COMPOSITION, SEASONAL OCCURRENCE, DISTRIBUTION AND REPRODUCTIVE PERIODICITY OF THE MARINE RHODOPHYCEAE IN NEW HAMPSHIRE

EDWARD JAMES HEHRE JR.
HEHRE, Jr., Edward James, 1940-
COMPOSITION, SEASONAL OCCURRENCE,
DISTRIBUTION AND REPRODUCTIVE
PERIODICITY OF THE MARINE RHODO-
PHYCEAE IN NEW HAMPSHIRE.

University of New Hampshire, Ph.D., 1969
Botany

University Microfilms, Inc., Ann Arbor, Michigan
COMPOSITION, SEASONAL OCCURRENCE, DISTRIBUTION AND
REPRODUCTIVE PERIODICITY OF THE
MARINE RHODOPHYCEAE IN NEW HAMPSHIRE

by

EDWARD J. HEHRE, JR.

B. S., New England College, 1963

A THESIS

Submitted to the University of New Hampshire
In Partial Fulfillment of
The Requirements for the Degree of

Doctor of Philosophy
Graduate School
Department of Botany
June, 1969
This thesis has been examined and approved.

Arthur C. Mathieson
Thesis director, Arthur C. Mathieson, Assoc. Prof. of Botany

Thomas E. Furman
Thomas E. Furman, Assoc. Prof. of Botany

Albion R. Hodgdon
Albion R. Hodgdon, Prof. of Botany

Charlotte G. Nast
Charlotte G. Nast, Prof. of Botany

Emery F. Swan
Emery F. Swan, Prof. of Zoology

5-9-69
Date
ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to the following people: Dr. A.C. Mathieson, for his guidance and helpful suggestions during the preparation of this thesis and for the countless hours devoted to the careful review of the manuscript; Dr. A.R. Hodgdon, for his editorial advice and critical review of the manuscript; Dr. C.G. Nast, Dr. T.E. Furman, and Dr. Emery Swan, for their helpful comments and review of the thesis.

I would also like to thank Dr. A.C. Mathieson and Mr. Norman Reynolds for the many sublittoral collections obtained by SCUBA. Without these collections, a less complete picture of the algal flora would have resulted.

Lastly, to my wife, Susan, for her patience and for the typing of the manuscript.
TABLE OF CONTENTS

LIST OF FIGURES... v

LIST OF TABLES.. vi

ABSTRACT... vii

INTRODUCTION.. 1

METHODS AND MATERIALS... 2

DESCRIPTION OF AREA... 4

SEASONAL OCCURRENCE AND REPRODUCTIVE PERIODICITY... 10

DISTRIBUTION OF MARINE RHODOPHYCEAE IN NEW HAMPSHIRE............................... 12

ANNOTATED CHECKLIST.. 13

DISCUSSION.. 44

SUMMARY.. 48

REFERENCES.. 49

APPENDIX

 Key to the Genera of Rhodophyceae in New Hampshire... 64
LIST OF FIGURES

Figure 1. The New Hampshire Coast and Great Bay Estuary System...................... 53

Figure 2. Isles of Shoals.. 54

Figure 3. Species Numbers on the Open Coast and in the Great Bay Estuary System........... 55
LIST OF TABLES

Table 1. Seasonality and Reproductive Periodicity of Rhodophyceae in New Hampshire................. 57

Table 2. Distribution of Marine Rhodophyceae in New Hampshire.. 61
ABSTRACT

COMPOSITION, SEASONAL OCCURRENCE, DISTRIBUTION AND
REPRODUCTIVE PERIODICITY OF THE
MARINE RHODOPHYCEAE IN NEW HAMPSHIRE

by

EDWARD J. HEHRE, JR.

The composition, seasonal occurrence, reproductive periodicity and distribution of the marine red algae of the New Hampshire coast and Great Bay Estuary System are described. Monthly collections were made at 10 stations on the open coast and 8 from the Estuary during 1966-1968. Eighty-eight taxa were recorded. Fifteen taxa are additions to the marine algal flora of New Hampshire. Seventy-three taxa were recorded from the open coast, 49 were found in the Estuary, of which 14 were restricted to the Estuary. The flora is subarctic and boreal in composition, with a few warm temperate species. Most species are perennials. The reproductive periodicities of certain species extend over several months, while those of others are limited to a few months. There is a conspicuous decrease in biomass and number of species as one moves from the open coast to the head of the Estuary System. Peak populations were found at two estuarine areas (Hilton Park and Adams Point) where tidal currents are evident.
INTRODUCTION

Little is known of the seasonal occurrence and reproductive periodicity of the benthonic marine algae in New England. In particular, there are few published accounts of the marine algae in New Hampshire (Farlow, 1882; Collins, 1900, 1901, 1903, 1906; Croasdale, 1941; Wood and Straughan, 1953; Doty and Newhouse, 1954). Mathieson, Hehre and Reynolds (in press) have reviewed pertinent literature on the distribution and phenology of New England marine algae and have described the seasonal occurrence and vertical distribution of 99 species of marine algae at Jaffrey Point, New Hampshire. Mathieson, Reynolds and Hehre (in press) have recorded distributional patterns of marine algae in the Great Bay Estuary System.

The present paper is the culmination of a three-year study of the Rhodophyceae in both coastal and estuarine environments. The purpose of the study is four-fold: (1) to describe the composition of the red algal flora of New Hampshire; (2) to record the seasonal occurrence of the Rhodophyceae of New Hampshire; (3) to determine the reproductive periodicities of as many taxa as possible; (4) to record the distribution of red algal species from the open coast into the Great Bay Estuary System.
METHODS AND MATERIALS

Monthly collections were made from 1966-1968 at ten locations along the New Hampshire coast (Fig. 1). Prior to 1966, only irregular collections were made at each station. Sixty-two stations were established in the Estuary during the summer of 1966, eight of which were monitored approximately monthly from 1966-1968 (Fig. 1). Extreme winter conditions prohibited access during certain months. Although monthly collections were not made at the Isles of Shoals, and the collections are somewhat minimal, all but Duck, White and Seavey Islands are represented. The Isles of Shoals are within New Hampshire and Maine. (Fig. 2), but are referred to as a single unit because of their close proximity.

Most of the collections were made in the eulittoral and sublittoral fringe zones. Some specimens were collected in drift. Sublittoral collections were obtained by SCUBA but extreme winter temperatures discouraged regular collecting. All specimens were brought to the laboratory for identification, determination of reproductive structures, and processing. The collections have been deposited in the Algal Herbarium at the University of New Hampshire (NHA).

A variety of references was consulted for determination of species and reproductive structures (Adey, 1965, 1966; Conway, 1964; Edelstein and McLachlan, 1966a; Fritsch, 1945; Kylin, 1956; Papenfuss, 1947; Taylor, 1957). The reproductive structures in the genus Porphyra are designated according to the terminology of Conway (1964).
The vertical distribution of the algae is described according to Lewis (1964). The nomenclature of the second revised British Checklist (Parke and Dixon, 1968) has been applied whenever possible. The classification of the Acrochaetiaceae follows Papenfuss (1947).

The general algal collections, Algae Exsiccata Americae - Borealis (Farlow, Anderson and Eaton) and the volumes of Phycotheca Boreali-Americana (Collins, Holden and Setchell, 1895-1919) at the Farlow Herbarium (FH) at Harvard University were examined. All previously published records of the Rhodophyceae of New Hampshire were consulted.

Monthly (1967-1968) surface water temperatures and salinities were recorded during low water at all coastal stations. Temperatures were taken with a mercury thermometer, while salinities were recorded with a set of hydrometers. Similar information was recorded at eight estuarine stations throughout most of the year at both high and low water.
DESCRIPTION OF AREA

New Hampshire Coast

The New Hampshire coastline (Fig. 1) is approximately 18 miles long. The southern boundary is Seabrook Beach (42°52'30" N, 70°49' W); the boundary to the north is the mouth of the Piscataqua River at the entrance to Portsmouth Harbor (43°04'20" N, 70°42'42" W). A brief description of each station is summarized below. During 1967-68 the average surface water temperatures ranged from 1.1°C (January) to 20.6°C (July). The surface water salinities during the same period ranged from 30.1 °/oo (March and June) to 31.7 °/oo (September).

Jaffrey Point

Jaffrey Point (Fig. 1, Station 1) is a semi-exposed site consisting of massive rock outcrops and many large eulittoral tidepools. The eulittoral and sublittoral fringe zones are well developed. An artificial breakwater, composed of large granitic blocks, provides excellent substrate.

Fort Constitution

Fort Constitution (Fig. 1, Station 2) is a sheltered location within the entrance to Portsmouth Harbor. The substrate consists of small rock outcrops, mud and sand. The vegetation is sparse. *Zostera marina* L. var. *stenophylla* Aschers. et Graebn. grows on the New Hampshire coast only at Fort Constitution and Rye Ledge.
Odiome's Point

The location (Fig. 1, Station 3) is a semi-exposed beach with two distinct regions: a cobble area that supports little vegetation, and an area of rock outcrops which has a well developed flora.

North Wallis Sands

The shore (Fig. 1, Station 4) consists of massive rock outcrops on a sandy beach. Little vegetation is present.

Concord Point

Concord Point (Fig. 1, Station 5) is a semi-exposed site with two basic types of substrate: a cobble beach area, which is almost devoid of vegetation, and an area with massive rock outcrops. Except for the plants growing in occasional tidepools in the latter region, the vegetation is poor.

Ragged Neck

Ragged Neck (Fig. 1, Station 6) is a cobble beach at Rye Harbor. No tidepools are present and the vegetation is poor. A breakwater delimits the harbour entrance and supports a good flora.

Rye Ledge

Rye Ledge (Fig. 1, Station 7) is an exposed site consisting of massive rock outcrops and an area of large boulders and cobbles. Tidepools are common and a well developed sublittoral fringe is present. A rich algal flora is evident.
Little Boar's Head

Little Boar's Head (Fig. 1, Station 8) is a semi-exposed cobble beach with scattered boulders and occasional rock outcrops. A few tidepools are present in the low eulittoral zone. The flora is poor.

Great Boar's Head

The shore (Fig. 1, Station 9) is a cobble beach with numerous large boulders. The flora in the eulittoral zone is poorly developed, but there is a good sublittoral fringe zone. Topographically Great Boar's Head is an exposed site, but its eulittoral vegetation, which is conspicuously dominated by fucoids, is indicative of a sheltered location (Lewis, 1964). The cobble substrate is probably a major factor in determining its vegetation.

Bound Rock

Bound Rock (Fig. 1, Station 10) is a sandy beach with massive rock outcrops and breakwaters. Few species are present because of extreme sand fluctuation. Vast beds of *Mytilus* and *Fucus vesiculosus* occur on the rock surfaces. Only a few tidepools are present and they are exposed to constant fluctuations of sand. The breakwaters are dominated by annuals (*Porphyra umbilicalis* and *Bangia Fuscopurpurea*).

Great Bay Estuary System

The Great Bay Estuary System includes the Piscataqua River, Little Bay, Great Bay and seven major tributaries (Fig. 1). It covers an area in excess of 15,400 acres (anon., 1960), the greater part of which is frozen during the winter. It is located approximately within the coordinates 43°03' N - 43°08' N, 70°45' W - 70°55' W. Many
tributaries, however, extend beyond these boundaries. The surface water temperatures and salinities recorded at each station during 1967-68 were very distinct and they are recorded individually.

Piscataqua River at the Route 95 toll bridge

The substrate consists of mud, cobbles, boulders, rip-rap, and pilings (Fig. 1, Station c). The shore is very steep. The algal flora is poorly developed. Temperatures ranged from 0-20°C, salinities from 23.7-31.2 °/oo.

Hilton Park

Hilton Park (Fig. 1, Station d) is situated in a narrow channel where the currents are up to 7-8 knots (W.D. Countryman, personal communication). The flora is diverse and similar to that on the open coast. Rock outcrops and cobbles are the principal substrates; bridge pilings and mud are also present in certain areas. Limited amounts of *Zostera* grow in muddy regions. Tidepools are present at the base of the bridge pilings, and they contain a variety of species. Temperatures ranged from 0-22°C, salinities from 21.3-30.4 °/oo.

Cedar Point (Little Bay)

The substrate at Cedar Point (Fig. 1, Station e) is composed of mud, small stones, and rip-rap. The algal flora is diverse in spite of the poor substrate. Small patches of *Zostera* are present. Temperatures ranged from 1-27°C, salinities from 16.3-29.5 °/oo.

Durham Point (Little Bay)

Durham Point (Fig. 1, Station f) is a mudflat with occasional outcrops, boulders and limited shingle. Although several species are
found, the vegetation is sparse. Temperatures ranged from 1-27°C, salinities from 17.4-29.5 °/oo.

Adams Point (Little Bay)

The substrate is primarily mud with an extensive shingle shore and scattered boulders. Adams Point (Fig. 1, Station h) is a region of rapid tidal flow and the algal flora is diverse. Temperatures ranged from 1-24°C, salinities from 15.5-29.5 °/oo.

Fabyans Point (Great Bay)

Fabyans Point (Fig. 1, Station k) is a mudflat with small pebbles, shells and rock outcrops. Few species are present, most of which are annuals. Vast beds of *Zostera* are present here and throughout most of Great Bay. Temperatures ranged from -2 - 31°C, salinities from 13.9-28.3 °/oo.

Pierce Point (Great Bay)

Pierce Point (Fig. 1, Station l) is similar to Fabyans Point with respect to substrate and flora. Temperatures ranged from -2 - 31°C, salinities from 13.0-28.3 °/oo.

Squamscott River at Chapman's Landing

The substrate is mud except for a small rock ledge under the bridge on route 108 (Fig. 1, Station m). Few species are found due to extreme fluctuations of hydrographic conditions (particularly of salinity). Most species are annuals. Temperatures ranged from -1-26°C, salinities from 0-26 °/oo.
Isles of Shoals

The Isles of Shoals (Fig. 2) are located approximately 9 miles SSE of the mouth of the Piscataqua River, and 6.5 miles due east of Straw Point, Rye. The Islands occupy an area three miles north-south by 1.5 miles east-west, and lie within the coordinates 42°58' N, 70°37'20" W and 43°00'30" N, 70°36' W.

There are nine major islands: five belong to the town of Kittery, Maine (Duck, Appledore, Malaga, Smuttynose, Cedar) and four to Rye, N.H. (Star, White, Seavey, Lunging). Nine other rocks and ledges are present in the Island group (Square Rock, Halfway Rocks, Eastern Rocks, Mingo Rock, Shag Rock, Anderson Ledge, Southwest Ledge, Cedar Island Ledge, White Island Ledge).
SEASONAL OCCURRENCE AND REPRODUCTIVE PERIODICITY

Table 1 summarizes the seasonal occurrence and reproductive periodicity of the Rhodophyceae in New Hampshire. About 65% of the taxa found on the open coast are perennials (e.g., Ahnfeltia plicata, Petrocelis middendorfii, Plumaria elegans, Phycodrys rubens, Polysiphonia lanosa, Phyllophora brodiaei, P. membranifolia, Rhodochorton purpureum, Ptilota serrata, Cystoclonium purpureum var. cirrhosum, Ceramium rubrum, Corallina officinalis, Halosaccion ramentaceum, Clathromorphum circumscriptum, Hildenbrandia prototypus, Dermatolithon pustulatum, Membranoptera alata, Chondrus crispus, Gigartina stellata, Euthura cristata, Rhodymenia palmata).

Three distinct types of annuals (winter, spring and summer) are distinguishable according to their season of maximum growth and development. No fall annuals have been found, although many summer plants persist into the fall and early winter. The fall season appears to be a transition period between summer and winter. Most annuals which occur on the open coast grow during the winter and spring (e.g., Porphyra leucosticta, P. miniata, P. linearis, Bangia fuscopurpurea). Summer annuals, which may persist into the fall, constitute a small part of the Rhodophycean flora of the Great Bay Estuary System (e.g., Chondria baileyana, Dasya pedicellata, Lomentaria baileyana, Polysiphonia denudata, P. subtilissima, Ceramium strictum). Only two summer annuals are restricted to the open coast (Klylinia alariae and Nemalion helminthoides).

Certain annuals (e.g., Porphyra umbilicalis) occur throughout
the year, and are precociously reproductive. Others (e.g., Dumontia incrassata) occurred throughout the year, but reproductive organs were found only in the spring and summer. Many perennials are reproductive throughout the year (e.g., Ceramium rubrum, Ahnfeltia plicata, Audouinella membranacea, Chondrus crispus, Euthora cristata, Phycodrys rubens, Phyllophora brodiaei, Polysiphonia lanosa, P. novae-angliae, Halosaccion ramentaceum, Rhodymenia palmata, Gigartina stellata, Hildenbrandia prototypus). Others have distinct periods of reproduction which may span one or more seasons (e.g., Clathromorphum circumscriptum, Polyides rotundus, Melobesia lejolisia, Membranoptera alata, Phyllophora membranifolia, Cystoclonium purpureum var. cirrhosum, Plumaria elegans, Petrocelis middendorfii, Rhodomela confervoides).

Several species have been collected only on one or two occasions (e.g., Bonnemaisonia hamifera, Trailliella intricata, Bangia ciliaris, Ceramium rubriforme, Erythrotrichia carneoa, Pantoneura baerii, Peyssonelia rosenvingii, Lomentaria orcadensis, Antithamnion plumula, Callithamnion corymbosum). Gloiosiphonia capillaris, Phyllophora traillii, Antithamnion boreale, A. pylaisaei, and Polysiphonia flexicaulis were collected once or twice by Dr. Croasdale on the Isles of Shoals during the summer of 1938. Information regarding the seasonal occurrence and reproductive periodicity of these 15 taxa is incomplete or lacking.

1 Designates a plant that is reproductive throughout the year and that is usually found reproductive.
Table 2. shows the distribution of Rhodophyceae in New Hampshire. Seven taxa, for which there are no herbarium voucher specimens, are not included in the table (Polysiphonia harveyi, Bostrychia rivularis, Chondria tenuissima, Ceramium diaphanum, Lemanea fucina, Agardhiella tenera, Batrachospermum sp.). Seventy-three taxa were recorded from the open coast. Thirty-eight taxa did not extend into the Estuary. Of the 49 taxa recorded from the Estuary, 14 were restricted to the estuarine environment.

Figure 3 shows the number of red algal species found on the open coast and throughout the Estuary. There is a conspicuous decrease in species numbers as one goes toward the head of the Estuary. A corresponding decrease in biomass is also evident.

The essential factors limiting algal distribution in the Estuary are substrate, temperature and salinity. The large number of species found at Hilton Park is probably due to the rapid tidal conditions at the location. Thus, although the station is 7 miles from the coast, its flora is similar in composition to the open coast. About 17% of the Rhodophyceae that grow in the Estuary do not extend beyond Hilton Park (e.g., Clathromorphum circumscriptum, Bangia fuscopurpurea, Lomentaria orcadensis, Petrocelis middendorfii, Phyllophora membranifolia, Polyides rotundus, Dermatoliton pustulatum, Porphyra leucosticta). The lack of adequate substrate (particularly in Great Bay), along with adverse temperature and salinity conditions probably restricts the distribution of many species throughout the remainder of the Estuary System.
The following checklist includes 88 taxa of Rhodophyceae from the Great Bay Estuary System and coastal environments of New Hampshire (including the Isles of Shoals). It incorporates all known records of marine red algae from New Hampshire, as well as information on seasonality, reproduction and distribution (vertical and horizontal). Each Taxon is cited at least once from every New Hampshire station at which it has been found, even though several collections may have been made. The numbers refer to the collector numbers on the specimens.

Fifteen species are new records for the state of New Hampshire (Porphyra leucosticta, P. linearis, Acrochaetium polyides, Kylinia virgatula, Bonnemaisonia hamifera, Rhodophysema georgii, Antithamnion americanum, A. plumula, A. pylaissei, Callithamnion corymbosum, Pantoneura baeri, Chondria baileyana, Polysiphonia denudata, P. flexicaulis, P. subtilissima) two of which represent extensions of range on the northeast coast of North America (Acrochaetium polyides and Antithamnion plumula). A key to the genera of New Hampshire red algae is included in the appendix.

Bangioideae

Bangiales

Erythropeltidaceae:

Erythrotrichia carneae (Dillwyn) J. Agardh

Found three times (February, September, November), vegetative. Epiphytic on Ceramium deslongchampsii var. hooperi, Pylaella littoralis and Polysiphonia lanosa in the lower sublittoral zone. Found in coastal and estuarine environments; annual.
Recorded from the tropics to Nova Scotia, St. James Bay and Baie des Chaleurs (as summarized in Taylor, 1957; Cardinal, 1967).

Porphyropsis coccinea (J. Agardh ex Areschoug) Rosenvinge

Epiphytic on *Desmarestia aculeata*, and probably growing in the deep sublittoral zone. The only New England records for this species are the two specimens collected by F.S. Collins; annual (?).

Representative specimens: Jaffrey Point, 23 February 1966 (NHA - #1637); Shaw’s Hill, Piscataqua River, 21 September 1966 (NHA - #H-967); Cedar Point, 23 November 1966 (NHA - #H-968).

Bangiaceae:

Bangia ciliaris Carmichael

Found once, vegetative, epiphytic on *Euthora cristata* in the sublittoral zone on the open coast; annual.

Representative specimen: Hampton Beach, August 1884 (FH).

Bangia fuscopurpurea (Dillwyn) Lyngbye

Found from November to August in the mid to upper eulittoral zone. Common on the open coast, but with restricted distribution in Great Bay Estuary; annual; monospores found from December-April.

Recorded from Bermuda to Newfoundland (as summarized in Taylor, 1957).

Porphyropsis coccinea (J. Agardh ex Areschoug) Rosenvinge

Epiphytic on *Desmarestia aculeata*, and probably growing in the deep sublittoral zone. The only New England records for this species are the two specimens collected by F.S. Collins; annual (?).

Representative specimens: Jaffrey Point, 23 February 1966 (NHA - #1637); Shaw’s Hill, Piscataqua River, 21 September 1966 (NHA - #H-967); Cedar Point, 23 November 1966 (NHA - #H-968).

Bangiaceae:

Bangia ciliaris Carmichael

Found once, vegetative, epiphytic on *Euthora cristata* in the sublittoral zone on the open coast; annual.

Representative specimen: Hampton Beach, August 1884 (FH).

Bangia fuscopurpurea (Dillwyn) Lyngbye

Found from November to August in the mid to upper eulittoral zone. Common on the open coast, but with restricted distribution in Great Bay Estuary; annual; monospores found from December-April.

Recorded from Bermuda to Newfoundland (as summarized in Taylor, 1957).

Porphyropsis coccinea (J. Agardh ex Areschoug) Rosenvinge

Epiphytic on *Desmarestia aculeata*, and probably growing in the deep sublittoral zone. The only New England records for this species are the two specimens collected by F.S. Collins; annual (?).

Representative specimens: Jaffrey Point, 23 February 1966 (NHA - #1637); Shaw’s Hill, Piscataqua River, 21 September 1966 (NHA - #H-967); Cedar Point, 23 November 1966 (NHA - #H-968).

Bangiaceae:

Bangia ciliaris Carmichael

Found once, vegetative, epiphytic on *Euthora cristata* in the sublittoral zone on the open coast; annual.

Representative specimen: Hampton Beach, August 1884 (FH).

Bangia fuscopurpurea (Dillwyn) Lyngbye

Found from November to August in the mid to upper eulittoral zone. Common on the open coast, but with restricted distribution in Great Bay Estuary; annual; monospores found from December-April.

Recorded from Bermuda to Newfoundland (as summarized in Taylor, 1957).

Porphyropsis coccinea (J. Agardh ex Areschoug) Rosenvinge

Epiphytic on *Desmarestia aculeata*, and probably growing in the deep sublittoral zone. The only New England records for this species are the two specimens collected by F.S. Collins; annual (?).

Representative specimens: Jaffrey Point, 23 February 1966 (NHA - #1637); Shaw’s Hill, Piscataqua River, 21 September 1966 (NHA - #H-967); Cedar Point, 23 November 1966 (NHA - #H-968).

Bangiaceae:

Bangia ciliaris Carmichael

Found once, vegetative, epiphytic on *Euthora cristata* in the sublittoral zone on the open coast; annual.

Representative specimen: Hampton Beach, August 1884 (FH).

Bangia fuscopurpurea (Dillwyn) Lyngbye

Found from November to August in the mid to upper eulittoral zone. Common on the open coast, but with restricted distribution in Great Bay Estuary; annual; monospores found from December-April.

Recorded from Bermuda to Newfoundland (as summarized in Taylor, 1957).

Porphyropsis coccinea (J. Agardh ex Areschoug) Rosenvinge

Epiphytic on *Desmarestia aculeata*, and probably growing in the deep sublittoral zone. The only New England records for this species are the two specimens collected by F.S. Collins; annual (?).

Representative specimens: Jaffrey Point, 23 February 1966 (NHA - #1637); Shaw’s Hill, Piscataqua River, 21 September 1966 (NHA - #H-967); Cedar Point, 23 November 1966 (NHA - #H-968).

Bangiaceae:

Bangia ciliaris Carmichael

Found once, vegetative, epiphytic on *Euthora cristata* in the sublittoral zone on the open coast; annual.

Representative specimen: Hampton Beach, August 1884 (FH).

Bangia fuscopurpurea (Dillwyn) Lyngbye

Found from November to August in the mid to upper eulittoral zone. Common on the open coast, but with restricted distribution in Great Bay Estuary; annual; monospores found from December-April.

Recorded from Bermuda to Newfoundland (as summarized in Taylor, 1957).
Porphyra leucosticta Thuret in Le Jolis

Found in January, March-July. Epiphytic on *Fucus spp.*, *Chondrus crispus*, and *Polysiphonia elongata* in the low eulittoral and sublittoral fringe zones. Occasional on the open coast and rare in the Estuary. Annual; A spores found in March and April; B spores found March-May.

Recorded from Bermuda to Maine and Baie des Chaleurs (as summarized in Taylor, 1957; Cardinal, 1967).

Representative specimens: Isles of Shoals (Star Island), 23 July 1958 (FH - #A-82); Jaffrey Point, 14 April 1968 (NHA - #5773); Odiore's Point, 23 May 1968 (NHA - #2775); Hilton Park, 7 January 1967 (NHA - #H-2237).

Porphyra linearis Greville

Found from December to May on rocks in the mid eulittoral zone on the open coast. Annual; A spores found April and May; B spores found February and March.

Recorded from Northern Massachusetts, Nova Scotia, Gaspé to Newfoundland (Lamb and Zimmerman, 1964; Edelstein and McLachlan, 1966b; as summarized in Taylor, 1957 as *Porphyra umbilicalis f. linearis*).

Representative specimens: North Wallis Sands, 16 January 1967 (NHA - #H-2239); Concord Point, 19 February 1967 (NHA - #H-2240); Ragged Neck, 4 April 1967 (NHA - #H-2243); Rye Ledge, 10 January 1967 (NHA - #H-2245); Little Bear's Head, 2 April 1967 (NHA - #H-2247).

Porphyra miniata (C. Agardh) C. Agardh

Found from March to August on rocks and epiphytic on *Chondrus crispus* in the upper sublittoral zone. Common on the open coast but with limited distribution in the Estuary. Annual; A spores found April to August; B spores found March to August.

Recorded from Northern Massachusetts to the arctic (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), 28 May 1968 (NHA - #5813); Jaffrey Point, 19 May 1964 (NHA - #H-2248); Fort Constitution, 23 June 1967 (NHA - #H-2251); Odiore's Point, 30 May 1967

* New Record for New Hampshire
Porphyra umbilicalis (Linnaeus) J. Agardh

Found throughout the year on rocks in the mid to lower eulittoral zone. Common on the open coast and throughout the Estuary. Annual; spores found January - December.

Recorded from New Jersey to Newfoundland (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #5989); Jaffrey Point, 1 April 1967 (NHA - #H-2350); Fort Constitution, 22 June 1966 (NHA - #5944); Odiorn's Point, 30 May 1967 (NHA - #H-2355); North Wallis Sands, 11 June 1967 (NHA - #H-2359); Concord Point, 10 August 1967 (NHA - #H-2365); Ragged Neck, 12 June 1967 (NHA - #H-2367); Rye Ledge, 25 May 1967 (NHA - #H-2371); Little Boar's Head, 2 April 1967 (NHA - #H-2372); Great Boar's Head, 25 June 1967(NHA - #H-2377); Bound Rock, 18 January 1967 (NHA - #H-2380); Piscataqua River toll bridge, 12 August 1967 (NHA - #H-2365); Hilton Park, 27 April 1967 (NHA - #H-2391); Cedar Point, 23 November 1966 (NHA - #H-2398); Durham Point, 15 November 1966 (NHA - #H-2396); Adams Point, 27 June 1967 (NHA - #H-2400).

Porphyra umbilicalis forma epiphytica Collins

Epiphytic on various algae (e.g., Fucus spp. and Polysiphonia lanosa) throughout the year in the lower eulittoral and upper sublittoral zones. Common on the open coast and throughout the Estuary. Annual; spores found January-November; B spores found January-December.

Recorded from Massachusetts to Maine (as summarized in Taylor, 1957).
Florideae

Nemalionales

Acrochaetiaceae:

Acrochaetium polyides (Rosenvinge) Børjesen

Found once as an endophyte in the peripheral cells of *Polyides rotundus* on the open coast. This is only the second time that the species has been recorded in North America. No reproductive structures seen; annual (?)..

Previously recorded from Nova Scotia (Edelstein and McLachlan, 1966a).

Representative specimen: North Wallis Sands, 10 September 1966 (NHA - #H-1).

Audouinella membranacea (Magnus) Papenfuss

Endozoic in the lorica of sertularians in the mid to lower eulittoral zone. Common on the open coast, but with limited distribution in the Estuary. Perennial (?); tetrasclops found January-December.

Representative specimens: Jaffrey Point, 7 January 1967 (NHA - #H-76); Fort Constitution, 20 January 1967 (NHA - #H-78); Odiorne's Point, 21 February 1967 (NHA - #H-83); North Wallis Sands, 20 March 1967 (NHA - #H-87); Concord Point, 8 January 1967 (NHA - #H-93); Ragged Neck, 26 December 1966 (NHA - #H-106); Rye Ledge, 25 April 1967 (NHA - #H-107); Little Boar's Head, 23 January 1967 (NHA - #H-113); Great Boar's Head, 24 January 1967 (NHA - #H-122); Bound Rock, 6 December 1966 (NHA - #H-129); Piscataqua River toll bridge, 22 June 1967 (NHA - #H-164); Hilton Park, 24 May 1967 (NHA - #H-153); Cedar Point, 3 March 1967 (NHA - #H-146); Durham Point, 26 June 1967 (NHA - #H-149); Adams Point, 17 April 1967 (NHA - #H-142); Weeks Point, 9 August 1967 (NHA - #3788).

Kylinia alariae (Jónsson) Kylin

Specific epiphyte on *Alaria esculenta* and restricted to exposed coastal stations where *A. esculenta* occurs. Found in the sublittoral fringe zone in July and August. Annual; monospores found in July.

Recorded from Northern Massachusetts to Maine and Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

** Range extension for the northeast coast of North America.
Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #4963); Rye Ledge, 18 August 1966 (NHA - #4964).

Kylinia secundata (Lyngbye) Papenfuss

Epiphytic on _Ruppia maritima_, various algae (e.g., _Porphyra umbilicalis_) and epizoic on sertularians. Common on the open coast and with limited distribution in the Estuary. Perennial (?); monospores found January - December; tetraspores rare, found once in March.

Representative specimens: Jaffrey Point, 12 October 1966 (NHA - #H-1369); Fort Constitution, 29 May 1967 (NHA - #H-135); Odiorn's Point, 21 January 1967 (NHA - #H-137); North Wallis Sands, 21 December 1966 (NHA - #H-138); Concord Point, 10 December 1966 (NHA - #H-139); Ragged Neck, 18 July 1966 (NHA - #4966); Rye Ledge, 29 March 1967 (NHA - #4967); Little Boar's Head, 25 November 1966 (NHA - #H-1372); Bound Rock, 7 January 1967 (NHA - #H-1373); Piscataqua River toll bridge, 12 August 1967 (NHA - #H-160); Hilton Park, 24 May 1967 (NHA - #H-153); Cedar Point, 21 December 1966 (NHA - #H-145); Durham Point, 19 September 1966 (NHA - #H-1374); Adams Point, 22 December 1966 (NHA - #H-141).

*Kylinia virgatula_ (Harvey) Papenfuss

Epiphytic on specimens of _Rhodymenia palmata_. Found in September, October and December on the open coast. Annual; monospores found in September, October and December.

Representative specimens: Rye Ledge, 15 October 1966 (NHA - #H-1375); Little Boar's Head, 14 September 1966 (NHA - #H-1376); Great Boar's Head, 14 October 1966 (NHA - #H-1377).

Kylinia virgatula (Harvey) Papenfuss

Forma luxurians (J. Agardh) Collins

Found four times (in July and September). Epiphytic on the margins of _Zostera_ leaves. Annual; monospores found in July and September.

Recorded from Connecticut to Maine and Baie des Chaleurs (as summarized in Taylor, 1957; Cardinal, 1967).
Representative specimens: Fort Constitution, 20 September 1966 (NHA - #H-1379); Shaw's Hill, Piscataqua River, 21 September 1966 (NHA - #H-1380); Shapleigh Island, Piscataqua River, 21 September 1966 (NHA - #H-1381); Fox Point, 21 July 1966 (NHA - #4977).

Rhodochorton purpureum (Lightfoot) Rosenvinge

Growing in the mid and lower eulittoral zone on rock faces covered by fucoids. Common throughout the year on the open coast, but with limited distribution in the Estuary. Perennial; tetraspores found in February.

Recorded from Rhode Island to Ellesmere Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Smuttynose Island), 22 July 1966 (NHA - #6004); Jaffrey Point, 12 October 1966 (NHA - #H-2458); Fort Constitution, 28 April 1967 (NHA - #6008); Odiorne's Point, 21 January 1967 (NHA - #H-2469); North Wallis Sands, 20 March 1967 (NHA - #H-2479); Concord Point, 5 March 1967 (NHA - #H-2490); Ragged Neck, 4 April 1967 (NHA - #H-2491); Rye Ledge, 23 December 1966 (NHA - #H-2502); Little Boar's Head, 14 August 1967 (NHA - #H-2509); Great Boar's Head, 24 January 1967 (NHA - #H-2520); Bound Rock, 16 April 1967 (NHA - #H-2526); Hilton Park, 9 July 1967 (NHA - #H-2528).

Batrachospermaceae:

Batrachospernum sp.

Collected at the headtide of the Oyster River (Dr. Lewis Flint, personal communication).

Lemanea fucina Bory

Found in rapid flowing waters at the headtide of the Oyster River (Wood and Straughan, 1953). No specimens were seen from this station. *L. fucina* is found on the University of New Hampshire campus, where the Oyster River is entirely fresh water. There are specimens in the University of New Hampshire Algal Herbarium collected by Dr. A.R. Hodgdon from an estuarine habitat in Maine.

Representative specimen: Newcastle, Maine, 29 June 1964 (NHA - #14090).
Helminthocladiaceae:

Nemalion helmithoides (Velley in Withering) Batters

Found in July and August growing on rocks and mussels (Mytilus edulis) in the extreme lower eulittoral zone. Restricted to the open coast. Annual; cystocarpic plants found in August.

Recorded from Long Island to Nova Scotia (as summarized in Taylor, 1957 as Nemalion multifidum)

Representative specimens: Isles of Shoals (Star Island), 22 July 1966 (NHA - #5120); Ragged Neck, 10 August 1967 (NHA - #H-1598); Rye Ledge, 12 August 1967 (NHA - #5121); Bound Rock, 18 July 1966 (NHA - #H-1599).

Bonnemaisoniaceae:

*Bonnemaisonia hamifera Hariot

Collected three times (April, June and July) in drift. Vegetative; probably growing in the deep sublittoral zone. Annual (Chihara, 1961).

Previously recorded from Long Island to Southern Massachusetts and Nova Scotia (as summarized in Taylor, 1957, as Asparagopsis hamifera; Edelstein and McLachlan, 1968).

Representative specimens: Isles of Shoals (Star Island), June 1965 (Kingsbury, 1965); Isles of Shoals (Cedar Island), 22 July 1966 (NHA - #H-75); Isles of Shoals (Smuttynose Island), 16 June 1966 (NHA - #3765).

Trailliella intricata (J. Agardh) Batters

Found once, vegetative, in the low eulittoral zone on the open coast. It is believed to be the tetrasporophyte of Bonnemaisonia hamifera (Chihara, 1961, 1962).

Recorded from Long Island to Newfoundland (as summarized in Taylor, 1957).

Representative specimen: Isles of Shoals (Star Island), 22 July 1966 (NHA - #5076).

Cryptonemiales

Squamariaceae:

Peyssonelia rosenvingii Schmitz in Rosenvinge

Found twice (January and April), vegetative, growing on rocks in the lower eulittoral and sublittoral zones on the open coast. Perennial.

Representative specimens: Jaffrey Point, 22 January 1966 (NHA - #5130); Jaffrey Point, 20 April 1967 (NHA - #5129).

Rhodophysema georgii Batters

Found throughout most of the year as an epiphyte on *Zostera marina*. Perennial; tetraspores found in February and November.

Representative specimens: Fort Constitution, 29 May 1967 (NHA - #H-2530); Rye Ledge, 11 November 1966 (NHA - #H-1056); Cedar Point, 29 May 1967 (NHA - #H-2534); Adams Point, 17 April 1967 (NHA - #H-2532).

Hildenbrandiaceae:

Hildenbrandia prototypus Nardo

Growing on rocks throughout the year in the eulittoral and upper sub-littoral zones. Common on the open coast and throughout the Estuary. Perennial; tetraspores found January - December.

Recorded from Florida to Baffin Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #H882); Jaffrey Point, 8 November 1966 (NHA - #H-1223); Fort Constitution, 23 June 1967 (NHA - #H-1239); Odiome's Point, 17 October 1966 (NHA - #H-1240); North Wallis Sands, 11 June 1967 (NHA - #H-1256); Concord Point, 13 September 1966 (NHA - #H-1260); Ragged Neck, 9 March 1967 (NHA - #H-1271); Rye Ledge, 25 May 1967 (NHA - #H-1287); Little Boar's Head, 23 January 1967 (NHA - #H-1297); Great Boar's Head, 24 April 1967 (NHA - #H-1306); Bound Rock, 6 December 1966 (NHA - #H-1314); Piscataqua River toll bridge, 27 February 1967 (NHA - #H-1361); Hilton Park, 24 May 1967 (NHA - #H-1353); Cedar Point, 17 April 1967 (NHA - #H-1325); Durham Point, 31 May 1967 (NHA - #H-1336); Adams Point, 17 April 1967 (NHA - #H-1319); Fabyans Point, 15 October 1966 (NHA - #H-1339); Pierce Point, 23 June 1967 (NHA - #H-1362).

Corallinaceae:

Clathromorphum circumspectum (Strömfelt) Foslie

Found throughout the year in tidepools in the mid and lower eulittoral zone, and extending into the sublittoral zone. Common on the open
coast and rare in the Estuary. Perennial; bispores found from December - May.

Recorded from Northern Massachusetts to Ellesmere Island (as summarized in Taylor, 1957, as Phymatolithon compactum; Adey, 1965).

Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #4312); Jaffrey Point, 8 November 1966 (NHA - #H-586); Fort Constitution, 21 March 1967 (NHA - #H-594); Odiorne's Point, 26 November 1966 (NHA - #H-604); North Wallis Sands, 11 October 1966 (NHA - #H-619); Concord Point, 13 September 1966 (NHA - #H-629); Ragged Neck, 19 February 1967 (NHA - #H-641); Rye Ledge, 11 November 1966 (NHA - #H-667); Little Boar's Head, 2 April 1967 (NHA - #H-649); Great Boar's Head, 24 January 1967 (NHA - #H-658); Hilton Park, 24 May 1967 (NHA - #H-617).

Corallina officinalis Linnaeus

Growing from the sublittoral zone to the mid eulittoral zone on the open coast. No reproductive structures found; perennial.

Recorded from Bermuda to Newfoundland (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), 22 July 1966 (NHA - #4363); Jaffrey Point, 7 January 1967 (NHA - #H-679); Fort Constitution, 4 December 1966 (NHA - #H-684); Odiorne's Point, 26 June 1967 (NHA - #H-692); North Wallis Sands, 11 October 1966 (NHA - #H-705); Concord Point, 10 August 1967 (NHA - #H-713); Ragged Neck, 12 June 1967 (NHA - #H-725); Rye Ledge, 11 November 1966 (NHA - #H-741); Little Boar's Head, 13 October 1966 (NHA - #H-751); Great Boar's Head, 25 June 1967 (NHA - #H-759); Bound Rock, 3 September 1967 (NHA - #H-757).

Dermatolithon pustulatum (Lamouroux) Foslie

Found throughout the year as an epiphyte on various algae (e.g., Chondrus crispus, Gigartina stellata, Fucus spp.) in the lower eulittoral and sublittoral fringe zones of the open coast. Perennial; bispores found in all months except April.

Recorded from Rhode Island to Massachusetts, New Hampshire and Nova Scotia (as summarized in Taylor, 1957; Mathieson, Hehre and Reynolds, in press; Edelstein, McLachlan and Craigie, 1967, all as Lithophyllum macrocarpum; Edelstein and McLachlan, 1968).

Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #5006); Jaffrey Point, 1 April 1967 (NHA - #H-1438); Fort Constitution, 27 February 1967 (NHA - #H-1442); Odiorne's Point, 10 March 1967 (NHA - #H-1453); North Wallis Sands, 16 January 1967 (NHA - #H-1463); Concord Point, 22 November 1966 (NHA - #H-1474); Ragged Neck, 12 June
1967 (NHA - #H-1483); Rye Ledge, 25 April 1967 (NHA - #H-1494); Little Boar's Head, 13 October 1966 (NHA - #H-1497); Great Boar's Head, 24 April 1967 (NHA - #H-1504); Bound Rock, 6 December 1966 (NHA - #H-1518); Hilton Park, 17 February 1968 (NHA - #5039).

Lithophyllum corallinae (Crouan frat.) Heydrich

Specific epiphyte on Corallina officinalis on the open coast.
Perennial; bispores found in March, June and July.

Recorded from Rhode Island to Maine (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Cedar Island), 22 July 1966 (NHA - #H-1379); Jaffrey Point, 7 January 1967 (NHA - #H-1384); Fort Constitution, 22 June 1966 (NHA - #4993); Odiorne's Point, 10 March 1967 (NHA - #H-1393); North Wallis Sands, 20 May 1967 (NHA - #H-1397); Concord Point, 5 March 1967 (NHA - #H-1404); Rye Ledge, 11 November 1966 (NHA - #H-1397); Little Boar's Head, 8 March 1967 (NHA - #H-1426); Great Boar's Head, 20 March 1967 (NHA - #H-1432).

Lithothamnium glaciale Kjellman

Growing in the lower eulittoral and sublittoral zones on the open coast. Perennial; bispores found in February and April.

Recorded from Massachusetts to Ellesmere Island (as summarized in Taylor, 1957).

Representative specimens: Jaffrey Point, 1 April 1967 (NHA - #H-1550); Fort Constitution, 27 March 1967 (NHA - #H-1536); Odiorne's Point, 10 March 1967 (NHA - #H-1542); North Wallis Sands, 20 March 1967 (NHA - #H-1538); Concord Point, 27 June 1967 (NHA - #H-1524); Rye Ledge, 22 June 1967 (NHA - #H-1519); Little Boar's Head, 27 July 1967 (NHA - #H-1528); Great Boar's Head, 24 April 1967 (NHA - #H-1522); Bound Rock, 18 November 1966 (NHA - #H-1523).

Melobesia lejolisi Rosanoff

Found throughout the year as an epiphyte on Zostera and Phyllophora spp. in the sublittoral zone. Common in drift on the open coast and throughout the Estuary. Perennial; tetraspores found October - July.

Recorded from Florida to the arctic (as summarized in Taylor, 1957, as Fosliella lejolisi).

Representative specimens: Jaffrey Point, 23 February 1966 (NHA - #4710); Fort Constitution, 21 March 1967 (NHA - #H-1040); Odiorne's Point, 8 April 1967 (NHA - #H-1044); North Wallis Sands, 17 April 1967 (NHA - #H-1051); Concord Point, 27 June 1967 (NHA - #H-1052); Rye Ledge, 15 October 1966.
Phymatolithon lenormandi (Areschoug) Adey

Growing on rocks and shells throughout most of the year in the sublittoral zone on the open coast, but with restricted distribution in the Estuary. No reproductive structures found; perennial.

Recorded from New Jersey to the arctic (as summarized in Taylor, 1957, as Lithothamnium lenormandi; Adey, 1966).

Representative specimens: Isles of Shoals (Smuttynose Island), 22 July 1966 (NHA - #5312); Jaffrey Point, 6 May 1967 (NHA - #5311); Fort Constitution, 28 April 1966 (NHA - #5313); Odiorne's Point, 17 October 1966 (NHA - #H-1890); North Wallis Sands, 16 February 1967 (NHA - #5315); Concord Point, 9 October 1966 (NHA - #H-1891); Ragged Neck, 8 October 1966 (NHA - #H-1892); Rye Ledge, 15 October 1966 (NHA - #H-1895); Little Boar's Head, 13 October 1966 (NHA - #H-1896); Great Boar's Head, 14 October 1966 (NHA - #H-1898); Hilton Park, 14 October 1966 (NHA - #H-1899).

Dumontiaceae:

Dumontia incrassata (O.F. Müller) Lamouroux

Common in the mid to lower eulittoral zone throughout the year on the open coast, and with limited distribution in the Estuary. Often found in tidepools; annual; tetraspores found March-August.

Recorded from Long Island to Nova Scotia and James Bay (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #4604); Jaffrey Point, 7 January 1967 (NHA - #H-939); Fort Constitution, 20 January 1967 (NHA - #H-948); Odiorne's Point, 8 April 1967 (NHA - #H-954); North Wallis Sands, 20 March 1967 (NHA - #H-960); Concord Point, 5 March 1967 (NHA - #H-904); Ragged Neck, 22 May 1967 (NHA - #H-910); Rye Ledge, 25 May 1967 (NHA - #H-913); Little Boar's Head, 29 January 1967 (NHA - #H-920); Great Boar's Head, 24 April 1967 (NHA - #H-935); Bound Rock, 6 December 1966 (NHA - #H-938); Piscataqua River toll bridge, 4 December 1966 (NHA - #H-881); Hilton Park, 14 October 1966 (NHA - #H-870); Cedar Point, 3 March 1967 (NHA - #H-892); Fox Point, 17 November 1966 (NHA - #H-896); Nannie Island, 7 July 1966 (NHA - #4578).

Polyideaceae:

Polyides rotundus (Hudson) Greville

Growing in the sublittoral zone throughout the year on the open coast...
and with limited distribution in the Estuary. Perennial; tetraspores found from October to January; cystocarpic nemathecia found from October to February.

Recorded from Long Island to the Hudson Strait (as summarized in Taylor, 1957, as *Polyides caprinus*).

Representative specimens: Isles of Shoals (Star Island), 28 May 1968 (NHA - #5363); Jaffrey Point, 7 January 1967 (NHA - #H-1915); Fort Constitution, 24 July 1967 (NHA - #5378); Odiorne's Point, 26 July 1967 (NHA - #H-1917); North Wallis Sands, 11 October 1966 (NHA - #H-1920); Concord Point, 8 January 1967 (NHA - #H-1925); Ragged Neck, 9 March 1967 (NHA - #H-1927); Rye Ledge, 15 October 1966 (NHA - #H-1928); Little Boar's Head, 24 May 1967 (NHA - #H-1931); Great Boar's Head, 13 November 1966 (NHA - #H-1938); Bound Rock, 18 January 1967 (NHA - #H-1945); Piscataqua River toll bridge, 27 February 1967 (NHA - #H-1948); Hilton Park, 27 April 1967 (NHA - #H-1947).

Gloiosiphoniaceae:

Gloiosiphonia capillaris (Hudson) Carmichael ex Berkeley

Found once by Croasdale (July) growing on the open coast. Annual; cystocarpic in July.

Recorded from Connecticut to Newfoundland (as summarized in Taylor, 1957).

Representative specimen: Isles of Shoals (Applecore Island), 25 July 1938 (NHA - #4795).

Kallymeniaceae:

Euthora cristata (C. Agardh) J. Agardh

Growing in the sublittoral zone on the open coast throughout the year. Perennial; tetraspores and cystocarpic plants found from January to December.

Recorded from New Jersey to Ellesmere Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #4650); Jaffrey Point, 1 April 1967 (NHA - #H-969); Fort Constitution, 27 February 1967 (NHA - #H-974); Odiorne's Point, 30 May 1967 (NHA - #H-977); North Wallis Sands, 20 May 1967 (NHA - #H-985); Concord Point, 10 December 1966 (NHA - #H-992); Ragged Neck, 9 March 1967 (NHA - #H-1004); Rye Ledge, 10 January 1967 (NHA - #H-1016); Little Boar's Head, 24 May 1967 (NHA - #H-1023); Great Boar's Head 25 June 1967 (NHA - #H-1028); Bound Rock, 6 December 1966 (NHA - #H-1029).
Choreocoleaceae:

Choreocolax polysiphonlae Reinsch

Parasitic on the fronds of Polysiphonia lanosa. Restricted to the open coast. Present throughout the year and perennial; tetraspores found from January to December; cystocarpic plants found in July, August and November.

Recorded from Connecticut to Nova Scotia and Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Representative specimens: Jaffrey Point, 10 June 1967 (NHA - #H-551); Fort Constitution, 23 June 1967 (NHA - #H-554); Odiorne's Point, 11 August 1967 (NHA - #H-561); North Wallis Sands, 17 April 1967 (NHA - #H-562); Concord Point, 21 May 1967 (NHA - #H-567); Ragged Neck, 22 May 1967 (NHA - #H-571); Rye Ledge, 25 May 1967 (NHA - #H-575); Little Boar's Head, 14 August 1967 (NHA - #H-580); Great Boar's Head, 24 April 1967 (NHA - #H-584).

Gigartinales

Cruoriaceae:

Petrocelis midendorffii (Ruprecht) Kjellman

Found throughout the year on rocks in the lower eulittoral zone. Common on the open coast and with restricted distribution in the Estuary. Perennial; tetraspores found from October to June.

Recorded from Long Island to Maine, Nova Scotia and the Arctic (as summarized in Taylor, 1957; Edelstein, McLachlan and Craigie, 1967).

Representative specimens: Isles of Shoals (Star Island), 22 July 1966 (NHA - #5135); Jaffrey Point, 5 December 1966 (NHA - #H-1604); Fort Constitution, 21 March 1967 (NHA - #H-1607); Odiorne's Point, 30 May 1967 (NHA - #H-1617); North Wallis Sands, 11 June 1967 (NHA - #H-1626); Concord Point, 3 April 1967 (NHA - #H-1634); Rye Ledge, 20 July 1967 (NHA - #H-1640); Rye Ledge, 24 July 1967 (NHA - #H-1649); Little Boar's Head, 24 May 1967 (NHA - #H-1653); Great Boar's Head, 25 June 1967 (NHA - #H-1670); Hilton Park, 24 May 1967 (NHA - #H-1665).

Soleniaceae:

Agardhiella tenera (J. Agardh) Schmitz

Reported by Taylor (1957) from New Hampshire. However, none of the herbarium specimens nor references cited by Taylor indicate that it is found north of Gloucester, Massachusetts.
Recorded from the tropics to North Carolina, north to Massachusetts and
New Hampshire (as summarized in Taylor, 1957).

Rhodophyllidaceae:

Cystoclonium purpureum (Hudson) Batters

var. cirrhosum Harvey

Found throughout the year growing on rocks and occasionally on other
algae in the lower eulittoral and sublittoral zones. Common on the
open coast, and with restricted distribution in the Estuary. Perennial;
tetraspores found from April to November.

Recorded from New Jersey to New Hampshire, Baie des Chaleurs and Baie
de Gaspé (as summarized in Taylor, 1957; Lamb and Zimmermann, 1964;
Mathieson, Nehre and Reynolds, in press; Cardinal, 1967).

Representative specimens: Isles of Shoals (Star Island), 22 July 1966
(NHA - #4441); Jaffrey Point, 7 January 1967 (NHA - #H-772); Fort
Constitution, 20 September 1966 (NHA - #H-780); Odiome's Point,
11 August 1967 (NHA - #H-781); North Wallis Sands, 20 May 1967
(NHA - #H-784); Concord Point, 13 September 1966 (NHA - #H-792);
Ragged Neck, 22 May 1967 (NHA - #H-799); Rye Ledge, 15 October 1966
(NHA - #H-809); Little Boar's Head, 24 May 1967 (NHA - #H-820); Great
Boar's Head, 15 September 1966 (NHA - #H-822); Bound Rock, 18 November
1966 (NHA - #H-829); Piscataqua River toll bridge, 27 February 1967
(NHA - #H-858); Hilton Park, 27 April 1967 (NHA - #H-847); Durham Point,
15 November 1966 (NHA - #H-842); Adams Point, 22 December 1966
(NHA - #H-840).

Rhodophyllis dichotoma (Lepeschkin) Gobi

Found January-February and May-July on the open coast. The plant has
been found only 4 times in drift. It was collected once by SCUBA in the
deep sublittoral - epiphytic on *Ptilota serrata.* Perennial; tetraspores
found in January and July; cystocarpic plants found in February, May and
June.

Recorded from Northern Massachusetts to Ellesmere Island (as sum-

Representative specimens: Isles of Shoals (Appledore Island),
28 May 1968 (NHA - #6138); Hampton Beach, 27 February 1966 (NHA - #H-2559);
Gracilariaceae:

Gracilaria foliifera (Forsskål) Bjørgeen

Found from March to December either free-floating or attached to small stones in the lower eulittoral and upper sublittoral zones throughout the Estuary. Perennial; tetraspores found from June-October; cystocarpic plants found in April and from June to November.

Recorded from the tropics to New Hampshire (as summarized in Taylor, 1957).

Representative specimens: Hilton Park, 24 May 1967 (NHA - #H-1205); Cedar Point, 7 August 1967 (NHA - #H-1193); Durham Point, 5 July 1966 (NHA - #453); Adams Point, 10 September 1966 (NHA - #H-1192); Fabyans Point, 23 June 1967 (NHA - #H-1200); Pierce Point, 23 June 1967 (NHA - #H-1207).

Phyllophoraceae:

Ahnfeltia plicata (Hudson) Fries

Growing throughout the year in the lower eulittoral and sublittoral zones on the open coast. Restricted distribution in the Estuary. Perennial; monospores found January-December.

Recorded from New Jersey to Devon Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), 22 July 1966 (NHA - #3659); Jaffrey Point, 27 May 1967 (NHA - #H-2); Fort Constitution, 24 July 1967 (NHA - #3683); Odiore's Point, 21 February 1967 (NHA - #H-6); North Wallis Sands, 28 February 1967 (NHA - #H-14); Concord Point, 8 January 1967 (NHA - #H-23); Ragged Neck, 9 March 1967 (NHA - #H-25); Rye Ledge, 11 November 1966 (NHA - #H-29); Little Boar's Head, 17 February 1967 (NHA - #H-38); Great Boar's Head, 24 April 1967 (NHA - #H-45); Bound Rock, 17 March 1968 (NHA - #H-48); Hilton Park, 9 July 1967 (NHA - #H-60); Durham Point, 5 July 1966 (NHA - #3705); Adams Point, 19 July 1966 (NHA - #3704); Weeks Point, 14 September 1966 (NHA - #H-63).

Ceratocolax hartzii Rosenvinge

Specific parasite on Phyllophora brodiaei in the sublittoral zone on the open coast. Perennial; tetraspores found in January, February, April and May.

Recorded from Rhode Island to the Arctic (Newroth, 1968).
Representative specimens: Isles of Shoals (Cedar Island), 22 July 1966 (NHA - #H-369); Jaffrey Point, 8 November 1966 (NHA - #H-370); Odiome's Point, 10 March 1967 (NHA - #H-371); North Wallis Sands, 21 December 1966 (NHA - #H-372); Ragged Neck, 4 April 1967 (NHA - #H-374); Little Boar's Head, 19 February 1966 (NHA - #H-375). Phyllophora brodiaei (Turner) Endlich

Found throughout the year growing in the sublittoral zone on the open coast. Common in drift. Perennial; carpotetrasporangial nemathecia found from January to December.

Recorded from New Jersey to Newfoundland (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #5253); Jaffrey Point, 8 February 1967 (NHA - #H-1780); Fort Constitution, 24 July 1967 (NHA - #5265); Odiome's Point, 10 September 1966 (NHA - #H-1789); North Wallis Sands, 16 January 1967 (NHA - #H-1795); Concord Point, 3 April 1967 (NHA - #F-1804); Ragged Neck, 23 November 1966 (NHA - #H-1805); Rye Ledge, 25 November 1966 (NHA - #H-1814); Little Boar's Head, 8 March 1967 (NHA - #H-1818); Great Boar's Head, 13 November 1966 (NHA - #H-1819); Bound Rock, 6 December 1966 (NHA - #H-1824). Phyllophora membranifolia (Goodenough et Woodward) J. Agardh

Growing throughout the year in the lower eulittoral and sublittoral zones on the open coast, and with limited distribution in the Estuary. Perennial; tetraspores found from September to March; cystocarpic plants found in January, March, April and November.

Recorded from New Jersey to Baffin Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), 22 July 1966 (NHA - #5278); Jaffrey Point, 11 July 1967 (NHA - #H-1827); Fort Constitution, 20 September 1966 (NHA - #H-1832); Odiome's Point, 26 June 1967 (NHA - #H-1836); North Wallis Sands, 20 May 1967 (NHA - #H-1844); Concord Point, 9 October 1966 (NHA - #H-1854); Ragged Neck, 10 August 1967 (NHA - #H-1861); Rye Ledge, 11 November 1966 (NHA - #H-1864); Little Boar's Head, 14 August 1967 (NHA - #H-1875); Great Boar's Head, 24 January 1967 (NHA - #H-1881); Bound Rock, 18 November 1966 (NHA - #H-1886); Hilton Park, 2 October 1968 (NHA - NBR-#286). Phyllophora trialii Holmes ex Batters

Found once by Croasdale in July growing on rocks in the low eulittoral zone on the open coast. Vegetative; perennial.

Representative specimen: Isles of Shoals (Appledore Island), 28 July 1938 (NHA - #5297).

Gigartinaceae:

Chondrus crispus Stackhouse

Common throughout the year on rocks and in tidepools in the mid to lower eulittoral zone, and extending into the sublittoral zone.

Found on the open coast and throughout most of the Estuary. Perennial; tetraspores found January-December; carpospores found January-May, July, September-November.

Recorded from New Jersey to Newfoundland (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), 22 July 1966 (NHA - #4180); Jaffrey Point, 5 December 1966 (NHA - #H-392); Fort Constitution, 20 January 1967 (NHA - #H-397); Odiorne's Point, 30 May 1967 (NHA - #H-412); North Wallis Sands, 16 January 1967 (NHA - #H-418); Concord Point, 9 October 1966 (NHA - #H-436); Rye Ledge, 12 June 1967 (NHA - #H-445); Little Boar's Head, 8 March 1967 (NHA - #H-474); Bound Rock, 6 December 1966 (NHA - #H-491); Piscataqua River toll bridge, 27 February 1967 (NHA - #H-535); Hilton Park, 14 October 1966 (NHA - #H-519); Cedar Point, 15 January 1967 (NHA - #H-499); Durham Point, 31 May 1967 (NHA - #H-509); Adams Point, 30 May 1967 (NHA - #H-493); Weeks Point, 14 September 1966 (NHA - #H-539).

Gigartina stellata (Stackhouse) Batters

Found throughout the year in the lower eulittoral and sublittoral fringe zones on the open coast, and with limited distribution in the Estuary. Perennial; cystocarpic plants found January-December.

Recorded from Rhode Island to Newfoundland (as summarized in Taylor, 1957.)
14 October 1966 (NHA - #H-1152); Bound Rock, 8 August 1967 (NHA - #H-1154); Piscataqua River toll bridge, 27 February 1967 (NHA - #H-1184); Hilton Park, 24 May 1967 (NHA - #H-1162); Cedar Point, 3 March 1967 (NHA - #H-1170); Durham Point, 19 September 1966 (NHA - #H-1171).

Rhodymeniales

Rhodymeniaceae:

Halosaccion ramentaceum (Linnaeus) J. Agardh
Growing throughout the year in the sublittoral fringe region. Found only at 3 coastal stations. Perennial; tetraspores found December-October.

Recorded from Northern Massachusetts to Ellesmere Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Appledore Island), 25 July 1938 (NHA - #4867); Jaffrey Point, 12 October 1966 (NHA - #H-1218); Rye Ledge, 26 February 1967 (NHA - #H-1221).

Rhodymenia palmata (Linnaeus) Greville
Growing throughout the year in the lower eulittoral and sublittoral zones. Common on the open coast and the Estuary. Perennial; tetraspores found from January to December.

Recorded from New Jersey to Ellesmere Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), 28 May 1968 (NHA - #6176); Jaffrey Point, 7 January 1967 (NHA - #H-2565); Fort Constitution, 20 September 1966 (NHA - #H-2566); Odiore's Point, 21 February 1967 (NHA - #H-2575); North Wallis Sands, 20 March 1967 (NHA - #H-2584); Concord Point, 8 January 1967 (NHA - #H-2595); Ragged Neck, 10 August 1967 (NHA - #H-2600); Rye Ledge, 25 April 1967 (NHA - #H-2615); Little Boar's Head, 14 August 1967 (NHA - #H-2627); Great Boar's Head, 11 December 1966 (NHA - #H-2631); Bound Rock, 18 November 1966 (NHA - #H-2641); Piscataqua River toll bridge, 18 October 1966 (NHA - #H-2685); Hilton Park, 9 July 1967 (NHA - #H-2650); Cedar Point, 24 June 1967 (NHA - #H-2671); Durham Point, 14 August 1967 (NHA - #H-2672); Adams Point, 22 December 1966 (NHA - #H-2666); Pierce Point, 8 November 1966 (NHA - #H-2679).
Champiaceae:

Lomentaria baileyana (Harvey) Farlow

Growing on shells, pebbles, epiphytic on other algae or on *Zostera*, or free-floating. Found from July to November; common throughout the Estuary. Annual; tetraspores found in July and August.

Recorded from the tropics to New Hampshire and Nova Scotia (as summarized in Taylor, 1957; Doty and Newhouse, 1954; Edelstein, McLachlan and Craigie, 1967).

Representative specimens: Cedar Point, 12 September 1966 (NHA - #H-1557); Durham Point, 19 September 1966 (NHA - #H-1558); Adams Point, 13 September 1966 (NHA - #H-1563); Fabyans Point, 17 September 1966 (NHA - #H-1565); Pierce Point, 13 September 1966 (NHA - #H-1566).

Lomentaria orcadensis (Harvey) Collins ex Taylor

Collected in the sublittoral zone (August and October) at 2 coastal and one estuarine location. Perennial; tetraspores found in August.

Recorded from Rhode Island to Maine (as summarized in Taylor, 1957).

Representative specimens: Jaffrey Point, 7 August 1967 (NHA - #5085); Odiorne's Point, 7 August 1967 (NHA - #5086); Hilton Park, 2 October 1968 (NHA - NBR-#287).

Ceramiaceae:

Antithamnion americanum (Harvey) Farlow

Two specimens seen from the open coast; vegetative; annual (?)

Recorded from New Jersey to Labrador (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals, before 1870 (FH - #7782); Isles of Shoals, (FH).

Antithamnion boreale (Gobi) Kjellman

Found once by Croasdale (July) growing in the sublittoral zone on the open coast. Annual (?); tetraspores found in July.

Recorded from Northern Massachusetts to Ellesmere Island (as summarized in Taylor, 1957).

Representative specimen: Isles of Shoals (Appledore Island), 26 July 1938 (NHA - #3728).
Antithamnion cruciatum (C. Agardh) Nägeli

Growing in mud or epiphytic on other algae in the lower eulittoral and sublittoral zones from May to November. Found on the open coast and throughout most of the Estuary. Annual; tetraspores found from June to September.

Recorded from Bermuda to New Hampshire and Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Representative specimens: Isles of Shoals (Star Island), 26 July 1938 (NHA - #3729); Odiorne's Point, 7 August 1967 (NHA - #3731); Hilton Park, 9 July 1967 (NHA - #H-70); Cedar Point, 12 September 1966 (NHA - #H-69); Adams Point, 13 October 1966 (NHA - #H-68).

Antithamnion floccosum (O.F. Müller) Kleen

Growing in the sublittoral zone. Found on the open coast, and with restricted distribution in the Estuary. Collected from January to May, and August. Annual; tetraspores found in April and August.

Recorded from Northern Massachusetts to Île St. Pierre (as summarized in Taylor, 1957).

Representative specimens: Jaffrey Point, 7 January 1967 (NHA - #H-73); Odiorne's Point, 7 August 1967 (NHA - #3752); Rye Ledge, 20 April 1952 (NHA - #3753); Adams Point, 4 May 1968 (NHA - #3754).

**Antithamnion plumula (Ellis) Thuret in Le Jolis

Found once (July) growing on mud in the low eulittoral zone in the Estuary. No reproductive structures seen; annual.

Previously recorded from New Jersey to Southern Massachusetts (as summarized in Taylor, 1957).

Representative specimen: Cedar Point, 27 July 1966 (NHA - #H-74).

*Antithamnion pylaissei (Montagne) Kjellman

Growing in the sublittoral zone on the open coast. Two specimens seen (May). Vegetative; annual (?).

Recorded from Long Island to Baffin Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Appledore Island), 25 May 1938 (NHA - #3762); Rye Beach, (FH)
Callithamnion baileyi Harvey

Found throughout most of the year on mud, stones and epiphytic on other algae in the lower eulittoral zone. Present on the open coast and throughout the Estuary. Perennial (?); tetraspores found in March and July; carpospores found from July to October; spermata found in July, September and October.

Recorded from New Jersey to Prince Edward Island and Baie des Chaleurs (as summarized in Taylor, 1957; Cardinal, 1967).

Representative specimens: Isles of Shoals (Appledore Island), 26 July 1938 (NHA - #3825); Jaffrey Point, 3 May 1968 (NHA - #3826); Concord Point, 22 November 1966 (NHA - #H-210); Piscataqua River toll bridge, 12 August 1967 (NHA - #H-214); Hilton Park, 7 January 1967 (NHA - #H-218); Cedar Point, 3 March 1967 (NHA - #H-213); Durham Point, 16 October 1966 (NHA - #H-216); Adams Point, 19 July 1966 (NHA - #3827); Pierce Point, 25 July 1967 (NHA - #H-215).

Callithamnion corymbosum (J.E. Smith) Lyngbye

Found in July in the lower eulittoral zone in the Estuary. Annual (?); tetraspores found in July.

Recorded from Bermuda to Nova Scotia (as summarized in Taylor, 1957).

Callithamnion roseum (Roth) Lyngbye

Growing on the open coast. One specimen seen; vegetative; annual (?).

Recorded from New Jersey to Southern Massachusetts and New Hampshire (as summarized in Taylor, 1957; Doty and Newhouse, 1954).

Representative specimen: Isles of Shoals, before 1870 (FH - #7788).

Callithamnion tetragonum (Withering) S.F. Gray

Reported by Croasdale (1941) from the Isles of Shoals. No specimens seen; annual (?)

Recorded from New Jersey to Maine (as summarized in Taylor, 1957).

Ceramium deslongchampsii Chauvin in Duby var. hooperi (Harvey) Taylor

Found from April to November growing on rocks and pilings under overhanging fucoids in the mid to lower eulittoral zone on the open coast
and in the Estuary. Perennial (?); tetraspores found in August.

Recorded from Connecticut to the Lower St. Lawrence (as summarized in Taylor, 1957).

Representative specimens: Jaffrey Point, 9 September 1967 (NHA - #H-220); North Wallis Sands, 16 July 1967 (NHA - #H-221); Piscataqua River toll bridge, 12 August 1967 (NHA - #H-222); Cedar Point, 23 November 1966 (NHA - #H-223); Squamscott River, 13 September 1966 (NHA - #H-224).

Ceramium diaphanum (Lightfoot) Roth

Reported by Collins (1900) and Doty and Newhouse (1954). No specimens seen. The abundance and distribution of this plant given in the latter paper suggests possible confusion with *Ceramium strictum*.

Recorded from Virginia to Prince Edward Island (as summarized in Taylor, 1957).

Ceramium rubriforme Kylin prox.

Found once (July) in the lower eulittoral zone on the open coast. Vegetative; perennial.

Recorded from Southern Massachusetts to New Hampshire and Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Representative specimen: Isles of Shoals (Star Island), 22 July 1966 (NHA - #3905).

Ceramium rubrum (Hudson) C. Agardh

Found throughout the year growing on rocks and epiphytic on various algae in the lower eulittoral and sublittoral zones. Common on the open coast and throughout the Estuary. Perennial; tetraspores found January-December; cystocarpic plants found all months except May.

Recorded from the tropics to Baffin Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), 22 July 1966 (NHA - #3940) Jaffrey Point, 7 January 1967 (NHA - #H-226); Fort Constitution, 20 September 1966 (NHA - #H-234); Odiorne's Point, 21 February 1967 (NHA - #H-236); North Wallis Sands, 16 January 1967 (NHA - #H-243); Concord Point, 8 January 1967 (NHA - #H-253); Ragged Neck, 26 December 1966 (NHA - #H-264); Rye Ledge, 11 November 1966 (NHA - #H-271); Little Boar's Head, 24 May 1967 (NHA - #H-285); Great Boar's Head, 24 January 1967 (NHA - #H-288); Bound Rock, 18 January 1967 (NHA - #H-299); Piscataqua River toll bridge, 27 February 1967.
Ceramium strictum Harvey

Found from June to October growing on rocks and epiphytic on Zostera and certain algae. Common throughout the Estuary in the lower eulittoral and sublittoral zones. Rare on the coast. Annual; tetraspores and carpospores found from June to October.

Recorded from Florida to Prince Edward Island and Baie des Chaleurs (as summarized in Taylor, 1957; Cardinal, 1967).

Representative specimens: Concord Point, 13 September 1966 (NHA - #H-357); Bound Rock, 19 July 1966 (NHA - #4079); Hilton Park, 9 July 1967 (NHA - #H-358); Cedar Point, 7 August 1967 (NHA - #H-362); Durham Point, 14 August 1967 (NHA - #H-363); Adams Point, 23 July 1967 (NHA - #H-360); Fabyans Point, 2 August 1966 (NHA - #4100); Squamscott River, 20 July 1966 (NHA - #H-356).

Plumaria elegans (Bonnemaison) Schmitz

Found throughout the year growing on vertical rock faces under overhanging fucoids in the lower eulittoral zone on the open coast. Perennial; paraspores found from September to January.

Recorded from New Jersey to Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes, and Humm, 1969).

Representative specimens: Isles of Shoals (Star Island), 28 July 1938 (NHA - #5338); Jaffrey Point, 8 November 1966 (NHA - #H-1900); North Wallis Sands, 11 October 1966 (NHA - #H-1910); Rye Ledge, 11 November 1966 (NHA - #H-1911); Great Boar's Head, 12 August 1967 (NHA - #H-1913); Bound Rock, 15 March 1968 (NHA - #5343).

Ptilota serrata Kutzing

Found throughout the year growing in the sublittoral zone on the open coast. Common in drift. Perennial; tetraspores found from November to June; spermatia found in February and March; only one cystocarpic plant found (May).

Recorded from New Jersey to Ellesmere Island (as summarized in Taylor, 1957).
Representative specimens: Isles of Shoals (Star Island), 28 May 1968 (NHA - #5984); Jaffrey Point, 6 May, 1967 (NHA - #5987); Odiorne's Point, 21 February 1967 (NHA - #H-2401); North Wallis Sands, 16 January 1967 (NHA - #H-2406); Concord Point, 10 December 1966 (NHA - #H-2420); Ragged Neck, 9 March 1967 (NHA - #H-2422); Rye Ledge, 25 April 1967 (NHA - #H-2430); Little Boar's Head, 14 September 1966 (NHA - #H-2443); Great Boar's Head, 24 January 1967 (NHA - #H-2448); Bound Rock, 18 November 1966 (NHA - #H-2453).

Spermothamnion repens (Dillwyn) Rosenvinge

Growing on mud and pebbles in the lower eulittoral zone in March and July-September. Rare on the open coast, and with limited distribution in the Estuary. Perennial; tetraspores found in July.

Recorded from Florida to Nova Scotia (as summarized in Taylor, 1957, as Spermothamnion turneri).

Representative specimens: North Wallis Sands, 20 March 1967 (NHA - #H-245); Cedar Point, 27 July 1966 (NHA - #H-2556); Durham Point, 19 September 1966 (NHA - #H-2557); Adams Point, 19 July 1966 (NHA - #6043)

Delesseriaceae:

Membranoptera alata (Hudson) Stackhouse

Found throughout the year epiphytic on various algae in the sublittoral zone. Frequent in drift on the open coast. Perennial; tetraspores found from November to July.

Recorded from Northern Massachusetts to Baffin Island (as summarized in Taylor, 1957; including Membranoptera denticulata - see Mathieson, Hehre, and Reynolds, in press).

Representative specimens: Isles of Shoals, before 1870 (FH - #7792); Jaffrey Point, 8 November 1966 (NHA - #H-1567); Fort Constitution, 22 June 1966 (NHA - #5103); Odiorne's Point, 26 July 1967 (NHA - #H-1570); North Wallis Sands, 11 June 1967 (NHA - #H-1575); Concord Point, 13 September 1966 (NHA - #H-1578); Ragged Neck, 18 September 1966 (NHA - #H-1580); Rye Ledge, 15 October 1966 (NHA - #H-1587); Little Boar's Head, 2 April 1967 (NHA - #H-1592); Great Boar's Head, 13 November 1966 (NHA - #H-1593); Bound Rock, 18 January 1967 (NHA - #H-1596).

*Pantoneura baerii (Postels et Ruprecht) Kylin

Collected twice (May and June) in the sublittoral zone on the open coast. Perennial; tetraspores found in May.
Previously recorded from Northern Massachusetts, Labrador, Hudson Straits and Ellesmere Island (as summarized in Taylor, 1957; Lamb and Zimmermann, 1964).

Representative specimens: Isles of Shoals (Star Island), June 1965 (Kingsbury, 1965); Isles of Shoals (Appledore Island), 28 May 1968 (NHA - #5118).

Phycodrys rubens (Linnaeus) Batters

Growing throughout the year in the sublittoral zone of the open coast. Young plants occasionally found in deep tidepools in the lower eu-littoral zone. Perennial; tetraspores found October-July; cystocarpic plants found November-August; spermata found once in July.

Recorded from New Jersey to Ellesmere Island (as summarized in Taylor, 1957.)

Representative specimens: Isles of Shoals (Lunging Island), 22 July 1966 (NHA - #5174); Jaffrey Point, 7 January 1967 (NHA - #H-1676); Fort Constitution, 23 June 1967 (NHA - #H-1685); Odiome's Point, 21 February 1967 (NHA - #H-1689); North Wallis Sands, 11 October 1966 (NHA - #H-1696); Concord Point, 13 September 1966 (NHA - #H-1713); Ragged Neck, 12 June 1967 (NHA - #H-1727); Rye Ledge, 23 December 1966 (NHA - #H-1728); Little Boar's Head, 24 May 1967 (NHA - #H-1742); Great Boar's Head, 15 September 1966 (NHA - #H-1752); Bound Rock, 31 May 1967 (NHA - #H-1761).

Dasyaceae:

Dasya pedicellata (C. Agardh) C. Agardh

Young plants grow epiphytically on various algae, while older plants occur free-floating or entangled amongst other plants. Common throughout the Estuary from July to December. Annual; tetraspores found from July - October; spermata and carpospores found from July to November.

Recorded from the tropics to New Hampshire and Nova Scotia (as summarized in Taylor, 1957; Doty and Newhouse, 1954; Edelstein, McLachlan and Craigie, 1967).

Representative specimens: Hilton Park, 19 July 1966 (NHA - #4539); Cedar Point, 7 August 1967 (NHA - #H-864); Durham Point, 19 September 1966 (NHA - #H-865); Adams Point, 13 October 1966 (NHA - #H-862); Fabysans Point, 2 August 1966 (NHA - #4535); Pierce Point, 18 October 1966 (NHA - #H-868).
Rhodomelaceae:

Bostrychia rivularis Harvey

Reported by Farlow (1882). Supposedly found in the vicinity of the Isles of Shoals by Captain Pike. No specimens have been found to verify this species and it remains a doubtful record.

Recorded from the tropics to New Hampshire (as summarized in Taylor, 1957).

Chondria baileyana (Montagne) Harvey

Found from June-November, growing on shells, pebbles and epiphytic on other algae and on *Zostera*. It occurs in the lower eulittoral and sublittoral zones throughout the Estuary. Annual; tetraspores found from June to September; cystocarpic plants found in June and September.

Previously recorded from New Jersey to Northern Massachusetts and Nova Scotia (as summarized in Taylor, 1957; Edelstein, McLachlan and Craigie, 1967).

Chondria tenuissima (Goodenough et Woodward) C. Agardh

Reported by Doty and Newhouse (1954). No specimens were available, but from their data, it would appear to be *Chondria baileyana*.

Polysiphonia denudata (Dillwyn) Greville *ex* Harvey in Hooker

Found from July to December in the lower eulittoral and sublittoral zones throughout the Estuary. Annual; tetraspores found from July to October; cystocarpic plants found from July to September.

Recorded from the tropics to Prince Edward Island (as summarized in Taylor, 1957).

Representative specimens: Hilton Park, 28 August 1968 (NHA - NBR#281); Cedar Point, 12 September 1966 (NHA - #H-1952); Durham Point, 19 September 1966 (NHA - #H-1953); Adams Point, 13 October 1966 (NHA - #H-1950); Fabian Point, 17 September 1966 (NHA - #H-1955); Pierce Point, 8 November 1966 (NHA - #H-1958); Squamscott River, 13 September 1966 (NHA - #H-1960).
Polysiphonia elongata (Hudson) Sprengel

Found throughout the year growing in tidepools in the lower eulittoral and sublittoral zones throughout the Estuary. Perennial; tetraspores found from June to September; carpospores and spermata found in July.

Recorded from New York to Prince Edward Island and Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Polysiphonia flexicaulis (Harvey) Collins

One record (July) on the open coast (Croasdale) and one (July) in the Estuary. Annual; cystocarpic plants found in July.

Recorded from Long Island to Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Representative specimens: Isles of Shoals (Appledore Island), 28 July 1938 (NHA - #5471); Cedar Point, 10 July 1941 (NHA - #5473).

Polysiphonia harveyi Bailey

Reported by Collins (1900) and Doty and Newhouse (1954). No data or specimens available.

Recorded from South Carolina to Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Polysiphonia lanosa (Linnaeus) Tandy

Hemiparasitic on *Ascophyllum nodosum*. Common on the open coast, and with limited distribution in the Estuary. Present throughout the year. Perennial; tetraspores found from June to November; cystocarpic plants found from June to December; spermata found from January to May.

Recorded from New Jersey to Newfoundland (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), 22 July 1966 (NHA - #5511); Jaffrey Point, 7 January 1967 (NHA - #H-2003); Fort Constitution, 8 November 1966 (NHA - #H-2018); Odorne's Point, 17 October 1966 (NHA - #H-2028); North Wallis Sands, 11 June 1967 (NHA - #H-2038); Concord Point, 10 August 1967 (NHA - #H-2051); Ragged
Neck, 22 May 1967 (NHA - #H-2061); Rye Ledge, 15 October 1966 (NHA - #H-2062); Little Boar's Head, 24 May 1967 (NHA - #H-2083); Great Boar's Head, 25 July 1967 (NHA - #H-2095); Bound Rock, 18 January 1967 (NHA - #H-2096); Piscataqua River toll bridge, 24 June 1966 (NHA - #H-2098); Hilton Park, 28 August 1968 (NHA - NBR#273).

Polysiphonia nigra (Hudson) Batters

Found in the lower eulittoral (in tidepools) and the sublittoral zones. Occasional on the open coast, and with restricted distribution in the Estuary. Annual (?); tetraspores found in March and July; cystocarpic plants found from October to December.

Recorded from New Jersey to Nova Scotia and Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Representative specimens: Jaffrey Point, 8 November 1966 (NHA - #H-2102); Odiorne's Point, 7 August 1967 (NHA - #5562); North Wallis Sands, 7 August 1967 (NHA - #5564); Rye Ledge, 27 February 1968 (NHA - #5565); Bound Rock, 6 December 1966 (NHA - #H-2103); Hilton Park, 7 January 1967 (NHA - #H-2108); Cedar Point, 27 July 1966 (NHA - #H-2105); Durham Point, 16 October 1966 (NHA - #H-2113); Adams Point, 13 October 1966 (NHA - #H-2111).

Polysiphonia nigrescens (Hudson) Greville

Found throughout the year on rocks in the lower eulittoral and sublittoral zones on the open coast and throughout the Estuary. Frequent in drift. Perennial; tetraspores found from May to December; cystocarpic plants found in March and from June to September; spermata found in February.

Recorded from South Carolina to Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Representative specimens: Isles of Shoals (Appledore Island) 26 July 1938 (NHA - #5586); Jaffrey Point, 8 November 1966 (NHA - #H-2129); Odiorne's Point, 10 March 1967 (NHA - #H-2119); North Wallis Sands, 10 September 1966 (NHA - #H-2122); Concord Point, 10 August 1967 (NHA - #H-2124); Ragged Neck, 23 November 1966 (NHA - #H-2126); Rye Ledge, 12 September 1966 (NHA - #H-2127); Bound Rock, 7 March 1966 (NHA - #5001); Hilton Park, 7 January 1967 (NHA - #H-2131); Cedar Point, 24 May 1967 (NHA - #H-2146); Durham Point, 3 March 1967 (NHA - #5632); Adams Point, 13 October 1966 (NHA - #H-2144); Fabyans Point, 16 November 1966 (NHA - #H-2150); Pierce Point, 18 October 1966 (NHA - #H-2154).
Polysiphonia novae-angliae Taylor

Found throughout the year on rocks and epiphytic on other algae in the lower eulittoral and sublittoral zones. Common on the open coast, and with restricted distribution in the Estuary. Perennial; tetrspores found January-December; cystocarpic plants found from June to November; spermatia found in February, March and May.

Recorded from Rhode Island to Newfoundland (as summarized in Taylor, 1957; Mathieson, Dawes and Humm, 1969).

Representative specimens: Isles of Shoals (Star Island, 22 July 1966 (NHA - #5656); Jaffrey Point, 6 May 1967 (NHA - #5658); Fort Constitution, 24 July 1967 (NHA - #5659); North Wallis Sands, 20 March 1967 (NHA - #H2156); Concord Point, 8 January 1967 (NHA - #H-2157); Ragged Neck, 10 August 1967 (NHA - #H-2159); Rye Ledge, 12 September 1966 (NHA - #H-2160); Great Bear's Head, 11 December 1966 (NHA - #H-2162); Bound Rock, 18 January 1967 (NHA - #H-2163); Piscataqua River toll bridge, 12 August 1967 (NHA - #H-2166); Hilton Park, 13 February 1967 (NHA - #H-2173); Cedar Point, 17 April 1967 (NHA - #H-2177); Durham Point, 15 December 1966 (NHA - #H-2161); Adams Point, 13 October 1966 (NHA - #H-2171).

*Polysiphonia subtilissima Montagne

Found from June to October growing on rocks and mud in the lower eulittoral and sublittoral zones. Restricted to parts of the Estuary where salinities are very low. Annual; only one tetrasporic specimen was observed (July).

Previously recorded from the tropics to Northern Massachusetts and with some doubt to the Baie de Gaspé (as summarized in Taylor, 1957; Cardinal, 1967).

Representative specimens: Cedar Point, 27 June 1966 (NHA - #H-2118); Crommet Creek, 20 June 1966 (NHA - #5573); Squamscott River, 21 June 1966 (NHA - #H-2115).

Polysiphonia uroelata (Lightfoot ex Dillwyn) Greville

Growing on rocks in the lower eulittoral and sublittoral zones throughout the year. Common on the open coast, and with restricted distribution in the Estuary. The seasonal varieties (uroelata and patens), as designated by Taylor (1957) were not distinguishable. Perennial; tetraspores found from May to August; cystocarpic plants found in July and August; spermatia found from January to May.
Recorded from North Carolina to the arctic (as summarized in Taylor, 1957; including varieties roseola and patens).

Representative specimens: Isles of Shoals (Lungiing Island), 22 July 1966 (NHA - #5727); Jaffrey Point, 9 August 1967 (NHA - #H-2204); Fort Constitution, 24 July 1967 (NHA - #5738); Odiorne's Point, 30 May 1967 (NHA - #H-2209); North Wallis Sands, 20 May 1967 (NHA - #H-2213); Concord Point, 27 June 1967 (NHA - #H-2215); Rugged Neck, 12 June 1967 (NHA - #H-2216); Rye Ledge, 24 July 1967 (NHA - #H-2217); Little Boar's Head, 24 May 1967 (NHA - #H-2222); Great Boar's Head, 24 January 1967 (NHA - #H-2225); Bound Rock, 20 February 1967 (NHA - #H-2228); Hilton Park, 14 October 1966 (NHA - #H-2235); Fox Point, 5 December 1966 (NHA - #H-2200).

Rhodomela confervoides (Hudson) Silva

Found throughout the year on the open coast in the low eulittoral and sublittoral zones. Perennial; tetraspores found in March and from May to August; cystocarpic plants found in June and July; spermata found in March and April.

Recorded from New Jersey to Baffin Island (as summarized in Taylor, 1957).

Representative specimens: Isles of Shoals (Star Island), June 1965 (Kingsbury, 1965); Jaffrey Point, 1 April 1967 (NHA - #H-2535); Fort Constitution, 22 June 1966 (NHA - #6031); Odiorne's Point, 7 August 1967 (NHA - #6032); North Wallis Sands, 28 February 1967 (NHA - #H-2536); Concord Point, 5 March 1967 (NHA - #H-2541); Rugged Neck, 12 December 1966 (NHA - #H-2544); Rye Ledge, 11 November 1966 (NHA - #H-2550); Little Boar's Head, 22 December 1966 (NHA - #H-2551); Great Boar's Head, 14 October 1966 (NHA - #H-2552); Bound Rock, 7 March 1966 (NHA - #H-2554).
Eighty-eight taxa of red algae are recorded from the coastal and estuarine environments of New Hampshire; fifteen are new records for the state. Six taxa are doubtful records (Polysiphonia harveyi, Bostrychia rivularis, Chondria tenuissima, Agardhiella tenera, Ceramium diaphanum, Batrachospermum sp.). Of the 88 taxa, 33% are recorded from Cape Ann (Lamb and Zimmermann, 1964) and 65% from Nova Scotia (Edelstein et al., 1966a, 1966b, 1967, 1968). The low percentage of red algae common to Cape Ann and New Hampshire is misleading since Lamb and Zimmermann's collections were primarily sublittoral. However, of the 31 species of red algae recorded by Lamb and Zimmermann, 30 are found in New Hampshire.

The red algal flora of New Hampshire is composed primarily of boreal and subarctic species (e.g., Porphyra miniata, Euthora cristata, Rhodophyllis dichotoma, Gigartina stellata, Halosaccion ramentaceum, Ptilota serrata, Phyllophora spp., Polyides rotundus, Rhodochorton purpureum). Thus, the similarity between the Nova Scotia and New Hampshire floras is not surprising. Certain components of the Estuary flora have affinities towards warm temperate regions - in particular, the summer annuals whose center of distribution is south of New England (e.g., Lomentaria baileyana, Dasys pedicellata, Spermothamnion repens, Polysiphonia denudata, Chondria baileyana, Gracilaria foliifera and Polysiphonia subtilissima).

The paucity of information regarding seasonality and reproductive periodicity of marine algae of northern New England is due to a lack of seasonal collections. Winter observations are essentially non-
existent and little phenological data are available. In particular, those algae which have their growth or reproduction during late fall to early spring are apt to be missed (e.g., Bangia fuscopurpurea, Plumarla elegans, Polysiphonia nigra, Porphyra linearis, Rhodochorton purpureum). Edelstein and McLachlan (1966b) studied the occurrence and reproduction of marine algae during the winter months in Nova Scotia. Data from their study and the present investigation show many similarities. Both studies indicate the paucity of information concerning the red algae of the northeast coast of North America.

The reproductive periodicities recorded for several species differ markedly from Taylor's (1957) records. Several species were found to reproduce throughout the year (e.g., Porphyra umbilicalis, Audouinella membranacea, Hildenbrandia prototypus, Euthora cristata, Choreocolax polysiphoniae, Ahnfeltia plicata, Phyllophora brodiaei, Chondrus crispus, Gigartina stellata, Rhodymenia palmata, Ptilota Serrata, Ceramium rubrum, Polysiphonia lanosa, P. nigrescens, P. novae-angliae, P. urceolata), although they previously were reported to reproduce during only one or two seasons. Other species had more prolonged periods of reproduction than previously reported (e.g., Petrocelis middendorfii, Antithamnion cruciatum, Membranoptera alata, Dasya pedicellata). Reproductive specimens of Plumarla elegans were found in the fall and winter. Taylor reports reproduction in this species from the summer and earlier. He describes Porphyra miniata as being reproductive during any season, giving the impression that it occurs throughout the year. According to my observations, P. miniata is an annual (spring and summer). It was found to be reproductive every month in which it was found (March through August). The obsen-
vations of Lamb and Zimmermann (1964) on *P. miniata* are similar to mine.

The seasonal occurrence of most species agrees in general with previous descriptions of Taylor (1957). The seasonal occurrence of *Bangia fuscopurpurea* and *Antithamnion floccosum* differed slightly. *Bangia fuscopurpurea* occurred from late fall to late summer. Taylor records it from early spring and summer. *Antithamnion floccosum* was found from the winter to late summer. Taylor records it only in the spring.

Both asexual and sexual structures were found. Monospores, bispores, parasporas and tetrasporas were encountered on asexual (sporophytic) generations. Tetrasporas were the most common type. Monospores were found only in *Bangia fuscopurpurea*, *Kylinia spp.*, and *Ahnfeltia plicata*. Bispores were found only in the crustose corallines, while parasporas were found exclusively in *Plumaria elegans*. Tetrasporas were found in most other species. One conspicuous exception is *Gigartina stellata*, where the tetrasporophyte generation is unknown.

Certain plants were found only as tetrasporophytes (e.g., *Antithamnion cruciatum*, *A. floccosum*, *Audouinella membranacea*, *Ceratocolax hartzii*, *Cystoclonium purpureum* var. *cirrhosum*, *Dumontia incrassata*, *Melobesia lejolisi*, *Halosaccion ramentaceum*, *Hildenbrandia prototypus*, *Lomentaria baileyana*, *L. orcadensis*, *Membranoptera alata*, *Petrocelis middendorfii*, *Rhodochorton purpureum*, *Rhodymenia palmata*). Sexual generations have been described for most of these species except *Holosaccion ramentaceum*, *Hildenbrandia prototypus* and *Rhodymenia palmata*.

Sexual structures were found on most other species except those which produced monospores, bispores and parasporas. Female
plants were more frequent than male plants. Some species produced
cystocarps and spermatic at different times of the year (e.g.,
Polysiphonia lanosa, *P. nigrescens*, *P. novae-angliae*, *P. urceolata*,
Ptilota serrata, *Rhodomela confervoides*). Others produced both
structures at the same time (e.g., *Callithamnion baileyi*, *Dasya
pedicellata*, *Phycodrys rubens*, *Polysiphonia denudata*).

There was a distinct overlap in the occurrence of tetraspores
and carpospores in several species. Only two species (*Callithamnion
baileyi* and *Polysiphonia nigra*) were found with no distinct overlapping.

Three trends were evident:

(1) Both tetraspores and carpospores were found throughout the year
(e.g., *Ceramium rubrum*, *Chondrus crispus*, *Euthora cristata*, *Phycodrys
rubens*).

(2) Tetraspores were found throughout the year while carpospores were
found during only one or two seasons (e.g., *Polysiphonia urceolata*,
Choreocolax polysiphoniae).

(3) Tetraspores and carpospores were present during one or more
seasons. Both summer annuals (e.g., *Ceramium strictum*, *Dasya
pedicellata*, *Chondria baileyana*, *Polysiphonia denudata*) and perennials
(e.g., *Phyllophora membranifolia*, *Polyides rotundus*, *Polysiphonia
elongata*, *P. lanosa*, *P. nigrescens*) were discernible.
SUMMARY

1. The seasonal occurrence, distribution and reproductive periodicity of the benthonic marine Rhodophyceae in New Hampshire were studied.

2. Most taxa are perennials, although summer annuals are a conspicuous part of the Great Bay Estuary flora. Many of these taxa are warm temperate species.

3. Eighty-eight taxa of Rhodophyceae were recorded. Fifteen taxa were new records for New Hampshire.

4. Seventy-three taxa were found on the open coast and 48 were found in the Estuary. Fourteen taxa were restricted to the estuarine environment.

5. The red algal flora is composed mainly of boreal and subarctic plants, and it is similar to the floras of Cape Ann, Massachusetts and Nova Scotia.

6. There is an obvious decrease in species numbers and biomass from the open coast into the Estuary. Peak populations were evident at 2 areas of rapid tidal flow (Hilton Park and Adams Point).

7. An overlap of sexual and asexual generations was observed for many taxa. In some cases, tetraspores and carpospores were found throughout the year. In others, carpospores and/or tetraspores were found only during certain seasons.
REFERENCES

FIGURE 1
THE NEW HAMPSHIRE COAST AND
GREAT BAY ESTUARY SYSTEM

LEGEND FOR FIGURE 1

Coastal Stations:
1. Jaffrey Point
2. Fort Constitution
3. Odiome's Point
4. North Wallis Sands
5. Concord Point
6. Ragged Neck
7. Rye Ledge
8. Little Boar's Head
9. Great Boar's Head
10. Bound Rock

Estuary Stations:
a. Shapleigh Island
b. Pierce Island
c. Piscataqua River toll bridge
d. Hilton Park
e. Cedar Point
f. Durham Point
g. Fox Point
h. Adams Point
i. Crommet Creek
j. Weeks Point
k. Pierce Point
l. Fabyans Point
m. Squamscott River at Route 108
n. Nannie Island
FIGURE 3

SPECIES NUMBERS ON THE
OPEN COAST AND IN THE
ESTUARY SYSTEM

NUMBER OF SPECIES

80
70
60
50
40
30
20
10
0

Coast Piscataqua Hilton Cedar Durham Adams Fabyans Pierce Squamscott
River Park Point Point Point Point River

STATIONS
TABLE 1
SEASONALITY AND REPRODUCTIVE PERIODICITY
OF THE RHODOPHYCEAE IN NEW HAMPSHIRE

LEGEND FOR TABLE 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>bispores</td>
</tr>
<tr>
<td>C</td>
<td>carpospores</td>
</tr>
<tr>
<td>M</td>
<td>monospores</td>
</tr>
<tr>
<td>N</td>
<td>carpotetraspores</td>
</tr>
<tr>
<td>P</td>
<td>paraspores</td>
</tr>
<tr>
<td>S</td>
<td>spermata</td>
</tr>
<tr>
<td>T</td>
<td>tetraspores</td>
</tr>
<tr>
<td>α</td>
<td>large spores</td>
</tr>
<tr>
<td>B</td>
<td>small spores</td>
</tr>
<tr>
<td>0</td>
<td>vegetative</td>
</tr>
<tr>
<td>-</td>
<td>plants not found</td>
</tr>
<tr>
<td>TAXA</td>
<td>JAN</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Acrochaetium polyides</td>
<td></td>
</tr>
<tr>
<td>Ahnfeltia plicata</td>
<td>M</td>
</tr>
<tr>
<td>Antithamnion boreale</td>
<td></td>
</tr>
<tr>
<td>A. cruciatum</td>
<td></td>
</tr>
<tr>
<td>A. floccosum</td>
<td></td>
</tr>
<tr>
<td>A. plumula</td>
<td></td>
</tr>
<tr>
<td>A. pylaeae</td>
<td></td>
</tr>
<tr>
<td>Audouinella membranacea</td>
<td>T</td>
</tr>
<tr>
<td>Bangia ciliaris</td>
<td></td>
</tr>
<tr>
<td>B. fuscopurpurea</td>
<td></td>
</tr>
<tr>
<td>Bonnemaisonia hamifera</td>
<td></td>
</tr>
<tr>
<td>Callithamnion baileyi</td>
<td></td>
</tr>
<tr>
<td>C. corymbosum</td>
<td></td>
</tr>
<tr>
<td>Ceramium deslongchampsi</td>
<td></td>
</tr>
<tr>
<td>var. hooperi</td>
<td></td>
</tr>
<tr>
<td>C. rubrifforme</td>
<td></td>
</tr>
<tr>
<td>C. rubrum</td>
<td>C,T</td>
</tr>
<tr>
<td>C. strictum</td>
<td></td>
</tr>
<tr>
<td>Ceratocolax hartzii</td>
<td>T</td>
</tr>
<tr>
<td>Chondria baileyana</td>
<td></td>
</tr>
<tr>
<td>Chondrus crispus</td>
<td>C,T</td>
</tr>
<tr>
<td>Choreocolax polysiphoniae</td>
<td>T</td>
</tr>
<tr>
<td>Clathromorphum circumscriptum</td>
<td>B</td>
</tr>
<tr>
<td>Corallina officinalis</td>
<td>0</td>
</tr>
<tr>
<td>Cystoclonium purpureum</td>
<td></td>
</tr>
<tr>
<td>var. cirrhosum</td>
<td></td>
</tr>
<tr>
<td>Dasysa pedicellata</td>
<td></td>
</tr>
<tr>
<td>Dermatolithon pustulatum</td>
<td>B</td>
</tr>
<tr>
<td>Dumontia incrassata</td>
<td></td>
</tr>
<tr>
<td>Erythrotrichia carnea</td>
<td></td>
</tr>
<tr>
<td>Euthora cristata</td>
<td>C,T</td>
</tr>
</tbody>
</table>
Table 1 -- continued

<table>
<thead>
<tr>
<th>TAXA</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUNE</th>
<th>JULY</th>
<th>AUG</th>
<th>SEPT</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigartina stellata</td>
<td>C</td>
</tr>
<tr>
<td>Gloiosiphonia capillaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gracilaria foliifera</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>C</td>
<td>0</td>
<td>C,T</td>
<td>C,T</td>
<td>C,T</td>
<td>C,T</td>
<td>C,T</td>
<td>C</td>
</tr>
<tr>
<td>Halosaccion ramentaceum</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>O</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hildenbrandia prototypus</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kylinia alariae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. secundata</td>
<td>M</td>
</tr>
<tr>
<td>K. virgata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>K. virgata f. luxurians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithophyllum corallinae</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lithothamnium glaciale</td>
<td></td>
<td>B</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomentaria baileyana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. orcadensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melobesia lejolisi</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membranoptera alata</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>Nemalion helminthoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>O</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantoneura baerii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petrocelis middendorfii</td>
<td></td>
</tr>
<tr>
<td>Peyssonella rosenvingii</td>
<td></td>
</tr>
<tr>
<td>Phycodrys rubens</td>
<td></td>
</tr>
<tr>
<td>Phyllophora brodiaei</td>
<td></td>
</tr>
<tr>
<td>P. membranifolia</td>
<td></td>
</tr>
<tr>
<td>P. triallii</td>
<td></td>
</tr>
<tr>
<td>Phymatolithon lenormandii</td>
<td></td>
</tr>
<tr>
<td>Plumaria elegans</td>
<td></td>
</tr>
<tr>
<td>Polyides rotundus</td>
<td></td>
</tr>
<tr>
<td>Polysiphonia denudata</td>
<td></td>
</tr>
<tr>
<td>P. elongata</td>
<td></td>
</tr>
<tr>
<td>P. flexicaulis</td>
<td></td>
</tr>
<tr>
<td>P. lanosa</td>
<td></td>
</tr>
<tr>
<td>P. nigra</td>
<td></td>
</tr>
<tr>
<td>P. nigrescens</td>
<td></td>
</tr>
<tr>
<td>TAXA</td>
<td>JAN</td>
<td>FEB</td>
<td>MAR</td>
<td>APR</td>
<td>MAY</td>
<td>JUNE</td>
<td>JULY</td>
<td>AUG</td>
<td>SEPT</td>
<td>OCT</td>
<td>NOV</td>
<td>DEC</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>P. novae-angliae</td>
<td>T</td>
<td>T,S</td>
<td>T,S</td>
<td>T</td>
<td>T,S</td>
<td>C,T</td>
<td>C,T</td>
<td>C,T</td>
<td>C,T</td>
<td>C,T</td>
<td>C,T</td>
<td>T</td>
</tr>
<tr>
<td>P. subtilissima</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. urceolata</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>T,S</td>
<td>T</td>
<td>C,T</td>
<td>C,T</td>
<td>0</td>
<td>T</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>Porphyra leucosticta</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>a,B</td>
<td>B</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. linearis</td>
<td>0</td>
<td>B</td>
<td>B</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>P. miniata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>B</td>
<td>a,B</td>
<td>a,B</td>
<td>a,B</td>
<td>a,B</td>
<td>a,B</td>
<td>a,B</td>
<td>a,B</td>
</tr>
<tr>
<td>P. umbilicalis</td>
<td>a,B</td>
</tr>
<tr>
<td>P. umbilicalis f. epiphytica</td>
<td>B</td>
<td>B</td>
<td>a,B</td>
</tr>
<tr>
<td>Porphyropsis coccinea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ptilota serrata</td>
<td>T</td>
<td>T,S</td>
<td>T,S</td>
<td>T</td>
<td>C,T</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>S</td>
<td>T,S</td>
<td>T,S</td>
</tr>
<tr>
<td>Rhodochorton purpureum</td>
<td>0</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhodomela confervoides</td>
<td>0</td>
<td>0</td>
<td>T,S</td>
<td>S</td>
<td>T</td>
<td>C,T</td>
<td>C,T</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhodophyllum dichotoma</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rhodophysema georgii</td>
<td>-</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>T</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rhodymenia palmata</td>
<td>T</td>
</tr>
<tr>
<td>Spermothamnion repens</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trailliella intricata</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE 2

DISTRIBUTION OF MARINE RHODOPHYCEAE
IN NEW HAMPSHIRE
DISTRIBUTION OF TAXA

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Isles of Shoals</th>
<th>N.H. Coast</th>
<th>Piscataqua R.</th>
<th>Toll Bridge</th>
<th>Hilton Park</th>
<th>Cedar Point</th>
<th>Durham Point</th>
<th>Adams Point</th>
<th>Fayans Point</th>
<th>Pierce Point</th>
<th>Squamscott R. Route 108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrochaetium polyides</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthelia plicata</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antithamnion americanum</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. boreale</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. cruciatum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. floccosum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. plumula</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pylaissei</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audouinella membranacea</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangia ciliaris</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. fuscopurpurea</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonnemaisonia hamifera</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callithamnion baileyi</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. corymbosum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. roseum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. tetragonum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramium deslongchampsii var. hooperi</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>C. rubriforme</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. rubrum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. strictum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratoocolax hartzii</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondria baileyana</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondrus crispus</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choreocolax polysiphonae</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clathromorphum circumscriptum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corallina officinalis</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoclonium purpureum var. cirrhosum</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTRIBUTION OF TAXA</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Dasya pedicellata</td>
<td></td>
</tr>
<tr>
<td>Dermatolithon pustulatum</td>
<td></td>
</tr>
<tr>
<td>Dumontia incrasata</td>
<td></td>
</tr>
<tr>
<td>Erythrotrichia carnea</td>
<td></td>
</tr>
<tr>
<td>Euthora cristata</td>
<td></td>
</tr>
<tr>
<td>Gigartina stellata</td>
<td></td>
</tr>
<tr>
<td>Gloiosiphonia capillaris</td>
<td></td>
</tr>
<tr>
<td>Gracilaria foliifera</td>
<td></td>
</tr>
<tr>
<td>Halosaccion ramentaceum</td>
<td></td>
</tr>
<tr>
<td>Hildenbrandia prototypus</td>
<td></td>
</tr>
<tr>
<td>Kylinia alariae</td>
<td></td>
</tr>
<tr>
<td>K. secundata</td>
<td></td>
</tr>
<tr>
<td>K. virgatula</td>
<td></td>
</tr>
<tr>
<td>K. virgatula f. luxurians</td>
<td></td>
</tr>
<tr>
<td>Lithophyllum corallinae</td>
<td></td>
</tr>
<tr>
<td>Lithothamnium glaciale</td>
<td></td>
</tr>
<tr>
<td>Lomentaria baileyana</td>
<td></td>
</tr>
<tr>
<td>L. croadensis</td>
<td></td>
</tr>
<tr>
<td>Melobesia lejolisii</td>
<td></td>
</tr>
<tr>
<td>Membranoptera slata</td>
<td></td>
</tr>
<tr>
<td>Nemalion helminthoides</td>
<td></td>
</tr>
<tr>
<td>Pantoneura baeri</td>
<td></td>
</tr>
<tr>
<td>Petrocelis middendorfii</td>
<td></td>
</tr>
<tr>
<td>Peyssonella rosenvingii</td>
<td></td>
</tr>
<tr>
<td>Phycoplys rubens</td>
<td></td>
</tr>
<tr>
<td>Phyllophora brodiasii</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 -- continued

<table>
<thead>
<tr>
<th>ISLES OF SHOALS</th>
<th>N.H.COAST</th>
<th>PISCATAQUA R.</th>
<th>TOLL BRIDGE</th>
<th>HILTON PARK</th>
<th>CEDAR POINT</th>
<th>DURHAM POINT</th>
<th>ADAMS POINT</th>
<th>FAYANS POINT</th>
<th>PIERCE POINT</th>
<th>SQUAMSCOTT R.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“91 line"
DISTRIBUTION OF TAXA

- *P. membranifolia*
- *P. traiii
t*
- *Phymatolithon lenoreandi*
- *P. luvaaria elegans*
- *Polyides rotundus*
- *Polysiphonia denudata*
- *P. elongata*
- *P. fleixicaulis*
- *P. lanosa*
- *P. nigr
ea
- *P. novae-an^lia a*
- *P. subtilissim a*
- *P. urceolata*
- *Porphyra leucostica*
- *P. linearis*
- *P. miniata*
- *P. umbilicalis*
- *P. umbilicalis f. epiphytica*
- *Porphyropsis coccinea*
- *Ptilota serrata*
- *Rhodochorton purpureum*
- *Rhodomela confervoides*
- *Rhodophyllis dichotoma*
- *Rhodophysema georgii*
- *Rhodymenia palmata*
- *Spemothamnion repens*
- *Traillie
det a intricata*

Table 2

<table>
<thead>
<tr>
<th>Location</th>
<th>Taxa (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isles of Shoals</td>
<td></td>
</tr>
<tr>
<td>N.H. Coast</td>
<td></td>
</tr>
<tr>
<td>Piscataqua R. Toll Bridge</td>
<td></td>
</tr>
<tr>
<td>Hilton Park</td>
<td></td>
</tr>
<tr>
<td>Cedar Point</td>
<td></td>
</tr>
<tr>
<td>Durham Point</td>
<td></td>
</tr>
<tr>
<td>Adams Point</td>
<td></td>
</tr>
<tr>
<td>Fabians Point</td>
<td></td>
</tr>
<tr>
<td>Pierce Point</td>
<td></td>
</tr>
<tr>
<td>Squamscott R. Route 108</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX

KEY TO THE GENERA OF RHODOPHYCEAE IN NEW HAMPSHIRE

1. Thallus calcareous
 2. Plants upright, terete or slightly flattened; articulate (jointed) Corallina
 2. Plants crustose, not articulate
 3. Plants epiphytic; thallus 1-8 cells thick
 4. Thallus 1 cell thick; conceptacles superficial or only slightly immersed........... Melobesia
 4. Thallus of 2 zones, 2-8 cells thick; conceptacles immersed
 5. Plants specific epiphytes on Corallina. ♦ Lithophyllum
 5. Plants primarily epiphytic on foliose algae (Chondrus, Gigartina, Phyllophora); hypothallium of one layer of cells.. Dermatolithon
 3. Plants saxicolous, 0.1-5.0mm thick
 6. Thallus without papillations or upgrowths
 6. Thallus with definite erect simple or branched papillations............................... Lithothamnium
 7. Thallus 2-5mm thick; asexual reproduction by bispores................................. Clathromorphum
 7. Thallus 100-600 micra thick; surface of c1.st squamulose............................ Phymatolithon
1. Thallus non-calcareous
 8. Thallus parasitic
 9. Parasitic on Polysiphonia lanosa.......................... Choreocolax
 9. Parasitic on Phyllophora brodai........................ Ceratocolax
 8. Thallus non-parasitic
10. Plants crustose, non-calcareous
 11. Thallus epiphytic on the margins of Zostera; paraphyses and associated tetraspores not in conceptacles............ Rhodophysema
 12. Tetraspores not in sunken conceptacles
 12. Tetraspores in sunken conceptacles...... Hildenbrandia
13. Basal layer of thallus slightly calcified; erect filaments closely united; tetratspores terminal in nema-thecia..........................Peyssonelia
13. Thallus composed of filaments in a gelatinous matrix; tetratspores intercalary in filaments..........Petrocelis

10. Plants not crustose
14. Thallus uniseriate; may become multi-seriate in older portions; branched or unbranched

15. Filaments unbranched
16. Plants microscopic, uniseriate (with few if any multiseriate portions); monospores formed by unequal division of vegetative cells..............................Erythrotrichia
16. Plants micro- or macroscopic; older portions multiseriate; monospores produced by the simple trans-formation of vegetative cells........Bangia

15. Filaments branched
17. Thallus endozoic in the lorica of sertularians....................Audouinella

17. Thallus not endozoic
18. Plants microscopic; epizoic; epiphytic or endophytic
19. Plants epiphytic or epizoic; branching irregular or secund; stellate chloroplast.......Kylinia
19. Parietal chloroplast; endophytic in the peripheral cells of Polyides.........................Acrochaetium

18. Plants macroscopic; epiphytic or saxicolous

20. Plants terete
21. Branching opposite; gland cells often present............Antithamnion
21. Branching variable; gland cells present or absent
22. Branching irregular; gland cells present............Trailliella
22. Branching alternate or irregular; no gland cells
23. Branching alternate, or alternate and opposite on same plant

23. Branches few and usually clustered; tetraspores borne terminally on the branches..........Rhodochorton

24. Branching alternate; base of plant with or without cortication; tetraspores not borne in clusters............Callithamnion

24. Branching alternate or alternate and opposite on the same plant; un- corticated; tetraspores borne in clusters.........Spermothamnion

20. Plants flattened

25. Ultimate branchlets naked, uniseriate; branches corticated.........................Plumaria

25. Ultimate branchlets with a cortex similar to the main axis; pinnate branches with dissimilar branchlets (Long branchlets opposite to short ones).........................Ptilota

14. Thallus a complex multicellular structure

26. Thallus polysiphonous

27. Axis in cross section with a central axial cell; pericentral cells divided into cortical cells; cortication complete to tips of branchlets........Rhodomela

27. Pericentral cells present (at least in part) in cross section

28. Pericentral cells 5; cortication extending to tips of branchlets.......Chondria

28. Pericentral cells 4 - many (rarely, if ever, 5); with or without cortication; if corticated, never extending to tips of branchlets........Polysiphonia

26. Thallus not polysiphonous

29. Thallus cylindrical, terete or slightly compressed; branched
30. Thallus with distinctly corticated nodes and naked or corticated internodes; tips forcipate.................Ceramium

30. Thallus without conspicuous nodes and internodes

31. Thallus of multiaxial construction

32. Plants soft and slippery; medullary region composed of anastomosing filaments..............Nemalion

32. Plants firm; cortex pseudoparenchymatous; medulla filamentous

33. Thallus with hamate or hooked branches.......................Bonnemaisonia

33. Thallus without hamate appendages

34. Branches flat, pinnately or subdichotomously divided; tetraptite tetraspores.....Euthora

34. Branches terete

35. Thallus ultimately tubular; texture rigid; 2-3 layers of large cells in a pseudoparenchymatous medulla........Halosaccion

35. Thallus solid throughout; branches solid or hollow

36. Branches solid throughout; branching irregular or dichotomous

36. Branches hollow; thallus in cross section with a cortex of small cells and a medulla of large cells; branching irregularly alternate...............Lomentaria

37. Plants fleshy; branching dichotomous; tetraspores tetraptite.....Polyides

37. Plants wiry and irregularly dichotomously branched; asexual reproduction by monospores...Ahnfeltia

31. Thallus of uniaxial construction; often appears multiaxial due to the production of additional filaments from the original one
38. Axis covered with uniseriate branched filaments containing chromatophores.......................... Dasya

38. Axis devoid of such filaments

39. Plants with soft gelatinous texture; medulla filamentous becoming hollow with age

40. Branches whorled, repeatedly redvided; ultimate branchlets 0.1mm in diameter........ Gloiosiphonia

40. Branches not whorled and redived only once or twice; ultimate branchlets 2-5mm in diameter........ Dumontia

39. Plants not gelatinous, solid throughout

41. Plants terete; uniaxial construction masked by the production of many filaments from the central strand; branch tips often cirrhose; tetraspores zonate.......................... Cystoclonium

41. Branches flattened or compressed; branching alternate or trichotomous; tetraspores tetraptite........................ Gracilaria

29. Thallus flattened

42. Thallus an unbranched blade 1-2 cells thick; no veins or midrib present

43. Plants saccate at first, later splitting; monostromatic, 2-5cm in length; epiphytic on Desmarestia aculeata........................ Porphyropsis

43. Plants never saccate; mono- or diastromatic............................ Porphyra

42. Thallus 1-several cells thick; veins and/or midrib present or absent; blade simple, lobed or branched

44. Thallus with veins and midrib; lobed; monostromatic except at veins and midrib........................ Phycodrys

44. Thallus several layers thick
45. Thallus of 2 distinct regions, a terete or compressed stalk and a flattened dichotomously lobed blade

46. Main axis terete; branches with flattened blades terete proximally, becoming flattened distally..................Phyllophora

46. Main axis compressed

47. Blades smooth; sori in patches on the surface of the blade..................Chondrus

47. Blades papillate; the main axis curled giving a terete appearance..................Gigartina

45. Thallus flattened throughout without a distinct stipe or stalk

48. Blades in cross section with a medulla of large cells and a cortex of small cells

49. Blades large with dichotomous lobes; often with proliferating branches; tetrads scattered over the entire surface of the blade............Rhodymenia

49. Blades small; branching opposite, 1-2 times pinnate; tetrads in groups over the entire blade surface; rare plant of deep sublittoral...Lomentaria

48. Blades not exhibiting this cellular pattern in cross section.

50. Blades dichotomous, proliferous at the margins; tetrads zonate in the proliferations; no veins or midrib...Rhodophyllis

50. Plants bladelike with a distinct midrib or bushy without a midrib; tetrahedral tetrads

51. Plants with a distinct midrib and a thin lateral membrane bordering midrib........Membranoptera

51. Plants bushy without midrib...Pantoneura