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ABSTRACT 

 

 

DEVELOPING A CHRONOLOGY FOR THINNING OF THE LAURENTIDE ICE SHEET IN 

NEW HAMPSHIRE DURING THE LAST DEGLACIATION 

by 

Taylor Hodgdon 

University of New Hampshire, September 2016  

 

 Well-constrained ages for the retreat of the Laurentide Ice Sheet (LIS) have been 

developed at key sites throughout New England, providing a framework for the deglacial history 

of the region. Previous work has focused primarily on documenting retreat of the ice sheet 

margin, but few studies have attempted to reconstruct changes in ice sheet geometry and flow 

patterns during its recession. This study provides the first direct age control on the thinning of 

the LIS in central and southern New Hampshire during the last deglaciation. In situ cosmogenic 

10Be exposure ages were developed from four glaciated summits, in order to determine when 

each mountain top emerged from the ice as it thinned. Exposure ages indicate the southernmost 

summit in the study (Mt. Monadnock) was exposed at 15.4 ± 0.2 ka, and the northernmost peak 

(Mt. Dickey) was exposed at 13.1 ± 0.2 ka.  This age range supports a period of rapid ice surface 

lowering in New England. Striation measurements collected both from this study and previously 

published literature were analyzed to observe how ice flow patterns evolved in this region.  The 

striations at the lowest elevations display a wider azimuthal range than those found at the highest 



 

ix 

 

elevations, indicating the development of strong topographic control on ice flow as thinning 

occurred. Three-dimensional ice sheet surfaces were modeled to display changes in ice sheet 

geometry, and suggest an increased rate of thinning from 1 m/yr to 2 m/yr at ~15 ka coinciding 

with the start of the Bølling Allerød warm period. This study provides valuable new insight on 

LIS thinning and flow patterns in New Hampshire and suggests potential links between changes 

in ice sheet geometry and regional paleoclimate forcings. 
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Chapter I: Introduction 

 

1.1: Project Overview 

 

 New England has long been the focus of glacial-geologic studies due to the abundance of 

glacial features covering the landscape.  Agassiz (1870) was one of the first to provide evidence 

that glaciers once occupied the White Mountains.  Early hypotheses stated that this region was 

dominated solely by alpine glaciers due to lack of “grooved patterns” outside of the White 

Mountains (Jackson, 1844).  The hypothesis for a continental ice sheet in New Hampshire was 

not proposed until many years later and was not widely accepted until the work of Goldthwait 

(1916).  The Laurentide Ice Sheet (LIS) reached its maximum extent (Fig. 1) in New England 

26.1 ka (Balco et al., 2002; Balco et al, 2009) at the onset of the Last Glacial Maximum (LGM) 

between 26.5 and 20 ka (Clark et al., 2009). The chronology of ice recession in New England 

since the LGM is based primarily on basal 14C ages from modern lacustrine environments and 

varve records in proglacial lake sediments (Thompson et al., 1999; Ridge and Toll, 1999). These 

records indicate rapid retreat, roughly 300 m/yr, of the LIS margin across New Hampshire during 

the last deglaciation (Ridge et al., 2012). However, the radiocarbon and varve-based records rely 

on indirect dating of ice margin positions and do not provide any detail on ice sheet surface 

geometry.  Recent studies have employed cosmogenic nuclide surface exposure dating on 

moraines and bedrock surfaces throughout New England (Balco et al, 2002; Balco et al., 2009, 

Bromley et al., 2015, Bierman et al., 2015; Davis et al., 2015) to refine the retreat chronology of 

the LIS. However, only two studies in this region have attempted to develop a timeline for ice 

surface lowering (Davis et al., 2015; Bierman et al., 2015). When ice thinning and margin retreat 

chronologies are combined they provide a view of LIS surface geometry and volume that can be 
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Figure 1: Map of Laurentide Ice Sheet during the height of the Last Glacial Maximum (Dyke 

et al., 2002).  The red box marks the extent of the New Hampshire area. 

used to determine how the ice sheet responded to climatic changes during recession.  Thus, the 

primary objective of this study is to develop a chronology for thinning of the LIS using in situ 

10Be exposure dating of surfaces on once-glaciated summits in south-central New Hampshire.  

Another objective of this study is to combine cosmogenic 10Be ages and striation measurements 

from this study with previously documented ice flow measurements and 14C ages on ice margin 

positions so that ice sheet surfaces can be reconstructed to track changes in LIS geometry 

through time. 
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1.2: Geologic Setting 

 This study focuses on central and southern New Hampshire, which represents a large 

geographic gap in the documented chronology of LIS retreat.  Bedrock in New Hampshire is 

composed primarily of metamorphic and metasedimentary units that formed during the orogenies 

responsible for the uplift of the Appalachian mountain range.  These units form the backbone of 

the Appalachians in New Hampshire and are dominated by micaceous schists and phyllites 

(Lyons et al., 1997).  The metamorphic basement rocks were later intruded by two plutonic units 

comprising the White Mountain Magma Series (220-155 Ma) and the New Hampshire Plutonic 

Series (130-100 Ma), which are composed primarily of felsic igneous rocks rich in quartz and 

silica bearing minerals (Creasy and Eby, 1993).  The peaks sampled in this study include Mts. 

Monadnock, Cardigan, Dickey, Major, Kearsarge, and Chocorua. Mts. Monadnock and Cardigan 

are composed primarily of folded schists but have an abundance of large quartz veins across the 

summits that formed due to stresses on the bedrock.  Mt. Dickey is composed of granitic units 

containing an abundance of quartz and feldspars.  The summit of Mt. Major consists of two 

major lithologic units, one composed of granite rich in plagioclase megacrysts and the other a 

quartz syenite. Each peak, with the exception of Mt. Chocorua, also retains glacial striae and in 

some cases glacial polish on bedrock, indicating original ice-sculpted surfaces.  The abundance 

of original surfaces and the presence of quartz on these peaks provide ideal targets for 10Be 

exposure dating.   
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1.3: LIS Retreat Chronology 

1.3.1: Varve Records 

 Varve records are a critical proxy for dating LIS recession as varves form in proglacial 

lake environments where annual sediment layers are deposited from glacial meltwater.  Sediment 

layers in varve sequences typically fine upwards, displaying the loss of energy for a specific site 

through time as it becomes more distal to the ice margin (Benn and Evans, 2010).  Coarse-

grained basal varve layers resting directly on till are interpreted as minimum age markers for an 

ice sheet’s margin because they mark the time and location of sediment deposition immediately 

following ice recession. Cores of varved sediments collected along transects in the general 

direction of ice recession can therefore be used to develop a retreat chronology for an ice sheet 

using basal layers in each core.  Early efforts to piece together a chronology associated with the 

LIS were led by Antevs (1922) who documented the first glacial varves in the Connecticut River 

valley associated with Glacial Lake Hitchcock.  The varve record complied by Antevs (1922, 

1928) provided the first estimate of retreat rate of 73 m/yr for the LIS in New Hampshire and 

also supplied the first evidence of a readvance associated with the Littleton-Bethlehem 

recessional moraine.  Alone, varve sequences only provide a “floating” chronology of ice 

recession, but they can be tied to calendar ages through correlation with 14C dated layers (Ridge, 

2003). 

 Two primary methods have been employed to establish the New England Varve 

Chronology sequence provided by Antevs (1922, 1928): paleomagnetism and radiocarbon 

dating. McNish and Johnson (1938) and Johnson et al. (1948) were the first to use the remnant 

declination of varve layers in the Upper Connecticut River Valley to correlate sequences of 
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varves between core sites to identify overlapping chronologies. Later radiocarbon dating of both 

basal and ice-proximal varves was used by Ridge and Larson (1990) and Ridge and Toll (1999) 

to date fossils and organic matter found within Glacial Lakes Hitchcock and Merrimack, 

providing a framework for the calibration of the New England Varve record to calendar ages.  

Later, the New England Varve Chronology was recalibrated and renamed the North American 

Varve Chronology by Ridge (2012) after finding the New England Varve Chronology was 

missing varve layers.  Ridge (2012) recalibrated 54 14C ages from the original New England 

Varve record using CALIB 6.0 and IntCal09 to fill previous gaps, most notably in Claremont 

N.H. (CL), generating an updated and unified varve record (Fig. 2). Calibrated basal 14C ages of 

varves from Glacial Lake Hitchcock place the margin of the LIS at the southernmost border of  

 

 

New Hampshire at 15.5 cal ka and 13.4 cal ka near the northern tip of the state (Ridge, 2003).  

Varve ages from south of Claremont document an ice retreat rate of roughly 90 m/yr between 

15.5 to 14.6 cal ka (Ridge, 2003), slightly higher than the rate originally proposed by Antevs 

Figure 2: Map of basal 14C 

ages from North American 

Varve Chronology record. 

Ages are calibrated using 

CALIB 6.0 and INTCAL-

09.  Letters indicate 

specific moraine 

sequences or locations: LB 

= Littleton-Bethlehem 

moraine, CL = Claremont 

N.H., BB = Buzzards Bay 

(Ridge 2003, updated 

http://eos.tufts.edu/varves/

navc).   
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(1922, 1928).  After 14.6 cal ka the rate of retreat increases to 300 m/yr until a pause or 

readvance occurs during the deposition of the Littleton-Bethlehem moraine sequence at 13.8 cal 

ka (Figure 3; Ridge, 2012).  

 

 

 

 

 

 

 

 

 

1.3.2: Radiocarbon Dated Lake Sediment Records 

 Thompson et al. (1999) attempted to refine the chronology of deglaciation in northern 

New Hampshire through radiocarbon dating of sediment cores recovered from modern lacustrine 

environments.  Similar to varves, when lake sediments are found directly overlying glacial till, 

the basal layers of the core are interpreted to provide minimum ages of ice retreat.  These ages 

are likely to be younger than the actual timing of deglaciation due to a lag time effect that occurs 

when terrestrial organisms die and have a prolonged transport time until they are finally 

deposited in lake sediments (Davis and Davis, 1980).  Another potential issue is ecesis, the time 

Figure 3: Transect of 14C 

ages in basal and ice-

proximal varves from 

Glacial Lake Hitchcock.  

Transect starts at southern 

margin of Glacial Lake 

Hitchcock and ends at the 

northern margin. 

Corresponding varve years 

are seen in relation to 14C 

ages.  Blue section displays 

retreat rate of ice from 15.5 

to 14.6 ka.  Red section 

displays increased retreat 

rate from 14.6 to 13.8 ka. 

(Ridge et al., 2012).   
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required for plants to become established in recently deglaciated landscapes (Sigafoos and 

Hendricks, 1969).  Therefore, the basal 14C ages developed in lake cores provide only minimum 

limiting ages associated with deglaciation.   

 Thompson et al. (1999) compiled basal 14C ages from 15 lake sediment cores north of the 

White Mountains (Fig.4) and found a close correlation to the timing of deglaciation associated 

with the North American Varve Chronology record, further strengthening the ice retreat 

chronology.  The Littleton-Bethlehem moraine complex was a main focus of this study as it was 

thought to mark a period of readvance for the LIS.  Recalibrated basal 14C ages collected just 

south of the moraine complex (Table A2) suggest deposition occurred roughly 14.6 cal ka 

directly preceding the Older Dryas, a brief 200 year-long cold interval that occurred roughly 13.9 

ka, in the middle of the Bølling Allerød warming period (Iverson, 1953).  While radiocarbon 

dating has proven useful for developing an initial chronology of ice recession in New England, 

its use is limited to areas containing dateable organic materials, such as once-active glacial lakes 

and modern lacustrine/bog environments.   

 

 

 

 

 

 

 

Figure 4: Recalibrated basal 14C ages from 

lake sediment cores in northern New 

England (Thompson et al., 1999).  

Littleton-Bethlehem moraine sequence is 

located between (4) and (5).  



 

 

8 

 

1.3.3: Cosmogenic 10Be Exposure Ages 

 To further constrain the LIS retreat chronology, cosmogenic 10Be exposure dating has 

been utilized on bedrock and glacial erratics in parts of New England.  One major advantage of 

10Be exposure dating is that it allows for the direct dating of glacial features and comparison of 

the dated landforms to known climatic events.  All 10Be ages reported and discussed in this study 

are calculated using the regional production rate from Balco et al. (2009) (See Table A1). One of 

the earliest 10Be exposure dating studies in New England was conducted on the Martha’s 

Vineyard terminal moraine and Buzzards Bay recessional moraine in Massachusetts (Balco et al., 

2002).  The results from this study indicate that the maximum extent of the LIS occurred in New 

England about 26.1 ± 1.5 ka (Balco et al., 2002), which is consistent with radiocarbon ages that 

bracket the moraine between 28.0-23.6 cal ka (Davis and Jacobson, 1985).  Located roughly 2 

km north of the Martha’s Vineyard moraine, the Buzzards Bay recessional moraine has ages of 

20.8 ± 1.3 ka, indicating marginal retreat during the initial phase of deglaciation (Balco et al., 

2002).   

 Focusing in New Hampshire, 10Be exposure ages were developed from the Androscoggin 

and Littleton-Bethlehem moraine complexes located in northern New Hampshire (Bromley et al., 

2015).  These two prominent moraine complexes are located at roughly the same latitude and are 

separated by about 30 km (Bromley et al., 2015). 10Be ages obtained from the crest of the 

Androscoggin moraine date yield a mean age of 13.2 ± 0.4 ka, which corresponds within 1σ 

uncertainty to a mean age of 13.8 ± 0.2 ka from the eastern portion of the Littleton-Bethlehem 

moraine (Bromley et al., 2015).  This pause in deglaciation has been attributed to a colder period 
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of the Allerød, as suggested earlier by Thompson et al. (1999) to explain the deposition of the 

Littleton-Bethlehem moraine.  

1.4: LIS Thinning Chronology 

 While recession of the ice margin throughout New Hampshire is relatively well 

documented, the pattern of thinning for the LIS is not well understood.  Several studies have 

used numerical modeling to simulate how the LIS thinned while it receded through North 

America (Licciardi et al., 1998; Marshall et al., 2000; Peltier, 2004).  While the models predict 

varying maximum ice thicknesses in central portions of the LIS, all of these simulations estimate 

an ice sheet thickness of ~2 km in New Hampshire during the LGM.  Modeling studies have also 

provided insight on how the surface geometry of the LIS evolved through the deglaciation and 

how it may have responded to climatic events.  

 In addition to modeling, two recent studies have attempted to reconstruct changes in ice 

sheet surface geometry through 10Be exposure dating of once-glaciated summits.  By matching 

10Be ages from the summits of mountains with ice marginal features of similar age to the south, 

ice sheet profiles can be generated.  Davis et al. (2015) followed this approach in Maine and 

produced an ice sheet profile connecting the Basin Ponds moraine at the base of Mt. Katahdin to 

the Pineo Ridge moraine system near the Maine seacoast (Fig. 5).  Cosmogenic 10Be exposure 

ages were obtained from samples located on both the summit areas and from moraines deposited 

on the eastern flank of the mountain.  An average age of 15.3 ± 2.1 ka was calculated from six 

samples on the Katahdin uplands, and interpreted to reflect when the summit initially emerged 

through the ice sheet as a nunatak (Davis et al., 2015).   Six ages from Basin Ponds moraine 

provide an average age of 16.1 ± 1.2 ka, indicating rapid thinning of LIS ice that occurred in this 
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area (Davis et al., 2015).  The Pineo Ridge moraine system, 200 km southeast from Mt Katahdin 

has an average exposure age of 17.5 ± 1.1 ka. Ages from this moraine are consistent within 1σ 

uncertainty of the ages developed from the Basin Ponds moraine at Katahdin, indicating that 

both of these moraines were likely deposited at the same time (Davis et al., 2015). 

  

 

 

 

 

 

 

 

 

 In New Hampshire, the high summits of Mt. Washington and Little Haystack were 

sampled using 10Be exposure dating to determine the time of deglaciation (Bierman et al., 2015).  

Five samples collected from the summit of Mt. Washington yielded ages ranging from 156 ka to 

17.9 ka (Bierman et al., 2015).  One sample from Little Haystack produced an age of 59.6 ka 

(Bierman et al., 2015). These ages are not consistent with lowland ages, such as those developed 

in Maine (Davis et al., 2015). However, these older ages do provide valuable insight into the 

basal properties of the LIS at higher elevations.  Bierman et al. (2015) concluded that the ice 

Figure 5: Transect and 

accompanying ice sheet profile 

connecting the Basin Ponds 

Moraine (Katahdin) and the 

Pineo Ridge Moraine System on 

the coast.  Isochrones are shown 

in 14C years and dashed black 

lines represent major moraine 

sequences (Davis et al., 2015).  
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covering these high peaks was likely thin and weakly erosive, which may explain the presence of 

inherited nuclides that increase the exposure ages. 

1.5: LIS Flow Patterns  

 Striations and other ice flow indicators provide a unique insight into the flow patterns of 

the ice sheets that created them.  Numerous studies have examined ice flow patterns throughout 

New England to determine both regional and localized ice flow patterns for the LIS during and 

after the LGM (Hitchcock, 1878; Wheelock, 1873; Goldthwait et al., 1951; Wright, 2015).  

Regional ice flow in New England was generally south-southeast (Antevs, 1922), however 

localized flow patterns appear to vary drastically across the region (Wright, 2015).  Several sites 

display zones of cross-cutting striations which indicate two different ice flow patterns at the 

same location.  Early work by Wheelock (1873) first noted patterns of cross cutting striations on 

the south eastern face of Mount Monadnock.  Subsequent work in the region provided detailed 

mapping of striations to depict higher resolution ice flow patterns (Billings, 1949).  Zones of 

cross-cutting striations have also been noted throughout Vermont (Doll et al., 1970; Wright, 

2015), all in areas of high topographic relief.  Two hypotheses were developed by Wright (2015) 

to explain these localized ice flow changes.  The first states that ice flow patterns may have 

shifted due to readvances in low-lying valleys.  The second proposes that as the LIS thinned in 

the region, ice became topographically confined in low-lying valleys that once displayed 

regional ice flow patterns.  

 Recent ice flow studies have focused primarily on Vermont as there are over 2,000 

striations that have been mapped in the state, providing a detailed view of ice flow. Some of the 

first striation data for Vermont were compiled by Flint (1957), who recognized distinct changes 
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in ice flow at different elevations.  Later, surficial mapping conducted by Stewart and 

MacClintock (1970) showed three distinct “till sheets” that formed across Vermont, and 

subsequent work by Larson (1972) and Munroe et al. (2007) utilized erratics and traced their 

lithologies back to the host rocks to determine ice flow direction.  More recent ice flow work in 

Vermont by Wright (2015) has focused on the Champlain River valley and valleys east of the 

Green Mountains as thevalleys were a major output source for ice streaming from the LIS toward 

the end of the LGM. The results from Wright (2015) indicated that as the LIS thinned in 

Vermont, the ice no longer displayed the regional southeast ice flow pattern as it became 

topographically confined in two main north-south drainage valleys.  Striations measured on the 

majority of summits and ridges in Vermont display a notable shift in dominant ice flow from 

southeast to south, parallel to the drainage basins.  No similar studies on ice flow have been 

conducted in New Hampshire at this level of detail.  
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Chapter II: Methods 

2.1: Field Work  

 Samples were collected for 10Be exposure dating during the summer of 2015 with access 

permits acquired from both the U.S Forest Service and the New Hampshire State Parks 

department.  To attain a representative view of the retreat chronology and ice flow direction in 

New Hampshire, six mountains in the proposed field area were selected as the primary focus for 

the study: Mts. Monadnock, Cardigan, Major, Chocorua, Kearsarge, and Dickey (Fig. 6). These 

mountains were selected due to their exposed bedrock, preservation of striated landforms, rock 

type, and regional location. The peaks also serve to fill a geographic gap between the LIS extent 

and the Littleton-Bethlehem and Androscoggin moraine sequences where numerous retreat ages 

have been determined (Thompson et al., 1999, Balco et al., 2009, Bromley et al., 2015).  

Samples from Mt. Major were all collected from the summit where bedrock surfaces are most 

abundant.  Three of the four samples were taken from bedrock, two from the Albany Quartz 

Syenite and one from the Meredith Porphyritic Granite.  The fourth sample was taken from a 

large erratic composed of an unknown granitic unit.  Three samples from Mt. Cardigan were 

collected from quartz veins cutting across the bedrock near the summit and a fourth was 

collected from a quartz vein 60 m below the summit.  Only three samples were collected from 

Mt. Dickey, two from bedrock surfaces on the summit and a third from bedrock 100 m below the 

summit along an exposed ridgeline.  The four samples collected from Mt. Monadnock were all 

sampled from quartz veins with abundant striae on summit.  Samples collected from Mts. 

Chocorua and Kearsarge were not processed due to low quality surfaces.   
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 Prior to sample removal, site details were recorded including: lithology and preservation 

of glacial features on or near the sample surface.  Photographs were taken before and after each 

sample was collected to document the original surface and show the general setting in which 

each sample was taken.  Latitude, longitude, and elevation were obtained using a handheld 

Garmin GPS.  The strike, dip, and topographic shielding were recorded for each sampled surface 

in order to make corrections for the production of 10Be at each site.  On each mountain, striation 

orientations and locations were measured using a Brunton compass and GPS in order to 

document ice flow patterns.    

   

   

 

 

 

 

 

 

 

 

 

Figure 6: Map of sample sites in 

central and southern New 

Hampshire.  Mts. Chocorua and 

Kearsarge not shown. 
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2.2: Sample Preparation and Analysis  

 Samples were physically prepared in the rock preparation lab at the University of New 

Hampshire.  Each sample was crushed to a grain size fraction of 500-250μm.  Samples were 

magnetically separated to remove the majority of mafic minerals from the sample.  Froth 

flotation was used to remove the majority of non-quartz minerals using a mixture of carbonated 

dilute glacial acetic acid, laurylamine, and tea tree oil.  To further purify the quartz, each sample 

was loaded into acid baths, first in a solution of hydrochloric acid to remove any carbonates, iron 

oxides, or organic materials, then in a solution of hydrofluoric and nitric acid to remove any non-

quartz minerals and meteoric 10Be (Kohl and Nishiizumi, 1992).  After acid etching, quartz was 

tested for purity using an ICP-AES at the LEGS facility at the University of Colorado-Boulder. 

 Following a modified procedure from Licciardi (2000), each purified quartz sample was 

spiked with 9Be carrier and then digested in concentrated hydrofluoric acid.  Samples were then 

dried down, using perchloric acid hydrochloric acid to prepare samples for column procedures.  

Beryllium in each sample was isolated using ion exchange chromatography.  Samples were 

precipitated into gels and then rinsed with DI water to remove any potential boron.  Finally, the 

gels were oxidized to beryllium oxide powder and packed into cathodes to be analyzed using an 

accelerator mass spectrometer.  Sample analysis was conducted at the Center for Accelerator 

Mass Spectrometry at the Lawrence Livermore National Laboratory in Livermore, California to 

determine the 10Be/9Be ratio of each sample required to calculate the exposure age.  A process 

blank was prepared with the sample batch to assess laboratory and spike background. 

 Exposure ages were calculated using the CRONUS Earth online calculator (Balco et al., 

2008) version 2.2.1 with the Northeast North America calibration data set (Balco et al., 2009).  
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For samples composed of granitic bedrock, an average density of 2.7 g/cm3 was used.  Samples 

collected from quartz veins have an average density of 2.65 g/cm3 (Table A3).   

2.3: Mapping Striations in ArcGIS 

 ArcGIS 10.1 was used to analyze changing patterns of ice flow direction in relation to 

topography.  In order to conduct this analysis, a 300m DEM of New Hampshire and the point 

glacial features data layers, containing 947 striation measurements, were obtained from New 

Hampshire GRANIT’s online GIS data repository.  All of the data layers were initially projected 

in ArcGIS using the same N.H. State Plane Projection to make sure the data were formatted and 

displayed in a consistent way.  In order to fill a large geographic gap in the digitized striation 

data collected from New Hampshire, a surficial map published by Charles Hitchcock in 1878 

containing 683 striation measurements was georectified using ArcMap.  Corrections were made 

to the striation directions to account for changes in magnetic declination.  The elevation of each 

striation was determined by joining the data to the 300m DEM data layer.  A “fishnet” of 100 

equal area cells was digitized over New Hampshire.  The 100 highest and lowest elevation 

striations from each fishnet grid cell were then plotted.  The difference between the highest and 

lowest elevation striations are used to interpret ice flow pattern changes in New Hampshire as ice 

sheet thinning occurred. The distributions of both striation data sets were then plotted on a rose 

diagram to display patterns of ice flow direction.  ArcGIS was also used to map the 10Be ages 

obtained from each field site.  To show the relationship between the 10Be exposure ages from this 

study and previously measured 14C ages from varves and lake bottoms, ice recession chronology 

data from Ridge (2003, 2004) were digitized into ArcMap.   
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2.4: Ice Sheet Profiles 

 Ice sheet surface profiles were generated from each sampled mountain to depict two 

dimensional reconstructions of the LIS surface geometry.  To construct the ice sheet profiles, 

mean 10Be ages from each site were correlated to independently dated ice marginal features such 

as varves and moraines.  Features with the same age as the sampled summits would have been 

exposed at the same time, allowing for an ice sheet surface profile to be drawn between the two 

points (Fig. 7). Ice sheet profiles are typically constructed along a flow line, marking a specific 

portion of the ice sheet’s flow pattern. The azimuthal directions of the flow lines used to generate 

the ice sheet profiles were determined using both striations measured in the field and previously 

mapped ice flow indicators.   

 A modeled ice sheet profile was generated for each site using Equation 1:  

      𝐻 = √
2𝜏𝐿

𝜌𝑔
 

where ρ is the density of glacial ice (900 kg/m3), H is the thickness of the ice sheet, L is the 

distance from the sampled peak to the ice sheet margin, g is gravity (9.8 m/s2), and τ is the basal 

shear stress acting upon the glacier (Nye, 1952).  An average basal shear stress of 100 kPa was 

used for each peak (Cuffey and Peterson, 2010).  This simplified equation is commonly used in 

glaciological studies to reconstruct past ice sheet profiles and is the basis of the ice profiler 

developed by Benn and Hulton (2010). When tested against observed modern ice sheet profiles 

in Greenland and Antarctica, the Nye (1952) equation produces very similar ice sheet profiles to 

what is seen today (Cuffey and Paterson, 2010). In Greenland, for example, the maximum 

(1) 
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thickness of the ice sheet is roughly 3.2 km, based on geophysical measurements, and when 

using the profiler the maximum modeled thickness is 3.15 km (Cuffey and Paterson, 2010). This 

equation does not take into account changes in basal topography due to isostatic adjustment, and 

assumes a constant basal shear stress, but still provides accurate reconstructions.  The equation 

used to generate the modeled ice sheet profiles was plotted against empirical ice sheet profiles to 

test if the 10Be ages fit well within the previously established ice recession chronology. After the 

modelled ice sheet profiles were constructed, they were used to generate three-dimensional ice 

sheet surfaces in ArcGIS by pairing ice flow measurements with dated ice marginal features.  

 

 

 

 

 

 

 

 

 

 

       

Figure 7: Schematic diagram depicting how an ice sheet thins as it recedes; mountain 

summits are the first topographic features to emerge from the ice sheet and interact with 

cosmic rays.   
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Table 1: 10Be exposure age and associated internal and external error for each sample calculated using both 

the Lifton-Sato-Dunai (LSDn) nuclide + time dependent scaling scheme, and the New England North 

America (NENA) production rate with the Stone/Lal (St) time dependent scaling scheme.   

Chapter III: Results 

3.1 10Be Surface Exposure Ages 

  The 10Be concentrations and corresponding ages collected from each site are presented in 

Table 1. All ages were calculated using the Stone and Lal (St) scaling scheme (Lal, 1991; Stone, 

2000; Balco et al., 2008).  For comparison purposes, ages were also calculated using the Lifton-

Sato-Dunai (LSDn) nuclide specific time-dependent scaling scheme (Lifton et al., 2014) and a 

production rate of 3.92 atoms/gram/year (Borchers et al., 2016); these ages are listed in Table 1 

but all ages discussed in the text follow the NENA-St production rate and scaling scheme.  Three 

samples from Mt. Monadnock (Fig. 8a) yielded an average exposure age of 15.4 ± 0.2 ka, with 

no outliers. Mt. Major has a single age of 15.3 with an internal error of 0.5 ka (Fig 8b).  Mt. 

Cardigan has two exposure ages averaging 14.4 ± 0.2 (Fig 8c).  Mt. Dickey has three exposure 

ages, two from the summit and one from roughly 100 m below the summit (Fig. 8d). Two 

samples collected from the summit of Mt. Dickey yield an average age of 12.9 ± 0.1 ka, which is 

younger within internal uncertainty than the sample collected 100 m below the summit with an 

age of 13.6 ± 0.2 ka.  

  

Sample 

Name 

Location 10Be Age 

(LSDn) 

(ka) 

External 

Error 

(ka) 

10Be Age 

(NENA+St) 

(ka) 

External 

Error 

(ka) 

Internal 

Error 

(ka) 

Average 

NENA+St Age 

(ka) 

NH15-04 Mt. Major 16.5 1.3 15.3 0.9 0.5 - 

NH15-06 Mt. Cardigan 15.1 1.1 14.4 0.8 0.3 
14.4 ± 0.2 [0.5] 

NH15-08 Mt. Cardigan 15.2 1.1 14.4 0.8 0.3 

NH15-09 Mt. Dickey 13.6 1.1 12.8 0.7 0.3 

13.1 ± 0.2 [0.4] NH15-10 Mt. Dickey 13.7 1.1 12.9 0.7 0.3 

NH15-11 Mt. Dickey 14.5 1.1 13.6 0.7 0.3 

NH15-16 Mt. Monadnock 15.9 1.3 15.0 0.8 0.3 

15.4 ± 0.2 [0.5] NH15-17 Mt. Monadnock 16.1 1.2 15.2 0.8 0.3 

NH15-19 Mt. Monadnock 16.7 1.3 15.8 0.8 0.3 
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NH15-16:  
15.1 ± 0.8 

NH15-17:  
15.2 ± 0.8 

NH15-19:  
15.8 ± 0.8 

Figure 8a) Field map showing individual exposure ages and associated external errors on Mt. 

Monadnock.  Striations measurements are shown as white arrows (Billings, 1949).  (Source data NH 

GRANIT) 
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Figure 8b) Field map showing individual exposure ages and associated external errors on Mt. Major.  

Striations measurements are shown as white arrows. (Source data NH GRANIT) 

  

NH15-04:  
15.3 ± 0.9 
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NH15-06:  
14.4 ± 0.8 

NH15-08:  
14.4 ± 0.8 

Figure 8c) Field map showing individual exposure ages and associated external errors on Mt. 

Cardigan.  Striations measurements are shown as white arrows. (Source data NH GRANIT) 
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NH15-09:  
12.8 ± 0.7 

NH15-10:  
12.9 ± 0.7 

NH15-11:  
13.6 ± 0.7 

Figure 8d) Field map showing individual exposure ages and associated external errors on Mt. Dickey.  

Striations measurements are shown as white arrows. (Source data NH GRANIT) 
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3.2 Ice Flow Patterns 

 Striations mapped in this study (Table 2) were used to inform ice profile reconstructions. 

Mean ice flow through New Hampshire during the LGM was south-southeast (145o) but ranged 

from 90o – 210o as indicated by striations mapped by Hitchcock (1878).  The 100 striations 

found at the highest elevations in New Hampshire (blue arrows in Figure 9) display a mode ice 

flow of roughly 145o, seen in Figure 8, but range from 105o-195o.  The 100 striations associated 

with the lowest elevations (red arrows in Figure 9) present two distinct ice flow patterns.  The 

first dominant ice flow pattern trend equates to the mode of all the measurements at 145o, similar 

to that of the highest elevation striations.  The second and slightly less dominant ice flow pattern 

has a mode of 170o when sampling from striations between 165-210o as seen in Figure 10.  

However, the azimuthal range of striations found at lower elevations varies from 90-210o.   

Location Latitude  

(DD) 

Longitude  

(DD) 

Azimuthal Direction 

(o from N) 

Cardigan 

 

43.6496 -71.91428 148 

43.6497 -71.91435 139 

43.6494 -71.91378 132 

43.6492 -71.91425 142 

43.6493 -71.91445 154 

43.6499 -71.91399 149 

43.6490 -71.91598 147 

43.6484 -71.91622 143 

Dickey 43.9139 -71.57574 179 

43.9191 -71.57598 163 

43.9225 -71.57757 160 

43.9236 -71.57838 172 

43.9228 -71.57835 158 

43.9203 -71.58526 176 

43.9185 -71.58648 159 

Major 

 

 

 

43.5092 -71.28501 154 

43.5103 -71.28502 141 

43.5116 -71.28625 132 

43.5134 -71.28745 142 
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Table 2: Striation measurement data from each field site including: geographic location and azimuthal 

direction.  Measurements reported for Mt. Monadnock were collected by Billings (1949). 

Highest Striations 

Lowest Striations 

Major 43.5135 -71.28796 153 

43.5128 -71.28855 140 

43.5129 -71.28877 120 

43.5125 -71.28869 145 

43.5124 -71.28880 175 

Monadnock 42.8565 -72.10963 112 

42.8566 -72.10951 156 

42.8644 -72.11129 173 

42.8611 -72.10823 165 

42.8616 -72.10565 150 

42.8616 -72.10208 159 

42.8583 -72.10184 104 

42.8584 -72.10196 155 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Map displaying striation patterns in New 

Hampshire.  Red arrows indicate lowest elevation 

striation in each equal area grid cell, and blue 

arrows indicate the highest elevation striation from 

each grid cell.  (Source data: NH GRANIT and 

Hitchcock, 1878) 

Figure 10: Corresponding rose petal 

diagrams with azimuthal distributions of 

highest and lowest elevation striations in 

New Hampshire. (Source data: NH GRANIT 

and Hitchcock, 1878) 
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Chapter IV: Discussion and Interpretations 

4.1: Comparison of 10Be ages from sample summits 

 The mean exposure age of each summit is interpreted as the best representation for the 

timing of deglaciation.  However, several factors can affect the apparent age of exposure for each 

peak, including inheritance of cosmogenic nuclides, post-glacial erosion, and shielding.  Nuclide 

inheritance can occur when ice is not erosive enough to scour away nuclides produced during 

prior exposure, thereby increasing the exposure age.  Post-glacial erosion can cause apparent 

ages to be much younger than the true age of exposure, as erosion scours the surface removing 

10Be and decreasing the overall 10Be concentration.  Finally, various types of shielding caused by 

topography, snow cover, or tree canopies can lead to younger 10Be exposure ages.   Corrections 

to topographic shielding can be made based on documentation of individual field sites.  

 On Mt. Monadnock, all samples were collected from the summit where high winds are 

likely minimize snow cover during the winter months.  All samples were collected from surfaces 

that display abundant striae and glacial polish indicating there is little post-glacial erosion that 

has occurred.  The three ages from this summit all agree within the internal uncertainty.  Similar 

to Monadnock, the sample from Mt. Major was collected from the exposed summit where effects 

of snow cover attenuation should be minimized. The sample also has an original ice sculpted 

surface still present indicating minimal effects of post-glacial erosion.  This age compares well 

with 10Be ages of other summits and is consistent with ice recession from south to north.  On Mt. 

Cardigan sampling was conducted in the same manner as Mts. Major and Monadnock to 

minimize effects of erosion and shielding.  The two ages from Mt. Cardigan are indistinguishable 
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from each other. On Mt. Dickey, the two ages on the summit agree within the internal error but 

are approximately 0.7 ka younger than the sample collected from a lower elevation. 

 The summit of Mt. Dickey is partially covered with a coniferous tree canopy (covering 

~30% of the summit), while the collection site 100 m below the summit is on an exposed 

ridgeline where there are currently no trees.  The ages are likely not altered by post-glacial 

erosion as the samples still had abundant polish and striations indicating negligible postglacial 

erosion.  One possible influence on these younger ages is that there is currently more tree cover 

on the summit, which can lower the production rate of 10Be. Plug et al. (2007) modeled cosmic 

ray fluxes through varying canopy types and found that for surfaces in forested regions the net 

flux is only 1.5% lower than non-forested regions. Including this correction for Mt. Dickey, the 

samples from the summit would only increase the exposure age by roughly 0.2 ka, which alone is 

not enough to explain the younger age.  Tree cover was once present on the summits of Mts. 

Monadnock and Cardigan, but was removed in the 1800’s due to forest fires (Mansfield, 2006; 

NHStateParks.org).   

 Tree cover may have a small impact on production rates, but annual snow cover can have 

a larger impact on calculated ages.  Assuming snow is present on the summits for several months 

each year, a snow cover correction can be made from Gosse and Phillips (2001) using snow 

thickness.  With an average snow cover of 1 meter for 4 months out of each year and a snow 

density of 0.4 g/cm3, a correction of ~ 4% is calculated. Applying this correction on the average 

age for each summit would increase the ages slightly, but would not impact the overall 

chronology.     
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4.2: Comparison to Previously Reported Chronology: 

 To determine if the 10Be ages derived from this study are consistent with the previously 

documented ice retreat chronology, these ages have been plotted together with the 14C ages in 

ArcMap (Fig. 11).  On their own the 10Be ages from this study are consistent with a chronology 

indicative of ice recession to the north.  When compared to the previously established 

chronology, there are also many consistencies.  The average ages from Mts. Monadnock, Major, 

and Cardigan are all older than 14C isochrones from low lying valleys (Ridge, 2003) at similar 

latitudes, indicating they were exposed prior to surrounding areas at lower elevation.  This result 

would be expected as ice retreats and thins simultaneously, exposing areas of higher elevation 

first.  The individual ages from the summit of Mt. Dickey are both younger than the 14C ages 

from varve records or from the basal 14C ages from lake and bog sediment cores even within the 

external uncertainty of the 10Be ages.  The lower sample from Mt. Dickey is also younger than 

the previously established chronologies, but fits within the 1σ uncertainty of the 10Be age.  There 

are some potential difficulties that arise when comparing the 10Be ages to the previously 

documented 14C ages, most notably with the 14C isochrones from Ridge (2003).  In Figure 2 there 

are no errors reported associated with the 14C ages used to construct the varve chronology, which 

makes it difficult to discern age uncertainties in in the varve record when comparing to the 10Be 

ages.   
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Figure 11: Map of 10Be exposure with average internal and (external) uncertainties from each summit 

plotted with 14C varve chronology from Ridge (2003).  Ice profile transects are plotted from Mts. 

Cardigan, Major, and Monadnock and correspond to the profiles shown in Figure 12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mt. Dickey 

NH15-09 12.8 ± 0.3 ka 

NH15-10 12.9 ± 0.3 ka 

NH15-11 13.6 ± 0.3 ka 

Average 13.1 ± 0.2 (0.4)ka 

Mt. Cardigan 

NH15-06 14.4 ± 0.3 ka 

NH15-08 14.4 ± 0.3 ka 

Average 14.4 ± 0.2 (0.5)ka 

Mt. Major 

NH15-04 15.3 ± 0.5 (0.8) ka 

Mt. Monadnock 

NH15-16 15.0 ± 0.3 ka 

NH15-17 15.2 ± 0.3 ka 

NH15-19 15.8 ± 0.3 ka 

Average 15.4 ± 0.2 (0.5)ka 
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 In a study by Bierman et al. (2015), 10Be ages sampled from some of the highest peaks in 

New England were up to tens of thousands of years older than the LGM.  All of the peaks from 

that study were once inundated with ice, indicated by erratics and striations that can be found on 

or near all of the summits.  The authors determined nuclide inheritance was likely the reason for 

older ages.  In situ cosmogenic 14C ages of 12.7 ± 2.8 and 11.0 ± 2.2 were processed from Mts. 

Washington and Katahdin and are consistent with the timing of deglaciation for the LGM when 

including the 2σ uncertainty (Bierman et al., 2015). 10Be has a half-life of 1.4 my compared to 

5.7 kyr for 14C and therefore any inherited 14C from exposure prior to glaciation would have 

decayed away by the time of deglaciation (Bierman et al., 2015).  This indicates that nuclide 

inheritance of 10Be was likely the cause for the older than expected ages, indicating that the ice 

on these peaks was not erosive enough to scour away the pre-exposed surface.  Ice sheets are 

much thinner on topographic highs, which can result in cold-based ice that is weakly erosive, 

even at temperate latitudes (Bierman et al., 2015).   

 Samples collected from the lower summits in central and southern New Hampshire 

provide 10Be exposure ages that fit closely with the previously documented retreat chronology 

(Ridge, 2003; 2004) and therefore indicate the ice was likely erosive enough to remove any 

nuclides accumulated during prior exposure.   The ice would have been almost 1 km thicker over 

these lower peaks than the summit of Mt. Washington, enabling more geothermal heat to be 

trapped and creating more friction between the glacier sole and bedrock surface.  This suggests a 

scenario of warm based ice and efficient subglacial quarrying and abrasion on lower elevation 

peaks in New Hampshire.  
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4.3: Ice Flow Patterns: 

 The results from the highest and lowest elevation ice flow measurements demonstrate 

that ice flow patterns shifted as the LIS thinned and became topographically confined.  The 

highest elevation striations display the direction of regional ice flow for the LIS (~145o), as they 

are measured from areas where there are no topographic barriers and therefore ice would have 

been able to flow unobstructed from major ice divides. The results from the highest elevation 

striations show the mode of striations between 140-145o, which fits well with the known trend of 

regional ice flow for the LIS.  The lowest elevation striations display a much wider range of 

striation patterns than those found at the highest elevation.  While there is still a large proportion 

of striations trending 135-145o, the overall distribution is much more scattered.  There is another 

clustering of ice flow measurements between 170-185o which is well-aligned with the orientation 

of many of New Hampshire’s major river valleys and notches including the Connecticut River 

and Merrimack River valleys, Franconia Notch and Mt. Washington Valley. These distributions 

show that as the LIS thinned and retreated the ice became topographically confined and ice flow 

patterns shifted to follow the orientation of the valleys in which they were constrained.  This 

provides evidence supporting the second hypothesis by Wright (2015), that cross cutting 

striations are caused by topographic constraints and not by ice sheet readvance.   

4.4: Ice Sheet Profiles 

 In order to generate ice sheet profiles anchored to each sampled mountain, the striation 

patterns were used in order to determine the transect direction (Fig. 11). No ice sheet profile was 

generated for Mt. Dickey because the ages do not fit well with the regional ice retreat 

chronology.  The modeled ice sheet profiles resulting from Equation 1 (Nye, 1951); blue lines in 
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Figure 12 were compared to empirically derived profiles that were drawn between the dated 

summit of each mountain and independently dated ice margins of similar age to the south (solid 

red lines in Fig. 12). The red dashed lines in Figure 12 represent the maximum possible extent of 

the empirical mean profiles when including the maximum 1σ uncertainty in 10Be ages from 

peaks in this study.  Minimum-extent indicators that subtract the 1σ uncertainty from the average 

age of each summit are not displayed because they cannot be reconciled with dated ice marginal 

features. The modeled ice sheet profiles for Mts. Cardigan, Major, and Monadnock all fit within 

the maximum extents of the empirical profiles. The error associated with the varve ages is 

difficult to quantify and was not taken into account with the ice sheet profiles. Since the modeled 

ice sheet profiles fits well within the constraints of all the sampled summits, the peak emergence 

ages are consistent with what would be predicted by drawing glaciologically-derived surface 

profiles from independently dated ice margins. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

El
ev

at
io

n
 (

km
)

Distance from Cardigan (km)

Cardigan Ice Profile

Modeled Cardigan
Profile
Topography

Empirical Mean

Empirical Max



 

 

33 

 

Figure 12: Modeled ice sheet profiles from Mts. Cardigan, Major, and Monadnock.  Blue lines indicate 

the modeled profile results calculated using Equation 1.  Solid red lines show the mean-data-

constrained ice sheet profiles and dashed red lines show the maximum-data-constrained ice sheet 

profile.  Minimum-data-constrained ice sheet profiles are not depicted, as they would fall north of the 

sample summits. 

 

 

 

 

 

4.5: Ice Sheet Surface Models 

 To estimate possible thinning rates of the LIS, the modeled ice sheet profile equation 

(Nye, 1952) was used to generate three-dimensional ice sheet surfaces across the entire state of 

New Hampshire.  By interpolating between transects of the modeled ice profiles anchored to the 

dated recessional features, ice surfaces were generated to reconstruct a regional view of ice 
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thinning through time (Fig. 13).  The modeled ice surfaces were tied into dated ice margins 

rather than the 10Be ages from the peaks because the ice margin chronology spans a longer period 

of time in which to produce ice surfaces.  The amount and rate of ice thinning over each peak 

was determined from the model predicted ice thickness over each summit and the timing of peak 

emergence.  This method was applied to all three sampled summits during each modeled time 

interval, and the site specific mean thinning rates at each peak were used to define broader 

regional thinning rates.  The modeled ice sheet surfaces show each summit emerging at a time 

that is consistent with the average 10Be age of each summit with the exception of Dickey.  

Changes in topography due to isostatic rebound were not taken into account as they are 

negligible for the timescale discussed in this study. 

 Modeled ice sheet surfaces were also compared against previously acquired exposure 

ages from Bierman et al. (2015).  The reconstructed ice sheet surfaces show Mt. Washington 

emerging from the thinning LIS at roughly 15.2 ka.  This age is consistent within the uncertainty 

of the in situ cosmogenic 14C age of 12.7 ± 2.8 ka from Bierman et al. (2015).   

4.6: Paleoclimatic Implications 

 The estimated ice sheet thinning rates, while broadly determined by modeled ice sheet 

surfaces and 10Be ages, provide valuable insight on changes in surface geometry of the LIS 

through time.  Between 15.8 ka and 15.5 ka modeled ice sheet surfaces in New Hampshire 

indicate a thinning rate of roughly 1.0 m/yr.  From 15.5-15.2 ka ice thinning rates continued at a 

rate of 1.0 m/yr, however after 15.2 ka thinning rates double to roughly 2.0 m/yr.  Work done by 

Ridge et al. (2012) found that ice margin retreat rates increased around 15.0 cal ka, which 

coincides with the onset of increased thinning from the modeled ice surfaces in this study. Ridge 
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Figure 13: Modeled ice sheet surfaces between 15.8-14.3 ka.  Darker blues indicate thicker portions of the 

modeled ice sheet.  Topography during ice retreat is shown in a gradational color ramp with darker greens at 

lower elevations and red indicating the highest elevations.   

15.8 ka 15.5 ka 15.2 ka 

14.7 ka 14.2 ka 
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et al. (2012) correlated varve thickness with regional and global climatic events recorded in 

Greenland ice cores.  A notable temperature increase occurs in the ice core record between 15.0 

cal ka and 13.8 cal ka during the Bølling Allerød (Rasmussen et al., 2006), which is in line with 

the increased rates of margin retreat (Ridge et al., 2012) and ice surface lowering documented in 

this study. The ice sheet surfaces are tied to the North American Varve Chronology sites and are 

therefore directly linked to the recession rates.  While large ice sheets typically take significant 

periods of time to respond to climatic changes, other studies have shown that ice sheet margins 

can respond to changes in climate on decadal timescales depending on ice flow characteristics or 

presence of calving margins (Thomas and Briner, 2009; Young et al., 2013). 
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CHAPTER V: CONCLUSIONS 

 10Be ages determined from four summits in central and southern New Hampshire provide 

one of the first reconstructions of ice-surface lowering across the region.  The average 10Be ages 

from this study fit within the ice recession chronology documented by Ridge (2003) with the 

exception of Mt. Dickey.  Ice flow patterns, paired with 10Be ages and previously documented 

radiocarbon ages define empirical ice sheet profiles that match modeled ice sheet profiles 

derived from standard ice dynamics variables further strengthening the confidence in the 10Be 

ages. The 10Be ages suggest that the LIS was erosive enough to remove any nuclides produced 

during prior exposure from the lower summits in New Hampshire, unlike ice on Mt. Washington 

and other high peaks where the overriding glacier may have been cold-based and weakly erosive. 

Combined ice flow measurements documented from both this study and from Hitchcock (1878) 

suggest that striations found at the highest elevations in the region display unobstructed ice flow 

aligned with the broad regional ice flow pattern.  Lower elevation striation measurements 

suggest that as the LIS thinned and retreated, ice became confined to low lying valleys possibly 

causing cross-cutting striation patterns to form in these regions similar to results documented by 

Wright (2015) in Vermont.   

 Reconstructed ice surfaces projected north of dated ice margins using glaciological 

principles depict an uptick in ice thinning rates at 15.2 from 1 m/yr to 2 m/yr that coincides with 

the increased rate of margin retreat documented by Ridge et al (2012).  This acceleration in 

thinning and margin retreat coincides with the start of the BØlling AllerØd period in the North 

Atlantic region.  The 10Be ages from this study fill a large gap in the chronology of ice recession 

in New England and provide novel insight on how the LIS may have responded to climatic 

changes during the last deglaciation. 
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Table A1: Recalibrated 10Be ages from Balco et al. (2002) 

a) Ages are calculated using the CRONUS-Earth calculator (Balco et al., 2008) and the regional 

productions rate of 3.93 ± 0.19 atoms g-1 a-1 (Balco et al., 2009) . 

b) Sample thickness corrections employ a measured rock density of 2.7 g cm-3  

c) All 10Be exposure ages are calculated with the time-invariant ‘St’ scaling scheme of Stone (2000) 

following Lal (1991). 

 

APPENDIX A 

 

  

 

  

 

 

Sample Name Longitude Latitude Elevation Thickness [10Be] ± Age ± 

  (DD) (DD) (masl) (cm) atoms 
g-1 

atoms 
g-1 

(ka) (ka) 

Martha’s Vineyard          

PH-1 41.3567 70.7348 91 4.5 123500 3700 27.7 2.6 

WR-2 41.3937 70.6992 54 2 122900 3600 27.9 2.6 

WR-3 41.3922 70.6995 54 1.5 122800 4700 27.8 2.7 

WR-4 41.3939 70.6972 30 3 121800 3500 28.5 2.6 

WR-5 41.3922 70.6983 51 6 102900 3000 24.2 2.2 

WR-6 41.3897 70.7017 51 4 110600 4200 25.6 2.4 

MV-2-27-1 41.3483 70.7063 9 2 140500 3600 33.4 3 

MV-2-27-2 41.3633 70.7258 69 2.5 282500 7000 64.1 5.9 

MV-2-27-3 41.3483 70.7482 30 2 106800 2800 24.8 2.3 

MV-2-27-4 41.335 70.7977 33 2 75500 3200 17.5 1.7 

MV-3-07-2 41.3758 70.732 54 2 246000 6100 56.3 5.2 

MV-3-07-3 41.3417 70.8143 51 2.5 97100 3600 22.2 2.1 

           

Buzzards Bay          

BB-2-21-1 41.5500 70.6495 12 1.0 79800 3300 18.7 1.8 

BB-2-24-1 41.5317 70.6588 24 2.0 88200 3100 20.6 1.9 

BB-2-24-2 41.5317 70.6597 24 2.0 84500 3400 19.7 1.9 

BB-2-29-1 41.5567 70.6458 24 2.0 92900 4100 21.7 2.1 

BB-2-29-2 41.5567 70.6458 24 2.5 88300 6200 20.7 2.3 

BB-3-06-1 41.5750 70.6178 24 2.5 89200 2900 20.9 1.9 

BB-3-06-2 41.5783 70.6192 21 2.5 94600 3200 22.2 2.1 

BB-3-06-3 41.5817 70.6217 21 2.5 92100 4000 21.6 2.1 

BB-3-12-1 41.5250 70.6532 9 1.5 82500 4100 19.4 2 

BB-3-12-2 41.5242 70.6528 18 2.0 93800 4600 22 2.2 
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Site 14C Age (yr BP) ± (yr BP) Cal ka ± Cal Ka  Probability Distribution 

Cushman Pond 13150 50 15800 100 1.000 

Deer Lake Bog 13000 400 15490 650 1.000 

Lost Pond 12870 370 15290 630 1.000 

Lake of the Clouds 11530 420 13420 460 1.000 

Pond of Safety 12450 60 14590 220 1.000 

Surplus Pond 12250 55 14160 90 1.000 

Spencer Pond 11665 85 13500 80 1.000 

Columbia Bridge 11540 110 13370 100 1.000 

Barnston Lake 11020 330 12900 310 1.000 

Lower Black Pond 11500 50 13350 50 1.000 

Chain of Ponds 10860 160 12780 150 1.000 

Lac aux Araignees 10700 310 12520 400 1.000 

Boundary Pond 10200 200 11880 290 0.798 

Lac a la Truite 11000 240 12900 200 1.000 

Lac Dufresne 11200 160 13050 170 1.000 

Table A2: Recalibrated 14C ages from Thompson et al. 1999 using CALIB 7.1 and IntCal 13.  

The probability distribution represents the likelihood of the representative age.   
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