11-14-2007

UNH Institute Awards $1.9 Million To Advance Coastal Technology

Dolores Leonard
UNH Media Relations

Follow this and additional works at: https://scholars.unh.edu/news

Recommended Citation
Leonard, Dolores, "UNH Institute Awards $1.9 Million To Advance Coastal Technology" (2007). UNH Today. 918.
https://scholars.unh.edu/news/918

This News Article is brought to you for free and open access by the Administrative Offices at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Media Relations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
UNH Media Relations

UNH Institute Awards $1.9 Million To Advance Coastal Technology

Contact: Dolores Leonard
603-862-3685
UNH/NOAA Cooperative Institute for Coastal & Estuarine Environmental Technology

November 14, 2007

Durham, N.H. – The University of New Hampshire’s Cooperative Institute for Coastal and Estuarine Environmental Technology (CICEET) has awarded six grants totaling $1.9 million for new tools to manage and protect coastal environments. A partnership of UNH and the National Oceanic and Atmospheric Administration (NOAA), CICEET was established in 1997 with the support of U.S. Sen. Judd Gregg, (R-NH).

“The combined pressures of climate change and human activity have made the management of our coastal resources increasingly complex and difficult,” says Richard Langan, CICEET’s UNH co-director. “These projects were selected for their potential to transform research into practical, accessible tools that coastal resource managers need to support their communities and protect the environment.”

Research teams based at the following institutions received awards:

· Louisiana State University to improve wetland restoration techniques

· University of Massachusetts to develop a tool to identify the sources of toxic chemicals in marine sediment

· Texas A&M University to develop a tool to measure the toxicity of chemical pollution in sediments

· University of Connecticut to improve monitoring of atmospheric mercury pollution

· Villanova University to study the effectiveness of low impact development (LID) stormwater management systems in protecting water resources

· University of Illinois to develop a technique to reduce phosphorus pollution from septic systems

Each project focuses on a priority environmental challenge with a direct impact on the well-being of those who live in coastal communities. For example, one research team aims to improve an increasingly common approach to wetland restoration along the Gulf of Mexico, where wetland loss has increased dramatically due, in part, to coastal development, dredging, and fuel extraction. Coastal wetlands not only serve as nursery and shelter for many important species; they act as buffers for the severe storms that hit the Gulf Coast.

“With $40 million spent on wetland restoration each year in Louisiana alone, it’s critical to ensure that the methods we are using are as effective as possible,” says Langan. “We are encouraged by the potential for this project, and the others, to have a far reaching and positive impact on coastal management.”
In the mid-Atlantic, a multi-state project is studying the effectiveness of low impact development (LID) stormwater management systems in protecting water resources. Nonpoint source pollution carried by stormwater runoff is the single greatest threat to water quality nationwide. LID systems treat stormwater close to the source and allow runoff to infiltrate into the soil, where it can be scrubbed of pollution and replenish aquifers. Though gaining in popularity, LID systems are often not used due to the lack of information about their performance and cost.

Another research team in Illinois is developing a technique to reduce phosphorus pollution from septic systems. Though essential for life, excess phosphorus, particularly in freshwater, can become pollution that speeds the growth of algal blooms that may threaten ecosystem and human health. Septic systems are a significant source of phosphorus pollution—more than 25 million homes in the U.S. have an on-site septic system.

For more information about all of these projects, visit CICEET online: http://ciceet.unh.edu/stats/etdd_2007.html.

CICEET operates through an annual grant from NOAA’s Office of Coastal Resource Management. Since 1997, it has invested in more than 160 coastal technology projects. The CICEET toolkit includes technology and know-how to detect pollution, recover healthy habitats, and prevent the future impacts of pollution.

email this page!