
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2016

Creating a Conformance Testing Framework for the UNH Creating a Conformance Testing Framework for the UNH

Extended Sockets Library and Demonstrating its Usefulness by Extended Sockets Library and Demonstrating its Usefulness by

Implementing New sendfile() Extension Implementing New sendfile() Extension

Maxwell Christopher Renke
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation Recommended Citation
Renke, Maxwell Christopher, "Creating a Conformance Testing Framework for the UNH Extended Sockets
Library and Demonstrating its Usefulness by Implementing New sendfile() Extension" (2016). Master's
Theses and Capstones. 902.
https://scholars.unh.edu/thesis/902

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized
administrator of University of New Hampshire Scholars' Repository. For more information, please contact
Scholarly.Communication@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/902?utm_source=scholars.unh.edu%2Fthesis%2F902&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Scholarly.Communication@unh.edu

CREATING A CONFORMANCE TESTING FRAMEWORK FOR THE UNH
EXTENDED SOCKETS LIBRARY AND DEMONSTRATING ITS USEFULNESS BY

IMPLEMENTING NEW SENDFILE() EXTENSION

BY

Maxwell Christopher Renke

B.S., University of New Hampshire, 2015

THESIS

Submitted to the University of New Hampshire
in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Computer Science

December, 2016

This thesis has been examined and approved in partial fulfillment of the requirements of for the
degree of Master of Science in Computer science by:

Thesis Director, Robert Russell, Associate Professor of Computer Science

Phil Hatcher, Associate Professor of Computer Science

Robert Noseworthy, UNH-IOL, Chief Engineer

On December 2, 2016

Original approval signatures are on file with the University of New Hampshire Graduate School.

ii

ACKNOWLEDGMENTS

First and foremost I would like to thank Dr. Robert Russell for allowing me to participate in his

research from all the way back to my senior year of my undergraduate degree. I would also like to

thank him for his continued technical support and mentorship.

I would like to thank the University of New Hampshire InterOperability Laboratory for giving

the opportunity to pursue my academic goals and thrive professionally as well.

I would like to thank Patrick MacArthur for his invaluable technical assistance throughout my

research with Dr. Russell and his continued patience with me when I had many, many questions.

Finally, I would like to thank the other members of my thesis committee, Robert Noseworthy

and Phil Hatcher, for their continued support.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . vi

ABSTRACT . vii

Chapter 1 Introduction 1

1.1 Introduction . 1

Chapter 2 Background 3

2.1 RMDA . 3

2.2 OFED Verbs . 4

2.3 ES-API . 4

2.4 POSIX . 4

2.5 UNH EXS . 5

Chapter 3 Related Work 8

3.1 UNH EXS Overview . 8

3.2 Manual Pages . 9

Chapter 4 Testing Framework 11

4.1 Motivation . 11

4.2 Conformance Testing . 11

4.3 Regression Testing . 12

4.4 Framework Design . 13

4.5 Framework Documentation . 16

4.6 Integration into EXS Build System . 16

iv

Chapter 5 Asynchronous File Transfer 19

5.1 Motivation . 19

5.2 Benefits . 22

5.3 Description . 22

5.4 Challenges . 26

5.5 Design . 27

5.6 Specification . 27

Chapter 6 Conclusion 28

6.1 Lessons Learned . 28

6.2 Summary . 28

6.3 Future Work . 29

APPENDIX A: User Documentation 30

APPENDIX B: Developer Documentation 75

BIBLIOGRAPHY 87

v

LIST OF FIGURES

2-1 Open and Close Socket (ES-API and POSIX) . 5

2-2 Open and Close Socket (UNH EXS) . 6

2-3 Asynchronous exs connect() . 6

2-4 Synchronous exs connect() . 6

3-1 man exs connect . 10

4-1 Regression Test Output . 12

4-2 Test File for exs connect() . 13

4-3 Sample Output for test exs connect . 14

4-4 ok exs connect() helper function . 15

4-5 Client and Server Connection . 18

5-1 Sending a file with exs send() in blocks . 20

5-2 Sending a file with exs send() with mmap(2) . 21

5-3 exs sendfile() with valid file descriptor . 23

5-4 exs xferfile and exs xfvec . 24

5-5 exs pathvec . 24

5-6 exs sendfile() with exs pathvec . 25

5-7 exs blocking sendfile() . 26

vi

ABSTRACT

CREATING A CONFORMANCE TESTING FRAMEWORK FOR THE UNH EXTENDED

SOCKETS LIBRARY AND DEMONSTRATING ITS USEFULNESS BY IMPLEMENTING

NEW SENDFILE() EXTENSION

by

Maxwell Christopher Renke

University of New Hampshire, December, 2016

The UNH Extended Sockets Library (UNH EXS) was developed at the University of New Hamp-

shire Interoperability Laboratory to provide an interface to extend the features of the Extended

Sockets API (ES-API) specification published by the Open Group to better utilize the asynchronous

I/O and memory registration features of Remote Direct Memory Access (RDMA) and provide the

programmer with the option to perform operations synchronously as well as asynchronously.

This thesis is focused on building a rigorous testing framework to verify conformance to the pub-

lished ES-API standards, existing manual pages, and documented UNH extensions of the Extended

Sockets Library, and to facilitate regression testing of the software library as a whole. Furthermore,

the additional functionality of synchronous and asynchronous sendfile transfer over RDMA with

UNH EXS will be implemented, verified, evaluated, and integrated into the existing documentation

and testing framework.

The goal of this new capability is to establish a clear process by which new features to UNH

EXS can be verified in the future and changes to the library will be properly vetted. The new

sendfile transfer functionality is focused on improving the usability and effectiveness of the UNH

EXS Library for programmers.

vii

CHAPTER 1

Introduction

1.1 Introduction

The UNH Extended Sockets Library (UNH EXS) [1] provides additional functionality to the Ex-

tended Sockets API (ES-API) [2] specification published by the Open Group. The ES-API spec-

ification defines extensions to the traditional socket API to provide the asynchronous I/O and

memory registration benefits of the Remote Direct Memory Access (RDMA) interface.

UNH EXS implements a large portion of the ES-API standard but also implements unique fea-

tures to provide the flexibility to choose between both synchronous and asynchronous behavior when

using RDMA. UNH EXS also allows the programmer to operate with or without memory registra-

tion, a normally mandatory element of using RDMA. Remote Direct Memory Access (RDMA), as

the name suggests, allows remote access to user space memory in other RDMA endpoints. RDMA

utilizes dedicated hardware interfaces that replace the traditional TCP/IP socket architecture in

normal socket programming. This hardware handles both asynchronous I/O operations as well as

memory registration and management. During data transfer RDMA bypasses the system kernel,

entirely eliminating the need for costly buffer-copying that greatly impacts performance. Thus

leveraging the RDMA interface can lead to significant improvement in data throughput.

Programming with RDMA can pose unique challenges compared to traditional socket program-

ming most developers have become accustom to. UNH EXS was created to allow the programmer to

use RDMA in a synchronous manner without major overhead while still exposing the asynchronous

functionality.

Previously the developers and maintainers of UNH EXS did not have the means to properly

1

verify the functionality of the software library against the specifications in the ES-API, where

applicable, and the documentation created specifically for the UNH EXS library. There is therefore

a need for an extensive testing framework to be created that provides both conformance testing of

the UNH EXS functions and also regression testing for the maintainers of the UNH EXS library as

modifications and additions are made to the library. Furthermore, once a testing framework was

developed it needed to be properly vetted. Likewise, documentation created to define the testing

framework, both from the end user and developer perspective, also needed to be vetted to ensure

the framework and subsequent documentation meet their goals.

Therefore a new feature was added to the UNH EXS library to provide a mechanism to asyn-

chronously (as well as synchronously) transfer files from one RDMA connected endpoint to another.

This addition, named exs sendfile() and exs blocking sendfile(), was designed, specified,

and then added to the testing framework to provide a robust way to verify the proper functionality

of these functions. The processes described in the documentation accompanying this thesis was

followed to ensure future additions to the UNH EXS library would be implemented successfully

without disrupting the correct functionality of already implemented features.

2

CHAPTER 2

Background

2.1 RMDA

Remote Direct Memory Access, or RDMA [3], is a transport that uses asynchronous I/O and mem-

ory registration to move data from user space to user space using dedicated hardware and thus

bypassing the system kernel entirely. RDMA is widely used in multi-core systems and supercom-

puters due to the high throughput and low latency that can be achieved.

The two main performance benefits RDMA provides are the lack of context switching between

user space and kernel space, as well as eliminating the need to copy buffers between user space and

kernel space.

The three main implementations of RDMA hardware interfaces in use today are InfiniBand,

iWARP, and RoCE (RDMA over Converged Ethernet). This thesis was written and tested against

an InfiniBand implementation. Programs that wish to use RDMA communicate to the hardware

device using what is called RDMA Verbs, which are essentially the low level hardware API. These

RDMA Verbs are hardware independent.

In order to achieve true performance benefits with RDMA there is significant overhead to ensure

the asynchronous operations and memory registration are set up correctly. Achieving this manually

requires extensive knowledge of both the hardware platform being developed against as well as a

full understanding of how asynchronous operations are handled. Fortunately additional APIs and

software libraries have been created to assist in this task.

3

2.2 OFED Verbs

RDMA Verbs interact directly with the hardware implementations of RDMA. The OpenFabrics

Enterprise Distribution (OFED) [7] is an open-source project that defines a set of verbs common to

the InfiniBand, iWARP, and RoCE implementations. These verbs can be used to interface directly

with the hardware or can be used by libraries such as the ES-API and UNH EXS to perform RDMA

operations.

2.3 ES-API

The Extended Sockets API (ES-API) [2] is a specification published by The Open Group with the

goal to “provide extensions to the traditional socket API to support improved efficiency in network

programming.” This means creating an API that uses RDMA to perform asynchronous operations

on top of traditional synchronous sockets. The ES-API focuses on the InfiniBand technology and

uses traditional POSIX sockets in place of using the RDMA hardware directly. The ES-API operates

strictly in an asynchronous manner and an event queue must be managed to handle the completion

of different events.

2.4 POSIX

POSIX [4] is a family of standards, specified by the IEEE, that provides a common set of API

calls on the system. POSIX style socket programming is starkly different to programming with

RDMA. However it has been observed that most programmers familiar with socket programming

are familiar with POSIX. There is a significant difference between how one writes a program using

POSIX sockets and how one writes a program using RDMA. Most notable is that POSIX sockets

rely entirely on the kernel and thus must utilize buffer copying and context switching as well as

completely synchronous operations.

4

2.5 UNH EXS

The University of New Hampshire Interoperability Laboratory has developed the UNH Extended

Sockets Library (UNH EXS) to help bridge the gap for programmers familiar with POSIX sockets

who wish to use the RDMA protocol effectively. A programmer using UNH EXS can choose whether

or not to perform RDMA operations asynchronously or synchronously as well as with or without

memory management.

The main difference between UNH EXS and the ES-API is that UNH EXS runs entirely in

user space. While the ES-API can rely on the traditional kernel-based socket API, this is not the

case for UNH EXS. This is because UNH EXS wishes to be platform independent and thus must

not rely on the kernel. Therefore UNH EXS must implement functions that do not appear in the

ES-API specification.

#include <sys/socket.h>

#include <sys/types.h>

#include <stdio.h>

#include <unistd.h>

int main(int argc , char *argv []){

int fd = socket(PF_INET , SOCK_STREAM , 0);

//use socket here

close(fd);

}

Figure 2-1: Open and Close Socket (ES-API and POSIX)

Figure 2-1 shows how to open and close a socket file descriptor with the ES-API. Figure 2-

2 shows how to do the same task but with UNH EXS. The ES-API library relies on the kernel

based API calls socket(2) [5] and close(2) [6] while the UNH EXS example relies entirely on the

software library.

UNH EXS supports synchronous operations on top of the existing asynchronous operations

of the ES-API. UNH EXS functions that take int flags as a parameter can passed EXS BLOCK,

5

#include <exs.h>

int main(int argc , char *argv []){

exs_init(EXS_VERSION);

int fd = exs_socket(PF_INET , SOCK_STREAM , 0);

//use socket here

exs_close(fd ,0,NULL ,NULL);

}

Figure 2-2: Open and Close Socket (UNH EXS)

a flag specific to UNH EXS, to specify that the function should operate synchronously (i.e. in

blocking mode). If EXS BLOCK is not specified, the function operates in asynchronous mode (i.e.

non-blocking mode) as specified in the ES-API.

To demonstrate this, below are two calls to exs connect - one that operates asynchronously

and one that operates synchronously.

exs_init(EXS_VERSION);

int fd = exs_socket(PF_INET , SOCK_STREAM , 0);

exs_qhandle_t qhandle = exs_qcreate (0);

int ret = exs_connect(fd , info ->ai_addr , info ->ai_addrlen ,

0, NULL , qhandle , NULL);

Figure 2-3: Asynchronous exs connect()

exs_init(EXS_VERSION);

int fd = exs_socket(PF_INET , SOCK_STREAM , 0);

int ret = exs_connect(fd , info ->ai_addr , info ->ai_addrlen ,

EXS_BLOCK , NULL , NULL , NULL);

Figure 2-4: Synchronous exs connect()

exs connect() in Figure 2-3 operates asynchronously, thus will return immediately and will

later post an event to an event queue created by exs qcreate() when the connection has been

6

created and is ready for use. exs qdequeue() polls from that queue and will wait until it finds the

event posted by exs connect. The call to exs connect() in Figure 2-4 will not return until the

connection has been established and no event is needed.

It is up to the programmer to properly manage the event queue when using asynchronous

operations in UNH EXS just as it is necessary to do so when using the ES-API. The advantage

of managing the event queue is that programmers are then able to exploit parallelism in their

program design. UNH EXS provides the flexibility to operate without managing the event queue

whatsoever.

7

CHAPTER 3

Related Work

3.1 UNH EXS Overview

The current release of UNH EXS is UNH EXS 1.3.6 [8], published March 15, 2015. This release

implements most ES-API operations as well as some non-standard operations. While it is currently

possible to establish RDMA connections in each permutation allowed by the library (asynchronous

or synchronous, with or without memory registration) there are some features of the ES-API

standard that are not implemented.

Documentation detailing each UNH EXS function did not exist when UNH EXS 1.3.6 was

published. Quality documentation is required not only for the users of the library to understand

how to use the library but also for the developers and maintainers of the library to have strong

references when implementing new features or making changes.

At the time of release of UNH EXS 1.3.6 modifying the library required manual testing to

ensure the remainder of the library continued to operate as expected. Some trivial test cases

were implemented into the build system but were not utilized effectively. The need for a testing

framework that could be performed automatically when changes are made to the library was found.

exs sendfile() is a function defined in the ES-API that transmits the contents of a file over a

given socket. This functionality is desirable for a user of UNH EXS because sending the contents

of a file over an RDMA connection is a common task that requires some overhead to do manually.

The documentation need described above was completed before this thesis (and will be discussed

below). However the testing framework and exs sendfile() operation are both the topic of this

thesis.

8

3.2 Manual Pages

Documentation on the syntax and expected behavior of a UNH EXS library did not exist at the

time of the UNH EXS 1.3.6 release. A very effective way to provide this documentation is in manual

pages implemented directly on the system. Manual pages exist for virtually every UNIX function

available to a system and can be accessed directly from the command line using the command

”man”. Manual pages for each implemented UNH EXS function were created and added to the

upcoming release of UNH EXS. These manual pages are now installed on the system when UNH

EXS is installed and operate the same way normal manual pages do. Figure 3-1 shows an example

of the exs connect() man page, accessed with the command man exs connect.

9

man exs_connect

...

NAME

exs_connect - asynchronously connect a socket

SYNOPSIS

#include <exs.h>

int exs_connect(int sockno ,

const struct sockaddr *address ,

socklent_t address_len ,

int flags ,

struct timeval *timeout ,

exs_qhandle_t qhandle ,

exs_ahandle_t ahandle);

int exs_blocking_connect(int sockno ,

const struct sockaddr *address ,

socklen_t address_len);

DESCRIPTION

The exs_connect () function initiates a synchronous or asynchronous

connect operation on a socket.

If the exs_connect () started successfully , it will operate in parallel

with the user thread that started it. During this time the user should

not call any additional EXS functions for this connection , because the

internal state of the connection will be undefined until the exs_connect ()

has completed and the EXS interface has posted to the user ’s qhandle an

event whose exs_evt_type field contains the value EXS_EVT_CONNECT.

Once this event has been received , the user is able to use the connection

to transmit data to and from the remote server.

The completion event can be retrieved from the event queue with the

exs_qdequeue () function. The completion event for the exs_connect ()

operation is the exs_event structure or equivalent exs_event_t type.

...

Figure 3-1: man exs connect

10

CHAPTER 4

Testing Framework

4.1 Motivation

The motivation behind creating a testing framework for UNH EXS was twofold. The first was to

provide explicit conformance testing for each of the functions defined in UNH EXS whether that

be to the ES-API, POSIX, or UNH EXS definition. The second was to provide regression testing

when making modifications to the UNH EXS library. Integrating the testing framework into the

UNH EXS release allows any user to verify their implementation at any time.

4.2 Conformance Testing

All UNH EXS [1] functions are documented via manual pages (described above) as well as in

additional documentation describing UNH EXS. These documents were modeled after the POSIX

and ES-API standard when necessary. Thus all conformance testing is based directly off of UNH

EXS documentation.

The goal of the conformance testing is to verify that a function produces the correct error

codes and behavior in the failure cases and produces the correct return value and behavior in the

success cases. Failure cases are mostly testing the various bad parameters that could be passed to

a function. The success case is running the function with correct parameters and using successful

calls to the functions to assist in the testing of other functions since many UNH EXS functions

have pre-requisites.

The framework is built in such a way that if a pre-requisite function fails the other functions

that rely on that functions will fail as well. This ensures that if there is an issue with a base level

11

function or the installation has issues the framework can terminate without doing unnecessary work

and not generating a lot of redundant error messages.

4.3 Regression Testing

Regression testing is critical to ensure a software library can mature without introducing bugs to

previously functional code. Without regression testing each new change has to be vetted manually

and in most cases is not done completely. Success cases are more important than failure cases

because failure cases due to parameter checking should only fail if a change is made directly to one

function while success cases could fail due to a subtle change in an unrelated function. Having a

framework in place to step through all of the possibilities and perform a full test scenario of all

functions will ensure fewer errors are introduced into the library as a whole.

Figure 4-1 shows an excerpt from the output of a regression test. test/test all check.sh is

a script that runs all of the test functions and all of their tests. tests/test all check.sh will

return 0 if all tests pass, and 1 if any tests fail. The output of this script can be found in the file

./test-suite.log.

...

PASS: tests/test_all_check.sh

PASS: libexs/test_trace

...

==

Testsuite summary for UNH EXS 1.3.6 -107 - gf7d6ff0

==

TOTAL: 2

PASS: 2

SKIP: 0

XFAIL: 0

FAIL: 0

XPASS: 0

ERROR: 0

==

Figure 4-1: Regression Test Output

12

4.4 Framework Design

Each UNH EXS function has its own set of test cases. These test cases are implemented in a single

C program that will parse input parameters, handle initialization, and run the selected test cases.

Test cases can be selected from the command line. If no tests are selected, all tests are run. Figure

4-2 shows a simplified example of the test file for exs connect().

#include "result.h"

#include "setup/exs_init_setup.h"

#include "setup/exs_socket_setup.h"

#include "setup/exs_connect_setup.h"

#include "setup/exs_server_setup.h"

#include "setup/exs_client_setup.h"

#define BAD_FLAG 2

void *test_connect(void *test_void_ptr){

setup_fault_catcher(p,getpid ());

param *p = (param *) test_void_ptr;

int test = p->test_number;

/* EPERM: exs_init has not been called */

if(test == 1){

p->test_value = "EPERM";

p->test_name = all_connect_tests[test -1];

int ret = exs_connect(p->fd , p->address ,

p->address_len , p->flags , p->to , p->qh , p->ah);

print_macro(test ,p->test_value ,p->test_name ,ret ,-1,EPERM);

}

/** test number not valid **/

else if(test != 0){

fprintf(stdout ," Invalid Test Number: %d\n", test);

}

}

int main(int argc , char *argv []){

execute(argc ,argv ,test_connect ,CONNECT_TESTS);

}

Figure 4-2: Test File for exs connect()

Each test runs in blocking mode by default and can optionally be run in non-blocking mode.

13

UNH EXS function calls that are limited to the blocking mode (i.e. exs blocking connect() are

not run if non-blocking mode is specified.

A custom struct param was created to store information for the various tests. Test Functions

take a struct param instance as a parameter so that parameters can be passed from test function

to test function. struct param has an int mode field that keeps track of whether or not the testing

framework is operating in blocking or non-blocking mode.

setup options handles various command line parameters that specify whether or not passing

results are printed, which address and port to use, and which test cases to run. These options are

defined in the Testing Framework User Documentation in Appendix A.

./tests/test_exs_connect -v 2>/dev/null

1 : EPERM : exs_connect(fd, ai_addr , ai_addrlen , flags , to, qh , ah) [no exs_init]

: blocking : PASS : 1 : Operation not permitted

2 : EBADF : exs_connect(BAD_FD , ai_addr , ai_addrlen , flags , to, qh, ah)

: blocking : PASS : 9 : Bad file descriptor

3 : EINVAL : exs_connect(CONNECTED_FD , ai_addr , ai_addrlen , flags , to, qh, ah)

: blocking : PASS : 22 : Invalid argument

4 : EINVAL : exs_connect(fd, ai_addr , ai_addrlen , BAD_FLAG , to , qh, ah)

: blocking : PASS : 22 : Invalid argument

5 : OK_EXS_CONNECT : exs_connect(fd , ai_addr , ai_addrlen , flags , to , qh, ah)

: blocking : PASS : 0 : Success

./tests/test_exs_connect -v -n 2>/dev/null

1 : EPERM : exs_connect(fd, ai_addr , ai_addrlen , flags , to, qh , ah) [no exs_init]

: non -blocking : PASS : 1 : Operation not permitted

2 : EBADF : exs_connect(BAD_FD , ai_addr , ai_addrlen , flags , to, qh, ah)

: non -blocking : PASS : 9 : Bad file descriptor

3 : EINVAL : exs_connect(CONNECTED_FD , ai_addr , ai_addrlen , flags , to, qh, ah)

: non -blocking : PASS : 22 : Invalid argument

4 : EINVAL : exs_connect(fd, ai_addr , ai_addrlen , BAD_FLAG , to , qh, ah)

: non -blocking : PASS : 22 : Invalid argument

5 : OK_EXS_CONNECT : exs_connect(fd , ai_addr , ai_addrlen , flags , to , qh, ah)

: non -blocking : PASS : 0 : Success

./tests/test_exs_blocking_connect -v 2>/dev/null

1 : EPERM : exs_blocking_connect(fd, ai_addr , ai_addrlen) [no exs_init]

: blocking : PASS : 1 : Operation not permitted

2 : EINVAL : exs_blocking_connect(CONNECTED_FD , ai_addr , ai_addrlen)

: blocking : PASS : 22 : Invalid argument

3 : OK_EXS_BLOCKING_CONNECT : exs_blocking_connect(fd, ai_addr , ai_addrlen)

: blocking : PASS : 0 : Success

Figure 4-3: Sample Output for test exs connect

print macro is used in the testing framework to determine the result of a test based on the

expected return value versus the observed return value as well as the observed error code. If the

return value and error code match what the test has specified, the result is a pass. Otherwise,

the result is a fail. All results are printed to Standard Out. Passing results are not printed

unless the command line options specify verbose output. Figure 4-3 shows sample output for

14

test exs connect which tests exs connect(). Note that 2>/dev/null is used to eliminate prints

to stderr as they are not relevant in this example.

The testing framework was designed to operate on a single machine and create a connection

on a single local interface. This is done to ensure there are no synchronization issues between two

machines trying to establish a connection. To do this, the testing framework uses two FIFOs, one

to open a connection and one to close it, as a mutex to ensure synchronous (blocking) calls to UNH

EXS functions avoid a race condition. These FIFOs are not used in asynchronous (non-blocking)

mode.

The tests in a test file mostly check the parameter validation of each function. After parameter

checks, the test file tests correct calls to the EXS function. This is done through helper functions

with the prefix ok. For example, Figure 4-4 shows ok exs connect().

static int ok_exs_connect(param *p)

{

char *name = "ok_exs_connect ";

struct addrinfo *info;

struct addrinfo hints;

memset (&hints , 0, sizeof(hints));

hints.ai_family = p->family;

hints.ai_socktype = p->socktype;

hints.ai_protocol = p->protocol;

hints.ai_flags = AI_PASSIVE;

int r = getaddrinfo(p->addr , p->port , &hints , &info);

int ret =

exs_connect(p->fd, info ->ai_addr , info ->ai_addrlen , p->flags ,

p->to , p->qh , p->ah);

if (ret < 0) {

print_error(name);

return EXIT_FAILURE;

}

return EXIT_SUCCESS;

}

Figure 4-4: ok exs connect() helper function

15

Note that ok exs connect() does not initialize UNH EXS (via exs init()) nor does it close

the connection it establishes with exs connect(). The ok functions are helper functions to allow

test cases to be set up more easily.

These ok functions are combined to set up the test cases into the various states required to test

a specific function. A full connection between a client and a server can be initialized, connected,

and closed using only these functions (as seen in Figure 4-5). If any of these helper functions fails,

the test case immediately terminates and fails as well.

4.5 Framework Documentation

The operation of the UNH EXS testing framework is documented in a separate User Documentation

document that is included in this thesis as Appendix A. The User Documentation also details each

UNH EXS function and its test cases.

The implementation of the UNH EXS testing framework is documented in a separate Developer

Documentation document that is included in this thesis as Appendix B. The Developer Documen-

tation is focused on three things: exposing the specification and expected behavior of the UNH

EXS functions, providing the user with the knowledge of how to run the testing framework and

interpret the results, and providing developers who maintain UNH EXS and the testing framework

a detailed explanation on how the testing framework is implemented. This is done to ensure that

new test cases and test functions can be added easily as the library is extended.

4.6 Integration into EXS Build System

The testing framework has been integrated into the UNH EXS build system. Once the appropriate

version of UNH EXS is installed the testing framework can built and run on the system.

Each UNH EXS function test is compiled into a single script that will be run by the UNH EXS

build process. The results from each test are displayed to Standard Output (by default tests that

pass are suppressed) and these results can be checked by the build process to determine if there

16

were any failure cases. At this time if a single test cases fails the build process will state a failure of

all tests as a whole but the user can view the output and determine which specific test case failed.

The test cases can also be run independently of the UNH EXS build process once they are built.

17

#include "result.h"

int main(int argc , char *argv []){

p = calloc(1,sizeof(param));

p->func = "pingpong ";

/** get command line options **/

if (setup_options(argc , argv , p) != 0) {

return 0;

}

pid_t pid = fork ();

if(pid == 0){

if(ok_exs_init(p) < 0) exit(EXIT_FAILURE);

if(ok_exs_socket(p) < 0) exit(EXIT_FAILURE);

if(ok_exs_bind(p) < 0) exit(EXIT_FAILURE);

if(ok_exs_listen(p) < 0) exit(EXIT_FAILURE);

int fd = open(" fifo1",O_WRONLY);

if(ok_exs_accept(p) < 0) exit(EXIT_FAILURE);

int ret = ok_exs_recv(p);

if(ret < p->RECV_BUFSIZE) exit(EXIT_FAILURE);

close(fd);

if(ok_exs_close(p) < 0) exit(EXIT_FAILURE);

fd = open("fifo2", O_RDONLY);

close(fd);

} else {

int fd = open(" fifo1",O_RDONLY);

if(ok_exs_init(p) < 0) exit(EXIT_FAILURE);

if(ok_exs_socket(p) < 0) exit(EXIT_FAILURE);

if(ok_exs_connect(p) < 0) exit(EXIT_FAILURE);

close(fd);

if(ok_exs_send(p) < 0) exit(EXIT_FAILURE);

if(ok_exs_close(p) < 0) exit(EXIT_FAILURE);

fd = open("fifo2", O_WRONLY);

close(fd);

}

}

Figure 4-5: Client and Server Connection

18

CHAPTER 5

Asynchronous File Transfer

5.1 Motivation

Transmitting the contents of a file across a socket is a common task. While it is possible to do

this with UNH EXS 1.3.6 using normal send operations these commands can only send buffers of

memory in user space. In order to transmit a file the programmer would have to go through the

overhead of bringing the contents of file into memory and then use send operations to transmit

the data. Figure 5-1 demonstrates this task where the user simply reads in parts of a file block by

block and transmits these blocks with exs send().

Bringing the file contents into memory one block at a time can be inefficient. Figure 5-2

demonstrates how to avoid sending the file in separate blocks and instead map the entire contents

of the file into memory using mmap(2) [9]. This is the way exs sendfile() is implemented.

The ES-API defines exs sendfile() as a function to transmit the contents of a file across a

socket. UNH EXS does not implement this function. Making this addition to the UNH EXS library

serves two purposes. First it adds additional functionality that is desired and brings UNH EXS

closer to a complete implementation of the ES-API exs sendfile(). Secondly it allows the testing

framework to be vetted as a useful means of performing test-first development and also provide

regression testing as a new feature is added. The documentation described in Appendix B will also

be used and evaluated on how it assists in making additions to the testing framework.

19

#include <exs.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netdb.h>

#include <netinet/in.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

/* main takes a single argument , the path of a

file to send using exs_sendfile */

int main(int argc , char* argv []){

if(argc < 2) return 0;

exs_init(EXS_VERSION);

int sfd = exs_socket(PF_INET , SOCK_STREAM , 0);

int family = PF_INET;

int socktype = SOCK_STREAM;

int protocol = IPPROTO_TCP;

struct addrinfo *info;

struct addrinfo hints;

memset (&hints , 0, sizeof(hints));

hints.ai_family = family;

hints.ai_socktype = socktype;

hints.ai_protocol = protocol;

hints.ai_flags = AI_PASSIVE;

int r = getaddrinfo (" localhost", "55555" , &hints , &info);

exs_connect(sfd , info ->ai_addr , info ->ai_addrlen ,

EXS_BLOCK , NULL , NULL , NULL);

ssize_t block = (ssize_t)1024;

ssize_t size;

char buf[block];

int fd = open(argv[1], O_RDONLY);

exs_mhandle_t mh = exs_mregister(buf ,size ,

EXS_MRF_RECV_DISABLE);

while ((size = read(filefd , &buf , block)) > 0) {

exs_send(p->fd, buf , size , EXS_BLOCK , NULL , NULL , mh);

}

exs_mderegister(mh, 0);

exs_close(sfd , EXS_BLOCK , NULL , NULL);

close(fd);

}

Figure 5-1: Sending a file with exs send() in blocks
20

#include <exs.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netdb.h>

#include <netinet/in.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/mman.h>

/* main takes a single argument , the path of a

file to send using exs_sendfile */

int main(int argc , char* argv []){

if(argc < 2) return 0;

exs_init(EXS_VERSION);

int sfd = exs_socket(PF_INET , SOCK_STREAM , 0);

int family = PF_INET;

int socktype = SOCK_STREAM;

int protocol = IPPROTO_TCP;

struct addrinfo *info;

struct addrinfo hints;

memset (&hints , 0, sizeof(hints));

hints.ai_family = family;

hints.ai_socktype = socktype;

hints.ai_protocol = protocol;

hints.ai_flags = AI_PASSIVE;

int r = getaddrinfo (" localhost", "55555" , &hints , &info);

exs_connect(sfd , info ->ai_addr , info ->ai_addrlen ,

EXS_BLOCK , NULL , NULL , NULL);

ssize_t size;

struct stat stat_buf;

int fd = open(argv[1], O_RDONLY);

fstat(fd, &stat_buf);

size = stat_buf.st_size;

void* mapped = mmap(0,size ,PROT_READ | PROT_WRITE ,

MAP_PRIVATE ,fd ,offset);

exs_mhandle_t mh = exs_mregister(mapped ,(size_t)size ,

EXS_MRF_RECV_DISABLE);

exs_send(sfd , mapped , size , EXS_BLOCK , NULL , NULL , mh);

exs_mderegister(mh, 0);

munmap(mapped , size);

exs_close(sfd , EXS_BLOCK , NULL , NULL);

close(fd);

}

Figure 5-2: Sending a file with exs send() with mmap(2)

21

5.2 Benefits

exs sendfile() and its companion exs blocking sendfile() reduces a common task in RDMA

programming into a well defined function. This reduces overhead and complexity on the part of

the programmer wishing to complete this task. Once this mechanism is in place the UNH EXS

framework will provide a more rich API to the user as well as achieve closer parity with the ES-API

exs sendfile().

5.3 Description

exs sendfile() was not implemented exactly as it appears in the ES-API standard. First, it

supports synchronous operation, i.e. the function will not return until the entire file is transmitted

over the socket or an error occurs. Second, due to time constraints, exs sendfile() is limited to

accepting files that are less than or equal to 1GB in length. This was done because 1GB is the

maximum allowed message size supported by the InfiniBand hardware UNH EXS was implemented

on. Third, a new mechanism for specifying which file to transmit was added.

As specified in the ES-API, exs sendfile() in UNH EXS only accepts a valid file descriptor

that points to regular file (i.e. not a socket, fifo, etc.). See Figure 5-3 for a complete example.

22

#include <exs.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netdb.h>

#include <netinet/in.h>

#include <fcntl.h>

#include <unistd.h>

/* main takes a single argument , the path of a

file to send using exs_sendfile */

int main(int argc , char* argv []){

if(argc < 2) return 0;

exs_init(EXS_VERSION);

int sfd = exs_socket(PF_INET , SOCK_STREAM , 0);

int family = PF_INET;

int socktype = SOCK_STREAM;

int protocol = IPPROTO_TCP;

struct addrinfo *info;

struct addrinfo hints;

memset (&hints , 0, sizeof(hints));

hints.ai_family = family;

hints.ai_socktype = socktype;

hints.ai_protocol = protocol;

hints.ai_flags = AI_PASSIVE;

int r = getaddrinfo (" localhost", "55555" , &hints , &info);

exs_connect(sfd , info ->ai_addr , info ->ai_addrlen ,

EXS_BLOCK , NULL , NULL , NULL);

int fd = open(argv[1], O_RDONLY);

exs_xferfile_t sendvec;

memset (&sendvec , 0, sizeof(exs_xferfile_t));

sendvec.exs_xfv.exs_fdv.exs_fildes = fd;

sendvec.exs_xfv.exs_fdv.exs_offset = (off_t)0;

sendvec.exs_xfv.exs_fdv.exs_length = (size_t)0;

sendvec.exs_xfv.exs_fdv.exs_flags = 0;

sendvec.exs_xfv_type = EXS_FDVEC;

int sendvec_cnt = 1;

exs_sendfile(sfd , &sendvec , sendvec_cnt , EXS_BLOCK , NULL , NULL);

exs_close(sfd , EXS_BLOCK , NULL , NULL);

close(fd);

}

Figure 5-3: exs sendfile() with valid file descriptor

23

union exs_xfvec

{

exs_iovec_t exs_iov; /* IOVEC extent. */

exs_fdvec_t exs_fdv; /* FDVEC extent. */

exs_pathvec_t exs_pathv; /* PATHVEC extent. */

};

struct exs_xferfile

{

int exs_xfv_type; /* Source extent type. */

union exs_xfvec exs_xfv; /* Source extent. */

};

Figure 5-4: exs xferfile and exs xfvec

struct exs_pathvec

{

off_t exs_offset; /* Offset into the file. */

size_t exs_length; /* Requested transfer length. */

int exs_flags; /* Flags. */

char *exs_path; /* path to file */

};

Figure 5-5: exs pathvec

UNH EXS will eventually be ported to Windows where file descriptors have a different format

than in POSIX. Therefore it was desired to include another means of specifying a file by giving it

the name of a file path. The file path will be checked by exs sendfile() and the function will

return in error if the path is not valid (or the resulting file does not meet the other requirements).

This is achieved by adding a new struct, exs pathvec, to the exs xfvec union, which is defined

in struct exs xferfile (see Figure 5-4). exs xferfile is what is passed to exs sendfile()

and now contains either a file descriptor (exs fdvec) or a file path (exs pathvec). exs pathvec

is defined in Figure 5-5 and is used in Figure 5-6.

24

#include <exs.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netdb.h>

#include <netinet/in.h>

#include <fcntl.h>

#include <unistd.h>

int main(int argc , char* argv []){

if(argc < 2) return 0;

exs_init(EXS_VERSION);

int sfd = exs_socket(PF_INET , SOCK_STREAM , 0);

int family = PF_INET;

int socktype = SOCK_STREAM;

int protocol = IPPROTO_TCP;

struct addrinfo *info;

struct addrinfo hints;

memset (&hints , 0, sizeof(hints));

hints.ai_family = family;

hints.ai_socktype = socktype;

hints.ai_protocol = protocol;

hints.ai_flags = AI_PASSIVE;

int r = getaddrinfo (" localhost", "55555" , &hints , &info);

exs_connect(sfd , info ->ai_addr , info ->ai_addrlen ,

EXS_BLOCK , NULL , NULL , NULL);

exs_xferfile_t sendvec;

memset (&sendvec , 0, sizeof(exs_xferfile_t));

sendvec.exs_xfv.exs_pathv.exs_path = argv [1];

sendvec.exs_xfv.exs_pathv.exs_offset = (off_t)0;

sendvec.exs_xfv.exs_pathv.exs_length = (size_t)0; //go until EOF

sendvec.exs_xfv.exs_pathv.exs_flags = 0; // EXS_SHUT_WR

sendvec.exs_xfv_type = EXS_PATHVEC;

int sendvec_cnt = 1;

exs_sendfile(sfd , &sendvec , sendvec_cnt , EXS_BLOCK , NULL , NULL);

exs_close(sfd , EXS_BLOCK , NULL , NULL);

}

Figure 5-6: exs sendfile() with exs pathvec

25

EXS_EXPORT ssize_t

exs_blocking_sendfile(int sockno , exs_xferfile_t *sendvec , int sendvec_cnt ,

int flags)

{

return exs_sendfile(sockno , sendvec , sendvec_cnt , flags|EXS_BLOCK ,

NULL , NULL);

} /* exs_blocking_sendfile */

Figure 5-7: exs blocking sendfile()

As for other synchronous functions, exs blocking sendfile() (see Figure 5-7) will be added

to the UNH EXS library as an alias to exs sendfile() in blocking mode, but with the irrelevant

parameters removed.

5.4 Challenges

exs sendfile() must operate in synchronous and asynchronous mode as well as optionally sup-

port memory registration. Additionally there is overhead in verifying the file descriptor or file

path passed to the function. Fortunately many of these challenges are addressed by exs send(),

the normal send operation in UNH EXS, and exs send() can be used as a model to implement

exs sendfile().

The other challenge with creating exs sendfile() is if the file size is greater than the supported

message size defined by the RDMA hardware UNH EXS is implemented on. This would require

exs sendfile() to bring the file into memory in pieces and transmit those pieces independently.

This would mean keeping track of each iteration (as a failure of one iteration would mean a failure

of the entire file transmission) as well as the operation as a whole. This challenge is avoided by

creating the requirement that exs sendfile() must not support a file over 1GB so that it can be

sent in its entirety as one message using a single exs send() call.

26

5.5 Design

exs sendfile() is modeled after exs send(). In fact, they will share the same core code - sending

a buffer of memory over a socket. exs sendfile() has additional overhead to check the various

parameters and to verify the file specified meets the necessary requirements.

In the case where exs sendfile() is given a valid file descriptor, mmap(2) [9] is used to map

the file data into memory and exs mregister() is used to register the memory for sending. Once

the send has been completed, exs mderegister() and munmap(2) [9] are used to unregister and

free the file data in memory.

In the case where exs sendfile() is given a file path rather than a file descriptor the function

will attempt to open the file and return an error if that operation fails. If it succeeds it will attempt

to send the file over the socket following the same steps as in the file descriptor case. When the

operation is complete exs sendfile() will close the file specified.

5.6 Specification

exs sendfile() and exs blocking sendfile() are defined in the User Documentation (Appendix

A) on page 30.

27

CHAPTER 6

Conclusion

6.1 Lessons Learned

The testing framework became an invaluable tool while implementing exs sendfile() and

exs blocking sendfile(). Not only was the various various parameter checking able to be verified

easily, but it was easy to add additional test cases to ensure the behavior of the functions were

correct. Additionally, running the test framework as a whole during the implementation process

provided regression testing that ensured that exs sendfile would not break something else in the

library.

Creating documentation, both for the user and developers of the testing framework, was also

very useful. It helped detect issues in the design as well as the implementations of the various test

functions and test cases. It also helped to ensure that the testing framework could be extended in

the future.

Additions to a software library are never easy and this thesis was a good opportunity to make

a substantial contribution to the library and also allow for easier extension in the future.

6.2 Summary

The contents of this thesis are included in the UNH EXS 1.4.0 [10]. This includes the cre-

ation of a testing framework and the implementation of two functions: exs sendfile() and

exs blocking sendfile(). These functions were added to the testing framework which was used

to vet their implementation. User and Developer documentation for the testing framework were

created and are attached to this thesis.

28

6.3 Future Work

A natural expansion to exs sendfile() (and exs blocking sendfile()) would be to allow file

sizes over 1GB. Additionally, the functions exs recvfile() and exs blocking recvfile could be

added to receive data from a socket and place it into a file. exs sendfile() and exs recvfile()

combined would allow for true end to end file transfer.

29

User Documentation for UNH EXS 1.4.0 Testing Framework

Maxwell Renke

InterOperability Laboratory

University of New Hampshire

Durham, New Hampshire 03824

1. Introduction

This document describes an non-exhaustive suite of tests that will run nightly against the

development installation of UNH EXS 1.4.0 to provide a detailed report on the current status of the

UNH EXS development and support regression testing for future development.

 The tests described in this document will include unit tests against the Extended Sockets API

(ES-API) specification published by the OpenGroup as well as existing man page documentation

included with the 1.4.0 UNH EXS installation.

The end result of this test suite will issues reports detailing failing tests. This mechanism is

further described in Framework.

2. Scope

This document will describe the layout, method, and reporting techniques used to support

regression testing for the UNH EXS 1.4.0 installation. The main goal of this test suite is to directly

verify the behavior of UNH EXS functions to the the UNH EXS documentation as well as ES-API

conformance.

3. Framework

 Test cases will be structured in such a way that they contain prerequisite tests that must pass in

order to be run. For example, if Initialization fails then the failure will be reported followed by an

error message stating that all further tests will not be run because of the failure. Test cases may be

performed and reported on in a different order than they appear on this document.

 Test cases will be individually reported on in each group. Test groups will maintain a running

tally of successful test cases as well as failure test cases. Any failures will be displayed in-line with

the rest of the testing, unless such a failure requires the entire test group to not be tested.

 An example test report is included at the end of this document.

 A test result shall include test group number, test number, function name, return value,

errno, result, message that can be independently verified.

APPENDIX A

30

The following contains an overview, in order, on how the tests are structured such that each test

succeeds a test that is required to pass before it can be tested.

3.1 Initialization

 exs_init(), exs_socket()

3.2 Client Connection

 exs_bind()

 3.2.1 Asynchronous

 exs_connect()

 3.2.2 Synchronous

 exs_blocking_connect()

3.3 Listening Post

 exs_listen()

 3.3.1 Asynchronous

 exs_accept()

 3.3.2 Synchronous

 exs_blocking_accept()

3.4 Memory Registration

exs_mderegister(), exs_mregister()

3.5 Completion Queues

 exs_qcreate(), exs_qdelete(), exs_qdequeue()

3.6 Message Transfer

 3.6.1 Asynchronous

 exs_send(), exs_receive(), exs_sendfile()

 3.6.2 Synchronous

exs_blocking_send(), exs_blocking_recv(), exs_read(), exs_write(),

exs_blocking_sendfile()

3.7 Socket Termination

 exs_shutdown()

 3.7.1 Asynchronous

 exs_close()

 3.7.2 Synchronous

 exs_blocking_close()

3.8 Other

 exs_fcntl()

31

4. Command Line Usage

 The UNH EXS Testing Framework runs as a command line utility. The results can be used to

support Regression Testing, which will be discussed in detail in the following subsections. The

options available to the user as well as detailed information for the test cases that can be run can be

viewed directly from the command line. Shell scripts are used to run the tests in aggregate.

4.1 Command Line Options

 The following options can be viewed from the command line by using the [-h] or [-H] option on

the command line at run time.

 Command line options and their processing are defined in cmdline.h.

The options that will be displayed will be as follows:

[–h –H] Displays usage information.

[–l –L] Displays all tests for a particular function, including the test number, test name,

and expected return value.

[–t –T] Displays an individual test for a particular function, including the test number,

test name, and expected return value when followed by a number.

[–v –V] Specifies the option for Verbose output – all passing and non passing tests will be

printed to stdout. By default, passing results are not printed.

[–a –A] Specifies the server interface address to be used in the testing framework. By

default, this value is set to “localhost”.

[–p –P] Specifies the port number to be used in the testing framework. By default, this

value is hard-coded in port.h.

[–n –N] Specifies the option to run the testing framework in non-blocking

(asynchronous) mode. By default, the testing framework runs in blocking

mode.

[0] Specify which test to run. Can be separated by spaces. Invalid or numbers out of

range of the test will not be accepted. If not test is selected, all tests will be run.

[0-1] Specify a range of tests to run. Invalid ranges will not be accepted.

32

4.1.1 Individual Tests

 Each EXS function can be run independently of each other. To run a particular test it is necessary

to compile the project and run the appropriate object file with the appropriate command line options.

For example:

./test_exs_init –v

This will run all exs_init tests in verbose output mode.

4.1.2 Running All Tests

 The UNH EXS Framework includes the bash script file test_all.sh. This simple runs all test

functions with the parameters to the script passed to each function.

For example:

./test_all.sh –v –p 55555

This will run all tests in verbose mode with a port number of 55555. Note, the project must be

compiled before test_all.sh can be run.

4.2 Regression Testing

 The UNH EXS Framework reports to stdout as well as a log file. Each line includes the test

number, test name, expected result, observed result, and test result. It shall be sufficient to diff

different outputs from running the framework to determine if the results have changed and if so in

what way. The mechanism to achieve true automated regression testing is not in the scope of this

document and is left as an exercise for the reader.

33

5. Test Groups

The tests described in this document are separated into various groups to better segment the

initialization required for each tests and to keep results consistent across groups.

The groups include:

 ES-API Conformance

 EXS Conformance

5.2. ES-API Conformance

 The goals of these tests are to verify that all implemented ES-API functions correctly conform to

specification published by the OpenGroup.

 These tests will attempt to:

 Verify all functions return 0 on success cases.
 Verify all functions return -1 on failure cases.
 Verify all functions set errno appropriately on failure cases.

Undefined behavior will be reported as failures.

34

5.2.1. exs_accept()

The following tests will exercise exs_accept() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_bind(), exs_listen(), exs_connect(), exs_qcreate(),

exs_qdequeue()

int exs_accept(int socket,

 exs_acceptaddr_t *addrvec,

 int addrvec_cnt,

 int flags,

 exs_qhandle_t qhandle);

socket file descriptor used to specify the socket to be used

addrvec pointer to array of exs_acceptaddr structures

addrvec_cnt specifies the number of connections that should be accepted

flags additional options to be specified (blocking/non-blocking)

qhandle specifies the destination event queue

Test [1]: EPERM
exs_accept(p->fd, &acceptaddr, 1, EXS_BLOCK, NULL) [no exs_init]

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EINVAL
exs_accept(p->fd, &acceptaddr, 1, BAD_FLAG, NULL)

 Verify the function returns -1 and sets errno to [EINVAL] if flag is invalid

Test [3]: EINVAL
exs_accept(p->fd, &acceptaddr, NEGATIVE_ADDRVEC_CNT, 0, qh)

 Verify the function returns -1 and sets errno to [EINVAL] if addrvec_cnt <= 0 when non

blocking

 In blocking mode, this test case is not performed.

Test [4]: EINVAL
exs_accept(p->fd, &acceptaddr, ZERO_ADDRVEC_CNT, EXS_BLOCK, qh)

 Verify the function returns -1 and sets errno to [EINVAL] if addrvec_cnt != 1 when

blocking

 In non-blocking mode, this test case is not performed.

35

Test [5]: EINVAL
exs_accept(p->fd, &acceptaddr, 1, 0, INVALID_QHANDLE)

 Verify the function returns -1 and sets errno to [EINVAL] if qhandle is not a valid event

queue.

Test [6]: EINVAL
exs_accept(p->fd, &acceptaddr, 0, EXS_BLOCK, NULL) [no exs_listen]

 Verify the function returns -1 and sets errno to [EINVAL] if the socket pointed to by fd is

not accepting connections (exs_listen() has not been called)

Test [6]: EBADF
 exs_accept(BAD_FD, &acceptaddr, 1, EXS_BLOCK, NULL)

 Verify the function returns -1 and sets errno to [EINVAL] if fd is invalid

Test [8]: OK_EXS_ACCEPT
exs_accept(p->fd, &acceptaddr, 1, EXS_BLOCK, NULL)

 Verify the function returns 0 if passed correct parameters.

36

5.2.2. exs_connect()

The following tests will exercise exs_connect() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_bind(), exs_listen(), exs_qcreate(), exs_qdequeue()

int exs_connect(int sockno,

 const struct sockaddr *address,

 socklent_t address_len,

 int flags,

 struct timeval *timeout,

 exs_qhandle_t qhandle,

 exs_ahandle_t ahandle);

sockno file descriptor used to specify the socket to be used

address points to a sockaddr structure containing the peer address

address_len specifies the length of the sockaddr structure pointed to by address

flags additional options to be specified (blocking/non-blocking)

timeout specifies how long the asynchronous connect operation should take before timing out

qhandle specifies the destination event queue

ahandle arbitrary pointer value chose by the user

Test [1]: EPERM
exs_connect(fd, ai_addr, ai_addrlen, flags, to, qh, ah) [no exs_init]

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EINVAL
exs_connect(fd, ai_addr, ai_addrlen, -1, to, qh, ah)

 Verify the function returns -1 and sets errno to [EINVAL] if flags is invalid (i.e. set to -1).

Test [3]: EINVAL
exs_connect(fd, ai_addr, ai_addrlen, BAD_FLAG, to, qh, ah)

 Verify the function returns -1 and sets errno to [EINVAL] if flags is invalid.

Test [4]: EBADF
exs_connect(BAD_FD, ai_addr, ai_addrlen, flags, to, qh, ah)

 Verify the function returns -1 and sets errno to [EBADF] if the socket argument is not a

valid file descriptor.

37

Test [5]: EINVAL
exs_connect(CONNECTED_FD, ai_addr, ai_addrlen, flags, to, qh, ah)

 Verify the function returns -1 and sets errnoto [EINVAL] if the socket provided is already

connected or listened to.

Test [6]: OK_EXS_CONNECT
exs_connect(fd, ai_addr, ai_addrlen, flags, to, qh, ah)

 Verify the function returns 0 if passed correct parameters.

38

5.2.3. exs_init()

The following tests will exercise exs_init() and its various success and error cases.

Prerequisites:

int exs_init(int version);

version requested version of the API to be initialized

Test [1]: ENOTSUP
exs_init(INVALID_VERSION)

 Verify the function returns -1 and sets errno to [ENOTSUP] if the version parameter

provided to exs_init() is not supported.

Test [2]: OK_EXS_INIT
exs_init(VERSION)

 Verify the function returns 0 if passed a correct version parameter.

Test [3]: EALREADY
exs_init(VERSION) [exs_init already]

 Verify the function returns -1 and sets errno to [EALREADY] if exs_init() has already been

called in the same process.

39

5.2.4. exs_mderegister()

The following tests will exercise exs_mderegister() and its various success and error cases.

Prerequisites: exs_init()

exs_mhandle_t exs_mderegister(exs_mhandle_t mhandle,

int flags);

mhandle specifies the handle to the memory being deregistered

flags additional options to be specified

Test [1]: EPERM
exs_mderegister(mh, 0)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EINVAL
exs_mderegister(NULL, 0)

 Verify the function returns -1 and sets errno to [EINVAL] if mhandle is NULL.

Test [3]: EINVAL
exs_mderegister(EXS_MHANDLE_INVALID, 0)

 Verify the function returns -1 and sets errno to [EINVAL] if mhandle is set to

EXS_MHANDLE_INVALID.

Test [4]: EINVAL
exs_mderegister(EXS_MHANDLE_UNREGISTERED, 0)

 Verify the function returns -1 and sets errno to [EINVAL] if mhandle is set to

EXS_MHANDLE_UNREGISTERED.

Test [5]: OK_EXS_MDEREGISTER
exs_mderegister(mh, 0)

 Verify the function returns 0 if passed correct parameters.

40

5.2.5. exs_mregister()

The following tests will exercise exs_mregister() and its various success and error cases.

Prerequisites: exs_init()

exs_mhandle_t exs_mregister(void *addr,

 size_t size,

int flags);

addr address to the application memory to be registered

size length of the application memory to be registered

flags additional options to be specified

Test [1]: EPERM
exs_mregister(buf, BUFSIZE, 0)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [3]: EINVAL
exs_mregister(buf, ZERO_SIZE, 0)

 Verify the function returns EXS_MHANDLE_INVALID and sets errnoto[EINVAL] if size

is less than or equal to 0.

Test [4]: EINVAL
exs_mregister(buf, BUFSIZE, BAD_FLAG)

 Verify the function returns EXS_MHANDLE_INVALID and sets errnoto[EINVAL] if flag

is invalid.

Test [5]: EINVAL
exs_mregister(NULL_ADDR, BUFSIZE, 0)

 Verify the function returns EXS_MHANDLE_INVALID and sets errnoto[EINVAL] if

addr is NULL.

Test [6]: OK_EXS_MREGISTER
exs_mregister(buf, BUFSIZE, 0)

 Verify the function returns a valid opaque memory handle if passed correct parameters.

41

Unimplemented Tests:

 Verify the function returns EXS_MHANDLE_INVALID and sets errnoto[EACCES] if the

function fails due to memory permissions.

42

5.2.6. exs_qcreate()

The following tests will exercise exs_qcreate() and its various success and error cases.

Prerequisites: exs_init()

exs_qhandle_t exs_qcreate(int depth);

depth specifies the guaranteed minimum number of events that can be stored in the queue.

Test [1]: EPERM
exs_qcreate(10)

 Verify the function returns EXS_QHANDLE_INVALID and sets errno to [EPERM] if

exs_init() has not yet been called in the same process.

Test [3]: OK_EXS_QCREATE
exs_qcreate(10)

 Verify the function returns a valid event queue if passed correct parameters.

Unimplemented Tests:

 Verify the function returns EXS_QHANDLE_INVALID and sets errno to[EAGAIN] if the

allocation of internal resources failed but a subsequent request may succeed.

 Verify the function returns EXS_QHANDLE_INVALID and sets errno to[EINVAL] if the

event queue resources were exceeded.

43

5.2.7. exs_qdelete()

The following tests will exercise exs_qdelete() and its various success and error cases.

Prerequisites: exs_init(), exs_qcreate()

int exs_qdelete(exs_qhandle_t qhandle);

qhandle specifies the event queue to be deleted

Test [1]: EPERM
exs_qdelete(qh)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [3]: EINVAL
exs_qdelete(INVALID_QHANDLE)

 Verify the function returns -1 and sets errnoto [EINVAL] if qhandle is not a valid event

queue.

Test [4]: OK_EXS_QDELETE
exs_qdelete(qh)

 Verify the function returns 0 if passed a valid qhandle.

Unimplemented Tests:

 Verify the function returns -1 and sets errno to [EBUSY] if there are still asynchronous

operations in progress for this event queue.

44

5.2.8. exs_qdequeue()

The following tests will exercise exs_qdequeue() and its various success and error cases.

Prerequisites: exs_init(), exs_qcreate()

int exs_qdequeue(exs_qhandle_t qhandle,

exs_event_t *evtvec,

int evtvec_cent,

const struct timeval *timeout);

qhandle specifies an event queue

*evtvec specifies the address of an array of exs_event_t types

evtvec_cent specifies the number of exs_event_t elements in the evtvec array

timeout specifies how long the call should wait before timing out

Test [1]: EPERM
exs_qdequeue(qh, evtvec, evtvec_cent,to)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EINVAL
exs_qdequeue(INVALID_QH, evtvec, evtvec_cent,to)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [3]: EINVAL
exs_qdequeue(qh, evtvec, ZERO_EVTVEC_CENT,to)

 Verify the function returns -1 and sets errno to [EINVAL] if evtvec_cnt is less than 1.

Unimplemented Tests:

 Verify the function returnsthe correct number of dequeued events if passed correct

parameters.

 Verify the function returns -1 and sets errno to [EFAULT] if:

o The address range specified by evtvec and evtvec_cnt is not valid.

o timeout is invalid

 Verify the function returns -1 and sets errno to [EINVAL] if evtvec_cnt is greater than

EXS_EVTVEC_MAX.

45

5.2.9. exs_recv()

The following tests will exercise exs_recv() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_bind(), exs_listen(), exs_accept()

ssize_T exs_recv(int socket,

void *buffer,

size_t length,

int flags

exs_qhandle_t qhandle,

exs_ahandle_t ahandle,

exs_mhandle_t mhandle);

socket specifies the socket file descriptor

buffer points to a buffer where the message should be stored

length specifies the length in bytes of the buffer pointed to by the buffer argument

flags specifies additional options (blocking/non-blocking)

qhandle specifies an event queue

ahandle specifies an arbitrary pointer value chosen by the user

mhandle specifies a registered memory handle

Test [1]: EPERM
exs_recv(fd, recv_buf, RECV_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EINVAL
exs_recv(fd, recv_buf, RECV_BUFSIZE, flags, INVALID_QH, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

qhandle is invalid.

Test [3]: EINVAL
exs_recv(fd, recv_buf, RECV_BUFSIZE, 0, INVALID_QH, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

qhandle is NULL and EXS_BLOCK is not specified.

Test [4]: EINVAL
exs_recv(fd, recv_buf, ZERO_LENGTH, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

length is not at least 1.

46

Test [5]: EINVAL
exs_recv(fd, recv_buf, MAX_LENGTH, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

length is greater than the maximum supported length for the RDMA channel.

Test [6]: EINVAL
exs_recv(fd, BAD_BUFFER, RECV_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

buffer is NULL.

Test [7]: EOPNOTSUPP
exs_recv(fd, recv_buf, RECV_BUFSIZE, BAD_FLAG, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to

[EOPNOTSUPP] if at least one of the flags passed to the function are not supported.

Test [8]: EBADF
exs_recv(BAD_FD, recv_buf, RECV_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EBADF] if

the function was passed a bad file descriptor.

Test [9]: ENOTCONN
exs_recv(BAD_FD, recv_buf, RECV_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to

[ENOTCONN] if the socket was never connected to prior to the function call.

Test [10]: OK_EXS_RECV
exs_recv(BAD_FD, recv_buf, RECV_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns 0 if passed all valid parameters.

47

5.2.10. exs_send()

The following tests will exercise exs_send() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_connect()

ssize_t exs_send(int socketno,

const void *buffer,

size_t length,

int flags,

exs_qhandle_t qhandle,

exs_ahandle_t ahandle,

exs_mhandle_t mhandle);

socket specifies the socket file descriptor

buffer points to a buffer containing the message to send

length specifies the length in bytes of the buffer pointed to by the buffer argument

flags specifies additional options (blocking/non-blocking)

qhandle specifies an event queue

ahandle specifies an arbitrary pointer value chosen by the user

mhandle specifies a registered memory handle

Test [1]: ENOTCONN
exs_send(NOT_CONNECTED_FD, send_buf, SEND_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to

[ENOTCONN] if the socket was never connected.

Test [2]: EPERM
exs_send(fd, send_buf, SEND_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EPERM] if

exs_init() has not yet been called in the same process.

Test [3]: EINVAL
exs_send(fd, send_buf, SEND_BUFSIZE, flags, INVALID_QHANDLE, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

qhandle is invalid.

48

Test [4]: EINVAL
exs_send(fd, send_buf, SEND_BUFSIZE, 0, INVALID_QHANDLE, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

qhandle is NULL and EXS_BLOCK is not specified and qhandle is NULL and

EXS_UNSIGNALED is not specified.

Test [5]: EINVAL
exs_send(BAD_BUFFER, send_buf, SEND_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

buffer is NULL.

Test [7]: EOPNOTSUPP
exs_send(fd, send_buf, SEND_BUFSIZE, BAD_FLAG, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to

[EOPNOTSUPP] if flags is not supported.

Test [8]: EBADF
exs_send(BAD_FD, send_buf, SEND_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EBADF] if

the function was passed a bad file descriptor.

Test [10]: EPIPE
exs_send(fd, send_buf, SEND_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EPIPE] if

the connection has been gracefully shutdown for writing.

Test [16]: OK_EXS_SEND
exs_send(fd, send_buf, SEND_BUFSIZE, flags, qh, ah, mh)

 Verify the function returns 0 if passed all valid parameters.

49

Unimplemented Tests:

 Verify the function returns -1, no event is posted to qhandle, and sets errno to

[ECONNRESET] if the connection has been terminated abruptly.

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

EXS_UNSIGNALED and EXS_BLOCK were both specified.

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EBUSY] if

no send credits were available at the time of this function call

50

5.2.11. exs_sendfile()

The following tests will exercise exs_sendfile() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_connect()

ssize_t exs_sendfile(int socket,

 exs_xferfile_t *sendvec,

 int sendvec_cnt,

 int flags,

 exs_qhandle_t qhandle,

 exs_qhandle_t ahandle);

socket specifies the socket file descriptor

sendvec specifies an array of file descriptors and memory buffers

sendvec_cnt specifies the number of elements in sendvec array

flags specifies additional options (blocking/non-blocking)

qhandle specifies an event queue

ahandle specifies an arbitrary pointer value chosen by the user

Test [1]: EPERM
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EPERM] if

exs_init() has not yet been called in the same process.

Test [2]: ENOTCONN
exs_sendfile(NOT_CONNECTED_FD, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1, no event is posted to qhandle, and sets errno to

[ENOTCONN] if the socket was never connected.

Test [3]: EINVAL
exs_sendfile(BAD_FD, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1 and sets errno to [EBADF] if fd is invalid.

Test [4]: ENODEV
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1 and sets errno to [ENODEV] if the file descriptor cannot be

mmapped.

51

Test [5]: EINVAL
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1 and sets errno to [EINVAL] if exs_fileds is invalid.

Test [6]: EINVAL
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1 and sets errno to [EINVAL] if exs_path is invalid.

Test [7]: EFBIG
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1 and sets errno to [EFBIG] if file size > 1GB.

Test [8]: EINVAL
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1 and sets errno to [EINVAL] if offset + length > fize size.

Test [9]: EINVAL
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1 and sets errno to [EINVAL] if offset > file size.

Test [10]: EINVAL
exs_sendfile(fd, sendvec, BAD_SENDVEC_CNT, flags, qh, ah);

 Verify the function returns -1 and sets errno to [EINVAL] if sendvec_cnt is invalid.

Test [11]: EINVAL
exs_sendfile(fd, sendvec, sendvec_cnt, BAD_FLAG, qh, ah);

 Verify the function returns -1 and sets errno to [EINVAL] if flags is invalid.

Test [12]: EINVAL
exs_sendfile(fd, sendvec, sendvec_cnt, EXS_UNSIGNALED & EXS_BLOCK, qh,

ah);

 Verify the function returns -1 and sets errno to [EINVAL] if EXS_UNSIGNALED and

EXS_BLOCK were both specified.

52

Test [13]: EINVAL
exs_sendfile(fd, sendvec, sendvec_cnt, EXS_BLOCK, INVALID_QHANDLE, ah);

 Verify the function returns -1 and sets errno to [EINVAL] if EXS_BLOCK is specified and

qhandle is invalid.

Test [14]: EPIPE
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns -1 and sets errno to [EPIPE] if the socket is gracefully shut down

for writing.

Test [15]: OK_EXS_SENDFILE
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns 0 if passed all valid parameters.

Test [16]: OK_EXS_SENDFILE
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns 0 if passed all valid parameters and exs_sendfile() is used to send

the same file immediately afterward.

Test [15]: OK_EXS_SENDFILE
exs_sendfile(fd, sendvec, sendvec_cnt, flags, qh, ah);

 Verify the function returns 0 if passed all valid parameters using exs_pathvec rather than

exs_fdvec.

53

5.3. EXS Conformance

 The goals of these tests are to verify that all EXS functions that are not part of the ES-API

specification correctly conform to documentation provided by the UNH EXS 1.4.0 installation.

These tests will attempt to:

 Verify all functions return 0 on success cases.
 Verify all functions return -1 on failure cases.
 Verify all functions set errno appropriately on failure cases.

Undefined behavior will be reported as failures.

54

5.3.1 exs_bind()

The following tests will exercise exs_bind() and its various success and error cases.

Prerequisites: exs_init(), exs_socket()

int exs_bind(int fd,

struct sockaddr *address,

socketlen_t addrlen);

fd specifies socket file descriptor

address pointer to a structure of type struct sockaddr that contains port address and number

information
addrlen size in bytes of the structure pointed to by address

Test [1]: EPERM
exs_bind(fd, ai_addr, ai_addrlen)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EBADF
exs_bind(BAD_FD, ai_addr, ai_addrlen)

 Verify the function returns -1 and sets errno to [EBADF] if fd is invalid.

Test [3]: EINVAL
exs_bind(CONNECTED_FD, ai_addr, ai_addrlen)

 Verify the function returns -1 and sets errno to [EINVAL] if the socket provided by fd has

already been bound.

Test [4]: OK_EXS_BIND
exs_bind(fd, ai_addr, ai_addrlen)

 Verify the function returns 0 if passed correct parameters.

55

5.3.2 exs_blocking_accept()

The following tests will exercise exs_blocking_accept() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_bind(), exs_listen()

int exs_blocking_accept(int sockno,

struct sockaddr *addr,

socklen_t *addrlen);

sockno specifies socket file descriptor

addr points to an array of exs_acceptaddr structures

addrlen specifies the number of connections that should be accepted

Test [1]: EPERM
exs_blocking_accept(fd, addr_store, addrlen)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EINVAL
exs_blocking_accept(fd, addr_store, addrlen)

 Verify the function returns -1 and sets errno to [EINVAL] if socket is not accepting

connections (exs_listen() has not been called).

Test [3]: OK_EXS_BLOCKING_ACCEPT
exs_blocking_accept(fd, addr_store, addrlen)

 Verify the function returns the socket for the new connection to the remote client if passed

correct parameters.

Unimplemented Tests:

 Verify the function returns -1 and sets errnoto [EINVAL] if:

o flags is not supported

o addrvec_cnet is less than or equal to 0

o qhandle is not a valid event queue

 Verify the function returns -1 and sets errno to [EBADF] if the socket argument is not a

valid file descriptor.

56

5.3.3 exs_blocking_close()

The following tests will exercise exs_blocking_close() and its various success and error cases.

Prerequisites: exs_init(), exs_socket()

int exs_blocking_close(int sockno);

sockno specifies socket file descriptor

Test [1]: EPERM
exs_blocking_close(fd)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: OK_EXS_BLOCKING_CLOSE
exs_blocking_close(fd)

 Verify the function returns 0 and correctly closes the socket if passed the correct parameters.

Unimplemented Tests:

 Verify the function returns -1 and sets errno to [EINVAL]if:

o flags are not supported

o qhandle is invalid

 Verify the function returns -1 and sets errno to [EBADF] if socket is invalid.

57

5.3.4 exs_blocking_connect()

The following tests will exercise exs_blocking_connect() and its various success and error cases.

Prerequisites: exs_init(), exs_socket()

int exs_blocking_connect(int sockno,

const struct sockaddr *address,

socklen_t address_len);

sockno specifies socket file descriptor

address points to a sockaddr structure containing the peer address

address_len specifies the length of the sockaddr structure pointed to by the address argument

Test [1]: EPERM
exs_blocking_connect(fd, ai_addr, ai_addrlen, flags, mh, qh, ah)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EINVAL
exs_blocking_connect(CONNECTED_FD, ai_addr, ai_addrlen, flags, mh, qh,

ah)

 Verify the function returns -1 and sets errnoto [EINVAL] if the socket provided is already

connected or listened to.

Test [3]: OK_EXS_BLOCKING_CONNECT
exs_blocking_connect(CONNECTED_FD, ai_addr, ai_addrlen, flags, mh, qh,

ah)

 Verify the function returns 0 if passed correct parameters.

58

5.3.5 exs_blocking_recv()

The following tests will exercise exs_blocking_recv() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_bind(), exs_listen(), exs_accept()

ssize_t exs_blocking_recv(int sockno,

void *buffer,

size_t max_bytes,

int flags,

exs_mhandle_t mhandle);

sockno specifies socket file descriptor

buffer points to a buffer where the message should be stored

max_bytes specifies length in bytes of the buffer point to by the buffer argument

flags specifies additional options

mhandle specifies a registered memory handle

Test [1]: EPERM
exs_blocking_recv(fd, recv_buf, RECV_BUFSIZE, flags, mh)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2]: EINVAL
exs_blocking_recv(fd, recv_buf, ZERO_LENGTH, flags, mh)

 Verify the function returns -1and sets errno to [EINVAL] if length is not at least 1.

Test [3]: EINVAL
exs_blocking_recv(fd, recv_buf, MAX_LENGTH, flags, mh)

 Verify the function returns -1and sets errno to [EINVAL] if length is greater than the

maximum supported length for the RDMA channel.

Test [4]: EINVAL
exs_blocking_recv(fd, BAD_BUFFER, RECV_BUFSIZE, flags, mh)

 Verify the function returns -1and sets errno to [EINVAL] if buffer is NULL.

Test [5]: EOPNOTSUPP
exs_blocking_recv(fd, recv_buf, RECV_BUFSIZE, BAD_FLAG, mh)

 Verify the function returns -1and sets errno to [EOPNOTSUPP] if at least one of the flags

passed to the function are not supported.

59

Test [6]: EBADF
exs_blocking_recv(BAD_FD, recv_buf, RECV_BUFSIZE, flags, mh)

 Verify the function returns -1and sets errno to [EBADF] if the function was passed a bad file

descriptor.

Test [7]: ENOTCONN
exs_blocking_recv(NOT_CONNECTED_FD, recv_buf, RECV_BUFSIZE, flags, mh)

 Verify the function returns -1and sets errno to [ENOTCONN] if the socket was never

connected to prior to the function call.

Test [8]: OK_EXS_BLOCKING_RECV
exs_blocking_recv(fd, recv_buf, RECV_BUFSIZE, flags, mh)

 Verify the function returns the number of bytes successfully received if passed the correct

parameters.

60

5.3.6 exs_blocking_send()

The following tests will exercise exs_blocking_send() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_connect()

ssize_t exs_blocking_send(int sockno,

void *buffer,

size_t max_bytes,

int flags,

exs_mhandle mhandle);

sockno specifies socket file descriptor

buffer points to a buffer where the message should be stored

max_bytes specifies length in bytes of the buffer point to by the buffer argument

flags specifies additional options

mhandle specifies a registered memory handle

Test [1]: ENOTCONN
exs_blocking_send(NOT_CONNECTED_FD, send_buf, SEND_BUFSIZE, flags, mh)

 Verify the function returns -1 and sets errno to [ENOTCONN] if the socket was never

connected.

Test [2]: EPERM
exs_blocking_send(fd, send_buf, SEND_BUFSIZE, flags, mh)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [3]: EINVAL
exs_blocking_send(fd, BAD_BUFFER, SEND_BUFSIZE, flags, mh)

 Verify the function returns -1 and sets errno to [EINVAL] if buffer is NULL.

Test [4]: EINVAL
exs_blocking_send(fd, send_buf, SEND_BUFSIZE, EXS_UNSIGNALED |

EXS_BLOCK, mh)

 Verify the function returns -1 and sets errno to [EINVAL] if EXS_UNSIGNALED and

EXS_BLOCK were both specified.

61

Test [5]: EOPNOTSUPP
exs_blocking_send(fd, send_buf, SEND_BUFSIZE, BAD_FLAG, mh)

 Verify the function returns -1 and sets errno to [EOPNOTSUPP] if flags is not supported.

Test [6]: EBADF
exs_blocking_send(BAD_FD, send_buf, SEND_BUFSIZE, flags, mh)

 Verify the function returns -1and sets errno to [EBADF] if the function was passed a bad file

descriptor.

Test [8]: EBADF
exs_blocking_send(fd, send_buf, SEND_BUFSIZE, flags, mh)

 Verify the function returns -1and sets errno to [EPIPE] if the connection has been gracefully

shutdown for writing.

Test [14] : OK_EXS_BLOCKING_SEND
exs_blocking_send(fd, send_buf, SEND_BUFSIZE, flags, mh)

 Verify the function returns the number of bytes successfully transmitted if passed the correct

parameters.

Unimplemented Tests:

 Verify the function returns -1 and sets errno to [ECONNRESET] if the connection has been

terminated abruptly.

 Verify the function returns -1 and sets errno to [EBUSY] if no send credits were available at

the time of this function call.

62

5.3.7 exs_close()

The following tests will exercise exs_close() and its various success and error cases.

Prerequisites: exs_init(), exs_socket()

int exs_close(int sockno,

int flags,

exs_qhandle_t qhandle,

exs_ahandle_t ahandle);

sockno specifies the socket file descriptor

flags specifies additional options (blocking/non-blocking)

qhandle specifies an event queue

ahandle specifies an arbitrary pointer value chosen by the user

Test [1] : EPERM
exs_close(fd, flags, qh, ah)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2] : EINVAL
exs_close(fd, BAD_FLAG, qh, ah)

 Verify the function returns -1 and sets errno to [EINVAL] if flags are not supported.

Test [3] : EINVAL
exs_close(fd, flags, INVALID_QHANDLE, ah)

 Verify the function returns -1 and sets errno to [EINVAL] if qhandle is invalid.

Test [4] : EINVAL
exs_close(BAD_FD, flags, qh, ah)

 Verify the function returns -1 and sets errno to [EBADF] if socket is invalid.

Test[5] : OK_EXS_CLOSE
exs_close(fd, flags, qh, ah)

 Verify the function returns 0 and an asynchronous event is posted to qhandle if passed the

correct parameters.

63

5.3.8 exs_listen()

The following tests will exercise exs_listen() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_bind()

int exs_listen(int fd,

int backlog);

fd specifies socket file descriptor

backlog specifies maximum number of outstanding client connections

Test [1] : EPERM
exs_listen(fd, 10)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2] : EINVAL
exs_listen(fd, -1)

 Verify the function returns -1 and sets errno to [EINVAL]if backlog is negative.

Test [3] : EINVAL
exs_listen(CONNECTED_FD, 10)

 Verify the function returns -1 and sets errno to [EINVAL]if fd specifies a socket that has

already been connected or listened to.

Test [4] : EBADF
exs_listen(CONNECTED_FD, 10)

 Verify the function returns -1 and sets errno to [EBADF]if fd is invalid.

Test [5] : OK_EXS_LISTEN
exs_listen(fd, 10)

 Verify the function returns 0 if passed correct parameters.

64

5.3.9 exs_read()

The following tests will exercise exs_read() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_bind(), exs_listen(), exs_accept()

int exs_read(int sockno,

void *buffer

size_t max_bytes);

sockno specifies socket file descriptor

buffer points to a buffer where the message should be stored

max_bytes specifies length in bytes of the buffer point to by the buffer argument

Test [1] : EPERM
exs_read(fd, recv_buf, RECV_BUFSIZE)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2] : EINVAL
exs_read(fd, recv_buf, ZERO_LENGTH)

 Verify the function returns -1and sets errno to [EINVAL] if length is not at least 1.

Test [3] : EINVAL
exs_read(fd, recv_buf, MAX_LENGTH)

 Verify the function returns -1and sets errno to [EINVAL] if length is greater than the

maximum supported length for the RDMA channel.

Test [4] : EINVAL
exs_read(fd, INVALID_QHANDLE, RECV_BUFSIZE)

 Verify the function returns -1and sets errno to [EINVAL] if qhandle is NULL.

Test [5] : EBADF
exs_read(BAD_FD, recv_buf, RECV_BUFSIZE)

 Verify the function returns -1and sets errno to [EBADF] if the function was passed a bad file

descriptor.

65

Test [6] : ENOTCONN
exs_read(NOT_CONNECTED_FD, recv_buf, RECV_BUFSIZE)

 Verify the function returns -1and sets errno to [ENOTCONN] if the socket was never

connected to prior to the function call.

Test [7] : OK_EXS_READ
exs_read(fd, recv_buf, RECV_BUFSIZE)

 Verify the function returns the number of bytes successfully received if passed the correct

parameters.

66

5.3.10 exs_shutdown()

The following tests will exercise exs_shutdown() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_connect(), exs_bind(), exs_listen(), exs_accept()

int exs_shutdown(int sockno,

int how,

int flags,

exs_qhandle_t qhandle,

exs_qhandle_t ahandle);

sockno specifies socket file descriptor

how specifies which direction the connection will be shut down

flags additional options to be specified (blocking/non-blocking)

qhandle specifies the destination event queue

ahandle arbitrary pointer value chose by the user

Test [1] : EPERM
exs_shutdown(fd, SHUT_RDWR, flags, qh, qh)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [2] : EINVAL
exs_shutdown(fd, SHUT_RDWR, BAD_FLAG, qh, qh)

 Verify the function returns -1 and sets errno to [EINVAL] if flags is invalid.

Test [3] : EINVAL
exs_shutdown(fd, SHUT_RDWR, flags, INVALID_QHANDLE, qh)

 Verify the function returns -1 and sets errno to [EINVAL] if qhandle is invalid.

Test [4] : EBADF
exs_shutdown(BAD_FD, SHUT_RDWR, flags, qh, qh)

 Verify the function returns -1 and sets errno to [EBADF] if sockno is invalid.

Test [5] : OK_EXS_SHUTDOWN
exs_shutdown(fd, SHUT_RDWR, flags, qh, qh)

 Verify the function returns 0 and an asynchronous event is posted to qhandle if passed the

correct parameters.

67

5.3.11 exs_socket()

The following tests will exercise exs_socket() and its various success and error cases.

Prerequisites: exs_init()

int exs_socket(int family,

int socktype,

int protocol);

family must be PF_INET or PFINET6

socktype must be SOCK_STREAM or SOCK_SEQPACKET

protocol must be 0 or match the socktype

Test [1] : EPERM
exs_socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [16] : OK_EXS_SOCKET
exs_socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)

 Verify the function returns a non-negative integer file descriptor fd if passed correct

parameters.

Test [2] – [16] :

 Verify the function returns -1 and sets errno to [EAFNOSUPPORT] if family is not

supported.

68

5.3.12 exs_write()

The following tests will exercise exs_write() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_connect()

ssize_t exs_write(int sockno,

void *buffer,

size_t max_bytes);

sockno specifies socket file descriptor

buffer points to a buffer where the message should be stored

max_bytes specifies length in bytes of the buffer point to by the buffer argument

Test [1] : ENOTCONN
exs_write(NOT_CONNECTED_FD, send_buf, SEND_BUFSIZE)

 Verify the function returns -1 and sets errno to [ENOTCONN] if the socket was never

connected.

Test [2] : EPERM
exs_write(fd, send_buf, SEND_BUFSIZE)

 Verify the function returns -1 and sets errno to [EPERM] if exs_init() has not yet been

called in the same process.

Test [3] : EINVAL
exs_write(fd, BAD_BUFFER, SEND_BUFSIZE)

 Verify the function returns -1 and sets errno to [EINVAL] if buffer is NULL.

Test [5] : EPIPE
exs_write(fd, send_buf, SEND_BUFSIZE)

 Verify the function returns -1, and sets errno to [EPIPE] if the connection has been

gracefully shutdown for writing.

Test [11] : OK_EXS_WRITE
exs_write(fd, send_buf, SEND_BUFSIZE)

 Verify the function returns the number of bytes successfully transmitted if passed the correct

parameters.

69

Unimplemented Tests:

 Verify the function returns -1, no event is posted to qhandle, and sets errno to

[ECONNRESET] if the connection has been terminated abruptly.

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EINVAL] if

EXS_UNSIGNALED and EXS_BLOCK were both specified.

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EBUSY] if

no send credits were available at the time of this function call

70

5.3.13. exs_blocking_sendfile()

The following tests will exercise exs_blocking_sendfile() and its various success and error cases.

Prerequisites: exs_init(), exs_socket(), exs_connect()

ssize_t exs_sendfile(int socket,

 exs_xferfile_t *sendvec,

 int sendvec_cnt,

 int flags);

socket specifies the socket file descriptor

sendvec specifies an array of file descriptors and memory buffers

sendvec_cnt specifies the number of elements in sendvec array

flags specifies additional options (blocking/non-blocking)

Test [1]: EPERM
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns -1, no event is posted to qhandle, and sets errno to [EPERM] if

exs_init() has not yet been called in the same process.

Test [2]: ENOTCONN
exs_blocking_sendfile(NOT_CONNECTED_FD, sendvec, sendvec_cnt, flags);

 Verify the function returns -1, no event is posted to qhandle, and sets errno to

[ENOTCONN] if the socket was never connected.

Test [3]: EINVAL
exs_blocking_sendfile(BAD_FD, sendvec, sendvec_cnt, flags);

 Verify the function returns -1 and sets errno to [EBADF] if fd is invalid.

Test [4]: ENODEV
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns -1 and sets errno to [ENODEV] if the file descriptor cannot be

mmapped.

Test [5]: EINVAL
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns -1 and sets errno to [EINVAL] if exs_fileds is invalid.

71

Test [6]: EINVAL
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns -1 and sets errno to [EINVAL] if exs_path is invalid.

Test [7]: EFBIG
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns -1 and sets errno to [EFBIG] if file size > 1GB.

Test [8]: EINVAL
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns -1 and sets errno to [EINVAL] if offset + length > fize size.

Test [9]: EINVAL
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns -1 and sets errno to [EINVAL] if offset > file size.

Test [10]: EINVAL
exs_blocking_sendfile(fd, sendvec, BAD_SENDVEC_CNT, flags);

 Verify the function returns -1 and sets errno to [EINVAL] if sendvec_cnt is invalid.

Test [11]: EINVAL
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, BAD_FLAG);

 Verify the function returns -1 and sets errno to [EINVAL] if flags is invalid.

Test [12]: EINVAL
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, EXS_UNSIGNALED &

EXS_BLOCK);

 Verify the function returns -1 and sets errno to [EINVAL] if EXS_UNSIGNALED and

EXS_BLOCK were both specified.

Test [13]: EPIPE
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns -1 and sets errno to [EPIPE] if the socket is gracefully shut down

for writing.

72

Test [14]: OK_EXS_BLOCKING_SENDFILE
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns 0 if passed all valid parameters.

Test [16]: OK_EXS_ BLOCKING_SENDFILE
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns 0 if passed all valid parameters and exs_blocking_sendfile() is

used to send the same file immediately afterward.

Test [15]: OK_EXS_ BLOCKING_SENDFILE
exs_blocking_sendfile(fd, sendvec, sendvec_cnt, flags);

 Verify the function returns 0 if passed all valid parameters using exs_pathvec rather than

exs_fdvec.

73

5.4. EXS Integration

 The goals of these tests are to verify the correctness of various important combinations of UNH

EXS requests and functions. Some of this behavior is defined by the ES-API specification while other

behavior described by documentation provided by the UNH EXS 1.4.0 installation.

 These tests are currently implemented in a limited number (e.g. non-exhaustive).

6. EXS Functions

 The following table lists all UNH EXS functions and provides reference to applicable test cases

within this document.

6.1 Applicable Test Cases for ES-API and EXS Conformance

UNH EXS Function Origin UNH EXS Status Applicable Test Cases
exs_accept() ES-API standard implemented 5.2.1
exs_bind() non-standard implemented 5.3.1
exs_blocking_accept() non-standard implemented 5.3.2
exs_blocking_close() non-standard implemented 5.3.3
exs_blocking_connect() non-standard implemented 5.3.4
exs_blocking_recv() non-standard implemented 5.3.5
exs_blocking_send() non-standard implemented 5.3.6
exs_blocking_sendfile() non-standard implemented 5.3.13
exs_close() non-standard implemented 5.3.7
exs_connect() ES-API standard implemented 5.2.2
exs_init() ES-API standard implemented 5.2.3
exs_listen() non-standard implemented 5.3.8
exs_mderegister() ES-API standard implemented 5.2.4
exs_mregister() ES-API standard implemented 5.2.5
exs_qcreate() ES-API standard implemented 5.2.6
exs_qdelete() ES-API standard implemented 5.2.7
exs_qdequeue() ES-API standard implemented 5.2.8
exs_read() non-standard implemented 5.3.9
exs_recv() ES-API standard implemented 5.2.9
exs_send() ES-API standard implemented 5.2.10
exs_sendfile() ES-API standard implemented 5.3.11
exs_shutdown() non-standard implemented 5.3.10
exs_socket() non-standard implemented 5.3.11
exs_write() non-standard implemented 5.3.12

74

Developer Documentation for UNH EXS Testing Framework

Maxwell Renke

InterOperability Laboratory

University of New Hampshire

Durham, New Hampshire 03824

1. Introduction

The goal of this document is to define the layout, structure, and functionality of the UNH EXS

Testing Framework and provide a means for UNH EXS developers to maintain and update the

framework as well as add additional test cases and functionality to the testing framework as a whole.

2. Structure

 The UNH EXS framework is structured into key include files, setup files, and the individual test

case files. These will be expanded and enumerated on below. Each test case utilizes the same

framework defined by command files and only the individual test cases will change within the test

case files.

2.1 Include Files

 These files contain content that will be necessary for each test case file. In particular they cover

common functions, parameters, and structs that contain test specific parameters. While all tests for a

particular UNH EXS function is defined in the same file each execution of the test is run by the

framework itself. The framework handles initialization, execution, reporting, and tear-down of each

test. The mechanisms and operations on how the framework operates will be explained in further

sections.

2.1.1 param.h

 This file holds the param structure used to store and pass parameters and other values between

the framework and the test functions. This includes normal data types as well as EXS specific

structures. This document does not contain an exhaustive list of the kinds of parameters used in the

framework, but listed below are some important or otherwise noteworthy parameters essential to the

framework.

APPENDIX B

75

The param structure is initialized before any tests are run and the parameters are set with default

values or with values specified by the user.

func The name of the function being tested. Initialized immediately after

param is initialized.

mode Specifies if the framework is running in blocking (synchronous) or non-

blocking (asynchronous) mode.

addr Specifies the server interface address to be used in the testing framework.

It is defaulted to a hard-coded value and can be specified by the user

from the command line.

port Specifies the port number to be used in the testing framework. It is

defaulted to a hard-coded value and can be specified by the user from the

command line.

test_name String usually associated with the function being tested as it appears in

the code with the relevant parameters displayed to show the user what is

being tested.

test_value String that denotes the expected result of the test. Usually denotes the

error code that is expected, or the “OK” result.

test_number Integer that denotes the test number associated with the test that is used

when a specific test is specified by the user. This value is also printed

with every test output.

Iter Linked list node that is used to iterate through the various test cases for a

particular function.

flags UNH EXS flag options values that are passed to the individual test

functions during testing. The value of flags will differ based on the

operation mode of the framework (blocking vs. non-blocking).

2.1.2 fault.h

 This file defines a fault handler in order to catch various test-terminating events such as

SIGSEV, SIGABRT, and SIGALRM. This allows the test cases to terminate gracefully and report

their result in the final output.

 Additionally, SIGALRM is used to safeguard against tests that do not halt. SIGALRM will be

raised after a fixed amount of time for each test and the result of such a signal will be reported in the

final output.

76

2.1.3 print.h

 This file contains various functions to aid in printing results (and other messages) to stdout and

the log file. print_error and print_message are simple helper methods while print_macro and the

other _macro functions handle printing the full results when a test is terminated.

2.1.3.1 print_error

 static int print_error(char* name)

 This method prints the string “A correct call to %s failed. The test suite will not terminate.\n”

to stdout. %s refers to name.

2.1.3.2 print_mesasge

 static int print_message(char* msg)

 This method prints msg to stdout if the VERBOSE flag is set to 1 and prints msg to the log file

regardless.

2.1.3.3 print_macro

static int print_macro(int test, char* exp, char* name, int

ret_value, int ret_expected, int ret_errno)

 This method takes several parameters and prints them to stdout if the VERBOSE flag is set to 1

and prints msg to the log file regardless. The mode of operation (blocking or non-blocking) is also

printed. See Results in section 3.

2.1.3.4 print_mhandle_macro

static int print_mhandle_macro(int test, char* exp, char* name,

exs_mhandle_t ret_value, int ret_errno)

 This method operates in the same way as print_macro except that ret_value is of the

exs_mhandle_t type.

2.1.3.5 print_qhandle_macro

static int print_qhandle_macro(int test, char* exp, char* name,

exs_qhandle_t ret_value, int ret_errno)

 This method operates in the same way as print_macro except that ret_value is of the

exs_qhandle_t type.

77

2.1.4 cmdline.h

This file defines, maintains, and processes the various command line options available to the user.

cmdline.h also initializes the param struct to be used in each test case file. This file also builds the

linked list elements needed to specify which test numbers will be run. The details on the various

command line options can be found in the UNH EXS User Documentation.

2.1.4.1 setup_options

This method handles the command line options that the user may or may not specify as well as

initializing parameters in the param struct. In particular, by default, the parameters are initialized to

values that will set the framework to run in blocking mode. Note that by default, the address and

port values are hardcoded to values – they must be edited for the specific machine the framework is

running on, or specified in the command line every time.

Other than the specified command line options, the user can specify tests that need to be run

either individually or in a range. These values are then parsed by setup_options and a linked list is

created which is then used when the test is executed.

2.1.5 result.h

This file contains most of the common includes, variables, and method definitions that are used

by all of the test files. For example, it includes the other include files mentioned above, plus the

following methods:

run_test(int i, void* test_func)

This method will run a test specified by i which is defined by the test_func pointer to be a

general way of running an individual test. This method will create a child process to run the test and

the param struct will be passed to the new thread. This method all sets up the SIGALARM that is

used to terminate the process started by run_test if it runs too long.

list_tests(param *local_p, int i)

This method is a generalized mapping of a function to print out the tests available for each

function to the command line. Each test defines its own method in its Setup Files.

execute(int argc, char *argv[], void* test_func, int num_tests)

This method is what is passed to run_test and defines the tests that need to be run when the user

enters a command. It initializes the param struct, calls setup_options, then either lists the tests

specified, or runs all tests if no test number is specified, or runs the specified tests in the order they

were received.

78

2.2 Setup Files

 These files define reference functions to be used throughout the test framework as calls to the

functions with valid parameters that should return success if the implementation the framework is run

against is functioning properly. These are referred to as OK functions. These functions are also used

to set variables in the param struct that other functions will use. For example, ok_exs_socket will

set fd to a valid socket address.

 These files defines an array of test names that are used in the print_macro call.

 These files define the list_function_tests that will print out the test numbers as well as test

names.

2.2.1 OK Functions

 OK test functions are functions that call a function with valid parameters in both blocking and

non-blocking mode (when applicable). These functions return success and failure, but do not report

their own results. OK test functions are used as prerequisites for other tests. If an OK test function

fails, a specific error message will be reported. In general, if an OK function fails the current test

should terminate (or will fail due to parameters that were meant to be initialized were not).

2.3 Test Files

 Test files must follow the following format:

void *test_FUNCTION(void *test_void_ptr){

 setup_fault_catcher(p,getpid());

 param *p = (param *)test_void_ptr;

 int test = p->test_number;

 if(test == 1){

 /** test code goes here **/

 }

 /** test number not valid **/

 else if(test != 0){

 fprintf(stdout,"Invalid Test Number: %d\n", test);

 }

}

int main(int argc, char *argv[]){

 execute(argc,argv,test_send,FUNCTION_TESTS);

}

79

Note: FUNCTION should be replaced with the name of the applicable function (excluding EXS)

Note that test is initialized to the test_number value in the param struct that was initialized

before the test was actually called. Each test will be defined in its own block and the details of the

code necessary for a test to complete will be expanded upon later in this document.

 Each test also includes a call to the OK function call (defined in the setup file related to the test

files), usually at the end of the test file. This test will be a call with valid parameters in both blocking

and non-blocking mode (when applicable).

2.4 Test Blocks

 This section will attempt to describe the necessary elements to a test block in the testing

framework. It will describe key functions that must be included, as well as how to utilize the param

struct, blocking versus non-blocking mode, and using the print_macro properly.

2.4.1 Initialization

Two param struct variables must be set at the beginning of each test block, test_value and

test_name. In most cases, test_value will be a string that represents the error code that the test will

return or the name of the OK function. test_name should be set to the appropriate string in the array

of names in the setup files (indexed by the test number).

2.4.2 OK Functions

 Each test (except exs_init) has prerequisite functions that need to be used to set up the test case.

In each case, call these functions in the following manner:

 if(ok_exs_init(p) < 0) exit(EXIT_FAILURE)

 This ensures the prerequisite functions will terminate the test suite if they fail. If the prerequisite

functions set or return any variables that are necessary in the test block, retrieve them through the

param struct.

2.4.3 Using Param Struct

 The param struct is passed to each test block through the variable p. This is a direct pointer to a

param struct and thus the appropriate variables can be accessed directly. All parameters that will be

passed to the function being tested should be retrieved from p.

80

2.4.2 Use of FIFOs

 This section only applies to blocking mode tests. In some test cases it may be necessary to

synchronize the execution of the test – i.e. setting up the server for listening before a client connects.

This is done using fifos which are created when the setup_options function executes. Here is an

example on how to use the fifos.

Thread 1:
int fd = open(exs_test_fifo_1,O_RDONLY);

 /** executing second **/

 close(fd)

 /** execute after server **/

 fd = open(exs_test_fifo_2, O_WRONLY);

 close(fd)

Thread 2:

 /** executing first **/

int fd = open(exs_test_fifo_1,O_RDONLY);

 close(fd)

 /** execute after client **/

 fd = open(exs_test_fifo_2, O_WRONLY);

 close(fd)

2.4.4 Function Call

 The function to be tested should always be isolated on its own line and called using the

appropriate exs function call. The return value of the function should always be stored in an

instance variable and passed to the print_macro function to ensure the result of the test is accurate.

For example:

int ret = exs_send(p->fd, p->send_buf, p->SEND_BUFSIZE, p->flags, p-

>qh, p->ah, p->mh);

Note how the parameters passed to the function are all obtained from p. This is best practice.

2.4.5 Using print_macro

 The call to print_macro is crucial to ensure the framework reports accurate results. This method

is explained in detail in 2.1.3.1 and 3. The return value of the function call to be tested should always

immediately be passed to print_macro.

81

2.4.6 Operation Mode

 Some tests may behave differently or have different initialization steps when operating in non-

blocking rather than blocking mode. For instance, exs_qcreate must be called in non-blocking

mode but is unnecessary in blocking mode.

 To determine the current mode of operation, check the value in p named mode. If this value is 1

then the framework is operating in non-blocking mode. Otherwise, it is blocking mode.

 If a test is not applicable in a given mode, simply include the following line into the test block:

 if(p->mode == 1) return 0;

 This terminates test block if framework is in non-blocking mode.

2.4.7 Test Block Example

This is an example of a test block. This test is for exs_send and is testing whether or not the

function will return the ENOTCONN error code if the socket specified has never been connected.

/* ENOTCONN: socket never connected */

if(test == 1){

 p->test_value = "ENOTCONN";

 p->test_name = all_send_tests[test-1];

 if(ok_exs_init(p) < 0) exit(EXIT_FAILURE);

if(p->mode == 1) if(ok_exs_qcreate(p) < 0)

 exit(EXIT_FAILURE);

 if(ok_exs_socket(p) < 0) exit(EXIT_FAILURE);

int ret = exs_send(p->fd, p->send_buf, p->SEND_BUFSIZE,

 p->flags, p->qh, p->ah, p->mh);

 print_macro(test,p->test_value,p->test_name,ret,-1,

 ENOTCONN);

}

82

3. Results

 Test results will be printed by print_macro (and its variants) to stdout and also to a log file. A

result will be printed on a single line in 7 separate parts, delimited by a “:”. It will be sufficient to diff

two result outputs to determine which tests changed (provided the same tests were run in the same

order).

Test Number This is the number used to specify the test. Specifying this

number in the command line will run this test.

Test Value This is the expected test value to be returned from the test.

Either an error code, or an OK function name.

Test Name This displays the parameters of the call, along with additional

information to differentiate the tests.

Mode This displays either blocking or non-blocking mode.

Result This simply displays PASS or FAIL

Return Value This is the value returned by the function, usually an error code

or 0 on success.

Reason This is the error code translated by strerror, or displays

SEGFAULT, or Time Out

4. Modifying Existing Test Cases

 To modify an existing test case, it is usually only necessary to edit the test file and/or setup file.

To modify an existing test, the appropriate test block needs to be modified. Be sure to modify the

print_macro call if the result changes.

5. Adding Additional Test Cases

 To add an additional test case to an existing function, it is usually only necessary to modify the

test file and/or setup file.

 Adding a new test block requires incrementing the FUNCTION_TESTS definition in the setup

file and implementing a new test following the guidelines in Test Blocks.

83

 To add a new function to the framework, creating a new test file and setup file is necessary,

along with modifying list_tests in result.h. It is critical to utilize the print_macro function correctly

to ensure results are properly displayed.

 If a new function requires creating new function in exs.c, see Section 7.

6. Miscellaneous

 Additional notes that are not applicable to mention on other sections of this document.

6.1 Scripts

It may be helpful to utilize bash scripts to help when running multiple tests in a manual or

automated fashion. For example, here is an example of a script that will run through all supported

tests in this framework and pass along parameters that will be passed to each function:

timeout 30s ./test_exs_init $@ 2>/dev/null

timeout 30s ./test_exs_socket $@ 2>/dev/null

timeout 30s ./test_exs_connect $@ 2>/dev/null

timeout 30s ./test_exs_blocking_connect $@ 2>/dev/null

timeout 30s ./test_exs_bind $@ 2>/dev/null

timeout 30s ./test_exs_listen $@ 2>/dev/null

timeout 30s ./test_exs_accept $@ 2>/dev/null

timeout 30s ./test_exs_blocking_accept $@ 2>/dev/null

timeout 30s ./test_exs_close $@ 2>/dev/null

timeout 30s ./test_exs_blocking_close $@ 2>/dev/null

timeout 30s ./test_exs_send $@ 2>/dev/null

timeout 30s ./test_exs_blocking_send $@ 2>/dev/null

timeout 30s ./test_exs_write $@ 2>/dev/null

timeout 30s ./test_exs_recv $@ 2>/dev/null

timeout 30s ./test_exs_blocking_recv $@ 2>/dev/null

timeout 30s ./test_exs_read $@ 2>/dev/null

timeout 30s ./test_exs_shutdown $@ 2>/dev/null

timeout 30s ./test_exs_mregister $@ 2>/dev/null

timeout 30s ./test_exs_mderegister $@ 2>/dev/null

timeout 30s ./test_exs_qcreate $@ 2>/dev/null

timeout 30s ./test_exs_qdelete $@ 2>/dev/null

timeout 30s ./test_exs_qdequeue $@ 2>/dev/null

timeout 30s ./test_exs_qstatus $@ 2>/dev/null

timeout 30s ./test_exs_qmodify $@ 2>/dev/null

timeout 30s ./test_exs_sendfile $@ 2>/dev/null

timeout 30s ./test_exs_blocking_sendfile $@ 2>/dev/null

Of course, because this framework outputs results to stdout the output can be piped to any other

application or file.

84

7. Integrating into UNH EXS Build System

 The testing framework has been integrated into the UNH EXS build system.

7.1 Framework Location

 The testing framework is located in the tests directory in the base directory of the UNH EXS

install.

7.2 Building the Framework

 The framework is not built during make all install. Rather, the framework is only built if make

check or make distcheck is run. This will compile all of the test cases in tests and run

test_all_check.sh (which is defined in 7.3.4). To run the tests manually, there are two options:

 The first is to compile a test individually. For example,

 make tests/test_exs_init

 will build test_exs_init and it can be run as normal.

 The second is to compile all tests but not run them. To do this, use the command

 make TESTS= check

 make check should produce the following output. The output of test_all.sh is found in ./test-

suite.log.

85

7.3 Changing UNH EXS

 Brand new functions that are added to UNH EXS need to be forward declared in several locations

in order to be built properly. The changes need to be made in the following locations:

7.3.1 exs.h

 exs.h is located at include/exs.h. Find the following section:

 /* Function Forward Declarations */

int exs_init (int);

and add the new function signature here.

7.3.2 libexs.sym

 libexs.sym is located at libexs/libexs.sym. The file starts with:

 LIBEXS_1.2 {

 global:

 exs_init;

 and the new function name needs to be added to this list (with a semicolon).

7.3.3 Makefile.am

 Two additions need to be made to Makefile.am.

 The first is EXTRA_tests_test_exs_init_SOURCES = \. Add the test case include file to this list,

e.g. tests/setup/exs_sendfile_setup.h.

 The second is a new check_PROGRAMS addition. Add the follow lines (with exs_sendfile

swapped out for the exs function you are adding:

 check_PROGRAMS += tests/test_exs_sendfile

 tests_test_exs_sendfile_SOURCES = tests/test_exs_sendfile.c

 tests_test_exs_sendfile_CPPFLAGS = -I$(top_srcdir)/include

 tests_test_exs_sendfile_LDADD = libexs/libexs.la

7.3.4 test_all_check.sh

 This script does some error checking and then runs the script test_all.sh and pipes its output to

grep which searches for the string “FAIL”. If it finds the string test_all_check.sh returns 1, else

returns 0. This is done to integrate into the existing tests in the UNH EXS build system.

86

BIBLIOGRAPHY

[1] UNH Extended Sockets Library (UNH-EXS), https://www.iol.unh.edu/expertise/
unh-exs

[2] The Open Group, Extended Sockets API (ES-API) Issue 1.0, The Open Group, ISBN:
1-931624-52-6, January 2005

[3] RFC 5040, A Remote Direct Memory Access Protocol Specification, https://tools.

ietf.org/html/rfc5040

[4] POSIX, IEEE Std 1003.1-2008, 2016 Edition, http://pubs.opengroup.org/

onlinepubs/9699919799/

[5] socket(2), https://linux.die.net/man/2/socket

[6] close(2), https://linux.die.net/man/2/close

[7] OFED Overview,
https://www.openfabrics.org/index.php/openfabrics-software.html

[8] UNH EXS 1.3.6,
https://www.iol.unh.edu/sites/default/files/unh-exs/unh-exs-1.3.6.tar.gz

[9] mmap(2), munmap(2), https://linux.die.net/man/2/mmap

[10] UNH EXS 1.4.0,
https://www.iol.unh.edu/sites/default/files/unh-exs/unh-exs-1.4.0.tar.gz

87

	Creating a Conformance Testing Framework for the UNH Extended Sockets Library and Demonstrating its Usefulness by Implementing New sendfile() Extension
	Recommended Citation

	tmp.1523457726.pdf.CKxdM

