SOME TYPES OF UNIQUE FACTORIZATION IN INTEGRAL DOMAINS

RAYMOND A. BEAUREGARD
SCHEMES OF UNIQUE FACTORIZATION IN INTEGRAL DOMAINS

by

RAYMOND A. BEAULIGARD

M.S., University of New Hampshire, 1966

A THESIS

Submitted to the University of New Hampshire

In Partial Fulfillment of

The Requirements for the Degree of

Doctor of Philosophy

Graduate School

Department of Mathematics

August, 1968
This thesis has been examined and approved.

Richard E. Johnson
Thesis director, Richard E. Johnson, Prof. of Mathematics

H. Evans Munroe
H. Evans Munroe, Chairman and Prof. of Mathematics

Edward H. Batio
Edward H. Batho, Prof. of Mathematics

Homer F. Bechtell
Homer F. Bechtell, Asso. Prof. of Mathematics

David M. Burton
David M. Burton, Asso. Prof. of Mathematics

18 June 1968
Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>I. PRELIMINARIES</td>
<td>6</td>
</tr>
<tr>
<td>II. RIGHT QUOTIENT MONOIDS</td>
<td>14</td>
</tr>
<tr>
<td>2.1 Definition and consequences</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Unique factorization</td>
<td>21</td>
</tr>
<tr>
<td>III. APPLICATION TO ARBITRARY ELEMENTS IN A RAI DOMAIN</td>
<td>25</td>
</tr>
<tr>
<td>3.1 Unique factorization and infinite primes</td>
<td>25</td>
</tr>
<tr>
<td>3.2 The local case</td>
<td>31</td>
</tr>
<tr>
<td>3.3 Example: skew polynomial extensions</td>
<td>35</td>
</tr>
<tr>
<td>3.4 An example in the non-Bezout case</td>
<td>41</td>
</tr>
<tr>
<td>IV. APPLICATION TO FINITE DIMENSIONAL ELEMENTS IN A RIGHT BEZOUT DOMAIN</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Unique factorization and similar primes</td>
<td>45</td>
</tr>
<tr>
<td>4.2 Example</td>
<td>49</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>53</td>
</tr>
</tbody>
</table>
ABSTRACT

SOME TYPES OF UNIQUE FACTORIZATION IN INTEGRAL DOMAINS

by

RICHARD A. BRAUER

In the present paper we obtain some general results concerning unique factorization with respect to right quotient monoids in a weak Bezout domain R satisfying the ascending chain condition for principal right ideals. These results in turn are used to describe some types of unique factorization that occur in R.

A subset S of an integral domain A is called a right quotient monoid in A if it is a submonoid of the multiplicative monoid of non-zero elements of A and satisfies certain right quotient conditions. If in addition A is a weak Bezout domain satisfying the ascending chain condition for principal right ideals, we prove that each non-zero element z of A can be factored in the form $z = rs$ where $s \in S$ and r has no non-unit right factor in S. This factorization is unique in the sense that any other such factorization must have the form $z = (ru)(u^{-1}s)$ where u is a unit in A. A collection of right quotient monoids \(\{S_\alpha \mid \alpha \in I\} \) indexed by an initial segment of ordinals I is called a right quotient chain in an integral domain A if $\bigcup_{\alpha \in \alpha \in I} S_\alpha = S_\alpha$ if α is a limit ordinal in I and $S_\beta \subseteq S_\alpha$ if $\beta \leq \alpha$, $\beta, \alpha \in I$. If in addition A is a weak Bezout domain satisfying the ascending chain condition for principal right ideals then we are able to prove the following. Each non-zero element z of A can be written as $z = s_{\alpha_1}^\alpha \cdots s_{\alpha_n}^\alpha$ where α_i are non-limit ordinals such that $\alpha_1 > \cdots > \alpha_n$, $s_{\alpha_i} \in S_{\alpha_i}$, s_{α_i} has no non-unit right factor in S_{α_i-1} (S_{α_i-1} denotes the
group of units of \(\mathbb{R} \), and \(s \) has no non-unit right factor in \(\bigcup_{i \in I} \mathbb{R}_i \). The factorization is unique in the sense that if \(z = \prod_{i=1}^{n} a_i \) is another such factorization, then \(n = n_i \), \(a_i = \beta_i \) (\(i = 1, 2, \ldots, n \)), and there are units \(u_0, \ldots, u_{n-1} \) in \(\mathbb{R} \) such that
\[
 s = ru_0, \quad a_i = u^{-1}_{n-i} b_i, \quad \text{and} \quad a_i = u^{-1}_{n-i} b_i u_i (i \neq 0, n).
\]

The application of the preceding results deals with unique factorization of all of the non-zero elements of a PRI domain \(\mathbb{R} \). Inf\(^{(a)}\) primes are defined for each non-limit ordinal \(\alpha \). Inf\(^{(0)}\) primes are the usual primes, and Inf\(^{(a)}\) primes have infinite dimension if \(\alpha \neq 0 \). We prove that each non-zero element \(s \) of \(\mathbb{R} \) can be factored as
\[
 s = \prod_{i=1}^{n} a_i
\]
where \(z_{a_i} \) is a uniquely determined product of Inf\(^{(a)}\) primes (\(i = 1, 2, \ldots, n \)). The factorization is unique in the sense that if
\[
 s = \prod_{i=1}^{n} a_i
\]
is another such factorization then \(n = n_i \), \(a_i = \beta_i \) (\(i = 1, 2, \ldots, n \)), and there are units \(u_1, \ldots, u_{n-1} \) in \(\mathbb{R} \) such that
\[
 z_{a_i} = u^{-1}_{n-i} a_i, \quad z_{a_i} = u_{n-i}^{-1} a_i, \quad \text{and} \quad a_i = u^{-1}_{n-i} b_i u_i (i \neq 1, n).
\]

Another application of the general results deals with the set \(\mathbb{R}' \) of finite dimensional elements in a right Bézout domain \(\mathbb{R} \). An element in \(\mathbb{R}' \) is called p-primary (\(p \) a prime) if it is a product of primes that are similar to \(p \). That the members of \(\mathbb{R}' \) can be factored into primary elements follows easily. Under certain conditions we are able to prove that the primary factorization is unique in two different respects. In one case if an element \(z \) in \(\mathbb{R}' \) can be given two primary factorizations
\[
 z = \prod_{i=1}^{n} a_i = \prod_{i=1}^{n} b_i
\]
where \(a_i \) and \(b_i \) are \(p_i \)-primary such that \(p_i \neq p_j \) if \(i \neq j \), then there are units \(u_1, \ldots, u_{n-1} \) in \(\mathbb{R} \) such that
\[
a_{p_i} = u_1 b_{p_i}, \quad a_{p_i} = u_{n-i}^{-1} b_{p_i}, \quad \text{and} \quad a_{p_i} = u_{n-i}^{-1} b_{p_i} u_i (i \neq 1, n).
\]
In the other case we assume that some non-unit element \(z \) of \(\mathbb{R}' \) can be given a primary factorization
\[
z = \prod_{i=1}^{n} a_i
\]
where \(a_i \) are \(p_i \)-primary such that \(p_i \neq p_j \).
if \(i \neq j \). We prove that if \(z = b_{q_1} \ldots b_{q_m} \) is another factorization of \(z \) into \(q_1 \)-primary elements \(b_{q_1} \) such that \(q_1 \sim q_j \) if \(i \neq j \), then there is a permutation \(\pi \) on \(\{1, 2, \ldots, n\} \) such that \(a_i \sim b_{\pi(i)} \) for all \(i = 1, 2, \ldots, n \). (The symbol \(\sim \) denotes similarity.)

Throughout the paper several examples are discussed in detail in order to illustrate the theory and indicate the necessity of some of the hypotheses. Included in one of the examples is A. V. Jategaonkar's recent theory of new polynomial extensions by which it is possible to construct PII domains with \(\inf(\omega) \) primes where \(\omega \) is any initially given ordinal that is not a limit ordinal.
INTRODUCTION

In the present paper we obtain some general results concerning unique factorization with respect to right quotient monoids in a weak Bezout domain \(R \) satisfying the ascending chain condition for principal right ideals. These results in turn are used to describe some types of unique factorization that occur in \(R \).

The known types of unique factorization that occur in a weak Bezout domain \(R \) deal with the set of elements \(A' \) of \(R \) that have finite dimension. For example it is well known (Theorem 1) that each member \(z \) of \(A' \) can be factored into primes: \(z = p_1 \cdots p_n \), and if \(z = q_1 \cdots q_m \) is another such factorization, then \(n = m \) and there is a permutation \(\pi \) on \(\{1, 2, \ldots, n\} \) such that \(p_i \) and \(q_{\pi(i)} \) are similar (\(i = 1, 2, \ldots, n \)).

For a PRI domain \(R \) another type of unique factorization for the members of \(A' \) is described by L. J. Johnson in [9]. An element \(a \in A' \) is called simple if \([a, a] \) has the property that \([a, a] = [a, b] \cup [b, a] \) implies \(a = a \) or \(b = a \). Johnson proves that each element \(z \) of \(A' \) can be factored into simple elements \(z = a_1 \cdots a_n \) such that no subproduct \(a_i \cdots a_j \), \(i \neq j \), of \(z \) is simple. Any other factorization of \(z \) into simple elements of this type must have the form \(z = u_1 u_2 \cdots u_{n-1} u_n \), where \(u_1, \ldots, u_{n-1} \) are units in \(R \).

We describe two additional types of unique factorization. The first concerns all of the non-zero elements of a PRI domain \(R \), and the second deals with the members of \(A' \) in a right Bezout domain \(R \). Both are obtained by applying more general results concerning unique factorization with respect to right quotient monoids.

A subset \(A \) of an integral domain \(R \) is called a right quotient
monoid if it is a submonoid of the multiplicative monoid of non-zero elements of R and satisfies certain right quotient conditions. If R is a weak Bezout domain satisfying the ascending chain condition for principal right ideals we prove (Factorization lemma) that each non-zero element z of a can be uniquely written in the form $z = rs$ where $s \in S$ and r has no non-unit right factor in S. This factorization is unique in the sense that any other such factorization must have the form $z = (ru)(u^{-1}s)$ where u is a unit in R. A set of right quotient monoids $\{S_\alpha \mid \alpha \in I\}$ indexed by an initial segment of ordinals I is called a right quotient chain in an integral domain R if $S_{\alpha} \subseteq S_{\beta}$ if $\alpha \leq \beta \in I$. If R is a weak Bezout domain satisfying the ascending chain condition for principal right ideals then we are able to prove the following. Each non-zero element z of R can be written as $z = s_{\alpha_1} \cdots s_{\alpha_n}$ where s_{α_i} are non-limit ordinals such that $\alpha_1 > \cdots > \alpha_n$, $s_{\alpha_i} \in S_{\alpha_i}$, s_{α_i} has no non-unit right factor in S_{α_i} (where denotes the group of units of R), and s_{α_i} has no non-unit right factor in $\bigcup_{\alpha \in I} S_\alpha$. The factorization is unique in the sense that if $z = r_{\beta_1} \cdots r_{\beta_n}$ is another such factorization, then $n = n$, $\beta_i = \beta_i (i = 1, 2, \ldots, n)$, and there are units $u_0, u_1, \ldots, u_{n-1}$ in R such that $s = ru_0$, $s_{\alpha_i} = u_i^{-1}b_{\alpha_i}$, and $s_{\alpha_i} = u_i^{-1}b_{\alpha_i}u_i (i \neq 0, n)$.

Our first application of the preceding results deals with unique factorization of all of the non-zero elements of a PRI domain R. Inf α primes are defined for each non-limit ordinal α. Inf $^{(0)}$ primes are the usual primes, and inf $^{(\alpha)}$ primes have infinite dimension if $\alpha \neq 0$. We prove (Theorem 5) that each non-zero element a of R can be factored as $a = z_{\alpha_1} \cdots z_{\alpha_n}$ where z_{α_i} is a uniquely determined product of inf $^{(\alpha_i)}$ primes ($i = 1, 2, \ldots, n$). The factorization is unique in
the sense that if \(r = y_1 \ldots y_n \) is another such factorization then
\(n = m, \alpha_i = \beta_i (i = 1, 2, \ldots, n) \), and there are units \(u_1, \ldots, u_n \)
in \(R \) such that \(z_\alpha_1 = y_1 u_1, z_\alpha_n = u_n_1 y_\alpha_n \), and \(z_\alpha_i = u_i_1 y_\alpha_i u_i (i \neq 1, n) \).

The second application of the general results deals with the
set of elements \(R' \) in a right Bezout domain \(R \). An element is called
p-primary (p a prime) if it is a product of primes that are similar
to \(p \). Since a member \(z \) of \(R' \) is a product of primes, say \(p_i \), then \(z \)
is the product of \(p_i \)-primary elements. Under certain conditions we are
able to prove that the primary factorization is unique in two different
respects. In one case (Theorem 9) if \(z = a_1 \ldots a_n = b_1 \ldots b_n \) are two
factorizations of \(z \) into \(p_i \)-primary elements \(a_i, b_i \) such that \(p_i \neq p_j \)
if \(i \neq j \), then there are units \(u_1, \ldots, u_n \) in \(R \) such that \(a_i = b_i u_i \),
\(a_n = u_n_1 b_n \), and \(a_i = u_i_1 b_i u_i (i \neq 1, n) \). In the other case
(Theorem 10) we assume that a non-unit element \(z \) of \(R' \) can be given
a primary factorization \(z = a_1 \ldots a_n \) where \(a_i \) are \(p_i \)-primary and
\(p_i \neq p_j \) if \(i \neq j \). We prove that if \(z = b_1 \ldots b_m \) is another factorization
of \(z \) into \(q_i \)-primary elements \(b_i \) such that \(p_i \neq p_j \) if \(i \neq j \), then
\(n = m \) and there is a permutation \(\Pi \) on \(\{1, 2, \ldots, n\} \) such that
\(a_i \sim b_\Pi(i) (i = 1, 2, \ldots, n) \). (The symbol \(\sim \) denotes similarity).

The present paper is self contained and is divided into four
chapters. The first chapter contains preliminary definitions and well
known results. The definition of Bezout domains and Theorem 1 concerning
unique prime factorization for weak Bezout domains are due to P. M. Cohn[2].

Theorem 2 which generalizes Theorem 1 for weak Bezout domains appears
to be new.

In Chapter 2 we define right quotient monoids in an integral
domain \(R \). If \(S \) is a right quotient monoid in \(R \), then it is possible to
form a right quotient ring $K = R^{1)}$. The ring K is an integral domain containing R with the property that the set of units of K that belong to R is precisely 3. In Section 2.1 we prove a number of lemmas concerning R and K. In particular we determine those properties which when possessed by R are also possessed by K. We also describe (Theorem 4) the relationship between the lattices of right ideals of R and K respectively. In Section 2.2 we prove two key results concerning unique factorization in a weak Bezout domain R satisfying the ascending chain condition for principal right ideals. The Factorization lemma deals with unique factorization with respect to a right quotient monoid. This result is used repeatedly in Chapter 4 to obtain the theorems concerning the primary factorization. We also use the Factorization lemma to prove the Factorization theorem which deals with unique factorization with respect to a right quotient chain.

In Chapter 3, Section 3.1, we apply the Factorization theorem to a particular chain of right quotient monoids that exists in a PRI domain R. Theorem 5 concerning unique factorization into products of infinite primes results. In Section 3.2 we obtain some special results for the local case. In particular we determine conditions under which a PRI domain is also a PRI domain (Theorems 6 and 7 and the corollaries). In section 3.6 we illustrate Theorem 5 with an example. If such an example is to be non-trivial it must be a PRI domain containing elements of infinite dimension. Until recently few such rings were known. However they do occur, for example, in [5, p.596]. The example that we describe in Section 3.5 deals with A. V. Jategaonkar's recent theory of skew polynomial extensions [3]. Using his methods it is possible to construct a PRI domain containing inf(\mathcal{R}) primes where \mathcal{R} is an initially given
Theorem 5 for this special case. In Section 3.4 we give an example of a non-\textit{Bezout} domain to illustrate how some of the desireable properties may fail to hold in that case.

Another application of the results of Section 2.2 is made in Chapter 4. In Section 4.1 we use the Factorization lemma to describe two kinds of uniqueness that can occur in the primary decomposition of the elements of finite dimension in a \textit{right Bezout} domain (Theorems 9 and 10). In Section 4.2 we give an example to illustrate the necessity of some of the hypotheses.

It is a pleasure for the author to express appreciation and gratitude to Professor R. J. Johnson for his encouragement and guidance in the development of the present work.
CHAPTER 1

PRELIMINARIES

Throughout this thesis we assume that all rings are integral domains with unity. An integral domain in which every right ideal is a principal right ideal is called a PLI domain. A PLI domain is defined similarly. The classical example of a PLI domain is the ring of skew polynomials \(R[x, \sigma] = \{ \sum a_i x^i \mid a_i \in R \} \) over a skew field \(R \), where \(\sigma \) is an endomorphism on \(R \) and multiplication is determined by the commutation rule \(ax = \sigma(a)x \). Thus if \(f = a_0 + a_1 x + \cdots + a_n x^n \) and \(g = b_0 + b_1 x + \cdots + b_m x^m \), then the product of \(f \) and \(g \) is given by \(fg = a_0 b_0 + x(a_0 b_1 + a_1 b_0) + \cdots + x^{n+m} \left(\sigma^m b_n \right) \) (\(\sigma^m \) denotes the composition of \(\sigma \) with itself \(m \) times). Addition of polynomials is the usual pointwise addition. This ring was first described by Ore [10].

An integral domain \(R \) in which the sum and intersection of any two principal right ideals is again a principal right ideal is called a right Bezout domain. Thus \(R \) is a right Bezout domain iff the set of principal right ideals is a sub-lattice of the lattice of all right ideals of \(R \). Similar remarks hold for left Bezout domains.

The condition that \(R \) be a right Bezout domain can be weakened by requiring that the sum and intersection of any two principal right ideals is again a principal right ideal if the intersection is nonzero. In this case \(R \) is called a (right) weak Bezout domain. (Left) weak Bezout domains are defined similarly. However it can be shown (see Cohn [2]) that the weak Bezout condition is left-right symmetric, i.e., \(R \) is a (right) weak Bezout domain iff \(R \) is a (left) weak Bezout domain. Therefore the adjective right or left is usually omitted and
one speaks of weak Bezout domains.

Let \mathcal{R} be an integral domain. Two elements $a, \overline{a} \in \mathcal{R}$ are called similar (written $a \sim \overline{a}$ or $a \sim_{\mathcal{R}} \overline{a}$) if $\mathbb{N}/a\mathcal{R} \cong \mathbb{N}/\overline{a}\mathcal{R}$ as right \mathcal{R}-modules. It can be shown that this definition is left-right symmetric. In addition, similarity can be characterized as follows: $a \sim \overline{a}$ iff there exists b in \mathcal{R} such that $aR + bR = \mathcal{R}$ and $aR \cap bR = bR$, in which case $ba = ab$ ($b \in \mathcal{R}$) and $bR = \mathcal{R}$ (see Jacobson [6, p. 34] and Cohn [3]). Using the latter definition it can be verified that elements similar to units are units and elements similar to zero are zero.

Using the last remark one may prove that right Bezout domains satisfy the right Ore condition: the intersection of any two non-zero principal right ideals is non-zero. For if aR, bR are two non-zero right ideals of \mathcal{R} then $aR + bR = dR$ and $aR \cap bR = mR$ for some $d, m \in \mathcal{R}$, $d \neq 0$. Thus $a = d\overline{a}$, $n = \overline{b}a$ for some $\overline{a}, \overline{b} \in \mathcal{R}$, $\overline{a} \neq 0$. It follows from $\mathbb{N}/a\mathcal{R} \cong \mathbb{N}/b\mathcal{R} = (aR + bR)/aR \cong bR/(aR \cap bR) = bR/dR \cong R/m\mathcal{R}$ that $\overline{a} \sim \overline{b}$ and therefore $m \neq 0$ because $\overline{a} \neq 0$. This shows that $m \neq 0$. Integral domains which satisfy the right Ore condition are sometimes called right Ore domains. Similar remarks hold with regard to left Bezout domains and left Ore domains, i.e., every left Bezout domain is a left Ore domain.

As an example of the non-symmetry of some of the definitions we consider $\mathcal{R} = \mathbb{F}[x, y]$, the ring of skew polynomials described earlier. Assume now that σ is not an isomorphism. Since \mathcal{R} is a PRI domain it follows that \mathcal{R} is a right Bezout domain and a right Ore domain. But if $a \in \mathcal{R} \setminus \mathbb{F}$, then $R \sigma \cap R \sigma a = 0$. For if $fx = gxa \neq 0$ for some $f = b_0 + xb_1 + \ldots + xb_n$ and $g = c_0 + xc_1 + \ldots + x^nc_n$ in \mathcal{R}, then $x^{n+1}b_n^\sigma = x^{n+1}c_n^\sigma a$. Therefore $n = m$ and $b_n^\sigma = c_n^\sigma a$. Hence $a = (c_n^{-1}b_n)^\sigma$.

a contradiction. Therefore R is not a left Ore domain and hence neither a PLI domain nor a left Bezout domain.

We note that R is a right Bezout domain iff R is a right Ore domain and a weak Bezout domain. Also every PLI domain is a right Bezout domain. As a converse we can show that if R is a right Bezout domain in which the ascending chain condition for principal right ideals holds then R is a PLI domain. For let I be a right ideal of R and let $a_0 \in I$.

If $a_0 \not\in I$ let $a_1 \in I \setminus a_0$. If $a_0R + a_1 \not\in I$ let $a_2 \in I \setminus (a_0R + a_1)$. Continuing this process we obtain $a_0R \subseteq a_0R + a_1R \subseteq a_0R + a_1R + a_2R \subseteq \ldots$. Now in a right Bezout domain the sum of a finite number of principal right ideals is again a principal right ideal. Therefore the chain that we obtain is a chain of principal right ideals and hence must terminate, say, $a_0R + \ldots + a_nR = a_0R + \ldots + a_{n+1}R = \ldots$ for some integer n. This is possible only if $a_0^R + \ldots + a_n^R = I$. Consequently I is a principal right ideal.

If R is an integral domain and $0 \not= a \in R$, let $[ar, br]$ denote the set of principal right ideals of R such that $ar \leq cr \leq br$. If R is a weak Bezout domain and $0 \not= a \in R$ then $[a, R]$ is a sublattice of the lattice of all right ideals of R. Because of the Schreier refinement theorem (see [1, p. 66]) one may speak of the longest chain in $[aR, R]$. If $[a, R]$ contains a maximal chain of finite length then the lengths of all maximal chains in $[aR, R]$ are equal and we define $\dim_R a$ (or $\dim_R a$) to be this integer. If $[aR, R]$ contains no maximal chain of finite length then $\dim_R a = \infty$ (see Johnson [9]).

If R is a weak Bezout domain and $a, \overline{a} \in R$ with $a \sim \overline{a}$ then $\dim_R a = \dim_R \overline{a}$.

For if $a \sim \overline{a}$ then there exists $b, \overline{b} \in R$ such that $aR + bR = R$, $aR \cap bR = mr$ where $m = ba(\overline{a}, \overline{a} \not= 0)$. If a is a unit then so is \overline{a} and $\dim_R a = 0 = \dim_R \overline{a}$.

If a is not a unit then $b \not= 0$ and so $m \not= 0$. Hence $[aR, R]$ is a modular lattice.
Then \([aR, A] = [aR, aR + bR] \cong [aR \cap bR, bR] = [b\overline{aR}, bR] \cong [\overline{aR}, R]\). Where "\(\cong\)" denotes lattice isomorphism. It follows that \(\dim a = \dim \overline{a}\).

An element \(p\) of an integral domain \(R\) is said to be a prime if \(pR\) is maximal in the set of principal right ideals of \(R\). It is easy to prove that the definition is left-right symmetric, i.e., \(p\) is prime iff \(Rp\) is maximal in the set of principal left ideals of \(R\). If \(R\) is a weak Bezout domain then \(p \in R\) is prime iff \(\dim p = 1\). It follows that in a weak Bezout domain elements similar to primes are prime.

Of interest are those elements in \(R\) that can be expressed as a (finite) product of primes. If \(0 \neq a \in R\) and \([aR, R]\) satisfies both the ascending and the descending chain conditions then every chain in \([aR, R]\) has finite length. Assume in addition that \(a\) is not a unit and let \(aR \subseteq bR \subseteq \ldots \subseteq b_iR \subseteq R\) be a maximal chain in \([aR, R]\). Then \(b_{i+1} = b_i s_i\) for some \(s_i \in R\), \(i = 1, 2, \ldots, n-1\) and \(a = b_n s_n\), \(s_n \in R\).

Thus \(a = b_1 s_1 \ldots s_n\). Evidently \(b_i\) is prime and it follows from \(\forall s_i \in R = b_1 s_1 \ldots s_{i-1} s_i\) and from the maximality of the chain that \(s_i\) is prime \((i = 1, 2, \ldots, n)\). Therefore both chain conditions in \([aR, R]\) guarantees that \(a\) can be written as the product of primes.

As a converse we note that if \(a = p_1 \ldots p_n\) is a prime factorization of \(a\), then \(aR \subseteq p_1 \ldots p_{n-1} R \subseteq \ldots \subseteq p_n R \subseteq R\) is a maximal chain in \([aR, R]\).

The preceding remarks imply the following. If \(R\) is a weak Bezout domain and if \(0 \neq a \in R\), then \(\dim a = n\) (where \(n\) is a positive integer) iff \(a\) is a product of \(n\) primes. In this case it is well known that the prime factorization of an element is unique up to similarity as follows (see [3]).

Theorem 1 Let \(R\) be a weak Bezout domain. If \(a \in R\) has two prime factorizations \(a = p_1 \ldots p_n = q_1 \ldots q_m\) (where \(p_i, q_i\) are primes),
then \(n = 1 \) and there is a permutation \(\pi \) on \(\{1, 2, \ldots, n\} \) such that \(p_{i} \sim_{\pi} \pi(i) \) (i = 1, 2, \ldots, n).

Proof. Suppose \(a = p_1 \ldots p_n = q_1 \ldots q_m \) where \(p_i \) and \(q_j \) are primes. We have just seen that \(n = \text{dim} a = n \). To prove the uniqueness up to similarity we induct on \(n \). If \(n = 1 \) there is nothing to prove. Assume \(n > 1 \). If \(p_1 = p_1 \) then \(q_1 = p_1 u \) for some unit \(u \in \mathbb{R} \). Then \(p_2 \ldots p_n = u \ldots c_n \) from which the theorem follows by induction.

Hence we shall assume that \(p_1 \neq q_1 \). Since \(\mathbb{R} \) is a weak Bezout domain \(p_1 \mathbb{R} \cap q_1 \mathbb{R} = n \mathbb{R} \) and \(p_1 \mathbb{R} + q_1 \mathbb{R} = \mathbb{R} \) for some \(n, d \in \mathbb{R} \). Choose \(p_1, q_1 \in \mathbb{R} \) such that \(n = p_1 q_1 = q_1 p_1 \). Since \(p_1 \mathbb{R} \nsubseteq \mathbb{R} \) and \(p_2 \) is prime \(d \mathbb{R} = \mathbb{R} \).

Therefore \(p_1 \sim \overline{p}_1 \) and \(q_1 \sim \overline{q}_1 \). It follows that \(p_2 \ldots p_n = \overline{p}_1 \overline{p}_2 \ldots \overline{p}_n \) and \(q_1 \ldots q_m = \overline{q}_1 \overline{q}_2 \ldots \overline{q}_m \). Since \(\overline{p}_1 \) and \(\overline{q}_1 \) are similar to primes they must be primes. Applying induction we obtain \(p_i \sim \overline{p}_1 \) and \(q_j \sim \overline{q}_1 \) for some integers \(i \), \(j \) and \(s \). Then \(n = r \).

The remaining \(p_i \)'s \((i \neq 1, s)\) and \(q_j \)'s \((j \neq 1, s)\) may be paired into similar pairs through a fixed prime factorization of \(r = s \). (ED).

Lemma 1 Let \(\mathbb{R} \) be a weak Bezout domain and let \(a, \overline{a} \in \mathbb{R} \) with \(a \sim \overline{a} \). If \(a = cd \) then there exists \(\overline{c}, \overline{d} \in \mathbb{R} \) such that \(c \sim \overline{c}, d \sim \overline{d} \), and \(\overline{a} = \overline{c} \overline{d} \).

Proof. Assume \(a \sim \overline{a} \) (a, \(\overline{a} \neq 0 \)) and \(a = cd \), \(c, d \in \mathbb{R} \). Let \(f \) be an \(\mathbb{R} \)-module epimorphism on \(\mathbb{R} \) onto \(\mathbb{R}/a \) with kernel \(a \mathbb{R} \). Let \(b \in \mathbb{R} \) such that \(f(1) = b + a \mathbb{R} \). Then \(a \mathbb{R} = a \mathbb{R} + b \mathbb{R} \) since \(f \) is an epimorphism and \(a \mathbb{R} \cap b \mathbb{R} = b \mathbb{R} \) since \(f \) has kernel \(a \mathbb{R} \) (see Cohn [3]). Let \(n = b \mathbb{R} \).

Clearly \(n \neq 0 \) and hence \([n \mathbb{R}, \mathbb{R}] \) is a sublattice of the lattice of all right ideals of \(\mathbb{R} \). It follows that \([n \mathbb{R}, \mathbb{R}] \cong [n \mathbb{R}, b \mathbb{R}] \) (lattice
isomorphism) where the correspondence is given by \(\pi \rightarrow \pi \cap br \) if
\(\pi \subset \pi \subset R \) and \(r \rightarrow r + ar \) if \(r \subset \pi \subset br \) (see Birkhoff [1, p.13]).

Now \(\pi \subset \pi \subset R \) and hence there exists \(\pi \in \pi \) such that \(\pi = \pi \cap br \),
\(r \subset \pi \subset br \), and \(r + ar = cr \). Choose \(\pi \in \pi \) such that \(\pi = \pi \). Then
\(\pi \subset \pi \subset R \). Thus \(\pi = \pi \) for some \(\pi \in \pi \). Now \(\pi + br = R \) and
\(cr \cap br = \pi = \pi \). Consequently \(c \sim \pi \). To show \(d \sim \pi \) we observe that
\(f(\pi) = \pi + ar = \pi + ar \). Let \(f \) be the restriction of \(\pi \) to \(\pi \). Then
\(f \) is an \(r \)-module epimorphism on \(\pi \) onto \((\pi + ar)/ar = cr/ar \) with
kernel \(\pi \). Consequently \(cr/ar \equiv cr/ar \). It follows that
\(\pi dr \equiv \pi cr dr \equiv \pi cr /ar \equiv cr /an \equiv \pi dr \). Hence \(d \sim \pi \). \(\text{Q.E.D.} \)

Using Lemma 1 we can strengthen Theorem 1 as follows.

Theorem 2 Let \(R \) be a weak Bezout domain. If \(a, \pi \in R \) with
\(a \sim \pi \), and if \(a = p_1 \cdots p_n \) where \(p_i \) and \(q_i \) are primes,
then \(n = m \) and there is a permutation \(\pi \) on \(\{1, 2, \ldots, n\} \) such that
\(p_i \sim q_i \) \((i = 1, 2, \ldots, n) \).

Proof. Assume \(a, \pi \in R \), \(a \sim \pi \) and \(a = p_1 \cdots p_n \) is a prime factorization of \(a \). It follows from Lemma 1 and induction that
\(\pi = q_1 \cdots q_n \) where \(p_i \sim q_i \) \((i = 1, 2, \ldots, n) \). In particular the \(q_i \)
are primes. Let \(\pi = q_1 \cdots q_n \) be any other prime factorization of \(\pi \).

By Theorem 1 \(n = m \) and there is a permutation \(\pi \) on \(\{1, 2, \ldots, n\} \)
such that \(p_i \sim q_i \) \(\pi \). Hence \(p_i \sim q_i \). \(\text{Q.E.D.} \)

The ascending chain condition for principal right ideals

holds in an integral domain \(R \) iff the ascending chain condition holds
in \([aR, R]\) for each \(\emptyset \neq a \in R \). If the descending chain condition holds
in \([aR, R]\) for each \(\emptyset \neq a \in R \) then \(R \) is said to satisfy the restricted
descending chain condition for principal right ideals. In this case
every descending chain of principal right ideals is either finite or descends to zero. This condition can be characterized as follows.

Lemma 2. Let A be an integral domain. The ascending chain condition for principal left ideals holds in A iff the restricted descending chain condition for principal right ideals holds in A.

Proof. Assume the ascending chain condition for principal left ideals holds in A. Let $\ldots \subseteq a_2 \subseteq \ldots \subseteq a_1 \subseteq A$ be a descending chain such that $\bigcap_{i=1}^{\infty} a_i \neq \{0\}$. Let $b \in \bigcap_{i=1}^{\infty} a_i, b \neq 0$. Then $b = a_i r_i$ and $s_i = a_i s_i$ for some $r_i, s_i \in A$ (i = 1, 2, ...). Hence $b = a_i r_i$ and $b = a_i r_{i+1} = a_i s_i r_{i+1}$ implies $s_i r_{i+1} = r_i$ since $a_i \neq 0$. This shows that $A r_i \subseteq \ldots \subseteq A r_{i+1} \subseteq \ldots$. Because of the ascending chain condition $A r_i = A r_{i+1} = \ldots$ for some integer i. It follows that s_i, s_{i+1}, \ldots are units and hence $a_i r_i = a_{i+1} r_i = \ldots$. The proof of the converse is similar. Assume the restricted descending chain condition for principal right ideals holds in A. Let $A r_i \subseteq \ldots \subseteq A r_i \subseteq \ldots$ be an ascending chain and let $0 \neq b \in A r_i$. Then $b = a_i r_i$ and $r_i = a_i r_{i+1}$ for some $a_i, s_i \in A$ (i = 1, 2, ...). Hence $b = a_i r_i = a_i s_i r_{i+1}$ and $b = a_i r_{i+1} r_{i+1}$ yields $s_i r_{i+1} = a_{i+1}$ since $r_{i+1} \neq 0$. It follows that $\ldots \subseteq A r_i \subseteq \ldots \subseteq A r_i \subseteq \ldots$. By the restricted descending chain condition we obtain $A r_i = A r_{i+1} = \ldots$ and therefore s_i, s_{i+1}, \ldots are units. Hence $A r_i = A r_{i+1} = \ldots$ (3).

It is well-known that the ascending chain condition for right (left) ideals is equivalent to the condition that each right (left) ideal is finitely generated. The proof of this statement is the same as in the commutative case (see Zariski and Samuel [11, p. 156] for example). It follows that if A is a PRI and a PRI domain then
R satisfies the ascending chain condition for both (principal) right and left ideals. Hence $[a, R]$, R satisfies both chain conditions for each $0 \neq a \in R$ by Lemma 2. That is, each non-zero element in R has finite dimension. Hence each non-zero element of R that is not a unit can be factored into primes. Uniqueness of the factorization follows from Theorem 1. We state this well known result (see Jacobson [6, p. 84]) as follows.

Theorem 2. Let R be a PMI and a PLI domain. Each non-zero element of R that is not a unit can be factored into primes. This factorization is unique up to similarity (in the sense of Theorem 1).

Integral domains having the property described in Theorem 3 are called unique factorization domains (see John [37]).
CHAPTER II

RIGHT QUOTIENT MONOIDS

2.1 Definition and consequences

The Ore domains that were mentioned in Chapter 1 have the important property that they are contained in a right quotient field as follows. Assume \(R \) is an integral domain satisfying the right Ore condition. Let \(R^* = R \setminus \{0\} \). The set \(K = R(R^*)^{-1} = \{ab^{-1} \mid a \in R, b \in R^*\} \) can be made into a ring under suitable operations that extend those in \(R \).

The resulting ring is a (skew) field containing \(R \). Similar remarks apply for left Ore domains, and if \(R \) has both Ore conditions, then the two fields \(R(R^*)^{-1} \) and \((R^*)^{-1}R \) are equal as sets and isomorphic as rings (see Jacobson [6, p. 118]).

The construction above can be generalized just as in the commutative case. We consider an integral domain \(R \), and let \(R^* = R \setminus \{0\} \).

We shall say that a subset \(S \) of \(R^* \) has the right quotient conditions (with respect to \(R \)) if

1) \(a, b \in S \iff ab \in S \)

2) \(a \in S, b \in R \) implies there exists \(\bar{a} \in S, \bar{b} \in R \) such that \(ab = b\bar{a} \).

Under these conditions if \(S \neq \emptyset \) then \(S \) contains the group of units of \(R \). For if \(a \in S \) then \(1a \in S \) and so \(1 \in S \) by 1). Then for each unit \(u \in R \), \(1 = uu^{-1} \in S \) and so \(u \in S \) by 1). If \(S \neq \emptyset \) and has the right quotient conditions then \(S \) is called a right quotient monoid (in \(R \)). In this case it can be shown (see Bourbaki [2, p. 162]) that the set \(K = RS^{-1} = \{rs^{-1} \mid r \in R, s \in S\} \) can be made into a ring under suitable operations that extend those in \(R \). The resulting ring is an integral domain containing \(R \) with the property that the members of \(S \) are units.
in \(\mathfrak{N} \). Of course if \(S = R^* \), then \(K \) is the right quotient field of \(R \) described in the last paragraph. Similar remarks apply for subsets that are left quotient monoids in \(R \), and if \(S \) is both a left and a right quotient monoid in \(R \), then \(S^{-1}R \) and \(R^{-1}S \) are equal as sets and isomorphic as rings.

The preceding construction is usually carried out with condition 1) replaced by the weaker condition that \(S \) be multiplicatively closed. However we shall need the full strength of condition 1), for example, in Lemma 3 to follow. We note here that condition 1) defines \(R \setminus S \) to be a prime ideal in the multiplicative monoid \(R^* \). We also note that because of condition 1) the following special case of condition 2) is valid: \(a \in S, b \in S \) implies there exists \(\bar{a} \in S, \bar{b} \in S \) such that \(\bar{a}\bar{b} = \bar{b}\bar{a} \). We shall now proceed to establish some useful properties concerning \(R \) and \(K = R^{-1}S \).

Lemma 3 Let \(S \) be a right quotient monoid in \(R \) and let \(K = R^{-1}S \).

Let \(U_L, U_R \) be the group of units of \(R \) and \(R \) respectively. Then

1) \(U_L = SS^{-1} \) and 2) \(S = R \setminus U_L \).

Proof. Clearly \(SS^{-1} \subseteq U_L \). Now let \(br^{-1} \in U_L \) and let \(as^{-1} \in U_L \) be its inverse \((a, b \in L, r, s \in S)\). Then \(as^{-1}br^{-1} = 1 \). Choose \(\bar{s} \in S, \bar{b} \in S \) such that \(\bar{b}\bar{s} = s\bar{b} \). Then \(\bar{a}\bar{b}\bar{s}^{-1}r^{-1} = 1 \), \(\bar{a}\bar{b} = r\bar{s} \) and so \(a, b \in S \).

It follows from \(bs = sb \) that \(b \) and therefore \(b \) belongs to \(S \).

Therefore \(br^{-1} \in SS^{-1} \) and 1) is established. To prove 2) let \(x = br^{-1} \in R \setminus U_L \). It follows by 1) that we can choose \(b, r \in S \).

Therefore \(xx \in S \) and so \(x \in S \). Thus \(R \setminus U_L \subseteq S \). The reverse inclusion is obvious. \(\blacksquare \).
Lemma 4 Let \(S \) be a right quotient monoid in \(R \) and let \(K = R S^{-1} \). If \(I \) is a right ideal of \(R \) then \(IS^{-1} \) is a right ideal of \(K \). Conversely each right ideal \(J \) of \(K \) is of the form \(J = (J \cap R)S^{-1} \).

Proof. Let \(I \) be a right ideal of \(R \) and let \(as^{-1}, br^{-1} \in IS^{-1} \).
Choose \(r, s \in S \) such that \(s^r = rs \). Then
\[
as^{-1} - br^{-1} = as(s^r)^{-1} - bs(rs)^{-1} = (as - bs)(rs)^{-1} \in IS^{-1}.
\]
Similarly if \(as^{-1} \in IS^{-1} \), \(br^{-1} \in K \), then choose \(s \in S, b \in R \) such that \(sb = bs \). Then
\[
b = sb s^{-1} \text{ and } as^{-1}br^{-1} = as^{-1}(sb s^{-1})r^{-1} = ab s^{-1}r^{-1} = ab(rs)^{-1} \in IS^{-1}.
\]
Hence \(IS^{-1} \) is a right ideal of \(K \). To show the converse let \(J \) be a right ideal of \(K \). Clearly \(I = J \cap R \) is a right ideal of \(R \). Now \(IS^{-1} = (J \cap R)S^{-1} \subseteq JS^{-1} \subseteq J \). Also if \(z \in J \) then \(z = bs^{-1}, b \in R, s \in S \) and \(b = as \in J \) because \(J \) is a right ideal. This shows that \(z \in IS^{-1} \).
Therefore \(IS^{-1} = J \), i.e., \((J \cap R)S^{-1} = J \). \(\square \).

Lemma 5 Let \(S \) be a right quotient monoid in \(R \) and let \(K = R S^{-1} \).
If \(A, B \) are right ideals of \(R \), then 1) \((A \cap B)S^{-1} = AS^{-1} \cap BS^{-1} \) and 2) \((A + B)S^{-1} = AS^{-1} + BS^{-1} \).

Proof. Clearly \((A \cap B)S^{-1} \subseteq AS^{-1} \cap BS^{-1} \). Now suppose
\[
as^{-1}_{1} = bs^{-1}_{1} \in AS^{-1} \cap BS^{-1} (s_{1}, s_{2} \in S) \text{. Choose } s_{1}', s_{2}' \in S \text{ such that } s_{1}'s_{2}' = s_{2}s_{1}' \text{, then } as^{-1}_{2} = bs_{2}' \in A \cap B \text{. Also } as^{-1}_{1} = as_{2}(s_{2}'s_{1}')^{-1} \in (A \cap B)S^{-1}.
\]
This proves \(AS^{-1} \cap BS^{-1} \subseteq (A \cap B)S^{-1} \) and 1) is established. Now it is clear that \((A + B)S^{-1} \subseteq AS^{-1} + BS^{-1} \). To show the reverse inclusion let \(as^{-1}_{1} + bs^{-1}_{2} \in AS^{-1} + BS^{-1} (s_{1}, s_{2} \in S) \) and choose \(s_{1}', s_{2}' \in S \) such that \(s_{1}s_{2}' = s_{2}s_{1}' \). Then \(as^{-1}_{1} + bs_{2}' = (as_{2}' + bs_{1}')(s_{1}'s_{2}')^{-1} \in (A + B)S^{-1} \).
Therefore \(AS^{-1} + BS^{-1} \subseteq (A + B)S^{-1} \). \(\square \).

Lemma 6 Let \(S \) be a right quotient monoid in \(R \) and let \(K = R S^{-1} \).
If \(a, \bar{a} \in R \) and \(a \sim_{R} \bar{a} \), then \(a \sim_{K} \bar{a} \).
Proof. Let $a, \overline{a} \in R$ with $a \sim \overline{a}$. Then $aR + bR = R$ and $aR \cap bR = \overline{a}R$ for some $b \in R$. Therefore $aR + bR = R$ and $aR \cap bR = \overline{a}R$ by Lemma 5. Hence $a \sim \overline{a}$. QED.

Lemma 7 1) Let S be a right quotient monoid in R. If $a \in S$, $\overline{a} \in R$ with $a \sim \overline{a}$ then $\overline{a} \in S$.

2) Suppose R is a right Bezout domain and S is a non-empty subset of R such that $0 \not\in S$ and $ab \in S$ iff $a, b \in S$. Then S is a right quotient monoid in R iff elements similar to members of S belong to S, i.e., $a \in S$, $\overline{a} \in R$, and $a \sim \overline{a}$ implies $\overline{a} \in S$.

Proof. To prove 1) assume S is a right quotient monoid in R, $K = RS^{-1}$, $a \in S$, $\overline{a} \in R$, and $a \sim \overline{a}$. Then $a \sim \overline{a}$ by Lemma 6. Now a is a unit in K and therefore so is \overline{a}. Consequently $\overline{a} \in S$ by Lemma 7. To prove 2) assume R is a right Bezout domain and that S is a non-empty subset of R such that $0 \not\in S$ and $ab \in S$ iff $a, b \in S$. Further assume $a \in S$, $\overline{a} \in R$, and $a \sim \overline{a}$ implies $\overline{a} \in S$. To show S is a right quotient monoid let $a \in S$, $b \in R$. Choose $d, m \in R$ such that $aR + bR = dR$ and $aR \cap bR = mR$. Then $a = da'$, $b = db'$, and $m = a\overline{b} = \overline{b}a$ for some $a', b', \overline{a}, \overline{b} \in R$. It follows that $a' R + b' R = R$ and $a' R \cap b' R = \overline{b'}aR$. Therefore $a \sim \overline{a}$. Now $a \in S$ implies $a' \in S$ and so $\overline{a} \in S$. Hence $a\overline{b} = \overline{b}a$ with $\overline{a} \in S$, and S is a right quotient monoid. The converse follows from 1). QED.

Lemma 8 Let S be a right quotient monoid in R and let $K = RS^{-1}$. If R satisfies the ascending chain condition for right ideals then so does K.

Proof. Let $J_1 \subseteq \cdots \subseteq J_i \subseteq \cdots$ be an ascending chain of right ideals of K. Let $I_i = J_i \cap R$. Then $I_1 \subseteq \cdots \subseteq I_i \subseteq \cdots$ is an ascending chain of right ideals of R which must therefore terminate. Thus
\[I_k = I_{k+1} = \ldots, \] for some integer \(k \). Then \(I_k S^{-1} = I_{k+1} S^{-1} = \ldots \), and it follows from Lemma 4 that \(J_k = J_{k+1} = \ldots \). \(\text{QED.} \)

Lemma 9 Let \(S \) be a right quotient monoid in \(R \) and let \(K = RS^{-1} \).

Then \(K \) is a right Ore domain iff \(R \) is a right Ore domain.

Proof. Let \(a, b \in R \). By Lemma 5 \((aR \cap bR)S^{-1} = aK \cap bK \).

Therefore \(aR \cap bR = \{0\} \) iff \(aK \cap bK = \{0\} \). It follows that if \(K \) is a right Ore domain then so is \(R \), the converse is obvious because \(R \subseteq K \). \(\text{QED.} \)

Lemma 10 Let \(S \) be a right quotient monoid in \(R \) and let \(K = RS^{-1} \).

If \(R \) is a weak Bezout domain then so is \(K \).

Proof. Assume \(R \) is a weak Bezout domain. Let \(a, b \in R \) such that \(aK \cap bK \neq \{0\} \). Because \(rs^{-1}K = rK \) for any \(rs^{-1} \in K \) it suffices to consider \(a, b \in R \).

The proof of Lemma 9 shows that \(aR \cap bR \neq \{0\} \). Therefore \(aR + bR = dR \) and \(aK \cap bK = mR \) for some \(d, m \in R \).

It follows by Lemma 5 that \(aRS^{-1} + bRS^{-1} = dRS^{-1} \) and \(aRS^{-1} \cap bRS^{-1} = mRS^{-1} \). \(\text{QED.} \)

Since the right Bezout condition is equivalent to the weak Bezout condition together with the right Ore condition, Lemmas 9 and 10 together yield the following.

Lemma 11 Let \(S \) be a right quotient monoid in \(R \) and let \(K = RS^{-1} \).

If \(R \) is a right Bezout domain then so is \(K \).

We have already remarked in Chapter 1 that \(R \) is a PPI domain iff \(R \) is a right Bezout domain satisfying the ascending chain condition for principal right ideals. Therefore Lemmas 8 and 11 together imply the following.

Lemma 12 Let \(S \) be a right quotient monoid in \(R \) and let \(K = RS^{-1} \).

If \(R \) is a PPI domain then so is \(K \).
We recall that an integral domain is called a local domain if every sum of non-units is a non-unit.

Lemma 10. Let \(S \) be a right quotient monoid in \(R \) and let \(K = R S^{-1} \). Then \(K \) is a local domain iff \(R \setminus S \) is an ideal.

Proof. Because \(S \) has the right quotient conditions \(R \setminus S \) is an ideal in the multiplicative monoid \(R \). Assume \(K \) is a local domain. To show that \(R = R \setminus S \) is an ideal in \(R \) we need only show that \(I \) is closed under subtraction. Accordingly let \(a, b \in I \). Then \(a \) and \(-b \) are non-units in \(K \) by Lemma 2. Therefore \(a - b \) is a non-unit in \(K \). Hence \(a - b \in I \) by Lemma 3. Thus \(I \) is an ideal of \(R \). Conversely assume that \(I \) is an ideal of \(R \). Let \(s^{-1}, b r^{-1} \) be two non-units of \(R (s, r \in S) \). Choose \(r, s \in S \) such that \(s r^{-1} = r s^{-1} \). Then \(as^{-1} + br^{-1} = (ar + bs)(sr)^{-1} \). Since \(ar, bs \in R \setminus S = I \) and \(I \) is an ideal, \(ar + bs \in I \) and consequently \((ar + bs)(sr)^{-1} \) is a non-unit of \(K \) by Lemma 3. Hence \(as^{-1} + br^{-1} \) is a non-unit of \(K \) and \(I \) is a local domain. (\(\blacksquare \)).

Let \(S \) be a right quotient monoid in \(R \) and let \(K = R S^{-1} \). Let \(L_R \) denote the lattice of right ideals of \(R \) and \(L_K \) the lattice of right ideals of \(K \). We conclude this section by formalizing the relationship between \(L_R \) and \(L_K \).

An \(S \)-closure operator \(cl \) (or \(cl_S \)) can be defined on \(L_R \) by \(cl(I) = IS^{-1} \wedge R \) for each \(I \in L_R \). Lemma 4 shows that \(cl \) is a function on \(L_R \) into \(L_K \). Using Lemmas 4 and 5 it is not difficult to check that \(cl \) has the following properties.

1) \(I \subseteq cl(I), I \in L_R \)
2) \(cl(I) = cl(cl(I)), I \in L_R \)
3) \(cl(I \wedge J) = cl(I) \wedge cl(J), I, J \in L_R \)
4) \(cl(I) \cap cl(J) \subseteq cl(I + J), I, J \in L_R \)
We say that $I \in L$ is closed (or s-closed) if $I = cl(I)$. It follows that $cl(I)$ is the smallest closed right ideal of R that contains I. Let L^*_R denote the set of closed right ideals of R.

Clearly $0 \in L^*_R$ and L^*_R is a lattice under inclusion. If $I, J \in L^*_R$, then $I \wedge J$ is the inf of I and J. We denote the sup of I and J by $I \vee J$; thus $I \vee J = cl(I + J)$.

Theorem 4. Let S be a right quotient monoid in λ and let $K = R S^{-1}$. Let L_K be the lattice of right ideals of K and L^*_R the lattice of s-closed right ideals of R. Then $L_K \cong L^*_R$.

Proof. We recall from [1, p. 24] that two lattices L_1 and L_2 are isomorphic iff there is a function $f: L_1 \to L_2$ defined on L_1 onto L_2 such that both f and f^{-1} are order preserving bijections.

Accordingly we define the function $f: L_K \to L^*_R$ by $f(I) = I \wedge R$ for each $I \in L_K$. If $I \in L_K$, then $(I \wedge R) \in L^*_R$ because $cl(I \wedge R) = (I \wedge R) S^{-1} \wedge R = I \wedge R$ by Lemma 4. Now f is injective, for if $I, J \in L_K$ and $f(I) = f(J)$ then $I \wedge R = J \wedge R = (I \wedge R) S^{-1} = (J \wedge R) S^{-1}$ and so $I = J$ by Lemma 4. Also f is surjective because if $I \in L^*_R$, then $I = cl(I) = IS^{-1} \wedge R$ which shows that $I = (IS^{-1})^\wedge R$. It follows that f^{-1} is a bijection defined on L^*_R and is given by $f^{-1} = IS^{-1} \wedge R$ for each $I \in L^*_R$.

Now $I \subseteq J$ iff $f(I) \subseteq f(J)$ because if $I, J \in L_K$, then $I \subseteq J$ implies $I \wedge R \subseteq J \wedge R$ which implies $(I \wedge R) S^{-1} \subseteq (J \wedge R) S^{-1}$ which implies $I \subseteq J$.

It follows that f and f^{-1} are order preserving. Consequently $L_K \cong L^*_R$. QED.
2.2 Unique factorization

In this section we shall prove the Factorization theorem. This theorem is one of our key results and has important application in the next chapter. We begin with the following result which will be used to prove the Factorization theorem.

Factorization lemma Let S be a right quotient monoid in an integral domain R.

1) If R satisfies the ascending chain condition for principal right ideals, then each $z \in R^*$ can be written as $z = xs$ where $s \in S$ and x has no non-unit right factor in S.

2) If R is a weak Bezout domain and if $z = x_1s_1 = x_2s_2$ are two factorizations of z as in 1) then there is a unit $u \in R$ such that $x_1 = x_2u$ (and $us_1 = s_2$).

Proof. To prove 1) assume that R satisfies the ascending chain condition for principal right ideals. Let $z \in R^*$. If z has no non-unit right factor in S then we are finished. Otherwise $z = x_1s_1$ where s_1 is a non-unit in S. If x_1 has no non-unit right factor in S then we are finished. Otherwise $x_1 = x_2s_2$ where s_2 is a non-unit in S. Continuing this process we obtain the chain $x_1R \subsetneq x_2R \subsetneq \ldots$ which must terminate. Thus $x_kR = x_{k+1}R = \ldots$ for some integer k. Now this is possible iff x_k has no non-unit right factor in S. Therefore $z = x_k(s_k \ldots s_1)$ is the desired factorization.

To prove 2) assume that R is a weak Bezout domain. Let $0 \neq z \in R$ and let $z = x_1s_1 = x_2s_2$ be two factorizations of z such that $s_1, s_2 \in S$ and x_1, x_2 have no non-unit right factors in S. Since $x_1R \cap x_2R \neq 0$ and since R is a weak Bezout domain it follows that $x_1R \cap x_2R = mR$ and
\begin{itemize}
\item $x_1^R + x_2^R = d^R$ for some $m, d \in R$. Then $m = x_1 \overline{x_2} = x_2 \overline{x_1}$ for some $\overline{x_1}, \overline{x_2} \in R$. Since $z \in x_1^R \land x_2^R$ there exists $z_1, z_2 \in R$ such that $x_1^R = \overline{x_1}z_1$ and $x_2^R = \overline{x_2}z_2$. Hence $s_1 = \overline{x_2}z_1$ and $s_2 = \overline{x_1}z_2$. This shows that $\overline{x_1}, \overline{x_2} \in S$. Now $x_1^R + x_2^R = d^R$ implies that $x_1 = dx_1^*$ and $x_2 = dx_2^*$ for some $x_1^*, x_2^* \in R$. It follows that $x_1^R + x_2^R = d^R$.
\item $x_1^R \land x_2^R = d^R$ and $x_1^R = x_1^R x_2^R$ and $x_2^R = x_2^R x_1^R$. Therefore $x_1 \overline{x_1} \in S$ and $x_2^R \in S$.
\item Since $\overline{x_1}, \overline{x_2} \in S, x_1^*, x_2^* \in S$ by Lemma 7. Now x_1 and x_2 have no non-unit right factors in S and consequently x_1^* and x_2^* must be units.
\item This shows that $x_1^R = x_2^R$ and x_2^R is established.
\end{itemize}

Let α be a PAI domain, let S be a right quotient monoid in Δ and let $R = \alpha^{-1}$. Using the Factorization Lemma it is possible to characterize the elements $\alpha \in S$ such that αS is S-closed. If $\alpha \in \Delta$ then $\alpha = \alpha'$ where $\alpha \in S$ and α has no non-unit right factor that belongs to S. Then $cI(\alpha R) = \alpha R \cap x_1 \in \Delta$. Now αR is closed for if $\alpha' R = \alpha R \cap x_1 \in \Delta$. Hence $\alpha = \alpha'$ for some $\alpha \in S$. But since $\alpha R = \alpha \alpha R \in \Delta$, $\alpha \in \Delta$. However α has no non-unit right factor in S and so α is a unit in S. Therefore $\alpha R = \alpha' R = cI(\alpha R)$.

We conclude that if $\alpha \in \Delta$ then αR is S-closed iff α has no non-unit right factor in S.

Let α be an integral domain. Let $I = \{ \alpha | 0 \leq \alpha < \alpha_0 \}$ be an initial segment of ordinals. A collection $\{ S_\alpha | \alpha \in I \}$ of right quotient monoids in Δ is called a right quotient chain (in Δ) if the following conditions hold.

1) $S_\alpha \subseteq S_{\alpha+1}$ for each $\alpha \in I$, $\alpha \neq \alpha_0$

2) $S_\alpha = \bigcup_{\alpha \leq \chi \leq \alpha_0} S_\chi$ if α is a limit ordinal

For convenience we let S_{-1} denote the group of units of α. Then S_{-1} is
contained in each 3_{α}. Let $E_{\alpha} = R(S_{\alpha})^{-1}$ if $\alpha = -1$ or if $\alpha \in I$. Then because of condition 1) $E_{\alpha -1} \subseteq E_{\alpha}$ for each $\alpha \in I$.

Factorization theorem. Let A be a weak Dedekind domain satisfying the ascending chain condition for principal right ideals. Let $I = \{0 \leq \alpha \leq \alpha_0\}$ be an initial segment of ordinals and let $\{s_{\alpha} \mid \alpha \in I\}$ be a right quotient chain in A. Each $x \in A^*$ can be factored as $z = a_0 \cdots a_n$ where α_i are non-limit ordinals such that $\alpha_0 > \alpha_1 > \cdots > \alpha_n$, $a_\alpha \in S_{\alpha}$, a_α has no non-unit right factor in S_{α}, $r \in A^*$ and r has no non-unit right factor in S_{α_0}. The factorization is unique in the sense that if $z = b_0 \cdots b_m$ is another such factorization then $n = m$, $\alpha_i = \beta_i$ ($i = 1, 2, \ldots, n$), and there are units $u_0, u_1, \ldots, u_{n-1}$ in A such that $r = s_0 u_0 \cdots u_{n-1} b_n$ and $a_\alpha = u_{i-1} b_i u_i$ ($i \neq 0, n$).

Proof. To prove existence of the factorization let $x \in A^*$. If x has no non-unit right factor in S_{α_0} then we are finished. Otherwise by the Factorization lemma $x = rs_0$ for some $s_0 \in S_{\alpha_0}$ and where r has no non-unit right factor in S_{α_0}. Let α_1 be the least ordinal such that $s_0 \in S_{\alpha_1}$. Clearly α_1 is not a limit ordinal and $\alpha_0 > \alpha_1$. By the Factorization lemma it follows that $s_0 = a_\alpha s_1$ where $s_1 \in S_{\alpha_1}$ and a_α has no non-unit right factor in S_{α_1}. Clearly $a_\alpha \in S_{\alpha_1}$ because $s_0 \in S_{\alpha_0}$. If s_1 is not a unit let α_2 be the least ordinal such that $s_1 \in S_{\alpha_2}$. Then $\alpha_1 > \alpha_2$ and α_2 is not a limit ordinal. Another application of the Factorization lemma yields $s_1 = a_\alpha s_2$ where $s_2 \in S_{\alpha_2}$ and a_α has no non-unit right factor in S_{α_2}. Clearly $a_\alpha \in S_{\alpha_2}$. If s_2 is not a unit we may repeat the process. Now the process cannot continue indefinitely since we would obtain an infinite sequence $\alpha_1 > \alpha_2 > \cdots$
contradicting the well ordering of the ordinals. Thus the process stops, say, with the integer \(n \). That is, \(a_n \) has no non-unit right factor in \(S_{\alpha_{n-1}} \) and \(s_n \) is a unit. This establishes existence of the factorization.

To prove uniqueness suppose \(z = r a_1 \cdots a_n = s b_1 \cdots b_n \) are two factorizations of \(z \) of the type stated in the theorem. Then the second part of the Factorization lemma applies and yields \(r = su_0 \) for some unit \(u_0 \in \mathbb{R} \). Therefore \(a_1 \cdots a_n = u_0^{-1} b_1 \cdots b_n \). Evidently \(a_1 = b_1 \). Again the second part of the Factorization lemma applies and yields \(a_1 = u_0^{-1} b_1 u_1 \) for some unit \(u_1 \in \mathbb{R} \). Cancelling this factor we obtain \(a_1 \cdots a_n = u_1^{-1} b_1 b_2 \cdots b_n \). Uniqueness now follows by induction. \(\square \).
CHAPTER III

APPLICATION TO ARBITRARY ELEMENTS IN A PRI DOMAIN

3.1 Unique factorization and infinite primes

In this section we shall construct a natural set \(\{ \alpha(\omega) \mid \alpha \in I \} \) which is a right quotient chain in a right Bezout domain \(R \). We shall then apply the Factorization theorem to this right quotient chain. We begin by characterizing the peculiar factors that appear in the Factorization theorem. For this purpose we make the following definition.

Definition Let \(I = \{ \alpha \mid 0 \leq \alpha \leq \omega_0 \} \) be an initial segment of ordinals and let \(\{ S_\alpha \mid \alpha \in I \} \) be a right quotient chain in an integral domain \(R \). For each non-limit ordinal \(\alpha \in I \) an element \(x \in S_\alpha \) is called an \(\alpha \)-prime if \(xR \) is maximal in \(\{ xR \mid x \in S_\alpha \setminus S_{\alpha-1} \} \).

Lemma 14 Let \(I = \{ \alpha \mid 0 \leq \alpha \leq \omega_0 \} \) be an initial segment of ordinals and let \(\{ S_\alpha \mid \alpha \in I \} \) be a right quotient chain in a PRI domain \(R \). If \(\alpha \) is a non-limit ordinal in \(I \) and \(x \) is an \(\alpha \)-prime then \(x \) is prime in \(K_{\alpha-1} \).

Proof. Assume the hypotheses and let \(x \) be an \(\alpha \)-prime. Suppose \(xK_{\alpha-1} \not\subset yK_{\alpha-1} \subset K_{\alpha-1} \). Then \(xR \subset xK_{\alpha-1} \wedge R \subset yK_{\alpha-1} \wedge R \subset R \). Let \(y \in R \) be such that \(yR = yK_{\alpha-1} \wedge R \). Then \(xR \not\subset yR \). The definition of \(\alpha \)-prime implies that \(y \in S_{\alpha-1} \) and therefore \(y \) is a unit in \(K_{\alpha-1} \) and \(yK_{\alpha-1} = K_{\alpha-1} \).

Now \(yK_{\alpha-1} = yK_{\alpha-1} \) and so \(yK_{\alpha-1} = K \). This shows that \(x \) is prime in \(K_{\alpha-1} \). \(\Box \)
Lemma 15 Let \(R \) be a weak Bezout domain, let \(I \) be an initial segment of ordinals, and let \(\{ \alpha \in I \} \) be a right quotient chain in \(R \). If \(x_1, \ldots, x_k \) are \(\mathcal{A} \)-primes, then \(x_1 \cdots x_k \) has no non-unit right factor that belongs to \(\mathcal{A}^{-1} \).

Proof. The proof is by induction on \(k \). The lemma is true if \(k = 1 \) by the definition of \(\mathcal{A} \)-prime. Assume \(k \) is an integer greater than 1 and the lemma holds for positive integers less than \(k \). Suppose \(x_1 \cdots x_k = ab \) with \(b \in A^{-1} \), \(a \in 3 \) and \(x_i \) are \(\mathcal{A} \)-primes. We shall show that \(b \) must be a unit. If \(a \in x_1 R \) then \(a = x_1 s \), \(s \in R \). Hence \(x_2 \cdots x_k = sb \). By induction it follows that \(b \) must be a unit. Suppose on the other hand that \(a \notin x_1 R \). Then since \(x_1 R \cap aR \neq \emptyset \) and \(R \) is a weak Bezout domain it follows that \(x_1 R + aR = dR \) and \(x_1 R \cap aR = nR \) for some \(d, n \in R \). Choose \(x', a', \overline{x}, \overline{a} \in R \) such that \(x_1 = dx' \), \(a = da' \), and \(n = x \overline{a} = \overline{a}x \). Then \(x' R + a' R = R \), \(x' R \cap a' R = x_1 R \). Consequently \(x' \sim x_1 \). Now \(x_1 \cdots x_k = x_1 \overline{a}z \) for some \(z \in R \). Therefore \(ab = x_1 \cdots x_k = x_1 \overline{a}z \) and so \(b = \overline{a}z \). Hence \(z \in A^{-1} \) since \(b \in A^{-1} \). It follows from \(x_2 \cdots x_k = \overline{a}z \) and by induction that \(z \) is a unit. Consequently \(b \) is a right associate of \(\overline{a} \). Therefore \(x' \sim x_1 \) yields \(x' \sim b \) and hence \(x' \in A^{-1} \) by Lemma 7. Now \(d \in A^{-1} \) because \(x_1 R \notin dR \), therefore \(x_1 = dx' \in A^{-1} \).

However this contradicts the fact that \(x_1 \) is an \(\mathcal{A} \)-prime. \(\square \)

Whenever \(R \) is a weak Bezout domain \(R' \) will denote the set of finite dimensional elements of \(R \). With additional hypotheses we are able to state a converse to Lemma 15 as follows.

Lemma 16 Let \(R \) be a weak Bezout domain satisfying the ascending chain condition for principal right ideals. Let \(I \) be an initial segment of ordinals and let \(\{ \alpha \in I \} \) be a right quotient...
chain in \mathcal{A}. Let α be a non-limit ordinal in I and assume that

$S_\alpha \subset (S_{\alpha-1})'$. If $a \in S_\alpha$ has no non-unit right factor that belongs to

$S_{\alpha-1}$ then a is a product of α-primes.

Proof. Assume the hypotheses. Since $a \in S_{\alpha} \setminus S_{\alpha-1}$ we may choose

x_1 (by the ascending chain condition for principal right ideals) such

that $x_1 a$ is maximal in $\{xR \mid x \in S_\alpha \setminus S_{\alpha-1}\}$. Then x_1 is an α-prime

and $a = x_1 s_1$ for some $s_1 \in R$. Obviously $s_1 \in S_\alpha$ and if s_1 is not a unit

then $s_1 \in S_{\alpha} \setminus S_{\alpha-1}$ because of the assumption on a. We repeat the argument

and obtain $s_1 = x_2 s_2$ where x_2 is an α-prime and $s_2 \in S_{\alpha}$. If this

process does not terminate we obtain, for each positive integer i,

$s_i = x_{i+1} s_{i+1}$ where x_{i+1} is an α-prime. Since each x_1 is a non-unit

in $K_{\alpha-1}$ by Lemma 3 we obtain $x_{\alpha-1} \in \mathcal{L}_{K_{\alpha-1}} \subset \mathcal{L}_{K_{\alpha-2}} \subset \cdots$. The proof

of Lemma 2 then shows that $\dim_{K_{\alpha-1}} a = \infty$, contradicting $a \in (K_{\alpha-1})'$.

Therefore the process terminates, say, with the integer k. Thus

$a = x_1 \cdots x_k s_k$ and s_k is a unit in R. QED.

Each right Bezout domain contains a natural right quotient

monoid as follows.

Lemma 17. Let R be a right Bezout domain. Then $R' = \{a \in R \mid \dim a < \infty\}$

is a right quotient monoid.

Proof. Clearly $0 \in R'$ and $1 \in R'$. Also $a \in R'$, $\overline{a} \in R$ and $a - \overline{a}$ implies

$\dim a = \dim \overline{a}$ and hence $\overline{a} \in R'$. Suppose $a, b \in R$ and we may assume that

$a, b \neq 0$. Then $aR/abR \subseteq R/br$ and therefore $\dim ab = \dim a + \dim b$.

Hence $a \in R'$ iff $a, b \in R'$. It follows by the second part of Lemma 7

that R' is a right quotient monoid in R. QED.

Let R be a right Bezout domain. We construct, by transfinite

induction, a natural chain $\{R(\alpha) \mid \alpha \text{ is an ordinal}\}$ of right quotient

monoids in R as follows.
Let $R^{(\alpha)} = R$. Let α be an ordinal greater than zero and assume $R^{(\beta)}$ has been defined and is a right quotient monoid whenever $\beta < \alpha$, and let $K_{\beta} = R(R^{(\beta)})^{-1}$. By Lemma 11 K_{β} is a right Bezout domain and therefore K_{β} is a right quotient monoid in R by Lemma 17 ($\beta < \alpha$).

We define $R^{(\alpha)}$ by

- If α is a limit ordinal, then $R^{(\alpha)} = \bigcup_{\beta < \alpha} R^{(\beta)}$.
- If α is not a limit ordinal, then $R^{(\alpha)} = (\alpha^\prime_{\alpha-1})^{-1} \cap R$.

To show that the induction is valid we must show that $R^{(\alpha)}$ is a right quotient monoid. If α is a limit ordinal the proof is obvious.

Assume that α is not a limit ordinal. Obviously $0 \in R^{(\alpha)}$ and $1 \in R^{(\alpha)}$.

Also $ab \in R^{(\alpha)}$ iff $a, b \in R^{(\alpha)}$ because $(\alpha^\prime_{\alpha-1})^{-1}$ has this property. Now if $a \in R^{(\alpha)}$, $\overline{a} \in R$, and $a \sim \overline{b}$ then $a \sim \overline{b}$ by Lemma 6. Since $a \in (\alpha^\prime_{\alpha-1})^{-1}$ it follows that $\dim a = \dim \overline{a}$ and $\overline{a} \in (\alpha^\prime_{\alpha-1})^{-1}$. Hence $\overline{a} \in R^{(\alpha)}$. The hypotheses for the second part of Lemma 7 are satisfied and therefore $R^{(\alpha)}$ is a right quotient monoid. \[Q.E.D.\]

If α, β are ordinals such that $\alpha \leq \beta$, then $R^{(\alpha)} \subseteq R^{(\beta)} \subseteq R$.

Also $R^{(\alpha)} = R^{(\alpha + 1)}$ for some ordinal α. For if $R^{(\alpha)} \neq R^{(\alpha + 1)}$ for each ordinal α then $\operatorname{card}(R^{(\alpha)}) \geq \operatorname{card}(\alpha)$ for each ordinal α. Choosing β such that $\operatorname{card}(\beta) > \operatorname{card}(\alpha)$ we obtain $\operatorname{card}(\beta) > \operatorname{card}(\alpha) \geq \operatorname{card}(R^{(\alpha)})$, a contradiction. We let α_0 denote the least ordinal such that $R^{(\alpha_0)} = R^{(\alpha_0 + 1)}$, and we call \$R^{(\alpha)} \mid 0 \leq \alpha \leq \alpha_0\$ the right D-chain (Dimension chain) in R.

Evidently the right D-chain in a right Bezout domain R is a right quotient chain in R. If R is a PRI domain then the right D-chain has an additional property as follows.

Lemma 16 Let R be a PRI domain and let \$\{R^{(\alpha)} \mid 0 \leq \alpha \leq \alpha_0\}\$ be the right D-chain in R. Then $R^{(\alpha_0)} = R^*$.

Proof. Suppose $\alpha^* \neq R^{(\alpha_0)}$. Then by the maximum condition in the PRI domain \mathcal{R} we may choose x such that xR is maximal in $\{xR \mid x \in R \setminus R^{(\alpha_0)}\}$. The proof of Lemma 14 can be used to show that x is prime in $\mathcal{R}_{\alpha_0} = R(R^{(\alpha_0)})^{-1}$. In particular $x \notin (K^{(\alpha_0)})^*$ and so $x \in (K^{(\alpha_0)})^* \setminus R = R^{(\alpha_0+1)}$. This contradicts $R^{(\alpha_0+1)} = R^{(\alpha_0)}$. Therefore $R^* = R^{(\alpha_0)}$.

Definition Let \mathcal{R} be a PRI domain and let $\{R^{(\alpha)} \mid 0 \leq \alpha \leq \alpha_0\}$ be the right α-chain in \mathcal{R}. We shall call the α-primes in \mathcal{R} inf(α) primes (where α is an ordinal such that $\alpha \leq \alpha_0$). For each such ordinal α other than zero let $Z(\alpha)$ be the set of (finite) products of inf(α) primes.

Let $\alpha(0) = R(0)$.

Let \mathcal{R} be a PRI domain and let α be a non-limit ordinal with $\alpha \leq \alpha_0$. If xR is maximal in $\{xR \mid x \in R \setminus R^{(\alpha-1)}\}$ then the proof of Lemma 17 can be used to show that x is prime in $\mathcal{R}_{\alpha-1}$. In particular $x \in (K^{(\alpha-1)})^* \setminus R = R^{(\alpha)}$ and therefore x is an inf(α) prime. Hence $x \in R$ is an inf(α) prime iff xR is maximal in $\{xR \mid x \in R \setminus R^{(\alpha-1)}\}$. As a consequence we note that inf(α) primes exist for each $\alpha \leq \alpha_0$ by the maximum condition in \mathcal{R}. In fact for each $x \notin R^{(\alpha-1)}$, $zR \subset xR$ for some inf(α) prime x.

If \mathcal{R} is a PRI domain we can combine Lemmas 15 and 16 into the following.

Lemma 19 Let \mathcal{R} be a PRI domain and let $\{R^{(\alpha)} \mid 0 \leq \alpha \leq \alpha_0\}$ be the right α-chain in \mathcal{R}. Let α be a non-limit ordinal such that $\alpha \leq \alpha_0$, and let $z \in R^{(\alpha)}$. Then z has no non-unit right factor in $R^{(\alpha-1)}$ iff $z \in Z^{(\alpha)}$, i.e., iff z is a product of inf(α) primes.

Using Lemmas 18 and 19 we can state the Factorization theorem for the present case as follows.
Theorem 5 Let R be a PRI domain and let $\{ R(\alpha) | 0 \leq \alpha \leq \alpha_0 \}$ be the right D-chain in R. Each $a \in R^*$ can be written as $a = z_{\alpha_1} \cdots z_{\alpha_k}$, where α_i are non-limit ordinals such that $\alpha_0 \geq \alpha_1 > \cdots > \alpha_k$ and $z_{\alpha_i} \in Z(\alpha_i)$. This factorization is unique in the sense that if $a = y_{\beta_1} \cdots y_{\beta_h}$ is another such factorization of a then $h = k$, $\alpha_i = \beta_i$ $(i = 1, 2, \ldots, k)$, and there are units u_1, \ldots, u_{k-1} in R such that $z_{\alpha_1} = y_{\alpha_1} u_1$, $z_{\alpha_k} = u_{k-1}^{-1} y_{\alpha_k}$, and $z_{\alpha_i} = u_{i-1}^{-1} y_{\alpha_i} u_i$ $(i \neq 1, k)$.
3.2 The local case

In this section we assume that R is a PRI domain, and
\[\left\{ R_\alpha \mid 0 \leq \alpha \leq \alpha_0 \right\} \] denotes the right D-chain in R. We continue to use
the notation $R_\alpha = R(R_\alpha)^{-1}$ whenever $\alpha \leq \alpha_0$. If α, β are ordinals
with $\beta < \alpha$, we let $[\beta, \alpha]$, $(\beta, \alpha]$, $[\beta, \alpha)$, (β, α) denote the usual
intervals in the collection of ordinals. If J is one of these intervals
J^* will denote the set of elements in J that are not limit ordinals.
The term "unique" will mean "unique up to right unit factor."

Theorem 6 Let R be a PRI domain. Suppose R has a unique
inf\(^{(1)}\) prime x, and suppose $xR \subseteq pR$ for each prime p in R. Then R is
not a left Ore domain.

Proof. If R is a left Ore domain then since R is a weak Bezout
domain it must be a left Bezout domain. Let p be a prime in R. Choose
d, $m, p', x' \in R$ such that $Rx + Rp = Rd$, $Rx \cap Rp = Rm$, and $m = p'x = x'p$.
Now d is a unit, for either $Rd = Rp$ or $Rd = R$ because p is prime.
However if $Rd = Rp$ then x would have p as a right factor contradicting
x being an inf\(^{(1)}\) prime (see Lemma 19). It follows that $R^* = R$.
Therefore $x \sim x'$ and $p \sim p'$. Hence p' is prime, and $\dim x' = \dim x = \infty$.

Since $x'R \subseteq yR$ for some inf\(^{(1)}\) prime y by the maximum condition in R,
it follows that $x'R \subseteq xR$ thus $x' = xs$ for some $s \in R$. Now $p'R + x'R = R$,
otherwise $p'R + x'R = p'R$ because p' is prime. This would imply $x' = p'z$
for some $z \in R$ and together with $p'x = x'p$ would yield $x = zp$, contradicting
x being an inf\(^{(1)}\) prime (see Lemma 19). It follows that
$R = p'R + x'R \subseteq p'R + xR$ and therefore $p'R + xR = R$. Hence $xR \not\subseteq p'R$,
and this contradicts the hypotheses. QED.
Lemma 20 Let A be a PRA domain. Suppose $\beta \in \{0, \alpha_0\}^*$ and A has a unique $\inf(\beta)$ prime. Then A has a unique $\inf(\alpha)$ prime for each $\alpha \in \{\beta, \alpha_0\}^*$.

Proof. Because of the maximum condition in R, $\inf(\alpha)$ primes exist for each $\alpha \in \{\beta, \alpha_0\}^*$. To prove that the $\inf(\alpha)$ primes are unique if $\alpha \in \{\beta, \alpha_0\}^*$ we use transfinite induction. Let $\alpha \in \{\beta, \alpha_0\}^*$ and assume A has a unique $\inf(\delta)$ prime whenever $\delta \in \{\beta, \alpha\}^*$. Let y, z be two $\inf(\alpha)$ primes in A and suppose $y \neq z$. Let $d \in A$ such that $dA = yA + zA$. We claim that if $\delta \in \{\beta, \alpha\}^*$ then $d \not\in A \setminus A(\delta)$. For suppose $\delta \in \{\beta, \alpha\}^*$ and let x be the unique $\inf(\delta)$ prime in A. Now $yA \subseteq A$ for some $\inf(\delta)$ prime in A (by the maximum condition) and hence $yA \subseteq A$. In fact, $yA \subseteq \bigcap_{n=0}^{\infty} x^n A$ for otherwise we can choose the largest integer n such that $yA \subseteq x^n A$, then $y = x^n s$ for some $s \in A \setminus A$. It follows that $s \in A(\delta-1)$ (otherwise $sA \subseteq A$ by the maximum condition). Hence $y = x^n s e A(\delta)$ which contradicts the fact that y is an $\inf(\alpha)$ prime. Therefore $yA \subseteq \bigcap_{n=0}^{\infty} x^n A$. Similarly $zA \subseteq \bigcap_{n=0}^{\infty} x^n A$, and hence $dA \subseteq \bigcap_{n=0}^{\infty} x^n A$.

Then $dA_{\delta-1} \subseteq \bigcap_{n=0}^{\infty} x^n A_{\delta-1}$ and hence $\dim_{A_{\delta-1}} d = \infty$. This shows that $d \not\in (\bigcap_{\delta-1})$, and so $d \not\in A \setminus A(\delta)$. This establishes our claim that $\delta \in \{\beta, \alpha\}^*$ implies $d \not\in A(\delta)$. Now $d \not\in A(\delta-1)$ because $yA \subseteq A$ and y is an $\inf(\delta)$ prime. If $\delta-1$ is not a limit ordinal we have contradicted the claim. If $\delta-1$ is a limit ordinal then $\beta < \delta - 1$ because $\beta < \alpha$ and β is not a limit ordinal. Hence $\bigcup_{\delta-1} A(\delta)$ and we may choose $\delta \in \{\beta, \delta-1\}^*$ such that $d \not\in A(\delta)$. Again this contradicts the claim. It follows that $yA = zA$. QED.

Lemma 21 Let A be a PRA domain. Suppose $\alpha \in \{0, \alpha_0\}$ or $\alpha = -1$. Then K_{α} is a local domain iff A has a unique $\inf(\alpha+1)$ prime.

Proof. Suppose K_{α} is a local domain. Then by Lemma 13 $A \setminus A(\alpha)$ is an ideal, say, $A \setminus A(\alpha) = zA$. Let z be an $\inf(\alpha+1)$ prime in A. Then
\[z \in R \setminus R^{(\alpha)} = xR \] and \[xR \subseteq xl. \] Hence \[zR = xR \] since \[z \] is an \(\text{inf}^{(\alpha+1)} \) prime.

To prove the converse assume that \(R \) has a unique \(\text{inf}^{(\alpha+1)} \) prime \(x \). Then \(x \) is prime in \(R \) by Lemma 14. Let \(z \) be any prime in \(R \). Let \(\overline{z} \in R \) such that \(\overline{z}R = x\overline{z} \wedge R \). Then clearly \(\overline{z}R = \overline{xR} \). Now \(\overline{z}R \subseteq xR \) by the maximum condition in \(R \) and so \(\overline{z}R \subseteq x\overline{z} \) and \(z\overline{z} \subseteq x\overline{z} \). Hence \(z\overline{z} = x\overline{z} \) since \(z \) is prime in \(R \). It follows that \(R \) is a PRI domain with a unique prime. Consequently \(R \) is a local domain. QED.

Theorem 7 Let \(R \) be a PRI domain. Suppose \(\beta \in [0, \alpha_0) \) or \(\beta = -1 \) and \(K_\beta \) is a local domain. Then \(R \) is a local domain for each \(\alpha \in [\beta+1, \alpha_0] \), and if \(\beta \) \(+1 \) \(< \alpha_0 \), then \(R \) is not a left Ore domain.

Proof. Since \(K_\beta \) is a local domain \(R \) has a unique \(\text{inf}^{(\beta+1)} \) prime by Lemma 21. It follows by Lemma 20 that \(R \) has a unique \(\text{inf}^{(\alpha)} \) prime for each \(\alpha \in [\beta+1, \alpha_0] \). Therefore \(K_\alpha \) is local for each \(\alpha \in [\beta+1, \alpha_0] \) by Lemma 21. If \(\alpha \in [\beta+1, \alpha_0] \) and is a limit ordinal then \(K_\alpha = \bigcup_{\gamma \leq \alpha} K_\gamma \).

In this case that \(K_\alpha \) is a local domain follows by transfinite induction. This proves the first part of the theorem. Now assume that \(\beta +1 \) \(< \alpha_0 \).

Let \(x \) be the unique \(\text{inf}^{(\beta+2)} \) prime and \(p \) the unique \(\text{inf}^{(\beta+1)} \) prime in \(R \).

Then in \(K_\beta \), \(p \) is the unique prime and \(x \) is the unique \(\text{inf}^{(1)} \) prime. Hence \(K_\beta \) satisfies the hypotheses of Theorem 6 and so \(K_\beta \) is not a left Ore domain. From this it follows easily that \(R \) is not a left Ore domain. QED.

If \(R \) is a left Ore PRI domain such that \(R^* = R' \) then \(R \) is also a PRI domain. For each non-zero element of \(R \) has finite dimension. Consequently the restricted descending chain condition holds in \(R \) and therefore the ascending chain condition for principal left ideals holds in \(R \) (Lemma 2). Now \(R \) is a weak Bezout domain since \(R \) is a PRI domain.

Since in addition \(R \) is a left Ore domain \(R \) is a left Bezout domain. In Chapter 1 we proved that right (left) Bezout domains satisfying the
ascending chain condition for principal right (left) ideals is a P.R.I. (P.I.) domain. Hence \(R \) is a P.I. domain.

Corollary 1 Let \(R \) be a left Ore P.I. domain. Let \(\beta_0 \) denote the least ordinal in \([0, \alpha_0]\) such that \(\alpha_0 \) is a local domain (\(\alpha_0 \) is local since it is a field). Then either 1) \(\alpha_0 = 0 \) and \(R \) is a P.I. domain, or 2) \(\beta_0 = \alpha_0 \), or 3) \(\beta_0 + 1 = \alpha_0 \).

Proof. Assume the hypotheses. Suppose \(\alpha_0 \neq 0 \) and \(\beta_0 \neq \alpha_0 \). Then by Theorem 7 \(\beta_0 + 1 \neq \alpha_0 \). Hence \(\beta_0 + 1 \geq \alpha_0 \) \(\beta_0 \). Therefore \(\beta_0 + 1 = \alpha_0 \). \(\Box \)

Corollary 2 A local left Ore P.I. domain is a P.I. domain.

Proof. Let \(R \) be a local left Ore P.I. domain. If \(R \) is not a P.I. domain then \(\alpha_0 \neq 0 \). Let \(\beta = -1 \). Then \(\kappa = \beta \) is a local domain and \(\beta + 1 \neq \alpha_0 \). Hence by Theorem 7 \(R \) is not a left Ore domain, a contradiction. \(\Box \).

The last two corollaries give conditions under which a P.I. domain is also a P.I. domain. We conjecture that Corollary 1 may be restated by omitting 3) from the conclusions. Indeed it may be true that every left Ore P.I. domain is also a P.I. domain. In particular no example is known to the author of a left Ore P.I. domain that is not a P.I. domain.
3.3 Example: skew polynomial extensions

We now introduce the important example of skew polynomial extensions, which was defined by A. V. Jategaonkar in [8]. This example serves to illustrate some of the concepts that have been discussed. In particular we shall illustrate Theorem 5 for the local case.

If \(L \) is a ring and \(\sigma \) is a monomorphism from \(L \) into \(L \), we shall denote by \(\mathbb{H} = L[x,\sigma] \) the ring of skew polynomials in an indeterminate \(x \) with coefficients in \(L \) (written on the right of \(x \)). Addition is the usual pointwise addition and multiplication is determined by the associative and distributive laws and by the commutation rule \(ax = xa^{\sigma} \) (\(a \in L \)).

It is easy to prove that \(L \) is a subring of \(\mathbb{H} \), and if \(L \) is an integral domain, then so is \(\mathbb{H} \) (see Ore [10]). Before proceeding with the example we shall need to establish two lemmas.

Lemma 22 Let \(\mathbb{H} = L[x,\sigma] \). Then \(\mathbb{H} \) is a PRI domain iff \(L \) is a PRI domain and the non-zero members of \(L^{\sigma} \) are units of \(L \).

Proof. See Jategaonkar [8].

Now if \(p \) is prime in \(L \) then clearly \(p \) is prime in \(\mathbb{H} \). It follows that if \(a \in L \) and \(a \) is a product of primes in \(L \) then \(a \) is a product of primes in \(\mathbb{H} \). Therefore if \(a \in L \) and \(\dim_{L} a < \infty \), then \(\dim_{\mathbb{H}} a < \infty \).

Lemma 23 Let \(\mathbb{H} = L[x,\sigma] \) be a PRI domain. If \(f \in \mathbb{H} \) has a non-zero constant term \(a \) in \(L \) such that \(\dim_{L} a < \infty \), then \(\dim_{\mathbb{H}} f < \infty \).

Proof. First we show that if \(d \in L \) and \(d \neq 0 \) then \(1 + xd \) is prime in \(\mathbb{H} \). Suppose \(1 + xd = hg \), \(0 \neq d \in L \), \(h \in \mathbb{H} \), and \(g \) is a non-unit in \(\mathbb{H} \).

If \(g \in L \) then \(g = c \) and \(h = a + xd \) where \(a, b, c \in L \). Then \(1 + xd = ac + xbc \) which implies \(1 = ac \) and \(c \) is a unit, a contradiction.

Therefore \(g \in \mathbb{H} \setminus L \) and \(\deg g \geq 1 \). It follows that \(\deg g = 1 \) and \(\deg h = 0 \).
Thus $h = c$, $g = a + xb$ ($a, b, c \in L$). Then $1 + xd = ca + cxb = ca + cx^\sigma b$.

Hence $1 = ca$ and c is a unit. This shows that if $1 + xd = hg$ and g is a non-unit then h is a unit. Consequently $1 + xd$ is prime in \mathcal{M}.

To prove the lemma we induct on $\deg f$. If $\deg f = 0$, then $\dim_L f < \infty$ by hypothesis. It follows that $\dim_{\mathcal{M}} f < \infty$. If $\deg f = 1$, then f is of the form $f = x + xb = a(1 + x(a^\sigma)^{-1}b)$ where $a, b \in L$. Now $\dim_L a < \infty$ by hypothesis and so $\dim_{\mathcal{M}} a < \infty$. Since $1 + x(a^\sigma)^{-1}b$ is prime, it has finite dimension. Consequently $\dim f < \infty$.

Let $n > 1$ and assume the lemma holds for polynomials of degree less than n. Let f be a polynomial of degree n with finite dimensional constant term a_0. First assume $a_0 = 1$. If x is prime, then $\dim_{\mathcal{M}} f < \infty$. If f is not prime then $f = gh$ where g and h are non-units in \mathcal{M}. If either g or h has degree zero then it must be a unit because $a_0 = 1$. Consequently $0 < \deg g < n$, $0 < \deg h < n$. It follows by induction that g and h have finite dimension, and hence so does f. Now in the general case let $f = x_0 + x_1 a_1 + \ldots + x_n a_n$ (where a_0 need not equal 1). Then $f = a_0(1 + x(a_0^\sigma)^{-1}a_1 + \ldots + x^n(a_0^\sigma)^{-n}a_n)$ and hence f is the product of two elements of finite dimension. Therefore $\dim_{\mathcal{M}} f < \infty$.

We now turn our attention to the construction of the example of skew polynomial extensions. Let \mathbb{K} be a (skew) field and let \mathcal{A} be an ordinal. Let \mathcal{R} be a right twisted polynomial extension of \mathbb{K} with

\[\{ \mathcal{R}(\alpha) : \alpha \in [0, \mathcal{A}) \} \]

as a chain of twisted subdomains from \mathbb{K} to \mathcal{R} (see Jategaonkar [8]). Thus for each $\alpha \in [0, \mathcal{A})$ there exists a monomorphism $\tilde{\rho}_\alpha : \mathcal{R}(\alpha) \to \mathcal{R}(\alpha^{-1})$ and an indeterminate x_{α} such that $\mathbb{K} = \mathcal{R}(\alpha^{-1})$ and such that the following conditions hold:

\[\mathbb{K} = \mathcal{R}(\alpha^{-1}) \]

This notation is not to be confused with $\mathbb{K}_{\alpha} = \mathcal{R}(\alpha^{-1})^{-1}$ which is still in force.
Each element of \mathcal{R} is a polynomial in a finite number of indeterminates x^α with coefficients in K. We further require that $(\mathcal{R}_{\alpha-1})^\beta \subseteq K$ for each $\alpha \in [0, \overline{\alpha}]$ (Jategaonkar [8] shows how to construct such a system). Then \mathcal{R} is a PM domain by Lemma 22 and transfinite induction. In particular \mathcal{R} has a right D-chain $\{\mathcal{R}^\alpha \mid 0 \leq \alpha \leq \alpha_0\}$.

Lemma 24. Let \mathcal{S} be the set of polynomials in \mathcal{R} with non-zero constant terms. Then $\mathcal{S} \subseteq \mathcal{R}^{(0)}$, i.e., the members of \mathcal{S} have finite dimension in \mathcal{R}.

Proof. If $g \in \mathcal{R}^*$, let $1(g)$ denote the least ordinal α such that $g \in \mathcal{R}^\alpha$. Then $1(g)$ is not a limit ordinal. To prove the lemma we use transfinite induction. If $f \in \mathcal{S}$ and $1(f) = 0$ then $f \in K[x^0, f_0]$. Hence $\dim f < \infty$ by Lemma 23, i.e., $f \in \mathcal{R}^{(0)}$. Let $\alpha \in (0, \overline{\alpha}]^*$ and assume $g \in \mathcal{S}$, $1(g) < \alpha$ implies $g \in \mathcal{R}^{(0)}$. Let $f \in \mathcal{S}$ with $1(f) = \alpha$. Then $f \in \mathcal{R}^\alpha \setminus \mathcal{R}^{\alpha-1}$. It follows that $f = h_0 + x^\alpha h_1 + \cdots + x^{\alpha n}$, where $h_i \in \mathcal{R}^{\alpha-1}$ and h_0 has a non-zero constant term in K. Let $s = 1(h_0)$. Then $s < \alpha$. It follows by induction that $\dim _{\mathcal{R}} f < \infty$. Therefore $\dim _{\mathcal{R}} h_0 < \infty$. Lemma 23 applies and yields $\dim _{\mathcal{R}} f < \infty$, i.e., $f \in \mathcal{R}^{(0)}$. \[\square\]

Lemma 25. For each $\alpha \in (0, \overline{\alpha}]^*$, $x^\alpha \in \mathcal{R} \setminus \mathcal{R}^{\alpha-1}$.

Proof. The proof is by transfinite induction. Clearly $x^0 \in \mathcal{R} \setminus \mathcal{R}^{\alpha-1}$ since x^0 is not a unit in \mathcal{R}. Let $\alpha \in (0, \overline{\alpha}]^*$ and assume $x^\beta \in \mathcal{R} \setminus \mathcal{R}^{\beta-1}$ whenever $\beta \in (0, \alpha)^*$. First assume $\alpha-1$ is not a limit ordinal. Then $x^{\alpha} = x^{\alpha-1} x^{\alpha}(x^{\alpha-1} \beta^{-1})^{-1} = (x^{\alpha-1} \beta^{-1})^{-2} = \cdots$ which shows that
\(x_\omega \in \bigcap_{n=0}^{\infty} (x_{\omega-1})^n R \). Therefore \(x_\omega \in \bigcap_{n=0}^{\infty} (x_{\omega-1})^n R_{\omega-2} \). However \(x_{\omega-1} \notin R^{(\omega-1)} \) by induction and hence \(x_{\omega-1} \) is a non-unit in \(R_{\omega-2} \). Consequently

\[\dim_{R_{\omega-2}} x_\omega = \infty. \]

This shows that \(x_\alpha \notin (R_{\omega-2})^{1} \) and so \(x_\omega \notin (R_{\omega-2})^{1} \). On the other hand assume that \(\omega-1 \) is a limit ordinal. Let \(\delta \) be the least ordinal such that \(x_\alpha \in R^{(\delta)} \). Then \(\delta \) is not a limit ordinal and so \(x_\omega \in R^{(\delta)} \setminus R^{(\delta-1)} \).

If \(\delta \lt \omega \) then since \(\delta \neq \omega-1 \), \(\delta \lt \omega-1 \). Then the following equation

\[x_\omega = x_{\delta+1} x_\delta (x_{\delta+1}^2 - 1) = (x_{\delta+1})^2 x_\delta (x_{\delta+1} - 1) = \cdots \]

shows that \(x_\omega \in \bigcap_{n=0}^{\infty} (x_{\delta+1})^n R \).

Since \(\delta+1 \lt \omega \) it follows by induction that \(x_{\delta+1} \notin R^{(\delta)} \) and therefore

\[x_{\delta+1} \]

is not a unit in \(R_{\omega} \). Therefore \(x_\alpha \in \bigcap_{n=0}^{\infty} (x_{\delta+1})^n R_{\omega} \) and \(\dim_{R_{\omega}} x_\omega = \infty. \)

Hence \(x_\omega \notin (R_{\omega})^{1} \) and \(x_\omega \notin R^{(\delta)} \), contradicting the choice of \(\delta \). It follows that \(\omega \leq \delta \). Therefore \(\omega-1 \leq \delta-1 \) and \(R \setminus R^{(\delta-1)} \subseteq R \setminus R^{(\omega-1)} \). Consequently

\[x_\omega \in R \setminus R^{(\omega-1)} \].

We shall now show the relationship between \(R \) and \(R^{(\omega)} \). As usual \((R_\alpha)^* \) denotes \(R_\alpha \setminus \{0\} \).

Lemma 26. For each \(\alpha \in [0, \omega] \), \((R_\alpha)^* \subseteq R^{(\omega)} \).

Proof. The proof is by transfinite induction. Since \(R_0 = R_{[\omega_0]} \) each non-zero member of \(R_0 \) is either a unit or is a product of primes (see Ore [10]). Hence if \(f \in R_{\alpha}(0) \) and \(f \neq 0 \) then \(\dim_{R_{\alpha}(0)} f \lt \omega \) and so

\[\dim_{R_{\alpha}(0)} f \leq \omega. \]

Therefore \(R_{\alpha}(0) \subseteq R^{(\omega)} \). Let \(\alpha \in (0, \omega] \) and assume that

\[(R_\beta)^* \subseteq R^{(\beta)} \]

whenever \(\beta \in [0, \alpha) \). If \(\omega \) is a limit ordinal the proof is obvious. Assume that \(\omega \) is not a limit ordinal. Let \(0 \neq f \in R_\omega = R_{\omega-1}[x_\omega, y_\omega] \).

Then \(f = x_\omega h_1 + \cdots + x_\omega h_m \) where \(h_i \in R_{\omega-1} \) and \(h_n \neq 0 \). Then

\[f = x_\omega h_1 (1 + x_\omega (h_1^2 - 1) \omega+1 + \cdots + x_\omega^m (h_1^m - 1) \omega)] \]

The right factor has finite dimension by Lemma 24 and \(h_n \in R_{\omega-1} \subseteq R^{(\omega-1)} \) by induction. If we can show that \(x_\omega \) is an \(\inf(\omega) \) prime, then \(x_\omega \in R^{(\omega)} \) and therefore

\[f \in R^{(\omega)} \]

which is the desired conclusion. Hence we proceed to show that \(x_\omega \) is an \(\inf(\omega) \) prime. Now \(x_\omega \in R \setminus R^{(\omega-1)} \) by Lemma 25. We claim that
\[x_R \text{ is maximal in } \mathbb{R} \setminus \{ x \in \mathbb{R} \mid x < R^{(\alpha-1)} \}. \] For suppose \(x_\alpha = bg \) where \(g \) is a non-unit in \(k \) and \(k \in \mathbb{R} \setminus \{ x \in \mathbb{R} \mid x < R^{(\alpha-1)} \}. \) Then by induction \(k \in \mathbb{R} \setminus \{ x \in \mathbb{R} \mid x < R^{(\alpha-1)} \}. \) Let \(\delta \) be the least ordinal such that \(k \in \mathbb{R} \setminus \{ x \in \mathbb{R} \mid x < R^{(\alpha-1)} \}. \) Then \(\delta \) is not a \(\alpha \) it ordinal and \(\alpha < \delta. \) Since \(x_\alpha = bg, \) \(g \) must be a non-unit in \(x_\delta. \) \[x_\delta^2 = bg = x_\delta b_i g \] \(b \in \mathbb{R} \setminus \{ x \in \mathbb{R} \mid x < R^{(\delta-1)} \}. \] If \(\delta = \alpha, \) then \(x_\alpha = bg = x_\delta b_i g \) which implies \(1 = bg \) and \(g \) is a unit in \(R, \) a contradiction. If \(\alpha < \delta, \) then \(x_\delta = x_\alpha x_\delta (x_\delta \alpha)^{-1}. \) Therefore \(x_\delta = kg = x_\delta \alpha \cdot x_\delta (x_\delta \alpha)^{-1} \) which implies \(1 = x_\delta (x_\delta \alpha)^{-1} \) and \(g \) is a unit, a contradiction. It follows that \(x_\alpha \) is an inf(\(\alpha \)) prime. \(Q.D. \)

We have seen in the proof of Lemma 26 that \(x_\alpha \) is an inf(\(\alpha \)) prime if \(\alpha \notin [0, \infty). \) In fact \(x_\alpha \) is the only (up to right unit factor) inf(\(\alpha \)) prime if \(\alpha \notin 0. \) For \(\alpha \notin 0, \) if \(z \) is an inf(\(\alpha \)) prime, then because \(\dim z = \alpha \) \(z \) has no non-zero constant term by Lemma 24. Hence \(z = ms \) where \(n \) is a non-unit and \(s \) has a non-zero constant term. Since \(z \) is an inf(\(\alpha \)) prime and since \(\dim s < \infty \) (by Lemma 24), \(s \) must be a unit (see Lemma 19). Hence we may assume that \(z \) has the form \(z = m = x_\alpha \cdots x_\alpha. \) Since \(x_\alpha \) is a non-unit it follows (by the definition of inf(\(\alpha \)) prime) that \(x_\alpha \cdots x_\alpha \in R^{(\alpha-1)}. \) If \(\alpha < \alpha, \) then \(x \in \mathbb{R} \setminus \{ x \in \mathbb{R} \mid x < R^{(\alpha-1)} \} \) which is impossible. If \(\alpha < \alpha, \) then \(x_\alpha \) is a prime and \(\alpha \) is a unit in \(R^{(\alpha-1)} \), and this is not possible. Therefore \(\alpha = \alpha. \) It follows that \(z = x_\alpha \cdot (x_\alpha \cdots x_\alpha \alpha)^{-1}. \) The right factor is a unit and hence \(z \) and \(x_\alpha \) are right associates.

Next we note that \(\alpha = \infty, \) for Lemma 26 shows that \(\infty \notin \alpha. \) Now \(R = R(\infty) \) so that \(\infty = (\infty(\infty)) = \mathbb{R}(\infty) \subset \mathbb{R}(\infty) \). Therefore \(R = R(\mathbb{R}). \) It follows that \(R(\mathbb{R}) = R(\mathbb{R}+1) = \cdots. \) However \(\alpha = \alpha \) is the least ordinal such that \(R(\alpha) = R(\alpha+1) = \cdots \) by definition. Consequently \(\alpha = \infty \) and hence \(\alpha = \infty. \)

We are now able to state Theorem 5 for the present example as follows. The letter \(S \) denotes the set of polynomials of \(R \) with
non-zero constant terms (see Lemma 24).

Theorem 8 Each non-zero polynomial \(f \in R \) can be written as
\[
f = x_1^{n_1} \cdots x_s^{n_s}
\]
where \(n_i \) are positive integers, \(\alpha_1 > \cdots > \alpha_s > 0 \), and \(s \in S \). This expression is unique in the sense of Theorem 5. That is, if \(f = x_1^{m_1} \cdots x_h^{m_h} \) is another such factorization then \(h = k \), \(\alpha_i = \beta_i \), and \(n_i = m_i \) \((i = 1, 2, \ldots, k) \), and there is a unit \(u \in R \) such that \(s = ur \).
4. An example in the non-Bezout case

If \(R \) is not a right Bezout domain, we shall show by example that some of the desirable properties (e.g., Lemmas 20 and 21) need not hold. If \(R \) is an arbitrary integral domain we can define \(\dim a \) (\(a \in R^* \)) to be the sup of the lengths of the chains in \([aR, a] \) where \([aR, a] \) is the set of principal right ideals of \(R \) that contain \(aR \). However if \(R \) is not a right Bezout domain it seems unlikely that \(R^* = \{ a \in R \mid \dim a < \infty \} \) necessarily is a right quotient monoid (see Lemma 17). The construction of a \(J \)-chain employs the notion that if \(R^* \) has the right quotient conditions and if \(K = R(R^*)^{-1} \), then \(K \) has the right quotient conditions. Therefore it would be difficult to extend this construction to non-Bezout domains. However we can still define infinite primes as usual. Let \(R \) be an integral domain and let \(S \subseteq R^* \) be a right quotient monoid in \(R \). An element \(x \in R \) is called an \(S \)-prime iff \(xR \) is maximal in the set \(\{ xR \mid x \in R \setminus S \} \). We call \(R^* \)-primes \(\inf^{(1)} \)-primes as usual, and if \(R^{(\omega)} \) exists for some non-limit ordinal \(\omega \) as in Section 3.1 then we may speak of \(\inf^{(\omega)} \)-primes.

Let \(R \) be a local PID domain with maximal ideal \(\mathfrak{m} \) such that \(\{0\} \neq \mathfrak{m} = \bigcap_{n=0}^{\infty} \mathfrak{p}^n \) (for example we can let \(R \) be the domain described by Cohn in [5, p. 598] or we can construct \(R \) by taking \(\mathfrak{m} = 2 \) in the last example and localizing). If \(x \in R \) then \(\dim x = \infty \) iff \(xR \subseteq \bigcap_{n=0}^{\infty} \mathfrak{p}^n \). Hence \(R \setminus R^* = \mathfrak{m} \). Therefore \(a \) is the unique (up to right unit factor) \(\inf^{(1)} \)-prime of \(R \). Choose \(z \in R \) such that \(a = pz \). Then \(\dim z = \infty \) and so \(z = at \) for some \(t \in R \). Thus \(a = pat \). Evidently \(t \) is a unit, otherwise \(aR \not\subseteq \mathfrak{p}R \) contradicting the fact that \(a \) is an \(\inf^{(1)} \)-prime. Now \(aR \) is an ideal since \(\mathfrak{p}R \) is an ideal. Thus \(Ra \subseteq aR \). We define \(\sigma \) on \(R \).
by \(ra = ar^\sigma \) for each \(r \in R \). It is easy to check that \(\sigma \) is a monomorphism on \(R \), \(a^\sigma = a \), and \(p^\sigma \) is a unit (\(p^\sigma = t^{-1} \)).

Let \(K = R[[x, \sigma]] \) be the ring of skew formal power series in \(x \) with coefficients in \(R \) (written on the right of \(x \)). Addition is pointwise and multiplication is determined by the associative and distributive laws and by the commutation rule \(rx = x^{r\sigma} (r \in R) \) just as in the polynomial case. Then \(K \) is an integral domain with the property that each non-zero element in \(K \) is a unit iff it has a unit constant term in \(R \) (see Jategaonkar [7]).

Lemma 2.17 1) \(aK + xK = \bigoplus_{n=0}^{\infty} p^nK \), 2) \(aK \cap xK = xaK = xK \), and 3) \(aK + xK \) is not a principal right ideal.

Proof. Because \(a = pat = p^2at^2 = \ldots \) and \(x = pxt = p^2xt^2 = \ldots \), it follows that \(a \) and \(x \) belong to \(\bigoplus_{n=0}^{\infty} p^nK \) and therefore \(aK + xK \subseteq \bigoplus_{n=0}^{\infty} p^nK \).

To prove the reverse inclusion suppose \(g \in \bigoplus_{n=0}^{\infty} p^nK \). We can write \(g \) in the form \(\bar{g} = b + x\bar{g} \) where \(b \in R \), \(\bar{g} \in K \). Then \(b = g - x\bar{g} \in \bigoplus_{n=0}^{\infty} p^nK \). Hence \(b \in \bigoplus_{n=0}^{\infty} p^nR = aR \). Consequently \(g \in aK + xK \). Thus 1) is established. Now \(ax = xa \) because \(a^\sigma = a \). Therefore \(xa \in xK \cap aK \) and \(xaK \subseteq xK \cap aK \). If \(x\bar{f} = ag \in xK \cap aK \) then clearly \(g \) cannot have a constant term, so that \(g = x\bar{g} \) for some \(\bar{g} \in K \). Therefore \(x\bar{f} = ag = x\bar{g} = x\bar{g} \in xaK \). Thus \(xK \cap aK \subseteq xaK \) and 2) is established. To prove 3) suppose there exists \(d \in K \) such that \(aK + xK = dK \). Then \(a = dg \) for some \(g \in K \). Obviously both \(d \) and \(g \) belong to \(R \) because \(a \) belongs to \(R \). We claim that \(d \in R \setminus aR \), for if \(d \in aR \), then since \(x \in dK \) it follows that \(x \in aK \). Let \(f \in K \) such that \(x = af \). Clearly \(f \) must be a monomial, say, \(f = xb \) (\(b \in R \)). Then \(x = xab = xab \), \(1 = ab \), and \(a \) is a unit. This contradiction shows that \(d \in R \setminus aR \). It follows that \(d = pu \) where \(u \) is a unit in \(R \). Consequently
\[xK + eK = p^nK \text{ contradicting part 1). It follows that } xK + eK \text{ is not a principal right ideal.} \]

Lemma 28 Let \(f \in \mathcal{K}^* \). Then \(\dim_{\mathcal{K}} f < \infty \) if and only if \(f \) has a non-zero constant term \(b \) such that \(\dim_{\mathcal{K}} b < \infty \).

Proof. Assume \(\dim_{\mathcal{K}} f < \infty \). Let \(f = b + xe \) (\(b \in \mathcal{K}, \ ext{ and } e \in \mathcal{K}^* \)). Then since \(\dim_{\mathcal{K}} x = \infty \) it follows that \(b \neq 0 \). If \(b \in \mathcal{K} \) then \(f \in \mathcal{K}^* + xe = p^n\mathcal{P}^n \) and this implies that \(\dim_{\mathcal{K}} f = \infty \), a contradiction. Hence \(b \in \mathcal{K}^* \), and therefore \(\dim_{\mathcal{K}} b < \infty \). Conversely assume \(f \) has a non-zero constant term \(b \) such that \(\dim_{\mathcal{K}} b < \infty \). Then \(b \in \mathcal{K}^* \), so that \(b = p^n\mathcal{P} \) where \(u \) is some unit in \(\mathcal{P} \). Then \(f = p^n\mathcal{P} + xe = p^n\mathcal{P}(1 + u^{-1}x(p^n)^{-1}f) \); the left factor has finite dimension and the right factor is a unit in \(\mathcal{K} \).

Therefore \(\dim_{\mathcal{K}} f < \infty \).

Lemma 28 and the first part of Lemma 27 together yield the following.

Corollary \(\mathcal{K}/\mathcal{K}^* = eK + xK \).

Lemma 29 The set \(\mathcal{K}^* \) is a right quotient monoid.

Proof. Clearly \(0 \notin \mathcal{K}^* \), \(x \in \mathcal{K}^* \) and \(fg \in \mathcal{K}^* \) iff \(f, g \in \mathcal{K}^* \). Let \(f \in \mathcal{K} \) and \(g \in \mathcal{K}^* \). We must find \(\overline{f} \in \mathcal{K}, \overline{g} \in \mathcal{K}^* \) such that \(\overline{fg} = \overline{gf} \). We consider two cases.

Case 1: Assume \(g \in \mathcal{K}^* \). Let \(f = b_0 + xb_1 + \ldots \). Since \(\dim_{\mathcal{K}} g < \infty \), it follows that \(g^{\mathcal{K}} \) is a unit in \(\mathcal{K} \). Choose \(\overline{b_0}, \overline{g} \in \mathcal{K} \) with \(\dim_{\mathcal{K}} \overline{g} < \infty \) such that \(b_0\overline{g} = g\overline{b_0} \) (this is possible because \(\mathcal{K}^* \) is a right quotient monoid in \(\mathcal{K} \)). Let \(\overline{b_i} = (g^\mathcal{K})^{-1}b_i \overline{g} \) \((i = 1, 2, \ldots) \), and let \(\overline{f} = \overline{b_0} + \overline{xb_1} + \ldots \). Then \(\overline{fg} = \overline{gf} \) and \(\overline{g} \in \mathcal{K}^* \).

Case 2: Let \(g \) be arbitrary in \(\mathcal{K}^* \). Then \(g = p^n\mathcal{P} + xg' \) where \(u \) is a unit in \(\mathcal{P} \) and \(g' \in \mathcal{K} \) (by Lemma 28). Let \(h = 1 + u^{-1}x(p^n)^{-1}g' \).
then $g = p^n u h$ and h is a unit in K. By case 1 we can find $f' \in K$ and $g' \in K'$ such that $fg = (p^n u)f'$. Let $f = h^{-1}f'$. Then $fg = g f'$. \(\square \)

Because a is an inf(1) prime in \mathbb{R} it follows that a is an inf(1) prime in K. A simple argument shows that x is an inf(1) prime in K. Also it follows by the corollary to Lemma 23, Lemma 29, and Lemma 11 that $L = K(\alpha')^{-1}$ is a local domain. Thus Lemmas 20 and 21 do not hold for the present example.
CHAPTER IV

APPLICATION TO FINITE DIMENSIONAL ELEMENTS IN A RIGHT BEZOUT DOMAIN

4.1 Unique factorization and similar primes

In this section we use the Factorization lemma to obtain some results concerning prime factorization in a right Bezout domain \(R \). For this purpose we shall proceed to construct another collection of right quotient monoids in \(R \).

Let \(P \) be a set of primes in \(R \) such that each prime in \(R \) is similar to one and only one member of \(P \). For an arbitrary subset \(A \) of \(P \) we consider the set \(S_A \) of finite dimensional elements \(z \) of \(R \) such that \(z \) has no prime factor that is similar to any member of \(A \).

Lemma 30 Let \(R \) be a right Bezout domain. Let \(A \subset P \) where \(A \) and \(P \) are the sets described in the last paragraph, then \(S_A \) is a right quotient monoid.

Proof. Clearly \(0 \not\in S_A \) and \(1 \in S_A \). Now \(a \in S_A \), \(\overline{a} \in R \), \(a \sim \overline{a} \) implies \(\overline{a} \in S_A \) follows from Theorem 2. It is also true that \(ab \in S_A \) iff \(a, b \in S_A \). It then follows from the second part of Lemma 7 that \(S_A \) is a right quotient monoid. \(\Box \).

If \(A = P - \{ p \} \) where \(p \in P \), we shall denote \(S_A \) by \(S_p \), and if \(A = \{ p \} \), then we shall denote \(S_A \) by \(S_p \). We note that if \(p \) is a prime in a right Bezout domain \(R \) then \(K = R(S_p)^{-1} \) is a right Bezout domain with the property that all primes of \(K \) are similar to \(p \).

Definition An element \(a \) in an integral domain \(R \) is called \(p \)-primary if \(a \) is the product of primes that are similar to \(p \) where \(p \) is a prime in \(R \).
In a right Bezout domain \(R \) the set \(S \) is just the set of elements of \(R \) that are either \(p \)-primary or units. Now it is obvious that each element \(z \) in \(R \) is the product of \(p_1 \)-primary elements where \(p_1 \) are the primes that occur in a factorization of \(z \). With an additional hypothesis we are able to establish uniqueness of this primary factorization in two different respects.

Theorem 9 Let \(R \) be a right Bezout domain. Let \(z = \prod_{i=1}^{n} a_i \) be a factorization of \(z \) into \(p_i \)-primary elements \(a_i \) with \(p_i \neq p_j \) whenever \(i \neq j \). Then the factorization of \(z \) is unique in the sense that if \(z = \prod_{i=1}^{n} b_i \) is another such factorization of \(z \) then there are units \(u_1, \ldots, u_{n-1} \) in \(R \) such that \(a_i = u_i \prod_{i=1}^{n} a_i \) and \(b_i = u_i \prod_{i=1}^{n} b_i \) for \(i \neq 1, n \).

Proof. Let \(z = \prod_{i=1}^{n} a_i = \prod_{i=1}^{n} b_i \) be two primary factorizations of \(z \) such that \(p_i \neq p_j \) if \(i \neq j \). Let \(x_1 = \prod_{i=1}^{n} a_i \), \(s_1 = a_1 \), \(x_2 = \prod_{i=1}^{n} b_i \), \(s_2 = b_1 \) and \(s = s_1 s_2 \). Then the hypotheses of the second part of the factorization lemma are satisfied and hence \(x_1 = x_2 \) for some unit \(u \in R \). Theorem 9 now follows by induction. \(\square \)

Before stating the next theorem we note that if \(R \) is a weak Bezout domain and \(z \in R \) then the number of primes that are (pairwise) distinct in a prime factorization of \(z \) is invariant in any prime factorization of \(z \) (see Theorem 1).

Theorem 10 Let \(R \) be a right Bezout domain. If \(z \) is a non-unit in \(R \) and \(z = \prod_{i=1}^{n} a_i = \prod_{i=1}^{n} b_i \) are two primary factorizations of \(z \) such that \(a_i \) is \(p_i \)-primary, \(b_i \) is \(q_i \)-primary, \(p_i \neq q_j \) if \(i \neq j \), and \(q_i \neq q_j \) if \(i \neq j \) then \(n = n \) and there is a permutation \(\Pi \) on \(\{1, 2, \ldots, n\} \) such that \(a_{\Pi(i)} = b_{\Pi(i)} \) (\(i = 1, 2, \ldots, n \)).
Proof. Suppose \(a p_1 \cdots a p_n = b q_1 \cdots b q_m \) as in the hypotheses. That
\(n = n \) follows from the preceding remarks. To prove uniqueness up to
similarity we induct on \(n \). If \(n = 1 \) there is nothing to prove. If \(n = 2 \)
then \(a p_1 p_2 = b q_1 q_2 \). If \(p_1 \sim q_1 \) then \(a p_1 = b q_1 \) for some unit \(u \in \mathbb{R} \) by the
Factorization lemma. (Let \(B \) be the subset of \(P \) consisting of those and
only those primes that are similar to some member of \(\{ p_2, q_2 \} \), let
\(A = P - B \), \(S = S \), \(x_1 = a p_1 \), \(x_2 = b q_1 \), \(s_1 = a p_2 \), \(s_2 = b q_2 \), and apply the
second part of the Factorization lemma). If \(p_1 \not\sim q_1 \) then \(a p_1 q_1 + b q_1 = R \)
(otherwise \(a p_1 \) and \(b q_1 \) would have a common prime factor). Let \(a \in A \)
such that \(a p_1 \cap b q_1 = m \), \(a p_1 = b q_1 \) \(\bar{a} = m \). Thus \(a p_1 \sim \bar{a} \), \(b q_1 \sim \bar{b} \). Now
\(a p_1 \cap b q_1 = m \) so that \(a p_1 a p_1 = b q_1 b q_1 = a p_1 \bar{b} \bar{r} = b q_1 \bar{a} \) for some \(\bar{r} \in \mathbb{R} \). Hence
\(a p_1 = \bar{b} \bar{r} \) and \(b q_1 = \bar{a} \bar{r} \). If \(r \) has a prime factor then that prime factor
must be similar to both \(q_2 \) and \(q_2 \), i.e., \(p_2 \sim q_2 \) and hence \(p_1 \sim q_1 \), a con-
tradiction. Hence \(r \) is a unit. It follows that \(a p_1 \sim b q_1 \) and \(b q_1 \sim a p_1 \).
Let \(z = a p_1 \cdots a p_n = b q_1 \cdots b q_n \) with \(n \geq 3 \) and assume that the
theorem holds for integers less than \(n \). If \(p_1 \sim q_1 \) then again we find
\(a p_1 = b q_1 \) for some unit \(u \in \mathbb{R} \) by the Factorization lemma. (let \(B \) be the
subset of \(P \) consisting of those and only those primes that are similar
to some member of \(\{ p_2, \ldots, p_n, q_2, \ldots, q_m \} \), let \(A = P - B \), \(S = S \),
\(x_1 = a p_1 \), \(x_2 = b q_1 \), \(s_1 = a p_2 \cdots a p_n \), \(s_2 = b q_2 \cdots b q_n \)). Hence
\(a p_1 \cdots a p_n = u^{-1} b q_1 \cdots b q_n \) and the theorem follows by induction. If \(p_1 \not\sim q_1 \)
then \(p_1 \sim q_k \) where \(k \geq 1 \). Then for each \(i \leq k-1 \), \(a p_1 + b q_1 \cdots b q_i = R \),
and \(a p_1 \cap b q_1 \cdots b q_i = m_i \) where \(m_i = a b_i = b q_1 \cdots b q_i a_i \) for some
\(b_i, a_i \in \mathbb{R} \). Hence \(a p_1 \sim a_i \). Now \(z \in m_i \) so \(z = a p_1 b q_1 = b q_1 \cdots b q_i a_i \) for
some \(r_i \in \mathbb{R} \). Hence \(b q_1 \cdots b q_i = a i r_i \). In particular \(b q_1 \cdots b q_n = c_{k-1} a r_{k-1} i \).
Since \(a q_i \sim a p_i \) the prime factors of \(a q_i \) are similar to \(p_1 \) and since
\(p_1 \sim q_k \) the prime factors of \(b q_k \) are similar to \(p_1 \). If \(n = n \) then \(r_{k-1} \)
is a unit. If \(k < n \), let \(S \) be the subset of \(P \) consisting of those and only those primes that are similar to some member of \(\{ q_k+1, \ldots, q_n \} \)

let \(A = P \setminus S \), \(S = S_k \), \(x_1 = b_{q_k} \), \(x_2 = a_{q_{k+1}} \), \(x_i = b_{q_i} \), \(s_1 = b_{q_{k+1}} \), \(s_2 = a_{q_{k+1}} \).

Then by the second part of the Factorization lemma we obtain a unit \(u \in \mathbb{R} \) such that \(\frac{b}{q_k} = a_{q_{k-1}} \). Hence in either case \(b_{q_k} = a_{q_{k-1}} u \) for some unit \(u \) and \(\frac{b_{q_{k+1}} \cdots b_{q_n}}{q_{k+1} \cdots q_n} = \frac{x_{k-1}}{x_{k-1}} (u = x_{k-1} \text{ if } k = n) \). Also \(a_q \sim b_q \) since \(a_q \sim a_{q_{k-1}} \).

Now \(x_1 \sim \cdots \sim x_{k-1} \) and so \(x_{i+1} = x_i x_i \) for some \(x_i \). Then

\[
\begin{align*}
\frac{a_{p_1} b_{i+1}}{x_1} &= \frac{n_{i+1}}{n_1} = \frac{n_{i+1}}{n_1} b_{i+1}^{n_1} \text{ and hence } b_{i+1} = b_{i+1}^{n_1}.

b_{k-1} = \frac{x_{k-1} b_{k-1}}{b_{k-1}} \text{ (if } k = 2) \text{. From } n_{i+1} = n_i x_i \text{ we also obtain }

b_{q_1} \cdots b_{q_i} = \frac{n_{i+1}}{n_1} = \frac{n_{i+1}}{n_1} = \frac{b_{q_1} \cdots b_{q_i}^{n_1}}{i+1} \text{ and hence } b_{q_i+1} = a_{q_i+1} = a_{q_i+1}^{n_i}.

Since \(a_{q_i+1} \sim a_{q_i} \), it follows by induction that \(b_{q_i+1} \sim n_{i+1} \).

z = a_{p_1} \cdots a_p = \frac{p_{k-1}}{b_{k-1}} \cdot b_{k-1} = b_{k-1}^{n_{k-1}} \cdots b_{k-1} \text{ and } \frac{b_{k-1}}{b_{k-1}} \sim \frac{q_{k+1}}{q_{k+1} \cdots q_n}

we obtain \(a_{p_2} \cdots a_p = b_{k-1}^{n_{k-1}} \cdots b_{k-1} \frac{q_{k+1} \cdots q_n}{p_{k-1}} \frac{q_{k+1} \cdots q_n}{p_{k-1}} q_{k+1} \cdots q_n \) (if \(k = n \)). It follows by induction that the members of the two sets

\[
\{a_{p_1}, \ldots, a_p\} \quad \text{and} \quad \{b_{q_1}, \ldots, b_{q_n}\} (u = \frac{c_{k+1}}{x_{k+1}}, \ldots, b_{c_n})
\]

\[
\{b_{q_1}, \ldots, b_{q_n}, b_{x_i+1} \cdots b_{x_i}\} \quad \text{and} \quad \{b_{q_1}, \ldots, b_{q_n}, b_{x_i+1} \cdots b_{x_i}\}
\]

may be paired into similar pairs. Since \(b_{q_1} \sim b_{q_1} \) and \(\frac{b_{q_1}}{x_1} \sim b \), the members of the sets \(\{a_{p_1}, \ldots, a_p\} \) and \(\{b_{q_1}, \ldots, b_{q_n}, b_{x_i+1} \cdots b_{x_i}\} \) \((u = \frac{c_{k+1}}{x_{k+1}}, \ldots, b_{c_n}) \) if \(k = n \) may be paired into similar pairs. \(\square \).
If \(R \) is a commutative right Bezout domain the hypothesis in Theorem 9 is trivially satisfied, however in general this hypothesis need not hold. It is also true that the number of primary factors in primary decompositions of an element may vary. The following example which is considered by Johnson in [1] illustrates such phenomena.

Before proceeding we shall need a lemma. If \(p_1, \ldots, p_n \) are primes, then \(z = p_1 \cdots p_n \) is called a rigid factorization of \(z \) and \(z \) is called rigid if the only other prime factorizations of \(z \) have the form \(z = (u_1 p_1^{-1} p_2 u_2) \cdots (u_{n-1} p_n u_n) \) where \(u_1, \ldots, u_{n-1} \) are units in \(\Lambda \) (this terminology is used by Cohn in [3] and [4]).

Lemma 32. Let \(R \) be a weak Bezout domain. Let \(p \) and \(q \) be primes in \(R \) such that \(pq, qp, p^2, q^2 \) are rigid. If \(n > 0 \) and \(r_i \in \{p, q\} \) (i = 1, 2, ..., n), then \(z = r_1 \ldots r_n \) is rigid.

Proof. The proof is by induction. If \(n = 1 \) or \(n = 2 \) there is nothing to prove. Assume \(n \geq 3 \) and let \(z = r_1 \ldots r_n = s_1 \ldots s_n \) where \(s_i \) are arbitrary primes and \(r_1 \in \{p, q\} \). Since \(R \) is a weak Bezout domain we may choose \(d, d_i, s_i \in R \) such that \(r_1 R + s_1 R = d R, r_1 R \cap s_1 R = m R, \) and \(n = r_1 s_1 = s_1 r_1 \). If \(r_1 R = s_1 R \) then \(r_1 \) and \(s_1 \) are right associates. Cancelling these factors in \(z \) the lemma follows by induction. Hence we assume that \(r_1 \neq s_1 R \), then \(r_1 R \nsubseteq d R \) and so \(d R = R \) since \(r_1 \) is prime. Hence \(s_1 \sim s_1 \) and therefore \(s_1 \) is prime. Now \(z \in r_1 R \cap s_1 R \) implies that \(r_1 \ldots r_n = r_1 s_1 x \) and hence \(r_2 \ldots r_n = s_1 x \) for some \(x \in R \). Applying induction we obtain \(r_2 = s_1 u \) for some unit \(u \in R \). From \(r_1 s_1 = s_1 r_1 \) we obtain \(r_1 r_2 = s_1 r_1 u \).

Again by induction there is a unit \(v \in R \) such that \(r_1 = s_1 v \). Therefore \(r_1 r_2 = s_1 r_1 u \), a contradiction. Q.E.D.

Let \(R = F[x, \sigma] \) be the ring of skew polynomials described earlier
In Chapter 1, where $F = Z_2(t)$ is a transcendental extension of Z_2, the
ring of integers modulo 2. We take σ to be the endomorphism on F defined
by $a^\sigma = a^2$. Thus R is a PLI domain (but not a PLI domain) with mul-
tiplication determined by the formula $ax = xa^2 (a \in F)$.

It is obvious that if $a \in F$ then $a + x$ is prime in R. Further the
equation $(a + x)(b^2a^{-2}) = ba^{-1}(b + x)$ shows that $a + x \sim b + x$ if a
and b are both non-zero. Conversely if $0 \not= a \in F$, then $a + x \not\sim x$, for

otherwise $xx + fR = R$, $xx \cap fR = f(x + a)R$, and $f(x + a) = xg$ for some
$f, g \in R$. Now since $xx + fR = R$, f must have a constant term unequal
to zero. Therefore from $f(x + a) = xg$ we must obtain $g = 0$. Hence
$f = 0$, a contradiction.

It is also interesting to note that in any polynomial domain
R over a field F, if $f \sim g$, then $\deg f = \deg g$. For $f \sim g$ implies
$R/fR \cong R/gR$ as R-modules and therefore also as F-modules. Hence R/fR
and R/gR must have the same vector space dimension over F. Evidently
the dimension of R/fR over F is the degree of f because if
$f = x^n + x^{n-1}a_{n-1} + \ldots + a_0$ (without loss in generality we assume that
f is monic) then $\{x^{n-1}, \ldots, x, 1\}$ is a basis for R/fR over F. Similar
remarks apply for g and therefore $\deg f = \deg g$.

It has already been noted that $1 + x$ is prime and it can be
verified that $t + x^2$ is prime. We shall now show that these two primes
satisfy the hypotheses of Lemma 32.

Lemma 33 In $R = (Z_2(t))[x, \sigma]$ the following elements are
rigid: $(1 + x)(t + x^2)$, $(t + x^2)(1 + x)$, $(1 + x)^2$, and $(t + x^2)^2$.

Proof. To show that $(1 + x)(t + x^2)$ is rigid suppose that
$(1 + x)(t + x^2) = pq$ where p and q are primes in R. Clearly we may
assume that p and q are monic polynomials. By Theorem 1 p is similar to one of $(1 + x)$, $(t + x^2)$ and q is similar to the other. Therefore there are two cases.

Case 1: $\deg p = 2$ and $\deg q = 1$. Then $p = d + xc + x^2$ and $q = a + x$ for some a, c, $d \in F$. Expanding $(1 + x)(t + x^2) = (d + xc + x^2)(a + x)$ and equating corresponding coefficients we obtain $t = da$, $t = ca + c^2$, and $t = a + c^2$ which yield $t^2(a^4 + t^2) = a^6(1 + a)$. Let $a = f/g$ where f and g are relatively prime polynomials in $\mathbb{Z}_2[t]$. Then by substituting in the last equation we obtain $t^4g^7 = f^4(t^2g^3 + f^3 + f^2g)$. Therefore t^4 must divide the right side of the last equation. Because f and g are relatively prime it follows that t/f, say, $f = tf'$. Then $g^7 = t^2f'i^4(g^3 + tf'i^3 + f'i^2g)$, and so t/g, a contradiction. That is, Case 1 is not possible.

Case 2: $\deg q = 2$ and $\deg p = 1$. Then $p = a + x$ and $q = d + xc + x^2$ for some a, c, $d \in F$. Expanding the equation $(1 + x)(t + x^2) = (a + x)(d + xc + x^2)$ and equating corresponding coefficients we obtain $t = ad$, $t = d + a^2c$, and $1 = a^4 + c$ which yield $t(1 + a) = a^3(1 + a)^4$. If $1 + a \neq 0$ then $t = (a(1 + a))^3$, and this is not possible. Therefore $1 + a = 0$, i.e., $a = 1$. It follows that $d = t$ and $c = 0$. Hence $p = 1 + x$ and $q = t + x^2$.

Similar arguments are used to prove that $(t + x^2)(1 + x)$, $(t + x^2)^2$, and $(1 + x)^2$ are rigid. ODD.

Combining Lemmas 32 and 33 it follows that any product whose factors belong to $\{(1 + x), (t + x^2)\}$ is rigid. In particular $z = (1 + x)(t + x^2)(1 + x)$ is rigid. Also $(1 + x)$ and $(t + x^2)$ are not similar because they have different degrees. Hence z cannot be given a primary factorization of the type described in the hypothesis of
Theorem 9. Finally we note that the number of primary factors in primary factorizations of a given element is not necessarily a constant. For if $0 \neq a \in F$ then the equation $x(a + x)x = x^2(a^2 + x)$ contains three primary factors on the left side and two primary factors on the right side.
BIBLIOGRAPHY

