favila et al. 2016; Tompary and Davachi
2017). In addition to these functional differences, the ability to ac-
curately and efficiently disambiguate between overlapping mazes
is correlatedwith structural differences in theHC and rostral dorso-
lateral PFC (Brown et al. 2014).

When items and associations are shared between sequences of
events, the PFC is involved in synthesizing episodic memories into
relational sets that evolve with experience and cognitive demands
and contribute to behavioral flexibility (Miller and Cohen 2001;
Eichenbaum 2004; Hasselmo 2005; Rich and Shapiro 2009). It is
well established that the PFC plays an integral role in the retrieval
of episodic memory, with different regions responding to different
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cognitive and behavioral demands. Neuroimaging studies suggest
that the dlPFC is active while maintaining, monitoring, and ma-
nipulating information in working memory (Petrides 1995, 2000;
D’Esposito et al. 1999; Postle et al. 1999; Stern et al. 2000, 2001;
for review see Nee et al. 2013), the vlPFC is involved in interference
resolution (Badre andWagner 2005; Jonides andNee 2006; Caplan
et al. 2007; Öztekin et al. 2009; Schlichting and Preston 2015), and
the left vlPFC is active during the retrieval of contextual details
of memory (Kahn et al. 2004; Badre and Wagner 2007; Chapados
and Petrides 2015). Petrides (1994) proposed that the mid-vlPFC
is involved in comparing and selecting stimuli held in short- and
long-term memory and that this region is particularly important
in situations that require disambiguation of information from
memory (Petrides 2002). In addition, the left vlPFC has been in-
volved in proactive interference when there are overlapping or
similar associations. The vlPFC is involved both in inhibiting
irrelevant, competing information and in selecting relevant infor-
mation through connectivity with the HC (Nee et al. 2007; Oren
et al. 2017). In addition to its role in working memory, the dlPFC
is part of the cognitive control network and has been proposed
to modulate attention through top-down executive control
(Rowe et al. 2000; Miller and Cohen 2001). During retrieval of
overlapping spatial routes (mazes), both the rostral lateral prefron-
tal and orbitofrontal cortices were recruited (Brown et al. 2010,
2012). These regions were significantly less active during the re-
trieval of nonoverlapping mazes.

Our goal was to examine the effects that varying degrees of re-
lational overlap have on activity in MTL and PFC regions. Our task
consisted of sequential associations made up of a picture frame (of
varying colors, textures, and patterns) followed by a black and
white photograph of a face within the picture frame followed by
color photographs of four outdoor scenes (see Fig. 1). One of the
four outdoor scenes correctly completed the sequence and the cor-
rect scene was dependent on which face and frame were initially
presented. The control sequencehadnooverlap, the lowoverlap se-
quence overlapped with one other sequence, and the high overlap
sequence overlapped with three other sequences. In addition, the
task was divided into three time points that enabled us to examine
how the ability to access the possible upcoming stimuli or predict
the correct response affected neural activation at both regional
andwhole brain levels. This task differed fromprevious tasks exam-
ining disambiguation in that it involved a sequence of nonspatial
stimuli andmultiple degrees of overlap between associations across
conditions (Brownet al. 2010;Ross et al. 2011). Increasing thenum-
ber of relational associations connected to one stimulus can result
in increased interference and cognitive demand anddecreased abil-
ity to look ahead in a sequence completion task.

Based on previous studies of hippocampal function, we ex-
pected to find increased hippocampal activation in this task. In

both animals and humans, memory for sequences of items has
been shown to rely on the HC (Agster et al. 2002; Schendan et al.
2003; Brown et al. 2010, 2014; Hsieh and Ranganath 2015), and
previous work in humans has suggested that different functions
may be related to detailed (posterior) and gist-like (anterior) hippo-
campal representations (Poppenk and Moscovitch 2011; Nadel
et al. 2013; Poppenk et al 2013). In our task, the low overlap con-
dition contained a larger pool of stimuli than the high overlap
condition. In contrast, the high overlap condition did not contain
as many stimuli as the low overlap condition but there was an in-
creased demand to separate, or disambiguate, each trial’s sequence
from the three sequences with which it overlapped. Therefore, we
expected to find increased activation in both the anterior and
posterior HC where item and context information are combined
and the anterior HCwhich is thought to relay context information
to the PFC (Eichenbaum et al. 2012; Komorowski et al. 2013;
Poppenk et al. 2013). We also expected to see increased activation
in the anterior HC during the association period of the low overlap
condition because it is at this point that the HC was able to relay
information to the PFC pointing to the appropriate response to
complete the sequence.

We expected to find differential activation in the vlPFC, based
on differences in relational load and the degree of interference
from overlapping items (Jonides and Nee 2007; Nee et al. 2006,
Oren et al. 2017). Because the high overlap conditionhad the high-
est degree of interference from items not relevant to the current
trial, we expected to see the most vlPFC activity during this con-
dition, particularly at the association time point. In addition we
anticipated differences in activation in the dlPFC between condi-
tions. One proposed role of the dlPFC is executive control of neural
regions processing task relevant representations involved in re-
sponse preparation (Rowe et al. 2000). In our task, wewould expect
the dlPFC to be activewhen there is information present that deter-
mines the representations relevant to the trial. In the low overlap
condition, this would be during both the cue and association peri-
ods and in the high overlap condition this would be during the as-
sociation period. In the control condition, the participant should
be able to predict the entire sequence at the cue period. However,
due to the simplicity of the sequence used in the control condition
and the number of times this trial is repeated, we did not expect to
see activation in the PFC.

Results

Behavioral data

Participants were trained on the task 1 d prior to performing the
task during fMRI scanning. The task consisted of one of 13 possible
picture frames, each differentiated by color, pattern, and/or tex-

ture, presented on the computer monitor
followed by the photograph of a face
within the picture frame, followed by
four outdoor scenes (see Fig. 1). The cor-
rect response changed with each frame/
face combination that was presented.

The control consisted of a simple
frame-face-scene sequence. The low over-
lap condition consisted of four pairs of se-
quences. Each frame was paired with two
faces and two scenes. For example, when
the green frame was shown before the
oldman thecorrect responsewas thevine-
yard but when paired with the younger
man the correct response was the grassy
field. However, when the old man was
shown after the fire frame the correct

Figure 1. Participants learned sequences of contextual cues and associated face-scene combinations.
The same faces and scenes were presented with multiple frames and correct responses were dependent
on the frame initially shown.

Hippocampus and PFC in overlapping sequences

www.learnmem.org 336 Learning & Memory

 Cold Spring Harbor Laboratory Press on November 10, 2020 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


response was the grassy field and when the young man was shown
after thefire frame the correct responsewas the vineyard (see Fig. 2).

The high overlap condition had the highest degree of overlap
between associations and the lowest level of predictability. In the
high overlap condition, the participant learned that each frame
was associated with four different faces and four scenes. There
were four frames in the high overlap condition and a total of six-
teen overlapping associations (see Fig. 3).

We examined differences in accuracy and reaction times
between the control, low overlap, and high overlap conditions
while participants performed the task in the scanner. Participants
responded correctly in the control condition on 96.7% of the trials
(SD = 0.019), in the low overlap condition on 94.23% of the
trials (SD = 0.049), and in the high overlap condition on 90.93%
of the trials (SD = 0.102), A repeated measures ANOVA revealed
a significant main effect of condition (F(2,16) = 4.00; P = 0.028;

Figure 3. One of four sets of stimuli from the high overlap condition. Each frame and face was associated with four scenes, and the correct response was
dependent on the frame initially shown. There were 16 overlapping sequences in the high overlap condition. This condition had the highest degree of
overlap between sequence elements and the lowest level of predictability.

Figure 2. Low overlap condition. Each frame and face was associated with two scenes, and the correct response was dependent on the frame initially
presented. This condition included four sets of two frames, two faces, and two scenes. With each successive sequence element, participants were better
able to predict the correct response in this condition.
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h2
p = 0.20). Post-hoc tests revealed that the main effect of condi-

tion was driven by differences in accuracy between the high over-
lap and control conditions (P = 0.035, Fisher’s Least Significant
Difference (LSD) post-hoc test). No significant differences in per-
centage correct were found between the low and the high overlap
conditions, indicating that the two overlapping sequences were
performed with comparable accuracy (P = 0.156, Fisher’s LSD post-
hoc test).

Mean reaction time for the control condition was 1.45 sec
(SD = 0.404), for the low overlap condition was 1.55 sec (SD =
0.5116), and for the high overlap condition was 1.56 sec (SD =
0.19). A repeated measures ANOVA revealed a significant main
effect of condition on reaction time (F(2,16) = 8.811, P = 0.001;
h2
p = 0.355). Post-hoc tests revealed that the main effect of condi-

tion was driven by differences between the overlapping and the

control conditions. Responses in the control conditionwere signif-
icantly faster than in the low overlap condition (P = 0.01; Fisher’s
LSD post-hoc test) and the high overlap condition (P = 0.002;
Fisher’s LSD post-hoc test). The two overlapping conditions did
not differ from one another in reaction time (P = 0.097, Fisher’s
LSD post-hoc test).

Functional MRI data
We used fMRI to assess activation during sequence retrieval in
regions of interest: the HC, the dorsolateral PFC, and the ventro-
lateral PFC. To facilitate interpretation of our results, we averaged
the beta values for each subject in each condition within ROIs and
determined the overall mean beta value per condition at each
timepoint and each region of interest (see Figs. 4 and 5 for bar

Figure 4. Beta weights from each condition at both time points of interest (Cue and Association). The conditions are presented in order of relational load
within ROI and timepoint: high overlap (red), low overlap (blue), and control (green).

Figure 5. A graph showing the average beta weight values for the dorsolateral and ventrolateral PFC during the cue and association periods. Although
the ROI used for the small volume correction analysis was comprised of the whole lateral PFC, we discussed the results from this analysis separately for
dorsolateral and ventrolateral PFC and therefore show their individual beta weight values.
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www.learnmem.org 338 Learning & Memory

 Cold Spring Harbor Laboratory Press on November 10, 2020 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


graphs of beta averages within the ROI masks used in the small
volume correction analyses). In addition, we examined activation
at the whole brain level in an exploratory analysis. For both anal-
yses, six contrasts were analyzed: the high and low overlap condi-
tions compared to control, the high and low overlap conditions
compared to each other, and the control condition compared to
the high and low overlap conditions. The results are presented sep-
arately for the High Overlap, Low Overlap, and Control conditions.
Results are summarized in Tables 1 (ROI based) and 2 (Whole
brain).

Small volume correction analyses
High overlap condition. In the high overlap condition, the frame indi-
cated to the participant which set of stimuli the trial belonged to
but it was not until the face was shown within the frame that
participantswere able to think aboutwhich scenewould accurately
complete the sequence. The results from our small volume correc-
tion analyses showed that the high overlap condition was associat-
ed with increased activation in the posterior body of the HC
compared to the control condition during the association period
(see Fig. 6).

Table 2. Whole brain analysis complete results

Condition Brain region
Cluster size
(voxels) t-value

MNI peak
coordinates

High load > control cue Right intraparietal sulcus 1472 3.99 26 −70 30
Left caudate 888 5.45 −8 1−3
Left cuneus 683 4.98 −18 −58 26
Left intraparietal sulcus 440 5.23 −30 −66 34

High load > control association Right insula 27,123 10.20 28 22 2
Bilateral anterior cingulate cortex 1636 8.76 4 30 42
Right cerebellum 1155 6.95 40 60 −32

High load > low load association Bilateral posterior cingulate cortex 2547 5.49 0 −20 30
Left angular gyrus 469 6.36 44 −70 34

Low load > control cue Left inferior parietal lobule 8752 7.79 −34 −50 40
Left lateral occipital gyrus 3432 6.72 −34 −86 −2
Right cerebellum 3102 7.98 20 −36 −48
Right dorsolateral PFC 1514 6.67 38 20 24
Right supplementary motor area 1119 6.97 2 14 54

Low load > high load cue Left middle occipital gyrus 1726 7.79 −30 96 2
Low load > control association Right angular gyrus 5406 8.55 32 −54 38

Right fusiform gyrus 4075 7.65 36 −42 −26
Right dorsolateral PFC 2881 7.61 52 18 28
Right inferior parietal lobule 584 7.22 30 −52 32
Left dorsolateral PFC 1691 6.62 −40 22 20
Bilateral supplementary motor area 589 5.64 0 14 48
Left angular gyrus 586 7.09 −36 52 40
Right cerebellum 615 6.74 20 36 −48

Control > low load cue Left middle temporal cortex 808 4.65 −58 −54 18
Right middle temporal cortex 761 5.98 62 −18 −10
Right angular gyrus 594 5.19 52 −64 28
Right dorsomedial PFC 538 5.01 6 62 12

Control > high load association Bilateral dorsomedial PFC 3648 8.32 0 58 4
Left insula 3028 5.91 −40 −14 −4
Right supramarginal gyrus 2917 6.31 60 −36 42
Bilateral middle cingulate gyrus 1945 7.38 0 −24 44
Left middle temporal cortex 482 5.09 −62 −40 4

Control > low load association Left insula 2656 8.59 −40 −12 −4
Right insula 2544 8.75 40 −16 −4
Bilateral dorsomedial PFC 2491 6.90 0 58 6
Left middle cingulate gyrus 1561 6.38 −4 −22 46

Table 1. Small volume correction analysis complete results

Condition Region of interest
Cluster size
(voxels) t-value

MNI peak
coordinates

High overlap > control association Right HC (body) 98 5.27 24 −28 −8
Right dorsolateral PFC 2710 9.41 48 26 28
Left dorsolateral PFC 468 4.80 −56 28 24
Left ventrolateral PFC 261 8.92 −34 24 −6

Low overlap > control cue Left HC (tail) 43 4.62 −12 −36 0
Right HC (tail) 20 3.62 18 −34 0
Right dorsolateral PFC 1510 7.35 48 18 32

Low overlap > control association Right dorsolateral PFC 2829 7.05 50 14 32
Left dorsolateral PFC 223 4.78 −54 34 26

Control > high overlap association Left ventrolateral PFC 48 3.93 −52 10 12
Control > low overlap association Left ventrolateral PFC 27 3.53 −54 10 12
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During this timepoint, the high
overlap condition also showed increased
activation in the right dorsolateral PFC,
the left dorsolateral PFC, and the left
ventrolateral PFCcompared to the control
condition. At this point, there may be
interference from overlapping elements,
prompting recruitment of the PFC
(Irlbacher et al. 2014 for review; Jonides
and Nee 2006). In addition, at this stage,
the participant has enough information
todeterminewhich scene accurately com-
pletes the sequence. The dlPFC may be
neededat this timepoint to activate the re-
gions needed to correctly respond.

Therewere no significant differences
between the low and high overlap condi-
tions during the cue period in either the
MTL or lateral PFC. In addition, the
high overlap and control conditions did
not show differences in activation in ei-
ther region of interest during the cue peri-
od. This may be due to the fact that in the
high overlap condition, the cue period
enables the participant to know which
condition the trial is but does not allow
the participant to exclude any of the
four upcoming scenes.

Low overlap condition. Presentation of
the picture frame in the low overlap con-
dition enables the participant to narrow
down the upcoming sequence from 33
possible sequences to two sequences. At
this point in the sequence, the partici-
pant can predict that one of two possible
faces will follow and two of four possible

scenes. When the contrasts created for
the low overlap cue period were com-
pared to those of the control cue period,
significantly more activation was seen in
the tail of the left and right HC in the
low overlap condition (Fig. 7).We expect-
ed to see activation in the HC during this
condition because the cue prompts re-
trieval of the two faces and scenes paired
with it.

During the cue period, the low
overlap condition also showed increased
activation in the right dorsolateral PFC
compared to the control condition.
During the association period, the low
overlap condition showed increased acti-
vation in the right and left dlPFC com-
pared to control. During both of these
time points, the dlPFC may be active
due to the fact that information is being
obtained revealing the appropriate neural
representations needed to make a correct
response.

Control condition. The control showed in-
creased activation in a small posterior
region of the left ventrolateral PFC

Figure 6. (Top row) The posterior HC showed increased activation at time points with increased pre-
dictability. In the high overlap condition, at the association time point, the participant was able to ac-
curately predict how to complete the sequence. (Bottom row) In the lateral PFC, the high overlap
condition showed increased activation at the association time point. This may be due to the increased
level of cognitive control required to inhibit other associations irrevelant to the current trial.

Figure 7. (Top row) During the cue period, the participant was able to decrease the number of poten-
tial upcoming sequences in the low overlap condition to two. This time point also showed increased ac-
tivation in the posterior HC. (Middle and bottom rows) The low overlap condition showed increased
activation in the right dorsolateral PFC that coincided with the participant’s increased ability to
predict the upcoming sequence.
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compared to both the low overlap and high overlap conditions
during the association period. There were no other differences be-
tween the control and overlapping conditions in any region of
interest.

Exploratory whole brain analysis

To examine additional brain regions involved in disambiguating
between overlapping elements in our task, we compared the con-
textual cue and association segments of the trials between the
three conditions in an exploratory whole brain analysis. Table 2
shows a list of the complete results from thewhole brain explorato-
ry analysis. All reported results have been defined by cluster mass
with a threshold set to P < 0.01.

High overlap condition. During the cue period, the high overlap condi-
tion showed increased activation in bilateral intraparietal sulcus,
left caudate, and left cuneus compared to the control condition.
During the association period, regions that are part of the cognitive
control network showed increased activation in the high overlap
condition compared to the control condition including the insula,
the dlPFC, and the anterior cingulate cortices (Cole and Schneider
2007). Compared to the low overlap condition at the same time
point, the high overlap condition showed increased activity in
the posterior cingulate and angular gyrus (see Fig. 8).

Low overlap condition. During the cue period, the low overlap condition
had similar regions of activation that the high overlap condition
had during the association period when both were compared to
control. The low overlap condition showed increased activation
in regions that are part of the cognitive control network including
the dlPFC and the SMA. During the association period, the low
overlap condition showed increased activation in bilateral angular
gyrus, fusiform gyrus, inferior parietal lobule, and SMA compared
to the control condition (see Fig. 9).

Control condition. The control condition showed increased activation
in regions that are part of the default mode network during both

Figure 8. (Top row) Whole brain analysis revealed additional regions of
activation in the high overlap condition compared to the control during
the cue period. (Middle and bottom rows) During the association period,
whole brain analyses revealed increased activation in the anterior cingulate
cortex, the insula, and dorsolateral PFC, all regions that are part of the cog-
nitive control network, in the high overlap condition compared to the
control condition. In addition, compared to the low overlap condition,
the high overlap condition showed increased activation in parietal
regions including the precuneus, the cuneus, and the angular gyrus.

Figure 9. (Top row) In the cue period of the low overlap condition, regions associated with memory retrieval (HC and angular gyrus) and cognitive
control (dlPFC and SMA) showed increased activation compared to the control condition. (Bottom row) In the association period, the patterns of increased
activation in the high and low overlap conditions compared to control were more similar than at the cue period. At this time point the low overlap con-
dition showed increased activation in the SMA, the right dlPFC, and the inferior parietal lobules.
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the cue and association periods compared to the overlapping con-
ditions. These regions included the medial PFC and the temporal
cortex. In addition the control condition showed increased activity
in the insula and middle cingulate gyrus compared to the overlap-
ping conditions during the association period.

Discussion

Wemanipulated the number of overlapping elements in a context-
dependent sequencing task to examine the effects of degree of
overlap and sequence predictability during memory retrieval.
Our results showed that during retrieval of sequences with overlap-
ping elements, the HCwas more active at time points that enabled
prediction of a correct response compared to sequences without
overlapping elements at the same time points. In addition, the
dorsolateral PFC was active when the pool of possible upcoming
stimuli was reduced and the proper set of sequences could be delin-
eated. The ventrolateral PFC, on the other hand, was active when
responses had to be inhibited due to interference from overlapping
associations.

Overlapping sequences and sequence predictability

modulated hippocampal activity in a context-dependent

memory retrieval task
During the contextual cue period, the small volume correction
analyses showed increased activation in the left and right hippo-
campal tail when the low overlap condition was compared to the
control condition. In the low overlap condition, there were four
sets of sequences with stimuli overlappingwithin each set. The pic-
ture frame signaled to which set of sequences the trial belonged.
Because the task was well learned, the frame (cue) enabled retrieval
of the two faces and scenes associated with that frame through
activation in the posterior HC. Although the contextual cue in
the control also enabled retrieval of its associated sequence, the
cue in the low overlap condition had more stimuli associated
with it than the control condition, which may have resulted in
the increased activity in posterior HC seen at this time point.
This result was similar to that seen in Brown et al. (2010) in which
the first hallway of an overlapping maze served as the contextual
cue during which the participant was able to think ahead to the
overlapping hallway and plan which way to turn. During the cue
period of the overlapping mazes, Brown et al (2010) found in-
creased activation in the posterior HC compared to the nonover-
lapping mazes.

During the association phase of the trial, when a face was
shown within the picture frame, the cue was paired with the stim-
ulus that determined the correct response. At this point in all
conditions, the participant should have been able to predict the
scene corresponding to that face-frame pairing. In the high overlap
condition, this meant a narrowing down from four possible op-
tions to one. When the high overlap condition was compared
to the control condition during the association phase, increased
activation was seen in the body of the right HC. The increased
activity in the body of the HC may have resulted from item and
context information being combined at this phase, a process that
involves the HC (Komorowski et al. 2009; Eichenbaum et al.
2012). In a human neuroimaging study, using representational
similarity analysis to examine fMRI data, Collin et al. (2015) deter-
mined that the mid-portion of the HC was active during presenta-
tion of directly integrated event-pair associations that were part
of a multiple event narrative. Unlike the posterior HC, which was
active only during directly associated events, the body of the HC
became active when multiple events were linked together to
form a narrative. Interestingly, when participants in our study

were asked to describe their learning strategies regarding the high
overlap condition many stated they created stories that bound
the frame, face, and scene together to keep track of the multiple
overlapping sequences.

Different regions of lateral PFC responded when

overlapping elements in a context-dependent memory task

increased
Considerable converging evidence indicates that the role of the
PFC in memory retrieval is strategic control of processes in other
brain areas and the compiling of features of related memories to
provide a context for related experiences (Buckner and Wheeler
2001; Miller and Cohen 2001; Dobbins et al. 2002; Blumenfeld
and Ranganath 2007; Kuhl and Wagner 2009; Preston and
Eichenbaum 2013). We found differences in activation of the dor-
solateral PFC that were dependent on condition and phase of the
trial. The overlapping conditions had a larger number of associa-
tions related to each stimulus (high > low> control) and previous
research suggests the anterior dlPFC is involved in creating and in-
tegrating complex relationships between stimuli (Kroger et al.
2002; Blumenfeld and Ranganath 2006; Murray and Ranganath
2007). In addition, another proposed role of the dlPFC is top-down
activation of the neural representations appropriate for completing
a task (Rowe et al. 2000). During the cue period, the low overlap
condition showed increased right dlPFC activation compared to
the control condition. The cue period in the low overlap condition
prompted recall of two possible sequences whereas the control
condition required retrieval of a single sequence. In the high
and low overlap conditions, we found increased bilateral dlPFC
activation in the association phase of the task compared to the
control condition. The association phase in both the high and
low overlap conditions enabled recall of the correct outdoor scene
to complete the sequence. Therefore, it may be the recall of multi-
ple associated stimuli combined with increased relational com-
plexity inherent to a task with overlapping associations that
required the dorsolateral PFC.

During the association phase of the task, the high overlap
condition showed increased activation in the left anterior andmid-
dle ventrolateral PFC. Previous research has shown recruitment of
the anterior vlPFC during tasks requiring control over memory ac-
cess (Barredo et al. 2016) and recruitment of left vlPFC in particular
when there is interference fromoverlapping associations (Nee et al.
2007; Irlbacher et al. 2014). At the association time point in the
high overlap condition, the participant was required to recall the
correct scene that completed the sequence and inhibit the three
scenes irrelevant to the trial. This result supports the proposed
role of vlPFC in activating correct sequences or associations while
also inhibiting irrelevant associations (Petrides 2002; Badre and
Wagner 2005, Nee et al. 2007). Barredo et al. (2015) showed that
anterior vlPFC is part of a functionally connected network that in-
cludes the HC among other regions.

Whole brain analyses revealed regions in the cognitive

control network and the default mode network active

for different conditions during this task
In contrasts comparing the low overlap and control conditions,
regions that are considered part of the cognitive control network,
including the dorsolateral PFC and the rostral SMA, showed in-
creased activation during both the cue and association periods.
When the high overlap condition was compared to the control at
the association timepoint, increased activationwas seen in thedor-
solateral PFC, the anterior cingulate cortex, and the anterior insula,
also regions considered part of the cognitive control network.
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The most striking result from comparisons between the con-
trol and overlapping conditions was the strong activation in the
dorsomedial prefrontal cortices (dmPFC) in the control condition.
At the cue, the activation in dmPFC was increased compared to
control but by the association period there was a large region of ac-
tivation in the dmPFC compared to both the high and low overlap
conditions. Themedial PFC is amajor hub of the defaultmode net-
work (Buckner et al. 2008).

Limitations and conclusions
In this study we sought to better understand the neural response
to disambiguation of sequences with varying degrees of overlap
and the interplay of predictability in episodic retrieval and its
accompanying neural response. Initially the task was constructed
like amore typical sequence inwhich the picture framewas shown,
then a photograph of a face (without the frame), followed by the
choice of four scenes. We sought to replicate animal studies in
which context is temporally separated from its associations and
determines the appropriate response (Komorowski et al. 2009;
Navawongse and Eichenbaum 2013). However, when we piloted
this task, participants were not able to learn the high overlap con-
dition when the frame was separated from the face. We sought to
even out the task difficulty and accuracy scores between conditions
by enclosing the face with the frame in the second time point of
the trial. Participants were able to learn the high overlap condition
with this change but it made our results more difficult to interpret
because the frame, or cue, was no longer separate from its associat-
ed face.

In interpreting the data, knowing the strategies participants
used to remember the overlapping associations may have been en-
lightening. We did not conduct a formal interview of participants
following the testing session on day two, but in the future would
add this to similar studies. In addition, it would have been interest-
ing to ask participants to return 1 wk after scanning to test how
much they retained from the task, to see if there were differences
in retention between the high and low overlap conditions and if
neural activation was correlated with sequence retention.

Whenwedesigned this taskwe expected to see linear increases
in activation that were dependent on the degree of overlap in each
condition. We thought that because the high overlap condition
had four times as many overlapping associations between each se-
quence than the low overlap condition we would see the highest
level of activation in the MTL and PFC in the high overlap condi-
tion. However, what we foundwas that the extent towhich stimuli
revealed information about the upcoming sequence and increased
thepredictabilityof a correct responsewas the critical factor thatde-
termined which brain regions were active. Both our small volume
correction andwhole brain analyses demonstrated patterns of acti-
vation dependent on previously learned sequence predictability at
each time point. In the lowoverlap condition, activation in theHC
occurred during the cue period at which time the participant was
able towhittle down the potential upcoming sequence froma large
pool of possibilities to two sequences. In the high overlap condi-
tion, it was not until the association period that the HC became ac-
tive and it was not until this time point that the participant was
provided enough information to predict the upcoming sequence.
At the association time point, participants were able to predict
the correct response in both the high and low overlap conditions
and both conditions showed similar patterns of activation in the
dorsolateral PFC. The dlPFC may work with the HC to decipher
the correct way to complete a sequence in a task withmultiple pos-
sibilities by indicating the correct set of sequences and conveying
that information back to the medial temporal lobe. The vlPFC
may then inhibit the incorrect responses, a process integral to the
participant ultimately accurately completing the sequence.

Materials and Methods

Participants
Participants were 18–34 yr old adults recruited from the Boston
University community. Written informed consent was obtained
from each participant before enrollment in accordance with the
experimental protocol approved by both the Partners Human
Research Committee and the Boston University Charles River
Campus Institutional Review Board.

Twenty-one subjects underwent training followed 1 d later by
testing in the fMRI scanner. Two subjects were omitted from the
data analysis due to excessive motion in the scanner. Two subjects
were excluded due to accuracy scores more than two standard de-
viations below the mean. Seventeen subjects (11 females) were in-
cluded in the final data analysis (mean age ± SD = 22.84 ± 4.92).

Procedure

Task summary

After observing a frame and a face, the participant’s task was to se-
lect the scene that correctly completed the sequence. The initial
time point was the picture frame, or contextual cue, which indicat-
ed to the participantwhich condition the trial was. In the lowover-
lap condition this enabled the participant to narrow down
the possible upcoming sequences from 16 down to two. In the
high overlap condition this indicated to the participant that
there were four possible upcoming sequences, out of a possible
16 in that condition. In the control condition, because there
was only one sequence, the participant knew at this time point
what the correct responsewas. The next time point was the presen-
tation of the face in the picture frame, or the association period. At
this point in all three conditions, the participant should be able to
predict the correct response. In the low overlap condition this
meant eliminating one of the two possibilities. In the high overlap
condition this meant narrowing down the possibilities from four
to one.

A more detailed description of the task design is provided
below.

Task description

The task was programmed using E-Prime 2.0 software (Psychology
Software Tools 2012). A picture frame appeared on the computer
monitor for 2 sec followed by a 4 sec blank delay. Then a black
and white photograph within the same picture frame was shown
on the screen for 2 sec followed by a 4 sec blank delay. Then four
photographs of outdoor scenes were presented on the screen for
4 sec and the participantwas instructed to choose one of the scenes
using the number pad on the keyboard. The correct response was
determined by which picture frame and face were shown in the be-
ginning of the sequence. During training the participants received
feedback based on their response—either “Correct” or “Incorrect”
appeared on the screen.

Stimuli consisted of images of 13 picture frames, each distin-
guishable by its unique color, texture, and/or pattern, 13 black and
white photographs of faces with neutral expressions placed within
the picture frame, and 16 color photographs of outdoor scenes.
Each trial consisted of the contextual cue period (picture frame),
the association period (photograph of face within the frame),
and the test phase (photographs of four outdoor scenes) (see Fig.
1). The spatial location of the four outdoor scenes shown on the
screen changed between trials and was counterbalanced across
trials.

The task consisted of three conditions that varied by degree of
overlap between sequences. The high overlap condition consisted
of one set of sequences sharing four frames, four faces, and four
scenes for a total of 16 frame/face/scene combinations. In this con-
dition the stimuli included four unique frames, four unique faces,
and four unique scenes.

The low overlap condition consisted of four sets of sequences
sharing two frames, two faces, and two scenes. Each set consisted
of four sequences for a total of 16 frame/face/scene combinations.
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In this condition the stimuli included eight unique frames, eight
unique faces, and eight unique scenes.

The control condition consisted of a single unique frame/
face/scene sequence.

Training one day prior to scanning. During the training phase of the exper-
iment, research participants learned each contextual cue (frame)
and its corresponding association-test sequence (face-scene).
During the first two trials of training, only the correct outdoor
scene for that frame and face was shown during the test phase.
In all subsequent trials, four outdoor scenes were presented and
left on the screen during the test phase until the participant
made a response. The participant used a number pad to indicate
which of the four scenes was correct for that trial and was then giv-
en feedback (“Correct” or “Incorrect”) that appeared on the com-
puter screen for 1.5 sec. If the response was incorrect, the
participant was not told what the correct answer was.

During training, participants learned one new sequence
per training run. In all training runs after the first run, sequences
previously learned were repeated for additional rehearsal.
Training runswere balanced so that each unique sequencewas pre-
sented a total of eleven times during training.

Testing during fMRI scanning. Participants returned for fMRI scanning 1 d
after training. While in the scanner, participants completed six
runs of 24 trials each. Each run included eight trials per condition
thatwere identical to the training trials except that therewas a 4 sec
time limit for responding and participants were not given feedback
on their performance. The three conditions were interspersed
within each run. The order of trials was counterbalanced across
runs, and the order of runs was randomized across participants.
There were 48 trials of each condition per participant.

Image acquisition. Images were acquired using a 3 Tesla Siemens
MAGNETOM TrioTim scanner with a 32 channel Tim Matrix
head coil located at the Athinoula A. Martinos Center for Biomed-
ical Imaging, Massachusetts General Hospital, Harvard Medical
School. A high resolution T1-weighted multiplanar rapidly ac-
quired gradient echo (MP-RAGE) structural scanwas acquired using
Generalized Autocalibrating Partially Parallel Acquisitions (GRAP-
PA) (TR = 2530 msec; TE = 3.4 msec; flip angle = 7°; slices = 176;
resolution = 1 mm isotropic). T2*-weighted BOLD images were ac-
quired using an Echo Planar Imaging sequence (TR = 2000 msec;
TE =30 msec; flip angle = 85°; slices = 33; resolution = 3.4 × 3.4 ×
3.4 mm, interslice gap of 0.5 mm). Functional image slices were
aligned parallel to the long axis of the HC.

Image preprocessing. Functional imaging data were preprocessed using
the SPM8 software package (Statistical Parametric Mapping,
Wellcome Department of Cognitive Neurology, London). All
BOLD images were first reoriented so the origin (i.e., coordinate x
y z = [0, 0, 0]) was at the anterior commissure. The images were
then corrected for differences in slice timing and were realigned
to the first image collected within a series. Motion correction was
conducted and included realigning and unwarping the BOLD im-
ages (Andersson et al. 2001). The high-resolution structural image
was then coregistered to themean BOLD image created duringmo-
tion correction and segmented into white and gray matter images.
The bias-corrected structural image and coregistered BOLD images
were spatially normalized into standard MNI space using the Dif-
feomorphic Anatomical Registration Through Exponentiated Lie
(DARTEL) algebra algorithm (Ashburner 2007) for improved inter-
subject registration. BOLD images were resampled during
normalization to 2 mm3 isotropic voxels and smoothed using a 6
mm full-width at half-maximumGaussian kernel. The normalized
structural images of all 17 participants were averaged after normal-
ization for displaying overlays of functional data.

Behavioral analyses. A repeatedmeasures ANOVAwas run to compare ac-
curacy and reaction time between the low overlap, high overlap,
and control conditions. When significant differences were found

between the three groups, a Fisher’s LSDs post-hoc test was run
to determine which groups significantly differed from one anoth-
er. Analyses were completed using PASW Statistics (PASW
Statistics for Windows, Version 18.0. Chicago: SPSS Inc.).

fMRI analyses. Nine regressors of interest were created for each partic-
ipant to model the fMRI data. Separate regressors were created for
the following three elements in each condition: contextual cue
(presentation of the frame), association phase, (presentation of
the face in the frame), and test phase (presentation of the four out-
door scenes). Incorrect trials and the six motion parameters calcu-
lated during motion correction were added to the model as
additional covariates of noninterest. Regressors from the task
were constructedas a seriesof squarewavesor“boxcars.”Boxcaron-
sets were defined by the onset of each event and extended for the
duration of the event (2 sec for the contextual cue and association
phases, 4 sec for the test phase). These parameters were convolved
with the canonical hemodynamic response function in SPM8.

In total, six primary contrasts were created: the low and high
overlap conditions each compared to the control conditions dur-
ing the cue and association periods and the low and high overlap
conditions compared to each other during the cue and association
periods. The model was then analyzed using the general linear
model approach.

All six primary contrasts were tested at the group level.

Small volume correction analyses. Due to our a priori hypothesis that hip-
pocampal and prefrontal cortical activity would be modulated by
degree of overlap, we defined regions of interest (ROIs) in the
MTL and the PFC to performvoxelwise analyses within these areas.
The MTL ROI consisted of the HC and parahippocampal gyrus in
both hemispheres, as defined by the aal library within the Wake
ForestUniversity (WFU) pick atlas, a standard set of anatomical def-
initions defined by hand on a single brain which matched the
MNI/ICBM templates (Tzourio-Mazoyer et al. 2002). The PFC
ROI consisted of the dorsolateral PFC, defined as themiddle frontal
gyrus and Brodmann areas 9 and 46, and the ventrolateral PFC, de-
fined as the inferior frontal gyrus and Brodmann areas 44, 45, and
47. The aal and Brodmann area libraries within theWFU pick atlas
were used to define the regions. All ROIs were defined bilaterally.

All region of interest, group-level analyses assessed statistical
significance on the basis of cluster mass, with the cluster-defining
threshold set to the nominal P < 0.01 level. Corrected P values were
determined using permutation testing (FSL’s randomise; 5000 iter-
ations), and results were thresholded at corrected P < 0.01. For one-
sample t-tests, each iteration randomly sign-flipped individual sub-
jects’ contrast coefficient maps and added the resulting maximum
cluster mass to the empirical null-hypothesis distribution.

Whole-brain analyses. All whole-brain, group-level analyses assessed
statistical significance on the basis of cluster mass, with the cluster-
defining threshold set to the P < 0.01 level. Corrected P values were
determined using permutation testing (FSL’s randomise; 5000
iterations), and results were thresholded at corrected P < 0.01. For
one-sample t-tests, each iteration randomly sign-flipped individual
subjects’ coefficient maps. Clusters were defined as having faces
or edges or corners that touched and a minimum of 20 voxels.
Peak activations within each cluster of activation were identified
using AFNI software package (http://afni.nimh.nih.gov/afni). If a
specific region of activity had multiple peaks within a cluster, the
peak with the highest t-value was reported. Brain regions were
identified using MRIcron software and brain atlases (Damasio
2005; Petrides 2005) .
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